]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/spi/spi-sh-msiof.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/cmetcalf/linux-tile
[mirror_ubuntu-artful-kernel.git] / drivers / spi / spi-sh-msiof.c
1 /*
2 * SuperH MSIOF SPI Master Interface
3 *
4 * Copyright (c) 2009 Magnus Damm
5 * Copyright (C) 2014 Renesas Electronics Corporation
6 * Copyright (C) 2014-2017 Glider bvba
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 */
13
14 #include <linux/bitmap.h>
15 #include <linux/clk.h>
16 #include <linux/completion.h>
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dmaengine.h>
20 #include <linux/err.h>
21 #include <linux/gpio.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/platform_device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/sh_dma.h>
31
32 #include <linux/spi/sh_msiof.h>
33 #include <linux/spi/spi.h>
34
35 #include <asm/unaligned.h>
36
37 struct sh_msiof_chipdata {
38 u16 tx_fifo_size;
39 u16 rx_fifo_size;
40 u16 master_flags;
41 };
42
43 struct sh_msiof_spi_priv {
44 struct spi_master *master;
45 void __iomem *mapbase;
46 struct clk *clk;
47 struct platform_device *pdev;
48 struct sh_msiof_spi_info *info;
49 struct completion done;
50 unsigned int tx_fifo_size;
51 unsigned int rx_fifo_size;
52 void *tx_dma_page;
53 void *rx_dma_page;
54 dma_addr_t tx_dma_addr;
55 dma_addr_t rx_dma_addr;
56 bool slave_aborted;
57 };
58
59 #define TMDR1 0x00 /* Transmit Mode Register 1 */
60 #define TMDR2 0x04 /* Transmit Mode Register 2 */
61 #define TMDR3 0x08 /* Transmit Mode Register 3 */
62 #define RMDR1 0x10 /* Receive Mode Register 1 */
63 #define RMDR2 0x14 /* Receive Mode Register 2 */
64 #define RMDR3 0x18 /* Receive Mode Register 3 */
65 #define TSCR 0x20 /* Transmit Clock Select Register */
66 #define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
67 #define CTR 0x28 /* Control Register */
68 #define FCTR 0x30 /* FIFO Control Register */
69 #define STR 0x40 /* Status Register */
70 #define IER 0x44 /* Interrupt Enable Register */
71 #define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
72 #define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
73 #define TFDR 0x50 /* Transmit FIFO Data Register */
74 #define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
75 #define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
76 #define RFDR 0x60 /* Receive FIFO Data Register */
77
78 /* TMDR1 and RMDR1 */
79 #define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */
80 #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
81 #define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */
82 #define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */
83 #define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
84 #define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
85 #define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
86 #define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
87 #define MDR1_FLD_MASK 0x0000000c /* Frame Sync Signal Interval (0-3) */
88 #define MDR1_FLD_SHIFT 2
89 #define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */
90 /* TMDR1 */
91 #define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */
92
93 /* TMDR2 and RMDR2 */
94 #define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
95 #define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
96 #define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */
97
98 /* TSCR and RSCR */
99 #define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */
100 #define SCR_BRPS(i) (((i) - 1) << 8)
101 #define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */
102 #define SCR_BRDV_DIV_2 0x0000
103 #define SCR_BRDV_DIV_4 0x0001
104 #define SCR_BRDV_DIV_8 0x0002
105 #define SCR_BRDV_DIV_16 0x0003
106 #define SCR_BRDV_DIV_32 0x0004
107 #define SCR_BRDV_DIV_1 0x0007
108
109 /* CTR */
110 #define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */
111 #define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */
112 #define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
113 #define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */
114 #define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */
115 #define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
116 #define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
117 #define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
118 #define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */
119 #define CTR_TXDIZ_LOW 0x00000000 /* 0 */
120 #define CTR_TXDIZ_HIGH 0x00400000 /* 1 */
121 #define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */
122 #define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */
123 #define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */
124 #define CTR_TXE 0x00000200 /* Transmit Enable */
125 #define CTR_RXE 0x00000100 /* Receive Enable */
126
127 /* FCTR */
128 #define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */
129 #define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */
130 #define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */
131 #define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */
132 #define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */
133 #define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */
134 #define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */
135 #define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */
136 #define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */
137 #define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */
138 #define FCTR_TFUA_SHIFT 20
139 #define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT)
140 #define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */
141 #define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */
142 #define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */
143 #define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */
144 #define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */
145 #define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */
146 #define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */
147 #define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */
148 #define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */
149 #define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
150 #define FCTR_RFUA_SHIFT 4
151 #define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT)
152
153 /* STR */
154 #define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */
155 #define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */
156 #define STR_TEOF 0x00800000 /* Frame Transmission End */
157 #define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */
158 #define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */
159 #define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */
160 #define STR_RFFUL 0x00002000 /* Receive FIFO Full */
161 #define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */
162 #define STR_REOF 0x00000080 /* Frame Reception End */
163 #define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */
164 #define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */
165 #define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */
166
167 /* IER */
168 #define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */
169 #define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */
170 #define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */
171 #define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */
172 #define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */
173 #define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */
174 #define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */
175 #define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */
176 #define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */
177 #define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */
178 #define IER_REOFE 0x00000080 /* Frame Reception End Enable */
179 #define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */
180 #define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */
181 #define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */
182
183
184 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
185 {
186 switch (reg_offs) {
187 case TSCR:
188 case RSCR:
189 return ioread16(p->mapbase + reg_offs);
190 default:
191 return ioread32(p->mapbase + reg_offs);
192 }
193 }
194
195 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
196 u32 value)
197 {
198 switch (reg_offs) {
199 case TSCR:
200 case RSCR:
201 iowrite16(value, p->mapbase + reg_offs);
202 break;
203 default:
204 iowrite32(value, p->mapbase + reg_offs);
205 break;
206 }
207 }
208
209 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
210 u32 clr, u32 set)
211 {
212 u32 mask = clr | set;
213 u32 data;
214 int k;
215
216 data = sh_msiof_read(p, CTR);
217 data &= ~clr;
218 data |= set;
219 sh_msiof_write(p, CTR, data);
220
221 for (k = 100; k > 0; k--) {
222 if ((sh_msiof_read(p, CTR) & mask) == set)
223 break;
224
225 udelay(10);
226 }
227
228 return k > 0 ? 0 : -ETIMEDOUT;
229 }
230
231 static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
232 {
233 struct sh_msiof_spi_priv *p = data;
234
235 /* just disable the interrupt and wake up */
236 sh_msiof_write(p, IER, 0);
237 complete(&p->done);
238
239 return IRQ_HANDLED;
240 }
241
242 static struct {
243 unsigned short div;
244 unsigned short brdv;
245 } const sh_msiof_spi_div_table[] = {
246 { 1, SCR_BRDV_DIV_1 },
247 { 2, SCR_BRDV_DIV_2 },
248 { 4, SCR_BRDV_DIV_4 },
249 { 8, SCR_BRDV_DIV_8 },
250 { 16, SCR_BRDV_DIV_16 },
251 { 32, SCR_BRDV_DIV_32 },
252 };
253
254 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
255 unsigned long parent_rate, u32 spi_hz)
256 {
257 unsigned long div = 1024;
258 u32 brps, scr;
259 size_t k;
260
261 if (!WARN_ON(!spi_hz || !parent_rate))
262 div = DIV_ROUND_UP(parent_rate, spi_hz);
263
264 for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_div_table); k++) {
265 brps = DIV_ROUND_UP(div, sh_msiof_spi_div_table[k].div);
266 /* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
267 if (sh_msiof_spi_div_table[k].div == 1 && brps > 2)
268 continue;
269 if (brps <= 32) /* max of brdv is 32 */
270 break;
271 }
272
273 k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_div_table) - 1);
274
275 scr = sh_msiof_spi_div_table[k].brdv | SCR_BRPS(brps);
276 sh_msiof_write(p, TSCR, scr);
277 if (!(p->master->flags & SPI_MASTER_MUST_TX))
278 sh_msiof_write(p, RSCR, scr);
279 }
280
281 static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
282 {
283 /*
284 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
285 * b'000 : 0
286 * b'001 : 100
287 * b'010 : 200
288 * b'011 (SYNCDL only) : 300
289 * b'101 : 50
290 * b'110 : 150
291 */
292 if (dtdl_or_syncdl % 100)
293 return dtdl_or_syncdl / 100 + 5;
294 else
295 return dtdl_or_syncdl / 100;
296 }
297
298 static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
299 {
300 u32 val;
301
302 if (!p->info)
303 return 0;
304
305 /* check if DTDL and SYNCDL is allowed value */
306 if (p->info->dtdl > 200 || p->info->syncdl > 300) {
307 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
308 return 0;
309 }
310
311 /* check if the sum of DTDL and SYNCDL becomes an integer value */
312 if ((p->info->dtdl + p->info->syncdl) % 100) {
313 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
314 return 0;
315 }
316
317 val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
318 val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
319
320 return val;
321 }
322
323 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
324 u32 cpol, u32 cpha,
325 u32 tx_hi_z, u32 lsb_first, u32 cs_high)
326 {
327 u32 tmp;
328 int edge;
329
330 /*
331 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
332 * 0 0 10 10 1 1
333 * 0 1 10 10 0 0
334 * 1 0 11 11 0 0
335 * 1 1 11 11 1 1
336 */
337 tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
338 tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
339 tmp |= lsb_first << MDR1_BITLSB_SHIFT;
340 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
341 if (spi_controller_is_slave(p->master))
342 sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON);
343 else
344 sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON);
345 if (p->master->flags & SPI_MASTER_MUST_TX) {
346 /* These bits are reserved if RX needs TX */
347 tmp &= ~0x0000ffff;
348 }
349 sh_msiof_write(p, RMDR1, tmp);
350
351 tmp = 0;
352 tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
353 tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
354
355 edge = cpol ^ !cpha;
356
357 tmp |= edge << CTR_TEDG_SHIFT;
358 tmp |= edge << CTR_REDG_SHIFT;
359 tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
360 sh_msiof_write(p, CTR, tmp);
361 }
362
363 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
364 const void *tx_buf, void *rx_buf,
365 u32 bits, u32 words)
366 {
367 u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
368
369 if (tx_buf || (p->master->flags & SPI_MASTER_MUST_TX))
370 sh_msiof_write(p, TMDR2, dr2);
371 else
372 sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
373
374 if (rx_buf)
375 sh_msiof_write(p, RMDR2, dr2);
376 }
377
378 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
379 {
380 sh_msiof_write(p, STR, sh_msiof_read(p, STR));
381 }
382
383 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
384 const void *tx_buf, int words, int fs)
385 {
386 const u8 *buf_8 = tx_buf;
387 int k;
388
389 for (k = 0; k < words; k++)
390 sh_msiof_write(p, TFDR, buf_8[k] << fs);
391 }
392
393 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
394 const void *tx_buf, int words, int fs)
395 {
396 const u16 *buf_16 = tx_buf;
397 int k;
398
399 for (k = 0; k < words; k++)
400 sh_msiof_write(p, TFDR, buf_16[k] << fs);
401 }
402
403 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
404 const void *tx_buf, int words, int fs)
405 {
406 const u16 *buf_16 = tx_buf;
407 int k;
408
409 for (k = 0; k < words; k++)
410 sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
411 }
412
413 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
414 const void *tx_buf, int words, int fs)
415 {
416 const u32 *buf_32 = tx_buf;
417 int k;
418
419 for (k = 0; k < words; k++)
420 sh_msiof_write(p, TFDR, buf_32[k] << fs);
421 }
422
423 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
424 const void *tx_buf, int words, int fs)
425 {
426 const u32 *buf_32 = tx_buf;
427 int k;
428
429 for (k = 0; k < words; k++)
430 sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
431 }
432
433 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
434 const void *tx_buf, int words, int fs)
435 {
436 const u32 *buf_32 = tx_buf;
437 int k;
438
439 for (k = 0; k < words; k++)
440 sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
441 }
442
443 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
444 const void *tx_buf, int words, int fs)
445 {
446 const u32 *buf_32 = tx_buf;
447 int k;
448
449 for (k = 0; k < words; k++)
450 sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
451 }
452
453 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
454 void *rx_buf, int words, int fs)
455 {
456 u8 *buf_8 = rx_buf;
457 int k;
458
459 for (k = 0; k < words; k++)
460 buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
461 }
462
463 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
464 void *rx_buf, int words, int fs)
465 {
466 u16 *buf_16 = rx_buf;
467 int k;
468
469 for (k = 0; k < words; k++)
470 buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
471 }
472
473 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
474 void *rx_buf, int words, int fs)
475 {
476 u16 *buf_16 = rx_buf;
477 int k;
478
479 for (k = 0; k < words; k++)
480 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
481 }
482
483 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
484 void *rx_buf, int words, int fs)
485 {
486 u32 *buf_32 = rx_buf;
487 int k;
488
489 for (k = 0; k < words; k++)
490 buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
491 }
492
493 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
494 void *rx_buf, int words, int fs)
495 {
496 u32 *buf_32 = rx_buf;
497 int k;
498
499 for (k = 0; k < words; k++)
500 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
501 }
502
503 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
504 void *rx_buf, int words, int fs)
505 {
506 u32 *buf_32 = rx_buf;
507 int k;
508
509 for (k = 0; k < words; k++)
510 buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
511 }
512
513 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
514 void *rx_buf, int words, int fs)
515 {
516 u32 *buf_32 = rx_buf;
517 int k;
518
519 for (k = 0; k < words; k++)
520 put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
521 }
522
523 static int sh_msiof_spi_setup(struct spi_device *spi)
524 {
525 struct device_node *np = spi->master->dev.of_node;
526 struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
527
528 pm_runtime_get_sync(&p->pdev->dev);
529
530 if (!np) {
531 /*
532 * Use spi->controller_data for CS (same strategy as spi_gpio),
533 * if any. otherwise let HW control CS
534 */
535 spi->cs_gpio = (uintptr_t)spi->controller_data;
536 }
537
538 /* Configure pins before deasserting CS */
539 sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
540 !!(spi->mode & SPI_CPHA),
541 !!(spi->mode & SPI_3WIRE),
542 !!(spi->mode & SPI_LSB_FIRST),
543 !!(spi->mode & SPI_CS_HIGH));
544
545 if (spi->cs_gpio >= 0)
546 gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
547
548
549 pm_runtime_put(&p->pdev->dev);
550
551 return 0;
552 }
553
554 static int sh_msiof_prepare_message(struct spi_master *master,
555 struct spi_message *msg)
556 {
557 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
558 const struct spi_device *spi = msg->spi;
559
560 /* Configure pins before asserting CS */
561 sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
562 !!(spi->mode & SPI_CPHA),
563 !!(spi->mode & SPI_3WIRE),
564 !!(spi->mode & SPI_LSB_FIRST),
565 !!(spi->mode & SPI_CS_HIGH));
566 return 0;
567 }
568
569 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
570 {
571 bool slave = spi_controller_is_slave(p->master);
572 int ret = 0;
573
574 /* setup clock and rx/tx signals */
575 if (!slave)
576 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
577 if (rx_buf && !ret)
578 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
579 if (!ret)
580 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
581
582 /* start by setting frame bit */
583 if (!ret && !slave)
584 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
585
586 return ret;
587 }
588
589 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
590 {
591 bool slave = spi_controller_is_slave(p->master);
592 int ret = 0;
593
594 /* shut down frame, rx/tx and clock signals */
595 if (!slave)
596 ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
597 if (!ret)
598 ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
599 if (rx_buf && !ret)
600 ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
601 if (!ret && !slave)
602 ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
603
604 return ret;
605 }
606
607 static int sh_msiof_slave_abort(struct spi_master *master)
608 {
609 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
610
611 p->slave_aborted = true;
612 complete(&p->done);
613 return 0;
614 }
615
616 static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p)
617 {
618 if (spi_controller_is_slave(p->master)) {
619 if (wait_for_completion_interruptible(&p->done) ||
620 p->slave_aborted) {
621 dev_dbg(&p->pdev->dev, "interrupted\n");
622 return -EINTR;
623 }
624 } else {
625 if (!wait_for_completion_timeout(&p->done, HZ)) {
626 dev_err(&p->pdev->dev, "timeout\n");
627 return -ETIMEDOUT;
628 }
629 }
630
631 return 0;
632 }
633
634 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
635 void (*tx_fifo)(struct sh_msiof_spi_priv *,
636 const void *, int, int),
637 void (*rx_fifo)(struct sh_msiof_spi_priv *,
638 void *, int, int),
639 const void *tx_buf, void *rx_buf,
640 int words, int bits)
641 {
642 int fifo_shift;
643 int ret;
644
645 /* limit maximum word transfer to rx/tx fifo size */
646 if (tx_buf)
647 words = min_t(int, words, p->tx_fifo_size);
648 if (rx_buf)
649 words = min_t(int, words, p->rx_fifo_size);
650
651 /* the fifo contents need shifting */
652 fifo_shift = 32 - bits;
653
654 /* default FIFO watermarks for PIO */
655 sh_msiof_write(p, FCTR, 0);
656
657 /* setup msiof transfer mode registers */
658 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
659 sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
660
661 /* write tx fifo */
662 if (tx_buf)
663 tx_fifo(p, tx_buf, words, fifo_shift);
664
665 reinit_completion(&p->done);
666 p->slave_aborted = false;
667
668 ret = sh_msiof_spi_start(p, rx_buf);
669 if (ret) {
670 dev_err(&p->pdev->dev, "failed to start hardware\n");
671 goto stop_ier;
672 }
673
674 /* wait for tx fifo to be emptied / rx fifo to be filled */
675 ret = sh_msiof_wait_for_completion(p);
676 if (ret)
677 goto stop_reset;
678
679 /* read rx fifo */
680 if (rx_buf)
681 rx_fifo(p, rx_buf, words, fifo_shift);
682
683 /* clear status bits */
684 sh_msiof_reset_str(p);
685
686 ret = sh_msiof_spi_stop(p, rx_buf);
687 if (ret) {
688 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
689 return ret;
690 }
691
692 return words;
693
694 stop_reset:
695 sh_msiof_reset_str(p);
696 sh_msiof_spi_stop(p, rx_buf);
697 stop_ier:
698 sh_msiof_write(p, IER, 0);
699 return ret;
700 }
701
702 static void sh_msiof_dma_complete(void *arg)
703 {
704 struct sh_msiof_spi_priv *p = arg;
705
706 sh_msiof_write(p, IER, 0);
707 complete(&p->done);
708 }
709
710 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
711 void *rx, unsigned int len)
712 {
713 u32 ier_bits = 0;
714 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
715 dma_cookie_t cookie;
716 int ret;
717
718 /* First prepare and submit the DMA request(s), as this may fail */
719 if (rx) {
720 ier_bits |= IER_RDREQE | IER_RDMAE;
721 desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
722 p->rx_dma_addr, len, DMA_FROM_DEVICE,
723 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
724 if (!desc_rx)
725 return -EAGAIN;
726
727 desc_rx->callback = sh_msiof_dma_complete;
728 desc_rx->callback_param = p;
729 cookie = dmaengine_submit(desc_rx);
730 if (dma_submit_error(cookie))
731 return cookie;
732 }
733
734 if (tx) {
735 ier_bits |= IER_TDREQE | IER_TDMAE;
736 dma_sync_single_for_device(p->master->dma_tx->device->dev,
737 p->tx_dma_addr, len, DMA_TO_DEVICE);
738 desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
739 p->tx_dma_addr, len, DMA_TO_DEVICE,
740 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
741 if (!desc_tx) {
742 ret = -EAGAIN;
743 goto no_dma_tx;
744 }
745
746 if (rx) {
747 /* No callback */
748 desc_tx->callback = NULL;
749 } else {
750 desc_tx->callback = sh_msiof_dma_complete;
751 desc_tx->callback_param = p;
752 }
753 cookie = dmaengine_submit(desc_tx);
754 if (dma_submit_error(cookie)) {
755 ret = cookie;
756 goto no_dma_tx;
757 }
758 }
759
760 /* 1 stage FIFO watermarks for DMA */
761 sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
762
763 /* setup msiof transfer mode registers (32-bit words) */
764 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
765
766 sh_msiof_write(p, IER, ier_bits);
767
768 reinit_completion(&p->done);
769 p->slave_aborted = false;
770
771 /* Now start DMA */
772 if (rx)
773 dma_async_issue_pending(p->master->dma_rx);
774 if (tx)
775 dma_async_issue_pending(p->master->dma_tx);
776
777 ret = sh_msiof_spi_start(p, rx);
778 if (ret) {
779 dev_err(&p->pdev->dev, "failed to start hardware\n");
780 goto stop_dma;
781 }
782
783 /* wait for tx fifo to be emptied / rx fifo to be filled */
784 ret = sh_msiof_wait_for_completion(p);
785 if (ret)
786 goto stop_reset;
787
788 /* clear status bits */
789 sh_msiof_reset_str(p);
790
791 ret = sh_msiof_spi_stop(p, rx);
792 if (ret) {
793 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
794 return ret;
795 }
796
797 if (rx)
798 dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
799 p->rx_dma_addr, len,
800 DMA_FROM_DEVICE);
801
802 return 0;
803
804 stop_reset:
805 sh_msiof_reset_str(p);
806 sh_msiof_spi_stop(p, rx);
807 stop_dma:
808 if (tx)
809 dmaengine_terminate_all(p->master->dma_tx);
810 no_dma_tx:
811 if (rx)
812 dmaengine_terminate_all(p->master->dma_rx);
813 sh_msiof_write(p, IER, 0);
814 return ret;
815 }
816
817 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
818 {
819 /* src or dst can be unaligned, but not both */
820 if ((unsigned long)src & 3) {
821 while (words--) {
822 *dst++ = swab32(get_unaligned(src));
823 src++;
824 }
825 } else if ((unsigned long)dst & 3) {
826 while (words--) {
827 put_unaligned(swab32(*src++), dst);
828 dst++;
829 }
830 } else {
831 while (words--)
832 *dst++ = swab32(*src++);
833 }
834 }
835
836 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
837 {
838 /* src or dst can be unaligned, but not both */
839 if ((unsigned long)src & 3) {
840 while (words--) {
841 *dst++ = swahw32(get_unaligned(src));
842 src++;
843 }
844 } else if ((unsigned long)dst & 3) {
845 while (words--) {
846 put_unaligned(swahw32(*src++), dst);
847 dst++;
848 }
849 } else {
850 while (words--)
851 *dst++ = swahw32(*src++);
852 }
853 }
854
855 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
856 {
857 memcpy(dst, src, words * 4);
858 }
859
860 static int sh_msiof_transfer_one(struct spi_master *master,
861 struct spi_device *spi,
862 struct spi_transfer *t)
863 {
864 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
865 void (*copy32)(u32 *, const u32 *, unsigned int);
866 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
867 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
868 const void *tx_buf = t->tx_buf;
869 void *rx_buf = t->rx_buf;
870 unsigned int len = t->len;
871 unsigned int bits = t->bits_per_word;
872 unsigned int bytes_per_word;
873 unsigned int words;
874 int n;
875 bool swab;
876 int ret;
877
878 /* setup clocks (clock already enabled in chipselect()) */
879 if (!spi_controller_is_slave(p->master))
880 sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
881
882 while (master->dma_tx && len > 15) {
883 /*
884 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
885 * words, with byte resp. word swapping.
886 */
887 unsigned int l = 0;
888
889 if (tx_buf)
890 l = min(len, p->tx_fifo_size * 4);
891 if (rx_buf)
892 l = min(len, p->rx_fifo_size * 4);
893
894 if (bits <= 8) {
895 if (l & 3)
896 break;
897 copy32 = copy_bswap32;
898 } else if (bits <= 16) {
899 if (l & 1)
900 break;
901 copy32 = copy_wswap32;
902 } else {
903 copy32 = copy_plain32;
904 }
905
906 if (tx_buf)
907 copy32(p->tx_dma_page, tx_buf, l / 4);
908
909 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
910 if (ret == -EAGAIN) {
911 pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
912 dev_driver_string(&p->pdev->dev),
913 dev_name(&p->pdev->dev));
914 break;
915 }
916 if (ret)
917 return ret;
918
919 if (rx_buf) {
920 copy32(rx_buf, p->rx_dma_page, l / 4);
921 rx_buf += l;
922 }
923 if (tx_buf)
924 tx_buf += l;
925
926 len -= l;
927 if (!len)
928 return 0;
929 }
930
931 if (bits <= 8 && len > 15 && !(len & 3)) {
932 bits = 32;
933 swab = true;
934 } else {
935 swab = false;
936 }
937
938 /* setup bytes per word and fifo read/write functions */
939 if (bits <= 8) {
940 bytes_per_word = 1;
941 tx_fifo = sh_msiof_spi_write_fifo_8;
942 rx_fifo = sh_msiof_spi_read_fifo_8;
943 } else if (bits <= 16) {
944 bytes_per_word = 2;
945 if ((unsigned long)tx_buf & 0x01)
946 tx_fifo = sh_msiof_spi_write_fifo_16u;
947 else
948 tx_fifo = sh_msiof_spi_write_fifo_16;
949
950 if ((unsigned long)rx_buf & 0x01)
951 rx_fifo = sh_msiof_spi_read_fifo_16u;
952 else
953 rx_fifo = sh_msiof_spi_read_fifo_16;
954 } else if (swab) {
955 bytes_per_word = 4;
956 if ((unsigned long)tx_buf & 0x03)
957 tx_fifo = sh_msiof_spi_write_fifo_s32u;
958 else
959 tx_fifo = sh_msiof_spi_write_fifo_s32;
960
961 if ((unsigned long)rx_buf & 0x03)
962 rx_fifo = sh_msiof_spi_read_fifo_s32u;
963 else
964 rx_fifo = sh_msiof_spi_read_fifo_s32;
965 } else {
966 bytes_per_word = 4;
967 if ((unsigned long)tx_buf & 0x03)
968 tx_fifo = sh_msiof_spi_write_fifo_32u;
969 else
970 tx_fifo = sh_msiof_spi_write_fifo_32;
971
972 if ((unsigned long)rx_buf & 0x03)
973 rx_fifo = sh_msiof_spi_read_fifo_32u;
974 else
975 rx_fifo = sh_msiof_spi_read_fifo_32;
976 }
977
978 /* transfer in fifo sized chunks */
979 words = len / bytes_per_word;
980
981 while (words > 0) {
982 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
983 words, bits);
984 if (n < 0)
985 return n;
986
987 if (tx_buf)
988 tx_buf += n * bytes_per_word;
989 if (rx_buf)
990 rx_buf += n * bytes_per_word;
991 words -= n;
992 }
993
994 return 0;
995 }
996
997 static const struct sh_msiof_chipdata sh_data = {
998 .tx_fifo_size = 64,
999 .rx_fifo_size = 64,
1000 .master_flags = 0,
1001 };
1002
1003 static const struct sh_msiof_chipdata r8a779x_data = {
1004 .tx_fifo_size = 64,
1005 .rx_fifo_size = 64,
1006 .master_flags = SPI_MASTER_MUST_TX,
1007 };
1008
1009 static const struct of_device_id sh_msiof_match[] = {
1010 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1011 { .compatible = "renesas,msiof-r8a7790", .data = &r8a779x_data },
1012 { .compatible = "renesas,msiof-r8a7791", .data = &r8a779x_data },
1013 { .compatible = "renesas,msiof-r8a7792", .data = &r8a779x_data },
1014 { .compatible = "renesas,msiof-r8a7793", .data = &r8a779x_data },
1015 { .compatible = "renesas,msiof-r8a7794", .data = &r8a779x_data },
1016 { .compatible = "renesas,rcar-gen2-msiof", .data = &r8a779x_data },
1017 { .compatible = "renesas,msiof-r8a7796", .data = &r8a779x_data },
1018 { .compatible = "renesas,rcar-gen3-msiof", .data = &r8a779x_data },
1019 { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */
1020 {},
1021 };
1022 MODULE_DEVICE_TABLE(of, sh_msiof_match);
1023
1024 #ifdef CONFIG_OF
1025 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1026 {
1027 struct sh_msiof_spi_info *info;
1028 struct device_node *np = dev->of_node;
1029 u32 num_cs = 1;
1030
1031 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1032 if (!info)
1033 return NULL;
1034
1035 info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
1036 : MSIOF_SPI_MASTER;
1037
1038 /* Parse the MSIOF properties */
1039 if (info->mode == MSIOF_SPI_MASTER)
1040 of_property_read_u32(np, "num-cs", &num_cs);
1041 of_property_read_u32(np, "renesas,tx-fifo-size",
1042 &info->tx_fifo_override);
1043 of_property_read_u32(np, "renesas,rx-fifo-size",
1044 &info->rx_fifo_override);
1045 of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1046 of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1047
1048 info->num_chipselect = num_cs;
1049
1050 return info;
1051 }
1052 #else
1053 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1054 {
1055 return NULL;
1056 }
1057 #endif
1058
1059 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1060 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1061 {
1062 dma_cap_mask_t mask;
1063 struct dma_chan *chan;
1064 struct dma_slave_config cfg;
1065 int ret;
1066
1067 dma_cap_zero(mask);
1068 dma_cap_set(DMA_SLAVE, mask);
1069
1070 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1071 (void *)(unsigned long)id, dev,
1072 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1073 if (!chan) {
1074 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1075 return NULL;
1076 }
1077
1078 memset(&cfg, 0, sizeof(cfg));
1079 cfg.direction = dir;
1080 if (dir == DMA_MEM_TO_DEV) {
1081 cfg.dst_addr = port_addr;
1082 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1083 } else {
1084 cfg.src_addr = port_addr;
1085 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1086 }
1087
1088 ret = dmaengine_slave_config(chan, &cfg);
1089 if (ret) {
1090 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1091 dma_release_channel(chan);
1092 return NULL;
1093 }
1094
1095 return chan;
1096 }
1097
1098 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1099 {
1100 struct platform_device *pdev = p->pdev;
1101 struct device *dev = &pdev->dev;
1102 const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
1103 unsigned int dma_tx_id, dma_rx_id;
1104 const struct resource *res;
1105 struct spi_master *master;
1106 struct device *tx_dev, *rx_dev;
1107
1108 if (dev->of_node) {
1109 /* In the OF case we will get the slave IDs from the DT */
1110 dma_tx_id = 0;
1111 dma_rx_id = 0;
1112 } else if (info && info->dma_tx_id && info->dma_rx_id) {
1113 dma_tx_id = info->dma_tx_id;
1114 dma_rx_id = info->dma_rx_id;
1115 } else {
1116 /* The driver assumes no error */
1117 return 0;
1118 }
1119
1120 /* The DMA engine uses the second register set, if present */
1121 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1122 if (!res)
1123 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1124
1125 master = p->master;
1126 master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1127 dma_tx_id,
1128 res->start + TFDR);
1129 if (!master->dma_tx)
1130 return -ENODEV;
1131
1132 master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1133 dma_rx_id,
1134 res->start + RFDR);
1135 if (!master->dma_rx)
1136 goto free_tx_chan;
1137
1138 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1139 if (!p->tx_dma_page)
1140 goto free_rx_chan;
1141
1142 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1143 if (!p->rx_dma_page)
1144 goto free_tx_page;
1145
1146 tx_dev = master->dma_tx->device->dev;
1147 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1148 DMA_TO_DEVICE);
1149 if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1150 goto free_rx_page;
1151
1152 rx_dev = master->dma_rx->device->dev;
1153 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1154 DMA_FROM_DEVICE);
1155 if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1156 goto unmap_tx_page;
1157
1158 dev_info(dev, "DMA available");
1159 return 0;
1160
1161 unmap_tx_page:
1162 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1163 free_rx_page:
1164 free_page((unsigned long)p->rx_dma_page);
1165 free_tx_page:
1166 free_page((unsigned long)p->tx_dma_page);
1167 free_rx_chan:
1168 dma_release_channel(master->dma_rx);
1169 free_tx_chan:
1170 dma_release_channel(master->dma_tx);
1171 master->dma_tx = NULL;
1172 return -ENODEV;
1173 }
1174
1175 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1176 {
1177 struct spi_master *master = p->master;
1178 struct device *dev;
1179
1180 if (!master->dma_tx)
1181 return;
1182
1183 dev = &p->pdev->dev;
1184 dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1185 PAGE_SIZE, DMA_FROM_DEVICE);
1186 dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1187 PAGE_SIZE, DMA_TO_DEVICE);
1188 free_page((unsigned long)p->rx_dma_page);
1189 free_page((unsigned long)p->tx_dma_page);
1190 dma_release_channel(master->dma_rx);
1191 dma_release_channel(master->dma_tx);
1192 }
1193
1194 static int sh_msiof_spi_probe(struct platform_device *pdev)
1195 {
1196 struct resource *r;
1197 struct spi_master *master;
1198 const struct sh_msiof_chipdata *chipdata;
1199 const struct of_device_id *of_id;
1200 struct sh_msiof_spi_info *info;
1201 struct sh_msiof_spi_priv *p;
1202 int i;
1203 int ret;
1204
1205 of_id = of_match_device(sh_msiof_match, &pdev->dev);
1206 if (of_id) {
1207 chipdata = of_id->data;
1208 info = sh_msiof_spi_parse_dt(&pdev->dev);
1209 } else {
1210 chipdata = (const void *)pdev->id_entry->driver_data;
1211 info = dev_get_platdata(&pdev->dev);
1212 }
1213
1214 if (!info) {
1215 dev_err(&pdev->dev, "failed to obtain device info\n");
1216 return -ENXIO;
1217 }
1218
1219 if (info->mode == MSIOF_SPI_SLAVE)
1220 master = spi_alloc_slave(&pdev->dev,
1221 sizeof(struct sh_msiof_spi_priv));
1222 else
1223 master = spi_alloc_master(&pdev->dev,
1224 sizeof(struct sh_msiof_spi_priv));
1225 if (master == NULL)
1226 return -ENOMEM;
1227
1228 p = spi_master_get_devdata(master);
1229
1230 platform_set_drvdata(pdev, p);
1231 p->master = master;
1232 p->info = info;
1233
1234 init_completion(&p->done);
1235
1236 p->clk = devm_clk_get(&pdev->dev, NULL);
1237 if (IS_ERR(p->clk)) {
1238 dev_err(&pdev->dev, "cannot get clock\n");
1239 ret = PTR_ERR(p->clk);
1240 goto err1;
1241 }
1242
1243 i = platform_get_irq(pdev, 0);
1244 if (i < 0) {
1245 dev_err(&pdev->dev, "cannot get platform IRQ\n");
1246 ret = -ENOENT;
1247 goto err1;
1248 }
1249
1250 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1251 p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1252 if (IS_ERR(p->mapbase)) {
1253 ret = PTR_ERR(p->mapbase);
1254 goto err1;
1255 }
1256
1257 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1258 dev_name(&pdev->dev), p);
1259 if (ret) {
1260 dev_err(&pdev->dev, "unable to request irq\n");
1261 goto err1;
1262 }
1263
1264 p->pdev = pdev;
1265 pm_runtime_enable(&pdev->dev);
1266
1267 /* Platform data may override FIFO sizes */
1268 p->tx_fifo_size = chipdata->tx_fifo_size;
1269 p->rx_fifo_size = chipdata->rx_fifo_size;
1270 if (p->info->tx_fifo_override)
1271 p->tx_fifo_size = p->info->tx_fifo_override;
1272 if (p->info->rx_fifo_override)
1273 p->rx_fifo_size = p->info->rx_fifo_override;
1274
1275 /* init master code */
1276 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1277 master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1278 master->flags = chipdata->master_flags;
1279 master->bus_num = pdev->id;
1280 master->dev.of_node = pdev->dev.of_node;
1281 master->num_chipselect = p->info->num_chipselect;
1282 master->setup = sh_msiof_spi_setup;
1283 master->prepare_message = sh_msiof_prepare_message;
1284 master->slave_abort = sh_msiof_slave_abort;
1285 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
1286 master->auto_runtime_pm = true;
1287 master->transfer_one = sh_msiof_transfer_one;
1288
1289 ret = sh_msiof_request_dma(p);
1290 if (ret < 0)
1291 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1292
1293 ret = devm_spi_register_master(&pdev->dev, master);
1294 if (ret < 0) {
1295 dev_err(&pdev->dev, "spi_register_master error.\n");
1296 goto err2;
1297 }
1298
1299 return 0;
1300
1301 err2:
1302 sh_msiof_release_dma(p);
1303 pm_runtime_disable(&pdev->dev);
1304 err1:
1305 spi_master_put(master);
1306 return ret;
1307 }
1308
1309 static int sh_msiof_spi_remove(struct platform_device *pdev)
1310 {
1311 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1312
1313 sh_msiof_release_dma(p);
1314 pm_runtime_disable(&pdev->dev);
1315 return 0;
1316 }
1317
1318 static const struct platform_device_id spi_driver_ids[] = {
1319 { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
1320 {},
1321 };
1322 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1323
1324 static struct platform_driver sh_msiof_spi_drv = {
1325 .probe = sh_msiof_spi_probe,
1326 .remove = sh_msiof_spi_remove,
1327 .id_table = spi_driver_ids,
1328 .driver = {
1329 .name = "spi_sh_msiof",
1330 .of_match_table = of_match_ptr(sh_msiof_match),
1331 },
1332 };
1333 module_platform_driver(sh_msiof_spi_drv);
1334
1335 MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1336 MODULE_AUTHOR("Magnus Damm");
1337 MODULE_LICENSE("GPL v2");
1338 MODULE_ALIAS("platform:spi_sh_msiof");