]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/spi/spi-xlp.c
x86/cpu: Make alternative_msr_write work for 32-bit code
[mirror_ubuntu-artful-kernel.git] / drivers / spi / spi-xlp.c
1 /*
2 * Copyright (C) 2003-2015 Broadcom Corporation
3 * All Rights Reserved
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 (GPL v2)
7 * as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 */
14 #include <linux/acpi.h>
15 #include <linux/clk.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/platform_device.h>
19 #include <linux/spi/spi.h>
20 #include <linux/of.h>
21 #include <linux/interrupt.h>
22
23 /* SPI Configuration Register */
24 #define XLP_SPI_CONFIG 0x00
25 #define XLP_SPI_CPHA BIT(0)
26 #define XLP_SPI_CPOL BIT(1)
27 #define XLP_SPI_CS_POL BIT(2)
28 #define XLP_SPI_TXMISO_EN BIT(3)
29 #define XLP_SPI_TXMOSI_EN BIT(4)
30 #define XLP_SPI_RXMISO_EN BIT(5)
31 #define XLP_SPI_CS_LSBFE BIT(10)
32 #define XLP_SPI_RXCAP_EN BIT(11)
33
34 /* SPI Frequency Divider Register */
35 #define XLP_SPI_FDIV 0x04
36
37 /* SPI Command Register */
38 #define XLP_SPI_CMD 0x08
39 #define XLP_SPI_CMD_IDLE_MASK 0x0
40 #define XLP_SPI_CMD_TX_MASK 0x1
41 #define XLP_SPI_CMD_RX_MASK 0x2
42 #define XLP_SPI_CMD_TXRX_MASK 0x3
43 #define XLP_SPI_CMD_CONT BIT(4)
44 #define XLP_SPI_XFR_BITCNT_SHIFT 16
45
46 /* SPI Status Register */
47 #define XLP_SPI_STATUS 0x0c
48 #define XLP_SPI_XFR_PENDING BIT(0)
49 #define XLP_SPI_XFR_DONE BIT(1)
50 #define XLP_SPI_TX_INT BIT(2)
51 #define XLP_SPI_RX_INT BIT(3)
52 #define XLP_SPI_TX_UF BIT(4)
53 #define XLP_SPI_RX_OF BIT(5)
54 #define XLP_SPI_STAT_MASK 0x3f
55
56 /* SPI Interrupt Enable Register */
57 #define XLP_SPI_INTR_EN 0x10
58 #define XLP_SPI_INTR_DONE BIT(0)
59 #define XLP_SPI_INTR_TXTH BIT(1)
60 #define XLP_SPI_INTR_RXTH BIT(2)
61 #define XLP_SPI_INTR_TXUF BIT(3)
62 #define XLP_SPI_INTR_RXOF BIT(4)
63
64 /* SPI FIFO Threshold Register */
65 #define XLP_SPI_FIFO_THRESH 0x14
66
67 /* SPI FIFO Word Count Register */
68 #define XLP_SPI_FIFO_WCNT 0x18
69 #define XLP_SPI_RXFIFO_WCNT_MASK 0xf
70 #define XLP_SPI_TXFIFO_WCNT_MASK 0xf0
71 #define XLP_SPI_TXFIFO_WCNT_SHIFT 4
72
73 /* SPI Transmit Data FIFO Register */
74 #define XLP_SPI_TXDATA_FIFO 0x1c
75
76 /* SPI Receive Data FIFO Register */
77 #define XLP_SPI_RXDATA_FIFO 0x20
78
79 /* SPI System Control Register */
80 #define XLP_SPI_SYSCTRL 0x100
81 #define XLP_SPI_SYS_RESET BIT(0)
82 #define XLP_SPI_SYS_CLKDIS BIT(1)
83 #define XLP_SPI_SYS_PMEN BIT(8)
84
85 #define SPI_CS_OFFSET 0x40
86 #define XLP_SPI_TXRXTH 0x80
87 #define XLP_SPI_FIFO_SIZE 8
88 #define XLP_SPI_MAX_CS 4
89 #define XLP_SPI_DEFAULT_FREQ 133333333
90 #define XLP_SPI_FDIV_MIN 4
91 #define XLP_SPI_FDIV_MAX 65535
92 /*
93 * SPI can transfer only 28 bytes properly at a time. So split the
94 * transfer into 28 bytes size.
95 */
96 #define XLP_SPI_XFER_SIZE 28
97
98 struct xlp_spi_priv {
99 struct device dev; /* device structure */
100 void __iomem *base; /* spi registers base address */
101 const u8 *tx_buf; /* tx data buffer */
102 u8 *rx_buf; /* rx data buffer */
103 int tx_len; /* tx xfer length */
104 int rx_len; /* rx xfer length */
105 int txerrors; /* TXFIFO underflow count */
106 int rxerrors; /* RXFIFO overflow count */
107 int cs; /* slave device chip select */
108 u32 spi_clk; /* spi clock frequency */
109 bool cmd_cont; /* cs active */
110 struct completion done; /* completion notification */
111 };
112
113 static inline u32 xlp_spi_reg_read(struct xlp_spi_priv *priv,
114 int cs, int regoff)
115 {
116 return readl(priv->base + regoff + cs * SPI_CS_OFFSET);
117 }
118
119 static inline void xlp_spi_reg_write(struct xlp_spi_priv *priv, int cs,
120 int regoff, u32 val)
121 {
122 writel(val, priv->base + regoff + cs * SPI_CS_OFFSET);
123 }
124
125 static inline void xlp_spi_sysctl_write(struct xlp_spi_priv *priv,
126 int regoff, u32 val)
127 {
128 writel(val, priv->base + regoff);
129 }
130
131 /*
132 * Setup global SPI_SYSCTRL register for all SPI channels.
133 */
134 static void xlp_spi_sysctl_setup(struct xlp_spi_priv *xspi)
135 {
136 int cs;
137
138 for (cs = 0; cs < XLP_SPI_MAX_CS; cs++)
139 xlp_spi_sysctl_write(xspi, XLP_SPI_SYSCTRL,
140 XLP_SPI_SYS_RESET << cs);
141 xlp_spi_sysctl_write(xspi, XLP_SPI_SYSCTRL, XLP_SPI_SYS_PMEN);
142 }
143
144 static int xlp_spi_setup(struct spi_device *spi)
145 {
146 struct xlp_spi_priv *xspi;
147 u32 fdiv, cfg;
148 int cs;
149
150 xspi = spi_master_get_devdata(spi->master);
151 cs = spi->chip_select;
152 /*
153 * The value of fdiv must be between 4 and 65535.
154 */
155 fdiv = DIV_ROUND_UP(xspi->spi_clk, spi->max_speed_hz);
156 if (fdiv > XLP_SPI_FDIV_MAX)
157 fdiv = XLP_SPI_FDIV_MAX;
158 else if (fdiv < XLP_SPI_FDIV_MIN)
159 fdiv = XLP_SPI_FDIV_MIN;
160
161 xlp_spi_reg_write(xspi, cs, XLP_SPI_FDIV, fdiv);
162 xlp_spi_reg_write(xspi, cs, XLP_SPI_FIFO_THRESH, XLP_SPI_TXRXTH);
163 cfg = xlp_spi_reg_read(xspi, cs, XLP_SPI_CONFIG);
164 if (spi->mode & SPI_CPHA)
165 cfg |= XLP_SPI_CPHA;
166 else
167 cfg &= ~XLP_SPI_CPHA;
168 if (spi->mode & SPI_CPOL)
169 cfg |= XLP_SPI_CPOL;
170 else
171 cfg &= ~XLP_SPI_CPOL;
172 if (!(spi->mode & SPI_CS_HIGH))
173 cfg |= XLP_SPI_CS_POL;
174 else
175 cfg &= ~XLP_SPI_CS_POL;
176 if (spi->mode & SPI_LSB_FIRST)
177 cfg |= XLP_SPI_CS_LSBFE;
178 else
179 cfg &= ~XLP_SPI_CS_LSBFE;
180
181 cfg |= XLP_SPI_TXMOSI_EN | XLP_SPI_RXMISO_EN;
182 if (fdiv == 4)
183 cfg |= XLP_SPI_RXCAP_EN;
184 xlp_spi_reg_write(xspi, cs, XLP_SPI_CONFIG, cfg);
185
186 return 0;
187 }
188
189 static void xlp_spi_read_rxfifo(struct xlp_spi_priv *xspi)
190 {
191 u32 rx_data, rxfifo_cnt;
192 int i, j, nbytes;
193
194 rxfifo_cnt = xlp_spi_reg_read(xspi, xspi->cs, XLP_SPI_FIFO_WCNT);
195 rxfifo_cnt &= XLP_SPI_RXFIFO_WCNT_MASK;
196 while (rxfifo_cnt) {
197 rx_data = xlp_spi_reg_read(xspi, xspi->cs, XLP_SPI_RXDATA_FIFO);
198 j = 0;
199 nbytes = min(xspi->rx_len, 4);
200 for (i = nbytes - 1; i >= 0; i--, j++)
201 xspi->rx_buf[i] = (rx_data >> (j * 8)) & 0xff;
202
203 xspi->rx_len -= nbytes;
204 xspi->rx_buf += nbytes;
205 rxfifo_cnt--;
206 }
207 }
208
209 static void xlp_spi_fill_txfifo(struct xlp_spi_priv *xspi)
210 {
211 u32 tx_data, txfifo_cnt;
212 int i, j, nbytes;
213
214 txfifo_cnt = xlp_spi_reg_read(xspi, xspi->cs, XLP_SPI_FIFO_WCNT);
215 txfifo_cnt &= XLP_SPI_TXFIFO_WCNT_MASK;
216 txfifo_cnt >>= XLP_SPI_TXFIFO_WCNT_SHIFT;
217 while (xspi->tx_len && (txfifo_cnt < XLP_SPI_FIFO_SIZE)) {
218 j = 0;
219 tx_data = 0;
220 nbytes = min(xspi->tx_len, 4);
221 for (i = nbytes - 1; i >= 0; i--, j++)
222 tx_data |= xspi->tx_buf[i] << (j * 8);
223
224 xlp_spi_reg_write(xspi, xspi->cs, XLP_SPI_TXDATA_FIFO, tx_data);
225 xspi->tx_len -= nbytes;
226 xspi->tx_buf += nbytes;
227 txfifo_cnt++;
228 }
229 }
230
231 static irqreturn_t xlp_spi_interrupt(int irq, void *dev_id)
232 {
233 struct xlp_spi_priv *xspi = dev_id;
234 u32 stat;
235
236 stat = xlp_spi_reg_read(xspi, xspi->cs, XLP_SPI_STATUS) &
237 XLP_SPI_STAT_MASK;
238 if (!stat)
239 return IRQ_NONE;
240
241 if (stat & XLP_SPI_TX_INT) {
242 if (xspi->tx_len)
243 xlp_spi_fill_txfifo(xspi);
244 if (stat & XLP_SPI_TX_UF)
245 xspi->txerrors++;
246 }
247
248 if (stat & XLP_SPI_RX_INT) {
249 if (xspi->rx_len)
250 xlp_spi_read_rxfifo(xspi);
251 if (stat & XLP_SPI_RX_OF)
252 xspi->rxerrors++;
253 }
254
255 /* write status back to clear interrupts */
256 xlp_spi_reg_write(xspi, xspi->cs, XLP_SPI_STATUS, stat);
257 if (stat & XLP_SPI_XFR_DONE)
258 complete(&xspi->done);
259
260 return IRQ_HANDLED;
261 }
262
263 static void xlp_spi_send_cmd(struct xlp_spi_priv *xspi, int xfer_len,
264 int cmd_cont)
265 {
266 u32 cmd = 0;
267
268 if (xspi->tx_buf)
269 cmd |= XLP_SPI_CMD_TX_MASK;
270 if (xspi->rx_buf)
271 cmd |= XLP_SPI_CMD_RX_MASK;
272 if (cmd_cont)
273 cmd |= XLP_SPI_CMD_CONT;
274 cmd |= ((xfer_len * 8 - 1) << XLP_SPI_XFR_BITCNT_SHIFT);
275 xlp_spi_reg_write(xspi, xspi->cs, XLP_SPI_CMD, cmd);
276 }
277
278 static int xlp_spi_xfer_block(struct xlp_spi_priv *xs,
279 const unsigned char *tx_buf,
280 unsigned char *rx_buf, int xfer_len, int cmd_cont)
281 {
282 int timeout;
283 u32 intr_mask = 0;
284
285 xs->tx_buf = tx_buf;
286 xs->rx_buf = rx_buf;
287 xs->tx_len = (xs->tx_buf == NULL) ? 0 : xfer_len;
288 xs->rx_len = (xs->rx_buf == NULL) ? 0 : xfer_len;
289 xs->txerrors = xs->rxerrors = 0;
290
291 /* fill TXDATA_FIFO, then send the CMD */
292 if (xs->tx_len)
293 xlp_spi_fill_txfifo(xs);
294
295 xlp_spi_send_cmd(xs, xfer_len, cmd_cont);
296
297 /*
298 * We are getting some spurious tx interrupts, so avoid enabling
299 * tx interrupts when only rx is in process.
300 * Enable all the interrupts in tx case.
301 */
302 if (xs->tx_len)
303 intr_mask |= XLP_SPI_INTR_TXTH | XLP_SPI_INTR_TXUF |
304 XLP_SPI_INTR_RXTH | XLP_SPI_INTR_RXOF;
305 else
306 intr_mask |= XLP_SPI_INTR_RXTH | XLP_SPI_INTR_RXOF;
307
308 intr_mask |= XLP_SPI_INTR_DONE;
309 xlp_spi_reg_write(xs, xs->cs, XLP_SPI_INTR_EN, intr_mask);
310
311 timeout = wait_for_completion_timeout(&xs->done,
312 msecs_to_jiffies(1000));
313 /* Disable interrupts */
314 xlp_spi_reg_write(xs, xs->cs, XLP_SPI_INTR_EN, 0x0);
315 if (!timeout) {
316 dev_err(&xs->dev, "xfer timedout!\n");
317 goto out;
318 }
319 if (xs->txerrors || xs->rxerrors)
320 dev_err(&xs->dev, "Over/Underflow rx %d tx %d xfer %d!\n",
321 xs->rxerrors, xs->txerrors, xfer_len);
322
323 return xfer_len;
324 out:
325 return -ETIMEDOUT;
326 }
327
328 static int xlp_spi_txrx_bufs(struct xlp_spi_priv *xs, struct spi_transfer *t)
329 {
330 int bytesleft, sz;
331 unsigned char *rx_buf;
332 const unsigned char *tx_buf;
333
334 tx_buf = t->tx_buf;
335 rx_buf = t->rx_buf;
336 bytesleft = t->len;
337 while (bytesleft) {
338 if (bytesleft > XLP_SPI_XFER_SIZE)
339 sz = xlp_spi_xfer_block(xs, tx_buf, rx_buf,
340 XLP_SPI_XFER_SIZE, 1);
341 else
342 sz = xlp_spi_xfer_block(xs, tx_buf, rx_buf,
343 bytesleft, xs->cmd_cont);
344 if (sz < 0)
345 return sz;
346 bytesleft -= sz;
347 if (tx_buf)
348 tx_buf += sz;
349 if (rx_buf)
350 rx_buf += sz;
351 }
352 return bytesleft;
353 }
354
355 static int xlp_spi_transfer_one(struct spi_master *master,
356 struct spi_device *spi,
357 struct spi_transfer *t)
358 {
359 struct xlp_spi_priv *xspi = spi_master_get_devdata(master);
360 int ret = 0;
361
362 xspi->cs = spi->chip_select;
363 xspi->dev = spi->dev;
364
365 if (spi_transfer_is_last(master, t))
366 xspi->cmd_cont = 0;
367 else
368 xspi->cmd_cont = 1;
369
370 if (xlp_spi_txrx_bufs(xspi, t))
371 ret = -EIO;
372
373 spi_finalize_current_transfer(master);
374 return ret;
375 }
376
377 static int xlp_spi_probe(struct platform_device *pdev)
378 {
379 struct spi_master *master;
380 struct xlp_spi_priv *xspi;
381 struct resource *res;
382 struct clk *clk;
383 int irq, err;
384
385 xspi = devm_kzalloc(&pdev->dev, sizeof(*xspi), GFP_KERNEL);
386 if (!xspi)
387 return -ENOMEM;
388
389 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
390 xspi->base = devm_ioremap_resource(&pdev->dev, res);
391 if (IS_ERR(xspi->base))
392 return PTR_ERR(xspi->base);
393
394 irq = platform_get_irq(pdev, 0);
395 if (irq < 0) {
396 dev_err(&pdev->dev, "no IRQ resource found\n");
397 return -EINVAL;
398 }
399 err = devm_request_irq(&pdev->dev, irq, xlp_spi_interrupt, 0,
400 pdev->name, xspi);
401 if (err) {
402 dev_err(&pdev->dev, "unable to request irq %d\n", irq);
403 return err;
404 }
405
406 clk = devm_clk_get(&pdev->dev, NULL);
407 if (IS_ERR(clk)) {
408 dev_err(&pdev->dev, "could not get spi clock\n");
409 return PTR_ERR(clk);
410 }
411
412 xspi->spi_clk = clk_get_rate(clk);
413
414 master = spi_alloc_master(&pdev->dev, 0);
415 if (!master) {
416 dev_err(&pdev->dev, "could not alloc master\n");
417 return -ENOMEM;
418 }
419
420 master->bus_num = 0;
421 master->num_chipselect = XLP_SPI_MAX_CS;
422 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
423 master->setup = xlp_spi_setup;
424 master->transfer_one = xlp_spi_transfer_one;
425 master->dev.of_node = pdev->dev.of_node;
426
427 init_completion(&xspi->done);
428 spi_master_set_devdata(master, xspi);
429 xlp_spi_sysctl_setup(xspi);
430
431 /* register spi controller */
432 err = devm_spi_register_master(&pdev->dev, master);
433 if (err) {
434 dev_err(&pdev->dev, "spi register master failed!\n");
435 spi_master_put(master);
436 return err;
437 }
438
439 return 0;
440 }
441
442 #ifdef CONFIG_ACPI
443 static const struct acpi_device_id xlp_spi_acpi_match[] = {
444 { "BRCM900D", 0 },
445 { "CAV900D", 0 },
446 { },
447 };
448 MODULE_DEVICE_TABLE(acpi, xlp_spi_acpi_match);
449 #endif
450
451 static const struct of_device_id xlp_spi_dt_id[] = {
452 { .compatible = "netlogic,xlp832-spi" },
453 { },
454 };
455 MODULE_DEVICE_TABLE(of, xlp_spi_dt_id);
456
457 static struct platform_driver xlp_spi_driver = {
458 .probe = xlp_spi_probe,
459 .driver = {
460 .name = "xlp-spi",
461 .of_match_table = xlp_spi_dt_id,
462 .acpi_match_table = ACPI_PTR(xlp_spi_acpi_match),
463 },
464 };
465 module_platform_driver(xlp_spi_driver);
466
467 MODULE_AUTHOR("Kamlakant Patel <kamlakant.patel@broadcom.com>");
468 MODULE_DESCRIPTION("Netlogic XLP SPI controller driver");
469 MODULE_LICENSE("GPL v2");