]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/spi/spi-s3c64xx.c
Merge tag 'virtio-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / drivers / spi / spi-s3c64xx.c
1 /*
2 * Copyright (C) 2009 Samsung Electronics Ltd.
3 * Jaswinder Singh <jassi.brar@samsung.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 */
19
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/clk.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/dmaengine.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/spi/spi.h>
30 #include <linux/gpio.h>
31 #include <linux/of.h>
32 #include <linux/of_gpio.h>
33
34 #include <linux/platform_data/spi-s3c64xx.h>
35
36 #define MAX_SPI_PORTS 6
37 #define S3C64XX_SPI_QUIRK_POLL (1 << 0)
38 #define S3C64XX_SPI_QUIRK_CS_AUTO (1 << 1)
39
40 /* Registers and bit-fields */
41
42 #define S3C64XX_SPI_CH_CFG 0x00
43 #define S3C64XX_SPI_CLK_CFG 0x04
44 #define S3C64XX_SPI_MODE_CFG 0x08
45 #define S3C64XX_SPI_SLAVE_SEL 0x0C
46 #define S3C64XX_SPI_INT_EN 0x10
47 #define S3C64XX_SPI_STATUS 0x14
48 #define S3C64XX_SPI_TX_DATA 0x18
49 #define S3C64XX_SPI_RX_DATA 0x1C
50 #define S3C64XX_SPI_PACKET_CNT 0x20
51 #define S3C64XX_SPI_PENDING_CLR 0x24
52 #define S3C64XX_SPI_SWAP_CFG 0x28
53 #define S3C64XX_SPI_FB_CLK 0x2C
54
55 #define S3C64XX_SPI_CH_HS_EN (1<<6) /* High Speed Enable */
56 #define S3C64XX_SPI_CH_SW_RST (1<<5)
57 #define S3C64XX_SPI_CH_SLAVE (1<<4)
58 #define S3C64XX_SPI_CPOL_L (1<<3)
59 #define S3C64XX_SPI_CPHA_B (1<<2)
60 #define S3C64XX_SPI_CH_RXCH_ON (1<<1)
61 #define S3C64XX_SPI_CH_TXCH_ON (1<<0)
62
63 #define S3C64XX_SPI_CLKSEL_SRCMSK (3<<9)
64 #define S3C64XX_SPI_CLKSEL_SRCSHFT 9
65 #define S3C64XX_SPI_ENCLK_ENABLE (1<<8)
66 #define S3C64XX_SPI_PSR_MASK 0xff
67
68 #define S3C64XX_SPI_MODE_CH_TSZ_BYTE (0<<29)
69 #define S3C64XX_SPI_MODE_CH_TSZ_HALFWORD (1<<29)
70 #define S3C64XX_SPI_MODE_CH_TSZ_WORD (2<<29)
71 #define S3C64XX_SPI_MODE_CH_TSZ_MASK (3<<29)
72 #define S3C64XX_SPI_MODE_BUS_TSZ_BYTE (0<<17)
73 #define S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD (1<<17)
74 #define S3C64XX_SPI_MODE_BUS_TSZ_WORD (2<<17)
75 #define S3C64XX_SPI_MODE_BUS_TSZ_MASK (3<<17)
76 #define S3C64XX_SPI_MODE_RXDMA_ON (1<<2)
77 #define S3C64XX_SPI_MODE_TXDMA_ON (1<<1)
78 #define S3C64XX_SPI_MODE_4BURST (1<<0)
79
80 #define S3C64XX_SPI_SLAVE_AUTO (1<<1)
81 #define S3C64XX_SPI_SLAVE_SIG_INACT (1<<0)
82 #define S3C64XX_SPI_SLAVE_NSC_CNT_2 (2<<4)
83
84 #define S3C64XX_SPI_INT_TRAILING_EN (1<<6)
85 #define S3C64XX_SPI_INT_RX_OVERRUN_EN (1<<5)
86 #define S3C64XX_SPI_INT_RX_UNDERRUN_EN (1<<4)
87 #define S3C64XX_SPI_INT_TX_OVERRUN_EN (1<<3)
88 #define S3C64XX_SPI_INT_TX_UNDERRUN_EN (1<<2)
89 #define S3C64XX_SPI_INT_RX_FIFORDY_EN (1<<1)
90 #define S3C64XX_SPI_INT_TX_FIFORDY_EN (1<<0)
91
92 #define S3C64XX_SPI_ST_RX_OVERRUN_ERR (1<<5)
93 #define S3C64XX_SPI_ST_RX_UNDERRUN_ERR (1<<4)
94 #define S3C64XX_SPI_ST_TX_OVERRUN_ERR (1<<3)
95 #define S3C64XX_SPI_ST_TX_UNDERRUN_ERR (1<<2)
96 #define S3C64XX_SPI_ST_RX_FIFORDY (1<<1)
97 #define S3C64XX_SPI_ST_TX_FIFORDY (1<<0)
98
99 #define S3C64XX_SPI_PACKET_CNT_EN (1<<16)
100
101 #define S3C64XX_SPI_PND_TX_UNDERRUN_CLR (1<<4)
102 #define S3C64XX_SPI_PND_TX_OVERRUN_CLR (1<<3)
103 #define S3C64XX_SPI_PND_RX_UNDERRUN_CLR (1<<2)
104 #define S3C64XX_SPI_PND_RX_OVERRUN_CLR (1<<1)
105 #define S3C64XX_SPI_PND_TRAILING_CLR (1<<0)
106
107 #define S3C64XX_SPI_SWAP_RX_HALF_WORD (1<<7)
108 #define S3C64XX_SPI_SWAP_RX_BYTE (1<<6)
109 #define S3C64XX_SPI_SWAP_RX_BIT (1<<5)
110 #define S3C64XX_SPI_SWAP_RX_EN (1<<4)
111 #define S3C64XX_SPI_SWAP_TX_HALF_WORD (1<<3)
112 #define S3C64XX_SPI_SWAP_TX_BYTE (1<<2)
113 #define S3C64XX_SPI_SWAP_TX_BIT (1<<1)
114 #define S3C64XX_SPI_SWAP_TX_EN (1<<0)
115
116 #define S3C64XX_SPI_FBCLK_MSK (3<<0)
117
118 #define FIFO_LVL_MASK(i) ((i)->port_conf->fifo_lvl_mask[i->port_id])
119 #define S3C64XX_SPI_ST_TX_DONE(v, i) (((v) & \
120 (1 << (i)->port_conf->tx_st_done)) ? 1 : 0)
121 #define TX_FIFO_LVL(v, i) (((v) >> 6) & FIFO_LVL_MASK(i))
122 #define RX_FIFO_LVL(v, i) (((v) >> (i)->port_conf->rx_lvl_offset) & \
123 FIFO_LVL_MASK(i))
124
125 #define S3C64XX_SPI_MAX_TRAILCNT 0x3ff
126 #define S3C64XX_SPI_TRAILCNT_OFF 19
127
128 #define S3C64XX_SPI_TRAILCNT S3C64XX_SPI_MAX_TRAILCNT
129
130 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
131 #define is_polling(x) (x->port_conf->quirks & S3C64XX_SPI_QUIRK_POLL)
132
133 #define RXBUSY (1<<2)
134 #define TXBUSY (1<<3)
135
136 struct s3c64xx_spi_dma_data {
137 struct dma_chan *ch;
138 enum dma_transfer_direction direction;
139 unsigned int dmach;
140 };
141
142 /**
143 * struct s3c64xx_spi_info - SPI Controller hardware info
144 * @fifo_lvl_mask: Bit-mask for {TX|RX}_FIFO_LVL bits in SPI_STATUS register.
145 * @rx_lvl_offset: Bit offset of RX_FIFO_LVL bits in SPI_STATUS regiter.
146 * @tx_st_done: Bit offset of TX_DONE bit in SPI_STATUS regiter.
147 * @high_speed: True, if the controller supports HIGH_SPEED_EN bit.
148 * @clk_from_cmu: True, if the controller does not include a clock mux and
149 * prescaler unit.
150 *
151 * The Samsung s3c64xx SPI controller are used on various Samsung SoC's but
152 * differ in some aspects such as the size of the fifo and spi bus clock
153 * setup. Such differences are specified to the driver using this structure
154 * which is provided as driver data to the driver.
155 */
156 struct s3c64xx_spi_port_config {
157 int fifo_lvl_mask[MAX_SPI_PORTS];
158 int rx_lvl_offset;
159 int tx_st_done;
160 int quirks;
161 bool high_speed;
162 bool clk_from_cmu;
163 };
164
165 /**
166 * struct s3c64xx_spi_driver_data - Runtime info holder for SPI driver.
167 * @clk: Pointer to the spi clock.
168 * @src_clk: Pointer to the clock used to generate SPI signals.
169 * @master: Pointer to the SPI Protocol master.
170 * @cntrlr_info: Platform specific data for the controller this driver manages.
171 * @tgl_spi: Pointer to the last CS left untoggled by the cs_change hint.
172 * @lock: Controller specific lock.
173 * @state: Set of FLAGS to indicate status.
174 * @rx_dmach: Controller's DMA channel for Rx.
175 * @tx_dmach: Controller's DMA channel for Tx.
176 * @sfr_start: BUS address of SPI controller regs.
177 * @regs: Pointer to ioremap'ed controller registers.
178 * @irq: interrupt
179 * @xfer_completion: To indicate completion of xfer task.
180 * @cur_mode: Stores the active configuration of the controller.
181 * @cur_bpw: Stores the active bits per word settings.
182 * @cur_speed: Stores the active xfer clock speed.
183 */
184 struct s3c64xx_spi_driver_data {
185 void __iomem *regs;
186 struct clk *clk;
187 struct clk *src_clk;
188 struct platform_device *pdev;
189 struct spi_master *master;
190 struct s3c64xx_spi_info *cntrlr_info;
191 struct spi_device *tgl_spi;
192 spinlock_t lock;
193 unsigned long sfr_start;
194 struct completion xfer_completion;
195 unsigned state;
196 unsigned cur_mode, cur_bpw;
197 unsigned cur_speed;
198 struct s3c64xx_spi_dma_data rx_dma;
199 struct s3c64xx_spi_dma_data tx_dma;
200 struct s3c64xx_spi_port_config *port_conf;
201 unsigned int port_id;
202 };
203
204 static void flush_fifo(struct s3c64xx_spi_driver_data *sdd)
205 {
206 void __iomem *regs = sdd->regs;
207 unsigned long loops;
208 u32 val;
209
210 writel(0, regs + S3C64XX_SPI_PACKET_CNT);
211
212 val = readl(regs + S3C64XX_SPI_CH_CFG);
213 val &= ~(S3C64XX_SPI_CH_RXCH_ON | S3C64XX_SPI_CH_TXCH_ON);
214 writel(val, regs + S3C64XX_SPI_CH_CFG);
215
216 val = readl(regs + S3C64XX_SPI_CH_CFG);
217 val |= S3C64XX_SPI_CH_SW_RST;
218 val &= ~S3C64XX_SPI_CH_HS_EN;
219 writel(val, regs + S3C64XX_SPI_CH_CFG);
220
221 /* Flush TxFIFO*/
222 loops = msecs_to_loops(1);
223 do {
224 val = readl(regs + S3C64XX_SPI_STATUS);
225 } while (TX_FIFO_LVL(val, sdd) && loops--);
226
227 if (loops == 0)
228 dev_warn(&sdd->pdev->dev, "Timed out flushing TX FIFO\n");
229
230 /* Flush RxFIFO*/
231 loops = msecs_to_loops(1);
232 do {
233 val = readl(regs + S3C64XX_SPI_STATUS);
234 if (RX_FIFO_LVL(val, sdd))
235 readl(regs + S3C64XX_SPI_RX_DATA);
236 else
237 break;
238 } while (loops--);
239
240 if (loops == 0)
241 dev_warn(&sdd->pdev->dev, "Timed out flushing RX FIFO\n");
242
243 val = readl(regs + S3C64XX_SPI_CH_CFG);
244 val &= ~S3C64XX_SPI_CH_SW_RST;
245 writel(val, regs + S3C64XX_SPI_CH_CFG);
246
247 val = readl(regs + S3C64XX_SPI_MODE_CFG);
248 val &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
249 writel(val, regs + S3C64XX_SPI_MODE_CFG);
250 }
251
252 static void s3c64xx_spi_dmacb(void *data)
253 {
254 struct s3c64xx_spi_driver_data *sdd;
255 struct s3c64xx_spi_dma_data *dma = data;
256 unsigned long flags;
257
258 if (dma->direction == DMA_DEV_TO_MEM)
259 sdd = container_of(data,
260 struct s3c64xx_spi_driver_data, rx_dma);
261 else
262 sdd = container_of(data,
263 struct s3c64xx_spi_driver_data, tx_dma);
264
265 spin_lock_irqsave(&sdd->lock, flags);
266
267 if (dma->direction == DMA_DEV_TO_MEM) {
268 sdd->state &= ~RXBUSY;
269 if (!(sdd->state & TXBUSY))
270 complete(&sdd->xfer_completion);
271 } else {
272 sdd->state &= ~TXBUSY;
273 if (!(sdd->state & RXBUSY))
274 complete(&sdd->xfer_completion);
275 }
276
277 spin_unlock_irqrestore(&sdd->lock, flags);
278 }
279
280 static void prepare_dma(struct s3c64xx_spi_dma_data *dma,
281 struct sg_table *sgt)
282 {
283 struct s3c64xx_spi_driver_data *sdd;
284 struct dma_slave_config config;
285 struct dma_async_tx_descriptor *desc;
286
287 memset(&config, 0, sizeof(config));
288
289 if (dma->direction == DMA_DEV_TO_MEM) {
290 sdd = container_of((void *)dma,
291 struct s3c64xx_spi_driver_data, rx_dma);
292 config.direction = dma->direction;
293 config.src_addr = sdd->sfr_start + S3C64XX_SPI_RX_DATA;
294 config.src_addr_width = sdd->cur_bpw / 8;
295 config.src_maxburst = 1;
296 dmaengine_slave_config(dma->ch, &config);
297 } else {
298 sdd = container_of((void *)dma,
299 struct s3c64xx_spi_driver_data, tx_dma);
300 config.direction = dma->direction;
301 config.dst_addr = sdd->sfr_start + S3C64XX_SPI_TX_DATA;
302 config.dst_addr_width = sdd->cur_bpw / 8;
303 config.dst_maxburst = 1;
304 dmaengine_slave_config(dma->ch, &config);
305 }
306
307 desc = dmaengine_prep_slave_sg(dma->ch, sgt->sgl, sgt->nents,
308 dma->direction, DMA_PREP_INTERRUPT);
309
310 desc->callback = s3c64xx_spi_dmacb;
311 desc->callback_param = dma;
312
313 dmaengine_submit(desc);
314 dma_async_issue_pending(dma->ch);
315 }
316
317 static int s3c64xx_spi_prepare_transfer(struct spi_master *spi)
318 {
319 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
320 dma_filter_fn filter = sdd->cntrlr_info->filter;
321 struct device *dev = &sdd->pdev->dev;
322 dma_cap_mask_t mask;
323 int ret;
324
325 if (!is_polling(sdd)) {
326 dma_cap_zero(mask);
327 dma_cap_set(DMA_SLAVE, mask);
328
329 /* Acquire DMA channels */
330 sdd->rx_dma.ch = dma_request_slave_channel_compat(mask, filter,
331 (void *)sdd->rx_dma.dmach, dev, "rx");
332 if (!sdd->rx_dma.ch) {
333 dev_err(dev, "Failed to get RX DMA channel\n");
334 ret = -EBUSY;
335 goto out;
336 }
337 spi->dma_rx = sdd->rx_dma.ch;
338
339 sdd->tx_dma.ch = dma_request_slave_channel_compat(mask, filter,
340 (void *)sdd->tx_dma.dmach, dev, "tx");
341 if (!sdd->tx_dma.ch) {
342 dev_err(dev, "Failed to get TX DMA channel\n");
343 ret = -EBUSY;
344 goto out_rx;
345 }
346 spi->dma_tx = sdd->tx_dma.ch;
347 }
348
349 return 0;
350
351 out_rx:
352 dma_release_channel(sdd->rx_dma.ch);
353 out:
354 return ret;
355 }
356
357 static int s3c64xx_spi_unprepare_transfer(struct spi_master *spi)
358 {
359 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
360
361 /* Free DMA channels */
362 if (!is_polling(sdd)) {
363 dma_release_channel(sdd->rx_dma.ch);
364 dma_release_channel(sdd->tx_dma.ch);
365 }
366
367 return 0;
368 }
369
370 static bool s3c64xx_spi_can_dma(struct spi_master *master,
371 struct spi_device *spi,
372 struct spi_transfer *xfer)
373 {
374 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
375
376 return xfer->len > (FIFO_LVL_MASK(sdd) >> 1) + 1;
377 }
378
379 static void enable_datapath(struct s3c64xx_spi_driver_data *sdd,
380 struct spi_device *spi,
381 struct spi_transfer *xfer, int dma_mode)
382 {
383 void __iomem *regs = sdd->regs;
384 u32 modecfg, chcfg;
385
386 modecfg = readl(regs + S3C64XX_SPI_MODE_CFG);
387 modecfg &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
388
389 chcfg = readl(regs + S3C64XX_SPI_CH_CFG);
390 chcfg &= ~S3C64XX_SPI_CH_TXCH_ON;
391
392 if (dma_mode) {
393 chcfg &= ~S3C64XX_SPI_CH_RXCH_ON;
394 } else {
395 /* Always shift in data in FIFO, even if xfer is Tx only,
396 * this helps setting PCKT_CNT value for generating clocks
397 * as exactly needed.
398 */
399 chcfg |= S3C64XX_SPI_CH_RXCH_ON;
400 writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
401 | S3C64XX_SPI_PACKET_CNT_EN,
402 regs + S3C64XX_SPI_PACKET_CNT);
403 }
404
405 if (xfer->tx_buf != NULL) {
406 sdd->state |= TXBUSY;
407 chcfg |= S3C64XX_SPI_CH_TXCH_ON;
408 if (dma_mode) {
409 modecfg |= S3C64XX_SPI_MODE_TXDMA_ON;
410 prepare_dma(&sdd->tx_dma, &xfer->tx_sg);
411 } else {
412 switch (sdd->cur_bpw) {
413 case 32:
414 iowrite32_rep(regs + S3C64XX_SPI_TX_DATA,
415 xfer->tx_buf, xfer->len / 4);
416 break;
417 case 16:
418 iowrite16_rep(regs + S3C64XX_SPI_TX_DATA,
419 xfer->tx_buf, xfer->len / 2);
420 break;
421 default:
422 iowrite8_rep(regs + S3C64XX_SPI_TX_DATA,
423 xfer->tx_buf, xfer->len);
424 break;
425 }
426 }
427 }
428
429 if (xfer->rx_buf != NULL) {
430 sdd->state |= RXBUSY;
431
432 if (sdd->port_conf->high_speed && sdd->cur_speed >= 30000000UL
433 && !(sdd->cur_mode & SPI_CPHA))
434 chcfg |= S3C64XX_SPI_CH_HS_EN;
435
436 if (dma_mode) {
437 modecfg |= S3C64XX_SPI_MODE_RXDMA_ON;
438 chcfg |= S3C64XX_SPI_CH_RXCH_ON;
439 writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
440 | S3C64XX_SPI_PACKET_CNT_EN,
441 regs + S3C64XX_SPI_PACKET_CNT);
442 prepare_dma(&sdd->rx_dma, &xfer->rx_sg);
443 }
444 }
445
446 writel(modecfg, regs + S3C64XX_SPI_MODE_CFG);
447 writel(chcfg, regs + S3C64XX_SPI_CH_CFG);
448 }
449
450 static u32 s3c64xx_spi_wait_for_timeout(struct s3c64xx_spi_driver_data *sdd,
451 int timeout_ms)
452 {
453 void __iomem *regs = sdd->regs;
454 unsigned long val = 1;
455 u32 status;
456
457 /* max fifo depth available */
458 u32 max_fifo = (FIFO_LVL_MASK(sdd) >> 1) + 1;
459
460 if (timeout_ms)
461 val = msecs_to_loops(timeout_ms);
462
463 do {
464 status = readl(regs + S3C64XX_SPI_STATUS);
465 } while (RX_FIFO_LVL(status, sdd) < max_fifo && --val);
466
467 /* return the actual received data length */
468 return RX_FIFO_LVL(status, sdd);
469 }
470
471 static int wait_for_dma(struct s3c64xx_spi_driver_data *sdd,
472 struct spi_transfer *xfer)
473 {
474 void __iomem *regs = sdd->regs;
475 unsigned long val;
476 u32 status;
477 int ms;
478
479 /* millisecs to xfer 'len' bytes @ 'cur_speed' */
480 ms = xfer->len * 8 * 1000 / sdd->cur_speed;
481 ms += 10; /* some tolerance */
482
483 val = msecs_to_jiffies(ms) + 10;
484 val = wait_for_completion_timeout(&sdd->xfer_completion, val);
485
486 /*
487 * If the previous xfer was completed within timeout, then
488 * proceed further else return -EIO.
489 * DmaTx returns after simply writing data in the FIFO,
490 * w/o waiting for real transmission on the bus to finish.
491 * DmaRx returns only after Dma read data from FIFO which
492 * needs bus transmission to finish, so we don't worry if
493 * Xfer involved Rx(with or without Tx).
494 */
495 if (val && !xfer->rx_buf) {
496 val = msecs_to_loops(10);
497 status = readl(regs + S3C64XX_SPI_STATUS);
498 while ((TX_FIFO_LVL(status, sdd)
499 || !S3C64XX_SPI_ST_TX_DONE(status, sdd))
500 && --val) {
501 cpu_relax();
502 status = readl(regs + S3C64XX_SPI_STATUS);
503 }
504
505 }
506
507 /* If timed out while checking rx/tx status return error */
508 if (!val)
509 return -EIO;
510
511 return 0;
512 }
513
514 static int wait_for_pio(struct s3c64xx_spi_driver_data *sdd,
515 struct spi_transfer *xfer)
516 {
517 void __iomem *regs = sdd->regs;
518 unsigned long val;
519 u32 status;
520 int loops;
521 u32 cpy_len;
522 u8 *buf;
523 int ms;
524
525 /* millisecs to xfer 'len' bytes @ 'cur_speed' */
526 ms = xfer->len * 8 * 1000 / sdd->cur_speed;
527 ms += 10; /* some tolerance */
528
529 val = msecs_to_loops(ms);
530 do {
531 status = readl(regs + S3C64XX_SPI_STATUS);
532 } while (RX_FIFO_LVL(status, sdd) < xfer->len && --val);
533
534
535 /* If it was only Tx */
536 if (!xfer->rx_buf) {
537 sdd->state &= ~TXBUSY;
538 return 0;
539 }
540
541 /*
542 * If the receive length is bigger than the controller fifo
543 * size, calculate the loops and read the fifo as many times.
544 * loops = length / max fifo size (calculated by using the
545 * fifo mask).
546 * For any size less than the fifo size the below code is
547 * executed atleast once.
548 */
549 loops = xfer->len / ((FIFO_LVL_MASK(sdd) >> 1) + 1);
550 buf = xfer->rx_buf;
551 do {
552 /* wait for data to be received in the fifo */
553 cpy_len = s3c64xx_spi_wait_for_timeout(sdd,
554 (loops ? ms : 0));
555
556 switch (sdd->cur_bpw) {
557 case 32:
558 ioread32_rep(regs + S3C64XX_SPI_RX_DATA,
559 buf, cpy_len / 4);
560 break;
561 case 16:
562 ioread16_rep(regs + S3C64XX_SPI_RX_DATA,
563 buf, cpy_len / 2);
564 break;
565 default:
566 ioread8_rep(regs + S3C64XX_SPI_RX_DATA,
567 buf, cpy_len);
568 break;
569 }
570
571 buf = buf + cpy_len;
572 } while (loops--);
573 sdd->state &= ~RXBUSY;
574
575 return 0;
576 }
577
578 static void s3c64xx_spi_config(struct s3c64xx_spi_driver_data *sdd)
579 {
580 void __iomem *regs = sdd->regs;
581 u32 val;
582
583 /* Disable Clock */
584 if (sdd->port_conf->clk_from_cmu) {
585 clk_disable_unprepare(sdd->src_clk);
586 } else {
587 val = readl(regs + S3C64XX_SPI_CLK_CFG);
588 val &= ~S3C64XX_SPI_ENCLK_ENABLE;
589 writel(val, regs + S3C64XX_SPI_CLK_CFG);
590 }
591
592 /* Set Polarity and Phase */
593 val = readl(regs + S3C64XX_SPI_CH_CFG);
594 val &= ~(S3C64XX_SPI_CH_SLAVE |
595 S3C64XX_SPI_CPOL_L |
596 S3C64XX_SPI_CPHA_B);
597
598 if (sdd->cur_mode & SPI_CPOL)
599 val |= S3C64XX_SPI_CPOL_L;
600
601 if (sdd->cur_mode & SPI_CPHA)
602 val |= S3C64XX_SPI_CPHA_B;
603
604 writel(val, regs + S3C64XX_SPI_CH_CFG);
605
606 /* Set Channel & DMA Mode */
607 val = readl(regs + S3C64XX_SPI_MODE_CFG);
608 val &= ~(S3C64XX_SPI_MODE_BUS_TSZ_MASK
609 | S3C64XX_SPI_MODE_CH_TSZ_MASK);
610
611 switch (sdd->cur_bpw) {
612 case 32:
613 val |= S3C64XX_SPI_MODE_BUS_TSZ_WORD;
614 val |= S3C64XX_SPI_MODE_CH_TSZ_WORD;
615 break;
616 case 16:
617 val |= S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD;
618 val |= S3C64XX_SPI_MODE_CH_TSZ_HALFWORD;
619 break;
620 default:
621 val |= S3C64XX_SPI_MODE_BUS_TSZ_BYTE;
622 val |= S3C64XX_SPI_MODE_CH_TSZ_BYTE;
623 break;
624 }
625
626 writel(val, regs + S3C64XX_SPI_MODE_CFG);
627
628 if (sdd->port_conf->clk_from_cmu) {
629 /* Configure Clock */
630 /* There is half-multiplier before the SPI */
631 clk_set_rate(sdd->src_clk, sdd->cur_speed * 2);
632 /* Enable Clock */
633 clk_prepare_enable(sdd->src_clk);
634 } else {
635 /* Configure Clock */
636 val = readl(regs + S3C64XX_SPI_CLK_CFG);
637 val &= ~S3C64XX_SPI_PSR_MASK;
638 val |= ((clk_get_rate(sdd->src_clk) / sdd->cur_speed / 2 - 1)
639 & S3C64XX_SPI_PSR_MASK);
640 writel(val, regs + S3C64XX_SPI_CLK_CFG);
641
642 /* Enable Clock */
643 val = readl(regs + S3C64XX_SPI_CLK_CFG);
644 val |= S3C64XX_SPI_ENCLK_ENABLE;
645 writel(val, regs + S3C64XX_SPI_CLK_CFG);
646 }
647 }
648
649 #define XFER_DMAADDR_INVALID DMA_BIT_MASK(32)
650
651 static int s3c64xx_spi_prepare_message(struct spi_master *master,
652 struct spi_message *msg)
653 {
654 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
655 struct spi_device *spi = msg->spi;
656 struct s3c64xx_spi_csinfo *cs = spi->controller_data;
657
658 /* If Master's(controller) state differs from that needed by Slave */
659 if (sdd->cur_speed != spi->max_speed_hz
660 || sdd->cur_mode != spi->mode
661 || sdd->cur_bpw != spi->bits_per_word) {
662 sdd->cur_bpw = spi->bits_per_word;
663 sdd->cur_speed = spi->max_speed_hz;
664 sdd->cur_mode = spi->mode;
665 s3c64xx_spi_config(sdd);
666 }
667
668 /* Configure feedback delay */
669 writel(cs->fb_delay & 0x3, sdd->regs + S3C64XX_SPI_FB_CLK);
670
671 return 0;
672 }
673
674 static int s3c64xx_spi_transfer_one(struct spi_master *master,
675 struct spi_device *spi,
676 struct spi_transfer *xfer)
677 {
678 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
679 int status;
680 u32 speed;
681 u8 bpw;
682 unsigned long flags;
683 int use_dma;
684
685 reinit_completion(&sdd->xfer_completion);
686
687 /* Only BPW and Speed may change across transfers */
688 bpw = xfer->bits_per_word;
689 speed = xfer->speed_hz ? : spi->max_speed_hz;
690
691 if (bpw != sdd->cur_bpw || speed != sdd->cur_speed) {
692 sdd->cur_bpw = bpw;
693 sdd->cur_speed = speed;
694 s3c64xx_spi_config(sdd);
695 }
696
697 /* Polling method for xfers not bigger than FIFO capacity */
698 use_dma = 0;
699 if (!is_polling(sdd) &&
700 (sdd->rx_dma.ch && sdd->tx_dma.ch &&
701 (xfer->len > ((FIFO_LVL_MASK(sdd) >> 1) + 1))))
702 use_dma = 1;
703
704 spin_lock_irqsave(&sdd->lock, flags);
705
706 /* Pending only which is to be done */
707 sdd->state &= ~RXBUSY;
708 sdd->state &= ~TXBUSY;
709
710 enable_datapath(sdd, spi, xfer, use_dma);
711
712 /* Start the signals */
713 if (!(sdd->port_conf->quirks & S3C64XX_SPI_QUIRK_CS_AUTO))
714 writel(0, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
715 else
716 writel(readl(sdd->regs + S3C64XX_SPI_SLAVE_SEL)
717 | S3C64XX_SPI_SLAVE_AUTO | S3C64XX_SPI_SLAVE_NSC_CNT_2,
718 sdd->regs + S3C64XX_SPI_SLAVE_SEL);
719
720 spin_unlock_irqrestore(&sdd->lock, flags);
721
722 if (use_dma)
723 status = wait_for_dma(sdd, xfer);
724 else
725 status = wait_for_pio(sdd, xfer);
726
727 if (status) {
728 dev_err(&spi->dev, "I/O Error: rx-%d tx-%d res:rx-%c tx-%c len-%d\n",
729 xfer->rx_buf ? 1 : 0, xfer->tx_buf ? 1 : 0,
730 (sdd->state & RXBUSY) ? 'f' : 'p',
731 (sdd->state & TXBUSY) ? 'f' : 'p',
732 xfer->len);
733
734 if (use_dma) {
735 if (xfer->tx_buf != NULL
736 && (sdd->state & TXBUSY))
737 dmaengine_terminate_all(sdd->tx_dma.ch);
738 if (xfer->rx_buf != NULL
739 && (sdd->state & RXBUSY))
740 dmaengine_terminate_all(sdd->rx_dma.ch);
741 }
742 } else {
743 flush_fifo(sdd);
744 }
745
746 return status;
747 }
748
749 static struct s3c64xx_spi_csinfo *s3c64xx_get_slave_ctrldata(
750 struct spi_device *spi)
751 {
752 struct s3c64xx_spi_csinfo *cs;
753 struct device_node *slave_np, *data_np = NULL;
754 u32 fb_delay = 0;
755
756 slave_np = spi->dev.of_node;
757 if (!slave_np) {
758 dev_err(&spi->dev, "device node not found\n");
759 return ERR_PTR(-EINVAL);
760 }
761
762 data_np = of_get_child_by_name(slave_np, "controller-data");
763 if (!data_np) {
764 dev_err(&spi->dev, "child node 'controller-data' not found\n");
765 return ERR_PTR(-EINVAL);
766 }
767
768 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
769 if (!cs) {
770 of_node_put(data_np);
771 return ERR_PTR(-ENOMEM);
772 }
773
774 of_property_read_u32(data_np, "samsung,spi-feedback-delay", &fb_delay);
775 cs->fb_delay = fb_delay;
776 of_node_put(data_np);
777 return cs;
778 }
779
780 /*
781 * Here we only check the validity of requested configuration
782 * and save the configuration in a local data-structure.
783 * The controller is actually configured only just before we
784 * get a message to transfer.
785 */
786 static int s3c64xx_spi_setup(struct spi_device *spi)
787 {
788 struct s3c64xx_spi_csinfo *cs = spi->controller_data;
789 struct s3c64xx_spi_driver_data *sdd;
790 struct s3c64xx_spi_info *sci;
791 int err;
792
793 sdd = spi_master_get_devdata(spi->master);
794 if (spi->dev.of_node) {
795 cs = s3c64xx_get_slave_ctrldata(spi);
796 spi->controller_data = cs;
797 } else if (cs) {
798 /* On non-DT platforms the SPI core will set spi->cs_gpio
799 * to -ENOENT. The GPIO pin used to drive the chip select
800 * is defined by using platform data so spi->cs_gpio value
801 * has to be override to have the proper GPIO pin number.
802 */
803 spi->cs_gpio = cs->line;
804 }
805
806 if (IS_ERR_OR_NULL(cs)) {
807 dev_err(&spi->dev, "No CS for SPI(%d)\n", spi->chip_select);
808 return -ENODEV;
809 }
810
811 if (!spi_get_ctldata(spi)) {
812 if (gpio_is_valid(spi->cs_gpio)) {
813 err = gpio_request_one(spi->cs_gpio, GPIOF_OUT_INIT_HIGH,
814 dev_name(&spi->dev));
815 if (err) {
816 dev_err(&spi->dev,
817 "Failed to get /CS gpio [%d]: %d\n",
818 spi->cs_gpio, err);
819 goto err_gpio_req;
820 }
821 }
822
823 spi_set_ctldata(spi, cs);
824 }
825
826 sci = sdd->cntrlr_info;
827
828 pm_runtime_get_sync(&sdd->pdev->dev);
829
830 /* Check if we can provide the requested rate */
831 if (!sdd->port_conf->clk_from_cmu) {
832 u32 psr, speed;
833
834 /* Max possible */
835 speed = clk_get_rate(sdd->src_clk) / 2 / (0 + 1);
836
837 if (spi->max_speed_hz > speed)
838 spi->max_speed_hz = speed;
839
840 psr = clk_get_rate(sdd->src_clk) / 2 / spi->max_speed_hz - 1;
841 psr &= S3C64XX_SPI_PSR_MASK;
842 if (psr == S3C64XX_SPI_PSR_MASK)
843 psr--;
844
845 speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
846 if (spi->max_speed_hz < speed) {
847 if (psr+1 < S3C64XX_SPI_PSR_MASK) {
848 psr++;
849 } else {
850 err = -EINVAL;
851 goto setup_exit;
852 }
853 }
854
855 speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
856 if (spi->max_speed_hz >= speed) {
857 spi->max_speed_hz = speed;
858 } else {
859 dev_err(&spi->dev, "Can't set %dHz transfer speed\n",
860 spi->max_speed_hz);
861 err = -EINVAL;
862 goto setup_exit;
863 }
864 }
865
866 pm_runtime_put(&sdd->pdev->dev);
867 if (!(sdd->port_conf->quirks & S3C64XX_SPI_QUIRK_CS_AUTO))
868 writel(S3C64XX_SPI_SLAVE_SIG_INACT, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
869 return 0;
870
871 setup_exit:
872 pm_runtime_put(&sdd->pdev->dev);
873 /* setup() returns with device de-selected */
874 if (!(sdd->port_conf->quirks & S3C64XX_SPI_QUIRK_CS_AUTO))
875 writel(S3C64XX_SPI_SLAVE_SIG_INACT, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
876
877 if (gpio_is_valid(spi->cs_gpio))
878 gpio_free(spi->cs_gpio);
879 spi_set_ctldata(spi, NULL);
880
881 err_gpio_req:
882 if (spi->dev.of_node)
883 kfree(cs);
884
885 return err;
886 }
887
888 static void s3c64xx_spi_cleanup(struct spi_device *spi)
889 {
890 struct s3c64xx_spi_csinfo *cs = spi_get_ctldata(spi);
891
892 if (gpio_is_valid(spi->cs_gpio)) {
893 gpio_free(spi->cs_gpio);
894 if (spi->dev.of_node)
895 kfree(cs);
896 else {
897 /* On non-DT platforms, the SPI core sets
898 * spi->cs_gpio to -ENOENT and .setup()
899 * overrides it with the GPIO pin value
900 * passed using platform data.
901 */
902 spi->cs_gpio = -ENOENT;
903 }
904 }
905
906 spi_set_ctldata(spi, NULL);
907 }
908
909 static irqreturn_t s3c64xx_spi_irq(int irq, void *data)
910 {
911 struct s3c64xx_spi_driver_data *sdd = data;
912 struct spi_master *spi = sdd->master;
913 unsigned int val, clr = 0;
914
915 val = readl(sdd->regs + S3C64XX_SPI_STATUS);
916
917 if (val & S3C64XX_SPI_ST_RX_OVERRUN_ERR) {
918 clr = S3C64XX_SPI_PND_RX_OVERRUN_CLR;
919 dev_err(&spi->dev, "RX overrun\n");
920 }
921 if (val & S3C64XX_SPI_ST_RX_UNDERRUN_ERR) {
922 clr |= S3C64XX_SPI_PND_RX_UNDERRUN_CLR;
923 dev_err(&spi->dev, "RX underrun\n");
924 }
925 if (val & S3C64XX_SPI_ST_TX_OVERRUN_ERR) {
926 clr |= S3C64XX_SPI_PND_TX_OVERRUN_CLR;
927 dev_err(&spi->dev, "TX overrun\n");
928 }
929 if (val & S3C64XX_SPI_ST_TX_UNDERRUN_ERR) {
930 clr |= S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
931 dev_err(&spi->dev, "TX underrun\n");
932 }
933
934 /* Clear the pending irq by setting and then clearing it */
935 writel(clr, sdd->regs + S3C64XX_SPI_PENDING_CLR);
936 writel(0, sdd->regs + S3C64XX_SPI_PENDING_CLR);
937
938 return IRQ_HANDLED;
939 }
940
941 static void s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data *sdd, int channel)
942 {
943 struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
944 void __iomem *regs = sdd->regs;
945 unsigned int val;
946
947 sdd->cur_speed = 0;
948
949 if (!(sdd->port_conf->quirks & S3C64XX_SPI_QUIRK_CS_AUTO))
950 writel(S3C64XX_SPI_SLAVE_SIG_INACT, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
951
952 /* Disable Interrupts - we use Polling if not DMA mode */
953 writel(0, regs + S3C64XX_SPI_INT_EN);
954
955 if (!sdd->port_conf->clk_from_cmu)
956 writel(sci->src_clk_nr << S3C64XX_SPI_CLKSEL_SRCSHFT,
957 regs + S3C64XX_SPI_CLK_CFG);
958 writel(0, regs + S3C64XX_SPI_MODE_CFG);
959 writel(0, regs + S3C64XX_SPI_PACKET_CNT);
960
961 /* Clear any irq pending bits, should set and clear the bits */
962 val = S3C64XX_SPI_PND_RX_OVERRUN_CLR |
963 S3C64XX_SPI_PND_RX_UNDERRUN_CLR |
964 S3C64XX_SPI_PND_TX_OVERRUN_CLR |
965 S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
966 writel(val, regs + S3C64XX_SPI_PENDING_CLR);
967 writel(0, regs + S3C64XX_SPI_PENDING_CLR);
968
969 writel(0, regs + S3C64XX_SPI_SWAP_CFG);
970
971 val = readl(regs + S3C64XX_SPI_MODE_CFG);
972 val &= ~S3C64XX_SPI_MODE_4BURST;
973 val &= ~(S3C64XX_SPI_MAX_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
974 val |= (S3C64XX_SPI_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
975 writel(val, regs + S3C64XX_SPI_MODE_CFG);
976
977 flush_fifo(sdd);
978 }
979
980 #ifdef CONFIG_OF
981 static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
982 {
983 struct s3c64xx_spi_info *sci;
984 u32 temp;
985
986 sci = devm_kzalloc(dev, sizeof(*sci), GFP_KERNEL);
987 if (!sci)
988 return ERR_PTR(-ENOMEM);
989
990 if (of_property_read_u32(dev->of_node, "samsung,spi-src-clk", &temp)) {
991 dev_warn(dev, "spi bus clock parent not specified, using clock at index 0 as parent\n");
992 sci->src_clk_nr = 0;
993 } else {
994 sci->src_clk_nr = temp;
995 }
996
997 if (of_property_read_u32(dev->of_node, "num-cs", &temp)) {
998 dev_warn(dev, "number of chip select lines not specified, assuming 1 chip select line\n");
999 sci->num_cs = 1;
1000 } else {
1001 sci->num_cs = temp;
1002 }
1003
1004 return sci;
1005 }
1006 #else
1007 static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
1008 {
1009 return dev_get_platdata(dev);
1010 }
1011 #endif
1012
1013 static const struct of_device_id s3c64xx_spi_dt_match[];
1014
1015 static inline struct s3c64xx_spi_port_config *s3c64xx_spi_get_port_config(
1016 struct platform_device *pdev)
1017 {
1018 #ifdef CONFIG_OF
1019 if (pdev->dev.of_node) {
1020 const struct of_device_id *match;
1021 match = of_match_node(s3c64xx_spi_dt_match, pdev->dev.of_node);
1022 return (struct s3c64xx_spi_port_config *)match->data;
1023 }
1024 #endif
1025 return (struct s3c64xx_spi_port_config *)
1026 platform_get_device_id(pdev)->driver_data;
1027 }
1028
1029 static int s3c64xx_spi_probe(struct platform_device *pdev)
1030 {
1031 struct resource *mem_res;
1032 struct resource *res;
1033 struct s3c64xx_spi_driver_data *sdd;
1034 struct s3c64xx_spi_info *sci = dev_get_platdata(&pdev->dev);
1035 struct spi_master *master;
1036 int ret, irq;
1037 char clk_name[16];
1038
1039 if (!sci && pdev->dev.of_node) {
1040 sci = s3c64xx_spi_parse_dt(&pdev->dev);
1041 if (IS_ERR(sci))
1042 return PTR_ERR(sci);
1043 }
1044
1045 if (!sci) {
1046 dev_err(&pdev->dev, "platform_data missing!\n");
1047 return -ENODEV;
1048 }
1049
1050 mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1051 if (mem_res == NULL) {
1052 dev_err(&pdev->dev, "Unable to get SPI MEM resource\n");
1053 return -ENXIO;
1054 }
1055
1056 irq = platform_get_irq(pdev, 0);
1057 if (irq < 0) {
1058 dev_warn(&pdev->dev, "Failed to get IRQ: %d\n", irq);
1059 return irq;
1060 }
1061
1062 master = spi_alloc_master(&pdev->dev,
1063 sizeof(struct s3c64xx_spi_driver_data));
1064 if (master == NULL) {
1065 dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
1066 return -ENOMEM;
1067 }
1068
1069 platform_set_drvdata(pdev, master);
1070
1071 sdd = spi_master_get_devdata(master);
1072 sdd->port_conf = s3c64xx_spi_get_port_config(pdev);
1073 sdd->master = master;
1074 sdd->cntrlr_info = sci;
1075 sdd->pdev = pdev;
1076 sdd->sfr_start = mem_res->start;
1077 if (pdev->dev.of_node) {
1078 ret = of_alias_get_id(pdev->dev.of_node, "spi");
1079 if (ret < 0) {
1080 dev_err(&pdev->dev, "failed to get alias id, errno %d\n",
1081 ret);
1082 goto err0;
1083 }
1084 sdd->port_id = ret;
1085 } else {
1086 sdd->port_id = pdev->id;
1087 }
1088
1089 sdd->cur_bpw = 8;
1090
1091 if (!sdd->pdev->dev.of_node) {
1092 res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
1093 if (!res) {
1094 dev_warn(&pdev->dev, "Unable to get SPI tx dma resource. Switching to poll mode\n");
1095 sdd->port_conf->quirks = S3C64XX_SPI_QUIRK_POLL;
1096 } else
1097 sdd->tx_dma.dmach = res->start;
1098
1099 res = platform_get_resource(pdev, IORESOURCE_DMA, 1);
1100 if (!res) {
1101 dev_warn(&pdev->dev, "Unable to get SPI rx dma resource. Switching to poll mode\n");
1102 sdd->port_conf->quirks = S3C64XX_SPI_QUIRK_POLL;
1103 } else
1104 sdd->rx_dma.dmach = res->start;
1105 }
1106
1107 sdd->tx_dma.direction = DMA_MEM_TO_DEV;
1108 sdd->rx_dma.direction = DMA_DEV_TO_MEM;
1109
1110 master->dev.of_node = pdev->dev.of_node;
1111 master->bus_num = sdd->port_id;
1112 master->setup = s3c64xx_spi_setup;
1113 master->cleanup = s3c64xx_spi_cleanup;
1114 master->prepare_transfer_hardware = s3c64xx_spi_prepare_transfer;
1115 master->prepare_message = s3c64xx_spi_prepare_message;
1116 master->transfer_one = s3c64xx_spi_transfer_one;
1117 master->unprepare_transfer_hardware = s3c64xx_spi_unprepare_transfer;
1118 master->num_chipselect = sci->num_cs;
1119 master->dma_alignment = 8;
1120 master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
1121 SPI_BPW_MASK(8);
1122 /* the spi->mode bits understood by this driver: */
1123 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1124 master->auto_runtime_pm = true;
1125 if (!is_polling(sdd))
1126 master->can_dma = s3c64xx_spi_can_dma;
1127
1128 sdd->regs = devm_ioremap_resource(&pdev->dev, mem_res);
1129 if (IS_ERR(sdd->regs)) {
1130 ret = PTR_ERR(sdd->regs);
1131 goto err0;
1132 }
1133
1134 if (sci->cfg_gpio && sci->cfg_gpio()) {
1135 dev_err(&pdev->dev, "Unable to config gpio\n");
1136 ret = -EBUSY;
1137 goto err0;
1138 }
1139
1140 /* Setup clocks */
1141 sdd->clk = devm_clk_get(&pdev->dev, "spi");
1142 if (IS_ERR(sdd->clk)) {
1143 dev_err(&pdev->dev, "Unable to acquire clock 'spi'\n");
1144 ret = PTR_ERR(sdd->clk);
1145 goto err0;
1146 }
1147
1148 if (clk_prepare_enable(sdd->clk)) {
1149 dev_err(&pdev->dev, "Couldn't enable clock 'spi'\n");
1150 ret = -EBUSY;
1151 goto err0;
1152 }
1153
1154 sprintf(clk_name, "spi_busclk%d", sci->src_clk_nr);
1155 sdd->src_clk = devm_clk_get(&pdev->dev, clk_name);
1156 if (IS_ERR(sdd->src_clk)) {
1157 dev_err(&pdev->dev,
1158 "Unable to acquire clock '%s'\n", clk_name);
1159 ret = PTR_ERR(sdd->src_clk);
1160 goto err2;
1161 }
1162
1163 if (clk_prepare_enable(sdd->src_clk)) {
1164 dev_err(&pdev->dev, "Couldn't enable clock '%s'\n", clk_name);
1165 ret = -EBUSY;
1166 goto err2;
1167 }
1168
1169 /* Setup Deufult Mode */
1170 s3c64xx_spi_hwinit(sdd, sdd->port_id);
1171
1172 spin_lock_init(&sdd->lock);
1173 init_completion(&sdd->xfer_completion);
1174
1175 ret = devm_request_irq(&pdev->dev, irq, s3c64xx_spi_irq, 0,
1176 "spi-s3c64xx", sdd);
1177 if (ret != 0) {
1178 dev_err(&pdev->dev, "Failed to request IRQ %d: %d\n",
1179 irq, ret);
1180 goto err3;
1181 }
1182
1183 writel(S3C64XX_SPI_INT_RX_OVERRUN_EN | S3C64XX_SPI_INT_RX_UNDERRUN_EN |
1184 S3C64XX_SPI_INT_TX_OVERRUN_EN | S3C64XX_SPI_INT_TX_UNDERRUN_EN,
1185 sdd->regs + S3C64XX_SPI_INT_EN);
1186
1187 pm_runtime_set_active(&pdev->dev);
1188 pm_runtime_enable(&pdev->dev);
1189
1190 ret = devm_spi_register_master(&pdev->dev, master);
1191 if (ret != 0) {
1192 dev_err(&pdev->dev, "cannot register SPI master: %d\n", ret);
1193 goto err3;
1194 }
1195
1196 dev_dbg(&pdev->dev, "Samsung SoC SPI Driver loaded for Bus SPI-%d with %d Slaves attached\n",
1197 sdd->port_id, master->num_chipselect);
1198 dev_dbg(&pdev->dev, "\tIOmem=[%pR]\tDMA=[Rx-%d, Tx-%d]\n",
1199 mem_res,
1200 sdd->rx_dma.dmach, sdd->tx_dma.dmach);
1201
1202 return 0;
1203
1204 err3:
1205 clk_disable_unprepare(sdd->src_clk);
1206 err2:
1207 clk_disable_unprepare(sdd->clk);
1208 err0:
1209 spi_master_put(master);
1210
1211 return ret;
1212 }
1213
1214 static int s3c64xx_spi_remove(struct platform_device *pdev)
1215 {
1216 struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
1217 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1218
1219 pm_runtime_disable(&pdev->dev);
1220
1221 writel(0, sdd->regs + S3C64XX_SPI_INT_EN);
1222
1223 clk_disable_unprepare(sdd->src_clk);
1224
1225 clk_disable_unprepare(sdd->clk);
1226
1227 return 0;
1228 }
1229
1230 #ifdef CONFIG_PM_SLEEP
1231 static int s3c64xx_spi_suspend(struct device *dev)
1232 {
1233 struct spi_master *master = dev_get_drvdata(dev);
1234 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1235
1236 int ret = spi_master_suspend(master);
1237 if (ret)
1238 return ret;
1239
1240 if (!pm_runtime_suspended(dev)) {
1241 clk_disable_unprepare(sdd->clk);
1242 clk_disable_unprepare(sdd->src_clk);
1243 }
1244
1245 sdd->cur_speed = 0; /* Output Clock is stopped */
1246
1247 return 0;
1248 }
1249
1250 static int s3c64xx_spi_resume(struct device *dev)
1251 {
1252 struct spi_master *master = dev_get_drvdata(dev);
1253 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1254 struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
1255
1256 if (sci->cfg_gpio)
1257 sci->cfg_gpio();
1258
1259 if (!pm_runtime_suspended(dev)) {
1260 clk_prepare_enable(sdd->src_clk);
1261 clk_prepare_enable(sdd->clk);
1262 }
1263
1264 s3c64xx_spi_hwinit(sdd, sdd->port_id);
1265
1266 return spi_master_resume(master);
1267 }
1268 #endif /* CONFIG_PM_SLEEP */
1269
1270 #ifdef CONFIG_PM_RUNTIME
1271 static int s3c64xx_spi_runtime_suspend(struct device *dev)
1272 {
1273 struct spi_master *master = dev_get_drvdata(dev);
1274 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1275
1276 clk_disable_unprepare(sdd->clk);
1277 clk_disable_unprepare(sdd->src_clk);
1278
1279 return 0;
1280 }
1281
1282 static int s3c64xx_spi_runtime_resume(struct device *dev)
1283 {
1284 struct spi_master *master = dev_get_drvdata(dev);
1285 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1286 int ret;
1287
1288 ret = clk_prepare_enable(sdd->src_clk);
1289 if (ret != 0)
1290 return ret;
1291
1292 ret = clk_prepare_enable(sdd->clk);
1293 if (ret != 0) {
1294 clk_disable_unprepare(sdd->src_clk);
1295 return ret;
1296 }
1297
1298 return 0;
1299 }
1300 #endif /* CONFIG_PM_RUNTIME */
1301
1302 static const struct dev_pm_ops s3c64xx_spi_pm = {
1303 SET_SYSTEM_SLEEP_PM_OPS(s3c64xx_spi_suspend, s3c64xx_spi_resume)
1304 SET_RUNTIME_PM_OPS(s3c64xx_spi_runtime_suspend,
1305 s3c64xx_spi_runtime_resume, NULL)
1306 };
1307
1308 static struct s3c64xx_spi_port_config s3c2443_spi_port_config = {
1309 .fifo_lvl_mask = { 0x7f },
1310 .rx_lvl_offset = 13,
1311 .tx_st_done = 21,
1312 .high_speed = true,
1313 };
1314
1315 static struct s3c64xx_spi_port_config s3c6410_spi_port_config = {
1316 .fifo_lvl_mask = { 0x7f, 0x7F },
1317 .rx_lvl_offset = 13,
1318 .tx_st_done = 21,
1319 };
1320
1321 static struct s3c64xx_spi_port_config s5pv210_spi_port_config = {
1322 .fifo_lvl_mask = { 0x1ff, 0x7F },
1323 .rx_lvl_offset = 15,
1324 .tx_st_done = 25,
1325 .high_speed = true,
1326 };
1327
1328 static struct s3c64xx_spi_port_config exynos4_spi_port_config = {
1329 .fifo_lvl_mask = { 0x1ff, 0x7F, 0x7F },
1330 .rx_lvl_offset = 15,
1331 .tx_st_done = 25,
1332 .high_speed = true,
1333 .clk_from_cmu = true,
1334 };
1335
1336 static struct s3c64xx_spi_port_config exynos5440_spi_port_config = {
1337 .fifo_lvl_mask = { 0x1ff },
1338 .rx_lvl_offset = 15,
1339 .tx_st_done = 25,
1340 .high_speed = true,
1341 .clk_from_cmu = true,
1342 .quirks = S3C64XX_SPI_QUIRK_POLL,
1343 };
1344
1345 static struct s3c64xx_spi_port_config exynos7_spi_port_config = {
1346 .fifo_lvl_mask = { 0x1ff, 0x7F, 0x7F, 0x7F, 0x7F, 0x1ff},
1347 .rx_lvl_offset = 15,
1348 .tx_st_done = 25,
1349 .high_speed = true,
1350 .clk_from_cmu = true,
1351 .quirks = S3C64XX_SPI_QUIRK_CS_AUTO,
1352 };
1353
1354 static struct platform_device_id s3c64xx_spi_driver_ids[] = {
1355 {
1356 .name = "s3c2443-spi",
1357 .driver_data = (kernel_ulong_t)&s3c2443_spi_port_config,
1358 }, {
1359 .name = "s3c6410-spi",
1360 .driver_data = (kernel_ulong_t)&s3c6410_spi_port_config,
1361 }, {
1362 .name = "s5pv210-spi",
1363 .driver_data = (kernel_ulong_t)&s5pv210_spi_port_config,
1364 }, {
1365 .name = "exynos4210-spi",
1366 .driver_data = (kernel_ulong_t)&exynos4_spi_port_config,
1367 },
1368 { },
1369 };
1370
1371 static const struct of_device_id s3c64xx_spi_dt_match[] = {
1372 { .compatible = "samsung,s3c2443-spi",
1373 .data = (void *)&s3c2443_spi_port_config,
1374 },
1375 { .compatible = "samsung,s3c6410-spi",
1376 .data = (void *)&s3c6410_spi_port_config,
1377 },
1378 { .compatible = "samsung,s5pv210-spi",
1379 .data = (void *)&s5pv210_spi_port_config,
1380 },
1381 { .compatible = "samsung,exynos4210-spi",
1382 .data = (void *)&exynos4_spi_port_config,
1383 },
1384 { .compatible = "samsung,exynos5440-spi",
1385 .data = (void *)&exynos5440_spi_port_config,
1386 },
1387 { .compatible = "samsung,exynos7-spi",
1388 .data = (void *)&exynos7_spi_port_config,
1389 },
1390 { },
1391 };
1392 MODULE_DEVICE_TABLE(of, s3c64xx_spi_dt_match);
1393
1394 static struct platform_driver s3c64xx_spi_driver = {
1395 .driver = {
1396 .name = "s3c64xx-spi",
1397 .pm = &s3c64xx_spi_pm,
1398 .of_match_table = of_match_ptr(s3c64xx_spi_dt_match),
1399 },
1400 .probe = s3c64xx_spi_probe,
1401 .remove = s3c64xx_spi_remove,
1402 .id_table = s3c64xx_spi_driver_ids,
1403 };
1404 MODULE_ALIAS("platform:s3c64xx-spi");
1405
1406 module_platform_driver(s3c64xx_spi_driver);
1407
1408 MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
1409 MODULE_DESCRIPTION("S3C64XX SPI Controller Driver");
1410 MODULE_LICENSE("GPL");