]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/spi/spi.c
efi/arm: Fix boot crash with CONFIG_CPUMASK_OFFSTACK=y
[mirror_ubuntu-artful-kernel.git] / drivers / spi / spi.c
1 /*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40 #include <linux/highmem.h>
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/spi.h>
44
45 static void spidev_release(struct device *dev)
46 {
47 struct spi_device *spi = to_spi_device(dev);
48
49 /* spi masters may cleanup for released devices */
50 if (spi->master->cleanup)
51 spi->master->cleanup(spi);
52
53 spi_master_put(spi->master);
54 kfree(spi);
55 }
56
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60 const struct spi_device *spi = to_spi_device(dev);
61 int len;
62
63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 if (len != -ENODEV)
65 return len;
66
67 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70
71 #define SPI_STATISTICS_ATTRS(field, file) \
72 static ssize_t spi_master_##field##_show(struct device *dev, \
73 struct device_attribute *attr, \
74 char *buf) \
75 { \
76 struct spi_master *master = container_of(dev, \
77 struct spi_master, dev); \
78 return spi_statistics_##field##_show(&master->statistics, buf); \
79 } \
80 static struct device_attribute dev_attr_spi_master_##field = { \
81 .attr = { .name = file, .mode = S_IRUGO }, \
82 .show = spi_master_##field##_show, \
83 }; \
84 static ssize_t spi_device_##field##_show(struct device *dev, \
85 struct device_attribute *attr, \
86 char *buf) \
87 { \
88 struct spi_device *spi = to_spi_device(dev); \
89 return spi_statistics_##field##_show(&spi->statistics, buf); \
90 } \
91 static struct device_attribute dev_attr_spi_device_##field = { \
92 .attr = { .name = file, .mode = S_IRUGO }, \
93 .show = spi_device_##field##_show, \
94 }
95
96 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
97 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
98 char *buf) \
99 { \
100 unsigned long flags; \
101 ssize_t len; \
102 spin_lock_irqsave(&stat->lock, flags); \
103 len = sprintf(buf, format_string, stat->field); \
104 spin_unlock_irqrestore(&stat->lock, flags); \
105 return len; \
106 } \
107 SPI_STATISTICS_ATTRS(name, file)
108
109 #define SPI_STATISTICS_SHOW(field, format_string) \
110 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
111 field, format_string)
112
113 SPI_STATISTICS_SHOW(messages, "%lu");
114 SPI_STATISTICS_SHOW(transfers, "%lu");
115 SPI_STATISTICS_SHOW(errors, "%lu");
116 SPI_STATISTICS_SHOW(timedout, "%lu");
117
118 SPI_STATISTICS_SHOW(spi_sync, "%lu");
119 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
120 SPI_STATISTICS_SHOW(spi_async, "%lu");
121
122 SPI_STATISTICS_SHOW(bytes, "%llu");
123 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
124 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
125
126 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
127 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
128 "transfer_bytes_histo_" number, \
129 transfer_bytes_histo[index], "%lu")
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
147
148 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
149
150 static struct attribute *spi_dev_attrs[] = {
151 &dev_attr_modalias.attr,
152 NULL,
153 };
154
155 static const struct attribute_group spi_dev_group = {
156 .attrs = spi_dev_attrs,
157 };
158
159 static struct attribute *spi_device_statistics_attrs[] = {
160 &dev_attr_spi_device_messages.attr,
161 &dev_attr_spi_device_transfers.attr,
162 &dev_attr_spi_device_errors.attr,
163 &dev_attr_spi_device_timedout.attr,
164 &dev_attr_spi_device_spi_sync.attr,
165 &dev_attr_spi_device_spi_sync_immediate.attr,
166 &dev_attr_spi_device_spi_async.attr,
167 &dev_attr_spi_device_bytes.attr,
168 &dev_attr_spi_device_bytes_rx.attr,
169 &dev_attr_spi_device_bytes_tx.attr,
170 &dev_attr_spi_device_transfer_bytes_histo0.attr,
171 &dev_attr_spi_device_transfer_bytes_histo1.attr,
172 &dev_attr_spi_device_transfer_bytes_histo2.attr,
173 &dev_attr_spi_device_transfer_bytes_histo3.attr,
174 &dev_attr_spi_device_transfer_bytes_histo4.attr,
175 &dev_attr_spi_device_transfer_bytes_histo5.attr,
176 &dev_attr_spi_device_transfer_bytes_histo6.attr,
177 &dev_attr_spi_device_transfer_bytes_histo7.attr,
178 &dev_attr_spi_device_transfer_bytes_histo8.attr,
179 &dev_attr_spi_device_transfer_bytes_histo9.attr,
180 &dev_attr_spi_device_transfer_bytes_histo10.attr,
181 &dev_attr_spi_device_transfer_bytes_histo11.attr,
182 &dev_attr_spi_device_transfer_bytes_histo12.attr,
183 &dev_attr_spi_device_transfer_bytes_histo13.attr,
184 &dev_attr_spi_device_transfer_bytes_histo14.attr,
185 &dev_attr_spi_device_transfer_bytes_histo15.attr,
186 &dev_attr_spi_device_transfer_bytes_histo16.attr,
187 &dev_attr_spi_device_transfers_split_maxsize.attr,
188 NULL,
189 };
190
191 static const struct attribute_group spi_device_statistics_group = {
192 .name = "statistics",
193 .attrs = spi_device_statistics_attrs,
194 };
195
196 static const struct attribute_group *spi_dev_groups[] = {
197 &spi_dev_group,
198 &spi_device_statistics_group,
199 NULL,
200 };
201
202 static struct attribute *spi_master_statistics_attrs[] = {
203 &dev_attr_spi_master_messages.attr,
204 &dev_attr_spi_master_transfers.attr,
205 &dev_attr_spi_master_errors.attr,
206 &dev_attr_spi_master_timedout.attr,
207 &dev_attr_spi_master_spi_sync.attr,
208 &dev_attr_spi_master_spi_sync_immediate.attr,
209 &dev_attr_spi_master_spi_async.attr,
210 &dev_attr_spi_master_bytes.attr,
211 &dev_attr_spi_master_bytes_rx.attr,
212 &dev_attr_spi_master_bytes_tx.attr,
213 &dev_attr_spi_master_transfer_bytes_histo0.attr,
214 &dev_attr_spi_master_transfer_bytes_histo1.attr,
215 &dev_attr_spi_master_transfer_bytes_histo2.attr,
216 &dev_attr_spi_master_transfer_bytes_histo3.attr,
217 &dev_attr_spi_master_transfer_bytes_histo4.attr,
218 &dev_attr_spi_master_transfer_bytes_histo5.attr,
219 &dev_attr_spi_master_transfer_bytes_histo6.attr,
220 &dev_attr_spi_master_transfer_bytes_histo7.attr,
221 &dev_attr_spi_master_transfer_bytes_histo8.attr,
222 &dev_attr_spi_master_transfer_bytes_histo9.attr,
223 &dev_attr_spi_master_transfer_bytes_histo10.attr,
224 &dev_attr_spi_master_transfer_bytes_histo11.attr,
225 &dev_attr_spi_master_transfer_bytes_histo12.attr,
226 &dev_attr_spi_master_transfer_bytes_histo13.attr,
227 &dev_attr_spi_master_transfer_bytes_histo14.attr,
228 &dev_attr_spi_master_transfer_bytes_histo15.attr,
229 &dev_attr_spi_master_transfer_bytes_histo16.attr,
230 &dev_attr_spi_master_transfers_split_maxsize.attr,
231 NULL,
232 };
233
234 static const struct attribute_group spi_master_statistics_group = {
235 .name = "statistics",
236 .attrs = spi_master_statistics_attrs,
237 };
238
239 static const struct attribute_group *spi_master_groups[] = {
240 &spi_master_statistics_group,
241 NULL,
242 };
243
244 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
245 struct spi_transfer *xfer,
246 struct spi_master *master)
247 {
248 unsigned long flags;
249 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
250
251 if (l2len < 0)
252 l2len = 0;
253
254 spin_lock_irqsave(&stats->lock, flags);
255
256 stats->transfers++;
257 stats->transfer_bytes_histo[l2len]++;
258
259 stats->bytes += xfer->len;
260 if ((xfer->tx_buf) &&
261 (xfer->tx_buf != master->dummy_tx))
262 stats->bytes_tx += xfer->len;
263 if ((xfer->rx_buf) &&
264 (xfer->rx_buf != master->dummy_rx))
265 stats->bytes_rx += xfer->len;
266
267 spin_unlock_irqrestore(&stats->lock, flags);
268 }
269 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
270
271 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
272 * and the sysfs version makes coldplug work too.
273 */
274
275 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
276 const struct spi_device *sdev)
277 {
278 while (id->name[0]) {
279 if (!strcmp(sdev->modalias, id->name))
280 return id;
281 id++;
282 }
283 return NULL;
284 }
285
286 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
287 {
288 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
289
290 return spi_match_id(sdrv->id_table, sdev);
291 }
292 EXPORT_SYMBOL_GPL(spi_get_device_id);
293
294 static int spi_match_device(struct device *dev, struct device_driver *drv)
295 {
296 const struct spi_device *spi = to_spi_device(dev);
297 const struct spi_driver *sdrv = to_spi_driver(drv);
298
299 /* Attempt an OF style match */
300 if (of_driver_match_device(dev, drv))
301 return 1;
302
303 /* Then try ACPI */
304 if (acpi_driver_match_device(dev, drv))
305 return 1;
306
307 if (sdrv->id_table)
308 return !!spi_match_id(sdrv->id_table, spi);
309
310 return strcmp(spi->modalias, drv->name) == 0;
311 }
312
313 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
314 {
315 const struct spi_device *spi = to_spi_device(dev);
316 int rc;
317
318 rc = acpi_device_uevent_modalias(dev, env);
319 if (rc != -ENODEV)
320 return rc;
321
322 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
323 return 0;
324 }
325
326 struct bus_type spi_bus_type = {
327 .name = "spi",
328 .dev_groups = spi_dev_groups,
329 .match = spi_match_device,
330 .uevent = spi_uevent,
331 };
332 EXPORT_SYMBOL_GPL(spi_bus_type);
333
334
335 static int spi_drv_probe(struct device *dev)
336 {
337 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
338 struct spi_device *spi = to_spi_device(dev);
339 int ret;
340
341 ret = of_clk_set_defaults(dev->of_node, false);
342 if (ret)
343 return ret;
344
345 if (dev->of_node) {
346 spi->irq = of_irq_get(dev->of_node, 0);
347 if (spi->irq == -EPROBE_DEFER)
348 return -EPROBE_DEFER;
349 if (spi->irq < 0)
350 spi->irq = 0;
351 }
352
353 ret = dev_pm_domain_attach(dev, true);
354 if (ret != -EPROBE_DEFER) {
355 ret = sdrv->probe(spi);
356 if (ret)
357 dev_pm_domain_detach(dev, true);
358 }
359
360 return ret;
361 }
362
363 static int spi_drv_remove(struct device *dev)
364 {
365 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
366 int ret;
367
368 ret = sdrv->remove(to_spi_device(dev));
369 dev_pm_domain_detach(dev, true);
370
371 return ret;
372 }
373
374 static void spi_drv_shutdown(struct device *dev)
375 {
376 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
377
378 sdrv->shutdown(to_spi_device(dev));
379 }
380
381 /**
382 * __spi_register_driver - register a SPI driver
383 * @owner: owner module of the driver to register
384 * @sdrv: the driver to register
385 * Context: can sleep
386 *
387 * Return: zero on success, else a negative error code.
388 */
389 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
390 {
391 sdrv->driver.owner = owner;
392 sdrv->driver.bus = &spi_bus_type;
393 if (sdrv->probe)
394 sdrv->driver.probe = spi_drv_probe;
395 if (sdrv->remove)
396 sdrv->driver.remove = spi_drv_remove;
397 if (sdrv->shutdown)
398 sdrv->driver.shutdown = spi_drv_shutdown;
399 return driver_register(&sdrv->driver);
400 }
401 EXPORT_SYMBOL_GPL(__spi_register_driver);
402
403 /*-------------------------------------------------------------------------*/
404
405 /* SPI devices should normally not be created by SPI device drivers; that
406 * would make them board-specific. Similarly with SPI master drivers.
407 * Device registration normally goes into like arch/.../mach.../board-YYY.c
408 * with other readonly (flashable) information about mainboard devices.
409 */
410
411 struct boardinfo {
412 struct list_head list;
413 struct spi_board_info board_info;
414 };
415
416 static LIST_HEAD(board_list);
417 static LIST_HEAD(spi_master_list);
418
419 /*
420 * Used to protect add/del opertion for board_info list and
421 * spi_master list, and their matching process
422 */
423 static DEFINE_MUTEX(board_lock);
424
425 /**
426 * spi_alloc_device - Allocate a new SPI device
427 * @master: Controller to which device is connected
428 * Context: can sleep
429 *
430 * Allows a driver to allocate and initialize a spi_device without
431 * registering it immediately. This allows a driver to directly
432 * fill the spi_device with device parameters before calling
433 * spi_add_device() on it.
434 *
435 * Caller is responsible to call spi_add_device() on the returned
436 * spi_device structure to add it to the SPI master. If the caller
437 * needs to discard the spi_device without adding it, then it should
438 * call spi_dev_put() on it.
439 *
440 * Return: a pointer to the new device, or NULL.
441 */
442 struct spi_device *spi_alloc_device(struct spi_master *master)
443 {
444 struct spi_device *spi;
445
446 if (!spi_master_get(master))
447 return NULL;
448
449 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
450 if (!spi) {
451 spi_master_put(master);
452 return NULL;
453 }
454
455 spi->master = master;
456 spi->dev.parent = &master->dev;
457 spi->dev.bus = &spi_bus_type;
458 spi->dev.release = spidev_release;
459 spi->cs_gpio = -ENOENT;
460
461 spin_lock_init(&spi->statistics.lock);
462
463 device_initialize(&spi->dev);
464 return spi;
465 }
466 EXPORT_SYMBOL_GPL(spi_alloc_device);
467
468 static void spi_dev_set_name(struct spi_device *spi)
469 {
470 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
471
472 if (adev) {
473 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
474 return;
475 }
476
477 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
478 spi->chip_select);
479 }
480
481 static int spi_dev_check(struct device *dev, void *data)
482 {
483 struct spi_device *spi = to_spi_device(dev);
484 struct spi_device *new_spi = data;
485
486 if (spi->master == new_spi->master &&
487 spi->chip_select == new_spi->chip_select)
488 return -EBUSY;
489 return 0;
490 }
491
492 /**
493 * spi_add_device - Add spi_device allocated with spi_alloc_device
494 * @spi: spi_device to register
495 *
496 * Companion function to spi_alloc_device. Devices allocated with
497 * spi_alloc_device can be added onto the spi bus with this function.
498 *
499 * Return: 0 on success; negative errno on failure
500 */
501 int spi_add_device(struct spi_device *spi)
502 {
503 static DEFINE_MUTEX(spi_add_lock);
504 struct spi_master *master = spi->master;
505 struct device *dev = master->dev.parent;
506 int status;
507
508 /* Chipselects are numbered 0..max; validate. */
509 if (spi->chip_select >= master->num_chipselect) {
510 dev_err(dev, "cs%d >= max %d\n",
511 spi->chip_select,
512 master->num_chipselect);
513 return -EINVAL;
514 }
515
516 /* Set the bus ID string */
517 spi_dev_set_name(spi);
518
519 /* We need to make sure there's no other device with this
520 * chipselect **BEFORE** we call setup(), else we'll trash
521 * its configuration. Lock against concurrent add() calls.
522 */
523 mutex_lock(&spi_add_lock);
524
525 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
526 if (status) {
527 dev_err(dev, "chipselect %d already in use\n",
528 spi->chip_select);
529 goto done;
530 }
531
532 if (master->cs_gpios)
533 spi->cs_gpio = master->cs_gpios[spi->chip_select];
534
535 /* Drivers may modify this initial i/o setup, but will
536 * normally rely on the device being setup. Devices
537 * using SPI_CS_HIGH can't coexist well otherwise...
538 */
539 status = spi_setup(spi);
540 if (status < 0) {
541 dev_err(dev, "can't setup %s, status %d\n",
542 dev_name(&spi->dev), status);
543 goto done;
544 }
545
546 /* Device may be bound to an active driver when this returns */
547 status = device_add(&spi->dev);
548 if (status < 0)
549 dev_err(dev, "can't add %s, status %d\n",
550 dev_name(&spi->dev), status);
551 else
552 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
553
554 done:
555 mutex_unlock(&spi_add_lock);
556 return status;
557 }
558 EXPORT_SYMBOL_GPL(spi_add_device);
559
560 /**
561 * spi_new_device - instantiate one new SPI device
562 * @master: Controller to which device is connected
563 * @chip: Describes the SPI device
564 * Context: can sleep
565 *
566 * On typical mainboards, this is purely internal; and it's not needed
567 * after board init creates the hard-wired devices. Some development
568 * platforms may not be able to use spi_register_board_info though, and
569 * this is exported so that for example a USB or parport based adapter
570 * driver could add devices (which it would learn about out-of-band).
571 *
572 * Return: the new device, or NULL.
573 */
574 struct spi_device *spi_new_device(struct spi_master *master,
575 struct spi_board_info *chip)
576 {
577 struct spi_device *proxy;
578 int status;
579
580 /* NOTE: caller did any chip->bus_num checks necessary.
581 *
582 * Also, unless we change the return value convention to use
583 * error-or-pointer (not NULL-or-pointer), troubleshootability
584 * suggests syslogged diagnostics are best here (ugh).
585 */
586
587 proxy = spi_alloc_device(master);
588 if (!proxy)
589 return NULL;
590
591 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
592
593 proxy->chip_select = chip->chip_select;
594 proxy->max_speed_hz = chip->max_speed_hz;
595 proxy->mode = chip->mode;
596 proxy->irq = chip->irq;
597 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
598 proxy->dev.platform_data = (void *) chip->platform_data;
599 proxy->controller_data = chip->controller_data;
600 proxy->controller_state = NULL;
601
602 status = spi_add_device(proxy);
603 if (status < 0) {
604 spi_dev_put(proxy);
605 return NULL;
606 }
607
608 return proxy;
609 }
610 EXPORT_SYMBOL_GPL(spi_new_device);
611
612 /**
613 * spi_unregister_device - unregister a single SPI device
614 * @spi: spi_device to unregister
615 *
616 * Start making the passed SPI device vanish. Normally this would be handled
617 * by spi_unregister_master().
618 */
619 void spi_unregister_device(struct spi_device *spi)
620 {
621 if (!spi)
622 return;
623
624 if (spi->dev.of_node) {
625 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
626 of_node_put(spi->dev.of_node);
627 }
628 if (ACPI_COMPANION(&spi->dev))
629 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
630 device_unregister(&spi->dev);
631 }
632 EXPORT_SYMBOL_GPL(spi_unregister_device);
633
634 static void spi_match_master_to_boardinfo(struct spi_master *master,
635 struct spi_board_info *bi)
636 {
637 struct spi_device *dev;
638
639 if (master->bus_num != bi->bus_num)
640 return;
641
642 dev = spi_new_device(master, bi);
643 if (!dev)
644 dev_err(master->dev.parent, "can't create new device for %s\n",
645 bi->modalias);
646 }
647
648 /**
649 * spi_register_board_info - register SPI devices for a given board
650 * @info: array of chip descriptors
651 * @n: how many descriptors are provided
652 * Context: can sleep
653 *
654 * Board-specific early init code calls this (probably during arch_initcall)
655 * with segments of the SPI device table. Any device nodes are created later,
656 * after the relevant parent SPI controller (bus_num) is defined. We keep
657 * this table of devices forever, so that reloading a controller driver will
658 * not make Linux forget about these hard-wired devices.
659 *
660 * Other code can also call this, e.g. a particular add-on board might provide
661 * SPI devices through its expansion connector, so code initializing that board
662 * would naturally declare its SPI devices.
663 *
664 * The board info passed can safely be __initdata ... but be careful of
665 * any embedded pointers (platform_data, etc), they're copied as-is.
666 *
667 * Return: zero on success, else a negative error code.
668 */
669 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
670 {
671 struct boardinfo *bi;
672 int i;
673
674 if (!n)
675 return -EINVAL;
676
677 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
678 if (!bi)
679 return -ENOMEM;
680
681 for (i = 0; i < n; i++, bi++, info++) {
682 struct spi_master *master;
683
684 memcpy(&bi->board_info, info, sizeof(*info));
685 mutex_lock(&board_lock);
686 list_add_tail(&bi->list, &board_list);
687 list_for_each_entry(master, &spi_master_list, list)
688 spi_match_master_to_boardinfo(master, &bi->board_info);
689 mutex_unlock(&board_lock);
690 }
691
692 return 0;
693 }
694
695 /*-------------------------------------------------------------------------*/
696
697 static void spi_set_cs(struct spi_device *spi, bool enable)
698 {
699 if (spi->mode & SPI_CS_HIGH)
700 enable = !enable;
701
702 if (gpio_is_valid(spi->cs_gpio)) {
703 gpio_set_value(spi->cs_gpio, !enable);
704 /* Some SPI masters need both GPIO CS & slave_select */
705 if ((spi->master->flags & SPI_MASTER_GPIO_SS) &&
706 spi->master->set_cs)
707 spi->master->set_cs(spi, !enable);
708 } else if (spi->master->set_cs) {
709 spi->master->set_cs(spi, !enable);
710 }
711 }
712
713 #ifdef CONFIG_HAS_DMA
714 static int spi_map_buf(struct spi_master *master, struct device *dev,
715 struct sg_table *sgt, void *buf, size_t len,
716 enum dma_data_direction dir)
717 {
718 const bool vmalloced_buf = is_vmalloc_addr(buf);
719 unsigned int max_seg_size = dma_get_max_seg_size(dev);
720 #ifdef CONFIG_HIGHMEM
721 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
722 (unsigned long)buf < (PKMAP_BASE +
723 (LAST_PKMAP * PAGE_SIZE)));
724 #else
725 const bool kmap_buf = false;
726 #endif
727 int desc_len;
728 int sgs;
729 struct page *vm_page;
730 struct scatterlist *sg;
731 void *sg_buf;
732 size_t min;
733 int i, ret;
734
735 if (vmalloced_buf || kmap_buf) {
736 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
737 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
738 } else if (virt_addr_valid(buf)) {
739 desc_len = min_t(int, max_seg_size, master->max_dma_len);
740 sgs = DIV_ROUND_UP(len, desc_len);
741 } else {
742 return -EINVAL;
743 }
744
745 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
746 if (ret != 0)
747 return ret;
748
749 sg = &sgt->sgl[0];
750 for (i = 0; i < sgs; i++) {
751
752 if (vmalloced_buf || kmap_buf) {
753 min = min_t(size_t,
754 len, desc_len - offset_in_page(buf));
755 if (vmalloced_buf)
756 vm_page = vmalloc_to_page(buf);
757 else
758 vm_page = kmap_to_page(buf);
759 if (!vm_page) {
760 sg_free_table(sgt);
761 return -ENOMEM;
762 }
763 sg_set_page(sg, vm_page,
764 min, offset_in_page(buf));
765 } else {
766 min = min_t(size_t, len, desc_len);
767 sg_buf = buf;
768 sg_set_buf(sg, sg_buf, min);
769 }
770
771 buf += min;
772 len -= min;
773 sg = sg_next(sg);
774 }
775
776 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
777 if (!ret)
778 ret = -ENOMEM;
779 if (ret < 0) {
780 sg_free_table(sgt);
781 return ret;
782 }
783
784 sgt->nents = ret;
785
786 return 0;
787 }
788
789 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
790 struct sg_table *sgt, enum dma_data_direction dir)
791 {
792 if (sgt->orig_nents) {
793 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
794 sg_free_table(sgt);
795 }
796 }
797
798 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
799 {
800 struct device *tx_dev, *rx_dev;
801 struct spi_transfer *xfer;
802 int ret;
803
804 if (!master->can_dma)
805 return 0;
806
807 if (master->dma_tx)
808 tx_dev = master->dma_tx->device->dev;
809 else
810 tx_dev = master->dev.parent;
811
812 if (master->dma_rx)
813 rx_dev = master->dma_rx->device->dev;
814 else
815 rx_dev = master->dev.parent;
816
817 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
818 if (!master->can_dma(master, msg->spi, xfer))
819 continue;
820
821 if (xfer->tx_buf != NULL) {
822 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
823 (void *)xfer->tx_buf, xfer->len,
824 DMA_TO_DEVICE);
825 if (ret != 0)
826 return ret;
827 }
828
829 if (xfer->rx_buf != NULL) {
830 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
831 xfer->rx_buf, xfer->len,
832 DMA_FROM_DEVICE);
833 if (ret != 0) {
834 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
835 DMA_TO_DEVICE);
836 return ret;
837 }
838 }
839 }
840
841 master->cur_msg_mapped = true;
842
843 return 0;
844 }
845
846 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
847 {
848 struct spi_transfer *xfer;
849 struct device *tx_dev, *rx_dev;
850
851 if (!master->cur_msg_mapped || !master->can_dma)
852 return 0;
853
854 if (master->dma_tx)
855 tx_dev = master->dma_tx->device->dev;
856 else
857 tx_dev = master->dev.parent;
858
859 if (master->dma_rx)
860 rx_dev = master->dma_rx->device->dev;
861 else
862 rx_dev = master->dev.parent;
863
864 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
865 if (!master->can_dma(master, msg->spi, xfer))
866 continue;
867
868 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
869 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
870 }
871
872 return 0;
873 }
874 #else /* !CONFIG_HAS_DMA */
875 static inline int spi_map_buf(struct spi_master *master,
876 struct device *dev, struct sg_table *sgt,
877 void *buf, size_t len,
878 enum dma_data_direction dir)
879 {
880 return -EINVAL;
881 }
882
883 static inline void spi_unmap_buf(struct spi_master *master,
884 struct device *dev, struct sg_table *sgt,
885 enum dma_data_direction dir)
886 {
887 }
888
889 static inline int __spi_map_msg(struct spi_master *master,
890 struct spi_message *msg)
891 {
892 return 0;
893 }
894
895 static inline int __spi_unmap_msg(struct spi_master *master,
896 struct spi_message *msg)
897 {
898 return 0;
899 }
900 #endif /* !CONFIG_HAS_DMA */
901
902 static inline int spi_unmap_msg(struct spi_master *master,
903 struct spi_message *msg)
904 {
905 struct spi_transfer *xfer;
906
907 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
908 /*
909 * Restore the original value of tx_buf or rx_buf if they are
910 * NULL.
911 */
912 if (xfer->tx_buf == master->dummy_tx)
913 xfer->tx_buf = NULL;
914 if (xfer->rx_buf == master->dummy_rx)
915 xfer->rx_buf = NULL;
916 }
917
918 return __spi_unmap_msg(master, msg);
919 }
920
921 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
922 {
923 struct spi_transfer *xfer;
924 void *tmp;
925 unsigned int max_tx, max_rx;
926
927 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
928 max_tx = 0;
929 max_rx = 0;
930
931 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
932 if ((master->flags & SPI_MASTER_MUST_TX) &&
933 !xfer->tx_buf)
934 max_tx = max(xfer->len, max_tx);
935 if ((master->flags & SPI_MASTER_MUST_RX) &&
936 !xfer->rx_buf)
937 max_rx = max(xfer->len, max_rx);
938 }
939
940 if (max_tx) {
941 tmp = krealloc(master->dummy_tx, max_tx,
942 GFP_KERNEL | GFP_DMA);
943 if (!tmp)
944 return -ENOMEM;
945 master->dummy_tx = tmp;
946 memset(tmp, 0, max_tx);
947 }
948
949 if (max_rx) {
950 tmp = krealloc(master->dummy_rx, max_rx,
951 GFP_KERNEL | GFP_DMA);
952 if (!tmp)
953 return -ENOMEM;
954 master->dummy_rx = tmp;
955 }
956
957 if (max_tx || max_rx) {
958 list_for_each_entry(xfer, &msg->transfers,
959 transfer_list) {
960 if (!xfer->tx_buf)
961 xfer->tx_buf = master->dummy_tx;
962 if (!xfer->rx_buf)
963 xfer->rx_buf = master->dummy_rx;
964 }
965 }
966 }
967
968 return __spi_map_msg(master, msg);
969 }
970
971 /*
972 * spi_transfer_one_message - Default implementation of transfer_one_message()
973 *
974 * This is a standard implementation of transfer_one_message() for
975 * drivers which implement a transfer_one() operation. It provides
976 * standard handling of delays and chip select management.
977 */
978 static int spi_transfer_one_message(struct spi_master *master,
979 struct spi_message *msg)
980 {
981 struct spi_transfer *xfer;
982 bool keep_cs = false;
983 int ret = 0;
984 unsigned long long ms = 1;
985 struct spi_statistics *statm = &master->statistics;
986 struct spi_statistics *stats = &msg->spi->statistics;
987
988 spi_set_cs(msg->spi, true);
989
990 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
991 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
992
993 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
994 trace_spi_transfer_start(msg, xfer);
995
996 spi_statistics_add_transfer_stats(statm, xfer, master);
997 spi_statistics_add_transfer_stats(stats, xfer, master);
998
999 if (xfer->tx_buf || xfer->rx_buf) {
1000 reinit_completion(&master->xfer_completion);
1001
1002 ret = master->transfer_one(master, msg->spi, xfer);
1003 if (ret < 0) {
1004 SPI_STATISTICS_INCREMENT_FIELD(statm,
1005 errors);
1006 SPI_STATISTICS_INCREMENT_FIELD(stats,
1007 errors);
1008 dev_err(&msg->spi->dev,
1009 "SPI transfer failed: %d\n", ret);
1010 goto out;
1011 }
1012
1013 if (ret > 0) {
1014 ret = 0;
1015 ms = 8LL * 1000LL * xfer->len;
1016 do_div(ms, xfer->speed_hz);
1017 ms += ms + 100; /* some tolerance */
1018
1019 if (ms > UINT_MAX)
1020 ms = UINT_MAX;
1021
1022 ms = wait_for_completion_timeout(&master->xfer_completion,
1023 msecs_to_jiffies(ms));
1024 }
1025
1026 if (ms == 0) {
1027 SPI_STATISTICS_INCREMENT_FIELD(statm,
1028 timedout);
1029 SPI_STATISTICS_INCREMENT_FIELD(stats,
1030 timedout);
1031 dev_err(&msg->spi->dev,
1032 "SPI transfer timed out\n");
1033 msg->status = -ETIMEDOUT;
1034 }
1035 } else {
1036 if (xfer->len)
1037 dev_err(&msg->spi->dev,
1038 "Bufferless transfer has length %u\n",
1039 xfer->len);
1040 }
1041
1042 trace_spi_transfer_stop(msg, xfer);
1043
1044 if (msg->status != -EINPROGRESS)
1045 goto out;
1046
1047 if (xfer->delay_usecs) {
1048 u16 us = xfer->delay_usecs;
1049
1050 if (us <= 10)
1051 udelay(us);
1052 else
1053 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1054 }
1055
1056 if (xfer->cs_change) {
1057 if (list_is_last(&xfer->transfer_list,
1058 &msg->transfers)) {
1059 keep_cs = true;
1060 } else {
1061 spi_set_cs(msg->spi, false);
1062 udelay(10);
1063 spi_set_cs(msg->spi, true);
1064 }
1065 }
1066
1067 msg->actual_length += xfer->len;
1068 }
1069
1070 out:
1071 if (ret != 0 || !keep_cs)
1072 spi_set_cs(msg->spi, false);
1073
1074 if (msg->status == -EINPROGRESS)
1075 msg->status = ret;
1076
1077 if (msg->status && master->handle_err)
1078 master->handle_err(master, msg);
1079
1080 spi_res_release(master, msg);
1081
1082 spi_finalize_current_message(master);
1083
1084 return ret;
1085 }
1086
1087 /**
1088 * spi_finalize_current_transfer - report completion of a transfer
1089 * @master: the master reporting completion
1090 *
1091 * Called by SPI drivers using the core transfer_one_message()
1092 * implementation to notify it that the current interrupt driven
1093 * transfer has finished and the next one may be scheduled.
1094 */
1095 void spi_finalize_current_transfer(struct spi_master *master)
1096 {
1097 complete(&master->xfer_completion);
1098 }
1099 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1100
1101 /**
1102 * __spi_pump_messages - function which processes spi message queue
1103 * @master: master to process queue for
1104 * @in_kthread: true if we are in the context of the message pump thread
1105 *
1106 * This function checks if there is any spi message in the queue that
1107 * needs processing and if so call out to the driver to initialize hardware
1108 * and transfer each message.
1109 *
1110 * Note that it is called both from the kthread itself and also from
1111 * inside spi_sync(); the queue extraction handling at the top of the
1112 * function should deal with this safely.
1113 */
1114 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1115 {
1116 unsigned long flags;
1117 bool was_busy = false;
1118 int ret;
1119
1120 /* Lock queue */
1121 spin_lock_irqsave(&master->queue_lock, flags);
1122
1123 /* Make sure we are not already running a message */
1124 if (master->cur_msg) {
1125 spin_unlock_irqrestore(&master->queue_lock, flags);
1126 return;
1127 }
1128
1129 /* If another context is idling the device then defer */
1130 if (master->idling) {
1131 kthread_queue_work(&master->kworker, &master->pump_messages);
1132 spin_unlock_irqrestore(&master->queue_lock, flags);
1133 return;
1134 }
1135
1136 /* Check if the queue is idle */
1137 if (list_empty(&master->queue) || !master->running) {
1138 if (!master->busy) {
1139 spin_unlock_irqrestore(&master->queue_lock, flags);
1140 return;
1141 }
1142
1143 /* Only do teardown in the thread */
1144 if (!in_kthread) {
1145 kthread_queue_work(&master->kworker,
1146 &master->pump_messages);
1147 spin_unlock_irqrestore(&master->queue_lock, flags);
1148 return;
1149 }
1150
1151 master->busy = false;
1152 master->idling = true;
1153 spin_unlock_irqrestore(&master->queue_lock, flags);
1154
1155 kfree(master->dummy_rx);
1156 master->dummy_rx = NULL;
1157 kfree(master->dummy_tx);
1158 master->dummy_tx = NULL;
1159 if (master->unprepare_transfer_hardware &&
1160 master->unprepare_transfer_hardware(master))
1161 dev_err(&master->dev,
1162 "failed to unprepare transfer hardware\n");
1163 if (master->auto_runtime_pm) {
1164 pm_runtime_mark_last_busy(master->dev.parent);
1165 pm_runtime_put_autosuspend(master->dev.parent);
1166 }
1167 trace_spi_master_idle(master);
1168
1169 spin_lock_irqsave(&master->queue_lock, flags);
1170 master->idling = false;
1171 spin_unlock_irqrestore(&master->queue_lock, flags);
1172 return;
1173 }
1174
1175 /* Extract head of queue */
1176 master->cur_msg =
1177 list_first_entry(&master->queue, struct spi_message, queue);
1178
1179 list_del_init(&master->cur_msg->queue);
1180 if (master->busy)
1181 was_busy = true;
1182 else
1183 master->busy = true;
1184 spin_unlock_irqrestore(&master->queue_lock, flags);
1185
1186 mutex_lock(&master->io_mutex);
1187
1188 if (!was_busy && master->auto_runtime_pm) {
1189 ret = pm_runtime_get_sync(master->dev.parent);
1190 if (ret < 0) {
1191 dev_err(&master->dev, "Failed to power device: %d\n",
1192 ret);
1193 mutex_unlock(&master->io_mutex);
1194 return;
1195 }
1196 }
1197
1198 if (!was_busy)
1199 trace_spi_master_busy(master);
1200
1201 if (!was_busy && master->prepare_transfer_hardware) {
1202 ret = master->prepare_transfer_hardware(master);
1203 if (ret) {
1204 dev_err(&master->dev,
1205 "failed to prepare transfer hardware\n");
1206
1207 if (master->auto_runtime_pm)
1208 pm_runtime_put(master->dev.parent);
1209 mutex_unlock(&master->io_mutex);
1210 return;
1211 }
1212 }
1213
1214 trace_spi_message_start(master->cur_msg);
1215
1216 if (master->prepare_message) {
1217 ret = master->prepare_message(master, master->cur_msg);
1218 if (ret) {
1219 dev_err(&master->dev,
1220 "failed to prepare message: %d\n", ret);
1221 master->cur_msg->status = ret;
1222 spi_finalize_current_message(master);
1223 goto out;
1224 }
1225 master->cur_msg_prepared = true;
1226 }
1227
1228 ret = spi_map_msg(master, master->cur_msg);
1229 if (ret) {
1230 master->cur_msg->status = ret;
1231 spi_finalize_current_message(master);
1232 goto out;
1233 }
1234
1235 ret = master->transfer_one_message(master, master->cur_msg);
1236 if (ret) {
1237 dev_err(&master->dev,
1238 "failed to transfer one message from queue\n");
1239 goto out;
1240 }
1241
1242 out:
1243 mutex_unlock(&master->io_mutex);
1244
1245 /* Prod the scheduler in case transfer_one() was busy waiting */
1246 if (!ret)
1247 cond_resched();
1248 }
1249
1250 /**
1251 * spi_pump_messages - kthread work function which processes spi message queue
1252 * @work: pointer to kthread work struct contained in the master struct
1253 */
1254 static void spi_pump_messages(struct kthread_work *work)
1255 {
1256 struct spi_master *master =
1257 container_of(work, struct spi_master, pump_messages);
1258
1259 __spi_pump_messages(master, true);
1260 }
1261
1262 static int spi_init_queue(struct spi_master *master)
1263 {
1264 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1265
1266 master->running = false;
1267 master->busy = false;
1268
1269 kthread_init_worker(&master->kworker);
1270 master->kworker_task = kthread_run(kthread_worker_fn,
1271 &master->kworker, "%s",
1272 dev_name(&master->dev));
1273 if (IS_ERR(master->kworker_task)) {
1274 dev_err(&master->dev, "failed to create message pump task\n");
1275 return PTR_ERR(master->kworker_task);
1276 }
1277 kthread_init_work(&master->pump_messages, spi_pump_messages);
1278
1279 /*
1280 * Master config will indicate if this controller should run the
1281 * message pump with high (realtime) priority to reduce the transfer
1282 * latency on the bus by minimising the delay between a transfer
1283 * request and the scheduling of the message pump thread. Without this
1284 * setting the message pump thread will remain at default priority.
1285 */
1286 if (master->rt) {
1287 dev_info(&master->dev,
1288 "will run message pump with realtime priority\n");
1289 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1290 }
1291
1292 return 0;
1293 }
1294
1295 /**
1296 * spi_get_next_queued_message() - called by driver to check for queued
1297 * messages
1298 * @master: the master to check for queued messages
1299 *
1300 * If there are more messages in the queue, the next message is returned from
1301 * this call.
1302 *
1303 * Return: the next message in the queue, else NULL if the queue is empty.
1304 */
1305 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1306 {
1307 struct spi_message *next;
1308 unsigned long flags;
1309
1310 /* get a pointer to the next message, if any */
1311 spin_lock_irqsave(&master->queue_lock, flags);
1312 next = list_first_entry_or_null(&master->queue, struct spi_message,
1313 queue);
1314 spin_unlock_irqrestore(&master->queue_lock, flags);
1315
1316 return next;
1317 }
1318 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1319
1320 /**
1321 * spi_finalize_current_message() - the current message is complete
1322 * @master: the master to return the message to
1323 *
1324 * Called by the driver to notify the core that the message in the front of the
1325 * queue is complete and can be removed from the queue.
1326 */
1327 void spi_finalize_current_message(struct spi_master *master)
1328 {
1329 struct spi_message *mesg;
1330 unsigned long flags;
1331 int ret;
1332
1333 spin_lock_irqsave(&master->queue_lock, flags);
1334 mesg = master->cur_msg;
1335 spin_unlock_irqrestore(&master->queue_lock, flags);
1336
1337 spi_unmap_msg(master, mesg);
1338
1339 if (master->cur_msg_prepared && master->unprepare_message) {
1340 ret = master->unprepare_message(master, mesg);
1341 if (ret) {
1342 dev_err(&master->dev,
1343 "failed to unprepare message: %d\n", ret);
1344 }
1345 }
1346
1347 spin_lock_irqsave(&master->queue_lock, flags);
1348 master->cur_msg = NULL;
1349 master->cur_msg_prepared = false;
1350 kthread_queue_work(&master->kworker, &master->pump_messages);
1351 spin_unlock_irqrestore(&master->queue_lock, flags);
1352
1353 trace_spi_message_done(mesg);
1354
1355 mesg->state = NULL;
1356 if (mesg->complete)
1357 mesg->complete(mesg->context);
1358 }
1359 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1360
1361 static int spi_start_queue(struct spi_master *master)
1362 {
1363 unsigned long flags;
1364
1365 spin_lock_irqsave(&master->queue_lock, flags);
1366
1367 if (master->running || master->busy) {
1368 spin_unlock_irqrestore(&master->queue_lock, flags);
1369 return -EBUSY;
1370 }
1371
1372 master->running = true;
1373 master->cur_msg = NULL;
1374 spin_unlock_irqrestore(&master->queue_lock, flags);
1375
1376 kthread_queue_work(&master->kworker, &master->pump_messages);
1377
1378 return 0;
1379 }
1380
1381 static int spi_stop_queue(struct spi_master *master)
1382 {
1383 unsigned long flags;
1384 unsigned limit = 500;
1385 int ret = 0;
1386
1387 spin_lock_irqsave(&master->queue_lock, flags);
1388
1389 /*
1390 * This is a bit lame, but is optimized for the common execution path.
1391 * A wait_queue on the master->busy could be used, but then the common
1392 * execution path (pump_messages) would be required to call wake_up or
1393 * friends on every SPI message. Do this instead.
1394 */
1395 while ((!list_empty(&master->queue) || master->busy) && limit--) {
1396 spin_unlock_irqrestore(&master->queue_lock, flags);
1397 usleep_range(10000, 11000);
1398 spin_lock_irqsave(&master->queue_lock, flags);
1399 }
1400
1401 if (!list_empty(&master->queue) || master->busy)
1402 ret = -EBUSY;
1403 else
1404 master->running = false;
1405
1406 spin_unlock_irqrestore(&master->queue_lock, flags);
1407
1408 if (ret) {
1409 dev_warn(&master->dev,
1410 "could not stop message queue\n");
1411 return ret;
1412 }
1413 return ret;
1414 }
1415
1416 static int spi_destroy_queue(struct spi_master *master)
1417 {
1418 int ret;
1419
1420 ret = spi_stop_queue(master);
1421
1422 /*
1423 * kthread_flush_worker will block until all work is done.
1424 * If the reason that stop_queue timed out is that the work will never
1425 * finish, then it does no good to call flush/stop thread, so
1426 * return anyway.
1427 */
1428 if (ret) {
1429 dev_err(&master->dev, "problem destroying queue\n");
1430 return ret;
1431 }
1432
1433 kthread_flush_worker(&master->kworker);
1434 kthread_stop(master->kworker_task);
1435
1436 return 0;
1437 }
1438
1439 static int __spi_queued_transfer(struct spi_device *spi,
1440 struct spi_message *msg,
1441 bool need_pump)
1442 {
1443 struct spi_master *master = spi->master;
1444 unsigned long flags;
1445
1446 spin_lock_irqsave(&master->queue_lock, flags);
1447
1448 if (!master->running) {
1449 spin_unlock_irqrestore(&master->queue_lock, flags);
1450 return -ESHUTDOWN;
1451 }
1452 msg->actual_length = 0;
1453 msg->status = -EINPROGRESS;
1454
1455 list_add_tail(&msg->queue, &master->queue);
1456 if (!master->busy && need_pump)
1457 kthread_queue_work(&master->kworker, &master->pump_messages);
1458
1459 spin_unlock_irqrestore(&master->queue_lock, flags);
1460 return 0;
1461 }
1462
1463 /**
1464 * spi_queued_transfer - transfer function for queued transfers
1465 * @spi: spi device which is requesting transfer
1466 * @msg: spi message which is to handled is queued to driver queue
1467 *
1468 * Return: zero on success, else a negative error code.
1469 */
1470 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1471 {
1472 return __spi_queued_transfer(spi, msg, true);
1473 }
1474
1475 static int spi_master_initialize_queue(struct spi_master *master)
1476 {
1477 int ret;
1478
1479 master->transfer = spi_queued_transfer;
1480 if (!master->transfer_one_message)
1481 master->transfer_one_message = spi_transfer_one_message;
1482
1483 /* Initialize and start queue */
1484 ret = spi_init_queue(master);
1485 if (ret) {
1486 dev_err(&master->dev, "problem initializing queue\n");
1487 goto err_init_queue;
1488 }
1489 master->queued = true;
1490 ret = spi_start_queue(master);
1491 if (ret) {
1492 dev_err(&master->dev, "problem starting queue\n");
1493 goto err_start_queue;
1494 }
1495
1496 return 0;
1497
1498 err_start_queue:
1499 spi_destroy_queue(master);
1500 err_init_queue:
1501 return ret;
1502 }
1503
1504 /*-------------------------------------------------------------------------*/
1505
1506 #if defined(CONFIG_OF)
1507 static int of_spi_parse_dt(struct spi_master *master, struct spi_device *spi,
1508 struct device_node *nc)
1509 {
1510 u32 value;
1511 int rc;
1512
1513 /* Device address */
1514 rc = of_property_read_u32(nc, "reg", &value);
1515 if (rc) {
1516 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1517 nc->full_name, rc);
1518 return rc;
1519 }
1520 spi->chip_select = value;
1521
1522 /* Mode (clock phase/polarity/etc.) */
1523 if (of_find_property(nc, "spi-cpha", NULL))
1524 spi->mode |= SPI_CPHA;
1525 if (of_find_property(nc, "spi-cpol", NULL))
1526 spi->mode |= SPI_CPOL;
1527 if (of_find_property(nc, "spi-cs-high", NULL))
1528 spi->mode |= SPI_CS_HIGH;
1529 if (of_find_property(nc, "spi-3wire", NULL))
1530 spi->mode |= SPI_3WIRE;
1531 if (of_find_property(nc, "spi-lsb-first", NULL))
1532 spi->mode |= SPI_LSB_FIRST;
1533
1534 /* Device DUAL/QUAD mode */
1535 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1536 switch (value) {
1537 case 1:
1538 break;
1539 case 2:
1540 spi->mode |= SPI_TX_DUAL;
1541 break;
1542 case 4:
1543 spi->mode |= SPI_TX_QUAD;
1544 break;
1545 default:
1546 dev_warn(&master->dev,
1547 "spi-tx-bus-width %d not supported\n",
1548 value);
1549 break;
1550 }
1551 }
1552
1553 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1554 switch (value) {
1555 case 1:
1556 break;
1557 case 2:
1558 spi->mode |= SPI_RX_DUAL;
1559 break;
1560 case 4:
1561 spi->mode |= SPI_RX_QUAD;
1562 break;
1563 default:
1564 dev_warn(&master->dev,
1565 "spi-rx-bus-width %d not supported\n",
1566 value);
1567 break;
1568 }
1569 }
1570
1571 /* Device speed */
1572 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1573 if (rc) {
1574 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1575 nc->full_name, rc);
1576 return rc;
1577 }
1578 spi->max_speed_hz = value;
1579
1580 return 0;
1581 }
1582
1583 static struct spi_device *
1584 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1585 {
1586 struct spi_device *spi;
1587 int rc;
1588
1589 /* Alloc an spi_device */
1590 spi = spi_alloc_device(master);
1591 if (!spi) {
1592 dev_err(&master->dev, "spi_device alloc error for %s\n",
1593 nc->full_name);
1594 rc = -ENOMEM;
1595 goto err_out;
1596 }
1597
1598 /* Select device driver */
1599 rc = of_modalias_node(nc, spi->modalias,
1600 sizeof(spi->modalias));
1601 if (rc < 0) {
1602 dev_err(&master->dev, "cannot find modalias for %s\n",
1603 nc->full_name);
1604 goto err_out;
1605 }
1606
1607 rc = of_spi_parse_dt(master, spi, nc);
1608 if (rc)
1609 goto err_out;
1610
1611 /* Store a pointer to the node in the device structure */
1612 of_node_get(nc);
1613 spi->dev.of_node = nc;
1614
1615 /* Register the new device */
1616 rc = spi_add_device(spi);
1617 if (rc) {
1618 dev_err(&master->dev, "spi_device register error %s\n",
1619 nc->full_name);
1620 goto err_of_node_put;
1621 }
1622
1623 return spi;
1624
1625 err_of_node_put:
1626 of_node_put(nc);
1627 err_out:
1628 spi_dev_put(spi);
1629 return ERR_PTR(rc);
1630 }
1631
1632 /**
1633 * of_register_spi_devices() - Register child devices onto the SPI bus
1634 * @master: Pointer to spi_master device
1635 *
1636 * Registers an spi_device for each child node of master node which has a 'reg'
1637 * property.
1638 */
1639 static void of_register_spi_devices(struct spi_master *master)
1640 {
1641 struct spi_device *spi;
1642 struct device_node *nc;
1643
1644 if (!master->dev.of_node)
1645 return;
1646
1647 for_each_available_child_of_node(master->dev.of_node, nc) {
1648 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1649 continue;
1650 spi = of_register_spi_device(master, nc);
1651 if (IS_ERR(spi)) {
1652 dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1653 nc->full_name);
1654 of_node_clear_flag(nc, OF_POPULATED);
1655 }
1656 }
1657 }
1658 #else
1659 static void of_register_spi_devices(struct spi_master *master) { }
1660 #endif
1661
1662 #ifdef CONFIG_ACPI
1663 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1664 {
1665 struct spi_device *spi = data;
1666 struct spi_master *master = spi->master;
1667
1668 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1669 struct acpi_resource_spi_serialbus *sb;
1670
1671 sb = &ares->data.spi_serial_bus;
1672 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1673 /*
1674 * ACPI DeviceSelection numbering is handled by the
1675 * host controller driver in Windows and can vary
1676 * from driver to driver. In Linux we always expect
1677 * 0 .. max - 1 so we need to ask the driver to
1678 * translate between the two schemes.
1679 */
1680 if (master->fw_translate_cs) {
1681 int cs = master->fw_translate_cs(master,
1682 sb->device_selection);
1683 if (cs < 0)
1684 return cs;
1685 spi->chip_select = cs;
1686 } else {
1687 spi->chip_select = sb->device_selection;
1688 }
1689
1690 spi->max_speed_hz = sb->connection_speed;
1691
1692 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1693 spi->mode |= SPI_CPHA;
1694 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1695 spi->mode |= SPI_CPOL;
1696 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1697 spi->mode |= SPI_CS_HIGH;
1698 }
1699 } else if (spi->irq < 0) {
1700 struct resource r;
1701
1702 if (acpi_dev_resource_interrupt(ares, 0, &r))
1703 spi->irq = r.start;
1704 }
1705
1706 /* Always tell the ACPI core to skip this resource */
1707 return 1;
1708 }
1709
1710 static acpi_status acpi_register_spi_device(struct spi_master *master,
1711 struct acpi_device *adev)
1712 {
1713 struct list_head resource_list;
1714 struct spi_device *spi;
1715 int ret;
1716
1717 if (acpi_bus_get_status(adev) || !adev->status.present ||
1718 acpi_device_enumerated(adev))
1719 return AE_OK;
1720
1721 spi = spi_alloc_device(master);
1722 if (!spi) {
1723 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1724 dev_name(&adev->dev));
1725 return AE_NO_MEMORY;
1726 }
1727
1728 ACPI_COMPANION_SET(&spi->dev, adev);
1729 spi->irq = -1;
1730
1731 INIT_LIST_HEAD(&resource_list);
1732 ret = acpi_dev_get_resources(adev, &resource_list,
1733 acpi_spi_add_resource, spi);
1734 acpi_dev_free_resource_list(&resource_list);
1735
1736 if (ret < 0 || !spi->max_speed_hz) {
1737 spi_dev_put(spi);
1738 return AE_OK;
1739 }
1740
1741 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1742 sizeof(spi->modalias));
1743
1744 if (spi->irq < 0)
1745 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1746
1747 acpi_device_set_enumerated(adev);
1748
1749 adev->power.flags.ignore_parent = true;
1750 if (spi_add_device(spi)) {
1751 adev->power.flags.ignore_parent = false;
1752 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1753 dev_name(&adev->dev));
1754 spi_dev_put(spi);
1755 }
1756
1757 return AE_OK;
1758 }
1759
1760 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1761 void *data, void **return_value)
1762 {
1763 struct spi_master *master = data;
1764 struct acpi_device *adev;
1765
1766 if (acpi_bus_get_device(handle, &adev))
1767 return AE_OK;
1768
1769 return acpi_register_spi_device(master, adev);
1770 }
1771
1772 static void acpi_register_spi_devices(struct spi_master *master)
1773 {
1774 acpi_status status;
1775 acpi_handle handle;
1776
1777 handle = ACPI_HANDLE(master->dev.parent);
1778 if (!handle)
1779 return;
1780
1781 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1782 acpi_spi_add_device, NULL,
1783 master, NULL);
1784 if (ACPI_FAILURE(status))
1785 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1786 }
1787 #else
1788 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1789 #endif /* CONFIG_ACPI */
1790
1791 static void spi_master_release(struct device *dev)
1792 {
1793 struct spi_master *master;
1794
1795 master = container_of(dev, struct spi_master, dev);
1796 kfree(master);
1797 }
1798
1799 static struct class spi_master_class = {
1800 .name = "spi_master",
1801 .owner = THIS_MODULE,
1802 .dev_release = spi_master_release,
1803 .dev_groups = spi_master_groups,
1804 };
1805
1806
1807 /**
1808 * spi_alloc_master - allocate SPI master controller
1809 * @dev: the controller, possibly using the platform_bus
1810 * @size: how much zeroed driver-private data to allocate; the pointer to this
1811 * memory is in the driver_data field of the returned device,
1812 * accessible with spi_master_get_devdata().
1813 * Context: can sleep
1814 *
1815 * This call is used only by SPI master controller drivers, which are the
1816 * only ones directly touching chip registers. It's how they allocate
1817 * an spi_master structure, prior to calling spi_register_master().
1818 *
1819 * This must be called from context that can sleep.
1820 *
1821 * The caller is responsible for assigning the bus number and initializing
1822 * the master's methods before calling spi_register_master(); and (after errors
1823 * adding the device) calling spi_master_put() to prevent a memory leak.
1824 *
1825 * Return: the SPI master structure on success, else NULL.
1826 */
1827 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1828 {
1829 struct spi_master *master;
1830
1831 if (!dev)
1832 return NULL;
1833
1834 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1835 if (!master)
1836 return NULL;
1837
1838 device_initialize(&master->dev);
1839 master->bus_num = -1;
1840 master->num_chipselect = 1;
1841 master->dev.class = &spi_master_class;
1842 master->dev.parent = dev;
1843 pm_suspend_ignore_children(&master->dev, true);
1844 spi_master_set_devdata(master, &master[1]);
1845
1846 return master;
1847 }
1848 EXPORT_SYMBOL_GPL(spi_alloc_master);
1849
1850 #ifdef CONFIG_OF
1851 static int of_spi_register_master(struct spi_master *master)
1852 {
1853 int nb, i, *cs;
1854 struct device_node *np = master->dev.of_node;
1855
1856 if (!np)
1857 return 0;
1858
1859 nb = of_gpio_named_count(np, "cs-gpios");
1860 master->num_chipselect = max_t(int, nb, master->num_chipselect);
1861
1862 /* Return error only for an incorrectly formed cs-gpios property */
1863 if (nb == 0 || nb == -ENOENT)
1864 return 0;
1865 else if (nb < 0)
1866 return nb;
1867
1868 cs = devm_kzalloc(&master->dev,
1869 sizeof(int) * master->num_chipselect,
1870 GFP_KERNEL);
1871 master->cs_gpios = cs;
1872
1873 if (!master->cs_gpios)
1874 return -ENOMEM;
1875
1876 for (i = 0; i < master->num_chipselect; i++)
1877 cs[i] = -ENOENT;
1878
1879 for (i = 0; i < nb; i++)
1880 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1881
1882 return 0;
1883 }
1884 #else
1885 static int of_spi_register_master(struct spi_master *master)
1886 {
1887 return 0;
1888 }
1889 #endif
1890
1891 /**
1892 * spi_register_master - register SPI master controller
1893 * @master: initialized master, originally from spi_alloc_master()
1894 * Context: can sleep
1895 *
1896 * SPI master controllers connect to their drivers using some non-SPI bus,
1897 * such as the platform bus. The final stage of probe() in that code
1898 * includes calling spi_register_master() to hook up to this SPI bus glue.
1899 *
1900 * SPI controllers use board specific (often SOC specific) bus numbers,
1901 * and board-specific addressing for SPI devices combines those numbers
1902 * with chip select numbers. Since SPI does not directly support dynamic
1903 * device identification, boards need configuration tables telling which
1904 * chip is at which address.
1905 *
1906 * This must be called from context that can sleep. It returns zero on
1907 * success, else a negative error code (dropping the master's refcount).
1908 * After a successful return, the caller is responsible for calling
1909 * spi_unregister_master().
1910 *
1911 * Return: zero on success, else a negative error code.
1912 */
1913 int spi_register_master(struct spi_master *master)
1914 {
1915 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1916 struct device *dev = master->dev.parent;
1917 struct boardinfo *bi;
1918 int status = -ENODEV;
1919 int dynamic = 0;
1920
1921 if (!dev)
1922 return -ENODEV;
1923
1924 status = of_spi_register_master(master);
1925 if (status)
1926 return status;
1927
1928 /* even if it's just one always-selected device, there must
1929 * be at least one chipselect
1930 */
1931 if (master->num_chipselect == 0)
1932 return -EINVAL;
1933
1934 if ((master->bus_num < 0) && master->dev.of_node)
1935 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1936
1937 /* convention: dynamically assigned bus IDs count down from the max */
1938 if (master->bus_num < 0) {
1939 /* FIXME switch to an IDR based scheme, something like
1940 * I2C now uses, so we can't run out of "dynamic" IDs
1941 */
1942 master->bus_num = atomic_dec_return(&dyn_bus_id);
1943 dynamic = 1;
1944 }
1945
1946 INIT_LIST_HEAD(&master->queue);
1947 spin_lock_init(&master->queue_lock);
1948 spin_lock_init(&master->bus_lock_spinlock);
1949 mutex_init(&master->bus_lock_mutex);
1950 mutex_init(&master->io_mutex);
1951 master->bus_lock_flag = 0;
1952 init_completion(&master->xfer_completion);
1953 if (!master->max_dma_len)
1954 master->max_dma_len = INT_MAX;
1955
1956 /* register the device, then userspace will see it.
1957 * registration fails if the bus ID is in use.
1958 */
1959 dev_set_name(&master->dev, "spi%u", master->bus_num);
1960 status = device_add(&master->dev);
1961 if (status < 0)
1962 goto done;
1963 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1964 dynamic ? " (dynamic)" : "");
1965
1966 /* If we're using a queued driver, start the queue */
1967 if (master->transfer)
1968 dev_info(dev, "master is unqueued, this is deprecated\n");
1969 else {
1970 status = spi_master_initialize_queue(master);
1971 if (status) {
1972 device_del(&master->dev);
1973 goto done;
1974 }
1975 }
1976 /* add statistics */
1977 spin_lock_init(&master->statistics.lock);
1978
1979 mutex_lock(&board_lock);
1980 list_add_tail(&master->list, &spi_master_list);
1981 list_for_each_entry(bi, &board_list, list)
1982 spi_match_master_to_boardinfo(master, &bi->board_info);
1983 mutex_unlock(&board_lock);
1984
1985 /* Register devices from the device tree and ACPI */
1986 of_register_spi_devices(master);
1987 acpi_register_spi_devices(master);
1988 done:
1989 return status;
1990 }
1991 EXPORT_SYMBOL_GPL(spi_register_master);
1992
1993 static void devm_spi_unregister(struct device *dev, void *res)
1994 {
1995 spi_unregister_master(*(struct spi_master **)res);
1996 }
1997
1998 /**
1999 * dev_spi_register_master - register managed SPI master controller
2000 * @dev: device managing SPI master
2001 * @master: initialized master, originally from spi_alloc_master()
2002 * Context: can sleep
2003 *
2004 * Register a SPI device as with spi_register_master() which will
2005 * automatically be unregister
2006 *
2007 * Return: zero on success, else a negative error code.
2008 */
2009 int devm_spi_register_master(struct device *dev, struct spi_master *master)
2010 {
2011 struct spi_master **ptr;
2012 int ret;
2013
2014 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2015 if (!ptr)
2016 return -ENOMEM;
2017
2018 ret = spi_register_master(master);
2019 if (!ret) {
2020 *ptr = master;
2021 devres_add(dev, ptr);
2022 } else {
2023 devres_free(ptr);
2024 }
2025
2026 return ret;
2027 }
2028 EXPORT_SYMBOL_GPL(devm_spi_register_master);
2029
2030 static int __unregister(struct device *dev, void *null)
2031 {
2032 spi_unregister_device(to_spi_device(dev));
2033 return 0;
2034 }
2035
2036 /**
2037 * spi_unregister_master - unregister SPI master controller
2038 * @master: the master being unregistered
2039 * Context: can sleep
2040 *
2041 * This call is used only by SPI master controller drivers, which are the
2042 * only ones directly touching chip registers.
2043 *
2044 * This must be called from context that can sleep.
2045 */
2046 void spi_unregister_master(struct spi_master *master)
2047 {
2048 int dummy;
2049
2050 if (master->queued) {
2051 if (spi_destroy_queue(master))
2052 dev_err(&master->dev, "queue remove failed\n");
2053 }
2054
2055 mutex_lock(&board_lock);
2056 list_del(&master->list);
2057 mutex_unlock(&board_lock);
2058
2059 dummy = device_for_each_child(&master->dev, NULL, __unregister);
2060 device_unregister(&master->dev);
2061 }
2062 EXPORT_SYMBOL_GPL(spi_unregister_master);
2063
2064 int spi_master_suspend(struct spi_master *master)
2065 {
2066 int ret;
2067
2068 /* Basically no-ops for non-queued masters */
2069 if (!master->queued)
2070 return 0;
2071
2072 ret = spi_stop_queue(master);
2073 if (ret)
2074 dev_err(&master->dev, "queue stop failed\n");
2075
2076 return ret;
2077 }
2078 EXPORT_SYMBOL_GPL(spi_master_suspend);
2079
2080 int spi_master_resume(struct spi_master *master)
2081 {
2082 int ret;
2083
2084 if (!master->queued)
2085 return 0;
2086
2087 ret = spi_start_queue(master);
2088 if (ret)
2089 dev_err(&master->dev, "queue restart failed\n");
2090
2091 return ret;
2092 }
2093 EXPORT_SYMBOL_GPL(spi_master_resume);
2094
2095 static int __spi_master_match(struct device *dev, const void *data)
2096 {
2097 struct spi_master *m;
2098 const u16 *bus_num = data;
2099
2100 m = container_of(dev, struct spi_master, dev);
2101 return m->bus_num == *bus_num;
2102 }
2103
2104 /**
2105 * spi_busnum_to_master - look up master associated with bus_num
2106 * @bus_num: the master's bus number
2107 * Context: can sleep
2108 *
2109 * This call may be used with devices that are registered after
2110 * arch init time. It returns a refcounted pointer to the relevant
2111 * spi_master (which the caller must release), or NULL if there is
2112 * no such master registered.
2113 *
2114 * Return: the SPI master structure on success, else NULL.
2115 */
2116 struct spi_master *spi_busnum_to_master(u16 bus_num)
2117 {
2118 struct device *dev;
2119 struct spi_master *master = NULL;
2120
2121 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2122 __spi_master_match);
2123 if (dev)
2124 master = container_of(dev, struct spi_master, dev);
2125 /* reference got in class_find_device */
2126 return master;
2127 }
2128 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2129
2130 /*-------------------------------------------------------------------------*/
2131
2132 /* Core methods for SPI resource management */
2133
2134 /**
2135 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2136 * during the processing of a spi_message while using
2137 * spi_transfer_one
2138 * @spi: the spi device for which we allocate memory
2139 * @release: the release code to execute for this resource
2140 * @size: size to alloc and return
2141 * @gfp: GFP allocation flags
2142 *
2143 * Return: the pointer to the allocated data
2144 *
2145 * This may get enhanced in the future to allocate from a memory pool
2146 * of the @spi_device or @spi_master to avoid repeated allocations.
2147 */
2148 void *spi_res_alloc(struct spi_device *spi,
2149 spi_res_release_t release,
2150 size_t size, gfp_t gfp)
2151 {
2152 struct spi_res *sres;
2153
2154 sres = kzalloc(sizeof(*sres) + size, gfp);
2155 if (!sres)
2156 return NULL;
2157
2158 INIT_LIST_HEAD(&sres->entry);
2159 sres->release = release;
2160
2161 return sres->data;
2162 }
2163 EXPORT_SYMBOL_GPL(spi_res_alloc);
2164
2165 /**
2166 * spi_res_free - free an spi resource
2167 * @res: pointer to the custom data of a resource
2168 *
2169 */
2170 void spi_res_free(void *res)
2171 {
2172 struct spi_res *sres = container_of(res, struct spi_res, data);
2173
2174 if (!res)
2175 return;
2176
2177 WARN_ON(!list_empty(&sres->entry));
2178 kfree(sres);
2179 }
2180 EXPORT_SYMBOL_GPL(spi_res_free);
2181
2182 /**
2183 * spi_res_add - add a spi_res to the spi_message
2184 * @message: the spi message
2185 * @res: the spi_resource
2186 */
2187 void spi_res_add(struct spi_message *message, void *res)
2188 {
2189 struct spi_res *sres = container_of(res, struct spi_res, data);
2190
2191 WARN_ON(!list_empty(&sres->entry));
2192 list_add_tail(&sres->entry, &message->resources);
2193 }
2194 EXPORT_SYMBOL_GPL(spi_res_add);
2195
2196 /**
2197 * spi_res_release - release all spi resources for this message
2198 * @master: the @spi_master
2199 * @message: the @spi_message
2200 */
2201 void spi_res_release(struct spi_master *master,
2202 struct spi_message *message)
2203 {
2204 struct spi_res *res;
2205
2206 while (!list_empty(&message->resources)) {
2207 res = list_last_entry(&message->resources,
2208 struct spi_res, entry);
2209
2210 if (res->release)
2211 res->release(master, message, res->data);
2212
2213 list_del(&res->entry);
2214
2215 kfree(res);
2216 }
2217 }
2218 EXPORT_SYMBOL_GPL(spi_res_release);
2219
2220 /*-------------------------------------------------------------------------*/
2221
2222 /* Core methods for spi_message alterations */
2223
2224 static void __spi_replace_transfers_release(struct spi_master *master,
2225 struct spi_message *msg,
2226 void *res)
2227 {
2228 struct spi_replaced_transfers *rxfer = res;
2229 size_t i;
2230
2231 /* call extra callback if requested */
2232 if (rxfer->release)
2233 rxfer->release(master, msg, res);
2234
2235 /* insert replaced transfers back into the message */
2236 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2237
2238 /* remove the formerly inserted entries */
2239 for (i = 0; i < rxfer->inserted; i++)
2240 list_del(&rxfer->inserted_transfers[i].transfer_list);
2241 }
2242
2243 /**
2244 * spi_replace_transfers - replace transfers with several transfers
2245 * and register change with spi_message.resources
2246 * @msg: the spi_message we work upon
2247 * @xfer_first: the first spi_transfer we want to replace
2248 * @remove: number of transfers to remove
2249 * @insert: the number of transfers we want to insert instead
2250 * @release: extra release code necessary in some circumstances
2251 * @extradatasize: extra data to allocate (with alignment guarantees
2252 * of struct @spi_transfer)
2253 * @gfp: gfp flags
2254 *
2255 * Returns: pointer to @spi_replaced_transfers,
2256 * PTR_ERR(...) in case of errors.
2257 */
2258 struct spi_replaced_transfers *spi_replace_transfers(
2259 struct spi_message *msg,
2260 struct spi_transfer *xfer_first,
2261 size_t remove,
2262 size_t insert,
2263 spi_replaced_release_t release,
2264 size_t extradatasize,
2265 gfp_t gfp)
2266 {
2267 struct spi_replaced_transfers *rxfer;
2268 struct spi_transfer *xfer;
2269 size_t i;
2270
2271 /* allocate the structure using spi_res */
2272 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2273 insert * sizeof(struct spi_transfer)
2274 + sizeof(struct spi_replaced_transfers)
2275 + extradatasize,
2276 gfp);
2277 if (!rxfer)
2278 return ERR_PTR(-ENOMEM);
2279
2280 /* the release code to invoke before running the generic release */
2281 rxfer->release = release;
2282
2283 /* assign extradata */
2284 if (extradatasize)
2285 rxfer->extradata =
2286 &rxfer->inserted_transfers[insert];
2287
2288 /* init the replaced_transfers list */
2289 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2290
2291 /* assign the list_entry after which we should reinsert
2292 * the @replaced_transfers - it may be spi_message.messages!
2293 */
2294 rxfer->replaced_after = xfer_first->transfer_list.prev;
2295
2296 /* remove the requested number of transfers */
2297 for (i = 0; i < remove; i++) {
2298 /* if the entry after replaced_after it is msg->transfers
2299 * then we have been requested to remove more transfers
2300 * than are in the list
2301 */
2302 if (rxfer->replaced_after->next == &msg->transfers) {
2303 dev_err(&msg->spi->dev,
2304 "requested to remove more spi_transfers than are available\n");
2305 /* insert replaced transfers back into the message */
2306 list_splice(&rxfer->replaced_transfers,
2307 rxfer->replaced_after);
2308
2309 /* free the spi_replace_transfer structure */
2310 spi_res_free(rxfer);
2311
2312 /* and return with an error */
2313 return ERR_PTR(-EINVAL);
2314 }
2315
2316 /* remove the entry after replaced_after from list of
2317 * transfers and add it to list of replaced_transfers
2318 */
2319 list_move_tail(rxfer->replaced_after->next,
2320 &rxfer->replaced_transfers);
2321 }
2322
2323 /* create copy of the given xfer with identical settings
2324 * based on the first transfer to get removed
2325 */
2326 for (i = 0; i < insert; i++) {
2327 /* we need to run in reverse order */
2328 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2329
2330 /* copy all spi_transfer data */
2331 memcpy(xfer, xfer_first, sizeof(*xfer));
2332
2333 /* add to list */
2334 list_add(&xfer->transfer_list, rxfer->replaced_after);
2335
2336 /* clear cs_change and delay_usecs for all but the last */
2337 if (i) {
2338 xfer->cs_change = false;
2339 xfer->delay_usecs = 0;
2340 }
2341 }
2342
2343 /* set up inserted */
2344 rxfer->inserted = insert;
2345
2346 /* and register it with spi_res/spi_message */
2347 spi_res_add(msg, rxfer);
2348
2349 return rxfer;
2350 }
2351 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2352
2353 static int __spi_split_transfer_maxsize(struct spi_master *master,
2354 struct spi_message *msg,
2355 struct spi_transfer **xferp,
2356 size_t maxsize,
2357 gfp_t gfp)
2358 {
2359 struct spi_transfer *xfer = *xferp, *xfers;
2360 struct spi_replaced_transfers *srt;
2361 size_t offset;
2362 size_t count, i;
2363
2364 /* warn once about this fact that we are splitting a transfer */
2365 dev_warn_once(&msg->spi->dev,
2366 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2367 xfer->len, maxsize);
2368
2369 /* calculate how many we have to replace */
2370 count = DIV_ROUND_UP(xfer->len, maxsize);
2371
2372 /* create replacement */
2373 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2374 if (IS_ERR(srt))
2375 return PTR_ERR(srt);
2376 xfers = srt->inserted_transfers;
2377
2378 /* now handle each of those newly inserted spi_transfers
2379 * note that the replacements spi_transfers all are preset
2380 * to the same values as *xferp, so tx_buf, rx_buf and len
2381 * are all identical (as well as most others)
2382 * so we just have to fix up len and the pointers.
2383 *
2384 * this also includes support for the depreciated
2385 * spi_message.is_dma_mapped interface
2386 */
2387
2388 /* the first transfer just needs the length modified, so we
2389 * run it outside the loop
2390 */
2391 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2392
2393 /* all the others need rx_buf/tx_buf also set */
2394 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2395 /* update rx_buf, tx_buf and dma */
2396 if (xfers[i].rx_buf)
2397 xfers[i].rx_buf += offset;
2398 if (xfers[i].rx_dma)
2399 xfers[i].rx_dma += offset;
2400 if (xfers[i].tx_buf)
2401 xfers[i].tx_buf += offset;
2402 if (xfers[i].tx_dma)
2403 xfers[i].tx_dma += offset;
2404
2405 /* update length */
2406 xfers[i].len = min(maxsize, xfers[i].len - offset);
2407 }
2408
2409 /* we set up xferp to the last entry we have inserted,
2410 * so that we skip those already split transfers
2411 */
2412 *xferp = &xfers[count - 1];
2413
2414 /* increment statistics counters */
2415 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2416 transfers_split_maxsize);
2417 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2418 transfers_split_maxsize);
2419
2420 return 0;
2421 }
2422
2423 /**
2424 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2425 * when an individual transfer exceeds a
2426 * certain size
2427 * @master: the @spi_master for this transfer
2428 * @msg: the @spi_message to transform
2429 * @maxsize: the maximum when to apply this
2430 * @gfp: GFP allocation flags
2431 *
2432 * Return: status of transformation
2433 */
2434 int spi_split_transfers_maxsize(struct spi_master *master,
2435 struct spi_message *msg,
2436 size_t maxsize,
2437 gfp_t gfp)
2438 {
2439 struct spi_transfer *xfer;
2440 int ret;
2441
2442 /* iterate over the transfer_list,
2443 * but note that xfer is advanced to the last transfer inserted
2444 * to avoid checking sizes again unnecessarily (also xfer does
2445 * potentiall belong to a different list by the time the
2446 * replacement has happened
2447 */
2448 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2449 if (xfer->len > maxsize) {
2450 ret = __spi_split_transfer_maxsize(
2451 master, msg, &xfer, maxsize, gfp);
2452 if (ret)
2453 return ret;
2454 }
2455 }
2456
2457 return 0;
2458 }
2459 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2460
2461 /*-------------------------------------------------------------------------*/
2462
2463 /* Core methods for SPI master protocol drivers. Some of the
2464 * other core methods are currently defined as inline functions.
2465 */
2466
2467 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2468 {
2469 if (master->bits_per_word_mask) {
2470 /* Only 32 bits fit in the mask */
2471 if (bits_per_word > 32)
2472 return -EINVAL;
2473 if (!(master->bits_per_word_mask &
2474 SPI_BPW_MASK(bits_per_word)))
2475 return -EINVAL;
2476 }
2477
2478 return 0;
2479 }
2480
2481 /**
2482 * spi_setup - setup SPI mode and clock rate
2483 * @spi: the device whose settings are being modified
2484 * Context: can sleep, and no requests are queued to the device
2485 *
2486 * SPI protocol drivers may need to update the transfer mode if the
2487 * device doesn't work with its default. They may likewise need
2488 * to update clock rates or word sizes from initial values. This function
2489 * changes those settings, and must be called from a context that can sleep.
2490 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2491 * effect the next time the device is selected and data is transferred to
2492 * or from it. When this function returns, the spi device is deselected.
2493 *
2494 * Note that this call will fail if the protocol driver specifies an option
2495 * that the underlying controller or its driver does not support. For
2496 * example, not all hardware supports wire transfers using nine bit words,
2497 * LSB-first wire encoding, or active-high chipselects.
2498 *
2499 * Return: zero on success, else a negative error code.
2500 */
2501 int spi_setup(struct spi_device *spi)
2502 {
2503 unsigned bad_bits, ugly_bits;
2504 int status;
2505
2506 /* check mode to prevent that DUAL and QUAD set at the same time
2507 */
2508 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2509 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2510 dev_err(&spi->dev,
2511 "setup: can not select dual and quad at the same time\n");
2512 return -EINVAL;
2513 }
2514 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2515 */
2516 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2517 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2518 return -EINVAL;
2519 /* help drivers fail *cleanly* when they need options
2520 * that aren't supported with their current master
2521 */
2522 bad_bits = spi->mode & ~spi->master->mode_bits;
2523 ugly_bits = bad_bits &
2524 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2525 if (ugly_bits) {
2526 dev_warn(&spi->dev,
2527 "setup: ignoring unsupported mode bits %x\n",
2528 ugly_bits);
2529 spi->mode &= ~ugly_bits;
2530 bad_bits &= ~ugly_bits;
2531 }
2532 if (bad_bits) {
2533 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2534 bad_bits);
2535 return -EINVAL;
2536 }
2537
2538 if (!spi->bits_per_word)
2539 spi->bits_per_word = 8;
2540
2541 status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2542 if (status)
2543 return status;
2544
2545 if (!spi->max_speed_hz)
2546 spi->max_speed_hz = spi->master->max_speed_hz;
2547
2548 if (spi->master->setup)
2549 status = spi->master->setup(spi);
2550
2551 spi_set_cs(spi, false);
2552
2553 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2554 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2555 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2556 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2557 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2558 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2559 spi->bits_per_word, spi->max_speed_hz,
2560 status);
2561
2562 return status;
2563 }
2564 EXPORT_SYMBOL_GPL(spi_setup);
2565
2566 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2567 {
2568 struct spi_master *master = spi->master;
2569 struct spi_transfer *xfer;
2570 int w_size;
2571
2572 if (list_empty(&message->transfers))
2573 return -EINVAL;
2574
2575 /* Half-duplex links include original MicroWire, and ones with
2576 * only one data pin like SPI_3WIRE (switches direction) or where
2577 * either MOSI or MISO is missing. They can also be caused by
2578 * software limitations.
2579 */
2580 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2581 || (spi->mode & SPI_3WIRE)) {
2582 unsigned flags = master->flags;
2583
2584 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2585 if (xfer->rx_buf && xfer->tx_buf)
2586 return -EINVAL;
2587 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2588 return -EINVAL;
2589 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2590 return -EINVAL;
2591 }
2592 }
2593
2594 /**
2595 * Set transfer bits_per_word and max speed as spi device default if
2596 * it is not set for this transfer.
2597 * Set transfer tx_nbits and rx_nbits as single transfer default
2598 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2599 */
2600 message->frame_length = 0;
2601 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2602 message->frame_length += xfer->len;
2603 if (!xfer->bits_per_word)
2604 xfer->bits_per_word = spi->bits_per_word;
2605
2606 if (!xfer->speed_hz)
2607 xfer->speed_hz = spi->max_speed_hz;
2608 if (!xfer->speed_hz)
2609 xfer->speed_hz = master->max_speed_hz;
2610
2611 if (master->max_speed_hz &&
2612 xfer->speed_hz > master->max_speed_hz)
2613 xfer->speed_hz = master->max_speed_hz;
2614
2615 if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2616 return -EINVAL;
2617
2618 /*
2619 * SPI transfer length should be multiple of SPI word size
2620 * where SPI word size should be power-of-two multiple
2621 */
2622 if (xfer->bits_per_word <= 8)
2623 w_size = 1;
2624 else if (xfer->bits_per_word <= 16)
2625 w_size = 2;
2626 else
2627 w_size = 4;
2628
2629 /* No partial transfers accepted */
2630 if (xfer->len % w_size)
2631 return -EINVAL;
2632
2633 if (xfer->speed_hz && master->min_speed_hz &&
2634 xfer->speed_hz < master->min_speed_hz)
2635 return -EINVAL;
2636
2637 if (xfer->tx_buf && !xfer->tx_nbits)
2638 xfer->tx_nbits = SPI_NBITS_SINGLE;
2639 if (xfer->rx_buf && !xfer->rx_nbits)
2640 xfer->rx_nbits = SPI_NBITS_SINGLE;
2641 /* check transfer tx/rx_nbits:
2642 * 1. check the value matches one of single, dual and quad
2643 * 2. check tx/rx_nbits match the mode in spi_device
2644 */
2645 if (xfer->tx_buf) {
2646 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2647 xfer->tx_nbits != SPI_NBITS_DUAL &&
2648 xfer->tx_nbits != SPI_NBITS_QUAD)
2649 return -EINVAL;
2650 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2651 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2652 return -EINVAL;
2653 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2654 !(spi->mode & SPI_TX_QUAD))
2655 return -EINVAL;
2656 }
2657 /* check transfer rx_nbits */
2658 if (xfer->rx_buf) {
2659 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2660 xfer->rx_nbits != SPI_NBITS_DUAL &&
2661 xfer->rx_nbits != SPI_NBITS_QUAD)
2662 return -EINVAL;
2663 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2664 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2665 return -EINVAL;
2666 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2667 !(spi->mode & SPI_RX_QUAD))
2668 return -EINVAL;
2669 }
2670 }
2671
2672 message->status = -EINPROGRESS;
2673
2674 return 0;
2675 }
2676
2677 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2678 {
2679 struct spi_master *master = spi->master;
2680
2681 message->spi = spi;
2682
2683 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2684 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2685
2686 trace_spi_message_submit(message);
2687
2688 return master->transfer(spi, message);
2689 }
2690
2691 /**
2692 * spi_async - asynchronous SPI transfer
2693 * @spi: device with which data will be exchanged
2694 * @message: describes the data transfers, including completion callback
2695 * Context: any (irqs may be blocked, etc)
2696 *
2697 * This call may be used in_irq and other contexts which can't sleep,
2698 * as well as from task contexts which can sleep.
2699 *
2700 * The completion callback is invoked in a context which can't sleep.
2701 * Before that invocation, the value of message->status is undefined.
2702 * When the callback is issued, message->status holds either zero (to
2703 * indicate complete success) or a negative error code. After that
2704 * callback returns, the driver which issued the transfer request may
2705 * deallocate the associated memory; it's no longer in use by any SPI
2706 * core or controller driver code.
2707 *
2708 * Note that although all messages to a spi_device are handled in
2709 * FIFO order, messages may go to different devices in other orders.
2710 * Some device might be higher priority, or have various "hard" access
2711 * time requirements, for example.
2712 *
2713 * On detection of any fault during the transfer, processing of
2714 * the entire message is aborted, and the device is deselected.
2715 * Until returning from the associated message completion callback,
2716 * no other spi_message queued to that device will be processed.
2717 * (This rule applies equally to all the synchronous transfer calls,
2718 * which are wrappers around this core asynchronous primitive.)
2719 *
2720 * Return: zero on success, else a negative error code.
2721 */
2722 int spi_async(struct spi_device *spi, struct spi_message *message)
2723 {
2724 struct spi_master *master = spi->master;
2725 int ret;
2726 unsigned long flags;
2727
2728 ret = __spi_validate(spi, message);
2729 if (ret != 0)
2730 return ret;
2731
2732 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2733
2734 if (master->bus_lock_flag)
2735 ret = -EBUSY;
2736 else
2737 ret = __spi_async(spi, message);
2738
2739 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2740
2741 return ret;
2742 }
2743 EXPORT_SYMBOL_GPL(spi_async);
2744
2745 /**
2746 * spi_async_locked - version of spi_async with exclusive bus usage
2747 * @spi: device with which data will be exchanged
2748 * @message: describes the data transfers, including completion callback
2749 * Context: any (irqs may be blocked, etc)
2750 *
2751 * This call may be used in_irq and other contexts which can't sleep,
2752 * as well as from task contexts which can sleep.
2753 *
2754 * The completion callback is invoked in a context which can't sleep.
2755 * Before that invocation, the value of message->status is undefined.
2756 * When the callback is issued, message->status holds either zero (to
2757 * indicate complete success) or a negative error code. After that
2758 * callback returns, the driver which issued the transfer request may
2759 * deallocate the associated memory; it's no longer in use by any SPI
2760 * core or controller driver code.
2761 *
2762 * Note that although all messages to a spi_device are handled in
2763 * FIFO order, messages may go to different devices in other orders.
2764 * Some device might be higher priority, or have various "hard" access
2765 * time requirements, for example.
2766 *
2767 * On detection of any fault during the transfer, processing of
2768 * the entire message is aborted, and the device is deselected.
2769 * Until returning from the associated message completion callback,
2770 * no other spi_message queued to that device will be processed.
2771 * (This rule applies equally to all the synchronous transfer calls,
2772 * which are wrappers around this core asynchronous primitive.)
2773 *
2774 * Return: zero on success, else a negative error code.
2775 */
2776 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2777 {
2778 struct spi_master *master = spi->master;
2779 int ret;
2780 unsigned long flags;
2781
2782 ret = __spi_validate(spi, message);
2783 if (ret != 0)
2784 return ret;
2785
2786 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2787
2788 ret = __spi_async(spi, message);
2789
2790 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2791
2792 return ret;
2793
2794 }
2795 EXPORT_SYMBOL_GPL(spi_async_locked);
2796
2797
2798 int spi_flash_read(struct spi_device *spi,
2799 struct spi_flash_read_message *msg)
2800
2801 {
2802 struct spi_master *master = spi->master;
2803 struct device *rx_dev = NULL;
2804 int ret;
2805
2806 if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2807 msg->addr_nbits == SPI_NBITS_DUAL) &&
2808 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2809 return -EINVAL;
2810 if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2811 msg->addr_nbits == SPI_NBITS_QUAD) &&
2812 !(spi->mode & SPI_TX_QUAD))
2813 return -EINVAL;
2814 if (msg->data_nbits == SPI_NBITS_DUAL &&
2815 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2816 return -EINVAL;
2817 if (msg->data_nbits == SPI_NBITS_QUAD &&
2818 !(spi->mode & SPI_RX_QUAD))
2819 return -EINVAL;
2820
2821 if (master->auto_runtime_pm) {
2822 ret = pm_runtime_get_sync(master->dev.parent);
2823 if (ret < 0) {
2824 dev_err(&master->dev, "Failed to power device: %d\n",
2825 ret);
2826 return ret;
2827 }
2828 }
2829
2830 mutex_lock(&master->bus_lock_mutex);
2831 mutex_lock(&master->io_mutex);
2832 if (master->dma_rx) {
2833 rx_dev = master->dma_rx->device->dev;
2834 ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
2835 msg->buf, msg->len,
2836 DMA_FROM_DEVICE);
2837 if (!ret)
2838 msg->cur_msg_mapped = true;
2839 }
2840 ret = master->spi_flash_read(spi, msg);
2841 if (msg->cur_msg_mapped)
2842 spi_unmap_buf(master, rx_dev, &msg->rx_sg,
2843 DMA_FROM_DEVICE);
2844 mutex_unlock(&master->io_mutex);
2845 mutex_unlock(&master->bus_lock_mutex);
2846
2847 if (master->auto_runtime_pm)
2848 pm_runtime_put(master->dev.parent);
2849
2850 return ret;
2851 }
2852 EXPORT_SYMBOL_GPL(spi_flash_read);
2853
2854 /*-------------------------------------------------------------------------*/
2855
2856 /* Utility methods for SPI master protocol drivers, layered on
2857 * top of the core. Some other utility methods are defined as
2858 * inline functions.
2859 */
2860
2861 static void spi_complete(void *arg)
2862 {
2863 complete(arg);
2864 }
2865
2866 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
2867 {
2868 DECLARE_COMPLETION_ONSTACK(done);
2869 int status;
2870 struct spi_master *master = spi->master;
2871 unsigned long flags;
2872
2873 status = __spi_validate(spi, message);
2874 if (status != 0)
2875 return status;
2876
2877 message->complete = spi_complete;
2878 message->context = &done;
2879 message->spi = spi;
2880
2881 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2882 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2883
2884 /* If we're not using the legacy transfer method then we will
2885 * try to transfer in the calling context so special case.
2886 * This code would be less tricky if we could remove the
2887 * support for driver implemented message queues.
2888 */
2889 if (master->transfer == spi_queued_transfer) {
2890 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2891
2892 trace_spi_message_submit(message);
2893
2894 status = __spi_queued_transfer(spi, message, false);
2895
2896 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2897 } else {
2898 status = spi_async_locked(spi, message);
2899 }
2900
2901 if (status == 0) {
2902 /* Push out the messages in the calling context if we
2903 * can.
2904 */
2905 if (master->transfer == spi_queued_transfer) {
2906 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2907 spi_sync_immediate);
2908 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2909 spi_sync_immediate);
2910 __spi_pump_messages(master, false);
2911 }
2912
2913 wait_for_completion(&done);
2914 status = message->status;
2915 }
2916 message->context = NULL;
2917 return status;
2918 }
2919
2920 /**
2921 * spi_sync - blocking/synchronous SPI data transfers
2922 * @spi: device with which data will be exchanged
2923 * @message: describes the data transfers
2924 * Context: can sleep
2925 *
2926 * This call may only be used from a context that may sleep. The sleep
2927 * is non-interruptible, and has no timeout. Low-overhead controller
2928 * drivers may DMA directly into and out of the message buffers.
2929 *
2930 * Note that the SPI device's chip select is active during the message,
2931 * and then is normally disabled between messages. Drivers for some
2932 * frequently-used devices may want to minimize costs of selecting a chip,
2933 * by leaving it selected in anticipation that the next message will go
2934 * to the same chip. (That may increase power usage.)
2935 *
2936 * Also, the caller is guaranteeing that the memory associated with the
2937 * message will not be freed before this call returns.
2938 *
2939 * Return: zero on success, else a negative error code.
2940 */
2941 int spi_sync(struct spi_device *spi, struct spi_message *message)
2942 {
2943 int ret;
2944
2945 mutex_lock(&spi->master->bus_lock_mutex);
2946 ret = __spi_sync(spi, message);
2947 mutex_unlock(&spi->master->bus_lock_mutex);
2948
2949 return ret;
2950 }
2951 EXPORT_SYMBOL_GPL(spi_sync);
2952
2953 /**
2954 * spi_sync_locked - version of spi_sync with exclusive bus usage
2955 * @spi: device with which data will be exchanged
2956 * @message: describes the data transfers
2957 * Context: can sleep
2958 *
2959 * This call may only be used from a context that may sleep. The sleep
2960 * is non-interruptible, and has no timeout. Low-overhead controller
2961 * drivers may DMA directly into and out of the message buffers.
2962 *
2963 * This call should be used by drivers that require exclusive access to the
2964 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2965 * be released by a spi_bus_unlock call when the exclusive access is over.
2966 *
2967 * Return: zero on success, else a negative error code.
2968 */
2969 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2970 {
2971 return __spi_sync(spi, message);
2972 }
2973 EXPORT_SYMBOL_GPL(spi_sync_locked);
2974
2975 /**
2976 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2977 * @master: SPI bus master that should be locked for exclusive bus access
2978 * Context: can sleep
2979 *
2980 * This call may only be used from a context that may sleep. The sleep
2981 * is non-interruptible, and has no timeout.
2982 *
2983 * This call should be used by drivers that require exclusive access to the
2984 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2985 * exclusive access is over. Data transfer must be done by spi_sync_locked
2986 * and spi_async_locked calls when the SPI bus lock is held.
2987 *
2988 * Return: always zero.
2989 */
2990 int spi_bus_lock(struct spi_master *master)
2991 {
2992 unsigned long flags;
2993
2994 mutex_lock(&master->bus_lock_mutex);
2995
2996 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2997 master->bus_lock_flag = 1;
2998 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2999
3000 /* mutex remains locked until spi_bus_unlock is called */
3001
3002 return 0;
3003 }
3004 EXPORT_SYMBOL_GPL(spi_bus_lock);
3005
3006 /**
3007 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3008 * @master: SPI bus master that was locked for exclusive bus access
3009 * Context: can sleep
3010 *
3011 * This call may only be used from a context that may sleep. The sleep
3012 * is non-interruptible, and has no timeout.
3013 *
3014 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3015 * call.
3016 *
3017 * Return: always zero.
3018 */
3019 int spi_bus_unlock(struct spi_master *master)
3020 {
3021 master->bus_lock_flag = 0;
3022
3023 mutex_unlock(&master->bus_lock_mutex);
3024
3025 return 0;
3026 }
3027 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3028
3029 /* portable code must never pass more than 32 bytes */
3030 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3031
3032 static u8 *buf;
3033
3034 /**
3035 * spi_write_then_read - SPI synchronous write followed by read
3036 * @spi: device with which data will be exchanged
3037 * @txbuf: data to be written (need not be dma-safe)
3038 * @n_tx: size of txbuf, in bytes
3039 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3040 * @n_rx: size of rxbuf, in bytes
3041 * Context: can sleep
3042 *
3043 * This performs a half duplex MicroWire style transaction with the
3044 * device, sending txbuf and then reading rxbuf. The return value
3045 * is zero for success, else a negative errno status code.
3046 * This call may only be used from a context that may sleep.
3047 *
3048 * Parameters to this routine are always copied using a small buffer;
3049 * portable code should never use this for more than 32 bytes.
3050 * Performance-sensitive or bulk transfer code should instead use
3051 * spi_{async,sync}() calls with dma-safe buffers.
3052 *
3053 * Return: zero on success, else a negative error code.
3054 */
3055 int spi_write_then_read(struct spi_device *spi,
3056 const void *txbuf, unsigned n_tx,
3057 void *rxbuf, unsigned n_rx)
3058 {
3059 static DEFINE_MUTEX(lock);
3060
3061 int status;
3062 struct spi_message message;
3063 struct spi_transfer x[2];
3064 u8 *local_buf;
3065
3066 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3067 * copying here, (as a pure convenience thing), but we can
3068 * keep heap costs out of the hot path unless someone else is
3069 * using the pre-allocated buffer or the transfer is too large.
3070 */
3071 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3072 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3073 GFP_KERNEL | GFP_DMA);
3074 if (!local_buf)
3075 return -ENOMEM;
3076 } else {
3077 local_buf = buf;
3078 }
3079
3080 spi_message_init(&message);
3081 memset(x, 0, sizeof(x));
3082 if (n_tx) {
3083 x[0].len = n_tx;
3084 spi_message_add_tail(&x[0], &message);
3085 }
3086 if (n_rx) {
3087 x[1].len = n_rx;
3088 spi_message_add_tail(&x[1], &message);
3089 }
3090
3091 memcpy(local_buf, txbuf, n_tx);
3092 x[0].tx_buf = local_buf;
3093 x[1].rx_buf = local_buf + n_tx;
3094
3095 /* do the i/o */
3096 status = spi_sync(spi, &message);
3097 if (status == 0)
3098 memcpy(rxbuf, x[1].rx_buf, n_rx);
3099
3100 if (x[0].tx_buf == buf)
3101 mutex_unlock(&lock);
3102 else
3103 kfree(local_buf);
3104
3105 return status;
3106 }
3107 EXPORT_SYMBOL_GPL(spi_write_then_read);
3108
3109 /*-------------------------------------------------------------------------*/
3110
3111 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3112 static int __spi_of_device_match(struct device *dev, void *data)
3113 {
3114 return dev->of_node == data;
3115 }
3116
3117 /* must call put_device() when done with returned spi_device device */
3118 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3119 {
3120 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3121 __spi_of_device_match);
3122 return dev ? to_spi_device(dev) : NULL;
3123 }
3124
3125 static int __spi_of_master_match(struct device *dev, const void *data)
3126 {
3127 return dev->of_node == data;
3128 }
3129
3130 /* the spi masters are not using spi_bus, so we find it with another way */
3131 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
3132 {
3133 struct device *dev;
3134
3135 dev = class_find_device(&spi_master_class, NULL, node,
3136 __spi_of_master_match);
3137 if (!dev)
3138 return NULL;
3139
3140 /* reference got in class_find_device */
3141 return container_of(dev, struct spi_master, dev);
3142 }
3143
3144 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3145 void *arg)
3146 {
3147 struct of_reconfig_data *rd = arg;
3148 struct spi_master *master;
3149 struct spi_device *spi;
3150
3151 switch (of_reconfig_get_state_change(action, arg)) {
3152 case OF_RECONFIG_CHANGE_ADD:
3153 master = of_find_spi_master_by_node(rd->dn->parent);
3154 if (master == NULL)
3155 return NOTIFY_OK; /* not for us */
3156
3157 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3158 put_device(&master->dev);
3159 return NOTIFY_OK;
3160 }
3161
3162 spi = of_register_spi_device(master, rd->dn);
3163 put_device(&master->dev);
3164
3165 if (IS_ERR(spi)) {
3166 pr_err("%s: failed to create for '%s'\n",
3167 __func__, rd->dn->full_name);
3168 of_node_clear_flag(rd->dn, OF_POPULATED);
3169 return notifier_from_errno(PTR_ERR(spi));
3170 }
3171 break;
3172
3173 case OF_RECONFIG_CHANGE_REMOVE:
3174 /* already depopulated? */
3175 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3176 return NOTIFY_OK;
3177
3178 /* find our device by node */
3179 spi = of_find_spi_device_by_node(rd->dn);
3180 if (spi == NULL)
3181 return NOTIFY_OK; /* no? not meant for us */
3182
3183 /* unregister takes one ref away */
3184 spi_unregister_device(spi);
3185
3186 /* and put the reference of the find */
3187 put_device(&spi->dev);
3188 break;
3189 }
3190
3191 return NOTIFY_OK;
3192 }
3193
3194 static struct notifier_block spi_of_notifier = {
3195 .notifier_call = of_spi_notify,
3196 };
3197 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3198 extern struct notifier_block spi_of_notifier;
3199 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3200
3201 #if IS_ENABLED(CONFIG_ACPI)
3202 static int spi_acpi_master_match(struct device *dev, const void *data)
3203 {
3204 return ACPI_COMPANION(dev->parent) == data;
3205 }
3206
3207 static int spi_acpi_device_match(struct device *dev, void *data)
3208 {
3209 return ACPI_COMPANION(dev) == data;
3210 }
3211
3212 static struct spi_master *acpi_spi_find_master_by_adev(struct acpi_device *adev)
3213 {
3214 struct device *dev;
3215
3216 dev = class_find_device(&spi_master_class, NULL, adev,
3217 spi_acpi_master_match);
3218 if (!dev)
3219 return NULL;
3220
3221 return container_of(dev, struct spi_master, dev);
3222 }
3223
3224 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3225 {
3226 struct device *dev;
3227
3228 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3229
3230 return dev ? to_spi_device(dev) : NULL;
3231 }
3232
3233 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3234 void *arg)
3235 {
3236 struct acpi_device *adev = arg;
3237 struct spi_master *master;
3238 struct spi_device *spi;
3239
3240 switch (value) {
3241 case ACPI_RECONFIG_DEVICE_ADD:
3242 master = acpi_spi_find_master_by_adev(adev->parent);
3243 if (!master)
3244 break;
3245
3246 acpi_register_spi_device(master, adev);
3247 put_device(&master->dev);
3248 break;
3249 case ACPI_RECONFIG_DEVICE_REMOVE:
3250 if (!acpi_device_enumerated(adev))
3251 break;
3252
3253 spi = acpi_spi_find_device_by_adev(adev);
3254 if (!spi)
3255 break;
3256
3257 spi_unregister_device(spi);
3258 put_device(&spi->dev);
3259 break;
3260 }
3261
3262 return NOTIFY_OK;
3263 }
3264
3265 static struct notifier_block spi_acpi_notifier = {
3266 .notifier_call = acpi_spi_notify,
3267 };
3268 #else
3269 extern struct notifier_block spi_acpi_notifier;
3270 #endif
3271
3272 static int __init spi_init(void)
3273 {
3274 int status;
3275
3276 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3277 if (!buf) {
3278 status = -ENOMEM;
3279 goto err0;
3280 }
3281
3282 status = bus_register(&spi_bus_type);
3283 if (status < 0)
3284 goto err1;
3285
3286 status = class_register(&spi_master_class);
3287 if (status < 0)
3288 goto err2;
3289
3290 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3291 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3292 if (IS_ENABLED(CONFIG_ACPI))
3293 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3294
3295 return 0;
3296
3297 err2:
3298 bus_unregister(&spi_bus_type);
3299 err1:
3300 kfree(buf);
3301 buf = NULL;
3302 err0:
3303 return status;
3304 }
3305
3306 /* board_info is normally registered in arch_initcall(),
3307 * but even essential drivers wait till later
3308 *
3309 * REVISIT only boardinfo really needs static linking. the rest (device and
3310 * driver registration) _could_ be dynamically linked (modular) ... costs
3311 * include needing to have boardinfo data structures be much more public.
3312 */
3313 postcore_initcall(spi_init);
3314