]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/spi/spi-rspi.c
spi: rspi: Fix interrupted DMA transfers
[mirror_ubuntu-bionic-kernel.git] / drivers / spi / spi-rspi.c
1 /*
2 * SH RSPI driver
3 *
4 * Copyright (C) 2012, 2013 Renesas Solutions Corp.
5 * Copyright (C) 2014 Glider bvba
6 *
7 * Based on spi-sh.c:
8 * Copyright (C) 2011 Renesas Solutions Corp.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/sched.h>
23 #include <linux/errno.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/io.h>
27 #include <linux/clk.h>
28 #include <linux/dmaengine.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/of_device.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/sh_dma.h>
33 #include <linux/spi/spi.h>
34 #include <linux/spi/rspi.h>
35
36 #define RSPI_SPCR 0x00 /* Control Register */
37 #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
38 #define RSPI_SPPCR 0x02 /* Pin Control Register */
39 #define RSPI_SPSR 0x03 /* Status Register */
40 #define RSPI_SPDR 0x04 /* Data Register */
41 #define RSPI_SPSCR 0x08 /* Sequence Control Register */
42 #define RSPI_SPSSR 0x09 /* Sequence Status Register */
43 #define RSPI_SPBR 0x0a /* Bit Rate Register */
44 #define RSPI_SPDCR 0x0b /* Data Control Register */
45 #define RSPI_SPCKD 0x0c /* Clock Delay Register */
46 #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
47 #define RSPI_SPND 0x0e /* Next-Access Delay Register */
48 #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
49 #define RSPI_SPCMD0 0x10 /* Command Register 0 */
50 #define RSPI_SPCMD1 0x12 /* Command Register 1 */
51 #define RSPI_SPCMD2 0x14 /* Command Register 2 */
52 #define RSPI_SPCMD3 0x16 /* Command Register 3 */
53 #define RSPI_SPCMD4 0x18 /* Command Register 4 */
54 #define RSPI_SPCMD5 0x1a /* Command Register 5 */
55 #define RSPI_SPCMD6 0x1c /* Command Register 6 */
56 #define RSPI_SPCMD7 0x1e /* Command Register 7 */
57 #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
58 #define RSPI_NUM_SPCMD 8
59 #define RSPI_RZ_NUM_SPCMD 4
60 #define QSPI_NUM_SPCMD 4
61
62 /* RSPI on RZ only */
63 #define RSPI_SPBFCR 0x20 /* Buffer Control Register */
64 #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
65
66 /* QSPI only */
67 #define QSPI_SPBFCR 0x18 /* Buffer Control Register */
68 #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
69 #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
70 #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
71 #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
72 #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
73 #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
74
75 /* SPCR - Control Register */
76 #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
77 #define SPCR_SPE 0x40 /* Function Enable */
78 #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
79 #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
80 #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
81 #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
82 /* RSPI on SH only */
83 #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
84 #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
85 /* QSPI on R-Car Gen2 only */
86 #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
87 #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
88
89 /* SSLP - Slave Select Polarity Register */
90 #define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */
91 #define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */
92
93 /* SPPCR - Pin Control Register */
94 #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
95 #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
96 #define SPPCR_SPOM 0x04
97 #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
98 #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
99
100 #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
101 #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
102
103 /* SPSR - Status Register */
104 #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
105 #define SPSR_TEND 0x40 /* Transmit End */
106 #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
107 #define SPSR_PERF 0x08 /* Parity Error Flag */
108 #define SPSR_MODF 0x04 /* Mode Fault Error Flag */
109 #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
110 #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
111
112 /* SPSCR - Sequence Control Register */
113 #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
114
115 /* SPSSR - Sequence Status Register */
116 #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
117 #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
118
119 /* SPDCR - Data Control Register */
120 #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
121 #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
122 #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
123 #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
124 #define SPDCR_SPLWORD SPDCR_SPLW1
125 #define SPDCR_SPLBYTE SPDCR_SPLW0
126 #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
127 #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
128 #define SPDCR_SLSEL1 0x08
129 #define SPDCR_SLSEL0 0x04
130 #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
131 #define SPDCR_SPFC1 0x02
132 #define SPDCR_SPFC0 0x01
133 #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
134
135 /* SPCKD - Clock Delay Register */
136 #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
137
138 /* SSLND - Slave Select Negation Delay Register */
139 #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
140
141 /* SPND - Next-Access Delay Register */
142 #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
143
144 /* SPCR2 - Control Register 2 */
145 #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
146 #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
147 #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
148 #define SPCR2_SPPE 0x01 /* Parity Enable */
149
150 /* SPCMDn - Command Registers */
151 #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
152 #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
153 #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
154 #define SPCMD_LSBF 0x1000 /* LSB First */
155 #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
156 #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
157 #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
158 #define SPCMD_SPB_16BIT 0x0100
159 #define SPCMD_SPB_20BIT 0x0000
160 #define SPCMD_SPB_24BIT 0x0100
161 #define SPCMD_SPB_32BIT 0x0200
162 #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
163 #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
164 #define SPCMD_SPIMOD1 0x0040
165 #define SPCMD_SPIMOD0 0x0020
166 #define SPCMD_SPIMOD_SINGLE 0
167 #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
168 #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
169 #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
170 #define SPCMD_SSLA_MASK 0x0030 /* SSL Assert Signal Setting (RSPI) */
171 #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
172 #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
173 #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
174
175 /* SPBFCR - Buffer Control Register */
176 #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
177 #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
178 #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
179 #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
180 /* QSPI on R-Car Gen2 */
181 #define SPBFCR_TXTRG_1B 0x00 /* 31 bytes (1 byte available) */
182 #define SPBFCR_TXTRG_32B 0x30 /* 0 byte (32 bytes available) */
183 #define SPBFCR_RXTRG_1B 0x00 /* 1 byte (31 bytes available) */
184 #define SPBFCR_RXTRG_32B 0x07 /* 32 bytes (0 byte available) */
185
186 #define QSPI_BUFFER_SIZE 32u
187
188 struct rspi_data {
189 void __iomem *addr;
190 u32 max_speed_hz;
191 struct spi_master *master;
192 wait_queue_head_t wait;
193 struct clk *clk;
194 u16 spcmd;
195 u8 spsr;
196 u8 sppcr;
197 int rx_irq, tx_irq;
198 const struct spi_ops *ops;
199
200 unsigned dma_callbacked:1;
201 unsigned byte_access:1;
202 };
203
204 static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
205 {
206 iowrite8(data, rspi->addr + offset);
207 }
208
209 static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
210 {
211 iowrite16(data, rspi->addr + offset);
212 }
213
214 static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
215 {
216 iowrite32(data, rspi->addr + offset);
217 }
218
219 static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
220 {
221 return ioread8(rspi->addr + offset);
222 }
223
224 static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
225 {
226 return ioread16(rspi->addr + offset);
227 }
228
229 static void rspi_write_data(const struct rspi_data *rspi, u16 data)
230 {
231 if (rspi->byte_access)
232 rspi_write8(rspi, data, RSPI_SPDR);
233 else /* 16 bit */
234 rspi_write16(rspi, data, RSPI_SPDR);
235 }
236
237 static u16 rspi_read_data(const struct rspi_data *rspi)
238 {
239 if (rspi->byte_access)
240 return rspi_read8(rspi, RSPI_SPDR);
241 else /* 16 bit */
242 return rspi_read16(rspi, RSPI_SPDR);
243 }
244
245 /* optional functions */
246 struct spi_ops {
247 int (*set_config_register)(struct rspi_data *rspi, int access_size);
248 int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
249 struct spi_transfer *xfer);
250 u16 mode_bits;
251 u16 flags;
252 u16 fifo_size;
253 };
254
255 /*
256 * functions for RSPI on legacy SH
257 */
258 static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
259 {
260 int spbr;
261
262 /* Sets output mode, MOSI signal, and (optionally) loopback */
263 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
264
265 /* Sets transfer bit rate */
266 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
267 2 * rspi->max_speed_hz) - 1;
268 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
269
270 /* Disable dummy transmission, set 16-bit word access, 1 frame */
271 rspi_write8(rspi, 0, RSPI_SPDCR);
272 rspi->byte_access = 0;
273
274 /* Sets RSPCK, SSL, next-access delay value */
275 rspi_write8(rspi, 0x00, RSPI_SPCKD);
276 rspi_write8(rspi, 0x00, RSPI_SSLND);
277 rspi_write8(rspi, 0x00, RSPI_SPND);
278
279 /* Sets parity, interrupt mask */
280 rspi_write8(rspi, 0x00, RSPI_SPCR2);
281
282 /* Sets SPCMD */
283 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
284 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
285
286 /* Sets RSPI mode */
287 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
288
289 return 0;
290 }
291
292 /*
293 * functions for RSPI on RZ
294 */
295 static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
296 {
297 int spbr;
298 int div = 0;
299 unsigned long clksrc;
300
301 /* Sets output mode, MOSI signal, and (optionally) loopback */
302 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
303
304 clksrc = clk_get_rate(rspi->clk);
305 while (div < 3) {
306 if (rspi->max_speed_hz >= clksrc/4) /* 4=(CLK/2)/2 */
307 break;
308 div++;
309 clksrc /= 2;
310 }
311
312 /* Sets transfer bit rate */
313 spbr = DIV_ROUND_UP(clksrc, 2 * rspi->max_speed_hz) - 1;
314 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
315 rspi->spcmd |= div << 2;
316
317 /* Disable dummy transmission, set byte access */
318 rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
319 rspi->byte_access = 1;
320
321 /* Sets RSPCK, SSL, next-access delay value */
322 rspi_write8(rspi, 0x00, RSPI_SPCKD);
323 rspi_write8(rspi, 0x00, RSPI_SSLND);
324 rspi_write8(rspi, 0x00, RSPI_SPND);
325
326 /* Sets SPCMD */
327 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
328 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
329
330 /* Sets RSPI mode */
331 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
332
333 return 0;
334 }
335
336 /*
337 * functions for QSPI
338 */
339 static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
340 {
341 int spbr;
342
343 /* Sets output mode, MOSI signal, and (optionally) loopback */
344 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
345
346 /* Sets transfer bit rate */
347 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz);
348 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
349
350 /* Disable dummy transmission, set byte access */
351 rspi_write8(rspi, 0, RSPI_SPDCR);
352 rspi->byte_access = 1;
353
354 /* Sets RSPCK, SSL, next-access delay value */
355 rspi_write8(rspi, 0x00, RSPI_SPCKD);
356 rspi_write8(rspi, 0x00, RSPI_SSLND);
357 rspi_write8(rspi, 0x00, RSPI_SPND);
358
359 /* Data Length Setting */
360 if (access_size == 8)
361 rspi->spcmd |= SPCMD_SPB_8BIT;
362 else if (access_size == 16)
363 rspi->spcmd |= SPCMD_SPB_16BIT;
364 else
365 rspi->spcmd |= SPCMD_SPB_32BIT;
366
367 rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
368
369 /* Resets transfer data length */
370 rspi_write32(rspi, 0, QSPI_SPBMUL0);
371
372 /* Resets transmit and receive buffer */
373 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
374 /* Sets buffer to allow normal operation */
375 rspi_write8(rspi, 0x00, QSPI_SPBFCR);
376
377 /* Sets SPCMD */
378 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
379
380 /* Sets RSPI mode */
381 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
382
383 return 0;
384 }
385
386 static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
387 {
388 u8 data;
389
390 data = rspi_read8(rspi, reg);
391 data &= ~mask;
392 data |= (val & mask);
393 rspi_write8(rspi, data, reg);
394 }
395
396 static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
397 unsigned int len)
398 {
399 unsigned int n;
400
401 n = min(len, QSPI_BUFFER_SIZE);
402
403 if (len >= QSPI_BUFFER_SIZE) {
404 /* sets triggering number to 32 bytes */
405 qspi_update(rspi, SPBFCR_TXTRG_MASK,
406 SPBFCR_TXTRG_32B, QSPI_SPBFCR);
407 } else {
408 /* sets triggering number to 1 byte */
409 qspi_update(rspi, SPBFCR_TXTRG_MASK,
410 SPBFCR_TXTRG_1B, QSPI_SPBFCR);
411 }
412
413 return n;
414 }
415
416 static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
417 {
418 unsigned int n;
419
420 n = min(len, QSPI_BUFFER_SIZE);
421
422 if (len >= QSPI_BUFFER_SIZE) {
423 /* sets triggering number to 32 bytes */
424 qspi_update(rspi, SPBFCR_RXTRG_MASK,
425 SPBFCR_RXTRG_32B, QSPI_SPBFCR);
426 } else {
427 /* sets triggering number to 1 byte */
428 qspi_update(rspi, SPBFCR_RXTRG_MASK,
429 SPBFCR_RXTRG_1B, QSPI_SPBFCR);
430 }
431 return n;
432 }
433
434 #define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
435
436 static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
437 {
438 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
439 }
440
441 static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
442 {
443 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
444 }
445
446 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
447 u8 enable_bit)
448 {
449 int ret;
450
451 rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
452 if (rspi->spsr & wait_mask)
453 return 0;
454
455 rspi_enable_irq(rspi, enable_bit);
456 ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
457 if (ret == 0 && !(rspi->spsr & wait_mask))
458 return -ETIMEDOUT;
459
460 return 0;
461 }
462
463 static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
464 {
465 return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
466 }
467
468 static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
469 {
470 return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
471 }
472
473 static int rspi_data_out(struct rspi_data *rspi, u8 data)
474 {
475 int error = rspi_wait_for_tx_empty(rspi);
476 if (error < 0) {
477 dev_err(&rspi->master->dev, "transmit timeout\n");
478 return error;
479 }
480 rspi_write_data(rspi, data);
481 return 0;
482 }
483
484 static int rspi_data_in(struct rspi_data *rspi)
485 {
486 int error;
487 u8 data;
488
489 error = rspi_wait_for_rx_full(rspi);
490 if (error < 0) {
491 dev_err(&rspi->master->dev, "receive timeout\n");
492 return error;
493 }
494 data = rspi_read_data(rspi);
495 return data;
496 }
497
498 static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
499 unsigned int n)
500 {
501 while (n-- > 0) {
502 if (tx) {
503 int ret = rspi_data_out(rspi, *tx++);
504 if (ret < 0)
505 return ret;
506 }
507 if (rx) {
508 int ret = rspi_data_in(rspi);
509 if (ret < 0)
510 return ret;
511 *rx++ = ret;
512 }
513 }
514
515 return 0;
516 }
517
518 static void rspi_dma_complete(void *arg)
519 {
520 struct rspi_data *rspi = arg;
521
522 rspi->dma_callbacked = 1;
523 wake_up_interruptible(&rspi->wait);
524 }
525
526 static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
527 struct sg_table *rx)
528 {
529 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
530 u8 irq_mask = 0;
531 unsigned int other_irq = 0;
532 dma_cookie_t cookie;
533 int ret;
534
535 /* First prepare and submit the DMA request(s), as this may fail */
536 if (rx) {
537 desc_rx = dmaengine_prep_slave_sg(rspi->master->dma_rx,
538 rx->sgl, rx->nents, DMA_FROM_DEVICE,
539 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
540 if (!desc_rx) {
541 ret = -EAGAIN;
542 goto no_dma_rx;
543 }
544
545 desc_rx->callback = rspi_dma_complete;
546 desc_rx->callback_param = rspi;
547 cookie = dmaengine_submit(desc_rx);
548 if (dma_submit_error(cookie)) {
549 ret = cookie;
550 goto no_dma_rx;
551 }
552
553 irq_mask |= SPCR_SPRIE;
554 }
555
556 if (tx) {
557 desc_tx = dmaengine_prep_slave_sg(rspi->master->dma_tx,
558 tx->sgl, tx->nents, DMA_TO_DEVICE,
559 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
560 if (!desc_tx) {
561 ret = -EAGAIN;
562 goto no_dma_tx;
563 }
564
565 if (rx) {
566 /* No callback */
567 desc_tx->callback = NULL;
568 } else {
569 desc_tx->callback = rspi_dma_complete;
570 desc_tx->callback_param = rspi;
571 }
572 cookie = dmaengine_submit(desc_tx);
573 if (dma_submit_error(cookie)) {
574 ret = cookie;
575 goto no_dma_tx;
576 }
577
578 irq_mask |= SPCR_SPTIE;
579 }
580
581 /*
582 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
583 * called. So, this driver disables the IRQ while DMA transfer.
584 */
585 if (tx)
586 disable_irq(other_irq = rspi->tx_irq);
587 if (rx && rspi->rx_irq != other_irq)
588 disable_irq(rspi->rx_irq);
589
590 rspi_enable_irq(rspi, irq_mask);
591 rspi->dma_callbacked = 0;
592
593 /* Now start DMA */
594 if (rx)
595 dma_async_issue_pending(rspi->master->dma_rx);
596 if (tx)
597 dma_async_issue_pending(rspi->master->dma_tx);
598
599 ret = wait_event_interruptible_timeout(rspi->wait,
600 rspi->dma_callbacked, HZ);
601 if (ret > 0 && rspi->dma_callbacked) {
602 ret = 0;
603 } else {
604 if (!ret) {
605 dev_err(&rspi->master->dev, "DMA timeout\n");
606 ret = -ETIMEDOUT;
607 }
608 if (tx)
609 dmaengine_terminate_all(rspi->master->dma_tx);
610 if (rx)
611 dmaengine_terminate_all(rspi->master->dma_rx);
612 }
613
614 rspi_disable_irq(rspi, irq_mask);
615
616 if (tx)
617 enable_irq(rspi->tx_irq);
618 if (rx && rspi->rx_irq != other_irq)
619 enable_irq(rspi->rx_irq);
620
621 return ret;
622
623 no_dma_tx:
624 if (rx)
625 dmaengine_terminate_all(rspi->master->dma_rx);
626 no_dma_rx:
627 if (ret == -EAGAIN) {
628 pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
629 dev_driver_string(&rspi->master->dev),
630 dev_name(&rspi->master->dev));
631 }
632 return ret;
633 }
634
635 static void rspi_receive_init(const struct rspi_data *rspi)
636 {
637 u8 spsr;
638
639 spsr = rspi_read8(rspi, RSPI_SPSR);
640 if (spsr & SPSR_SPRF)
641 rspi_read_data(rspi); /* dummy read */
642 if (spsr & SPSR_OVRF)
643 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
644 RSPI_SPSR);
645 }
646
647 static void rspi_rz_receive_init(const struct rspi_data *rspi)
648 {
649 rspi_receive_init(rspi);
650 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
651 rspi_write8(rspi, 0, RSPI_SPBFCR);
652 }
653
654 static void qspi_receive_init(const struct rspi_data *rspi)
655 {
656 u8 spsr;
657
658 spsr = rspi_read8(rspi, RSPI_SPSR);
659 if (spsr & SPSR_SPRF)
660 rspi_read_data(rspi); /* dummy read */
661 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
662 rspi_write8(rspi, 0, QSPI_SPBFCR);
663 }
664
665 static bool __rspi_can_dma(const struct rspi_data *rspi,
666 const struct spi_transfer *xfer)
667 {
668 return xfer->len > rspi->ops->fifo_size;
669 }
670
671 static bool rspi_can_dma(struct spi_master *master, struct spi_device *spi,
672 struct spi_transfer *xfer)
673 {
674 struct rspi_data *rspi = spi_master_get_devdata(master);
675
676 return __rspi_can_dma(rspi, xfer);
677 }
678
679 static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
680 struct spi_transfer *xfer)
681 {
682 if (!rspi->master->can_dma || !__rspi_can_dma(rspi, xfer))
683 return -EAGAIN;
684
685 /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
686 return rspi_dma_transfer(rspi, &xfer->tx_sg,
687 xfer->rx_buf ? &xfer->rx_sg : NULL);
688 }
689
690 static int rspi_common_transfer(struct rspi_data *rspi,
691 struct spi_transfer *xfer)
692 {
693 int ret;
694
695 ret = rspi_dma_check_then_transfer(rspi, xfer);
696 if (ret != -EAGAIN)
697 return ret;
698
699 ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
700 if (ret < 0)
701 return ret;
702
703 /* Wait for the last transmission */
704 rspi_wait_for_tx_empty(rspi);
705
706 return 0;
707 }
708
709 static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
710 struct spi_transfer *xfer)
711 {
712 struct rspi_data *rspi = spi_master_get_devdata(master);
713 u8 spcr;
714
715 spcr = rspi_read8(rspi, RSPI_SPCR);
716 if (xfer->rx_buf) {
717 rspi_receive_init(rspi);
718 spcr &= ~SPCR_TXMD;
719 } else {
720 spcr |= SPCR_TXMD;
721 }
722 rspi_write8(rspi, spcr, RSPI_SPCR);
723
724 return rspi_common_transfer(rspi, xfer);
725 }
726
727 static int rspi_rz_transfer_one(struct spi_master *master,
728 struct spi_device *spi,
729 struct spi_transfer *xfer)
730 {
731 struct rspi_data *rspi = spi_master_get_devdata(master);
732
733 rspi_rz_receive_init(rspi);
734
735 return rspi_common_transfer(rspi, xfer);
736 }
737
738 static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
739 u8 *rx, unsigned int len)
740 {
741 unsigned int i, n;
742 int ret;
743
744 while (len > 0) {
745 n = qspi_set_send_trigger(rspi, len);
746 qspi_set_receive_trigger(rspi, len);
747 if (n == QSPI_BUFFER_SIZE) {
748 ret = rspi_wait_for_tx_empty(rspi);
749 if (ret < 0) {
750 dev_err(&rspi->master->dev, "transmit timeout\n");
751 return ret;
752 }
753 for (i = 0; i < n; i++)
754 rspi_write_data(rspi, *tx++);
755
756 ret = rspi_wait_for_rx_full(rspi);
757 if (ret < 0) {
758 dev_err(&rspi->master->dev, "receive timeout\n");
759 return ret;
760 }
761 for (i = 0; i < n; i++)
762 *rx++ = rspi_read_data(rspi);
763 } else {
764 ret = rspi_pio_transfer(rspi, tx, rx, n);
765 if (ret < 0)
766 return ret;
767 }
768 len -= n;
769 }
770
771 return 0;
772 }
773
774 static int qspi_transfer_out_in(struct rspi_data *rspi,
775 struct spi_transfer *xfer)
776 {
777 int ret;
778
779 qspi_receive_init(rspi);
780
781 ret = rspi_dma_check_then_transfer(rspi, xfer);
782 if (ret != -EAGAIN)
783 return ret;
784
785 return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
786 xfer->rx_buf, xfer->len);
787 }
788
789 static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
790 {
791 const u8 *tx = xfer->tx_buf;
792 unsigned int n = xfer->len;
793 unsigned int i, len;
794 int ret;
795
796 if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
797 ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
798 if (ret != -EAGAIN)
799 return ret;
800 }
801
802 while (n > 0) {
803 len = qspi_set_send_trigger(rspi, n);
804 if (len == QSPI_BUFFER_SIZE) {
805 ret = rspi_wait_for_tx_empty(rspi);
806 if (ret < 0) {
807 dev_err(&rspi->master->dev, "transmit timeout\n");
808 return ret;
809 }
810 for (i = 0; i < len; i++)
811 rspi_write_data(rspi, *tx++);
812 } else {
813 ret = rspi_pio_transfer(rspi, tx, NULL, len);
814 if (ret < 0)
815 return ret;
816 }
817 n -= len;
818 }
819
820 /* Wait for the last transmission */
821 rspi_wait_for_tx_empty(rspi);
822
823 return 0;
824 }
825
826 static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
827 {
828 u8 *rx = xfer->rx_buf;
829 unsigned int n = xfer->len;
830 unsigned int i, len;
831 int ret;
832
833 if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
834 int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
835 if (ret != -EAGAIN)
836 return ret;
837 }
838
839 while (n > 0) {
840 len = qspi_set_receive_trigger(rspi, n);
841 if (len == QSPI_BUFFER_SIZE) {
842 ret = rspi_wait_for_rx_full(rspi);
843 if (ret < 0) {
844 dev_err(&rspi->master->dev, "receive timeout\n");
845 return ret;
846 }
847 for (i = 0; i < len; i++)
848 *rx++ = rspi_read_data(rspi);
849 } else {
850 ret = rspi_pio_transfer(rspi, NULL, rx, len);
851 if (ret < 0)
852 return ret;
853 }
854 n -= len;
855 }
856
857 return 0;
858 }
859
860 static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
861 struct spi_transfer *xfer)
862 {
863 struct rspi_data *rspi = spi_master_get_devdata(master);
864
865 if (spi->mode & SPI_LOOP) {
866 return qspi_transfer_out_in(rspi, xfer);
867 } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
868 /* Quad or Dual SPI Write */
869 return qspi_transfer_out(rspi, xfer);
870 } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
871 /* Quad or Dual SPI Read */
872 return qspi_transfer_in(rspi, xfer);
873 } else {
874 /* Single SPI Transfer */
875 return qspi_transfer_out_in(rspi, xfer);
876 }
877 }
878
879 static int rspi_setup(struct spi_device *spi)
880 {
881 struct rspi_data *rspi = spi_master_get_devdata(spi->master);
882
883 rspi->max_speed_hz = spi->max_speed_hz;
884
885 rspi->spcmd = SPCMD_SSLKP;
886 if (spi->mode & SPI_CPOL)
887 rspi->spcmd |= SPCMD_CPOL;
888 if (spi->mode & SPI_CPHA)
889 rspi->spcmd |= SPCMD_CPHA;
890
891 /* CMOS output mode and MOSI signal from previous transfer */
892 rspi->sppcr = 0;
893 if (spi->mode & SPI_LOOP)
894 rspi->sppcr |= SPPCR_SPLP;
895
896 set_config_register(rspi, 8);
897
898 return 0;
899 }
900
901 static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
902 {
903 if (xfer->tx_buf)
904 switch (xfer->tx_nbits) {
905 case SPI_NBITS_QUAD:
906 return SPCMD_SPIMOD_QUAD;
907 case SPI_NBITS_DUAL:
908 return SPCMD_SPIMOD_DUAL;
909 default:
910 return 0;
911 }
912 if (xfer->rx_buf)
913 switch (xfer->rx_nbits) {
914 case SPI_NBITS_QUAD:
915 return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
916 case SPI_NBITS_DUAL:
917 return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
918 default:
919 return 0;
920 }
921
922 return 0;
923 }
924
925 static int qspi_setup_sequencer(struct rspi_data *rspi,
926 const struct spi_message *msg)
927 {
928 const struct spi_transfer *xfer;
929 unsigned int i = 0, len = 0;
930 u16 current_mode = 0xffff, mode;
931
932 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
933 mode = qspi_transfer_mode(xfer);
934 if (mode == current_mode) {
935 len += xfer->len;
936 continue;
937 }
938
939 /* Transfer mode change */
940 if (i) {
941 /* Set transfer data length of previous transfer */
942 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
943 }
944
945 if (i >= QSPI_NUM_SPCMD) {
946 dev_err(&msg->spi->dev,
947 "Too many different transfer modes");
948 return -EINVAL;
949 }
950
951 /* Program transfer mode for this transfer */
952 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
953 current_mode = mode;
954 len = xfer->len;
955 i++;
956 }
957 if (i) {
958 /* Set final transfer data length and sequence length */
959 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
960 rspi_write8(rspi, i - 1, RSPI_SPSCR);
961 }
962
963 return 0;
964 }
965
966 static int rspi_prepare_message(struct spi_master *master,
967 struct spi_message *msg)
968 {
969 struct rspi_data *rspi = spi_master_get_devdata(master);
970 int ret;
971
972 if (msg->spi->mode &
973 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
974 /* Setup sequencer for messages with multiple transfer modes */
975 ret = qspi_setup_sequencer(rspi, msg);
976 if (ret < 0)
977 return ret;
978 }
979
980 /* Enable SPI function in master mode */
981 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
982 return 0;
983 }
984
985 static int rspi_unprepare_message(struct spi_master *master,
986 struct spi_message *msg)
987 {
988 struct rspi_data *rspi = spi_master_get_devdata(master);
989
990 /* Disable SPI function */
991 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
992
993 /* Reset sequencer for Single SPI Transfers */
994 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
995 rspi_write8(rspi, 0, RSPI_SPSCR);
996 return 0;
997 }
998
999 static irqreturn_t rspi_irq_mux(int irq, void *_sr)
1000 {
1001 struct rspi_data *rspi = _sr;
1002 u8 spsr;
1003 irqreturn_t ret = IRQ_NONE;
1004 u8 disable_irq = 0;
1005
1006 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1007 if (spsr & SPSR_SPRF)
1008 disable_irq |= SPCR_SPRIE;
1009 if (spsr & SPSR_SPTEF)
1010 disable_irq |= SPCR_SPTIE;
1011
1012 if (disable_irq) {
1013 ret = IRQ_HANDLED;
1014 rspi_disable_irq(rspi, disable_irq);
1015 wake_up(&rspi->wait);
1016 }
1017
1018 return ret;
1019 }
1020
1021 static irqreturn_t rspi_irq_rx(int irq, void *_sr)
1022 {
1023 struct rspi_data *rspi = _sr;
1024 u8 spsr;
1025
1026 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1027 if (spsr & SPSR_SPRF) {
1028 rspi_disable_irq(rspi, SPCR_SPRIE);
1029 wake_up(&rspi->wait);
1030 return IRQ_HANDLED;
1031 }
1032
1033 return 0;
1034 }
1035
1036 static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1037 {
1038 struct rspi_data *rspi = _sr;
1039 u8 spsr;
1040
1041 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1042 if (spsr & SPSR_SPTEF) {
1043 rspi_disable_irq(rspi, SPCR_SPTIE);
1044 wake_up(&rspi->wait);
1045 return IRQ_HANDLED;
1046 }
1047
1048 return 0;
1049 }
1050
1051 static struct dma_chan *rspi_request_dma_chan(struct device *dev,
1052 enum dma_transfer_direction dir,
1053 unsigned int id,
1054 dma_addr_t port_addr)
1055 {
1056 dma_cap_mask_t mask;
1057 struct dma_chan *chan;
1058 struct dma_slave_config cfg;
1059 int ret;
1060
1061 dma_cap_zero(mask);
1062 dma_cap_set(DMA_SLAVE, mask);
1063
1064 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1065 (void *)(unsigned long)id, dev,
1066 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1067 if (!chan) {
1068 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1069 return NULL;
1070 }
1071
1072 memset(&cfg, 0, sizeof(cfg));
1073 cfg.direction = dir;
1074 if (dir == DMA_MEM_TO_DEV) {
1075 cfg.dst_addr = port_addr;
1076 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1077 } else {
1078 cfg.src_addr = port_addr;
1079 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1080 }
1081
1082 ret = dmaengine_slave_config(chan, &cfg);
1083 if (ret) {
1084 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1085 dma_release_channel(chan);
1086 return NULL;
1087 }
1088
1089 return chan;
1090 }
1091
1092 static int rspi_request_dma(struct device *dev, struct spi_master *master,
1093 const struct resource *res)
1094 {
1095 const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1096 unsigned int dma_tx_id, dma_rx_id;
1097
1098 if (dev->of_node) {
1099 /* In the OF case we will get the slave IDs from the DT */
1100 dma_tx_id = 0;
1101 dma_rx_id = 0;
1102 } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1103 dma_tx_id = rspi_pd->dma_tx_id;
1104 dma_rx_id = rspi_pd->dma_rx_id;
1105 } else {
1106 /* The driver assumes no error. */
1107 return 0;
1108 }
1109
1110 master->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1111 res->start + RSPI_SPDR);
1112 if (!master->dma_tx)
1113 return -ENODEV;
1114
1115 master->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1116 res->start + RSPI_SPDR);
1117 if (!master->dma_rx) {
1118 dma_release_channel(master->dma_tx);
1119 master->dma_tx = NULL;
1120 return -ENODEV;
1121 }
1122
1123 master->can_dma = rspi_can_dma;
1124 dev_info(dev, "DMA available");
1125 return 0;
1126 }
1127
1128 static void rspi_release_dma(struct spi_master *master)
1129 {
1130 if (master->dma_tx)
1131 dma_release_channel(master->dma_tx);
1132 if (master->dma_rx)
1133 dma_release_channel(master->dma_rx);
1134 }
1135
1136 static int rspi_remove(struct platform_device *pdev)
1137 {
1138 struct rspi_data *rspi = platform_get_drvdata(pdev);
1139
1140 rspi_release_dma(rspi->master);
1141 pm_runtime_disable(&pdev->dev);
1142
1143 return 0;
1144 }
1145
1146 static const struct spi_ops rspi_ops = {
1147 .set_config_register = rspi_set_config_register,
1148 .transfer_one = rspi_transfer_one,
1149 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
1150 .flags = SPI_MASTER_MUST_TX,
1151 .fifo_size = 8,
1152 };
1153
1154 static const struct spi_ops rspi_rz_ops = {
1155 .set_config_register = rspi_rz_set_config_register,
1156 .transfer_one = rspi_rz_transfer_one,
1157 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
1158 .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
1159 .fifo_size = 8, /* 8 for TX, 32 for RX */
1160 };
1161
1162 static const struct spi_ops qspi_ops = {
1163 .set_config_register = qspi_set_config_register,
1164 .transfer_one = qspi_transfer_one,
1165 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP |
1166 SPI_TX_DUAL | SPI_TX_QUAD |
1167 SPI_RX_DUAL | SPI_RX_QUAD,
1168 .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
1169 .fifo_size = 32,
1170 };
1171
1172 #ifdef CONFIG_OF
1173 static const struct of_device_id rspi_of_match[] = {
1174 /* RSPI on legacy SH */
1175 { .compatible = "renesas,rspi", .data = &rspi_ops },
1176 /* RSPI on RZ/A1H */
1177 { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1178 /* QSPI on R-Car Gen2 */
1179 { .compatible = "renesas,qspi", .data = &qspi_ops },
1180 { /* sentinel */ }
1181 };
1182
1183 MODULE_DEVICE_TABLE(of, rspi_of_match);
1184
1185 static int rspi_parse_dt(struct device *dev, struct spi_master *master)
1186 {
1187 u32 num_cs;
1188 int error;
1189
1190 /* Parse DT properties */
1191 error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1192 if (error) {
1193 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1194 return error;
1195 }
1196
1197 master->num_chipselect = num_cs;
1198 return 0;
1199 }
1200 #else
1201 #define rspi_of_match NULL
1202 static inline int rspi_parse_dt(struct device *dev, struct spi_master *master)
1203 {
1204 return -EINVAL;
1205 }
1206 #endif /* CONFIG_OF */
1207
1208 static int rspi_request_irq(struct device *dev, unsigned int irq,
1209 irq_handler_t handler, const char *suffix,
1210 void *dev_id)
1211 {
1212 const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1213 dev_name(dev), suffix);
1214 if (!name)
1215 return -ENOMEM;
1216
1217 return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1218 }
1219
1220 static int rspi_probe(struct platform_device *pdev)
1221 {
1222 struct resource *res;
1223 struct spi_master *master;
1224 struct rspi_data *rspi;
1225 int ret;
1226 const struct rspi_plat_data *rspi_pd;
1227 const struct spi_ops *ops;
1228
1229 master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1230 if (master == NULL)
1231 return -ENOMEM;
1232
1233 ops = of_device_get_match_data(&pdev->dev);
1234 if (ops) {
1235 ret = rspi_parse_dt(&pdev->dev, master);
1236 if (ret)
1237 goto error1;
1238 } else {
1239 ops = (struct spi_ops *)pdev->id_entry->driver_data;
1240 rspi_pd = dev_get_platdata(&pdev->dev);
1241 if (rspi_pd && rspi_pd->num_chipselect)
1242 master->num_chipselect = rspi_pd->num_chipselect;
1243 else
1244 master->num_chipselect = 2; /* default */
1245 }
1246
1247 /* ops parameter check */
1248 if (!ops->set_config_register) {
1249 dev_err(&pdev->dev, "there is no set_config_register\n");
1250 ret = -ENODEV;
1251 goto error1;
1252 }
1253
1254 rspi = spi_master_get_devdata(master);
1255 platform_set_drvdata(pdev, rspi);
1256 rspi->ops = ops;
1257 rspi->master = master;
1258
1259 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1260 rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1261 if (IS_ERR(rspi->addr)) {
1262 ret = PTR_ERR(rspi->addr);
1263 goto error1;
1264 }
1265
1266 rspi->clk = devm_clk_get(&pdev->dev, NULL);
1267 if (IS_ERR(rspi->clk)) {
1268 dev_err(&pdev->dev, "cannot get clock\n");
1269 ret = PTR_ERR(rspi->clk);
1270 goto error1;
1271 }
1272
1273 pm_runtime_enable(&pdev->dev);
1274
1275 init_waitqueue_head(&rspi->wait);
1276
1277 master->bus_num = pdev->id;
1278 master->setup = rspi_setup;
1279 master->auto_runtime_pm = true;
1280 master->transfer_one = ops->transfer_one;
1281 master->prepare_message = rspi_prepare_message;
1282 master->unprepare_message = rspi_unprepare_message;
1283 master->mode_bits = ops->mode_bits;
1284 master->flags = ops->flags;
1285 master->dev.of_node = pdev->dev.of_node;
1286
1287 ret = platform_get_irq_byname(pdev, "rx");
1288 if (ret < 0) {
1289 ret = platform_get_irq_byname(pdev, "mux");
1290 if (ret < 0)
1291 ret = platform_get_irq(pdev, 0);
1292 if (ret >= 0)
1293 rspi->rx_irq = rspi->tx_irq = ret;
1294 } else {
1295 rspi->rx_irq = ret;
1296 ret = platform_get_irq_byname(pdev, "tx");
1297 if (ret >= 0)
1298 rspi->tx_irq = ret;
1299 }
1300 if (ret < 0) {
1301 dev_err(&pdev->dev, "platform_get_irq error\n");
1302 goto error2;
1303 }
1304
1305 if (rspi->rx_irq == rspi->tx_irq) {
1306 /* Single multiplexed interrupt */
1307 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1308 "mux", rspi);
1309 } else {
1310 /* Multi-interrupt mode, only SPRI and SPTI are used */
1311 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1312 "rx", rspi);
1313 if (!ret)
1314 ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1315 rspi_irq_tx, "tx", rspi);
1316 }
1317 if (ret < 0) {
1318 dev_err(&pdev->dev, "request_irq error\n");
1319 goto error2;
1320 }
1321
1322 ret = rspi_request_dma(&pdev->dev, master, res);
1323 if (ret < 0)
1324 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1325
1326 ret = devm_spi_register_master(&pdev->dev, master);
1327 if (ret < 0) {
1328 dev_err(&pdev->dev, "spi_register_master error.\n");
1329 goto error3;
1330 }
1331
1332 dev_info(&pdev->dev, "probed\n");
1333
1334 return 0;
1335
1336 error3:
1337 rspi_release_dma(master);
1338 error2:
1339 pm_runtime_disable(&pdev->dev);
1340 error1:
1341 spi_master_put(master);
1342
1343 return ret;
1344 }
1345
1346 static const struct platform_device_id spi_driver_ids[] = {
1347 { "rspi", (kernel_ulong_t)&rspi_ops },
1348 { "rspi-rz", (kernel_ulong_t)&rspi_rz_ops },
1349 { "qspi", (kernel_ulong_t)&qspi_ops },
1350 {},
1351 };
1352
1353 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1354
1355 #ifdef CONFIG_PM_SLEEP
1356 static int rspi_suspend(struct device *dev)
1357 {
1358 struct platform_device *pdev = to_platform_device(dev);
1359 struct rspi_data *rspi = platform_get_drvdata(pdev);
1360
1361 return spi_master_suspend(rspi->master);
1362 }
1363
1364 static int rspi_resume(struct device *dev)
1365 {
1366 struct platform_device *pdev = to_platform_device(dev);
1367 struct rspi_data *rspi = platform_get_drvdata(pdev);
1368
1369 return spi_master_resume(rspi->master);
1370 }
1371
1372 static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume);
1373 #define DEV_PM_OPS &rspi_pm_ops
1374 #else
1375 #define DEV_PM_OPS NULL
1376 #endif /* CONFIG_PM_SLEEP */
1377
1378 static struct platform_driver rspi_driver = {
1379 .probe = rspi_probe,
1380 .remove = rspi_remove,
1381 .id_table = spi_driver_ids,
1382 .driver = {
1383 .name = "renesas_spi",
1384 .pm = DEV_PM_OPS,
1385 .of_match_table = of_match_ptr(rspi_of_match),
1386 },
1387 };
1388 module_platform_driver(rspi_driver);
1389
1390 MODULE_DESCRIPTION("Renesas RSPI bus driver");
1391 MODULE_LICENSE("GPL v2");
1392 MODULE_AUTHOR("Yoshihiro Shimoda");
1393 MODULE_ALIAS("platform:rspi");