]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/spi/spi-sun6i.c
Merge branches 'pm-cpuidle-fixes' and 'pm-sleep-fixes'
[mirror_ubuntu-artful-kernel.git] / drivers / spi / spi-sun6i.c
1 /*
2 * Copyright (C) 2012 - 2014 Allwinner Tech
3 * Pan Nan <pannan@allwinnertech.com>
4 *
5 * Copyright (C) 2014 Maxime Ripard
6 * Maxime Ripard <maxime.ripard@free-electrons.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 */
13
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/reset.h>
23
24 #include <linux/spi/spi.h>
25
26 #define SUN6I_FIFO_DEPTH 128
27
28 #define SUN6I_GBL_CTL_REG 0x04
29 #define SUN6I_GBL_CTL_BUS_ENABLE BIT(0)
30 #define SUN6I_GBL_CTL_MASTER BIT(1)
31 #define SUN6I_GBL_CTL_TP BIT(7)
32 #define SUN6I_GBL_CTL_RST BIT(31)
33
34 #define SUN6I_TFR_CTL_REG 0x08
35 #define SUN6I_TFR_CTL_CPHA BIT(0)
36 #define SUN6I_TFR_CTL_CPOL BIT(1)
37 #define SUN6I_TFR_CTL_SPOL BIT(2)
38 #define SUN6I_TFR_CTL_CS_MASK 0x30
39 #define SUN6I_TFR_CTL_CS(cs) (((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
40 #define SUN6I_TFR_CTL_CS_MANUAL BIT(6)
41 #define SUN6I_TFR_CTL_CS_LEVEL BIT(7)
42 #define SUN6I_TFR_CTL_DHB BIT(8)
43 #define SUN6I_TFR_CTL_FBS BIT(12)
44 #define SUN6I_TFR_CTL_XCH BIT(31)
45
46 #define SUN6I_INT_CTL_REG 0x10
47 #define SUN6I_INT_CTL_RF_OVF BIT(8)
48 #define SUN6I_INT_CTL_TC BIT(12)
49
50 #define SUN6I_INT_STA_REG 0x14
51
52 #define SUN6I_FIFO_CTL_REG 0x18
53 #define SUN6I_FIFO_CTL_RF_RST BIT(15)
54 #define SUN6I_FIFO_CTL_TF_RST BIT(31)
55
56 #define SUN6I_FIFO_STA_REG 0x1c
57 #define SUN6I_FIFO_STA_RF_CNT_MASK 0x7f
58 #define SUN6I_FIFO_STA_RF_CNT_BITS 0
59 #define SUN6I_FIFO_STA_TF_CNT_MASK 0x7f
60 #define SUN6I_FIFO_STA_TF_CNT_BITS 16
61
62 #define SUN6I_CLK_CTL_REG 0x24
63 #define SUN6I_CLK_CTL_CDR2_MASK 0xff
64 #define SUN6I_CLK_CTL_CDR2(div) (((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
65 #define SUN6I_CLK_CTL_CDR1_MASK 0xf
66 #define SUN6I_CLK_CTL_CDR1(div) (((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
67 #define SUN6I_CLK_CTL_DRS BIT(12)
68
69 #define SUN6I_BURST_CNT_REG 0x30
70 #define SUN6I_BURST_CNT(cnt) ((cnt) & 0xffffff)
71
72 #define SUN6I_XMIT_CNT_REG 0x34
73 #define SUN6I_XMIT_CNT(cnt) ((cnt) & 0xffffff)
74
75 #define SUN6I_BURST_CTL_CNT_REG 0x38
76 #define SUN6I_BURST_CTL_CNT_STC(cnt) ((cnt) & 0xffffff)
77
78 #define SUN6I_TXDATA_REG 0x200
79 #define SUN6I_RXDATA_REG 0x300
80
81 struct sun6i_spi {
82 struct spi_master *master;
83 void __iomem *base_addr;
84 struct clk *hclk;
85 struct clk *mclk;
86 struct reset_control *rstc;
87
88 struct completion done;
89
90 const u8 *tx_buf;
91 u8 *rx_buf;
92 int len;
93 };
94
95 static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
96 {
97 return readl(sspi->base_addr + reg);
98 }
99
100 static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
101 {
102 writel(value, sspi->base_addr + reg);
103 }
104
105 static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi, int len)
106 {
107 u32 reg, cnt;
108 u8 byte;
109
110 /* See how much data is available */
111 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
112 reg &= SUN6I_FIFO_STA_RF_CNT_MASK;
113 cnt = reg >> SUN6I_FIFO_STA_RF_CNT_BITS;
114
115 if (len > cnt)
116 len = cnt;
117
118 while (len--) {
119 byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
120 if (sspi->rx_buf)
121 *sspi->rx_buf++ = byte;
122 }
123 }
124
125 static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi, int len)
126 {
127 u8 byte;
128
129 if (len > sspi->len)
130 len = sspi->len;
131
132 while (len--) {
133 byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
134 writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
135 sspi->len--;
136 }
137 }
138
139 static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
140 {
141 struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
142 u32 reg;
143
144 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
145 reg &= ~SUN6I_TFR_CTL_CS_MASK;
146 reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
147
148 if (enable)
149 reg |= SUN6I_TFR_CTL_CS_LEVEL;
150 else
151 reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
152
153 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
154 }
155
156
157 static int sun6i_spi_transfer_one(struct spi_master *master,
158 struct spi_device *spi,
159 struct spi_transfer *tfr)
160 {
161 struct sun6i_spi *sspi = spi_master_get_devdata(master);
162 unsigned int mclk_rate, div, timeout;
163 unsigned int start, end, tx_time;
164 unsigned int tx_len = 0;
165 int ret = 0;
166 u32 reg;
167
168 /* We don't support transfer larger than the FIFO */
169 if (tfr->len > SUN6I_FIFO_DEPTH)
170 return -EINVAL;
171
172 reinit_completion(&sspi->done);
173 sspi->tx_buf = tfr->tx_buf;
174 sspi->rx_buf = tfr->rx_buf;
175 sspi->len = tfr->len;
176
177 /* Clear pending interrupts */
178 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
179
180 /* Reset FIFO */
181 sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
182 SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
183
184 /*
185 * Setup the transfer control register: Chip Select,
186 * polarities, etc.
187 */
188 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
189
190 if (spi->mode & SPI_CPOL)
191 reg |= SUN6I_TFR_CTL_CPOL;
192 else
193 reg &= ~SUN6I_TFR_CTL_CPOL;
194
195 if (spi->mode & SPI_CPHA)
196 reg |= SUN6I_TFR_CTL_CPHA;
197 else
198 reg &= ~SUN6I_TFR_CTL_CPHA;
199
200 if (spi->mode & SPI_LSB_FIRST)
201 reg |= SUN6I_TFR_CTL_FBS;
202 else
203 reg &= ~SUN6I_TFR_CTL_FBS;
204
205 /*
206 * If it's a TX only transfer, we don't want to fill the RX
207 * FIFO with bogus data
208 */
209 if (sspi->rx_buf)
210 reg &= ~SUN6I_TFR_CTL_DHB;
211 else
212 reg |= SUN6I_TFR_CTL_DHB;
213
214 /* We want to control the chip select manually */
215 reg |= SUN6I_TFR_CTL_CS_MANUAL;
216
217 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
218
219 /* Ensure that we have a parent clock fast enough */
220 mclk_rate = clk_get_rate(sspi->mclk);
221 if (mclk_rate < (2 * tfr->speed_hz)) {
222 clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
223 mclk_rate = clk_get_rate(sspi->mclk);
224 }
225
226 /*
227 * Setup clock divider.
228 *
229 * We have two choices there. Either we can use the clock
230 * divide rate 1, which is calculated thanks to this formula:
231 * SPI_CLK = MOD_CLK / (2 ^ cdr)
232 * Or we can use CDR2, which is calculated with the formula:
233 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
234 * Wether we use the former or the latter is set through the
235 * DRS bit.
236 *
237 * First try CDR2, and if we can't reach the expected
238 * frequency, fall back to CDR1.
239 */
240 div = mclk_rate / (2 * tfr->speed_hz);
241 if (div <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
242 if (div > 0)
243 div--;
244
245 reg = SUN6I_CLK_CTL_CDR2(div) | SUN6I_CLK_CTL_DRS;
246 } else {
247 div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
248 reg = SUN6I_CLK_CTL_CDR1(div);
249 }
250
251 sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
252
253 /* Setup the transfer now... */
254 if (sspi->tx_buf)
255 tx_len = tfr->len;
256
257 /* Setup the counters */
258 sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, SUN6I_BURST_CNT(tfr->len));
259 sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, SUN6I_XMIT_CNT(tx_len));
260 sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG,
261 SUN6I_BURST_CTL_CNT_STC(tx_len));
262
263 /* Fill the TX FIFO */
264 sun6i_spi_fill_fifo(sspi, SUN6I_FIFO_DEPTH);
265
266 /* Enable the interrupts */
267 sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, SUN6I_INT_CTL_TC);
268
269 /* Start the transfer */
270 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
271 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
272
273 tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
274 start = jiffies;
275 timeout = wait_for_completion_timeout(&sspi->done,
276 msecs_to_jiffies(tx_time));
277 end = jiffies;
278 if (!timeout) {
279 dev_warn(&master->dev,
280 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
281 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
282 jiffies_to_msecs(end - start), tx_time);
283 ret = -ETIMEDOUT;
284 goto out;
285 }
286
287 sun6i_spi_drain_fifo(sspi, SUN6I_FIFO_DEPTH);
288
289 out:
290 sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
291
292 return ret;
293 }
294
295 static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
296 {
297 struct sun6i_spi *sspi = dev_id;
298 u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
299
300 /* Transfer complete */
301 if (status & SUN6I_INT_CTL_TC) {
302 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
303 complete(&sspi->done);
304 return IRQ_HANDLED;
305 }
306
307 return IRQ_NONE;
308 }
309
310 static int sun6i_spi_runtime_resume(struct device *dev)
311 {
312 struct spi_master *master = dev_get_drvdata(dev);
313 struct sun6i_spi *sspi = spi_master_get_devdata(master);
314 int ret;
315
316 ret = clk_prepare_enable(sspi->hclk);
317 if (ret) {
318 dev_err(dev, "Couldn't enable AHB clock\n");
319 goto out;
320 }
321
322 ret = clk_prepare_enable(sspi->mclk);
323 if (ret) {
324 dev_err(dev, "Couldn't enable module clock\n");
325 goto err;
326 }
327
328 ret = reset_control_deassert(sspi->rstc);
329 if (ret) {
330 dev_err(dev, "Couldn't deassert the device from reset\n");
331 goto err2;
332 }
333
334 sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
335 SUN6I_GBL_CTL_BUS_ENABLE | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
336
337 return 0;
338
339 err2:
340 clk_disable_unprepare(sspi->mclk);
341 err:
342 clk_disable_unprepare(sspi->hclk);
343 out:
344 return ret;
345 }
346
347 static int sun6i_spi_runtime_suspend(struct device *dev)
348 {
349 struct spi_master *master = dev_get_drvdata(dev);
350 struct sun6i_spi *sspi = spi_master_get_devdata(master);
351
352 reset_control_assert(sspi->rstc);
353 clk_disable_unprepare(sspi->mclk);
354 clk_disable_unprepare(sspi->hclk);
355
356 return 0;
357 }
358
359 static int sun6i_spi_probe(struct platform_device *pdev)
360 {
361 struct spi_master *master;
362 struct sun6i_spi *sspi;
363 struct resource *res;
364 int ret = 0, irq;
365
366 master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
367 if (!master) {
368 dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
369 return -ENOMEM;
370 }
371
372 platform_set_drvdata(pdev, master);
373 sspi = spi_master_get_devdata(master);
374
375 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
376 sspi->base_addr = devm_ioremap_resource(&pdev->dev, res);
377 if (IS_ERR(sspi->base_addr)) {
378 ret = PTR_ERR(sspi->base_addr);
379 goto err_free_master;
380 }
381
382 irq = platform_get_irq(pdev, 0);
383 if (irq < 0) {
384 dev_err(&pdev->dev, "No spi IRQ specified\n");
385 ret = -ENXIO;
386 goto err_free_master;
387 }
388
389 ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
390 0, "sun6i-spi", sspi);
391 if (ret) {
392 dev_err(&pdev->dev, "Cannot request IRQ\n");
393 goto err_free_master;
394 }
395
396 sspi->master = master;
397 master->set_cs = sun6i_spi_set_cs;
398 master->transfer_one = sun6i_spi_transfer_one;
399 master->num_chipselect = 4;
400 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
401 master->bits_per_word_mask = SPI_BPW_MASK(8);
402 master->dev.of_node = pdev->dev.of_node;
403 master->auto_runtime_pm = true;
404
405 sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
406 if (IS_ERR(sspi->hclk)) {
407 dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
408 ret = PTR_ERR(sspi->hclk);
409 goto err_free_master;
410 }
411
412 sspi->mclk = devm_clk_get(&pdev->dev, "mod");
413 if (IS_ERR(sspi->mclk)) {
414 dev_err(&pdev->dev, "Unable to acquire module clock\n");
415 ret = PTR_ERR(sspi->mclk);
416 goto err_free_master;
417 }
418
419 init_completion(&sspi->done);
420
421 sspi->rstc = devm_reset_control_get(&pdev->dev, NULL);
422 if (IS_ERR(sspi->rstc)) {
423 dev_err(&pdev->dev, "Couldn't get reset controller\n");
424 ret = PTR_ERR(sspi->rstc);
425 goto err_free_master;
426 }
427
428 /*
429 * This wake-up/shutdown pattern is to be able to have the
430 * device woken up, even if runtime_pm is disabled
431 */
432 ret = sun6i_spi_runtime_resume(&pdev->dev);
433 if (ret) {
434 dev_err(&pdev->dev, "Couldn't resume the device\n");
435 goto err_free_master;
436 }
437
438 pm_runtime_set_active(&pdev->dev);
439 pm_runtime_enable(&pdev->dev);
440 pm_runtime_idle(&pdev->dev);
441
442 ret = devm_spi_register_master(&pdev->dev, master);
443 if (ret) {
444 dev_err(&pdev->dev, "cannot register SPI master\n");
445 goto err_pm_disable;
446 }
447
448 return 0;
449
450 err_pm_disable:
451 pm_runtime_disable(&pdev->dev);
452 sun6i_spi_runtime_suspend(&pdev->dev);
453 err_free_master:
454 spi_master_put(master);
455 return ret;
456 }
457
458 static int sun6i_spi_remove(struct platform_device *pdev)
459 {
460 pm_runtime_disable(&pdev->dev);
461
462 return 0;
463 }
464
465 static const struct of_device_id sun6i_spi_match[] = {
466 { .compatible = "allwinner,sun6i-a31-spi", },
467 {}
468 };
469 MODULE_DEVICE_TABLE(of, sun6i_spi_match);
470
471 static const struct dev_pm_ops sun6i_spi_pm_ops = {
472 .runtime_resume = sun6i_spi_runtime_resume,
473 .runtime_suspend = sun6i_spi_runtime_suspend,
474 };
475
476 static struct platform_driver sun6i_spi_driver = {
477 .probe = sun6i_spi_probe,
478 .remove = sun6i_spi_remove,
479 .driver = {
480 .name = "sun6i-spi",
481 .of_match_table = sun6i_spi_match,
482 .pm = &sun6i_spi_pm_ops,
483 },
484 };
485 module_platform_driver(sun6i_spi_driver);
486
487 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
488 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
489 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
490 MODULE_LICENSE("GPL");