]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/spi/spi.c
PCI / PM: Always check PME wakeup capability for runtime wakeup support
[mirror_ubuntu-artful-kernel.git] / drivers / spi / spi.c
1 /*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/property.h>
35 #include <linux/export.h>
36 #include <linux/sched/rt.h>
37 #include <uapi/linux/sched/types.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/ioport.h>
41 #include <linux/acpi.h>
42 #include <linux/highmem.h>
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/spi.h>
46
47 static void spidev_release(struct device *dev)
48 {
49 struct spi_device *spi = to_spi_device(dev);
50
51 /* spi controllers may cleanup for released devices */
52 if (spi->controller->cleanup)
53 spi->controller->cleanup(spi);
54
55 spi_controller_put(spi->controller);
56 kfree(spi);
57 }
58
59 static ssize_t
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61 {
62 const struct spi_device *spi = to_spi_device(dev);
63 int len;
64
65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 if (len != -ENODEV)
67 return len;
68
69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
70 }
71 static DEVICE_ATTR_RO(modalias);
72
73 #define SPI_STATISTICS_ATTRS(field, file) \
74 static ssize_t spi_controller_##field##_show(struct device *dev, \
75 struct device_attribute *attr, \
76 char *buf) \
77 { \
78 struct spi_controller *ctlr = container_of(dev, \
79 struct spi_controller, dev); \
80 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
81 } \
82 static struct device_attribute dev_attr_spi_controller_##field = { \
83 .attr = { .name = file, .mode = 0444 }, \
84 .show = spi_controller_##field##_show, \
85 }; \
86 static ssize_t spi_device_##field##_show(struct device *dev, \
87 struct device_attribute *attr, \
88 char *buf) \
89 { \
90 struct spi_device *spi = to_spi_device(dev); \
91 return spi_statistics_##field##_show(&spi->statistics, buf); \
92 } \
93 static struct device_attribute dev_attr_spi_device_##field = { \
94 .attr = { .name = file, .mode = 0444 }, \
95 .show = spi_device_##field##_show, \
96 }
97
98 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
99 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
100 char *buf) \
101 { \
102 unsigned long flags; \
103 ssize_t len; \
104 spin_lock_irqsave(&stat->lock, flags); \
105 len = sprintf(buf, format_string, stat->field); \
106 spin_unlock_irqrestore(&stat->lock, flags); \
107 return len; \
108 } \
109 SPI_STATISTICS_ATTRS(name, file)
110
111 #define SPI_STATISTICS_SHOW(field, format_string) \
112 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
113 field, format_string)
114
115 SPI_STATISTICS_SHOW(messages, "%lu");
116 SPI_STATISTICS_SHOW(transfers, "%lu");
117 SPI_STATISTICS_SHOW(errors, "%lu");
118 SPI_STATISTICS_SHOW(timedout, "%lu");
119
120 SPI_STATISTICS_SHOW(spi_sync, "%lu");
121 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
122 SPI_STATISTICS_SHOW(spi_async, "%lu");
123
124 SPI_STATISTICS_SHOW(bytes, "%llu");
125 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
126 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
127
128 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
129 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
130 "transfer_bytes_histo_" number, \
131 transfer_bytes_histo[index], "%lu")
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
147 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
148 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
149
150 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
151
152 static struct attribute *spi_dev_attrs[] = {
153 &dev_attr_modalias.attr,
154 NULL,
155 };
156
157 static const struct attribute_group spi_dev_group = {
158 .attrs = spi_dev_attrs,
159 };
160
161 static struct attribute *spi_device_statistics_attrs[] = {
162 &dev_attr_spi_device_messages.attr,
163 &dev_attr_spi_device_transfers.attr,
164 &dev_attr_spi_device_errors.attr,
165 &dev_attr_spi_device_timedout.attr,
166 &dev_attr_spi_device_spi_sync.attr,
167 &dev_attr_spi_device_spi_sync_immediate.attr,
168 &dev_attr_spi_device_spi_async.attr,
169 &dev_attr_spi_device_bytes.attr,
170 &dev_attr_spi_device_bytes_rx.attr,
171 &dev_attr_spi_device_bytes_tx.attr,
172 &dev_attr_spi_device_transfer_bytes_histo0.attr,
173 &dev_attr_spi_device_transfer_bytes_histo1.attr,
174 &dev_attr_spi_device_transfer_bytes_histo2.attr,
175 &dev_attr_spi_device_transfer_bytes_histo3.attr,
176 &dev_attr_spi_device_transfer_bytes_histo4.attr,
177 &dev_attr_spi_device_transfer_bytes_histo5.attr,
178 &dev_attr_spi_device_transfer_bytes_histo6.attr,
179 &dev_attr_spi_device_transfer_bytes_histo7.attr,
180 &dev_attr_spi_device_transfer_bytes_histo8.attr,
181 &dev_attr_spi_device_transfer_bytes_histo9.attr,
182 &dev_attr_spi_device_transfer_bytes_histo10.attr,
183 &dev_attr_spi_device_transfer_bytes_histo11.attr,
184 &dev_attr_spi_device_transfer_bytes_histo12.attr,
185 &dev_attr_spi_device_transfer_bytes_histo13.attr,
186 &dev_attr_spi_device_transfer_bytes_histo14.attr,
187 &dev_attr_spi_device_transfer_bytes_histo15.attr,
188 &dev_attr_spi_device_transfer_bytes_histo16.attr,
189 &dev_attr_spi_device_transfers_split_maxsize.attr,
190 NULL,
191 };
192
193 static const struct attribute_group spi_device_statistics_group = {
194 .name = "statistics",
195 .attrs = spi_device_statistics_attrs,
196 };
197
198 static const struct attribute_group *spi_dev_groups[] = {
199 &spi_dev_group,
200 &spi_device_statistics_group,
201 NULL,
202 };
203
204 static struct attribute *spi_controller_statistics_attrs[] = {
205 &dev_attr_spi_controller_messages.attr,
206 &dev_attr_spi_controller_transfers.attr,
207 &dev_attr_spi_controller_errors.attr,
208 &dev_attr_spi_controller_timedout.attr,
209 &dev_attr_spi_controller_spi_sync.attr,
210 &dev_attr_spi_controller_spi_sync_immediate.attr,
211 &dev_attr_spi_controller_spi_async.attr,
212 &dev_attr_spi_controller_bytes.attr,
213 &dev_attr_spi_controller_bytes_rx.attr,
214 &dev_attr_spi_controller_bytes_tx.attr,
215 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
216 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
217 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
218 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
219 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
220 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
221 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
222 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
223 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
224 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
225 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
226 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
227 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
228 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
229 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
230 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
231 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
232 &dev_attr_spi_controller_transfers_split_maxsize.attr,
233 NULL,
234 };
235
236 static const struct attribute_group spi_controller_statistics_group = {
237 .name = "statistics",
238 .attrs = spi_controller_statistics_attrs,
239 };
240
241 static const struct attribute_group *spi_master_groups[] = {
242 &spi_controller_statistics_group,
243 NULL,
244 };
245
246 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
247 struct spi_transfer *xfer,
248 struct spi_controller *ctlr)
249 {
250 unsigned long flags;
251 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
252
253 if (l2len < 0)
254 l2len = 0;
255
256 spin_lock_irqsave(&stats->lock, flags);
257
258 stats->transfers++;
259 stats->transfer_bytes_histo[l2len]++;
260
261 stats->bytes += xfer->len;
262 if ((xfer->tx_buf) &&
263 (xfer->tx_buf != ctlr->dummy_tx))
264 stats->bytes_tx += xfer->len;
265 if ((xfer->rx_buf) &&
266 (xfer->rx_buf != ctlr->dummy_rx))
267 stats->bytes_rx += xfer->len;
268
269 spin_unlock_irqrestore(&stats->lock, flags);
270 }
271 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
272
273 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
274 * and the sysfs version makes coldplug work too.
275 */
276
277 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
278 const struct spi_device *sdev)
279 {
280 while (id->name[0]) {
281 if (!strcmp(sdev->modalias, id->name))
282 return id;
283 id++;
284 }
285 return NULL;
286 }
287
288 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
289 {
290 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
291
292 return spi_match_id(sdrv->id_table, sdev);
293 }
294 EXPORT_SYMBOL_GPL(spi_get_device_id);
295
296 static int spi_match_device(struct device *dev, struct device_driver *drv)
297 {
298 const struct spi_device *spi = to_spi_device(dev);
299 const struct spi_driver *sdrv = to_spi_driver(drv);
300
301 /* Attempt an OF style match */
302 if (of_driver_match_device(dev, drv))
303 return 1;
304
305 /* Then try ACPI */
306 if (acpi_driver_match_device(dev, drv))
307 return 1;
308
309 if (sdrv->id_table)
310 return !!spi_match_id(sdrv->id_table, spi);
311
312 return strcmp(spi->modalias, drv->name) == 0;
313 }
314
315 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
316 {
317 const struct spi_device *spi = to_spi_device(dev);
318 int rc;
319
320 rc = acpi_device_uevent_modalias(dev, env);
321 if (rc != -ENODEV)
322 return rc;
323
324 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
325 return 0;
326 }
327
328 struct bus_type spi_bus_type = {
329 .name = "spi",
330 .dev_groups = spi_dev_groups,
331 .match = spi_match_device,
332 .uevent = spi_uevent,
333 };
334 EXPORT_SYMBOL_GPL(spi_bus_type);
335
336
337 static int spi_drv_probe(struct device *dev)
338 {
339 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
340 struct spi_device *spi = to_spi_device(dev);
341 int ret;
342
343 ret = of_clk_set_defaults(dev->of_node, false);
344 if (ret)
345 return ret;
346
347 if (dev->of_node) {
348 spi->irq = of_irq_get(dev->of_node, 0);
349 if (spi->irq == -EPROBE_DEFER)
350 return -EPROBE_DEFER;
351 if (spi->irq < 0)
352 spi->irq = 0;
353 }
354
355 ret = dev_pm_domain_attach(dev, true);
356 if (ret != -EPROBE_DEFER) {
357 ret = sdrv->probe(spi);
358 if (ret)
359 dev_pm_domain_detach(dev, true);
360 }
361
362 return ret;
363 }
364
365 static int spi_drv_remove(struct device *dev)
366 {
367 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
368 int ret;
369
370 ret = sdrv->remove(to_spi_device(dev));
371 dev_pm_domain_detach(dev, true);
372
373 return ret;
374 }
375
376 static void spi_drv_shutdown(struct device *dev)
377 {
378 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
379
380 sdrv->shutdown(to_spi_device(dev));
381 }
382
383 /**
384 * __spi_register_driver - register a SPI driver
385 * @owner: owner module of the driver to register
386 * @sdrv: the driver to register
387 * Context: can sleep
388 *
389 * Return: zero on success, else a negative error code.
390 */
391 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
392 {
393 sdrv->driver.owner = owner;
394 sdrv->driver.bus = &spi_bus_type;
395 if (sdrv->probe)
396 sdrv->driver.probe = spi_drv_probe;
397 if (sdrv->remove)
398 sdrv->driver.remove = spi_drv_remove;
399 if (sdrv->shutdown)
400 sdrv->driver.shutdown = spi_drv_shutdown;
401 return driver_register(&sdrv->driver);
402 }
403 EXPORT_SYMBOL_GPL(__spi_register_driver);
404
405 /*-------------------------------------------------------------------------*/
406
407 /* SPI devices should normally not be created by SPI device drivers; that
408 * would make them board-specific. Similarly with SPI controller drivers.
409 * Device registration normally goes into like arch/.../mach.../board-YYY.c
410 * with other readonly (flashable) information about mainboard devices.
411 */
412
413 struct boardinfo {
414 struct list_head list;
415 struct spi_board_info board_info;
416 };
417
418 static LIST_HEAD(board_list);
419 static LIST_HEAD(spi_controller_list);
420
421 /*
422 * Used to protect add/del opertion for board_info list and
423 * spi_controller list, and their matching process
424 */
425 static DEFINE_MUTEX(board_lock);
426
427 /**
428 * spi_alloc_device - Allocate a new SPI device
429 * @ctlr: Controller to which device is connected
430 * Context: can sleep
431 *
432 * Allows a driver to allocate and initialize a spi_device without
433 * registering it immediately. This allows a driver to directly
434 * fill the spi_device with device parameters before calling
435 * spi_add_device() on it.
436 *
437 * Caller is responsible to call spi_add_device() on the returned
438 * spi_device structure to add it to the SPI controller. If the caller
439 * needs to discard the spi_device without adding it, then it should
440 * call spi_dev_put() on it.
441 *
442 * Return: a pointer to the new device, or NULL.
443 */
444 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
445 {
446 struct spi_device *spi;
447
448 if (!spi_controller_get(ctlr))
449 return NULL;
450
451 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
452 if (!spi) {
453 spi_controller_put(ctlr);
454 return NULL;
455 }
456
457 spi->master = spi->controller = ctlr;
458 spi->dev.parent = &ctlr->dev;
459 spi->dev.bus = &spi_bus_type;
460 spi->dev.release = spidev_release;
461 spi->cs_gpio = -ENOENT;
462
463 spin_lock_init(&spi->statistics.lock);
464
465 device_initialize(&spi->dev);
466 return spi;
467 }
468 EXPORT_SYMBOL_GPL(spi_alloc_device);
469
470 static void spi_dev_set_name(struct spi_device *spi)
471 {
472 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
473
474 if (adev) {
475 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
476 return;
477 }
478
479 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
480 spi->chip_select);
481 }
482
483 static int spi_dev_check(struct device *dev, void *data)
484 {
485 struct spi_device *spi = to_spi_device(dev);
486 struct spi_device *new_spi = data;
487
488 if (spi->controller == new_spi->controller &&
489 spi->chip_select == new_spi->chip_select)
490 return -EBUSY;
491 return 0;
492 }
493
494 /**
495 * spi_add_device - Add spi_device allocated with spi_alloc_device
496 * @spi: spi_device to register
497 *
498 * Companion function to spi_alloc_device. Devices allocated with
499 * spi_alloc_device can be added onto the spi bus with this function.
500 *
501 * Return: 0 on success; negative errno on failure
502 */
503 int spi_add_device(struct spi_device *spi)
504 {
505 static DEFINE_MUTEX(spi_add_lock);
506 struct spi_controller *ctlr = spi->controller;
507 struct device *dev = ctlr->dev.parent;
508 int status;
509
510 /* Chipselects are numbered 0..max; validate. */
511 if (spi->chip_select >= ctlr->num_chipselect) {
512 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
513 ctlr->num_chipselect);
514 return -EINVAL;
515 }
516
517 /* Set the bus ID string */
518 spi_dev_set_name(spi);
519
520 /* We need to make sure there's no other device with this
521 * chipselect **BEFORE** we call setup(), else we'll trash
522 * its configuration. Lock against concurrent add() calls.
523 */
524 mutex_lock(&spi_add_lock);
525
526 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
527 if (status) {
528 dev_err(dev, "chipselect %d already in use\n",
529 spi->chip_select);
530 goto done;
531 }
532
533 if (ctlr->cs_gpios)
534 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
535
536 /* Drivers may modify this initial i/o setup, but will
537 * normally rely on the device being setup. Devices
538 * using SPI_CS_HIGH can't coexist well otherwise...
539 */
540 status = spi_setup(spi);
541 if (status < 0) {
542 dev_err(dev, "can't setup %s, status %d\n",
543 dev_name(&spi->dev), status);
544 goto done;
545 }
546
547 /* Device may be bound to an active driver when this returns */
548 status = device_add(&spi->dev);
549 if (status < 0)
550 dev_err(dev, "can't add %s, status %d\n",
551 dev_name(&spi->dev), status);
552 else
553 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
554
555 done:
556 mutex_unlock(&spi_add_lock);
557 return status;
558 }
559 EXPORT_SYMBOL_GPL(spi_add_device);
560
561 /**
562 * spi_new_device - instantiate one new SPI device
563 * @ctlr: Controller to which device is connected
564 * @chip: Describes the SPI device
565 * Context: can sleep
566 *
567 * On typical mainboards, this is purely internal; and it's not needed
568 * after board init creates the hard-wired devices. Some development
569 * platforms may not be able to use spi_register_board_info though, and
570 * this is exported so that for example a USB or parport based adapter
571 * driver could add devices (which it would learn about out-of-band).
572 *
573 * Return: the new device, or NULL.
574 */
575 struct spi_device *spi_new_device(struct spi_controller *ctlr,
576 struct spi_board_info *chip)
577 {
578 struct spi_device *proxy;
579 int status;
580
581 /* NOTE: caller did any chip->bus_num checks necessary.
582 *
583 * Also, unless we change the return value convention to use
584 * error-or-pointer (not NULL-or-pointer), troubleshootability
585 * suggests syslogged diagnostics are best here (ugh).
586 */
587
588 proxy = spi_alloc_device(ctlr);
589 if (!proxy)
590 return NULL;
591
592 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
593
594 proxy->chip_select = chip->chip_select;
595 proxy->max_speed_hz = chip->max_speed_hz;
596 proxy->mode = chip->mode;
597 proxy->irq = chip->irq;
598 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
599 proxy->dev.platform_data = (void *) chip->platform_data;
600 proxy->controller_data = chip->controller_data;
601 proxy->controller_state = NULL;
602
603 if (chip->properties) {
604 status = device_add_properties(&proxy->dev, chip->properties);
605 if (status) {
606 dev_err(&ctlr->dev,
607 "failed to add properties to '%s': %d\n",
608 chip->modalias, status);
609 goto err_dev_put;
610 }
611 }
612
613 status = spi_add_device(proxy);
614 if (status < 0)
615 goto err_remove_props;
616
617 return proxy;
618
619 err_remove_props:
620 if (chip->properties)
621 device_remove_properties(&proxy->dev);
622 err_dev_put:
623 spi_dev_put(proxy);
624 return NULL;
625 }
626 EXPORT_SYMBOL_GPL(spi_new_device);
627
628 /**
629 * spi_unregister_device - unregister a single SPI device
630 * @spi: spi_device to unregister
631 *
632 * Start making the passed SPI device vanish. Normally this would be handled
633 * by spi_unregister_controller().
634 */
635 void spi_unregister_device(struct spi_device *spi)
636 {
637 if (!spi)
638 return;
639
640 if (spi->dev.of_node) {
641 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
642 of_node_put(spi->dev.of_node);
643 }
644 if (ACPI_COMPANION(&spi->dev))
645 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
646 device_unregister(&spi->dev);
647 }
648 EXPORT_SYMBOL_GPL(spi_unregister_device);
649
650 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
651 struct spi_board_info *bi)
652 {
653 struct spi_device *dev;
654
655 if (ctlr->bus_num != bi->bus_num)
656 return;
657
658 dev = spi_new_device(ctlr, bi);
659 if (!dev)
660 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
661 bi->modalias);
662 }
663
664 /**
665 * spi_register_board_info - register SPI devices for a given board
666 * @info: array of chip descriptors
667 * @n: how many descriptors are provided
668 * Context: can sleep
669 *
670 * Board-specific early init code calls this (probably during arch_initcall)
671 * with segments of the SPI device table. Any device nodes are created later,
672 * after the relevant parent SPI controller (bus_num) is defined. We keep
673 * this table of devices forever, so that reloading a controller driver will
674 * not make Linux forget about these hard-wired devices.
675 *
676 * Other code can also call this, e.g. a particular add-on board might provide
677 * SPI devices through its expansion connector, so code initializing that board
678 * would naturally declare its SPI devices.
679 *
680 * The board info passed can safely be __initdata ... but be careful of
681 * any embedded pointers (platform_data, etc), they're copied as-is.
682 * Device properties are deep-copied though.
683 *
684 * Return: zero on success, else a negative error code.
685 */
686 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
687 {
688 struct boardinfo *bi;
689 int i;
690
691 if (!n)
692 return 0;
693
694 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
695 if (!bi)
696 return -ENOMEM;
697
698 for (i = 0; i < n; i++, bi++, info++) {
699 struct spi_controller *ctlr;
700
701 memcpy(&bi->board_info, info, sizeof(*info));
702 if (info->properties) {
703 bi->board_info.properties =
704 property_entries_dup(info->properties);
705 if (IS_ERR(bi->board_info.properties))
706 return PTR_ERR(bi->board_info.properties);
707 }
708
709 mutex_lock(&board_lock);
710 list_add_tail(&bi->list, &board_list);
711 list_for_each_entry(ctlr, &spi_controller_list, list)
712 spi_match_controller_to_boardinfo(ctlr,
713 &bi->board_info);
714 mutex_unlock(&board_lock);
715 }
716
717 return 0;
718 }
719
720 /*-------------------------------------------------------------------------*/
721
722 static void spi_set_cs(struct spi_device *spi, bool enable)
723 {
724 if (spi->mode & SPI_CS_HIGH)
725 enable = !enable;
726
727 if (gpio_is_valid(spi->cs_gpio)) {
728 gpio_set_value(spi->cs_gpio, !enable);
729 /* Some SPI masters need both GPIO CS & slave_select */
730 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
731 spi->controller->set_cs)
732 spi->controller->set_cs(spi, !enable);
733 } else if (spi->controller->set_cs) {
734 spi->controller->set_cs(spi, !enable);
735 }
736 }
737
738 #ifdef CONFIG_HAS_DMA
739 static int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
740 struct sg_table *sgt, void *buf, size_t len,
741 enum dma_data_direction dir)
742 {
743 const bool vmalloced_buf = is_vmalloc_addr(buf);
744 unsigned int max_seg_size = dma_get_max_seg_size(dev);
745 #ifdef CONFIG_HIGHMEM
746 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
747 (unsigned long)buf < (PKMAP_BASE +
748 (LAST_PKMAP * PAGE_SIZE)));
749 #else
750 const bool kmap_buf = false;
751 #endif
752 int desc_len;
753 int sgs;
754 struct page *vm_page;
755 struct scatterlist *sg;
756 void *sg_buf;
757 size_t min;
758 int i, ret;
759
760 if (vmalloced_buf || kmap_buf) {
761 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
762 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
763 } else if (virt_addr_valid(buf)) {
764 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
765 sgs = DIV_ROUND_UP(len, desc_len);
766 } else {
767 return -EINVAL;
768 }
769
770 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
771 if (ret != 0)
772 return ret;
773
774 sg = &sgt->sgl[0];
775 for (i = 0; i < sgs; i++) {
776
777 if (vmalloced_buf || kmap_buf) {
778 min = min_t(size_t,
779 len, desc_len - offset_in_page(buf));
780 if (vmalloced_buf)
781 vm_page = vmalloc_to_page(buf);
782 else
783 vm_page = kmap_to_page(buf);
784 if (!vm_page) {
785 sg_free_table(sgt);
786 return -ENOMEM;
787 }
788 sg_set_page(sg, vm_page,
789 min, offset_in_page(buf));
790 } else {
791 min = min_t(size_t, len, desc_len);
792 sg_buf = buf;
793 sg_set_buf(sg, sg_buf, min);
794 }
795
796 buf += min;
797 len -= min;
798 sg = sg_next(sg);
799 }
800
801 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
802 if (!ret)
803 ret = -ENOMEM;
804 if (ret < 0) {
805 sg_free_table(sgt);
806 return ret;
807 }
808
809 sgt->nents = ret;
810
811 return 0;
812 }
813
814 static void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
815 struct sg_table *sgt, enum dma_data_direction dir)
816 {
817 if (sgt->orig_nents) {
818 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
819 sg_free_table(sgt);
820 }
821 }
822
823 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
824 {
825 struct device *tx_dev, *rx_dev;
826 struct spi_transfer *xfer;
827 int ret;
828
829 if (!ctlr->can_dma)
830 return 0;
831
832 if (ctlr->dma_tx)
833 tx_dev = ctlr->dma_tx->device->dev;
834 else
835 tx_dev = ctlr->dev.parent;
836
837 if (ctlr->dma_rx)
838 rx_dev = ctlr->dma_rx->device->dev;
839 else
840 rx_dev = ctlr->dev.parent;
841
842 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
843 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
844 continue;
845
846 if (xfer->tx_buf != NULL) {
847 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
848 (void *)xfer->tx_buf, xfer->len,
849 DMA_TO_DEVICE);
850 if (ret != 0)
851 return ret;
852 }
853
854 if (xfer->rx_buf != NULL) {
855 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
856 xfer->rx_buf, xfer->len,
857 DMA_FROM_DEVICE);
858 if (ret != 0) {
859 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
860 DMA_TO_DEVICE);
861 return ret;
862 }
863 }
864 }
865
866 ctlr->cur_msg_mapped = true;
867
868 return 0;
869 }
870
871 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
872 {
873 struct spi_transfer *xfer;
874 struct device *tx_dev, *rx_dev;
875
876 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
877 return 0;
878
879 if (ctlr->dma_tx)
880 tx_dev = ctlr->dma_tx->device->dev;
881 else
882 tx_dev = ctlr->dev.parent;
883
884 if (ctlr->dma_rx)
885 rx_dev = ctlr->dma_rx->device->dev;
886 else
887 rx_dev = ctlr->dev.parent;
888
889 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
890 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
891 continue;
892
893 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
894 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
895 }
896
897 return 0;
898 }
899 #else /* !CONFIG_HAS_DMA */
900 static inline int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
901 struct sg_table *sgt, void *buf, size_t len,
902 enum dma_data_direction dir)
903 {
904 return -EINVAL;
905 }
906
907 static inline void spi_unmap_buf(struct spi_controller *ctlr,
908 struct device *dev, struct sg_table *sgt,
909 enum dma_data_direction dir)
910 {
911 }
912
913 static inline int __spi_map_msg(struct spi_controller *ctlr,
914 struct spi_message *msg)
915 {
916 return 0;
917 }
918
919 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
920 struct spi_message *msg)
921 {
922 return 0;
923 }
924 #endif /* !CONFIG_HAS_DMA */
925
926 static inline int spi_unmap_msg(struct spi_controller *ctlr,
927 struct spi_message *msg)
928 {
929 struct spi_transfer *xfer;
930
931 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
932 /*
933 * Restore the original value of tx_buf or rx_buf if they are
934 * NULL.
935 */
936 if (xfer->tx_buf == ctlr->dummy_tx)
937 xfer->tx_buf = NULL;
938 if (xfer->rx_buf == ctlr->dummy_rx)
939 xfer->rx_buf = NULL;
940 }
941
942 return __spi_unmap_msg(ctlr, msg);
943 }
944
945 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
946 {
947 struct spi_transfer *xfer;
948 void *tmp;
949 unsigned int max_tx, max_rx;
950
951 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
952 max_tx = 0;
953 max_rx = 0;
954
955 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
956 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
957 !xfer->tx_buf)
958 max_tx = max(xfer->len, max_tx);
959 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
960 !xfer->rx_buf)
961 max_rx = max(xfer->len, max_rx);
962 }
963
964 if (max_tx) {
965 tmp = krealloc(ctlr->dummy_tx, max_tx,
966 GFP_KERNEL | GFP_DMA);
967 if (!tmp)
968 return -ENOMEM;
969 ctlr->dummy_tx = tmp;
970 memset(tmp, 0, max_tx);
971 }
972
973 if (max_rx) {
974 tmp = krealloc(ctlr->dummy_rx, max_rx,
975 GFP_KERNEL | GFP_DMA);
976 if (!tmp)
977 return -ENOMEM;
978 ctlr->dummy_rx = tmp;
979 }
980
981 if (max_tx || max_rx) {
982 list_for_each_entry(xfer, &msg->transfers,
983 transfer_list) {
984 if (!xfer->tx_buf)
985 xfer->tx_buf = ctlr->dummy_tx;
986 if (!xfer->rx_buf)
987 xfer->rx_buf = ctlr->dummy_rx;
988 }
989 }
990 }
991
992 return __spi_map_msg(ctlr, msg);
993 }
994
995 /*
996 * spi_transfer_one_message - Default implementation of transfer_one_message()
997 *
998 * This is a standard implementation of transfer_one_message() for
999 * drivers which implement a transfer_one() operation. It provides
1000 * standard handling of delays and chip select management.
1001 */
1002 static int spi_transfer_one_message(struct spi_controller *ctlr,
1003 struct spi_message *msg)
1004 {
1005 struct spi_transfer *xfer;
1006 bool keep_cs = false;
1007 int ret = 0;
1008 unsigned long long ms = 1;
1009 struct spi_statistics *statm = &ctlr->statistics;
1010 struct spi_statistics *stats = &msg->spi->statistics;
1011
1012 spi_set_cs(msg->spi, true);
1013
1014 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1015 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1016
1017 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1018 trace_spi_transfer_start(msg, xfer);
1019
1020 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1021 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1022
1023 if (xfer->tx_buf || xfer->rx_buf) {
1024 reinit_completion(&ctlr->xfer_completion);
1025
1026 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1027 if (ret < 0) {
1028 SPI_STATISTICS_INCREMENT_FIELD(statm,
1029 errors);
1030 SPI_STATISTICS_INCREMENT_FIELD(stats,
1031 errors);
1032 dev_err(&msg->spi->dev,
1033 "SPI transfer failed: %d\n", ret);
1034 goto out;
1035 }
1036
1037 if (ret > 0) {
1038 ret = 0;
1039 ms = 8LL * 1000LL * xfer->len;
1040 do_div(ms, xfer->speed_hz);
1041 ms += ms + 200; /* some tolerance */
1042
1043 if (ms > UINT_MAX)
1044 ms = UINT_MAX;
1045
1046 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1047 msecs_to_jiffies(ms));
1048 }
1049
1050 if (ms == 0) {
1051 SPI_STATISTICS_INCREMENT_FIELD(statm,
1052 timedout);
1053 SPI_STATISTICS_INCREMENT_FIELD(stats,
1054 timedout);
1055 dev_err(&msg->spi->dev,
1056 "SPI transfer timed out\n");
1057 msg->status = -ETIMEDOUT;
1058 }
1059 } else {
1060 if (xfer->len)
1061 dev_err(&msg->spi->dev,
1062 "Bufferless transfer has length %u\n",
1063 xfer->len);
1064 }
1065
1066 trace_spi_transfer_stop(msg, xfer);
1067
1068 if (msg->status != -EINPROGRESS)
1069 goto out;
1070
1071 if (xfer->delay_usecs) {
1072 u16 us = xfer->delay_usecs;
1073
1074 if (us <= 10)
1075 udelay(us);
1076 else
1077 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1078 }
1079
1080 if (xfer->cs_change) {
1081 if (list_is_last(&xfer->transfer_list,
1082 &msg->transfers)) {
1083 keep_cs = true;
1084 } else {
1085 spi_set_cs(msg->spi, false);
1086 udelay(10);
1087 spi_set_cs(msg->spi, true);
1088 }
1089 }
1090
1091 msg->actual_length += xfer->len;
1092 }
1093
1094 out:
1095 if (ret != 0 || !keep_cs)
1096 spi_set_cs(msg->spi, false);
1097
1098 if (msg->status == -EINPROGRESS)
1099 msg->status = ret;
1100
1101 if (msg->status && ctlr->handle_err)
1102 ctlr->handle_err(ctlr, msg);
1103
1104 spi_res_release(ctlr, msg);
1105
1106 spi_finalize_current_message(ctlr);
1107
1108 return ret;
1109 }
1110
1111 /**
1112 * spi_finalize_current_transfer - report completion of a transfer
1113 * @ctlr: the controller reporting completion
1114 *
1115 * Called by SPI drivers using the core transfer_one_message()
1116 * implementation to notify it that the current interrupt driven
1117 * transfer has finished and the next one may be scheduled.
1118 */
1119 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1120 {
1121 complete(&ctlr->xfer_completion);
1122 }
1123 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1124
1125 /**
1126 * __spi_pump_messages - function which processes spi message queue
1127 * @ctlr: controller to process queue for
1128 * @in_kthread: true if we are in the context of the message pump thread
1129 *
1130 * This function checks if there is any spi message in the queue that
1131 * needs processing and if so call out to the driver to initialize hardware
1132 * and transfer each message.
1133 *
1134 * Note that it is called both from the kthread itself and also from
1135 * inside spi_sync(); the queue extraction handling at the top of the
1136 * function should deal with this safely.
1137 */
1138 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1139 {
1140 unsigned long flags;
1141 bool was_busy = false;
1142 int ret;
1143
1144 /* Lock queue */
1145 spin_lock_irqsave(&ctlr->queue_lock, flags);
1146
1147 /* Make sure we are not already running a message */
1148 if (ctlr->cur_msg) {
1149 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1150 return;
1151 }
1152
1153 /* If another context is idling the device then defer */
1154 if (ctlr->idling) {
1155 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1156 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1157 return;
1158 }
1159
1160 /* Check if the queue is idle */
1161 if (list_empty(&ctlr->queue) || !ctlr->running) {
1162 if (!ctlr->busy) {
1163 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1164 return;
1165 }
1166
1167 /* Only do teardown in the thread */
1168 if (!in_kthread) {
1169 kthread_queue_work(&ctlr->kworker,
1170 &ctlr->pump_messages);
1171 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1172 return;
1173 }
1174
1175 ctlr->busy = false;
1176 ctlr->idling = true;
1177 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1178
1179 kfree(ctlr->dummy_rx);
1180 ctlr->dummy_rx = NULL;
1181 kfree(ctlr->dummy_tx);
1182 ctlr->dummy_tx = NULL;
1183 if (ctlr->unprepare_transfer_hardware &&
1184 ctlr->unprepare_transfer_hardware(ctlr))
1185 dev_err(&ctlr->dev,
1186 "failed to unprepare transfer hardware\n");
1187 if (ctlr->auto_runtime_pm) {
1188 pm_runtime_mark_last_busy(ctlr->dev.parent);
1189 pm_runtime_put_autosuspend(ctlr->dev.parent);
1190 }
1191 trace_spi_controller_idle(ctlr);
1192
1193 spin_lock_irqsave(&ctlr->queue_lock, flags);
1194 ctlr->idling = false;
1195 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1196 return;
1197 }
1198
1199 /* Extract head of queue */
1200 ctlr->cur_msg =
1201 list_first_entry(&ctlr->queue, struct spi_message, queue);
1202
1203 list_del_init(&ctlr->cur_msg->queue);
1204 if (ctlr->busy)
1205 was_busy = true;
1206 else
1207 ctlr->busy = true;
1208 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1209
1210 mutex_lock(&ctlr->io_mutex);
1211
1212 if (!was_busy && ctlr->auto_runtime_pm) {
1213 ret = pm_runtime_get_sync(ctlr->dev.parent);
1214 if (ret < 0) {
1215 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1216 ret);
1217 mutex_unlock(&ctlr->io_mutex);
1218 return;
1219 }
1220 }
1221
1222 if (!was_busy)
1223 trace_spi_controller_busy(ctlr);
1224
1225 if (!was_busy && ctlr->prepare_transfer_hardware) {
1226 ret = ctlr->prepare_transfer_hardware(ctlr);
1227 if (ret) {
1228 dev_err(&ctlr->dev,
1229 "failed to prepare transfer hardware\n");
1230
1231 if (ctlr->auto_runtime_pm)
1232 pm_runtime_put(ctlr->dev.parent);
1233 mutex_unlock(&ctlr->io_mutex);
1234 return;
1235 }
1236 }
1237
1238 trace_spi_message_start(ctlr->cur_msg);
1239
1240 if (ctlr->prepare_message) {
1241 ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1242 if (ret) {
1243 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1244 ret);
1245 ctlr->cur_msg->status = ret;
1246 spi_finalize_current_message(ctlr);
1247 goto out;
1248 }
1249 ctlr->cur_msg_prepared = true;
1250 }
1251
1252 ret = spi_map_msg(ctlr, ctlr->cur_msg);
1253 if (ret) {
1254 ctlr->cur_msg->status = ret;
1255 spi_finalize_current_message(ctlr);
1256 goto out;
1257 }
1258
1259 ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1260 if (ret) {
1261 dev_err(&ctlr->dev,
1262 "failed to transfer one message from queue\n");
1263 goto out;
1264 }
1265
1266 out:
1267 mutex_unlock(&ctlr->io_mutex);
1268
1269 /* Prod the scheduler in case transfer_one() was busy waiting */
1270 if (!ret)
1271 cond_resched();
1272 }
1273
1274 /**
1275 * spi_pump_messages - kthread work function which processes spi message queue
1276 * @work: pointer to kthread work struct contained in the controller struct
1277 */
1278 static void spi_pump_messages(struct kthread_work *work)
1279 {
1280 struct spi_controller *ctlr =
1281 container_of(work, struct spi_controller, pump_messages);
1282
1283 __spi_pump_messages(ctlr, true);
1284 }
1285
1286 static int spi_init_queue(struct spi_controller *ctlr)
1287 {
1288 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1289
1290 ctlr->running = false;
1291 ctlr->busy = false;
1292
1293 kthread_init_worker(&ctlr->kworker);
1294 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1295 "%s", dev_name(&ctlr->dev));
1296 if (IS_ERR(ctlr->kworker_task)) {
1297 dev_err(&ctlr->dev, "failed to create message pump task\n");
1298 return PTR_ERR(ctlr->kworker_task);
1299 }
1300 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1301
1302 /*
1303 * Controller config will indicate if this controller should run the
1304 * message pump with high (realtime) priority to reduce the transfer
1305 * latency on the bus by minimising the delay between a transfer
1306 * request and the scheduling of the message pump thread. Without this
1307 * setting the message pump thread will remain at default priority.
1308 */
1309 if (ctlr->rt) {
1310 dev_info(&ctlr->dev,
1311 "will run message pump with realtime priority\n");
1312 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1313 }
1314
1315 return 0;
1316 }
1317
1318 /**
1319 * spi_get_next_queued_message() - called by driver to check for queued
1320 * messages
1321 * @ctlr: the controller to check for queued messages
1322 *
1323 * If there are more messages in the queue, the next message is returned from
1324 * this call.
1325 *
1326 * Return: the next message in the queue, else NULL if the queue is empty.
1327 */
1328 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1329 {
1330 struct spi_message *next;
1331 unsigned long flags;
1332
1333 /* get a pointer to the next message, if any */
1334 spin_lock_irqsave(&ctlr->queue_lock, flags);
1335 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1336 queue);
1337 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1338
1339 return next;
1340 }
1341 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1342
1343 /**
1344 * spi_finalize_current_message() - the current message is complete
1345 * @ctlr: the controller to return the message to
1346 *
1347 * Called by the driver to notify the core that the message in the front of the
1348 * queue is complete and can be removed from the queue.
1349 */
1350 void spi_finalize_current_message(struct spi_controller *ctlr)
1351 {
1352 struct spi_message *mesg;
1353 unsigned long flags;
1354 int ret;
1355
1356 spin_lock_irqsave(&ctlr->queue_lock, flags);
1357 mesg = ctlr->cur_msg;
1358 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1359
1360 spi_unmap_msg(ctlr, mesg);
1361
1362 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1363 ret = ctlr->unprepare_message(ctlr, mesg);
1364 if (ret) {
1365 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1366 ret);
1367 }
1368 }
1369
1370 spin_lock_irqsave(&ctlr->queue_lock, flags);
1371 ctlr->cur_msg = NULL;
1372 ctlr->cur_msg_prepared = false;
1373 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1374 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1375
1376 trace_spi_message_done(mesg);
1377
1378 mesg->state = NULL;
1379 if (mesg->complete)
1380 mesg->complete(mesg->context);
1381 }
1382 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1383
1384 static int spi_start_queue(struct spi_controller *ctlr)
1385 {
1386 unsigned long flags;
1387
1388 spin_lock_irqsave(&ctlr->queue_lock, flags);
1389
1390 if (ctlr->running || ctlr->busy) {
1391 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1392 return -EBUSY;
1393 }
1394
1395 ctlr->running = true;
1396 ctlr->cur_msg = NULL;
1397 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1398
1399 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1400
1401 return 0;
1402 }
1403
1404 static int spi_stop_queue(struct spi_controller *ctlr)
1405 {
1406 unsigned long flags;
1407 unsigned limit = 500;
1408 int ret = 0;
1409
1410 spin_lock_irqsave(&ctlr->queue_lock, flags);
1411
1412 /*
1413 * This is a bit lame, but is optimized for the common execution path.
1414 * A wait_queue on the ctlr->busy could be used, but then the common
1415 * execution path (pump_messages) would be required to call wake_up or
1416 * friends on every SPI message. Do this instead.
1417 */
1418 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1419 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1420 usleep_range(10000, 11000);
1421 spin_lock_irqsave(&ctlr->queue_lock, flags);
1422 }
1423
1424 if (!list_empty(&ctlr->queue) || ctlr->busy)
1425 ret = -EBUSY;
1426 else
1427 ctlr->running = false;
1428
1429 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1430
1431 if (ret) {
1432 dev_warn(&ctlr->dev, "could not stop message queue\n");
1433 return ret;
1434 }
1435 return ret;
1436 }
1437
1438 static int spi_destroy_queue(struct spi_controller *ctlr)
1439 {
1440 int ret;
1441
1442 ret = spi_stop_queue(ctlr);
1443
1444 /*
1445 * kthread_flush_worker will block until all work is done.
1446 * If the reason that stop_queue timed out is that the work will never
1447 * finish, then it does no good to call flush/stop thread, so
1448 * return anyway.
1449 */
1450 if (ret) {
1451 dev_err(&ctlr->dev, "problem destroying queue\n");
1452 return ret;
1453 }
1454
1455 kthread_flush_worker(&ctlr->kworker);
1456 kthread_stop(ctlr->kworker_task);
1457
1458 return 0;
1459 }
1460
1461 static int __spi_queued_transfer(struct spi_device *spi,
1462 struct spi_message *msg,
1463 bool need_pump)
1464 {
1465 struct spi_controller *ctlr = spi->controller;
1466 unsigned long flags;
1467
1468 spin_lock_irqsave(&ctlr->queue_lock, flags);
1469
1470 if (!ctlr->running) {
1471 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1472 return -ESHUTDOWN;
1473 }
1474 msg->actual_length = 0;
1475 msg->status = -EINPROGRESS;
1476
1477 list_add_tail(&msg->queue, &ctlr->queue);
1478 if (!ctlr->busy && need_pump)
1479 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1480
1481 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1482 return 0;
1483 }
1484
1485 /**
1486 * spi_queued_transfer - transfer function for queued transfers
1487 * @spi: spi device which is requesting transfer
1488 * @msg: spi message which is to handled is queued to driver queue
1489 *
1490 * Return: zero on success, else a negative error code.
1491 */
1492 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1493 {
1494 return __spi_queued_transfer(spi, msg, true);
1495 }
1496
1497 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1498 {
1499 int ret;
1500
1501 ctlr->transfer = spi_queued_transfer;
1502 if (!ctlr->transfer_one_message)
1503 ctlr->transfer_one_message = spi_transfer_one_message;
1504
1505 /* Initialize and start queue */
1506 ret = spi_init_queue(ctlr);
1507 if (ret) {
1508 dev_err(&ctlr->dev, "problem initializing queue\n");
1509 goto err_init_queue;
1510 }
1511 ctlr->queued = true;
1512 ret = spi_start_queue(ctlr);
1513 if (ret) {
1514 dev_err(&ctlr->dev, "problem starting queue\n");
1515 goto err_start_queue;
1516 }
1517
1518 return 0;
1519
1520 err_start_queue:
1521 spi_destroy_queue(ctlr);
1522 err_init_queue:
1523 return ret;
1524 }
1525
1526 /*-------------------------------------------------------------------------*/
1527
1528 #if defined(CONFIG_OF)
1529 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1530 struct device_node *nc)
1531 {
1532 u32 value;
1533 int rc;
1534
1535 /* Mode (clock phase/polarity/etc.) */
1536 if (of_find_property(nc, "spi-cpha", NULL))
1537 spi->mode |= SPI_CPHA;
1538 if (of_find_property(nc, "spi-cpol", NULL))
1539 spi->mode |= SPI_CPOL;
1540 if (of_find_property(nc, "spi-cs-high", NULL))
1541 spi->mode |= SPI_CS_HIGH;
1542 if (of_find_property(nc, "spi-3wire", NULL))
1543 spi->mode |= SPI_3WIRE;
1544 if (of_find_property(nc, "spi-lsb-first", NULL))
1545 spi->mode |= SPI_LSB_FIRST;
1546
1547 /* Device DUAL/QUAD mode */
1548 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1549 switch (value) {
1550 case 1:
1551 break;
1552 case 2:
1553 spi->mode |= SPI_TX_DUAL;
1554 break;
1555 case 4:
1556 spi->mode |= SPI_TX_QUAD;
1557 break;
1558 default:
1559 dev_warn(&ctlr->dev,
1560 "spi-tx-bus-width %d not supported\n",
1561 value);
1562 break;
1563 }
1564 }
1565
1566 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1567 switch (value) {
1568 case 1:
1569 break;
1570 case 2:
1571 spi->mode |= SPI_RX_DUAL;
1572 break;
1573 case 4:
1574 spi->mode |= SPI_RX_QUAD;
1575 break;
1576 default:
1577 dev_warn(&ctlr->dev,
1578 "spi-rx-bus-width %d not supported\n",
1579 value);
1580 break;
1581 }
1582 }
1583
1584 if (spi_controller_is_slave(ctlr)) {
1585 if (strcmp(nc->name, "slave")) {
1586 dev_err(&ctlr->dev, "%s is not called 'slave'\n",
1587 nc->full_name);
1588 return -EINVAL;
1589 }
1590 return 0;
1591 }
1592
1593 /* Device address */
1594 rc = of_property_read_u32(nc, "reg", &value);
1595 if (rc) {
1596 dev_err(&ctlr->dev, "%s has no valid 'reg' property (%d)\n",
1597 nc->full_name, rc);
1598 return rc;
1599 }
1600 spi->chip_select = value;
1601
1602 /* Device speed */
1603 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1604 if (rc) {
1605 dev_err(&ctlr->dev,
1606 "%s has no valid 'spi-max-frequency' property (%d)\n",
1607 nc->full_name, rc);
1608 return rc;
1609 }
1610 spi->max_speed_hz = value;
1611
1612 return 0;
1613 }
1614
1615 static struct spi_device *
1616 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1617 {
1618 struct spi_device *spi;
1619 int rc;
1620
1621 /* Alloc an spi_device */
1622 spi = spi_alloc_device(ctlr);
1623 if (!spi) {
1624 dev_err(&ctlr->dev, "spi_device alloc error for %s\n",
1625 nc->full_name);
1626 rc = -ENOMEM;
1627 goto err_out;
1628 }
1629
1630 /* Select device driver */
1631 rc = of_modalias_node(nc, spi->modalias,
1632 sizeof(spi->modalias));
1633 if (rc < 0) {
1634 dev_err(&ctlr->dev, "cannot find modalias for %s\n",
1635 nc->full_name);
1636 goto err_out;
1637 }
1638
1639 rc = of_spi_parse_dt(ctlr, spi, nc);
1640 if (rc)
1641 goto err_out;
1642
1643 /* Store a pointer to the node in the device structure */
1644 of_node_get(nc);
1645 spi->dev.of_node = nc;
1646
1647 /* Register the new device */
1648 rc = spi_add_device(spi);
1649 if (rc) {
1650 dev_err(&ctlr->dev, "spi_device register error %s\n",
1651 nc->full_name);
1652 goto err_of_node_put;
1653 }
1654
1655 return spi;
1656
1657 err_of_node_put:
1658 of_node_put(nc);
1659 err_out:
1660 spi_dev_put(spi);
1661 return ERR_PTR(rc);
1662 }
1663
1664 /**
1665 * of_register_spi_devices() - Register child devices onto the SPI bus
1666 * @ctlr: Pointer to spi_controller device
1667 *
1668 * Registers an spi_device for each child node of controller node which
1669 * represents a valid SPI slave.
1670 */
1671 static void of_register_spi_devices(struct spi_controller *ctlr)
1672 {
1673 struct spi_device *spi;
1674 struct device_node *nc;
1675
1676 if (!ctlr->dev.of_node)
1677 return;
1678
1679 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1680 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1681 continue;
1682 spi = of_register_spi_device(ctlr, nc);
1683 if (IS_ERR(spi)) {
1684 dev_warn(&ctlr->dev,
1685 "Failed to create SPI device for %s\n",
1686 nc->full_name);
1687 of_node_clear_flag(nc, OF_POPULATED);
1688 }
1689 }
1690 }
1691 #else
1692 static void of_register_spi_devices(struct spi_controller *ctlr) { }
1693 #endif
1694
1695 #ifdef CONFIG_ACPI
1696 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1697 {
1698 struct spi_device *spi = data;
1699 struct spi_controller *ctlr = spi->controller;
1700
1701 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1702 struct acpi_resource_spi_serialbus *sb;
1703
1704 sb = &ares->data.spi_serial_bus;
1705 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1706 /*
1707 * ACPI DeviceSelection numbering is handled by the
1708 * host controller driver in Windows and can vary
1709 * from driver to driver. In Linux we always expect
1710 * 0 .. max - 1 so we need to ask the driver to
1711 * translate between the two schemes.
1712 */
1713 if (ctlr->fw_translate_cs) {
1714 int cs = ctlr->fw_translate_cs(ctlr,
1715 sb->device_selection);
1716 if (cs < 0)
1717 return cs;
1718 spi->chip_select = cs;
1719 } else {
1720 spi->chip_select = sb->device_selection;
1721 }
1722
1723 spi->max_speed_hz = sb->connection_speed;
1724
1725 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1726 spi->mode |= SPI_CPHA;
1727 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1728 spi->mode |= SPI_CPOL;
1729 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1730 spi->mode |= SPI_CS_HIGH;
1731 }
1732 } else if (spi->irq < 0) {
1733 struct resource r;
1734
1735 if (acpi_dev_resource_interrupt(ares, 0, &r))
1736 spi->irq = r.start;
1737 }
1738
1739 /* Always tell the ACPI core to skip this resource */
1740 return 1;
1741 }
1742
1743 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1744 struct acpi_device *adev)
1745 {
1746 struct list_head resource_list;
1747 struct spi_device *spi;
1748 int ret;
1749
1750 if (acpi_bus_get_status(adev) || !adev->status.present ||
1751 acpi_device_enumerated(adev))
1752 return AE_OK;
1753
1754 spi = spi_alloc_device(ctlr);
1755 if (!spi) {
1756 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1757 dev_name(&adev->dev));
1758 return AE_NO_MEMORY;
1759 }
1760
1761 ACPI_COMPANION_SET(&spi->dev, adev);
1762 spi->irq = -1;
1763
1764 INIT_LIST_HEAD(&resource_list);
1765 ret = acpi_dev_get_resources(adev, &resource_list,
1766 acpi_spi_add_resource, spi);
1767 acpi_dev_free_resource_list(&resource_list);
1768
1769 if (ret < 0 || !spi->max_speed_hz) {
1770 spi_dev_put(spi);
1771 return AE_OK;
1772 }
1773
1774 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1775 sizeof(spi->modalias));
1776
1777 if (spi->irq < 0)
1778 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1779
1780 acpi_device_set_enumerated(adev);
1781
1782 adev->power.flags.ignore_parent = true;
1783 if (spi_add_device(spi)) {
1784 adev->power.flags.ignore_parent = false;
1785 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1786 dev_name(&adev->dev));
1787 spi_dev_put(spi);
1788 }
1789
1790 return AE_OK;
1791 }
1792
1793 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1794 void *data, void **return_value)
1795 {
1796 struct spi_controller *ctlr = data;
1797 struct acpi_device *adev;
1798
1799 if (acpi_bus_get_device(handle, &adev))
1800 return AE_OK;
1801
1802 return acpi_register_spi_device(ctlr, adev);
1803 }
1804
1805 static void acpi_register_spi_devices(struct spi_controller *ctlr)
1806 {
1807 acpi_status status;
1808 acpi_handle handle;
1809
1810 handle = ACPI_HANDLE(ctlr->dev.parent);
1811 if (!handle)
1812 return;
1813
1814 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1815 acpi_spi_add_device, NULL, ctlr, NULL);
1816 if (ACPI_FAILURE(status))
1817 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1818 }
1819 #else
1820 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1821 #endif /* CONFIG_ACPI */
1822
1823 static void spi_controller_release(struct device *dev)
1824 {
1825 struct spi_controller *ctlr;
1826
1827 ctlr = container_of(dev, struct spi_controller, dev);
1828 kfree(ctlr);
1829 }
1830
1831 static struct class spi_master_class = {
1832 .name = "spi_master",
1833 .owner = THIS_MODULE,
1834 .dev_release = spi_controller_release,
1835 .dev_groups = spi_master_groups,
1836 };
1837
1838 #ifdef CONFIG_SPI_SLAVE
1839 /**
1840 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1841 * controller
1842 * @spi: device used for the current transfer
1843 */
1844 int spi_slave_abort(struct spi_device *spi)
1845 {
1846 struct spi_controller *ctlr = spi->controller;
1847
1848 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1849 return ctlr->slave_abort(ctlr);
1850
1851 return -ENOTSUPP;
1852 }
1853 EXPORT_SYMBOL_GPL(spi_slave_abort);
1854
1855 static int match_true(struct device *dev, void *data)
1856 {
1857 return 1;
1858 }
1859
1860 static ssize_t spi_slave_show(struct device *dev,
1861 struct device_attribute *attr, char *buf)
1862 {
1863 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1864 dev);
1865 struct device *child;
1866
1867 child = device_find_child(&ctlr->dev, NULL, match_true);
1868 return sprintf(buf, "%s\n",
1869 child ? to_spi_device(child)->modalias : NULL);
1870 }
1871
1872 static ssize_t spi_slave_store(struct device *dev,
1873 struct device_attribute *attr, const char *buf,
1874 size_t count)
1875 {
1876 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1877 dev);
1878 struct spi_device *spi;
1879 struct device *child;
1880 char name[32];
1881 int rc;
1882
1883 rc = sscanf(buf, "%31s", name);
1884 if (rc != 1 || !name[0])
1885 return -EINVAL;
1886
1887 child = device_find_child(&ctlr->dev, NULL, match_true);
1888 if (child) {
1889 /* Remove registered slave */
1890 device_unregister(child);
1891 put_device(child);
1892 }
1893
1894 if (strcmp(name, "(null)")) {
1895 /* Register new slave */
1896 spi = spi_alloc_device(ctlr);
1897 if (!spi)
1898 return -ENOMEM;
1899
1900 strlcpy(spi->modalias, name, sizeof(spi->modalias));
1901
1902 rc = spi_add_device(spi);
1903 if (rc) {
1904 spi_dev_put(spi);
1905 return rc;
1906 }
1907 }
1908
1909 return count;
1910 }
1911
1912 static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
1913
1914 static struct attribute *spi_slave_attrs[] = {
1915 &dev_attr_slave.attr,
1916 NULL,
1917 };
1918
1919 static const struct attribute_group spi_slave_group = {
1920 .attrs = spi_slave_attrs,
1921 };
1922
1923 static const struct attribute_group *spi_slave_groups[] = {
1924 &spi_controller_statistics_group,
1925 &spi_slave_group,
1926 NULL,
1927 };
1928
1929 static struct class spi_slave_class = {
1930 .name = "spi_slave",
1931 .owner = THIS_MODULE,
1932 .dev_release = spi_controller_release,
1933 .dev_groups = spi_slave_groups,
1934 };
1935 #else
1936 extern struct class spi_slave_class; /* dummy */
1937 #endif
1938
1939 /**
1940 * __spi_alloc_controller - allocate an SPI master or slave controller
1941 * @dev: the controller, possibly using the platform_bus
1942 * @size: how much zeroed driver-private data to allocate; the pointer to this
1943 * memory is in the driver_data field of the returned device,
1944 * accessible with spi_controller_get_devdata().
1945 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
1946 * slave (true) controller
1947 * Context: can sleep
1948 *
1949 * This call is used only by SPI controller drivers, which are the
1950 * only ones directly touching chip registers. It's how they allocate
1951 * an spi_controller structure, prior to calling spi_register_controller().
1952 *
1953 * This must be called from context that can sleep.
1954 *
1955 * The caller is responsible for assigning the bus number and initializing the
1956 * controller's methods before calling spi_register_controller(); and (after
1957 * errors adding the device) calling spi_controller_put() to prevent a memory
1958 * leak.
1959 *
1960 * Return: the SPI controller structure on success, else NULL.
1961 */
1962 struct spi_controller *__spi_alloc_controller(struct device *dev,
1963 unsigned int size, bool slave)
1964 {
1965 struct spi_controller *ctlr;
1966
1967 if (!dev)
1968 return NULL;
1969
1970 ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
1971 if (!ctlr)
1972 return NULL;
1973
1974 device_initialize(&ctlr->dev);
1975 ctlr->bus_num = -1;
1976 ctlr->num_chipselect = 1;
1977 ctlr->slave = slave;
1978 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
1979 ctlr->dev.class = &spi_slave_class;
1980 else
1981 ctlr->dev.class = &spi_master_class;
1982 ctlr->dev.parent = dev;
1983 pm_suspend_ignore_children(&ctlr->dev, true);
1984 spi_controller_set_devdata(ctlr, &ctlr[1]);
1985
1986 return ctlr;
1987 }
1988 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
1989
1990 #ifdef CONFIG_OF
1991 static int of_spi_register_master(struct spi_controller *ctlr)
1992 {
1993 int nb, i, *cs;
1994 struct device_node *np = ctlr->dev.of_node;
1995
1996 if (!np)
1997 return 0;
1998
1999 nb = of_gpio_named_count(np, "cs-gpios");
2000 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2001
2002 /* Return error only for an incorrectly formed cs-gpios property */
2003 if (nb == 0 || nb == -ENOENT)
2004 return 0;
2005 else if (nb < 0)
2006 return nb;
2007
2008 cs = devm_kzalloc(&ctlr->dev, sizeof(int) * ctlr->num_chipselect,
2009 GFP_KERNEL);
2010 ctlr->cs_gpios = cs;
2011
2012 if (!ctlr->cs_gpios)
2013 return -ENOMEM;
2014
2015 for (i = 0; i < ctlr->num_chipselect; i++)
2016 cs[i] = -ENOENT;
2017
2018 for (i = 0; i < nb; i++)
2019 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2020
2021 return 0;
2022 }
2023 #else
2024 static int of_spi_register_master(struct spi_controller *ctlr)
2025 {
2026 return 0;
2027 }
2028 #endif
2029
2030 /**
2031 * spi_register_controller - register SPI master or slave controller
2032 * @ctlr: initialized master, originally from spi_alloc_master() or
2033 * spi_alloc_slave()
2034 * Context: can sleep
2035 *
2036 * SPI controllers connect to their drivers using some non-SPI bus,
2037 * such as the platform bus. The final stage of probe() in that code
2038 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2039 *
2040 * SPI controllers use board specific (often SOC specific) bus numbers,
2041 * and board-specific addressing for SPI devices combines those numbers
2042 * with chip select numbers. Since SPI does not directly support dynamic
2043 * device identification, boards need configuration tables telling which
2044 * chip is at which address.
2045 *
2046 * This must be called from context that can sleep. It returns zero on
2047 * success, else a negative error code (dropping the controller's refcount).
2048 * After a successful return, the caller is responsible for calling
2049 * spi_unregister_controller().
2050 *
2051 * Return: zero on success, else a negative error code.
2052 */
2053 int spi_register_controller(struct spi_controller *ctlr)
2054 {
2055 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
2056 struct device *dev = ctlr->dev.parent;
2057 struct boardinfo *bi;
2058 int status = -ENODEV;
2059 int dynamic = 0;
2060
2061 if (!dev)
2062 return -ENODEV;
2063
2064 if (!spi_controller_is_slave(ctlr)) {
2065 status = of_spi_register_master(ctlr);
2066 if (status)
2067 return status;
2068 }
2069
2070 /* even if it's just one always-selected device, there must
2071 * be at least one chipselect
2072 */
2073 if (ctlr->num_chipselect == 0)
2074 return -EINVAL;
2075
2076 if ((ctlr->bus_num < 0) && ctlr->dev.of_node)
2077 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
2078
2079 /* convention: dynamically assigned bus IDs count down from the max */
2080 if (ctlr->bus_num < 0) {
2081 /* FIXME switch to an IDR based scheme, something like
2082 * I2C now uses, so we can't run out of "dynamic" IDs
2083 */
2084 ctlr->bus_num = atomic_dec_return(&dyn_bus_id);
2085 dynamic = 1;
2086 }
2087
2088 INIT_LIST_HEAD(&ctlr->queue);
2089 spin_lock_init(&ctlr->queue_lock);
2090 spin_lock_init(&ctlr->bus_lock_spinlock);
2091 mutex_init(&ctlr->bus_lock_mutex);
2092 mutex_init(&ctlr->io_mutex);
2093 ctlr->bus_lock_flag = 0;
2094 init_completion(&ctlr->xfer_completion);
2095 if (!ctlr->max_dma_len)
2096 ctlr->max_dma_len = INT_MAX;
2097
2098 /* register the device, then userspace will see it.
2099 * registration fails if the bus ID is in use.
2100 */
2101 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2102 status = device_add(&ctlr->dev);
2103 if (status < 0)
2104 goto done;
2105 dev_dbg(dev, "registered %s %s%s\n",
2106 spi_controller_is_slave(ctlr) ? "slave" : "master",
2107 dev_name(&ctlr->dev), dynamic ? " (dynamic)" : "");
2108
2109 /* If we're using a queued driver, start the queue */
2110 if (ctlr->transfer)
2111 dev_info(dev, "controller is unqueued, this is deprecated\n");
2112 else {
2113 status = spi_controller_initialize_queue(ctlr);
2114 if (status) {
2115 device_del(&ctlr->dev);
2116 goto done;
2117 }
2118 }
2119 /* add statistics */
2120 spin_lock_init(&ctlr->statistics.lock);
2121
2122 mutex_lock(&board_lock);
2123 list_add_tail(&ctlr->list, &spi_controller_list);
2124 list_for_each_entry(bi, &board_list, list)
2125 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2126 mutex_unlock(&board_lock);
2127
2128 /* Register devices from the device tree and ACPI */
2129 of_register_spi_devices(ctlr);
2130 acpi_register_spi_devices(ctlr);
2131 done:
2132 return status;
2133 }
2134 EXPORT_SYMBOL_GPL(spi_register_controller);
2135
2136 static void devm_spi_unregister(struct device *dev, void *res)
2137 {
2138 spi_unregister_controller(*(struct spi_controller **)res);
2139 }
2140
2141 /**
2142 * devm_spi_register_controller - register managed SPI master or slave
2143 * controller
2144 * @dev: device managing SPI controller
2145 * @ctlr: initialized controller, originally from spi_alloc_master() or
2146 * spi_alloc_slave()
2147 * Context: can sleep
2148 *
2149 * Register a SPI device as with spi_register_controller() which will
2150 * automatically be unregister
2151 *
2152 * Return: zero on success, else a negative error code.
2153 */
2154 int devm_spi_register_controller(struct device *dev,
2155 struct spi_controller *ctlr)
2156 {
2157 struct spi_controller **ptr;
2158 int ret;
2159
2160 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2161 if (!ptr)
2162 return -ENOMEM;
2163
2164 ret = spi_register_controller(ctlr);
2165 if (!ret) {
2166 *ptr = ctlr;
2167 devres_add(dev, ptr);
2168 } else {
2169 devres_free(ptr);
2170 }
2171
2172 return ret;
2173 }
2174 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2175
2176 static int __unregister(struct device *dev, void *null)
2177 {
2178 spi_unregister_device(to_spi_device(dev));
2179 return 0;
2180 }
2181
2182 /**
2183 * spi_unregister_controller - unregister SPI master or slave controller
2184 * @ctlr: the controller being unregistered
2185 * Context: can sleep
2186 *
2187 * This call is used only by SPI controller drivers, which are the
2188 * only ones directly touching chip registers.
2189 *
2190 * This must be called from context that can sleep.
2191 */
2192 void spi_unregister_controller(struct spi_controller *ctlr)
2193 {
2194 int dummy;
2195
2196 if (ctlr->queued) {
2197 if (spi_destroy_queue(ctlr))
2198 dev_err(&ctlr->dev, "queue remove failed\n");
2199 }
2200
2201 mutex_lock(&board_lock);
2202 list_del(&ctlr->list);
2203 mutex_unlock(&board_lock);
2204
2205 dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
2206 device_unregister(&ctlr->dev);
2207 }
2208 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2209
2210 int spi_controller_suspend(struct spi_controller *ctlr)
2211 {
2212 int ret;
2213
2214 /* Basically no-ops for non-queued controllers */
2215 if (!ctlr->queued)
2216 return 0;
2217
2218 ret = spi_stop_queue(ctlr);
2219 if (ret)
2220 dev_err(&ctlr->dev, "queue stop failed\n");
2221
2222 return ret;
2223 }
2224 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2225
2226 int spi_controller_resume(struct spi_controller *ctlr)
2227 {
2228 int ret;
2229
2230 if (!ctlr->queued)
2231 return 0;
2232
2233 ret = spi_start_queue(ctlr);
2234 if (ret)
2235 dev_err(&ctlr->dev, "queue restart failed\n");
2236
2237 return ret;
2238 }
2239 EXPORT_SYMBOL_GPL(spi_controller_resume);
2240
2241 static int __spi_controller_match(struct device *dev, const void *data)
2242 {
2243 struct spi_controller *ctlr;
2244 const u16 *bus_num = data;
2245
2246 ctlr = container_of(dev, struct spi_controller, dev);
2247 return ctlr->bus_num == *bus_num;
2248 }
2249
2250 /**
2251 * spi_busnum_to_master - look up master associated with bus_num
2252 * @bus_num: the master's bus number
2253 * Context: can sleep
2254 *
2255 * This call may be used with devices that are registered after
2256 * arch init time. It returns a refcounted pointer to the relevant
2257 * spi_controller (which the caller must release), or NULL if there is
2258 * no such master registered.
2259 *
2260 * Return: the SPI master structure on success, else NULL.
2261 */
2262 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2263 {
2264 struct device *dev;
2265 struct spi_controller *ctlr = NULL;
2266
2267 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2268 __spi_controller_match);
2269 if (dev)
2270 ctlr = container_of(dev, struct spi_controller, dev);
2271 /* reference got in class_find_device */
2272 return ctlr;
2273 }
2274 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2275
2276 /*-------------------------------------------------------------------------*/
2277
2278 /* Core methods for SPI resource management */
2279
2280 /**
2281 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2282 * during the processing of a spi_message while using
2283 * spi_transfer_one
2284 * @spi: the spi device for which we allocate memory
2285 * @release: the release code to execute for this resource
2286 * @size: size to alloc and return
2287 * @gfp: GFP allocation flags
2288 *
2289 * Return: the pointer to the allocated data
2290 *
2291 * This may get enhanced in the future to allocate from a memory pool
2292 * of the @spi_device or @spi_controller to avoid repeated allocations.
2293 */
2294 void *spi_res_alloc(struct spi_device *spi,
2295 spi_res_release_t release,
2296 size_t size, gfp_t gfp)
2297 {
2298 struct spi_res *sres;
2299
2300 sres = kzalloc(sizeof(*sres) + size, gfp);
2301 if (!sres)
2302 return NULL;
2303
2304 INIT_LIST_HEAD(&sres->entry);
2305 sres->release = release;
2306
2307 return sres->data;
2308 }
2309 EXPORT_SYMBOL_GPL(spi_res_alloc);
2310
2311 /**
2312 * spi_res_free - free an spi resource
2313 * @res: pointer to the custom data of a resource
2314 *
2315 */
2316 void spi_res_free(void *res)
2317 {
2318 struct spi_res *sres = container_of(res, struct spi_res, data);
2319
2320 if (!res)
2321 return;
2322
2323 WARN_ON(!list_empty(&sres->entry));
2324 kfree(sres);
2325 }
2326 EXPORT_SYMBOL_GPL(spi_res_free);
2327
2328 /**
2329 * spi_res_add - add a spi_res to the spi_message
2330 * @message: the spi message
2331 * @res: the spi_resource
2332 */
2333 void spi_res_add(struct spi_message *message, void *res)
2334 {
2335 struct spi_res *sres = container_of(res, struct spi_res, data);
2336
2337 WARN_ON(!list_empty(&sres->entry));
2338 list_add_tail(&sres->entry, &message->resources);
2339 }
2340 EXPORT_SYMBOL_GPL(spi_res_add);
2341
2342 /**
2343 * spi_res_release - release all spi resources for this message
2344 * @ctlr: the @spi_controller
2345 * @message: the @spi_message
2346 */
2347 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2348 {
2349 struct spi_res *res;
2350
2351 while (!list_empty(&message->resources)) {
2352 res = list_last_entry(&message->resources,
2353 struct spi_res, entry);
2354
2355 if (res->release)
2356 res->release(ctlr, message, res->data);
2357
2358 list_del(&res->entry);
2359
2360 kfree(res);
2361 }
2362 }
2363 EXPORT_SYMBOL_GPL(spi_res_release);
2364
2365 /*-------------------------------------------------------------------------*/
2366
2367 /* Core methods for spi_message alterations */
2368
2369 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2370 struct spi_message *msg,
2371 void *res)
2372 {
2373 struct spi_replaced_transfers *rxfer = res;
2374 size_t i;
2375
2376 /* call extra callback if requested */
2377 if (rxfer->release)
2378 rxfer->release(ctlr, msg, res);
2379
2380 /* insert replaced transfers back into the message */
2381 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2382
2383 /* remove the formerly inserted entries */
2384 for (i = 0; i < rxfer->inserted; i++)
2385 list_del(&rxfer->inserted_transfers[i].transfer_list);
2386 }
2387
2388 /**
2389 * spi_replace_transfers - replace transfers with several transfers
2390 * and register change with spi_message.resources
2391 * @msg: the spi_message we work upon
2392 * @xfer_first: the first spi_transfer we want to replace
2393 * @remove: number of transfers to remove
2394 * @insert: the number of transfers we want to insert instead
2395 * @release: extra release code necessary in some circumstances
2396 * @extradatasize: extra data to allocate (with alignment guarantees
2397 * of struct @spi_transfer)
2398 * @gfp: gfp flags
2399 *
2400 * Returns: pointer to @spi_replaced_transfers,
2401 * PTR_ERR(...) in case of errors.
2402 */
2403 struct spi_replaced_transfers *spi_replace_transfers(
2404 struct spi_message *msg,
2405 struct spi_transfer *xfer_first,
2406 size_t remove,
2407 size_t insert,
2408 spi_replaced_release_t release,
2409 size_t extradatasize,
2410 gfp_t gfp)
2411 {
2412 struct spi_replaced_transfers *rxfer;
2413 struct spi_transfer *xfer;
2414 size_t i;
2415
2416 /* allocate the structure using spi_res */
2417 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2418 insert * sizeof(struct spi_transfer)
2419 + sizeof(struct spi_replaced_transfers)
2420 + extradatasize,
2421 gfp);
2422 if (!rxfer)
2423 return ERR_PTR(-ENOMEM);
2424
2425 /* the release code to invoke before running the generic release */
2426 rxfer->release = release;
2427
2428 /* assign extradata */
2429 if (extradatasize)
2430 rxfer->extradata =
2431 &rxfer->inserted_transfers[insert];
2432
2433 /* init the replaced_transfers list */
2434 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2435
2436 /* assign the list_entry after which we should reinsert
2437 * the @replaced_transfers - it may be spi_message.messages!
2438 */
2439 rxfer->replaced_after = xfer_first->transfer_list.prev;
2440
2441 /* remove the requested number of transfers */
2442 for (i = 0; i < remove; i++) {
2443 /* if the entry after replaced_after it is msg->transfers
2444 * then we have been requested to remove more transfers
2445 * than are in the list
2446 */
2447 if (rxfer->replaced_after->next == &msg->transfers) {
2448 dev_err(&msg->spi->dev,
2449 "requested to remove more spi_transfers than are available\n");
2450 /* insert replaced transfers back into the message */
2451 list_splice(&rxfer->replaced_transfers,
2452 rxfer->replaced_after);
2453
2454 /* free the spi_replace_transfer structure */
2455 spi_res_free(rxfer);
2456
2457 /* and return with an error */
2458 return ERR_PTR(-EINVAL);
2459 }
2460
2461 /* remove the entry after replaced_after from list of
2462 * transfers and add it to list of replaced_transfers
2463 */
2464 list_move_tail(rxfer->replaced_after->next,
2465 &rxfer->replaced_transfers);
2466 }
2467
2468 /* create copy of the given xfer with identical settings
2469 * based on the first transfer to get removed
2470 */
2471 for (i = 0; i < insert; i++) {
2472 /* we need to run in reverse order */
2473 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2474
2475 /* copy all spi_transfer data */
2476 memcpy(xfer, xfer_first, sizeof(*xfer));
2477
2478 /* add to list */
2479 list_add(&xfer->transfer_list, rxfer->replaced_after);
2480
2481 /* clear cs_change and delay_usecs for all but the last */
2482 if (i) {
2483 xfer->cs_change = false;
2484 xfer->delay_usecs = 0;
2485 }
2486 }
2487
2488 /* set up inserted */
2489 rxfer->inserted = insert;
2490
2491 /* and register it with spi_res/spi_message */
2492 spi_res_add(msg, rxfer);
2493
2494 return rxfer;
2495 }
2496 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2497
2498 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2499 struct spi_message *msg,
2500 struct spi_transfer **xferp,
2501 size_t maxsize,
2502 gfp_t gfp)
2503 {
2504 struct spi_transfer *xfer = *xferp, *xfers;
2505 struct spi_replaced_transfers *srt;
2506 size_t offset;
2507 size_t count, i;
2508
2509 /* warn once about this fact that we are splitting a transfer */
2510 dev_warn_once(&msg->spi->dev,
2511 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2512 xfer->len, maxsize);
2513
2514 /* calculate how many we have to replace */
2515 count = DIV_ROUND_UP(xfer->len, maxsize);
2516
2517 /* create replacement */
2518 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2519 if (IS_ERR(srt))
2520 return PTR_ERR(srt);
2521 xfers = srt->inserted_transfers;
2522
2523 /* now handle each of those newly inserted spi_transfers
2524 * note that the replacements spi_transfers all are preset
2525 * to the same values as *xferp, so tx_buf, rx_buf and len
2526 * are all identical (as well as most others)
2527 * so we just have to fix up len and the pointers.
2528 *
2529 * this also includes support for the depreciated
2530 * spi_message.is_dma_mapped interface
2531 */
2532
2533 /* the first transfer just needs the length modified, so we
2534 * run it outside the loop
2535 */
2536 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2537
2538 /* all the others need rx_buf/tx_buf also set */
2539 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2540 /* update rx_buf, tx_buf and dma */
2541 if (xfers[i].rx_buf)
2542 xfers[i].rx_buf += offset;
2543 if (xfers[i].rx_dma)
2544 xfers[i].rx_dma += offset;
2545 if (xfers[i].tx_buf)
2546 xfers[i].tx_buf += offset;
2547 if (xfers[i].tx_dma)
2548 xfers[i].tx_dma += offset;
2549
2550 /* update length */
2551 xfers[i].len = min(maxsize, xfers[i].len - offset);
2552 }
2553
2554 /* we set up xferp to the last entry we have inserted,
2555 * so that we skip those already split transfers
2556 */
2557 *xferp = &xfers[count - 1];
2558
2559 /* increment statistics counters */
2560 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2561 transfers_split_maxsize);
2562 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2563 transfers_split_maxsize);
2564
2565 return 0;
2566 }
2567
2568 /**
2569 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2570 * when an individual transfer exceeds a
2571 * certain size
2572 * @ctlr: the @spi_controller for this transfer
2573 * @msg: the @spi_message to transform
2574 * @maxsize: the maximum when to apply this
2575 * @gfp: GFP allocation flags
2576 *
2577 * Return: status of transformation
2578 */
2579 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2580 struct spi_message *msg,
2581 size_t maxsize,
2582 gfp_t gfp)
2583 {
2584 struct spi_transfer *xfer;
2585 int ret;
2586
2587 /* iterate over the transfer_list,
2588 * but note that xfer is advanced to the last transfer inserted
2589 * to avoid checking sizes again unnecessarily (also xfer does
2590 * potentiall belong to a different list by the time the
2591 * replacement has happened
2592 */
2593 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2594 if (xfer->len > maxsize) {
2595 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2596 maxsize, gfp);
2597 if (ret)
2598 return ret;
2599 }
2600 }
2601
2602 return 0;
2603 }
2604 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2605
2606 /*-------------------------------------------------------------------------*/
2607
2608 /* Core methods for SPI controller protocol drivers. Some of the
2609 * other core methods are currently defined as inline functions.
2610 */
2611
2612 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2613 u8 bits_per_word)
2614 {
2615 if (ctlr->bits_per_word_mask) {
2616 /* Only 32 bits fit in the mask */
2617 if (bits_per_word > 32)
2618 return -EINVAL;
2619 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2620 return -EINVAL;
2621 }
2622
2623 return 0;
2624 }
2625
2626 /**
2627 * spi_setup - setup SPI mode and clock rate
2628 * @spi: the device whose settings are being modified
2629 * Context: can sleep, and no requests are queued to the device
2630 *
2631 * SPI protocol drivers may need to update the transfer mode if the
2632 * device doesn't work with its default. They may likewise need
2633 * to update clock rates or word sizes from initial values. This function
2634 * changes those settings, and must be called from a context that can sleep.
2635 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2636 * effect the next time the device is selected and data is transferred to
2637 * or from it. When this function returns, the spi device is deselected.
2638 *
2639 * Note that this call will fail if the protocol driver specifies an option
2640 * that the underlying controller or its driver does not support. For
2641 * example, not all hardware supports wire transfers using nine bit words,
2642 * LSB-first wire encoding, or active-high chipselects.
2643 *
2644 * Return: zero on success, else a negative error code.
2645 */
2646 int spi_setup(struct spi_device *spi)
2647 {
2648 unsigned bad_bits, ugly_bits;
2649 int status;
2650
2651 /* check mode to prevent that DUAL and QUAD set at the same time
2652 */
2653 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2654 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2655 dev_err(&spi->dev,
2656 "setup: can not select dual and quad at the same time\n");
2657 return -EINVAL;
2658 }
2659 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2660 */
2661 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2662 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2663 return -EINVAL;
2664 /* help drivers fail *cleanly* when they need options
2665 * that aren't supported with their current controller
2666 */
2667 bad_bits = spi->mode & ~spi->controller->mode_bits;
2668 ugly_bits = bad_bits &
2669 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2670 if (ugly_bits) {
2671 dev_warn(&spi->dev,
2672 "setup: ignoring unsupported mode bits %x\n",
2673 ugly_bits);
2674 spi->mode &= ~ugly_bits;
2675 bad_bits &= ~ugly_bits;
2676 }
2677 if (bad_bits) {
2678 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2679 bad_bits);
2680 return -EINVAL;
2681 }
2682
2683 if (!spi->bits_per_word)
2684 spi->bits_per_word = 8;
2685
2686 status = __spi_validate_bits_per_word(spi->controller,
2687 spi->bits_per_word);
2688 if (status)
2689 return status;
2690
2691 if (!spi->max_speed_hz)
2692 spi->max_speed_hz = spi->controller->max_speed_hz;
2693
2694 if (spi->controller->setup)
2695 status = spi->controller->setup(spi);
2696
2697 spi_set_cs(spi, false);
2698
2699 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2700 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2701 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2702 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2703 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2704 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2705 spi->bits_per_word, spi->max_speed_hz,
2706 status);
2707
2708 return status;
2709 }
2710 EXPORT_SYMBOL_GPL(spi_setup);
2711
2712 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2713 {
2714 struct spi_controller *ctlr = spi->controller;
2715 struct spi_transfer *xfer;
2716 int w_size;
2717
2718 if (list_empty(&message->transfers))
2719 return -EINVAL;
2720
2721 /* Half-duplex links include original MicroWire, and ones with
2722 * only one data pin like SPI_3WIRE (switches direction) or where
2723 * either MOSI or MISO is missing. They can also be caused by
2724 * software limitations.
2725 */
2726 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
2727 (spi->mode & SPI_3WIRE)) {
2728 unsigned flags = ctlr->flags;
2729
2730 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2731 if (xfer->rx_buf && xfer->tx_buf)
2732 return -EINVAL;
2733 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
2734 return -EINVAL;
2735 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
2736 return -EINVAL;
2737 }
2738 }
2739
2740 /**
2741 * Set transfer bits_per_word and max speed as spi device default if
2742 * it is not set for this transfer.
2743 * Set transfer tx_nbits and rx_nbits as single transfer default
2744 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2745 */
2746 message->frame_length = 0;
2747 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2748 message->frame_length += xfer->len;
2749 if (!xfer->bits_per_word)
2750 xfer->bits_per_word = spi->bits_per_word;
2751
2752 if (!xfer->speed_hz)
2753 xfer->speed_hz = spi->max_speed_hz;
2754 if (!xfer->speed_hz)
2755 xfer->speed_hz = ctlr->max_speed_hz;
2756
2757 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
2758 xfer->speed_hz = ctlr->max_speed_hz;
2759
2760 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
2761 return -EINVAL;
2762
2763 /*
2764 * SPI transfer length should be multiple of SPI word size
2765 * where SPI word size should be power-of-two multiple
2766 */
2767 if (xfer->bits_per_word <= 8)
2768 w_size = 1;
2769 else if (xfer->bits_per_word <= 16)
2770 w_size = 2;
2771 else
2772 w_size = 4;
2773
2774 /* No partial transfers accepted */
2775 if (xfer->len % w_size)
2776 return -EINVAL;
2777
2778 if (xfer->speed_hz && ctlr->min_speed_hz &&
2779 xfer->speed_hz < ctlr->min_speed_hz)
2780 return -EINVAL;
2781
2782 if (xfer->tx_buf && !xfer->tx_nbits)
2783 xfer->tx_nbits = SPI_NBITS_SINGLE;
2784 if (xfer->rx_buf && !xfer->rx_nbits)
2785 xfer->rx_nbits = SPI_NBITS_SINGLE;
2786 /* check transfer tx/rx_nbits:
2787 * 1. check the value matches one of single, dual and quad
2788 * 2. check tx/rx_nbits match the mode in spi_device
2789 */
2790 if (xfer->tx_buf) {
2791 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2792 xfer->tx_nbits != SPI_NBITS_DUAL &&
2793 xfer->tx_nbits != SPI_NBITS_QUAD)
2794 return -EINVAL;
2795 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2796 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2797 return -EINVAL;
2798 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2799 !(spi->mode & SPI_TX_QUAD))
2800 return -EINVAL;
2801 }
2802 /* check transfer rx_nbits */
2803 if (xfer->rx_buf) {
2804 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2805 xfer->rx_nbits != SPI_NBITS_DUAL &&
2806 xfer->rx_nbits != SPI_NBITS_QUAD)
2807 return -EINVAL;
2808 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2809 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2810 return -EINVAL;
2811 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2812 !(spi->mode & SPI_RX_QUAD))
2813 return -EINVAL;
2814 }
2815 }
2816
2817 message->status = -EINPROGRESS;
2818
2819 return 0;
2820 }
2821
2822 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2823 {
2824 struct spi_controller *ctlr = spi->controller;
2825
2826 message->spi = spi;
2827
2828 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
2829 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2830
2831 trace_spi_message_submit(message);
2832
2833 return ctlr->transfer(spi, message);
2834 }
2835
2836 /**
2837 * spi_async - asynchronous SPI transfer
2838 * @spi: device with which data will be exchanged
2839 * @message: describes the data transfers, including completion callback
2840 * Context: any (irqs may be blocked, etc)
2841 *
2842 * This call may be used in_irq and other contexts which can't sleep,
2843 * as well as from task contexts which can sleep.
2844 *
2845 * The completion callback is invoked in a context which can't sleep.
2846 * Before that invocation, the value of message->status is undefined.
2847 * When the callback is issued, message->status holds either zero (to
2848 * indicate complete success) or a negative error code. After that
2849 * callback returns, the driver which issued the transfer request may
2850 * deallocate the associated memory; it's no longer in use by any SPI
2851 * core or controller driver code.
2852 *
2853 * Note that although all messages to a spi_device are handled in
2854 * FIFO order, messages may go to different devices in other orders.
2855 * Some device might be higher priority, or have various "hard" access
2856 * time requirements, for example.
2857 *
2858 * On detection of any fault during the transfer, processing of
2859 * the entire message is aborted, and the device is deselected.
2860 * Until returning from the associated message completion callback,
2861 * no other spi_message queued to that device will be processed.
2862 * (This rule applies equally to all the synchronous transfer calls,
2863 * which are wrappers around this core asynchronous primitive.)
2864 *
2865 * Return: zero on success, else a negative error code.
2866 */
2867 int spi_async(struct spi_device *spi, struct spi_message *message)
2868 {
2869 struct spi_controller *ctlr = spi->controller;
2870 int ret;
2871 unsigned long flags;
2872
2873 ret = __spi_validate(spi, message);
2874 if (ret != 0)
2875 return ret;
2876
2877 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
2878
2879 if (ctlr->bus_lock_flag)
2880 ret = -EBUSY;
2881 else
2882 ret = __spi_async(spi, message);
2883
2884 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
2885
2886 return ret;
2887 }
2888 EXPORT_SYMBOL_GPL(spi_async);
2889
2890 /**
2891 * spi_async_locked - version of spi_async with exclusive bus usage
2892 * @spi: device with which data will be exchanged
2893 * @message: describes the data transfers, including completion callback
2894 * Context: any (irqs may be blocked, etc)
2895 *
2896 * This call may be used in_irq and other contexts which can't sleep,
2897 * as well as from task contexts which can sleep.
2898 *
2899 * The completion callback is invoked in a context which can't sleep.
2900 * Before that invocation, the value of message->status is undefined.
2901 * When the callback is issued, message->status holds either zero (to
2902 * indicate complete success) or a negative error code. After that
2903 * callback returns, the driver which issued the transfer request may
2904 * deallocate the associated memory; it's no longer in use by any SPI
2905 * core or controller driver code.
2906 *
2907 * Note that although all messages to a spi_device are handled in
2908 * FIFO order, messages may go to different devices in other orders.
2909 * Some device might be higher priority, or have various "hard" access
2910 * time requirements, for example.
2911 *
2912 * On detection of any fault during the transfer, processing of
2913 * the entire message is aborted, and the device is deselected.
2914 * Until returning from the associated message completion callback,
2915 * no other spi_message queued to that device will be processed.
2916 * (This rule applies equally to all the synchronous transfer calls,
2917 * which are wrappers around this core asynchronous primitive.)
2918 *
2919 * Return: zero on success, else a negative error code.
2920 */
2921 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2922 {
2923 struct spi_controller *ctlr = spi->controller;
2924 int ret;
2925 unsigned long flags;
2926
2927 ret = __spi_validate(spi, message);
2928 if (ret != 0)
2929 return ret;
2930
2931 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
2932
2933 ret = __spi_async(spi, message);
2934
2935 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
2936
2937 return ret;
2938
2939 }
2940 EXPORT_SYMBOL_GPL(spi_async_locked);
2941
2942
2943 int spi_flash_read(struct spi_device *spi,
2944 struct spi_flash_read_message *msg)
2945
2946 {
2947 struct spi_controller *master = spi->controller;
2948 struct device *rx_dev = NULL;
2949 int ret;
2950
2951 if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2952 msg->addr_nbits == SPI_NBITS_DUAL) &&
2953 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2954 return -EINVAL;
2955 if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2956 msg->addr_nbits == SPI_NBITS_QUAD) &&
2957 !(spi->mode & SPI_TX_QUAD))
2958 return -EINVAL;
2959 if (msg->data_nbits == SPI_NBITS_DUAL &&
2960 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2961 return -EINVAL;
2962 if (msg->data_nbits == SPI_NBITS_QUAD &&
2963 !(spi->mode & SPI_RX_QUAD))
2964 return -EINVAL;
2965
2966 if (master->auto_runtime_pm) {
2967 ret = pm_runtime_get_sync(master->dev.parent);
2968 if (ret < 0) {
2969 dev_err(&master->dev, "Failed to power device: %d\n",
2970 ret);
2971 return ret;
2972 }
2973 }
2974
2975 mutex_lock(&master->bus_lock_mutex);
2976 mutex_lock(&master->io_mutex);
2977 if (master->dma_rx && master->spi_flash_can_dma(spi, msg)) {
2978 rx_dev = master->dma_rx->device->dev;
2979 ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
2980 msg->buf, msg->len,
2981 DMA_FROM_DEVICE);
2982 if (!ret)
2983 msg->cur_msg_mapped = true;
2984 }
2985 ret = master->spi_flash_read(spi, msg);
2986 if (msg->cur_msg_mapped)
2987 spi_unmap_buf(master, rx_dev, &msg->rx_sg,
2988 DMA_FROM_DEVICE);
2989 mutex_unlock(&master->io_mutex);
2990 mutex_unlock(&master->bus_lock_mutex);
2991
2992 if (master->auto_runtime_pm)
2993 pm_runtime_put(master->dev.parent);
2994
2995 return ret;
2996 }
2997 EXPORT_SYMBOL_GPL(spi_flash_read);
2998
2999 /*-------------------------------------------------------------------------*/
3000
3001 /* Utility methods for SPI protocol drivers, layered on
3002 * top of the core. Some other utility methods are defined as
3003 * inline functions.
3004 */
3005
3006 static void spi_complete(void *arg)
3007 {
3008 complete(arg);
3009 }
3010
3011 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3012 {
3013 DECLARE_COMPLETION_ONSTACK(done);
3014 int status;
3015 struct spi_controller *ctlr = spi->controller;
3016 unsigned long flags;
3017
3018 status = __spi_validate(spi, message);
3019 if (status != 0)
3020 return status;
3021
3022 message->complete = spi_complete;
3023 message->context = &done;
3024 message->spi = spi;
3025
3026 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3027 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3028
3029 /* If we're not using the legacy transfer method then we will
3030 * try to transfer in the calling context so special case.
3031 * This code would be less tricky if we could remove the
3032 * support for driver implemented message queues.
3033 */
3034 if (ctlr->transfer == spi_queued_transfer) {
3035 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3036
3037 trace_spi_message_submit(message);
3038
3039 status = __spi_queued_transfer(spi, message, false);
3040
3041 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3042 } else {
3043 status = spi_async_locked(spi, message);
3044 }
3045
3046 if (status == 0) {
3047 /* Push out the messages in the calling context if we
3048 * can.
3049 */
3050 if (ctlr->transfer == spi_queued_transfer) {
3051 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3052 spi_sync_immediate);
3053 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3054 spi_sync_immediate);
3055 __spi_pump_messages(ctlr, false);
3056 }
3057
3058 wait_for_completion(&done);
3059 status = message->status;
3060 }
3061 message->context = NULL;
3062 return status;
3063 }
3064
3065 /**
3066 * spi_sync - blocking/synchronous SPI data transfers
3067 * @spi: device with which data will be exchanged
3068 * @message: describes the data transfers
3069 * Context: can sleep
3070 *
3071 * This call may only be used from a context that may sleep. The sleep
3072 * is non-interruptible, and has no timeout. Low-overhead controller
3073 * drivers may DMA directly into and out of the message buffers.
3074 *
3075 * Note that the SPI device's chip select is active during the message,
3076 * and then is normally disabled between messages. Drivers for some
3077 * frequently-used devices may want to minimize costs of selecting a chip,
3078 * by leaving it selected in anticipation that the next message will go
3079 * to the same chip. (That may increase power usage.)
3080 *
3081 * Also, the caller is guaranteeing that the memory associated with the
3082 * message will not be freed before this call returns.
3083 *
3084 * Return: zero on success, else a negative error code.
3085 */
3086 int spi_sync(struct spi_device *spi, struct spi_message *message)
3087 {
3088 int ret;
3089
3090 mutex_lock(&spi->controller->bus_lock_mutex);
3091 ret = __spi_sync(spi, message);
3092 mutex_unlock(&spi->controller->bus_lock_mutex);
3093
3094 return ret;
3095 }
3096 EXPORT_SYMBOL_GPL(spi_sync);
3097
3098 /**
3099 * spi_sync_locked - version of spi_sync with exclusive bus usage
3100 * @spi: device with which data will be exchanged
3101 * @message: describes the data transfers
3102 * Context: can sleep
3103 *
3104 * This call may only be used from a context that may sleep. The sleep
3105 * is non-interruptible, and has no timeout. Low-overhead controller
3106 * drivers may DMA directly into and out of the message buffers.
3107 *
3108 * This call should be used by drivers that require exclusive access to the
3109 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3110 * be released by a spi_bus_unlock call when the exclusive access is over.
3111 *
3112 * Return: zero on success, else a negative error code.
3113 */
3114 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3115 {
3116 return __spi_sync(spi, message);
3117 }
3118 EXPORT_SYMBOL_GPL(spi_sync_locked);
3119
3120 /**
3121 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3122 * @ctlr: SPI bus master that should be locked for exclusive bus access
3123 * Context: can sleep
3124 *
3125 * This call may only be used from a context that may sleep. The sleep
3126 * is non-interruptible, and has no timeout.
3127 *
3128 * This call should be used by drivers that require exclusive access to the
3129 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3130 * exclusive access is over. Data transfer must be done by spi_sync_locked
3131 * and spi_async_locked calls when the SPI bus lock is held.
3132 *
3133 * Return: always zero.
3134 */
3135 int spi_bus_lock(struct spi_controller *ctlr)
3136 {
3137 unsigned long flags;
3138
3139 mutex_lock(&ctlr->bus_lock_mutex);
3140
3141 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3142 ctlr->bus_lock_flag = 1;
3143 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3144
3145 /* mutex remains locked until spi_bus_unlock is called */
3146
3147 return 0;
3148 }
3149 EXPORT_SYMBOL_GPL(spi_bus_lock);
3150
3151 /**
3152 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3153 * @ctlr: SPI bus master that was locked for exclusive bus access
3154 * Context: can sleep
3155 *
3156 * This call may only be used from a context that may sleep. The sleep
3157 * is non-interruptible, and has no timeout.
3158 *
3159 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3160 * call.
3161 *
3162 * Return: always zero.
3163 */
3164 int spi_bus_unlock(struct spi_controller *ctlr)
3165 {
3166 ctlr->bus_lock_flag = 0;
3167
3168 mutex_unlock(&ctlr->bus_lock_mutex);
3169
3170 return 0;
3171 }
3172 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3173
3174 /* portable code must never pass more than 32 bytes */
3175 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3176
3177 static u8 *buf;
3178
3179 /**
3180 * spi_write_then_read - SPI synchronous write followed by read
3181 * @spi: device with which data will be exchanged
3182 * @txbuf: data to be written (need not be dma-safe)
3183 * @n_tx: size of txbuf, in bytes
3184 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3185 * @n_rx: size of rxbuf, in bytes
3186 * Context: can sleep
3187 *
3188 * This performs a half duplex MicroWire style transaction with the
3189 * device, sending txbuf and then reading rxbuf. The return value
3190 * is zero for success, else a negative errno status code.
3191 * This call may only be used from a context that may sleep.
3192 *
3193 * Parameters to this routine are always copied using a small buffer;
3194 * portable code should never use this for more than 32 bytes.
3195 * Performance-sensitive or bulk transfer code should instead use
3196 * spi_{async,sync}() calls with dma-safe buffers.
3197 *
3198 * Return: zero on success, else a negative error code.
3199 */
3200 int spi_write_then_read(struct spi_device *spi,
3201 const void *txbuf, unsigned n_tx,
3202 void *rxbuf, unsigned n_rx)
3203 {
3204 static DEFINE_MUTEX(lock);
3205
3206 int status;
3207 struct spi_message message;
3208 struct spi_transfer x[2];
3209 u8 *local_buf;
3210
3211 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3212 * copying here, (as a pure convenience thing), but we can
3213 * keep heap costs out of the hot path unless someone else is
3214 * using the pre-allocated buffer or the transfer is too large.
3215 */
3216 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3217 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3218 GFP_KERNEL | GFP_DMA);
3219 if (!local_buf)
3220 return -ENOMEM;
3221 } else {
3222 local_buf = buf;
3223 }
3224
3225 spi_message_init(&message);
3226 memset(x, 0, sizeof(x));
3227 if (n_tx) {
3228 x[0].len = n_tx;
3229 spi_message_add_tail(&x[0], &message);
3230 }
3231 if (n_rx) {
3232 x[1].len = n_rx;
3233 spi_message_add_tail(&x[1], &message);
3234 }
3235
3236 memcpy(local_buf, txbuf, n_tx);
3237 x[0].tx_buf = local_buf;
3238 x[1].rx_buf = local_buf + n_tx;
3239
3240 /* do the i/o */
3241 status = spi_sync(spi, &message);
3242 if (status == 0)
3243 memcpy(rxbuf, x[1].rx_buf, n_rx);
3244
3245 if (x[0].tx_buf == buf)
3246 mutex_unlock(&lock);
3247 else
3248 kfree(local_buf);
3249
3250 return status;
3251 }
3252 EXPORT_SYMBOL_GPL(spi_write_then_read);
3253
3254 /*-------------------------------------------------------------------------*/
3255
3256 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3257 static int __spi_of_device_match(struct device *dev, void *data)
3258 {
3259 return dev->of_node == data;
3260 }
3261
3262 /* must call put_device() when done with returned spi_device device */
3263 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3264 {
3265 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3266 __spi_of_device_match);
3267 return dev ? to_spi_device(dev) : NULL;
3268 }
3269
3270 static int __spi_of_controller_match(struct device *dev, const void *data)
3271 {
3272 return dev->of_node == data;
3273 }
3274
3275 /* the spi controllers are not using spi_bus, so we find it with another way */
3276 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3277 {
3278 struct device *dev;
3279
3280 dev = class_find_device(&spi_master_class, NULL, node,
3281 __spi_of_controller_match);
3282 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3283 dev = class_find_device(&spi_slave_class, NULL, node,
3284 __spi_of_controller_match);
3285 if (!dev)
3286 return NULL;
3287
3288 /* reference got in class_find_device */
3289 return container_of(dev, struct spi_controller, dev);
3290 }
3291
3292 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3293 void *arg)
3294 {
3295 struct of_reconfig_data *rd = arg;
3296 struct spi_controller *ctlr;
3297 struct spi_device *spi;
3298
3299 switch (of_reconfig_get_state_change(action, arg)) {
3300 case OF_RECONFIG_CHANGE_ADD:
3301 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3302 if (ctlr == NULL)
3303 return NOTIFY_OK; /* not for us */
3304
3305 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3306 put_device(&ctlr->dev);
3307 return NOTIFY_OK;
3308 }
3309
3310 spi = of_register_spi_device(ctlr, rd->dn);
3311 put_device(&ctlr->dev);
3312
3313 if (IS_ERR(spi)) {
3314 pr_err("%s: failed to create for '%s'\n",
3315 __func__, rd->dn->full_name);
3316 of_node_clear_flag(rd->dn, OF_POPULATED);
3317 return notifier_from_errno(PTR_ERR(spi));
3318 }
3319 break;
3320
3321 case OF_RECONFIG_CHANGE_REMOVE:
3322 /* already depopulated? */
3323 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3324 return NOTIFY_OK;
3325
3326 /* find our device by node */
3327 spi = of_find_spi_device_by_node(rd->dn);
3328 if (spi == NULL)
3329 return NOTIFY_OK; /* no? not meant for us */
3330
3331 /* unregister takes one ref away */
3332 spi_unregister_device(spi);
3333
3334 /* and put the reference of the find */
3335 put_device(&spi->dev);
3336 break;
3337 }
3338
3339 return NOTIFY_OK;
3340 }
3341
3342 static struct notifier_block spi_of_notifier = {
3343 .notifier_call = of_spi_notify,
3344 };
3345 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3346 extern struct notifier_block spi_of_notifier;
3347 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3348
3349 #if IS_ENABLED(CONFIG_ACPI)
3350 static int spi_acpi_controller_match(struct device *dev, const void *data)
3351 {
3352 return ACPI_COMPANION(dev->parent) == data;
3353 }
3354
3355 static int spi_acpi_device_match(struct device *dev, void *data)
3356 {
3357 return ACPI_COMPANION(dev) == data;
3358 }
3359
3360 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3361 {
3362 struct device *dev;
3363
3364 dev = class_find_device(&spi_master_class, NULL, adev,
3365 spi_acpi_controller_match);
3366 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3367 dev = class_find_device(&spi_slave_class, NULL, adev,
3368 spi_acpi_controller_match);
3369 if (!dev)
3370 return NULL;
3371
3372 return container_of(dev, struct spi_controller, dev);
3373 }
3374
3375 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3376 {
3377 struct device *dev;
3378
3379 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3380
3381 return dev ? to_spi_device(dev) : NULL;
3382 }
3383
3384 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3385 void *arg)
3386 {
3387 struct acpi_device *adev = arg;
3388 struct spi_controller *ctlr;
3389 struct spi_device *spi;
3390
3391 switch (value) {
3392 case ACPI_RECONFIG_DEVICE_ADD:
3393 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3394 if (!ctlr)
3395 break;
3396
3397 acpi_register_spi_device(ctlr, adev);
3398 put_device(&ctlr->dev);
3399 break;
3400 case ACPI_RECONFIG_DEVICE_REMOVE:
3401 if (!acpi_device_enumerated(adev))
3402 break;
3403
3404 spi = acpi_spi_find_device_by_adev(adev);
3405 if (!spi)
3406 break;
3407
3408 spi_unregister_device(spi);
3409 put_device(&spi->dev);
3410 break;
3411 }
3412
3413 return NOTIFY_OK;
3414 }
3415
3416 static struct notifier_block spi_acpi_notifier = {
3417 .notifier_call = acpi_spi_notify,
3418 };
3419 #else
3420 extern struct notifier_block spi_acpi_notifier;
3421 #endif
3422
3423 static int __init spi_init(void)
3424 {
3425 int status;
3426
3427 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3428 if (!buf) {
3429 status = -ENOMEM;
3430 goto err0;
3431 }
3432
3433 status = bus_register(&spi_bus_type);
3434 if (status < 0)
3435 goto err1;
3436
3437 status = class_register(&spi_master_class);
3438 if (status < 0)
3439 goto err2;
3440
3441 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3442 status = class_register(&spi_slave_class);
3443 if (status < 0)
3444 goto err3;
3445 }
3446
3447 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3448 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3449 if (IS_ENABLED(CONFIG_ACPI))
3450 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3451
3452 return 0;
3453
3454 err3:
3455 class_unregister(&spi_master_class);
3456 err2:
3457 bus_unregister(&spi_bus_type);
3458 err1:
3459 kfree(buf);
3460 buf = NULL;
3461 err0:
3462 return status;
3463 }
3464
3465 /* board_info is normally registered in arch_initcall(),
3466 * but even essential drivers wait till later
3467 *
3468 * REVISIT only boardinfo really needs static linking. the rest (device and
3469 * driver registration) _could_ be dynamically linked (modular) ... costs
3470 * include needing to have boardinfo data structures be much more public.
3471 */
3472 postcore_initcall(spi_init);
3473