]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/spi/spi-sun6i.c
Merge branches 'for-4.10/upstream-fixes', 'for-4.11/intel-ish', 'for-4.11/mayflash...
[mirror_ubuntu-artful-kernel.git] / drivers / spi / spi-sun6i.c
1 /*
2 * Copyright (C) 2012 - 2014 Allwinner Tech
3 * Pan Nan <pannan@allwinnertech.com>
4 *
5 * Copyright (C) 2014 Maxime Ripard
6 * Maxime Ripard <maxime.ripard@free-electrons.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 */
13
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/reset.h>
24
25 #include <linux/spi/spi.h>
26
27 #define SUN6I_FIFO_DEPTH 128
28 #define SUN8I_FIFO_DEPTH 64
29
30 #define SUN6I_GBL_CTL_REG 0x04
31 #define SUN6I_GBL_CTL_BUS_ENABLE BIT(0)
32 #define SUN6I_GBL_CTL_MASTER BIT(1)
33 #define SUN6I_GBL_CTL_TP BIT(7)
34 #define SUN6I_GBL_CTL_RST BIT(31)
35
36 #define SUN6I_TFR_CTL_REG 0x08
37 #define SUN6I_TFR_CTL_CPHA BIT(0)
38 #define SUN6I_TFR_CTL_CPOL BIT(1)
39 #define SUN6I_TFR_CTL_SPOL BIT(2)
40 #define SUN6I_TFR_CTL_CS_MASK 0x30
41 #define SUN6I_TFR_CTL_CS(cs) (((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
42 #define SUN6I_TFR_CTL_CS_MANUAL BIT(6)
43 #define SUN6I_TFR_CTL_CS_LEVEL BIT(7)
44 #define SUN6I_TFR_CTL_DHB BIT(8)
45 #define SUN6I_TFR_CTL_FBS BIT(12)
46 #define SUN6I_TFR_CTL_XCH BIT(31)
47
48 #define SUN6I_INT_CTL_REG 0x10
49 #define SUN6I_INT_CTL_RF_OVF BIT(8)
50 #define SUN6I_INT_CTL_TC BIT(12)
51
52 #define SUN6I_INT_STA_REG 0x14
53
54 #define SUN6I_FIFO_CTL_REG 0x18
55 #define SUN6I_FIFO_CTL_RF_RST BIT(15)
56 #define SUN6I_FIFO_CTL_TF_RST BIT(31)
57
58 #define SUN6I_FIFO_STA_REG 0x1c
59 #define SUN6I_FIFO_STA_RF_CNT_MASK 0x7f
60 #define SUN6I_FIFO_STA_RF_CNT_BITS 0
61 #define SUN6I_FIFO_STA_TF_CNT_MASK 0x7f
62 #define SUN6I_FIFO_STA_TF_CNT_BITS 16
63
64 #define SUN6I_CLK_CTL_REG 0x24
65 #define SUN6I_CLK_CTL_CDR2_MASK 0xff
66 #define SUN6I_CLK_CTL_CDR2(div) (((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
67 #define SUN6I_CLK_CTL_CDR1_MASK 0xf
68 #define SUN6I_CLK_CTL_CDR1(div) (((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
69 #define SUN6I_CLK_CTL_DRS BIT(12)
70
71 #define SUN6I_BURST_CNT_REG 0x30
72 #define SUN6I_BURST_CNT(cnt) ((cnt) & 0xffffff)
73
74 #define SUN6I_XMIT_CNT_REG 0x34
75 #define SUN6I_XMIT_CNT(cnt) ((cnt) & 0xffffff)
76
77 #define SUN6I_BURST_CTL_CNT_REG 0x38
78 #define SUN6I_BURST_CTL_CNT_STC(cnt) ((cnt) & 0xffffff)
79
80 #define SUN6I_TXDATA_REG 0x200
81 #define SUN6I_RXDATA_REG 0x300
82
83 struct sun6i_spi {
84 struct spi_master *master;
85 void __iomem *base_addr;
86 struct clk *hclk;
87 struct clk *mclk;
88 struct reset_control *rstc;
89
90 struct completion done;
91
92 const u8 *tx_buf;
93 u8 *rx_buf;
94 int len;
95 unsigned long fifo_depth;
96 };
97
98 static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
99 {
100 return readl(sspi->base_addr + reg);
101 }
102
103 static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
104 {
105 writel(value, sspi->base_addr + reg);
106 }
107
108 static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi, int len)
109 {
110 u32 reg, cnt;
111 u8 byte;
112
113 /* See how much data is available */
114 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
115 reg &= SUN6I_FIFO_STA_RF_CNT_MASK;
116 cnt = reg >> SUN6I_FIFO_STA_RF_CNT_BITS;
117
118 if (len > cnt)
119 len = cnt;
120
121 while (len--) {
122 byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
123 if (sspi->rx_buf)
124 *sspi->rx_buf++ = byte;
125 }
126 }
127
128 static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi, int len)
129 {
130 u8 byte;
131
132 if (len > sspi->len)
133 len = sspi->len;
134
135 while (len--) {
136 byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
137 writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
138 sspi->len--;
139 }
140 }
141
142 static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
143 {
144 struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
145 u32 reg;
146
147 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
148 reg &= ~SUN6I_TFR_CTL_CS_MASK;
149 reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
150
151 if (enable)
152 reg |= SUN6I_TFR_CTL_CS_LEVEL;
153 else
154 reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
155
156 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
157 }
158
159 static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
160 {
161 struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
162
163 return sspi->fifo_depth - 1;
164 }
165
166 static int sun6i_spi_transfer_one(struct spi_master *master,
167 struct spi_device *spi,
168 struct spi_transfer *tfr)
169 {
170 struct sun6i_spi *sspi = spi_master_get_devdata(master);
171 unsigned int mclk_rate, div, timeout;
172 unsigned int start, end, tx_time;
173 unsigned int tx_len = 0;
174 int ret = 0;
175 u32 reg;
176
177 /* We don't support transfer larger than the FIFO */
178 if (tfr->len > sspi->fifo_depth)
179 return -EINVAL;
180
181 reinit_completion(&sspi->done);
182 sspi->tx_buf = tfr->tx_buf;
183 sspi->rx_buf = tfr->rx_buf;
184 sspi->len = tfr->len;
185
186 /* Clear pending interrupts */
187 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
188
189 /* Reset FIFO */
190 sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
191 SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
192
193 /*
194 * Setup the transfer control register: Chip Select,
195 * polarities, etc.
196 */
197 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
198
199 if (spi->mode & SPI_CPOL)
200 reg |= SUN6I_TFR_CTL_CPOL;
201 else
202 reg &= ~SUN6I_TFR_CTL_CPOL;
203
204 if (spi->mode & SPI_CPHA)
205 reg |= SUN6I_TFR_CTL_CPHA;
206 else
207 reg &= ~SUN6I_TFR_CTL_CPHA;
208
209 if (spi->mode & SPI_LSB_FIRST)
210 reg |= SUN6I_TFR_CTL_FBS;
211 else
212 reg &= ~SUN6I_TFR_CTL_FBS;
213
214 /*
215 * If it's a TX only transfer, we don't want to fill the RX
216 * FIFO with bogus data
217 */
218 if (sspi->rx_buf)
219 reg &= ~SUN6I_TFR_CTL_DHB;
220 else
221 reg |= SUN6I_TFR_CTL_DHB;
222
223 /* We want to control the chip select manually */
224 reg |= SUN6I_TFR_CTL_CS_MANUAL;
225
226 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
227
228 /* Ensure that we have a parent clock fast enough */
229 mclk_rate = clk_get_rate(sspi->mclk);
230 if (mclk_rate < (2 * tfr->speed_hz)) {
231 clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
232 mclk_rate = clk_get_rate(sspi->mclk);
233 }
234
235 /*
236 * Setup clock divider.
237 *
238 * We have two choices there. Either we can use the clock
239 * divide rate 1, which is calculated thanks to this formula:
240 * SPI_CLK = MOD_CLK / (2 ^ cdr)
241 * Or we can use CDR2, which is calculated with the formula:
242 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
243 * Wether we use the former or the latter is set through the
244 * DRS bit.
245 *
246 * First try CDR2, and if we can't reach the expected
247 * frequency, fall back to CDR1.
248 */
249 div = mclk_rate / (2 * tfr->speed_hz);
250 if (div <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
251 if (div > 0)
252 div--;
253
254 reg = SUN6I_CLK_CTL_CDR2(div) | SUN6I_CLK_CTL_DRS;
255 } else {
256 div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
257 reg = SUN6I_CLK_CTL_CDR1(div);
258 }
259
260 sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
261
262 /* Setup the transfer now... */
263 if (sspi->tx_buf)
264 tx_len = tfr->len;
265
266 /* Setup the counters */
267 sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, SUN6I_BURST_CNT(tfr->len));
268 sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, SUN6I_XMIT_CNT(tx_len));
269 sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG,
270 SUN6I_BURST_CTL_CNT_STC(tx_len));
271
272 /* Fill the TX FIFO */
273 sun6i_spi_fill_fifo(sspi, sspi->fifo_depth);
274
275 /* Enable the interrupts */
276 sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, SUN6I_INT_CTL_TC);
277
278 /* Start the transfer */
279 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
280 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
281
282 tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
283 start = jiffies;
284 timeout = wait_for_completion_timeout(&sspi->done,
285 msecs_to_jiffies(tx_time));
286 end = jiffies;
287 if (!timeout) {
288 dev_warn(&master->dev,
289 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
290 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
291 jiffies_to_msecs(end - start), tx_time);
292 ret = -ETIMEDOUT;
293 goto out;
294 }
295
296 sun6i_spi_drain_fifo(sspi, sspi->fifo_depth);
297
298 out:
299 sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
300
301 return ret;
302 }
303
304 static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
305 {
306 struct sun6i_spi *sspi = dev_id;
307 u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
308
309 /* Transfer complete */
310 if (status & SUN6I_INT_CTL_TC) {
311 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
312 complete(&sspi->done);
313 return IRQ_HANDLED;
314 }
315
316 return IRQ_NONE;
317 }
318
319 static int sun6i_spi_runtime_resume(struct device *dev)
320 {
321 struct spi_master *master = dev_get_drvdata(dev);
322 struct sun6i_spi *sspi = spi_master_get_devdata(master);
323 int ret;
324
325 ret = clk_prepare_enable(sspi->hclk);
326 if (ret) {
327 dev_err(dev, "Couldn't enable AHB clock\n");
328 goto out;
329 }
330
331 ret = clk_prepare_enable(sspi->mclk);
332 if (ret) {
333 dev_err(dev, "Couldn't enable module clock\n");
334 goto err;
335 }
336
337 ret = reset_control_deassert(sspi->rstc);
338 if (ret) {
339 dev_err(dev, "Couldn't deassert the device from reset\n");
340 goto err2;
341 }
342
343 sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
344 SUN6I_GBL_CTL_BUS_ENABLE | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
345
346 return 0;
347
348 err2:
349 clk_disable_unprepare(sspi->mclk);
350 err:
351 clk_disable_unprepare(sspi->hclk);
352 out:
353 return ret;
354 }
355
356 static int sun6i_spi_runtime_suspend(struct device *dev)
357 {
358 struct spi_master *master = dev_get_drvdata(dev);
359 struct sun6i_spi *sspi = spi_master_get_devdata(master);
360
361 reset_control_assert(sspi->rstc);
362 clk_disable_unprepare(sspi->mclk);
363 clk_disable_unprepare(sspi->hclk);
364
365 return 0;
366 }
367
368 static int sun6i_spi_probe(struct platform_device *pdev)
369 {
370 struct spi_master *master;
371 struct sun6i_spi *sspi;
372 struct resource *res;
373 int ret = 0, irq;
374
375 master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
376 if (!master) {
377 dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
378 return -ENOMEM;
379 }
380
381 platform_set_drvdata(pdev, master);
382 sspi = spi_master_get_devdata(master);
383
384 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
385 sspi->base_addr = devm_ioremap_resource(&pdev->dev, res);
386 if (IS_ERR(sspi->base_addr)) {
387 ret = PTR_ERR(sspi->base_addr);
388 goto err_free_master;
389 }
390
391 irq = platform_get_irq(pdev, 0);
392 if (irq < 0) {
393 dev_err(&pdev->dev, "No spi IRQ specified\n");
394 ret = -ENXIO;
395 goto err_free_master;
396 }
397
398 ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
399 0, "sun6i-spi", sspi);
400 if (ret) {
401 dev_err(&pdev->dev, "Cannot request IRQ\n");
402 goto err_free_master;
403 }
404
405 sspi->master = master;
406 sspi->fifo_depth = (unsigned long)of_device_get_match_data(&pdev->dev);
407
408 master->max_speed_hz = 100 * 1000 * 1000;
409 master->min_speed_hz = 3 * 1000;
410 master->set_cs = sun6i_spi_set_cs;
411 master->transfer_one = sun6i_spi_transfer_one;
412 master->num_chipselect = 4;
413 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
414 master->bits_per_word_mask = SPI_BPW_MASK(8);
415 master->dev.of_node = pdev->dev.of_node;
416 master->auto_runtime_pm = true;
417 master->max_transfer_size = sun6i_spi_max_transfer_size;
418
419 sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
420 if (IS_ERR(sspi->hclk)) {
421 dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
422 ret = PTR_ERR(sspi->hclk);
423 goto err_free_master;
424 }
425
426 sspi->mclk = devm_clk_get(&pdev->dev, "mod");
427 if (IS_ERR(sspi->mclk)) {
428 dev_err(&pdev->dev, "Unable to acquire module clock\n");
429 ret = PTR_ERR(sspi->mclk);
430 goto err_free_master;
431 }
432
433 init_completion(&sspi->done);
434
435 sspi->rstc = devm_reset_control_get(&pdev->dev, NULL);
436 if (IS_ERR(sspi->rstc)) {
437 dev_err(&pdev->dev, "Couldn't get reset controller\n");
438 ret = PTR_ERR(sspi->rstc);
439 goto err_free_master;
440 }
441
442 /*
443 * This wake-up/shutdown pattern is to be able to have the
444 * device woken up, even if runtime_pm is disabled
445 */
446 ret = sun6i_spi_runtime_resume(&pdev->dev);
447 if (ret) {
448 dev_err(&pdev->dev, "Couldn't resume the device\n");
449 goto err_free_master;
450 }
451
452 pm_runtime_set_active(&pdev->dev);
453 pm_runtime_enable(&pdev->dev);
454 pm_runtime_idle(&pdev->dev);
455
456 ret = devm_spi_register_master(&pdev->dev, master);
457 if (ret) {
458 dev_err(&pdev->dev, "cannot register SPI master\n");
459 goto err_pm_disable;
460 }
461
462 return 0;
463
464 err_pm_disable:
465 pm_runtime_disable(&pdev->dev);
466 sun6i_spi_runtime_suspend(&pdev->dev);
467 err_free_master:
468 spi_master_put(master);
469 return ret;
470 }
471
472 static int sun6i_spi_remove(struct platform_device *pdev)
473 {
474 pm_runtime_disable(&pdev->dev);
475
476 return 0;
477 }
478
479 static const struct of_device_id sun6i_spi_match[] = {
480 { .compatible = "allwinner,sun6i-a31-spi", .data = (void *)SUN6I_FIFO_DEPTH },
481 { .compatible = "allwinner,sun8i-h3-spi", .data = (void *)SUN8I_FIFO_DEPTH },
482 {}
483 };
484 MODULE_DEVICE_TABLE(of, sun6i_spi_match);
485
486 static const struct dev_pm_ops sun6i_spi_pm_ops = {
487 .runtime_resume = sun6i_spi_runtime_resume,
488 .runtime_suspend = sun6i_spi_runtime_suspend,
489 };
490
491 static struct platform_driver sun6i_spi_driver = {
492 .probe = sun6i_spi_probe,
493 .remove = sun6i_spi_remove,
494 .driver = {
495 .name = "sun6i-spi",
496 .of_match_table = sun6i_spi_match,
497 .pm = &sun6i_spi_pm_ops,
498 },
499 };
500 module_platform_driver(sun6i_spi_driver);
501
502 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
503 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
504 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
505 MODULE_LICENSE("GPL");