]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/spi/spi-sh-msiof.c
Merge tag 'devprop-4.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[mirror_ubuntu-bionic-kernel.git] / drivers / spi / spi-sh-msiof.c
1 /*
2 * SuperH MSIOF SPI Master Interface
3 *
4 * Copyright (c) 2009 Magnus Damm
5 * Copyright (C) 2014 Renesas Electronics Corporation
6 * Copyright (C) 2014-2017 Glider bvba
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 */
13
14 #include <linux/bitmap.h>
15 #include <linux/clk.h>
16 #include <linux/completion.h>
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dmaengine.h>
20 #include <linux/err.h>
21 #include <linux/gpio.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/platform_device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/sh_dma.h>
31
32 #include <linux/spi/sh_msiof.h>
33 #include <linux/spi/spi.h>
34
35 #include <asm/unaligned.h>
36
37 struct sh_msiof_chipdata {
38 u16 tx_fifo_size;
39 u16 rx_fifo_size;
40 u16 master_flags;
41 u16 min_div;
42 };
43
44 struct sh_msiof_spi_priv {
45 struct spi_master *master;
46 void __iomem *mapbase;
47 struct clk *clk;
48 struct platform_device *pdev;
49 struct sh_msiof_spi_info *info;
50 struct completion done;
51 unsigned int tx_fifo_size;
52 unsigned int rx_fifo_size;
53 unsigned int min_div;
54 void *tx_dma_page;
55 void *rx_dma_page;
56 dma_addr_t tx_dma_addr;
57 dma_addr_t rx_dma_addr;
58 bool slave_aborted;
59 };
60
61 #define TMDR1 0x00 /* Transmit Mode Register 1 */
62 #define TMDR2 0x04 /* Transmit Mode Register 2 */
63 #define TMDR3 0x08 /* Transmit Mode Register 3 */
64 #define RMDR1 0x10 /* Receive Mode Register 1 */
65 #define RMDR2 0x14 /* Receive Mode Register 2 */
66 #define RMDR3 0x18 /* Receive Mode Register 3 */
67 #define TSCR 0x20 /* Transmit Clock Select Register */
68 #define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
69 #define CTR 0x28 /* Control Register */
70 #define FCTR 0x30 /* FIFO Control Register */
71 #define STR 0x40 /* Status Register */
72 #define IER 0x44 /* Interrupt Enable Register */
73 #define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
74 #define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
75 #define TFDR 0x50 /* Transmit FIFO Data Register */
76 #define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
77 #define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
78 #define RFDR 0x60 /* Receive FIFO Data Register */
79
80 /* TMDR1 and RMDR1 */
81 #define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */
82 #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
83 #define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */
84 #define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */
85 #define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
86 #define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
87 #define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
88 #define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
89 #define MDR1_FLD_MASK 0x0000000c /* Frame Sync Signal Interval (0-3) */
90 #define MDR1_FLD_SHIFT 2
91 #define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */
92 /* TMDR1 */
93 #define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */
94
95 /* TMDR2 and RMDR2 */
96 #define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
97 #define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
98 #define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */
99
100 /* TSCR and RSCR */
101 #define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */
102 #define SCR_BRPS(i) (((i) - 1) << 8)
103 #define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */
104 #define SCR_BRDV_DIV_2 0x0000
105 #define SCR_BRDV_DIV_4 0x0001
106 #define SCR_BRDV_DIV_8 0x0002
107 #define SCR_BRDV_DIV_16 0x0003
108 #define SCR_BRDV_DIV_32 0x0004
109 #define SCR_BRDV_DIV_1 0x0007
110
111 /* CTR */
112 #define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */
113 #define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */
114 #define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
115 #define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */
116 #define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */
117 #define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
118 #define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
119 #define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
120 #define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */
121 #define CTR_TXDIZ_LOW 0x00000000 /* 0 */
122 #define CTR_TXDIZ_HIGH 0x00400000 /* 1 */
123 #define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */
124 #define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */
125 #define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */
126 #define CTR_TXE 0x00000200 /* Transmit Enable */
127 #define CTR_RXE 0x00000100 /* Receive Enable */
128
129 /* FCTR */
130 #define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */
131 #define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */
132 #define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */
133 #define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */
134 #define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */
135 #define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */
136 #define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */
137 #define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */
138 #define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */
139 #define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */
140 #define FCTR_TFUA_SHIFT 20
141 #define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT)
142 #define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */
143 #define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */
144 #define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */
145 #define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */
146 #define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */
147 #define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */
148 #define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */
149 #define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */
150 #define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */
151 #define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
152 #define FCTR_RFUA_SHIFT 4
153 #define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT)
154
155 /* STR */
156 #define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */
157 #define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */
158 #define STR_TEOF 0x00800000 /* Frame Transmission End */
159 #define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */
160 #define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */
161 #define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */
162 #define STR_RFFUL 0x00002000 /* Receive FIFO Full */
163 #define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */
164 #define STR_REOF 0x00000080 /* Frame Reception End */
165 #define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */
166 #define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */
167 #define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */
168
169 /* IER */
170 #define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */
171 #define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */
172 #define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */
173 #define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */
174 #define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */
175 #define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */
176 #define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */
177 #define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */
178 #define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */
179 #define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */
180 #define IER_REOFE 0x00000080 /* Frame Reception End Enable */
181 #define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */
182 #define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */
183 #define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */
184
185
186 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
187 {
188 switch (reg_offs) {
189 case TSCR:
190 case RSCR:
191 return ioread16(p->mapbase + reg_offs);
192 default:
193 return ioread32(p->mapbase + reg_offs);
194 }
195 }
196
197 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
198 u32 value)
199 {
200 switch (reg_offs) {
201 case TSCR:
202 case RSCR:
203 iowrite16(value, p->mapbase + reg_offs);
204 break;
205 default:
206 iowrite32(value, p->mapbase + reg_offs);
207 break;
208 }
209 }
210
211 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
212 u32 clr, u32 set)
213 {
214 u32 mask = clr | set;
215 u32 data;
216 int k;
217
218 data = sh_msiof_read(p, CTR);
219 data &= ~clr;
220 data |= set;
221 sh_msiof_write(p, CTR, data);
222
223 for (k = 100; k > 0; k--) {
224 if ((sh_msiof_read(p, CTR) & mask) == set)
225 break;
226
227 udelay(10);
228 }
229
230 return k > 0 ? 0 : -ETIMEDOUT;
231 }
232
233 static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
234 {
235 struct sh_msiof_spi_priv *p = data;
236
237 /* just disable the interrupt and wake up */
238 sh_msiof_write(p, IER, 0);
239 complete(&p->done);
240
241 return IRQ_HANDLED;
242 }
243
244 static struct {
245 unsigned short div;
246 unsigned short brdv;
247 } const sh_msiof_spi_div_table[] = {
248 { 1, SCR_BRDV_DIV_1 },
249 { 2, SCR_BRDV_DIV_2 },
250 { 4, SCR_BRDV_DIV_4 },
251 { 8, SCR_BRDV_DIV_8 },
252 { 16, SCR_BRDV_DIV_16 },
253 { 32, SCR_BRDV_DIV_32 },
254 };
255
256 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
257 unsigned long parent_rate, u32 spi_hz)
258 {
259 unsigned long div = 1024;
260 u32 brps, scr;
261 size_t k;
262
263 if (!WARN_ON(!spi_hz || !parent_rate))
264 div = DIV_ROUND_UP(parent_rate, spi_hz);
265
266 div = max_t(unsigned long, div, p->min_div);
267
268 for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_div_table); k++) {
269 brps = DIV_ROUND_UP(div, sh_msiof_spi_div_table[k].div);
270 /* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
271 if (sh_msiof_spi_div_table[k].div == 1 && brps > 2)
272 continue;
273 if (brps <= 32) /* max of brdv is 32 */
274 break;
275 }
276
277 k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_div_table) - 1);
278
279 scr = sh_msiof_spi_div_table[k].brdv | SCR_BRPS(brps);
280 sh_msiof_write(p, TSCR, scr);
281 if (!(p->master->flags & SPI_MASTER_MUST_TX))
282 sh_msiof_write(p, RSCR, scr);
283 }
284
285 static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
286 {
287 /*
288 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
289 * b'000 : 0
290 * b'001 : 100
291 * b'010 : 200
292 * b'011 (SYNCDL only) : 300
293 * b'101 : 50
294 * b'110 : 150
295 */
296 if (dtdl_or_syncdl % 100)
297 return dtdl_or_syncdl / 100 + 5;
298 else
299 return dtdl_or_syncdl / 100;
300 }
301
302 static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
303 {
304 u32 val;
305
306 if (!p->info)
307 return 0;
308
309 /* check if DTDL and SYNCDL is allowed value */
310 if (p->info->dtdl > 200 || p->info->syncdl > 300) {
311 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
312 return 0;
313 }
314
315 /* check if the sum of DTDL and SYNCDL becomes an integer value */
316 if ((p->info->dtdl + p->info->syncdl) % 100) {
317 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
318 return 0;
319 }
320
321 val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
322 val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
323
324 return val;
325 }
326
327 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
328 u32 cpol, u32 cpha,
329 u32 tx_hi_z, u32 lsb_first, u32 cs_high)
330 {
331 u32 tmp;
332 int edge;
333
334 /*
335 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
336 * 0 0 10 10 1 1
337 * 0 1 10 10 0 0
338 * 1 0 11 11 0 0
339 * 1 1 11 11 1 1
340 */
341 tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
342 tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
343 tmp |= lsb_first << MDR1_BITLSB_SHIFT;
344 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
345 if (spi_controller_is_slave(p->master))
346 sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON);
347 else
348 sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON);
349 if (p->master->flags & SPI_MASTER_MUST_TX) {
350 /* These bits are reserved if RX needs TX */
351 tmp &= ~0x0000ffff;
352 }
353 sh_msiof_write(p, RMDR1, tmp);
354
355 tmp = 0;
356 tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
357 tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
358
359 edge = cpol ^ !cpha;
360
361 tmp |= edge << CTR_TEDG_SHIFT;
362 tmp |= edge << CTR_REDG_SHIFT;
363 tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
364 sh_msiof_write(p, CTR, tmp);
365 }
366
367 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
368 const void *tx_buf, void *rx_buf,
369 u32 bits, u32 words)
370 {
371 u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
372
373 if (tx_buf || (p->master->flags & SPI_MASTER_MUST_TX))
374 sh_msiof_write(p, TMDR2, dr2);
375 else
376 sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
377
378 if (rx_buf)
379 sh_msiof_write(p, RMDR2, dr2);
380 }
381
382 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
383 {
384 sh_msiof_write(p, STR, sh_msiof_read(p, STR));
385 }
386
387 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
388 const void *tx_buf, int words, int fs)
389 {
390 const u8 *buf_8 = tx_buf;
391 int k;
392
393 for (k = 0; k < words; k++)
394 sh_msiof_write(p, TFDR, buf_8[k] << fs);
395 }
396
397 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
398 const void *tx_buf, int words, int fs)
399 {
400 const u16 *buf_16 = tx_buf;
401 int k;
402
403 for (k = 0; k < words; k++)
404 sh_msiof_write(p, TFDR, buf_16[k] << fs);
405 }
406
407 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
408 const void *tx_buf, int words, int fs)
409 {
410 const u16 *buf_16 = tx_buf;
411 int k;
412
413 for (k = 0; k < words; k++)
414 sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
415 }
416
417 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
418 const void *tx_buf, int words, int fs)
419 {
420 const u32 *buf_32 = tx_buf;
421 int k;
422
423 for (k = 0; k < words; k++)
424 sh_msiof_write(p, TFDR, buf_32[k] << fs);
425 }
426
427 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
428 const void *tx_buf, int words, int fs)
429 {
430 const u32 *buf_32 = tx_buf;
431 int k;
432
433 for (k = 0; k < words; k++)
434 sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
435 }
436
437 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
438 const void *tx_buf, int words, int fs)
439 {
440 const u32 *buf_32 = tx_buf;
441 int k;
442
443 for (k = 0; k < words; k++)
444 sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
445 }
446
447 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
448 const void *tx_buf, int words, int fs)
449 {
450 const u32 *buf_32 = tx_buf;
451 int k;
452
453 for (k = 0; k < words; k++)
454 sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
455 }
456
457 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
458 void *rx_buf, int words, int fs)
459 {
460 u8 *buf_8 = rx_buf;
461 int k;
462
463 for (k = 0; k < words; k++)
464 buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
465 }
466
467 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
468 void *rx_buf, int words, int fs)
469 {
470 u16 *buf_16 = rx_buf;
471 int k;
472
473 for (k = 0; k < words; k++)
474 buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
475 }
476
477 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
478 void *rx_buf, int words, int fs)
479 {
480 u16 *buf_16 = rx_buf;
481 int k;
482
483 for (k = 0; k < words; k++)
484 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
485 }
486
487 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
488 void *rx_buf, int words, int fs)
489 {
490 u32 *buf_32 = rx_buf;
491 int k;
492
493 for (k = 0; k < words; k++)
494 buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
495 }
496
497 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
498 void *rx_buf, int words, int fs)
499 {
500 u32 *buf_32 = rx_buf;
501 int k;
502
503 for (k = 0; k < words; k++)
504 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
505 }
506
507 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
508 void *rx_buf, int words, int fs)
509 {
510 u32 *buf_32 = rx_buf;
511 int k;
512
513 for (k = 0; k < words; k++)
514 buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
515 }
516
517 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
518 void *rx_buf, int words, int fs)
519 {
520 u32 *buf_32 = rx_buf;
521 int k;
522
523 for (k = 0; k < words; k++)
524 put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
525 }
526
527 static int sh_msiof_spi_setup(struct spi_device *spi)
528 {
529 struct device_node *np = spi->master->dev.of_node;
530 struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
531
532 pm_runtime_get_sync(&p->pdev->dev);
533
534 if (!np) {
535 /*
536 * Use spi->controller_data for CS (same strategy as spi_gpio),
537 * if any. otherwise let HW control CS
538 */
539 spi->cs_gpio = (uintptr_t)spi->controller_data;
540 }
541
542 /* Configure pins before deasserting CS */
543 sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
544 !!(spi->mode & SPI_CPHA),
545 !!(spi->mode & SPI_3WIRE),
546 !!(spi->mode & SPI_LSB_FIRST),
547 !!(spi->mode & SPI_CS_HIGH));
548
549 if (spi->cs_gpio >= 0)
550 gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
551
552
553 pm_runtime_put(&p->pdev->dev);
554
555 return 0;
556 }
557
558 static int sh_msiof_prepare_message(struct spi_master *master,
559 struct spi_message *msg)
560 {
561 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
562 const struct spi_device *spi = msg->spi;
563
564 /* Configure pins before asserting CS */
565 sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
566 !!(spi->mode & SPI_CPHA),
567 !!(spi->mode & SPI_3WIRE),
568 !!(spi->mode & SPI_LSB_FIRST),
569 !!(spi->mode & SPI_CS_HIGH));
570 return 0;
571 }
572
573 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
574 {
575 bool slave = spi_controller_is_slave(p->master);
576 int ret = 0;
577
578 /* setup clock and rx/tx signals */
579 if (!slave)
580 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
581 if (rx_buf && !ret)
582 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
583 if (!ret)
584 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
585
586 /* start by setting frame bit */
587 if (!ret && !slave)
588 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
589
590 return ret;
591 }
592
593 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
594 {
595 bool slave = spi_controller_is_slave(p->master);
596 int ret = 0;
597
598 /* shut down frame, rx/tx and clock signals */
599 if (!slave)
600 ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
601 if (!ret)
602 ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
603 if (rx_buf && !ret)
604 ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
605 if (!ret && !slave)
606 ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
607
608 return ret;
609 }
610
611 static int sh_msiof_slave_abort(struct spi_master *master)
612 {
613 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
614
615 p->slave_aborted = true;
616 complete(&p->done);
617 return 0;
618 }
619
620 static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p)
621 {
622 if (spi_controller_is_slave(p->master)) {
623 if (wait_for_completion_interruptible(&p->done) ||
624 p->slave_aborted) {
625 dev_dbg(&p->pdev->dev, "interrupted\n");
626 return -EINTR;
627 }
628 } else {
629 if (!wait_for_completion_timeout(&p->done, HZ)) {
630 dev_err(&p->pdev->dev, "timeout\n");
631 return -ETIMEDOUT;
632 }
633 }
634
635 return 0;
636 }
637
638 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
639 void (*tx_fifo)(struct sh_msiof_spi_priv *,
640 const void *, int, int),
641 void (*rx_fifo)(struct sh_msiof_spi_priv *,
642 void *, int, int),
643 const void *tx_buf, void *rx_buf,
644 int words, int bits)
645 {
646 int fifo_shift;
647 int ret;
648
649 /* limit maximum word transfer to rx/tx fifo size */
650 if (tx_buf)
651 words = min_t(int, words, p->tx_fifo_size);
652 if (rx_buf)
653 words = min_t(int, words, p->rx_fifo_size);
654
655 /* the fifo contents need shifting */
656 fifo_shift = 32 - bits;
657
658 /* default FIFO watermarks for PIO */
659 sh_msiof_write(p, FCTR, 0);
660
661 /* setup msiof transfer mode registers */
662 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
663 sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
664
665 /* write tx fifo */
666 if (tx_buf)
667 tx_fifo(p, tx_buf, words, fifo_shift);
668
669 reinit_completion(&p->done);
670 p->slave_aborted = false;
671
672 ret = sh_msiof_spi_start(p, rx_buf);
673 if (ret) {
674 dev_err(&p->pdev->dev, "failed to start hardware\n");
675 goto stop_ier;
676 }
677
678 /* wait for tx fifo to be emptied / rx fifo to be filled */
679 ret = sh_msiof_wait_for_completion(p);
680 if (ret)
681 goto stop_reset;
682
683 /* read rx fifo */
684 if (rx_buf)
685 rx_fifo(p, rx_buf, words, fifo_shift);
686
687 /* clear status bits */
688 sh_msiof_reset_str(p);
689
690 ret = sh_msiof_spi_stop(p, rx_buf);
691 if (ret) {
692 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
693 return ret;
694 }
695
696 return words;
697
698 stop_reset:
699 sh_msiof_reset_str(p);
700 sh_msiof_spi_stop(p, rx_buf);
701 stop_ier:
702 sh_msiof_write(p, IER, 0);
703 return ret;
704 }
705
706 static void sh_msiof_dma_complete(void *arg)
707 {
708 struct sh_msiof_spi_priv *p = arg;
709
710 sh_msiof_write(p, IER, 0);
711 complete(&p->done);
712 }
713
714 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
715 void *rx, unsigned int len)
716 {
717 u32 ier_bits = 0;
718 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
719 dma_cookie_t cookie;
720 int ret;
721
722 /* First prepare and submit the DMA request(s), as this may fail */
723 if (rx) {
724 ier_bits |= IER_RDREQE | IER_RDMAE;
725 desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
726 p->rx_dma_addr, len, DMA_FROM_DEVICE,
727 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
728 if (!desc_rx)
729 return -EAGAIN;
730
731 desc_rx->callback = sh_msiof_dma_complete;
732 desc_rx->callback_param = p;
733 cookie = dmaengine_submit(desc_rx);
734 if (dma_submit_error(cookie))
735 return cookie;
736 }
737
738 if (tx) {
739 ier_bits |= IER_TDREQE | IER_TDMAE;
740 dma_sync_single_for_device(p->master->dma_tx->device->dev,
741 p->tx_dma_addr, len, DMA_TO_DEVICE);
742 desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
743 p->tx_dma_addr, len, DMA_TO_DEVICE,
744 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
745 if (!desc_tx) {
746 ret = -EAGAIN;
747 goto no_dma_tx;
748 }
749
750 if (rx) {
751 /* No callback */
752 desc_tx->callback = NULL;
753 } else {
754 desc_tx->callback = sh_msiof_dma_complete;
755 desc_tx->callback_param = p;
756 }
757 cookie = dmaengine_submit(desc_tx);
758 if (dma_submit_error(cookie)) {
759 ret = cookie;
760 goto no_dma_tx;
761 }
762 }
763
764 /* 1 stage FIFO watermarks for DMA */
765 sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
766
767 /* setup msiof transfer mode registers (32-bit words) */
768 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
769
770 sh_msiof_write(p, IER, ier_bits);
771
772 reinit_completion(&p->done);
773 p->slave_aborted = false;
774
775 /* Now start DMA */
776 if (rx)
777 dma_async_issue_pending(p->master->dma_rx);
778 if (tx)
779 dma_async_issue_pending(p->master->dma_tx);
780
781 ret = sh_msiof_spi_start(p, rx);
782 if (ret) {
783 dev_err(&p->pdev->dev, "failed to start hardware\n");
784 goto stop_dma;
785 }
786
787 /* wait for tx fifo to be emptied / rx fifo to be filled */
788 ret = sh_msiof_wait_for_completion(p);
789 if (ret)
790 goto stop_reset;
791
792 /* clear status bits */
793 sh_msiof_reset_str(p);
794
795 ret = sh_msiof_spi_stop(p, rx);
796 if (ret) {
797 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
798 return ret;
799 }
800
801 if (rx)
802 dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
803 p->rx_dma_addr, len,
804 DMA_FROM_DEVICE);
805
806 return 0;
807
808 stop_reset:
809 sh_msiof_reset_str(p);
810 sh_msiof_spi_stop(p, rx);
811 stop_dma:
812 if (tx)
813 dmaengine_terminate_all(p->master->dma_tx);
814 no_dma_tx:
815 if (rx)
816 dmaengine_terminate_all(p->master->dma_rx);
817 sh_msiof_write(p, IER, 0);
818 return ret;
819 }
820
821 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
822 {
823 /* src or dst can be unaligned, but not both */
824 if ((unsigned long)src & 3) {
825 while (words--) {
826 *dst++ = swab32(get_unaligned(src));
827 src++;
828 }
829 } else if ((unsigned long)dst & 3) {
830 while (words--) {
831 put_unaligned(swab32(*src++), dst);
832 dst++;
833 }
834 } else {
835 while (words--)
836 *dst++ = swab32(*src++);
837 }
838 }
839
840 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
841 {
842 /* src or dst can be unaligned, but not both */
843 if ((unsigned long)src & 3) {
844 while (words--) {
845 *dst++ = swahw32(get_unaligned(src));
846 src++;
847 }
848 } else if ((unsigned long)dst & 3) {
849 while (words--) {
850 put_unaligned(swahw32(*src++), dst);
851 dst++;
852 }
853 } else {
854 while (words--)
855 *dst++ = swahw32(*src++);
856 }
857 }
858
859 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
860 {
861 memcpy(dst, src, words * 4);
862 }
863
864 static int sh_msiof_transfer_one(struct spi_master *master,
865 struct spi_device *spi,
866 struct spi_transfer *t)
867 {
868 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
869 void (*copy32)(u32 *, const u32 *, unsigned int);
870 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
871 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
872 const void *tx_buf = t->tx_buf;
873 void *rx_buf = t->rx_buf;
874 unsigned int len = t->len;
875 unsigned int bits = t->bits_per_word;
876 unsigned int bytes_per_word;
877 unsigned int words;
878 int n;
879 bool swab;
880 int ret;
881
882 /* setup clocks (clock already enabled in chipselect()) */
883 if (!spi_controller_is_slave(p->master))
884 sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
885
886 while (master->dma_tx && len > 15) {
887 /*
888 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
889 * words, with byte resp. word swapping.
890 */
891 unsigned int l = 0;
892
893 if (tx_buf)
894 l = min(len, p->tx_fifo_size * 4);
895 if (rx_buf)
896 l = min(len, p->rx_fifo_size * 4);
897
898 if (bits <= 8) {
899 if (l & 3)
900 break;
901 copy32 = copy_bswap32;
902 } else if (bits <= 16) {
903 if (l & 3)
904 break;
905 copy32 = copy_wswap32;
906 } else {
907 copy32 = copy_plain32;
908 }
909
910 if (tx_buf)
911 copy32(p->tx_dma_page, tx_buf, l / 4);
912
913 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
914 if (ret == -EAGAIN) {
915 pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
916 dev_driver_string(&p->pdev->dev),
917 dev_name(&p->pdev->dev));
918 break;
919 }
920 if (ret)
921 return ret;
922
923 if (rx_buf) {
924 copy32(rx_buf, p->rx_dma_page, l / 4);
925 rx_buf += l;
926 }
927 if (tx_buf)
928 tx_buf += l;
929
930 len -= l;
931 if (!len)
932 return 0;
933 }
934
935 if (bits <= 8 && len > 15 && !(len & 3)) {
936 bits = 32;
937 swab = true;
938 } else {
939 swab = false;
940 }
941
942 /* setup bytes per word and fifo read/write functions */
943 if (bits <= 8) {
944 bytes_per_word = 1;
945 tx_fifo = sh_msiof_spi_write_fifo_8;
946 rx_fifo = sh_msiof_spi_read_fifo_8;
947 } else if (bits <= 16) {
948 bytes_per_word = 2;
949 if ((unsigned long)tx_buf & 0x01)
950 tx_fifo = sh_msiof_spi_write_fifo_16u;
951 else
952 tx_fifo = sh_msiof_spi_write_fifo_16;
953
954 if ((unsigned long)rx_buf & 0x01)
955 rx_fifo = sh_msiof_spi_read_fifo_16u;
956 else
957 rx_fifo = sh_msiof_spi_read_fifo_16;
958 } else if (swab) {
959 bytes_per_word = 4;
960 if ((unsigned long)tx_buf & 0x03)
961 tx_fifo = sh_msiof_spi_write_fifo_s32u;
962 else
963 tx_fifo = sh_msiof_spi_write_fifo_s32;
964
965 if ((unsigned long)rx_buf & 0x03)
966 rx_fifo = sh_msiof_spi_read_fifo_s32u;
967 else
968 rx_fifo = sh_msiof_spi_read_fifo_s32;
969 } else {
970 bytes_per_word = 4;
971 if ((unsigned long)tx_buf & 0x03)
972 tx_fifo = sh_msiof_spi_write_fifo_32u;
973 else
974 tx_fifo = sh_msiof_spi_write_fifo_32;
975
976 if ((unsigned long)rx_buf & 0x03)
977 rx_fifo = sh_msiof_spi_read_fifo_32u;
978 else
979 rx_fifo = sh_msiof_spi_read_fifo_32;
980 }
981
982 /* transfer in fifo sized chunks */
983 words = len / bytes_per_word;
984
985 while (words > 0) {
986 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
987 words, bits);
988 if (n < 0)
989 return n;
990
991 if (tx_buf)
992 tx_buf += n * bytes_per_word;
993 if (rx_buf)
994 rx_buf += n * bytes_per_word;
995 words -= n;
996 }
997
998 return 0;
999 }
1000
1001 static const struct sh_msiof_chipdata sh_data = {
1002 .tx_fifo_size = 64,
1003 .rx_fifo_size = 64,
1004 .master_flags = 0,
1005 .min_div = 1,
1006 };
1007
1008 static const struct sh_msiof_chipdata rcar_gen2_data = {
1009 .tx_fifo_size = 64,
1010 .rx_fifo_size = 64,
1011 .master_flags = SPI_MASTER_MUST_TX,
1012 .min_div = 1,
1013 };
1014
1015 static const struct sh_msiof_chipdata rcar_gen3_data = {
1016 .tx_fifo_size = 64,
1017 .rx_fifo_size = 64,
1018 .master_flags = SPI_MASTER_MUST_TX,
1019 .min_div = 2,
1020 };
1021
1022 static const struct of_device_id sh_msiof_match[] = {
1023 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1024 { .compatible = "renesas,msiof-r8a7743", .data = &rcar_gen2_data },
1025 { .compatible = "renesas,msiof-r8a7745", .data = &rcar_gen2_data },
1026 { .compatible = "renesas,msiof-r8a7790", .data = &rcar_gen2_data },
1027 { .compatible = "renesas,msiof-r8a7791", .data = &rcar_gen2_data },
1028 { .compatible = "renesas,msiof-r8a7792", .data = &rcar_gen2_data },
1029 { .compatible = "renesas,msiof-r8a7793", .data = &rcar_gen2_data },
1030 { .compatible = "renesas,msiof-r8a7794", .data = &rcar_gen2_data },
1031 { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1032 { .compatible = "renesas,msiof-r8a7796", .data = &rcar_gen3_data },
1033 { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
1034 { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */
1035 {},
1036 };
1037 MODULE_DEVICE_TABLE(of, sh_msiof_match);
1038
1039 #ifdef CONFIG_OF
1040 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1041 {
1042 struct sh_msiof_spi_info *info;
1043 struct device_node *np = dev->of_node;
1044 u32 num_cs = 1;
1045
1046 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1047 if (!info)
1048 return NULL;
1049
1050 info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
1051 : MSIOF_SPI_MASTER;
1052
1053 /* Parse the MSIOF properties */
1054 if (info->mode == MSIOF_SPI_MASTER)
1055 of_property_read_u32(np, "num-cs", &num_cs);
1056 of_property_read_u32(np, "renesas,tx-fifo-size",
1057 &info->tx_fifo_override);
1058 of_property_read_u32(np, "renesas,rx-fifo-size",
1059 &info->rx_fifo_override);
1060 of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1061 of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1062
1063 info->num_chipselect = num_cs;
1064
1065 return info;
1066 }
1067 #else
1068 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1069 {
1070 return NULL;
1071 }
1072 #endif
1073
1074 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1075 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1076 {
1077 dma_cap_mask_t mask;
1078 struct dma_chan *chan;
1079 struct dma_slave_config cfg;
1080 int ret;
1081
1082 dma_cap_zero(mask);
1083 dma_cap_set(DMA_SLAVE, mask);
1084
1085 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1086 (void *)(unsigned long)id, dev,
1087 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1088 if (!chan) {
1089 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1090 return NULL;
1091 }
1092
1093 memset(&cfg, 0, sizeof(cfg));
1094 cfg.direction = dir;
1095 if (dir == DMA_MEM_TO_DEV) {
1096 cfg.dst_addr = port_addr;
1097 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1098 } else {
1099 cfg.src_addr = port_addr;
1100 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1101 }
1102
1103 ret = dmaengine_slave_config(chan, &cfg);
1104 if (ret) {
1105 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1106 dma_release_channel(chan);
1107 return NULL;
1108 }
1109
1110 return chan;
1111 }
1112
1113 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1114 {
1115 struct platform_device *pdev = p->pdev;
1116 struct device *dev = &pdev->dev;
1117 const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
1118 unsigned int dma_tx_id, dma_rx_id;
1119 const struct resource *res;
1120 struct spi_master *master;
1121 struct device *tx_dev, *rx_dev;
1122
1123 if (dev->of_node) {
1124 /* In the OF case we will get the slave IDs from the DT */
1125 dma_tx_id = 0;
1126 dma_rx_id = 0;
1127 } else if (info && info->dma_tx_id && info->dma_rx_id) {
1128 dma_tx_id = info->dma_tx_id;
1129 dma_rx_id = info->dma_rx_id;
1130 } else {
1131 /* The driver assumes no error */
1132 return 0;
1133 }
1134
1135 /* The DMA engine uses the second register set, if present */
1136 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1137 if (!res)
1138 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1139
1140 master = p->master;
1141 master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1142 dma_tx_id,
1143 res->start + TFDR);
1144 if (!master->dma_tx)
1145 return -ENODEV;
1146
1147 master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1148 dma_rx_id,
1149 res->start + RFDR);
1150 if (!master->dma_rx)
1151 goto free_tx_chan;
1152
1153 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1154 if (!p->tx_dma_page)
1155 goto free_rx_chan;
1156
1157 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1158 if (!p->rx_dma_page)
1159 goto free_tx_page;
1160
1161 tx_dev = master->dma_tx->device->dev;
1162 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1163 DMA_TO_DEVICE);
1164 if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1165 goto free_rx_page;
1166
1167 rx_dev = master->dma_rx->device->dev;
1168 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1169 DMA_FROM_DEVICE);
1170 if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1171 goto unmap_tx_page;
1172
1173 dev_info(dev, "DMA available");
1174 return 0;
1175
1176 unmap_tx_page:
1177 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1178 free_rx_page:
1179 free_page((unsigned long)p->rx_dma_page);
1180 free_tx_page:
1181 free_page((unsigned long)p->tx_dma_page);
1182 free_rx_chan:
1183 dma_release_channel(master->dma_rx);
1184 free_tx_chan:
1185 dma_release_channel(master->dma_tx);
1186 master->dma_tx = NULL;
1187 return -ENODEV;
1188 }
1189
1190 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1191 {
1192 struct spi_master *master = p->master;
1193
1194 if (!master->dma_tx)
1195 return;
1196
1197 dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1198 PAGE_SIZE, DMA_FROM_DEVICE);
1199 dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1200 PAGE_SIZE, DMA_TO_DEVICE);
1201 free_page((unsigned long)p->rx_dma_page);
1202 free_page((unsigned long)p->tx_dma_page);
1203 dma_release_channel(master->dma_rx);
1204 dma_release_channel(master->dma_tx);
1205 }
1206
1207 static int sh_msiof_spi_probe(struct platform_device *pdev)
1208 {
1209 struct resource *r;
1210 struct spi_master *master;
1211 const struct sh_msiof_chipdata *chipdata;
1212 struct sh_msiof_spi_info *info;
1213 struct sh_msiof_spi_priv *p;
1214 int i;
1215 int ret;
1216
1217 chipdata = of_device_get_match_data(&pdev->dev);
1218 if (chipdata) {
1219 info = sh_msiof_spi_parse_dt(&pdev->dev);
1220 } else {
1221 chipdata = (const void *)pdev->id_entry->driver_data;
1222 info = dev_get_platdata(&pdev->dev);
1223 }
1224
1225 if (!info) {
1226 dev_err(&pdev->dev, "failed to obtain device info\n");
1227 return -ENXIO;
1228 }
1229
1230 if (info->mode == MSIOF_SPI_SLAVE)
1231 master = spi_alloc_slave(&pdev->dev,
1232 sizeof(struct sh_msiof_spi_priv));
1233 else
1234 master = spi_alloc_master(&pdev->dev,
1235 sizeof(struct sh_msiof_spi_priv));
1236 if (master == NULL)
1237 return -ENOMEM;
1238
1239 p = spi_master_get_devdata(master);
1240
1241 platform_set_drvdata(pdev, p);
1242 p->master = master;
1243 p->info = info;
1244 p->min_div = chipdata->min_div;
1245
1246 init_completion(&p->done);
1247
1248 p->clk = devm_clk_get(&pdev->dev, NULL);
1249 if (IS_ERR(p->clk)) {
1250 dev_err(&pdev->dev, "cannot get clock\n");
1251 ret = PTR_ERR(p->clk);
1252 goto err1;
1253 }
1254
1255 i = platform_get_irq(pdev, 0);
1256 if (i < 0) {
1257 dev_err(&pdev->dev, "cannot get platform IRQ\n");
1258 ret = -ENOENT;
1259 goto err1;
1260 }
1261
1262 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1263 p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1264 if (IS_ERR(p->mapbase)) {
1265 ret = PTR_ERR(p->mapbase);
1266 goto err1;
1267 }
1268
1269 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1270 dev_name(&pdev->dev), p);
1271 if (ret) {
1272 dev_err(&pdev->dev, "unable to request irq\n");
1273 goto err1;
1274 }
1275
1276 p->pdev = pdev;
1277 pm_runtime_enable(&pdev->dev);
1278
1279 /* Platform data may override FIFO sizes */
1280 p->tx_fifo_size = chipdata->tx_fifo_size;
1281 p->rx_fifo_size = chipdata->rx_fifo_size;
1282 if (p->info->tx_fifo_override)
1283 p->tx_fifo_size = p->info->tx_fifo_override;
1284 if (p->info->rx_fifo_override)
1285 p->rx_fifo_size = p->info->rx_fifo_override;
1286
1287 /* init master code */
1288 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1289 master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1290 master->flags = chipdata->master_flags;
1291 master->bus_num = pdev->id;
1292 master->dev.of_node = pdev->dev.of_node;
1293 master->num_chipselect = p->info->num_chipselect;
1294 master->setup = sh_msiof_spi_setup;
1295 master->prepare_message = sh_msiof_prepare_message;
1296 master->slave_abort = sh_msiof_slave_abort;
1297 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
1298 master->auto_runtime_pm = true;
1299 master->transfer_one = sh_msiof_transfer_one;
1300
1301 ret = sh_msiof_request_dma(p);
1302 if (ret < 0)
1303 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1304
1305 ret = devm_spi_register_master(&pdev->dev, master);
1306 if (ret < 0) {
1307 dev_err(&pdev->dev, "spi_register_master error.\n");
1308 goto err2;
1309 }
1310
1311 return 0;
1312
1313 err2:
1314 sh_msiof_release_dma(p);
1315 pm_runtime_disable(&pdev->dev);
1316 err1:
1317 spi_master_put(master);
1318 return ret;
1319 }
1320
1321 static int sh_msiof_spi_remove(struct platform_device *pdev)
1322 {
1323 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1324
1325 sh_msiof_release_dma(p);
1326 pm_runtime_disable(&pdev->dev);
1327 return 0;
1328 }
1329
1330 static const struct platform_device_id spi_driver_ids[] = {
1331 { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
1332 {},
1333 };
1334 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1335
1336 static struct platform_driver sh_msiof_spi_drv = {
1337 .probe = sh_msiof_spi_probe,
1338 .remove = sh_msiof_spi_remove,
1339 .id_table = spi_driver_ids,
1340 .driver = {
1341 .name = "spi_sh_msiof",
1342 .of_match_table = of_match_ptr(sh_msiof_match),
1343 },
1344 };
1345 module_platform_driver(sh_msiof_spi_drv);
1346
1347 MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1348 MODULE_AUTHOR("Magnus Damm");
1349 MODULE_LICENSE("GPL v2");
1350 MODULE_ALIAS("platform:spi_sh_msiof");