]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/spi/spi-topcliff-pch.c
ipv4: convert dst_metrics.refcnt from atomic_t to refcount_t
[mirror_ubuntu-artful-kernel.git] / drivers / spi / spi-topcliff-pch.c
1 /*
2 * SPI bus driver for the Topcliff PCH used by Intel SoCs
3 *
4 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16 #include <linux/delay.h>
17 #include <linux/pci.h>
18 #include <linux/wait.h>
19 #include <linux/spi/spi.h>
20 #include <linux/interrupt.h>
21 #include <linux/sched.h>
22 #include <linux/spi/spidev.h>
23 #include <linux/module.h>
24 #include <linux/device.h>
25 #include <linux/platform_device.h>
26
27 #include <linux/dmaengine.h>
28 #include <linux/pch_dma.h>
29
30 /* Register offsets */
31 #define PCH_SPCR 0x00 /* SPI control register */
32 #define PCH_SPBRR 0x04 /* SPI baud rate register */
33 #define PCH_SPSR 0x08 /* SPI status register */
34 #define PCH_SPDWR 0x0C /* SPI write data register */
35 #define PCH_SPDRR 0x10 /* SPI read data register */
36 #define PCH_SSNXCR 0x18 /* SSN Expand Control Register */
37 #define PCH_SRST 0x1C /* SPI reset register */
38 #define PCH_ADDRESS_SIZE 0x20
39
40 #define PCH_SPSR_TFD 0x000007C0
41 #define PCH_SPSR_RFD 0x0000F800
42
43 #define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11)
44 #define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6)
45
46 #define PCH_RX_THOLD 7
47 #define PCH_RX_THOLD_MAX 15
48
49 #define PCH_TX_THOLD 2
50
51 #define PCH_MAX_BAUDRATE 5000000
52 #define PCH_MAX_FIFO_DEPTH 16
53
54 #define STATUS_RUNNING 1
55 #define STATUS_EXITING 2
56 #define PCH_SLEEP_TIME 10
57
58 #define SSN_LOW 0x02U
59 #define SSN_HIGH 0x03U
60 #define SSN_NO_CONTROL 0x00U
61 #define PCH_MAX_CS 0xFF
62 #define PCI_DEVICE_ID_GE_SPI 0x8816
63
64 #define SPCR_SPE_BIT (1 << 0)
65 #define SPCR_MSTR_BIT (1 << 1)
66 #define SPCR_LSBF_BIT (1 << 4)
67 #define SPCR_CPHA_BIT (1 << 5)
68 #define SPCR_CPOL_BIT (1 << 6)
69 #define SPCR_TFIE_BIT (1 << 8)
70 #define SPCR_RFIE_BIT (1 << 9)
71 #define SPCR_FIE_BIT (1 << 10)
72 #define SPCR_ORIE_BIT (1 << 11)
73 #define SPCR_MDFIE_BIT (1 << 12)
74 #define SPCR_FICLR_BIT (1 << 24)
75 #define SPSR_TFI_BIT (1 << 0)
76 #define SPSR_RFI_BIT (1 << 1)
77 #define SPSR_FI_BIT (1 << 2)
78 #define SPSR_ORF_BIT (1 << 3)
79 #define SPBRR_SIZE_BIT (1 << 10)
80
81 #define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
82 SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
83
84 #define SPCR_RFIC_FIELD 20
85 #define SPCR_TFIC_FIELD 16
86
87 #define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1)
88 #define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD)
89 #define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD)
90
91 #define PCH_CLOCK_HZ 50000000
92 #define PCH_MAX_SPBR 1023
93
94 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
95 #define PCI_VENDOR_ID_ROHM 0x10DB
96 #define PCI_DEVICE_ID_ML7213_SPI 0x802c
97 #define PCI_DEVICE_ID_ML7223_SPI 0x800F
98 #define PCI_DEVICE_ID_ML7831_SPI 0x8816
99
100 /*
101 * Set the number of SPI instance max
102 * Intel EG20T PCH : 1ch
103 * LAPIS Semiconductor ML7213 IOH : 2ch
104 * LAPIS Semiconductor ML7223 IOH : 1ch
105 * LAPIS Semiconductor ML7831 IOH : 1ch
106 */
107 #define PCH_SPI_MAX_DEV 2
108
109 #define PCH_BUF_SIZE 4096
110 #define PCH_DMA_TRANS_SIZE 12
111
112 static int use_dma = 1;
113
114 struct pch_spi_dma_ctrl {
115 struct dma_async_tx_descriptor *desc_tx;
116 struct dma_async_tx_descriptor *desc_rx;
117 struct pch_dma_slave param_tx;
118 struct pch_dma_slave param_rx;
119 struct dma_chan *chan_tx;
120 struct dma_chan *chan_rx;
121 struct scatterlist *sg_tx_p;
122 struct scatterlist *sg_rx_p;
123 struct scatterlist sg_tx;
124 struct scatterlist sg_rx;
125 int nent;
126 void *tx_buf_virt;
127 void *rx_buf_virt;
128 dma_addr_t tx_buf_dma;
129 dma_addr_t rx_buf_dma;
130 };
131 /**
132 * struct pch_spi_data - Holds the SPI channel specific details
133 * @io_remap_addr: The remapped PCI base address
134 * @master: Pointer to the SPI master structure
135 * @work: Reference to work queue handler
136 * @wait: Wait queue for waking up upon receiving an
137 * interrupt.
138 * @transfer_complete: Status of SPI Transfer
139 * @bcurrent_msg_processing: Status flag for message processing
140 * @lock: Lock for protecting this structure
141 * @queue: SPI Message queue
142 * @status: Status of the SPI driver
143 * @bpw_len: Length of data to be transferred in bits per
144 * word
145 * @transfer_active: Flag showing active transfer
146 * @tx_index: Transmit data count; for bookkeeping during
147 * transfer
148 * @rx_index: Receive data count; for bookkeeping during
149 * transfer
150 * @tx_buff: Buffer for data to be transmitted
151 * @rx_index: Buffer for Received data
152 * @n_curnt_chip: The chip number that this SPI driver currently
153 * operates on
154 * @current_chip: Reference to the current chip that this SPI
155 * driver currently operates on
156 * @current_msg: The current message that this SPI driver is
157 * handling
158 * @cur_trans: The current transfer that this SPI driver is
159 * handling
160 * @board_dat: Reference to the SPI device data structure
161 * @plat_dev: platform_device structure
162 * @ch: SPI channel number
163 * @irq_reg_sts: Status of IRQ registration
164 */
165 struct pch_spi_data {
166 void __iomem *io_remap_addr;
167 unsigned long io_base_addr;
168 struct spi_master *master;
169 struct work_struct work;
170 wait_queue_head_t wait;
171 u8 transfer_complete;
172 u8 bcurrent_msg_processing;
173 spinlock_t lock;
174 struct list_head queue;
175 u8 status;
176 u32 bpw_len;
177 u8 transfer_active;
178 u32 tx_index;
179 u32 rx_index;
180 u16 *pkt_tx_buff;
181 u16 *pkt_rx_buff;
182 u8 n_curnt_chip;
183 struct spi_device *current_chip;
184 struct spi_message *current_msg;
185 struct spi_transfer *cur_trans;
186 struct pch_spi_board_data *board_dat;
187 struct platform_device *plat_dev;
188 int ch;
189 struct pch_spi_dma_ctrl dma;
190 int use_dma;
191 u8 irq_reg_sts;
192 int save_total_len;
193 };
194
195 /**
196 * struct pch_spi_board_data - Holds the SPI device specific details
197 * @pdev: Pointer to the PCI device
198 * @suspend_sts: Status of suspend
199 * @num: The number of SPI device instance
200 */
201 struct pch_spi_board_data {
202 struct pci_dev *pdev;
203 u8 suspend_sts;
204 int num;
205 };
206
207 struct pch_pd_dev_save {
208 int num;
209 struct platform_device *pd_save[PCH_SPI_MAX_DEV];
210 struct pch_spi_board_data *board_dat;
211 };
212
213 static const struct pci_device_id pch_spi_pcidev_id[] = {
214 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, },
215 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
216 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
217 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
218 { }
219 };
220
221 /**
222 * pch_spi_writereg() - Performs register writes
223 * @master: Pointer to struct spi_master.
224 * @idx: Register offset.
225 * @val: Value to be written to register.
226 */
227 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
228 {
229 struct pch_spi_data *data = spi_master_get_devdata(master);
230 iowrite32(val, (data->io_remap_addr + idx));
231 }
232
233 /**
234 * pch_spi_readreg() - Performs register reads
235 * @master: Pointer to struct spi_master.
236 * @idx: Register offset.
237 */
238 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
239 {
240 struct pch_spi_data *data = spi_master_get_devdata(master);
241 return ioread32(data->io_remap_addr + idx);
242 }
243
244 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
245 u32 set, u32 clr)
246 {
247 u32 tmp = pch_spi_readreg(master, idx);
248 tmp = (tmp & ~clr) | set;
249 pch_spi_writereg(master, idx, tmp);
250 }
251
252 static void pch_spi_set_master_mode(struct spi_master *master)
253 {
254 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
255 }
256
257 /**
258 * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
259 * @master: Pointer to struct spi_master.
260 */
261 static void pch_spi_clear_fifo(struct spi_master *master)
262 {
263 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
264 pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
265 }
266
267 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
268 void __iomem *io_remap_addr)
269 {
270 u32 n_read, tx_index, rx_index, bpw_len;
271 u16 *pkt_rx_buffer, *pkt_tx_buff;
272 int read_cnt;
273 u32 reg_spcr_val;
274 void __iomem *spsr;
275 void __iomem *spdrr;
276 void __iomem *spdwr;
277
278 spsr = io_remap_addr + PCH_SPSR;
279 iowrite32(reg_spsr_val, spsr);
280
281 if (data->transfer_active) {
282 rx_index = data->rx_index;
283 tx_index = data->tx_index;
284 bpw_len = data->bpw_len;
285 pkt_rx_buffer = data->pkt_rx_buff;
286 pkt_tx_buff = data->pkt_tx_buff;
287
288 spdrr = io_remap_addr + PCH_SPDRR;
289 spdwr = io_remap_addr + PCH_SPDWR;
290
291 n_read = PCH_READABLE(reg_spsr_val);
292
293 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
294 pkt_rx_buffer[rx_index++] = ioread32(spdrr);
295 if (tx_index < bpw_len)
296 iowrite32(pkt_tx_buff[tx_index++], spdwr);
297 }
298
299 /* disable RFI if not needed */
300 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
301 reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
302 reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
303
304 /* reset rx threshold */
305 reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
306 reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
307
308 iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
309 }
310
311 /* update counts */
312 data->tx_index = tx_index;
313 data->rx_index = rx_index;
314
315 /* if transfer complete interrupt */
316 if (reg_spsr_val & SPSR_FI_BIT) {
317 if ((tx_index == bpw_len) && (rx_index == tx_index)) {
318 /* disable interrupts */
319 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
320 PCH_ALL);
321
322 /* transfer is completed;
323 inform pch_spi_process_messages */
324 data->transfer_complete = true;
325 data->transfer_active = false;
326 wake_up(&data->wait);
327 } else {
328 dev_vdbg(&data->master->dev,
329 "%s : Transfer is not completed",
330 __func__);
331 }
332 }
333 }
334 }
335
336 /**
337 * pch_spi_handler() - Interrupt handler
338 * @irq: The interrupt number.
339 * @dev_id: Pointer to struct pch_spi_board_data.
340 */
341 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
342 {
343 u32 reg_spsr_val;
344 void __iomem *spsr;
345 void __iomem *io_remap_addr;
346 irqreturn_t ret = IRQ_NONE;
347 struct pch_spi_data *data = dev_id;
348 struct pch_spi_board_data *board_dat = data->board_dat;
349
350 if (board_dat->suspend_sts) {
351 dev_dbg(&board_dat->pdev->dev,
352 "%s returning due to suspend\n", __func__);
353 return IRQ_NONE;
354 }
355
356 io_remap_addr = data->io_remap_addr;
357 spsr = io_remap_addr + PCH_SPSR;
358
359 reg_spsr_val = ioread32(spsr);
360
361 if (reg_spsr_val & SPSR_ORF_BIT) {
362 dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
363 if (data->current_msg->complete) {
364 data->transfer_complete = true;
365 data->current_msg->status = -EIO;
366 data->current_msg->complete(data->current_msg->context);
367 data->bcurrent_msg_processing = false;
368 data->current_msg = NULL;
369 data->cur_trans = NULL;
370 }
371 }
372
373 if (data->use_dma)
374 return IRQ_NONE;
375
376 /* Check if the interrupt is for SPI device */
377 if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
378 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
379 ret = IRQ_HANDLED;
380 }
381
382 dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
383 __func__, ret);
384
385 return ret;
386 }
387
388 /**
389 * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
390 * @master: Pointer to struct spi_master.
391 * @speed_hz: Baud rate.
392 */
393 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
394 {
395 u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
396
397 /* if baud rate is less than we can support limit it */
398 if (n_spbr > PCH_MAX_SPBR)
399 n_spbr = PCH_MAX_SPBR;
400
401 pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
402 }
403
404 /**
405 * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
406 * @master: Pointer to struct spi_master.
407 * @bits_per_word: Bits per word for SPI transfer.
408 */
409 static void pch_spi_set_bits_per_word(struct spi_master *master,
410 u8 bits_per_word)
411 {
412 if (bits_per_word == 8)
413 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
414 else
415 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
416 }
417
418 /**
419 * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
420 * @spi: Pointer to struct spi_device.
421 */
422 static void pch_spi_setup_transfer(struct spi_device *spi)
423 {
424 u32 flags = 0;
425
426 dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
427 __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
428 spi->max_speed_hz);
429 pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
430
431 /* set bits per word */
432 pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
433
434 if (!(spi->mode & SPI_LSB_FIRST))
435 flags |= SPCR_LSBF_BIT;
436 if (spi->mode & SPI_CPOL)
437 flags |= SPCR_CPOL_BIT;
438 if (spi->mode & SPI_CPHA)
439 flags |= SPCR_CPHA_BIT;
440 pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
441 (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
442
443 /* Clear the FIFO by toggling FICLR to 1 and back to 0 */
444 pch_spi_clear_fifo(spi->master);
445 }
446
447 /**
448 * pch_spi_reset() - Clears SPI registers
449 * @master: Pointer to struct spi_master.
450 */
451 static void pch_spi_reset(struct spi_master *master)
452 {
453 /* write 1 to reset SPI */
454 pch_spi_writereg(master, PCH_SRST, 0x1);
455
456 /* clear reset */
457 pch_spi_writereg(master, PCH_SRST, 0x0);
458 }
459
460 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
461 {
462
463 struct spi_transfer *transfer;
464 struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
465 int retval;
466 unsigned long flags;
467
468 spin_lock_irqsave(&data->lock, flags);
469 /* validate Tx/Rx buffers and Transfer length */
470 list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
471 if (!transfer->tx_buf && !transfer->rx_buf) {
472 dev_err(&pspi->dev,
473 "%s Tx and Rx buffer NULL\n", __func__);
474 retval = -EINVAL;
475 goto err_return_spinlock;
476 }
477
478 if (!transfer->len) {
479 dev_err(&pspi->dev, "%s Transfer length invalid\n",
480 __func__);
481 retval = -EINVAL;
482 goto err_return_spinlock;
483 }
484
485 dev_dbg(&pspi->dev,
486 "%s Tx/Rx buffer valid. Transfer length valid\n",
487 __func__);
488 }
489 spin_unlock_irqrestore(&data->lock, flags);
490
491 /* We won't process any messages if we have been asked to terminate */
492 if (data->status == STATUS_EXITING) {
493 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
494 retval = -ESHUTDOWN;
495 goto err_out;
496 }
497
498 /* If suspended ,return -EINVAL */
499 if (data->board_dat->suspend_sts) {
500 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
501 retval = -EINVAL;
502 goto err_out;
503 }
504
505 /* set status of message */
506 pmsg->actual_length = 0;
507 dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
508
509 pmsg->status = -EINPROGRESS;
510 spin_lock_irqsave(&data->lock, flags);
511 /* add message to queue */
512 list_add_tail(&pmsg->queue, &data->queue);
513 spin_unlock_irqrestore(&data->lock, flags);
514
515 dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
516
517 schedule_work(&data->work);
518 dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
519
520 retval = 0;
521
522 err_out:
523 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
524 return retval;
525 err_return_spinlock:
526 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
527 spin_unlock_irqrestore(&data->lock, flags);
528 return retval;
529 }
530
531 static inline void pch_spi_select_chip(struct pch_spi_data *data,
532 struct spi_device *pspi)
533 {
534 if (data->current_chip != NULL) {
535 if (pspi->chip_select != data->n_curnt_chip) {
536 dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
537 data->current_chip = NULL;
538 }
539 }
540
541 data->current_chip = pspi;
542
543 data->n_curnt_chip = data->current_chip->chip_select;
544
545 dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
546 pch_spi_setup_transfer(pspi);
547 }
548
549 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
550 {
551 int size;
552 u32 n_writes;
553 int j;
554 struct spi_message *pmsg, *tmp;
555 const u8 *tx_buf;
556 const u16 *tx_sbuf;
557
558 /* set baud rate if needed */
559 if (data->cur_trans->speed_hz) {
560 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
561 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
562 }
563
564 /* set bits per word if needed */
565 if (data->cur_trans->bits_per_word &&
566 (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
567 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
568 pch_spi_set_bits_per_word(data->master,
569 data->cur_trans->bits_per_word);
570 *bpw = data->cur_trans->bits_per_word;
571 } else {
572 *bpw = data->current_msg->spi->bits_per_word;
573 }
574
575 /* reset Tx/Rx index */
576 data->tx_index = 0;
577 data->rx_index = 0;
578
579 data->bpw_len = data->cur_trans->len / (*bpw / 8);
580
581 /* find alloc size */
582 size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
583
584 /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
585 data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
586 if (data->pkt_tx_buff != NULL) {
587 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
588 if (!data->pkt_rx_buff)
589 kfree(data->pkt_tx_buff);
590 }
591
592 if (!data->pkt_rx_buff) {
593 /* flush queue and set status of all transfers to -ENOMEM */
594 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
595 pmsg->status = -ENOMEM;
596
597 if (pmsg->complete)
598 pmsg->complete(pmsg->context);
599
600 /* delete from queue */
601 list_del_init(&pmsg->queue);
602 }
603 return;
604 }
605
606 /* copy Tx Data */
607 if (data->cur_trans->tx_buf != NULL) {
608 if (*bpw == 8) {
609 tx_buf = data->cur_trans->tx_buf;
610 for (j = 0; j < data->bpw_len; j++)
611 data->pkt_tx_buff[j] = *tx_buf++;
612 } else {
613 tx_sbuf = data->cur_trans->tx_buf;
614 for (j = 0; j < data->bpw_len; j++)
615 data->pkt_tx_buff[j] = *tx_sbuf++;
616 }
617 }
618
619 /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
620 n_writes = data->bpw_len;
621 if (n_writes > PCH_MAX_FIFO_DEPTH)
622 n_writes = PCH_MAX_FIFO_DEPTH;
623
624 dev_dbg(&data->master->dev,
625 "\n%s:Pulling down SSN low - writing 0x2 to SSNXCR\n",
626 __func__);
627 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
628
629 for (j = 0; j < n_writes; j++)
630 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
631
632 /* update tx_index */
633 data->tx_index = j;
634
635 /* reset transfer complete flag */
636 data->transfer_complete = false;
637 data->transfer_active = true;
638 }
639
640 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
641 {
642 struct spi_message *pmsg, *tmp;
643 dev_dbg(&data->master->dev, "%s called\n", __func__);
644 /* Invoke complete callback
645 * [To the spi core..indicating end of transfer] */
646 data->current_msg->status = 0;
647
648 if (data->current_msg->complete) {
649 dev_dbg(&data->master->dev,
650 "%s:Invoking callback of SPI core\n", __func__);
651 data->current_msg->complete(data->current_msg->context);
652 }
653
654 /* update status in global variable */
655 data->bcurrent_msg_processing = false;
656
657 dev_dbg(&data->master->dev,
658 "%s:data->bcurrent_msg_processing = false\n", __func__);
659
660 data->current_msg = NULL;
661 data->cur_trans = NULL;
662
663 /* check if we have items in list and not suspending
664 * return 1 if list empty */
665 if ((list_empty(&data->queue) == 0) &&
666 (!data->board_dat->suspend_sts) &&
667 (data->status != STATUS_EXITING)) {
668 /* We have some more work to do (either there is more tranint
669 * bpw;sfer requests in the current message or there are
670 *more messages)
671 */
672 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
673 schedule_work(&data->work);
674 } else if (data->board_dat->suspend_sts ||
675 data->status == STATUS_EXITING) {
676 dev_dbg(&data->master->dev,
677 "%s suspend/remove initiated, flushing queue\n",
678 __func__);
679 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
680 pmsg->status = -EIO;
681
682 if (pmsg->complete)
683 pmsg->complete(pmsg->context);
684
685 /* delete from queue */
686 list_del_init(&pmsg->queue);
687 }
688 }
689 }
690
691 static void pch_spi_set_ir(struct pch_spi_data *data)
692 {
693 /* enable interrupts, set threshold, enable SPI */
694 if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
695 /* set receive threshold to PCH_RX_THOLD */
696 pch_spi_setclr_reg(data->master, PCH_SPCR,
697 PCH_RX_THOLD << SPCR_RFIC_FIELD |
698 SPCR_FIE_BIT | SPCR_RFIE_BIT |
699 SPCR_ORIE_BIT | SPCR_SPE_BIT,
700 MASK_RFIC_SPCR_BITS | PCH_ALL);
701 else
702 /* set receive threshold to maximum */
703 pch_spi_setclr_reg(data->master, PCH_SPCR,
704 PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
705 SPCR_FIE_BIT | SPCR_ORIE_BIT |
706 SPCR_SPE_BIT,
707 MASK_RFIC_SPCR_BITS | PCH_ALL);
708
709 /* Wait until the transfer completes; go to sleep after
710 initiating the transfer. */
711 dev_dbg(&data->master->dev,
712 "%s:waiting for transfer to get over\n", __func__);
713
714 wait_event_interruptible(data->wait, data->transfer_complete);
715
716 /* clear all interrupts */
717 pch_spi_writereg(data->master, PCH_SPSR,
718 pch_spi_readreg(data->master, PCH_SPSR));
719 /* Disable interrupts and SPI transfer */
720 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
721 /* clear FIFO */
722 pch_spi_clear_fifo(data->master);
723 }
724
725 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
726 {
727 int j;
728 u8 *rx_buf;
729 u16 *rx_sbuf;
730
731 /* copy Rx Data */
732 if (!data->cur_trans->rx_buf)
733 return;
734
735 if (bpw == 8) {
736 rx_buf = data->cur_trans->rx_buf;
737 for (j = 0; j < data->bpw_len; j++)
738 *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
739 } else {
740 rx_sbuf = data->cur_trans->rx_buf;
741 for (j = 0; j < data->bpw_len; j++)
742 *rx_sbuf++ = data->pkt_rx_buff[j];
743 }
744 }
745
746 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
747 {
748 int j;
749 u8 *rx_buf;
750 u16 *rx_sbuf;
751 const u8 *rx_dma_buf;
752 const u16 *rx_dma_sbuf;
753
754 /* copy Rx Data */
755 if (!data->cur_trans->rx_buf)
756 return;
757
758 if (bpw == 8) {
759 rx_buf = data->cur_trans->rx_buf;
760 rx_dma_buf = data->dma.rx_buf_virt;
761 for (j = 0; j < data->bpw_len; j++)
762 *rx_buf++ = *rx_dma_buf++ & 0xFF;
763 data->cur_trans->rx_buf = rx_buf;
764 } else {
765 rx_sbuf = data->cur_trans->rx_buf;
766 rx_dma_sbuf = data->dma.rx_buf_virt;
767 for (j = 0; j < data->bpw_len; j++)
768 *rx_sbuf++ = *rx_dma_sbuf++;
769 data->cur_trans->rx_buf = rx_sbuf;
770 }
771 }
772
773 static int pch_spi_start_transfer(struct pch_spi_data *data)
774 {
775 struct pch_spi_dma_ctrl *dma;
776 unsigned long flags;
777 int rtn;
778
779 dma = &data->dma;
780
781 spin_lock_irqsave(&data->lock, flags);
782
783 /* disable interrupts, SPI set enable */
784 pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
785
786 spin_unlock_irqrestore(&data->lock, flags);
787
788 /* Wait until the transfer completes; go to sleep after
789 initiating the transfer. */
790 dev_dbg(&data->master->dev,
791 "%s:waiting for transfer to get over\n", __func__);
792 rtn = wait_event_interruptible_timeout(data->wait,
793 data->transfer_complete,
794 msecs_to_jiffies(2 * HZ));
795 if (!rtn)
796 dev_err(&data->master->dev,
797 "%s wait-event timeout\n", __func__);
798
799 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
800 DMA_FROM_DEVICE);
801
802 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
803 DMA_FROM_DEVICE);
804 memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
805
806 async_tx_ack(dma->desc_rx);
807 async_tx_ack(dma->desc_tx);
808 kfree(dma->sg_tx_p);
809 kfree(dma->sg_rx_p);
810
811 spin_lock_irqsave(&data->lock, flags);
812
813 /* clear fifo threshold, disable interrupts, disable SPI transfer */
814 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
815 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
816 SPCR_SPE_BIT);
817 /* clear all interrupts */
818 pch_spi_writereg(data->master, PCH_SPSR,
819 pch_spi_readreg(data->master, PCH_SPSR));
820 /* clear FIFO */
821 pch_spi_clear_fifo(data->master);
822
823 spin_unlock_irqrestore(&data->lock, flags);
824
825 return rtn;
826 }
827
828 static void pch_dma_rx_complete(void *arg)
829 {
830 struct pch_spi_data *data = arg;
831
832 /* transfer is completed;inform pch_spi_process_messages_dma */
833 data->transfer_complete = true;
834 wake_up_interruptible(&data->wait);
835 }
836
837 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
838 {
839 struct pch_dma_slave *param = slave;
840
841 if ((chan->chan_id == param->chan_id) &&
842 (param->dma_dev == chan->device->dev)) {
843 chan->private = param;
844 return true;
845 } else {
846 return false;
847 }
848 }
849
850 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
851 {
852 dma_cap_mask_t mask;
853 struct dma_chan *chan;
854 struct pci_dev *dma_dev;
855 struct pch_dma_slave *param;
856 struct pch_spi_dma_ctrl *dma;
857 unsigned int width;
858
859 if (bpw == 8)
860 width = PCH_DMA_WIDTH_1_BYTE;
861 else
862 width = PCH_DMA_WIDTH_2_BYTES;
863
864 dma = &data->dma;
865 dma_cap_zero(mask);
866 dma_cap_set(DMA_SLAVE, mask);
867
868 /* Get DMA's dev information */
869 dma_dev = pci_get_slot(data->board_dat->pdev->bus,
870 PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0));
871
872 /* Set Tx DMA */
873 param = &dma->param_tx;
874 param->dma_dev = &dma_dev->dev;
875 param->chan_id = data->ch * 2; /* Tx = 0, 2 */;
876 param->tx_reg = data->io_base_addr + PCH_SPDWR;
877 param->width = width;
878 chan = dma_request_channel(mask, pch_spi_filter, param);
879 if (!chan) {
880 dev_err(&data->master->dev,
881 "ERROR: dma_request_channel FAILS(Tx)\n");
882 data->use_dma = 0;
883 return;
884 }
885 dma->chan_tx = chan;
886
887 /* Set Rx DMA */
888 param = &dma->param_rx;
889 param->dma_dev = &dma_dev->dev;
890 param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */;
891 param->rx_reg = data->io_base_addr + PCH_SPDRR;
892 param->width = width;
893 chan = dma_request_channel(mask, pch_spi_filter, param);
894 if (!chan) {
895 dev_err(&data->master->dev,
896 "ERROR: dma_request_channel FAILS(Rx)\n");
897 dma_release_channel(dma->chan_tx);
898 dma->chan_tx = NULL;
899 data->use_dma = 0;
900 return;
901 }
902 dma->chan_rx = chan;
903 }
904
905 static void pch_spi_release_dma(struct pch_spi_data *data)
906 {
907 struct pch_spi_dma_ctrl *dma;
908
909 dma = &data->dma;
910 if (dma->chan_tx) {
911 dma_release_channel(dma->chan_tx);
912 dma->chan_tx = NULL;
913 }
914 if (dma->chan_rx) {
915 dma_release_channel(dma->chan_rx);
916 dma->chan_rx = NULL;
917 }
918 }
919
920 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
921 {
922 const u8 *tx_buf;
923 const u16 *tx_sbuf;
924 u8 *tx_dma_buf;
925 u16 *tx_dma_sbuf;
926 struct scatterlist *sg;
927 struct dma_async_tx_descriptor *desc_tx;
928 struct dma_async_tx_descriptor *desc_rx;
929 int num;
930 int i;
931 int size;
932 int rem;
933 int head;
934 unsigned long flags;
935 struct pch_spi_dma_ctrl *dma;
936
937 dma = &data->dma;
938
939 /* set baud rate if needed */
940 if (data->cur_trans->speed_hz) {
941 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
942 spin_lock_irqsave(&data->lock, flags);
943 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
944 spin_unlock_irqrestore(&data->lock, flags);
945 }
946
947 /* set bits per word if needed */
948 if (data->cur_trans->bits_per_word &&
949 (data->current_msg->spi->bits_per_word !=
950 data->cur_trans->bits_per_word)) {
951 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
952 spin_lock_irqsave(&data->lock, flags);
953 pch_spi_set_bits_per_word(data->master,
954 data->cur_trans->bits_per_word);
955 spin_unlock_irqrestore(&data->lock, flags);
956 *bpw = data->cur_trans->bits_per_word;
957 } else {
958 *bpw = data->current_msg->spi->bits_per_word;
959 }
960 data->bpw_len = data->cur_trans->len / (*bpw / 8);
961
962 if (data->bpw_len > PCH_BUF_SIZE) {
963 data->bpw_len = PCH_BUF_SIZE;
964 data->cur_trans->len -= PCH_BUF_SIZE;
965 }
966
967 /* copy Tx Data */
968 if (data->cur_trans->tx_buf != NULL) {
969 if (*bpw == 8) {
970 tx_buf = data->cur_trans->tx_buf;
971 tx_dma_buf = dma->tx_buf_virt;
972 for (i = 0; i < data->bpw_len; i++)
973 *tx_dma_buf++ = *tx_buf++;
974 } else {
975 tx_sbuf = data->cur_trans->tx_buf;
976 tx_dma_sbuf = dma->tx_buf_virt;
977 for (i = 0; i < data->bpw_len; i++)
978 *tx_dma_sbuf++ = *tx_sbuf++;
979 }
980 }
981
982 /* Calculate Rx parameter for DMA transmitting */
983 if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
984 if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
985 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
986 rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
987 } else {
988 num = data->bpw_len / PCH_DMA_TRANS_SIZE;
989 rem = PCH_DMA_TRANS_SIZE;
990 }
991 size = PCH_DMA_TRANS_SIZE;
992 } else {
993 num = 1;
994 size = data->bpw_len;
995 rem = data->bpw_len;
996 }
997 dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
998 __func__, num, size, rem);
999 spin_lock_irqsave(&data->lock, flags);
1000
1001 /* set receive fifo threshold and transmit fifo threshold */
1002 pch_spi_setclr_reg(data->master, PCH_SPCR,
1003 ((size - 1) << SPCR_RFIC_FIELD) |
1004 (PCH_TX_THOLD << SPCR_TFIC_FIELD),
1005 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1006
1007 spin_unlock_irqrestore(&data->lock, flags);
1008
1009 /* RX */
1010 dma->sg_rx_p = kcalloc(num, sizeof(*dma->sg_rx_p), GFP_ATOMIC);
1011 sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1012 /* offset, length setting */
1013 sg = dma->sg_rx_p;
1014 for (i = 0; i < num; i++, sg++) {
1015 if (i == (num - 2)) {
1016 sg->offset = size * i;
1017 sg->offset = sg->offset * (*bpw / 8);
1018 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1019 sg->offset);
1020 sg_dma_len(sg) = rem;
1021 } else if (i == (num - 1)) {
1022 sg->offset = size * (i - 1) + rem;
1023 sg->offset = sg->offset * (*bpw / 8);
1024 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1025 sg->offset);
1026 sg_dma_len(sg) = size;
1027 } else {
1028 sg->offset = size * i;
1029 sg->offset = sg->offset * (*bpw / 8);
1030 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1031 sg->offset);
1032 sg_dma_len(sg) = size;
1033 }
1034 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1035 }
1036 sg = dma->sg_rx_p;
1037 desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1038 num, DMA_DEV_TO_MEM,
1039 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1040 if (!desc_rx) {
1041 dev_err(&data->master->dev,
1042 "%s:dmaengine_prep_slave_sg Failed\n", __func__);
1043 return;
1044 }
1045 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1046 desc_rx->callback = pch_dma_rx_complete;
1047 desc_rx->callback_param = data;
1048 dma->nent = num;
1049 dma->desc_rx = desc_rx;
1050
1051 /* Calculate Tx parameter for DMA transmitting */
1052 if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1053 head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1054 if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1055 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1056 rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1057 } else {
1058 num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1059 rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1060 PCH_DMA_TRANS_SIZE - head;
1061 }
1062 size = PCH_DMA_TRANS_SIZE;
1063 } else {
1064 num = 1;
1065 size = data->bpw_len;
1066 rem = data->bpw_len;
1067 head = 0;
1068 }
1069
1070 dma->sg_tx_p = kcalloc(num, sizeof(*dma->sg_tx_p), GFP_ATOMIC);
1071 sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1072 /* offset, length setting */
1073 sg = dma->sg_tx_p;
1074 for (i = 0; i < num; i++, sg++) {
1075 if (i == 0) {
1076 sg->offset = 0;
1077 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1078 sg->offset);
1079 sg_dma_len(sg) = size + head;
1080 } else if (i == (num - 1)) {
1081 sg->offset = head + size * i;
1082 sg->offset = sg->offset * (*bpw / 8);
1083 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1084 sg->offset);
1085 sg_dma_len(sg) = rem;
1086 } else {
1087 sg->offset = head + size * i;
1088 sg->offset = sg->offset * (*bpw / 8);
1089 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1090 sg->offset);
1091 sg_dma_len(sg) = size;
1092 }
1093 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1094 }
1095 sg = dma->sg_tx_p;
1096 desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1097 sg, num, DMA_MEM_TO_DEV,
1098 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1099 if (!desc_tx) {
1100 dev_err(&data->master->dev,
1101 "%s:dmaengine_prep_slave_sg Failed\n", __func__);
1102 return;
1103 }
1104 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1105 desc_tx->callback = NULL;
1106 desc_tx->callback_param = data;
1107 dma->nent = num;
1108 dma->desc_tx = desc_tx;
1109
1110 dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
1111
1112 spin_lock_irqsave(&data->lock, flags);
1113 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1114 desc_rx->tx_submit(desc_rx);
1115 desc_tx->tx_submit(desc_tx);
1116 spin_unlock_irqrestore(&data->lock, flags);
1117
1118 /* reset transfer complete flag */
1119 data->transfer_complete = false;
1120 }
1121
1122 static void pch_spi_process_messages(struct work_struct *pwork)
1123 {
1124 struct spi_message *pmsg, *tmp;
1125 struct pch_spi_data *data;
1126 int bpw;
1127
1128 data = container_of(pwork, struct pch_spi_data, work);
1129 dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1130
1131 spin_lock(&data->lock);
1132 /* check if suspend has been initiated;if yes flush queue */
1133 if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1134 dev_dbg(&data->master->dev,
1135 "%s suspend/remove initiated, flushing queue\n", __func__);
1136 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1137 pmsg->status = -EIO;
1138
1139 if (pmsg->complete) {
1140 spin_unlock(&data->lock);
1141 pmsg->complete(pmsg->context);
1142 spin_lock(&data->lock);
1143 }
1144
1145 /* delete from queue */
1146 list_del_init(&pmsg->queue);
1147 }
1148
1149 spin_unlock(&data->lock);
1150 return;
1151 }
1152
1153 data->bcurrent_msg_processing = true;
1154 dev_dbg(&data->master->dev,
1155 "%s Set data->bcurrent_msg_processing= true\n", __func__);
1156
1157 /* Get the message from the queue and delete it from there. */
1158 data->current_msg = list_entry(data->queue.next, struct spi_message,
1159 queue);
1160
1161 list_del_init(&data->current_msg->queue);
1162
1163 data->current_msg->status = 0;
1164
1165 pch_spi_select_chip(data, data->current_msg->spi);
1166
1167 spin_unlock(&data->lock);
1168
1169 if (data->use_dma)
1170 pch_spi_request_dma(data,
1171 data->current_msg->spi->bits_per_word);
1172 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1173 do {
1174 int cnt;
1175 /* If we are already processing a message get the next
1176 transfer structure from the message otherwise retrieve
1177 the 1st transfer request from the message. */
1178 spin_lock(&data->lock);
1179 if (data->cur_trans == NULL) {
1180 data->cur_trans =
1181 list_entry(data->current_msg->transfers.next,
1182 struct spi_transfer, transfer_list);
1183 dev_dbg(&data->master->dev,
1184 "%s :Getting 1st transfer message\n",
1185 __func__);
1186 } else {
1187 data->cur_trans =
1188 list_entry(data->cur_trans->transfer_list.next,
1189 struct spi_transfer, transfer_list);
1190 dev_dbg(&data->master->dev,
1191 "%s :Getting next transfer message\n",
1192 __func__);
1193 }
1194 spin_unlock(&data->lock);
1195
1196 if (!data->cur_trans->len)
1197 goto out;
1198 cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1199 data->save_total_len = data->cur_trans->len;
1200 if (data->use_dma) {
1201 int i;
1202 char *save_rx_buf = data->cur_trans->rx_buf;
1203 for (i = 0; i < cnt; i ++) {
1204 pch_spi_handle_dma(data, &bpw);
1205 if (!pch_spi_start_transfer(data)) {
1206 data->transfer_complete = true;
1207 data->current_msg->status = -EIO;
1208 data->current_msg->complete
1209 (data->current_msg->context);
1210 data->bcurrent_msg_processing = false;
1211 data->current_msg = NULL;
1212 data->cur_trans = NULL;
1213 goto out;
1214 }
1215 pch_spi_copy_rx_data_for_dma(data, bpw);
1216 }
1217 data->cur_trans->rx_buf = save_rx_buf;
1218 } else {
1219 pch_spi_set_tx(data, &bpw);
1220 pch_spi_set_ir(data);
1221 pch_spi_copy_rx_data(data, bpw);
1222 kfree(data->pkt_rx_buff);
1223 data->pkt_rx_buff = NULL;
1224 kfree(data->pkt_tx_buff);
1225 data->pkt_tx_buff = NULL;
1226 }
1227 /* increment message count */
1228 data->cur_trans->len = data->save_total_len;
1229 data->current_msg->actual_length += data->cur_trans->len;
1230
1231 dev_dbg(&data->master->dev,
1232 "%s:data->current_msg->actual_length=%d\n",
1233 __func__, data->current_msg->actual_length);
1234
1235 /* check for delay */
1236 if (data->cur_trans->delay_usecs) {
1237 dev_dbg(&data->master->dev, "%s:delay in usec=%d\n",
1238 __func__, data->cur_trans->delay_usecs);
1239 udelay(data->cur_trans->delay_usecs);
1240 }
1241
1242 spin_lock(&data->lock);
1243
1244 /* No more transfer in this message. */
1245 if ((data->cur_trans->transfer_list.next) ==
1246 &(data->current_msg->transfers)) {
1247 pch_spi_nomore_transfer(data);
1248 }
1249
1250 spin_unlock(&data->lock);
1251
1252 } while (data->cur_trans != NULL);
1253
1254 out:
1255 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1256 if (data->use_dma)
1257 pch_spi_release_dma(data);
1258 }
1259
1260 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1261 struct pch_spi_data *data)
1262 {
1263 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1264
1265 flush_work(&data->work);
1266 }
1267
1268 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1269 struct pch_spi_data *data)
1270 {
1271 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1272
1273 /* reset PCH SPI h/w */
1274 pch_spi_reset(data->master);
1275 dev_dbg(&board_dat->pdev->dev,
1276 "%s pch_spi_reset invoked successfully\n", __func__);
1277
1278 dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1279
1280 return 0;
1281 }
1282
1283 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1284 struct pch_spi_data *data)
1285 {
1286 struct pch_spi_dma_ctrl *dma;
1287
1288 dma = &data->dma;
1289 if (dma->tx_buf_dma)
1290 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1291 dma->tx_buf_virt, dma->tx_buf_dma);
1292 if (dma->rx_buf_dma)
1293 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1294 dma->rx_buf_virt, dma->rx_buf_dma);
1295 }
1296
1297 static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1298 struct pch_spi_data *data)
1299 {
1300 struct pch_spi_dma_ctrl *dma;
1301
1302 dma = &data->dma;
1303 /* Get Consistent memory for Tx DMA */
1304 dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1305 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1306 /* Get Consistent memory for Rx DMA */
1307 dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1308 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1309 }
1310
1311 static int pch_spi_pd_probe(struct platform_device *plat_dev)
1312 {
1313 int ret;
1314 struct spi_master *master;
1315 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1316 struct pch_spi_data *data;
1317
1318 dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1319
1320 master = spi_alloc_master(&board_dat->pdev->dev,
1321 sizeof(struct pch_spi_data));
1322 if (!master) {
1323 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1324 plat_dev->id);
1325 return -ENOMEM;
1326 }
1327
1328 data = spi_master_get_devdata(master);
1329 data->master = master;
1330
1331 platform_set_drvdata(plat_dev, data);
1332
1333 /* baseaddress + address offset) */
1334 data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1335 PCH_ADDRESS_SIZE * plat_dev->id;
1336 data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
1337 if (!data->io_remap_addr) {
1338 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1339 ret = -ENOMEM;
1340 goto err_pci_iomap;
1341 }
1342 data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1343
1344 dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1345 plat_dev->id, data->io_remap_addr);
1346
1347 /* initialize members of SPI master */
1348 master->num_chipselect = PCH_MAX_CS;
1349 master->transfer = pch_spi_transfer;
1350 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1351 master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1352 master->max_speed_hz = PCH_MAX_BAUDRATE;
1353
1354 data->board_dat = board_dat;
1355 data->plat_dev = plat_dev;
1356 data->n_curnt_chip = 255;
1357 data->status = STATUS_RUNNING;
1358 data->ch = plat_dev->id;
1359 data->use_dma = use_dma;
1360
1361 INIT_LIST_HEAD(&data->queue);
1362 spin_lock_init(&data->lock);
1363 INIT_WORK(&data->work, pch_spi_process_messages);
1364 init_waitqueue_head(&data->wait);
1365
1366 ret = pch_spi_get_resources(board_dat, data);
1367 if (ret) {
1368 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1369 goto err_spi_get_resources;
1370 }
1371
1372 ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1373 IRQF_SHARED, KBUILD_MODNAME, data);
1374 if (ret) {
1375 dev_err(&plat_dev->dev,
1376 "%s request_irq failed\n", __func__);
1377 goto err_request_irq;
1378 }
1379 data->irq_reg_sts = true;
1380
1381 pch_spi_set_master_mode(master);
1382
1383 if (use_dma) {
1384 dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1385 pch_alloc_dma_buf(board_dat, data);
1386 }
1387
1388 ret = spi_register_master(master);
1389 if (ret != 0) {
1390 dev_err(&plat_dev->dev,
1391 "%s spi_register_master FAILED\n", __func__);
1392 goto err_spi_register_master;
1393 }
1394
1395 return 0;
1396
1397 err_spi_register_master:
1398 pch_free_dma_buf(board_dat, data);
1399 free_irq(board_dat->pdev->irq, data);
1400 err_request_irq:
1401 pch_spi_free_resources(board_dat, data);
1402 err_spi_get_resources:
1403 pci_iounmap(board_dat->pdev, data->io_remap_addr);
1404 err_pci_iomap:
1405 spi_master_put(master);
1406
1407 return ret;
1408 }
1409
1410 static int pch_spi_pd_remove(struct platform_device *plat_dev)
1411 {
1412 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1413 struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1414 int count;
1415 unsigned long flags;
1416
1417 dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1418 __func__, plat_dev->id, board_dat->pdev->irq);
1419
1420 if (use_dma)
1421 pch_free_dma_buf(board_dat, data);
1422
1423 /* check for any pending messages; no action is taken if the queue
1424 * is still full; but at least we tried. Unload anyway */
1425 count = 500;
1426 spin_lock_irqsave(&data->lock, flags);
1427 data->status = STATUS_EXITING;
1428 while ((list_empty(&data->queue) == 0) && --count) {
1429 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1430 __func__);
1431 spin_unlock_irqrestore(&data->lock, flags);
1432 msleep(PCH_SLEEP_TIME);
1433 spin_lock_irqsave(&data->lock, flags);
1434 }
1435 spin_unlock_irqrestore(&data->lock, flags);
1436
1437 pch_spi_free_resources(board_dat, data);
1438 /* disable interrupts & free IRQ */
1439 if (data->irq_reg_sts) {
1440 /* disable interrupts */
1441 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1442 data->irq_reg_sts = false;
1443 free_irq(board_dat->pdev->irq, data);
1444 }
1445
1446 pci_iounmap(board_dat->pdev, data->io_remap_addr);
1447 spi_unregister_master(data->master);
1448
1449 return 0;
1450 }
1451 #ifdef CONFIG_PM
1452 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1453 pm_message_t state)
1454 {
1455 u8 count;
1456 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1457 struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1458
1459 dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1460
1461 if (!board_dat) {
1462 dev_err(&pd_dev->dev,
1463 "%s pci_get_drvdata returned NULL\n", __func__);
1464 return -EFAULT;
1465 }
1466
1467 /* check if the current message is processed:
1468 Only after thats done the transfer will be suspended */
1469 count = 255;
1470 while ((--count) > 0) {
1471 if (!(data->bcurrent_msg_processing))
1472 break;
1473 msleep(PCH_SLEEP_TIME);
1474 }
1475
1476 /* Free IRQ */
1477 if (data->irq_reg_sts) {
1478 /* disable all interrupts */
1479 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1480 pch_spi_reset(data->master);
1481 free_irq(board_dat->pdev->irq, data);
1482
1483 data->irq_reg_sts = false;
1484 dev_dbg(&pd_dev->dev,
1485 "%s free_irq invoked successfully.\n", __func__);
1486 }
1487
1488 return 0;
1489 }
1490
1491 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1492 {
1493 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1494 struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1495 int retval;
1496
1497 if (!board_dat) {
1498 dev_err(&pd_dev->dev,
1499 "%s pci_get_drvdata returned NULL\n", __func__);
1500 return -EFAULT;
1501 }
1502
1503 if (!data->irq_reg_sts) {
1504 /* register IRQ */
1505 retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1506 IRQF_SHARED, KBUILD_MODNAME, data);
1507 if (retval < 0) {
1508 dev_err(&pd_dev->dev,
1509 "%s request_irq failed\n", __func__);
1510 return retval;
1511 }
1512
1513 /* reset PCH SPI h/w */
1514 pch_spi_reset(data->master);
1515 pch_spi_set_master_mode(data->master);
1516 data->irq_reg_sts = true;
1517 }
1518 return 0;
1519 }
1520 #else
1521 #define pch_spi_pd_suspend NULL
1522 #define pch_spi_pd_resume NULL
1523 #endif
1524
1525 static struct platform_driver pch_spi_pd_driver = {
1526 .driver = {
1527 .name = "pch-spi",
1528 },
1529 .probe = pch_spi_pd_probe,
1530 .remove = pch_spi_pd_remove,
1531 .suspend = pch_spi_pd_suspend,
1532 .resume = pch_spi_pd_resume
1533 };
1534
1535 static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1536 {
1537 struct pch_spi_board_data *board_dat;
1538 struct platform_device *pd_dev = NULL;
1539 int retval;
1540 int i;
1541 struct pch_pd_dev_save *pd_dev_save;
1542
1543 pd_dev_save = kzalloc(sizeof(*pd_dev_save), GFP_KERNEL);
1544 if (!pd_dev_save)
1545 return -ENOMEM;
1546
1547 board_dat = kzalloc(sizeof(*board_dat), GFP_KERNEL);
1548 if (!board_dat) {
1549 retval = -ENOMEM;
1550 goto err_no_mem;
1551 }
1552
1553 retval = pci_request_regions(pdev, KBUILD_MODNAME);
1554 if (retval) {
1555 dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1556 goto pci_request_regions;
1557 }
1558
1559 board_dat->pdev = pdev;
1560 board_dat->num = id->driver_data;
1561 pd_dev_save->num = id->driver_data;
1562 pd_dev_save->board_dat = board_dat;
1563
1564 retval = pci_enable_device(pdev);
1565 if (retval) {
1566 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1567 goto pci_enable_device;
1568 }
1569
1570 for (i = 0; i < board_dat->num; i++) {
1571 pd_dev = platform_device_alloc("pch-spi", i);
1572 if (!pd_dev) {
1573 dev_err(&pdev->dev, "platform_device_alloc failed\n");
1574 retval = -ENOMEM;
1575 goto err_platform_device;
1576 }
1577 pd_dev_save->pd_save[i] = pd_dev;
1578 pd_dev->dev.parent = &pdev->dev;
1579
1580 retval = platform_device_add_data(pd_dev, board_dat,
1581 sizeof(*board_dat));
1582 if (retval) {
1583 dev_err(&pdev->dev,
1584 "platform_device_add_data failed\n");
1585 platform_device_put(pd_dev);
1586 goto err_platform_device;
1587 }
1588
1589 retval = platform_device_add(pd_dev);
1590 if (retval) {
1591 dev_err(&pdev->dev, "platform_device_add failed\n");
1592 platform_device_put(pd_dev);
1593 goto err_platform_device;
1594 }
1595 }
1596
1597 pci_set_drvdata(pdev, pd_dev_save);
1598
1599 return 0;
1600
1601 err_platform_device:
1602 while (--i >= 0)
1603 platform_device_unregister(pd_dev_save->pd_save[i]);
1604 pci_disable_device(pdev);
1605 pci_enable_device:
1606 pci_release_regions(pdev);
1607 pci_request_regions:
1608 kfree(board_dat);
1609 err_no_mem:
1610 kfree(pd_dev_save);
1611
1612 return retval;
1613 }
1614
1615 static void pch_spi_remove(struct pci_dev *pdev)
1616 {
1617 int i;
1618 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1619
1620 dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1621
1622 for (i = 0; i < pd_dev_save->num; i++)
1623 platform_device_unregister(pd_dev_save->pd_save[i]);
1624
1625 pci_disable_device(pdev);
1626 pci_release_regions(pdev);
1627 kfree(pd_dev_save->board_dat);
1628 kfree(pd_dev_save);
1629 }
1630
1631 #ifdef CONFIG_PM
1632 static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1633 {
1634 int retval;
1635 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1636
1637 dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1638
1639 pd_dev_save->board_dat->suspend_sts = true;
1640
1641 /* save config space */
1642 retval = pci_save_state(pdev);
1643 if (retval == 0) {
1644 pci_enable_wake(pdev, PCI_D3hot, 0);
1645 pci_disable_device(pdev);
1646 pci_set_power_state(pdev, PCI_D3hot);
1647 } else {
1648 dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1649 }
1650
1651 return retval;
1652 }
1653
1654 static int pch_spi_resume(struct pci_dev *pdev)
1655 {
1656 int retval;
1657 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1658 dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1659
1660 pci_set_power_state(pdev, PCI_D0);
1661 pci_restore_state(pdev);
1662
1663 retval = pci_enable_device(pdev);
1664 if (retval < 0) {
1665 dev_err(&pdev->dev,
1666 "%s pci_enable_device failed\n", __func__);
1667 } else {
1668 pci_enable_wake(pdev, PCI_D3hot, 0);
1669
1670 /* set suspend status to false */
1671 pd_dev_save->board_dat->suspend_sts = false;
1672 }
1673
1674 return retval;
1675 }
1676 #else
1677 #define pch_spi_suspend NULL
1678 #define pch_spi_resume NULL
1679
1680 #endif
1681
1682 static struct pci_driver pch_spi_pcidev_driver = {
1683 .name = "pch_spi",
1684 .id_table = pch_spi_pcidev_id,
1685 .probe = pch_spi_probe,
1686 .remove = pch_spi_remove,
1687 .suspend = pch_spi_suspend,
1688 .resume = pch_spi_resume,
1689 };
1690
1691 static int __init pch_spi_init(void)
1692 {
1693 int ret;
1694 ret = platform_driver_register(&pch_spi_pd_driver);
1695 if (ret)
1696 return ret;
1697
1698 ret = pci_register_driver(&pch_spi_pcidev_driver);
1699 if (ret) {
1700 platform_driver_unregister(&pch_spi_pd_driver);
1701 return ret;
1702 }
1703
1704 return 0;
1705 }
1706 module_init(pch_spi_init);
1707
1708 static void __exit pch_spi_exit(void)
1709 {
1710 pci_unregister_driver(&pch_spi_pcidev_driver);
1711 platform_driver_unregister(&pch_spi_pd_driver);
1712 }
1713 module_exit(pch_spi_exit);
1714
1715 module_param(use_dma, int, 0644);
1716 MODULE_PARM_DESC(use_dma,
1717 "to use DMA for data transfers pass 1 else 0; default 1");
1718
1719 MODULE_LICENSE("GPL");
1720 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1721 MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1722