]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/spi/spi.c
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41
42 #include "internals.h"
43
44 static DEFINE_IDR(spi_master_idr);
45
46 static void spidev_release(struct device *dev)
47 {
48 struct spi_device *spi = to_spi_device(dev);
49
50 /* spi controllers may cleanup for released devices */
51 if (spi->controller->cleanup)
52 spi->controller->cleanup(spi);
53
54 spi_controller_put(spi->controller);
55 kfree(spi->driver_override);
56 kfree(spi);
57 }
58
59 static ssize_t
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61 {
62 const struct spi_device *spi = to_spi_device(dev);
63 int len;
64
65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 if (len != -ENODEV)
67 return len;
68
69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
70 }
71 static DEVICE_ATTR_RO(modalias);
72
73 static ssize_t driver_override_store(struct device *dev,
74 struct device_attribute *a,
75 const char *buf, size_t count)
76 {
77 struct spi_device *spi = to_spi_device(dev);
78 const char *end = memchr(buf, '\n', count);
79 const size_t len = end ? end - buf : count;
80 const char *driver_override, *old;
81
82 /* We need to keep extra room for a newline when displaying value */
83 if (len >= (PAGE_SIZE - 1))
84 return -EINVAL;
85
86 driver_override = kstrndup(buf, len, GFP_KERNEL);
87 if (!driver_override)
88 return -ENOMEM;
89
90 device_lock(dev);
91 old = spi->driver_override;
92 if (len) {
93 spi->driver_override = driver_override;
94 } else {
95 /* Emptry string, disable driver override */
96 spi->driver_override = NULL;
97 kfree(driver_override);
98 }
99 device_unlock(dev);
100 kfree(old);
101
102 return count;
103 }
104
105 static ssize_t driver_override_show(struct device *dev,
106 struct device_attribute *a, char *buf)
107 {
108 const struct spi_device *spi = to_spi_device(dev);
109 ssize_t len;
110
111 device_lock(dev);
112 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
113 device_unlock(dev);
114 return len;
115 }
116 static DEVICE_ATTR_RW(driver_override);
117
118 #define SPI_STATISTICS_ATTRS(field, file) \
119 static ssize_t spi_controller_##field##_show(struct device *dev, \
120 struct device_attribute *attr, \
121 char *buf) \
122 { \
123 struct spi_controller *ctlr = container_of(dev, \
124 struct spi_controller, dev); \
125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
126 } \
127 static struct device_attribute dev_attr_spi_controller_##field = { \
128 .attr = { .name = file, .mode = 0444 }, \
129 .show = spi_controller_##field##_show, \
130 }; \
131 static ssize_t spi_device_##field##_show(struct device *dev, \
132 struct device_attribute *attr, \
133 char *buf) \
134 { \
135 struct spi_device *spi = to_spi_device(dev); \
136 return spi_statistics_##field##_show(&spi->statistics, buf); \
137 } \
138 static struct device_attribute dev_attr_spi_device_##field = { \
139 .attr = { .name = file, .mode = 0444 }, \
140 .show = spi_device_##field##_show, \
141 }
142
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145 char *buf) \
146 { \
147 unsigned long flags; \
148 ssize_t len; \
149 spin_lock_irqsave(&stat->lock, flags); \
150 len = sprintf(buf, format_string, stat->field); \
151 spin_unlock_irqrestore(&stat->lock, flags); \
152 return len; \
153 } \
154 SPI_STATISTICS_ATTRS(name, file)
155
156 #define SPI_STATISTICS_SHOW(field, format_string) \
157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
158 field, format_string)
159
160 SPI_STATISTICS_SHOW(messages, "%lu");
161 SPI_STATISTICS_SHOW(transfers, "%lu");
162 SPI_STATISTICS_SHOW(errors, "%lu");
163 SPI_STATISTICS_SHOW(timedout, "%lu");
164
165 SPI_STATISTICS_SHOW(spi_sync, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167 SPI_STATISTICS_SHOW(spi_async, "%lu");
168
169 SPI_STATISTICS_SHOW(bytes, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
172
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
175 "transfer_bytes_histo_" number, \
176 transfer_bytes_histo[index], "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
194
195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
196
197 static struct attribute *spi_dev_attrs[] = {
198 &dev_attr_modalias.attr,
199 &dev_attr_driver_override.attr,
200 NULL,
201 };
202
203 static const struct attribute_group spi_dev_group = {
204 .attrs = spi_dev_attrs,
205 };
206
207 static struct attribute *spi_device_statistics_attrs[] = {
208 &dev_attr_spi_device_messages.attr,
209 &dev_attr_spi_device_transfers.attr,
210 &dev_attr_spi_device_errors.attr,
211 &dev_attr_spi_device_timedout.attr,
212 &dev_attr_spi_device_spi_sync.attr,
213 &dev_attr_spi_device_spi_sync_immediate.attr,
214 &dev_attr_spi_device_spi_async.attr,
215 &dev_attr_spi_device_bytes.attr,
216 &dev_attr_spi_device_bytes_rx.attr,
217 &dev_attr_spi_device_bytes_tx.attr,
218 &dev_attr_spi_device_transfer_bytes_histo0.attr,
219 &dev_attr_spi_device_transfer_bytes_histo1.attr,
220 &dev_attr_spi_device_transfer_bytes_histo2.attr,
221 &dev_attr_spi_device_transfer_bytes_histo3.attr,
222 &dev_attr_spi_device_transfer_bytes_histo4.attr,
223 &dev_attr_spi_device_transfer_bytes_histo5.attr,
224 &dev_attr_spi_device_transfer_bytes_histo6.attr,
225 &dev_attr_spi_device_transfer_bytes_histo7.attr,
226 &dev_attr_spi_device_transfer_bytes_histo8.attr,
227 &dev_attr_spi_device_transfer_bytes_histo9.attr,
228 &dev_attr_spi_device_transfer_bytes_histo10.attr,
229 &dev_attr_spi_device_transfer_bytes_histo11.attr,
230 &dev_attr_spi_device_transfer_bytes_histo12.attr,
231 &dev_attr_spi_device_transfer_bytes_histo13.attr,
232 &dev_attr_spi_device_transfer_bytes_histo14.attr,
233 &dev_attr_spi_device_transfer_bytes_histo15.attr,
234 &dev_attr_spi_device_transfer_bytes_histo16.attr,
235 &dev_attr_spi_device_transfers_split_maxsize.attr,
236 NULL,
237 };
238
239 static const struct attribute_group spi_device_statistics_group = {
240 .name = "statistics",
241 .attrs = spi_device_statistics_attrs,
242 };
243
244 static const struct attribute_group *spi_dev_groups[] = {
245 &spi_dev_group,
246 &spi_device_statistics_group,
247 NULL,
248 };
249
250 static struct attribute *spi_controller_statistics_attrs[] = {
251 &dev_attr_spi_controller_messages.attr,
252 &dev_attr_spi_controller_transfers.attr,
253 &dev_attr_spi_controller_errors.attr,
254 &dev_attr_spi_controller_timedout.attr,
255 &dev_attr_spi_controller_spi_sync.attr,
256 &dev_attr_spi_controller_spi_sync_immediate.attr,
257 &dev_attr_spi_controller_spi_async.attr,
258 &dev_attr_spi_controller_bytes.attr,
259 &dev_attr_spi_controller_bytes_rx.attr,
260 &dev_attr_spi_controller_bytes_tx.attr,
261 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
262 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
263 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
264 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
265 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
266 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
267 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
268 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
269 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
270 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
271 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
272 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
273 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
274 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
275 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
276 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
277 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
278 &dev_attr_spi_controller_transfers_split_maxsize.attr,
279 NULL,
280 };
281
282 static const struct attribute_group spi_controller_statistics_group = {
283 .name = "statistics",
284 .attrs = spi_controller_statistics_attrs,
285 };
286
287 static const struct attribute_group *spi_master_groups[] = {
288 &spi_controller_statistics_group,
289 NULL,
290 };
291
292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293 struct spi_transfer *xfer,
294 struct spi_controller *ctlr)
295 {
296 unsigned long flags;
297 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
298
299 if (l2len < 0)
300 l2len = 0;
301
302 spin_lock_irqsave(&stats->lock, flags);
303
304 stats->transfers++;
305 stats->transfer_bytes_histo[l2len]++;
306
307 stats->bytes += xfer->len;
308 if ((xfer->tx_buf) &&
309 (xfer->tx_buf != ctlr->dummy_tx))
310 stats->bytes_tx += xfer->len;
311 if ((xfer->rx_buf) &&
312 (xfer->rx_buf != ctlr->dummy_rx))
313 stats->bytes_rx += xfer->len;
314
315 spin_unlock_irqrestore(&stats->lock, flags);
316 }
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
318
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320 * and the sysfs version makes coldplug work too.
321 */
322
323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324 const struct spi_device *sdev)
325 {
326 while (id->name[0]) {
327 if (!strcmp(sdev->modalias, id->name))
328 return id;
329 id++;
330 }
331 return NULL;
332 }
333
334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
335 {
336 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
337
338 return spi_match_id(sdrv->id_table, sdev);
339 }
340 EXPORT_SYMBOL_GPL(spi_get_device_id);
341
342 static int spi_match_device(struct device *dev, struct device_driver *drv)
343 {
344 const struct spi_device *spi = to_spi_device(dev);
345 const struct spi_driver *sdrv = to_spi_driver(drv);
346
347 /* Check override first, and if set, only use the named driver */
348 if (spi->driver_override)
349 return strcmp(spi->driver_override, drv->name) == 0;
350
351 /* Attempt an OF style match */
352 if (of_driver_match_device(dev, drv))
353 return 1;
354
355 /* Then try ACPI */
356 if (acpi_driver_match_device(dev, drv))
357 return 1;
358
359 if (sdrv->id_table)
360 return !!spi_match_id(sdrv->id_table, spi);
361
362 return strcmp(spi->modalias, drv->name) == 0;
363 }
364
365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
366 {
367 const struct spi_device *spi = to_spi_device(dev);
368 int rc;
369
370 rc = acpi_device_uevent_modalias(dev, env);
371 if (rc != -ENODEV)
372 return rc;
373
374 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
375 }
376
377 struct bus_type spi_bus_type = {
378 .name = "spi",
379 .dev_groups = spi_dev_groups,
380 .match = spi_match_device,
381 .uevent = spi_uevent,
382 };
383 EXPORT_SYMBOL_GPL(spi_bus_type);
384
385
386 static int spi_drv_probe(struct device *dev)
387 {
388 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
389 struct spi_device *spi = to_spi_device(dev);
390 int ret;
391
392 ret = of_clk_set_defaults(dev->of_node, false);
393 if (ret)
394 return ret;
395
396 if (dev->of_node) {
397 spi->irq = of_irq_get(dev->of_node, 0);
398 if (spi->irq == -EPROBE_DEFER)
399 return -EPROBE_DEFER;
400 if (spi->irq < 0)
401 spi->irq = 0;
402 }
403
404 ret = dev_pm_domain_attach(dev, true);
405 if (ret)
406 return ret;
407
408 ret = sdrv->probe(spi);
409 if (ret)
410 dev_pm_domain_detach(dev, true);
411
412 return ret;
413 }
414
415 static int spi_drv_remove(struct device *dev)
416 {
417 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
418 int ret;
419
420 ret = sdrv->remove(to_spi_device(dev));
421 dev_pm_domain_detach(dev, true);
422
423 return ret;
424 }
425
426 static void spi_drv_shutdown(struct device *dev)
427 {
428 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
429
430 sdrv->shutdown(to_spi_device(dev));
431 }
432
433 /**
434 * __spi_register_driver - register a SPI driver
435 * @owner: owner module of the driver to register
436 * @sdrv: the driver to register
437 * Context: can sleep
438 *
439 * Return: zero on success, else a negative error code.
440 */
441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
442 {
443 sdrv->driver.owner = owner;
444 sdrv->driver.bus = &spi_bus_type;
445 if (sdrv->probe)
446 sdrv->driver.probe = spi_drv_probe;
447 if (sdrv->remove)
448 sdrv->driver.remove = spi_drv_remove;
449 if (sdrv->shutdown)
450 sdrv->driver.shutdown = spi_drv_shutdown;
451 return driver_register(&sdrv->driver);
452 }
453 EXPORT_SYMBOL_GPL(__spi_register_driver);
454
455 /*-------------------------------------------------------------------------*/
456
457 /* SPI devices should normally not be created by SPI device drivers; that
458 * would make them board-specific. Similarly with SPI controller drivers.
459 * Device registration normally goes into like arch/.../mach.../board-YYY.c
460 * with other readonly (flashable) information about mainboard devices.
461 */
462
463 struct boardinfo {
464 struct list_head list;
465 struct spi_board_info board_info;
466 };
467
468 static LIST_HEAD(board_list);
469 static LIST_HEAD(spi_controller_list);
470
471 /*
472 * Used to protect add/del opertion for board_info list and
473 * spi_controller list, and their matching process
474 * also used to protect object of type struct idr
475 */
476 static DEFINE_MUTEX(board_lock);
477
478 /**
479 * spi_alloc_device - Allocate a new SPI device
480 * @ctlr: Controller to which device is connected
481 * Context: can sleep
482 *
483 * Allows a driver to allocate and initialize a spi_device without
484 * registering it immediately. This allows a driver to directly
485 * fill the spi_device with device parameters before calling
486 * spi_add_device() on it.
487 *
488 * Caller is responsible to call spi_add_device() on the returned
489 * spi_device structure to add it to the SPI controller. If the caller
490 * needs to discard the spi_device without adding it, then it should
491 * call spi_dev_put() on it.
492 *
493 * Return: a pointer to the new device, or NULL.
494 */
495 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
496 {
497 struct spi_device *spi;
498
499 if (!spi_controller_get(ctlr))
500 return NULL;
501
502 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
503 if (!spi) {
504 spi_controller_put(ctlr);
505 return NULL;
506 }
507
508 spi->master = spi->controller = ctlr;
509 spi->dev.parent = &ctlr->dev;
510 spi->dev.bus = &spi_bus_type;
511 spi->dev.release = spidev_release;
512 spi->cs_gpio = -ENOENT;
513
514 spin_lock_init(&spi->statistics.lock);
515
516 device_initialize(&spi->dev);
517 return spi;
518 }
519 EXPORT_SYMBOL_GPL(spi_alloc_device);
520
521 static void spi_dev_set_name(struct spi_device *spi)
522 {
523 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
524
525 if (adev) {
526 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
527 return;
528 }
529
530 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
531 spi->chip_select);
532 }
533
534 static int spi_dev_check(struct device *dev, void *data)
535 {
536 struct spi_device *spi = to_spi_device(dev);
537 struct spi_device *new_spi = data;
538
539 if (spi->controller == new_spi->controller &&
540 spi->chip_select == new_spi->chip_select)
541 return -EBUSY;
542 return 0;
543 }
544
545 /**
546 * spi_add_device - Add spi_device allocated with spi_alloc_device
547 * @spi: spi_device to register
548 *
549 * Companion function to spi_alloc_device. Devices allocated with
550 * spi_alloc_device can be added onto the spi bus with this function.
551 *
552 * Return: 0 on success; negative errno on failure
553 */
554 int spi_add_device(struct spi_device *spi)
555 {
556 static DEFINE_MUTEX(spi_add_lock);
557 struct spi_controller *ctlr = spi->controller;
558 struct device *dev = ctlr->dev.parent;
559 int status;
560
561 /* Chipselects are numbered 0..max; validate. */
562 if (spi->chip_select >= ctlr->num_chipselect) {
563 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
564 ctlr->num_chipselect);
565 return -EINVAL;
566 }
567
568 /* Set the bus ID string */
569 spi_dev_set_name(spi);
570
571 /* We need to make sure there's no other device with this
572 * chipselect **BEFORE** we call setup(), else we'll trash
573 * its configuration. Lock against concurrent add() calls.
574 */
575 mutex_lock(&spi_add_lock);
576
577 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
578 if (status) {
579 dev_err(dev, "chipselect %d already in use\n",
580 spi->chip_select);
581 goto done;
582 }
583
584 /* Descriptors take precedence */
585 if (ctlr->cs_gpiods)
586 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
587 else if (ctlr->cs_gpios)
588 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
589
590 /* Drivers may modify this initial i/o setup, but will
591 * normally rely on the device being setup. Devices
592 * using SPI_CS_HIGH can't coexist well otherwise...
593 */
594 status = spi_setup(spi);
595 if (status < 0) {
596 dev_err(dev, "can't setup %s, status %d\n",
597 dev_name(&spi->dev), status);
598 goto done;
599 }
600
601 /* Device may be bound to an active driver when this returns */
602 status = device_add(&spi->dev);
603 if (status < 0)
604 dev_err(dev, "can't add %s, status %d\n",
605 dev_name(&spi->dev), status);
606 else
607 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
608
609 done:
610 mutex_unlock(&spi_add_lock);
611 return status;
612 }
613 EXPORT_SYMBOL_GPL(spi_add_device);
614
615 /**
616 * spi_new_device - instantiate one new SPI device
617 * @ctlr: Controller to which device is connected
618 * @chip: Describes the SPI device
619 * Context: can sleep
620 *
621 * On typical mainboards, this is purely internal; and it's not needed
622 * after board init creates the hard-wired devices. Some development
623 * platforms may not be able to use spi_register_board_info though, and
624 * this is exported so that for example a USB or parport based adapter
625 * driver could add devices (which it would learn about out-of-band).
626 *
627 * Return: the new device, or NULL.
628 */
629 struct spi_device *spi_new_device(struct spi_controller *ctlr,
630 struct spi_board_info *chip)
631 {
632 struct spi_device *proxy;
633 int status;
634
635 /* NOTE: caller did any chip->bus_num checks necessary.
636 *
637 * Also, unless we change the return value convention to use
638 * error-or-pointer (not NULL-or-pointer), troubleshootability
639 * suggests syslogged diagnostics are best here (ugh).
640 */
641
642 proxy = spi_alloc_device(ctlr);
643 if (!proxy)
644 return NULL;
645
646 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
647
648 proxy->chip_select = chip->chip_select;
649 proxy->max_speed_hz = chip->max_speed_hz;
650 proxy->mode = chip->mode;
651 proxy->irq = chip->irq;
652 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
653 proxy->dev.platform_data = (void *) chip->platform_data;
654 proxy->controller_data = chip->controller_data;
655 proxy->controller_state = NULL;
656
657 if (chip->properties) {
658 status = device_add_properties(&proxy->dev, chip->properties);
659 if (status) {
660 dev_err(&ctlr->dev,
661 "failed to add properties to '%s': %d\n",
662 chip->modalias, status);
663 goto err_dev_put;
664 }
665 }
666
667 status = spi_add_device(proxy);
668 if (status < 0)
669 goto err_remove_props;
670
671 return proxy;
672
673 err_remove_props:
674 if (chip->properties)
675 device_remove_properties(&proxy->dev);
676 err_dev_put:
677 spi_dev_put(proxy);
678 return NULL;
679 }
680 EXPORT_SYMBOL_GPL(spi_new_device);
681
682 /**
683 * spi_unregister_device - unregister a single SPI device
684 * @spi: spi_device to unregister
685 *
686 * Start making the passed SPI device vanish. Normally this would be handled
687 * by spi_unregister_controller().
688 */
689 void spi_unregister_device(struct spi_device *spi)
690 {
691 if (!spi)
692 return;
693
694 if (spi->dev.of_node) {
695 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
696 of_node_put(spi->dev.of_node);
697 }
698 if (ACPI_COMPANION(&spi->dev))
699 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
700 device_unregister(&spi->dev);
701 }
702 EXPORT_SYMBOL_GPL(spi_unregister_device);
703
704 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
705 struct spi_board_info *bi)
706 {
707 struct spi_device *dev;
708
709 if (ctlr->bus_num != bi->bus_num)
710 return;
711
712 dev = spi_new_device(ctlr, bi);
713 if (!dev)
714 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
715 bi->modalias);
716 }
717
718 /**
719 * spi_register_board_info - register SPI devices for a given board
720 * @info: array of chip descriptors
721 * @n: how many descriptors are provided
722 * Context: can sleep
723 *
724 * Board-specific early init code calls this (probably during arch_initcall)
725 * with segments of the SPI device table. Any device nodes are created later,
726 * after the relevant parent SPI controller (bus_num) is defined. We keep
727 * this table of devices forever, so that reloading a controller driver will
728 * not make Linux forget about these hard-wired devices.
729 *
730 * Other code can also call this, e.g. a particular add-on board might provide
731 * SPI devices through its expansion connector, so code initializing that board
732 * would naturally declare its SPI devices.
733 *
734 * The board info passed can safely be __initdata ... but be careful of
735 * any embedded pointers (platform_data, etc), they're copied as-is.
736 * Device properties are deep-copied though.
737 *
738 * Return: zero on success, else a negative error code.
739 */
740 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
741 {
742 struct boardinfo *bi;
743 int i;
744
745 if (!n)
746 return 0;
747
748 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
749 if (!bi)
750 return -ENOMEM;
751
752 for (i = 0; i < n; i++, bi++, info++) {
753 struct spi_controller *ctlr;
754
755 memcpy(&bi->board_info, info, sizeof(*info));
756 if (info->properties) {
757 bi->board_info.properties =
758 property_entries_dup(info->properties);
759 if (IS_ERR(bi->board_info.properties))
760 return PTR_ERR(bi->board_info.properties);
761 }
762
763 mutex_lock(&board_lock);
764 list_add_tail(&bi->list, &board_list);
765 list_for_each_entry(ctlr, &spi_controller_list, list)
766 spi_match_controller_to_boardinfo(ctlr,
767 &bi->board_info);
768 mutex_unlock(&board_lock);
769 }
770
771 return 0;
772 }
773
774 /*-------------------------------------------------------------------------*/
775
776 static void spi_set_cs(struct spi_device *spi, bool enable)
777 {
778 if (spi->mode & SPI_CS_HIGH)
779 enable = !enable;
780
781 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
782 /*
783 * Honour the SPI_NO_CS flag and invert the enable line, as
784 * active low is default for SPI. Execution paths that handle
785 * polarity inversion in gpiolib (such as device tree) will
786 * enforce active high using the SPI_CS_HIGH resulting in a
787 * double inversion through the code above.
788 */
789 if (!(spi->mode & SPI_NO_CS)) {
790 if (spi->cs_gpiod)
791 gpiod_set_value_cansleep(spi->cs_gpiod,
792 !enable);
793 else
794 gpio_set_value_cansleep(spi->cs_gpio, !enable);
795 }
796 /* Some SPI masters need both GPIO CS & slave_select */
797 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
798 spi->controller->set_cs)
799 spi->controller->set_cs(spi, !enable);
800 } else if (spi->controller->set_cs) {
801 spi->controller->set_cs(spi, !enable);
802 }
803 }
804
805 #ifdef CONFIG_HAS_DMA
806 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
807 struct sg_table *sgt, void *buf, size_t len,
808 enum dma_data_direction dir)
809 {
810 const bool vmalloced_buf = is_vmalloc_addr(buf);
811 unsigned int max_seg_size = dma_get_max_seg_size(dev);
812 #ifdef CONFIG_HIGHMEM
813 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
814 (unsigned long)buf < (PKMAP_BASE +
815 (LAST_PKMAP * PAGE_SIZE)));
816 #else
817 const bool kmap_buf = false;
818 #endif
819 int desc_len;
820 int sgs;
821 struct page *vm_page;
822 struct scatterlist *sg;
823 void *sg_buf;
824 size_t min;
825 int i, ret;
826
827 if (vmalloced_buf || kmap_buf) {
828 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
829 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
830 } else if (virt_addr_valid(buf)) {
831 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
832 sgs = DIV_ROUND_UP(len, desc_len);
833 } else {
834 return -EINVAL;
835 }
836
837 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
838 if (ret != 0)
839 return ret;
840
841 sg = &sgt->sgl[0];
842 for (i = 0; i < sgs; i++) {
843
844 if (vmalloced_buf || kmap_buf) {
845 /*
846 * Next scatterlist entry size is the minimum between
847 * the desc_len and the remaining buffer length that
848 * fits in a page.
849 */
850 min = min_t(size_t, desc_len,
851 min_t(size_t, len,
852 PAGE_SIZE - offset_in_page(buf)));
853 if (vmalloced_buf)
854 vm_page = vmalloc_to_page(buf);
855 else
856 vm_page = kmap_to_page(buf);
857 if (!vm_page) {
858 sg_free_table(sgt);
859 return -ENOMEM;
860 }
861 sg_set_page(sg, vm_page,
862 min, offset_in_page(buf));
863 } else {
864 min = min_t(size_t, len, desc_len);
865 sg_buf = buf;
866 sg_set_buf(sg, sg_buf, min);
867 }
868
869 buf += min;
870 len -= min;
871 sg = sg_next(sg);
872 }
873
874 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
875 if (!ret)
876 ret = -ENOMEM;
877 if (ret < 0) {
878 sg_free_table(sgt);
879 return ret;
880 }
881
882 sgt->nents = ret;
883
884 return 0;
885 }
886
887 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
888 struct sg_table *sgt, enum dma_data_direction dir)
889 {
890 if (sgt->orig_nents) {
891 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
892 sg_free_table(sgt);
893 }
894 }
895
896 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
897 {
898 struct device *tx_dev, *rx_dev;
899 struct spi_transfer *xfer;
900 int ret;
901
902 if (!ctlr->can_dma)
903 return 0;
904
905 if (ctlr->dma_tx)
906 tx_dev = ctlr->dma_tx->device->dev;
907 else
908 tx_dev = ctlr->dev.parent;
909
910 if (ctlr->dma_rx)
911 rx_dev = ctlr->dma_rx->device->dev;
912 else
913 rx_dev = ctlr->dev.parent;
914
915 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
916 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
917 continue;
918
919 if (xfer->tx_buf != NULL) {
920 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
921 (void *)xfer->tx_buf, xfer->len,
922 DMA_TO_DEVICE);
923 if (ret != 0)
924 return ret;
925 }
926
927 if (xfer->rx_buf != NULL) {
928 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
929 xfer->rx_buf, xfer->len,
930 DMA_FROM_DEVICE);
931 if (ret != 0) {
932 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
933 DMA_TO_DEVICE);
934 return ret;
935 }
936 }
937 }
938
939 ctlr->cur_msg_mapped = true;
940
941 return 0;
942 }
943
944 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
945 {
946 struct spi_transfer *xfer;
947 struct device *tx_dev, *rx_dev;
948
949 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
950 return 0;
951
952 if (ctlr->dma_tx)
953 tx_dev = ctlr->dma_tx->device->dev;
954 else
955 tx_dev = ctlr->dev.parent;
956
957 if (ctlr->dma_rx)
958 rx_dev = ctlr->dma_rx->device->dev;
959 else
960 rx_dev = ctlr->dev.parent;
961
962 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
963 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
964 continue;
965
966 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
967 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
968 }
969
970 return 0;
971 }
972 #else /* !CONFIG_HAS_DMA */
973 static inline int __spi_map_msg(struct spi_controller *ctlr,
974 struct spi_message *msg)
975 {
976 return 0;
977 }
978
979 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
980 struct spi_message *msg)
981 {
982 return 0;
983 }
984 #endif /* !CONFIG_HAS_DMA */
985
986 static inline int spi_unmap_msg(struct spi_controller *ctlr,
987 struct spi_message *msg)
988 {
989 struct spi_transfer *xfer;
990
991 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
992 /*
993 * Restore the original value of tx_buf or rx_buf if they are
994 * NULL.
995 */
996 if (xfer->tx_buf == ctlr->dummy_tx)
997 xfer->tx_buf = NULL;
998 if (xfer->rx_buf == ctlr->dummy_rx)
999 xfer->rx_buf = NULL;
1000 }
1001
1002 return __spi_unmap_msg(ctlr, msg);
1003 }
1004
1005 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1006 {
1007 struct spi_transfer *xfer;
1008 void *tmp;
1009 unsigned int max_tx, max_rx;
1010
1011 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
1012 max_tx = 0;
1013 max_rx = 0;
1014
1015 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1016 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1017 !xfer->tx_buf)
1018 max_tx = max(xfer->len, max_tx);
1019 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1020 !xfer->rx_buf)
1021 max_rx = max(xfer->len, max_rx);
1022 }
1023
1024 if (max_tx) {
1025 tmp = krealloc(ctlr->dummy_tx, max_tx,
1026 GFP_KERNEL | GFP_DMA);
1027 if (!tmp)
1028 return -ENOMEM;
1029 ctlr->dummy_tx = tmp;
1030 memset(tmp, 0, max_tx);
1031 }
1032
1033 if (max_rx) {
1034 tmp = krealloc(ctlr->dummy_rx, max_rx,
1035 GFP_KERNEL | GFP_DMA);
1036 if (!tmp)
1037 return -ENOMEM;
1038 ctlr->dummy_rx = tmp;
1039 }
1040
1041 if (max_tx || max_rx) {
1042 list_for_each_entry(xfer, &msg->transfers,
1043 transfer_list) {
1044 if (!xfer->len)
1045 continue;
1046 if (!xfer->tx_buf)
1047 xfer->tx_buf = ctlr->dummy_tx;
1048 if (!xfer->rx_buf)
1049 xfer->rx_buf = ctlr->dummy_rx;
1050 }
1051 }
1052 }
1053
1054 return __spi_map_msg(ctlr, msg);
1055 }
1056
1057 static int spi_transfer_wait(struct spi_controller *ctlr,
1058 struct spi_message *msg,
1059 struct spi_transfer *xfer)
1060 {
1061 struct spi_statistics *statm = &ctlr->statistics;
1062 struct spi_statistics *stats = &msg->spi->statistics;
1063 unsigned long long ms = 1;
1064
1065 if (spi_controller_is_slave(ctlr)) {
1066 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1067 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1068 return -EINTR;
1069 }
1070 } else {
1071 ms = 8LL * 1000LL * xfer->len;
1072 do_div(ms, xfer->speed_hz);
1073 ms += ms + 200; /* some tolerance */
1074
1075 if (ms > UINT_MAX)
1076 ms = UINT_MAX;
1077
1078 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1079 msecs_to_jiffies(ms));
1080
1081 if (ms == 0) {
1082 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1083 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1084 dev_err(&msg->spi->dev,
1085 "SPI transfer timed out\n");
1086 return -ETIMEDOUT;
1087 }
1088 }
1089
1090 return 0;
1091 }
1092
1093 /*
1094 * spi_transfer_one_message - Default implementation of transfer_one_message()
1095 *
1096 * This is a standard implementation of transfer_one_message() for
1097 * drivers which implement a transfer_one() operation. It provides
1098 * standard handling of delays and chip select management.
1099 */
1100 static int spi_transfer_one_message(struct spi_controller *ctlr,
1101 struct spi_message *msg)
1102 {
1103 struct spi_transfer *xfer;
1104 bool keep_cs = false;
1105 int ret = 0;
1106 struct spi_statistics *statm = &ctlr->statistics;
1107 struct spi_statistics *stats = &msg->spi->statistics;
1108
1109 spi_set_cs(msg->spi, true);
1110
1111 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1112 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1113
1114 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1115 trace_spi_transfer_start(msg, xfer);
1116
1117 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1118 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1119
1120 if (xfer->tx_buf || xfer->rx_buf) {
1121 reinit_completion(&ctlr->xfer_completion);
1122
1123 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1124 if (ret < 0) {
1125 SPI_STATISTICS_INCREMENT_FIELD(statm,
1126 errors);
1127 SPI_STATISTICS_INCREMENT_FIELD(stats,
1128 errors);
1129 dev_err(&msg->spi->dev,
1130 "SPI transfer failed: %d\n", ret);
1131 goto out;
1132 }
1133
1134 if (ret > 0) {
1135 ret = spi_transfer_wait(ctlr, msg, xfer);
1136 if (ret < 0)
1137 msg->status = ret;
1138 }
1139 } else {
1140 if (xfer->len)
1141 dev_err(&msg->spi->dev,
1142 "Bufferless transfer has length %u\n",
1143 xfer->len);
1144 }
1145
1146 trace_spi_transfer_stop(msg, xfer);
1147
1148 if (msg->status != -EINPROGRESS)
1149 goto out;
1150
1151 if (xfer->delay_usecs) {
1152 u16 us = xfer->delay_usecs;
1153
1154 if (us <= 10)
1155 udelay(us);
1156 else
1157 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1158 }
1159
1160 if (xfer->cs_change) {
1161 if (list_is_last(&xfer->transfer_list,
1162 &msg->transfers)) {
1163 keep_cs = true;
1164 } else {
1165 spi_set_cs(msg->spi, false);
1166 udelay(10);
1167 spi_set_cs(msg->spi, true);
1168 }
1169 }
1170
1171 msg->actual_length += xfer->len;
1172 }
1173
1174 out:
1175 if (ret != 0 || !keep_cs)
1176 spi_set_cs(msg->spi, false);
1177
1178 if (msg->status == -EINPROGRESS)
1179 msg->status = ret;
1180
1181 if (msg->status && ctlr->handle_err)
1182 ctlr->handle_err(ctlr, msg);
1183
1184 spi_res_release(ctlr, msg);
1185
1186 spi_finalize_current_message(ctlr);
1187
1188 return ret;
1189 }
1190
1191 /**
1192 * spi_finalize_current_transfer - report completion of a transfer
1193 * @ctlr: the controller reporting completion
1194 *
1195 * Called by SPI drivers using the core transfer_one_message()
1196 * implementation to notify it that the current interrupt driven
1197 * transfer has finished and the next one may be scheduled.
1198 */
1199 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1200 {
1201 complete(&ctlr->xfer_completion);
1202 }
1203 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1204
1205 /**
1206 * __spi_pump_messages - function which processes spi message queue
1207 * @ctlr: controller to process queue for
1208 * @in_kthread: true if we are in the context of the message pump thread
1209 *
1210 * This function checks if there is any spi message in the queue that
1211 * needs processing and if so call out to the driver to initialize hardware
1212 * and transfer each message.
1213 *
1214 * Note that it is called both from the kthread itself and also from
1215 * inside spi_sync(); the queue extraction handling at the top of the
1216 * function should deal with this safely.
1217 */
1218 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1219 {
1220 unsigned long flags;
1221 bool was_busy = false;
1222 int ret;
1223
1224 /* Lock queue */
1225 spin_lock_irqsave(&ctlr->queue_lock, flags);
1226
1227 /* Make sure we are not already running a message */
1228 if (ctlr->cur_msg) {
1229 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1230 return;
1231 }
1232
1233 /* If another context is idling the device then defer */
1234 if (ctlr->idling) {
1235 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1236 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1237 return;
1238 }
1239
1240 /* Check if the queue is idle */
1241 if (list_empty(&ctlr->queue) || !ctlr->running) {
1242 if (!ctlr->busy) {
1243 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1244 return;
1245 }
1246
1247 /* Only do teardown in the thread */
1248 if (!in_kthread) {
1249 kthread_queue_work(&ctlr->kworker,
1250 &ctlr->pump_messages);
1251 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1252 return;
1253 }
1254
1255 ctlr->busy = false;
1256 ctlr->idling = true;
1257 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1258
1259 kfree(ctlr->dummy_rx);
1260 ctlr->dummy_rx = NULL;
1261 kfree(ctlr->dummy_tx);
1262 ctlr->dummy_tx = NULL;
1263 if (ctlr->unprepare_transfer_hardware &&
1264 ctlr->unprepare_transfer_hardware(ctlr))
1265 dev_err(&ctlr->dev,
1266 "failed to unprepare transfer hardware\n");
1267 if (ctlr->auto_runtime_pm) {
1268 pm_runtime_mark_last_busy(ctlr->dev.parent);
1269 pm_runtime_put_autosuspend(ctlr->dev.parent);
1270 }
1271 trace_spi_controller_idle(ctlr);
1272
1273 spin_lock_irqsave(&ctlr->queue_lock, flags);
1274 ctlr->idling = false;
1275 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1276 return;
1277 }
1278
1279 /* Extract head of queue */
1280 ctlr->cur_msg =
1281 list_first_entry(&ctlr->queue, struct spi_message, queue);
1282
1283 list_del_init(&ctlr->cur_msg->queue);
1284 if (ctlr->busy)
1285 was_busy = true;
1286 else
1287 ctlr->busy = true;
1288 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1289
1290 mutex_lock(&ctlr->io_mutex);
1291
1292 if (!was_busy && ctlr->auto_runtime_pm) {
1293 ret = pm_runtime_get_sync(ctlr->dev.parent);
1294 if (ret < 0) {
1295 pm_runtime_put_noidle(ctlr->dev.parent);
1296 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1297 ret);
1298 mutex_unlock(&ctlr->io_mutex);
1299 return;
1300 }
1301 }
1302
1303 if (!was_busy)
1304 trace_spi_controller_busy(ctlr);
1305
1306 if (!was_busy && ctlr->prepare_transfer_hardware) {
1307 ret = ctlr->prepare_transfer_hardware(ctlr);
1308 if (ret) {
1309 dev_err(&ctlr->dev,
1310 "failed to prepare transfer hardware: %d\n",
1311 ret);
1312
1313 if (ctlr->auto_runtime_pm)
1314 pm_runtime_put(ctlr->dev.parent);
1315
1316 ctlr->cur_msg->status = ret;
1317 spi_finalize_current_message(ctlr);
1318
1319 mutex_unlock(&ctlr->io_mutex);
1320 return;
1321 }
1322 }
1323
1324 trace_spi_message_start(ctlr->cur_msg);
1325
1326 if (ctlr->prepare_message) {
1327 ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1328 if (ret) {
1329 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1330 ret);
1331 ctlr->cur_msg->status = ret;
1332 spi_finalize_current_message(ctlr);
1333 goto out;
1334 }
1335 ctlr->cur_msg_prepared = true;
1336 }
1337
1338 ret = spi_map_msg(ctlr, ctlr->cur_msg);
1339 if (ret) {
1340 ctlr->cur_msg->status = ret;
1341 spi_finalize_current_message(ctlr);
1342 goto out;
1343 }
1344
1345 ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1346 if (ret) {
1347 dev_err(&ctlr->dev,
1348 "failed to transfer one message from queue\n");
1349 goto out;
1350 }
1351
1352 out:
1353 mutex_unlock(&ctlr->io_mutex);
1354
1355 /* Prod the scheduler in case transfer_one() was busy waiting */
1356 if (!ret)
1357 cond_resched();
1358 }
1359
1360 /**
1361 * spi_pump_messages - kthread work function which processes spi message queue
1362 * @work: pointer to kthread work struct contained in the controller struct
1363 */
1364 static void spi_pump_messages(struct kthread_work *work)
1365 {
1366 struct spi_controller *ctlr =
1367 container_of(work, struct spi_controller, pump_messages);
1368
1369 __spi_pump_messages(ctlr, true);
1370 }
1371
1372 static int spi_init_queue(struct spi_controller *ctlr)
1373 {
1374 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1375
1376 ctlr->running = false;
1377 ctlr->busy = false;
1378
1379 kthread_init_worker(&ctlr->kworker);
1380 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1381 "%s", dev_name(&ctlr->dev));
1382 if (IS_ERR(ctlr->kworker_task)) {
1383 dev_err(&ctlr->dev, "failed to create message pump task\n");
1384 return PTR_ERR(ctlr->kworker_task);
1385 }
1386 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1387
1388 /*
1389 * Controller config will indicate if this controller should run the
1390 * message pump with high (realtime) priority to reduce the transfer
1391 * latency on the bus by minimising the delay between a transfer
1392 * request and the scheduling of the message pump thread. Without this
1393 * setting the message pump thread will remain at default priority.
1394 */
1395 if (ctlr->rt) {
1396 dev_info(&ctlr->dev,
1397 "will run message pump with realtime priority\n");
1398 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1399 }
1400
1401 return 0;
1402 }
1403
1404 /**
1405 * spi_get_next_queued_message() - called by driver to check for queued
1406 * messages
1407 * @ctlr: the controller to check for queued messages
1408 *
1409 * If there are more messages in the queue, the next message is returned from
1410 * this call.
1411 *
1412 * Return: the next message in the queue, else NULL if the queue is empty.
1413 */
1414 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1415 {
1416 struct spi_message *next;
1417 unsigned long flags;
1418
1419 /* get a pointer to the next message, if any */
1420 spin_lock_irqsave(&ctlr->queue_lock, flags);
1421 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1422 queue);
1423 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1424
1425 return next;
1426 }
1427 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1428
1429 /**
1430 * spi_finalize_current_message() - the current message is complete
1431 * @ctlr: the controller to return the message to
1432 *
1433 * Called by the driver to notify the core that the message in the front of the
1434 * queue is complete and can be removed from the queue.
1435 */
1436 void spi_finalize_current_message(struct spi_controller *ctlr)
1437 {
1438 struct spi_message *mesg;
1439 unsigned long flags;
1440 int ret;
1441
1442 spin_lock_irqsave(&ctlr->queue_lock, flags);
1443 mesg = ctlr->cur_msg;
1444 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1445
1446 spi_unmap_msg(ctlr, mesg);
1447
1448 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1449 ret = ctlr->unprepare_message(ctlr, mesg);
1450 if (ret) {
1451 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1452 ret);
1453 }
1454 }
1455
1456 spin_lock_irqsave(&ctlr->queue_lock, flags);
1457 ctlr->cur_msg = NULL;
1458 ctlr->cur_msg_prepared = false;
1459 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1460 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1461
1462 trace_spi_message_done(mesg);
1463
1464 mesg->state = NULL;
1465 if (mesg->complete)
1466 mesg->complete(mesg->context);
1467 }
1468 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1469
1470 static int spi_start_queue(struct spi_controller *ctlr)
1471 {
1472 unsigned long flags;
1473
1474 spin_lock_irqsave(&ctlr->queue_lock, flags);
1475
1476 if (ctlr->running || ctlr->busy) {
1477 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1478 return -EBUSY;
1479 }
1480
1481 ctlr->running = true;
1482 ctlr->cur_msg = NULL;
1483 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1484
1485 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1486
1487 return 0;
1488 }
1489
1490 static int spi_stop_queue(struct spi_controller *ctlr)
1491 {
1492 unsigned long flags;
1493 unsigned limit = 500;
1494 int ret = 0;
1495
1496 spin_lock_irqsave(&ctlr->queue_lock, flags);
1497
1498 /*
1499 * This is a bit lame, but is optimized for the common execution path.
1500 * A wait_queue on the ctlr->busy could be used, but then the common
1501 * execution path (pump_messages) would be required to call wake_up or
1502 * friends on every SPI message. Do this instead.
1503 */
1504 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1505 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1506 usleep_range(10000, 11000);
1507 spin_lock_irqsave(&ctlr->queue_lock, flags);
1508 }
1509
1510 if (!list_empty(&ctlr->queue) || ctlr->busy)
1511 ret = -EBUSY;
1512 else
1513 ctlr->running = false;
1514
1515 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1516
1517 if (ret) {
1518 dev_warn(&ctlr->dev, "could not stop message queue\n");
1519 return ret;
1520 }
1521 return ret;
1522 }
1523
1524 static int spi_destroy_queue(struct spi_controller *ctlr)
1525 {
1526 int ret;
1527
1528 ret = spi_stop_queue(ctlr);
1529
1530 /*
1531 * kthread_flush_worker will block until all work is done.
1532 * If the reason that stop_queue timed out is that the work will never
1533 * finish, then it does no good to call flush/stop thread, so
1534 * return anyway.
1535 */
1536 if (ret) {
1537 dev_err(&ctlr->dev, "problem destroying queue\n");
1538 return ret;
1539 }
1540
1541 kthread_flush_worker(&ctlr->kworker);
1542 kthread_stop(ctlr->kworker_task);
1543
1544 return 0;
1545 }
1546
1547 static int __spi_queued_transfer(struct spi_device *spi,
1548 struct spi_message *msg,
1549 bool need_pump)
1550 {
1551 struct spi_controller *ctlr = spi->controller;
1552 unsigned long flags;
1553
1554 spin_lock_irqsave(&ctlr->queue_lock, flags);
1555
1556 if (!ctlr->running) {
1557 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1558 return -ESHUTDOWN;
1559 }
1560 msg->actual_length = 0;
1561 msg->status = -EINPROGRESS;
1562
1563 list_add_tail(&msg->queue, &ctlr->queue);
1564 if (!ctlr->busy && need_pump)
1565 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1566
1567 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1568 return 0;
1569 }
1570
1571 /**
1572 * spi_queued_transfer - transfer function for queued transfers
1573 * @spi: spi device which is requesting transfer
1574 * @msg: spi message which is to handled is queued to driver queue
1575 *
1576 * Return: zero on success, else a negative error code.
1577 */
1578 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1579 {
1580 return __spi_queued_transfer(spi, msg, true);
1581 }
1582
1583 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1584 {
1585 int ret;
1586
1587 ctlr->transfer = spi_queued_transfer;
1588 if (!ctlr->transfer_one_message)
1589 ctlr->transfer_one_message = spi_transfer_one_message;
1590
1591 /* Initialize and start queue */
1592 ret = spi_init_queue(ctlr);
1593 if (ret) {
1594 dev_err(&ctlr->dev, "problem initializing queue\n");
1595 goto err_init_queue;
1596 }
1597 ctlr->queued = true;
1598 ret = spi_start_queue(ctlr);
1599 if (ret) {
1600 dev_err(&ctlr->dev, "problem starting queue\n");
1601 goto err_start_queue;
1602 }
1603
1604 return 0;
1605
1606 err_start_queue:
1607 spi_destroy_queue(ctlr);
1608 err_init_queue:
1609 return ret;
1610 }
1611
1612 /**
1613 * spi_flush_queue - Send all pending messages in the queue from the callers'
1614 * context
1615 * @ctlr: controller to process queue for
1616 *
1617 * This should be used when one wants to ensure all pending messages have been
1618 * sent before doing something. Is used by the spi-mem code to make sure SPI
1619 * memory operations do not preempt regular SPI transfers that have been queued
1620 * before the spi-mem operation.
1621 */
1622 void spi_flush_queue(struct spi_controller *ctlr)
1623 {
1624 if (ctlr->transfer == spi_queued_transfer)
1625 __spi_pump_messages(ctlr, false);
1626 }
1627
1628 /*-------------------------------------------------------------------------*/
1629
1630 #if defined(CONFIG_OF)
1631 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1632 struct device_node *nc)
1633 {
1634 u32 value;
1635 int rc;
1636
1637 /* Mode (clock phase/polarity/etc.) */
1638 if (of_property_read_bool(nc, "spi-cpha"))
1639 spi->mode |= SPI_CPHA;
1640 if (of_property_read_bool(nc, "spi-cpol"))
1641 spi->mode |= SPI_CPOL;
1642 if (of_property_read_bool(nc, "spi-3wire"))
1643 spi->mode |= SPI_3WIRE;
1644 if (of_property_read_bool(nc, "spi-lsb-first"))
1645 spi->mode |= SPI_LSB_FIRST;
1646
1647 /*
1648 * For descriptors associated with the device, polarity inversion is
1649 * handled in the gpiolib, so all chip selects are "active high" in
1650 * the logical sense, the gpiolib will invert the line if need be.
1651 */
1652 if (ctlr->use_gpio_descriptors)
1653 spi->mode |= SPI_CS_HIGH;
1654 else if (of_property_read_bool(nc, "spi-cs-high"))
1655 spi->mode |= SPI_CS_HIGH;
1656
1657 /* Device DUAL/QUAD mode */
1658 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1659 switch (value) {
1660 case 1:
1661 break;
1662 case 2:
1663 spi->mode |= SPI_TX_DUAL;
1664 break;
1665 case 4:
1666 spi->mode |= SPI_TX_QUAD;
1667 break;
1668 case 8:
1669 spi->mode |= SPI_TX_OCTAL;
1670 break;
1671 default:
1672 dev_warn(&ctlr->dev,
1673 "spi-tx-bus-width %d not supported\n",
1674 value);
1675 break;
1676 }
1677 }
1678
1679 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1680 switch (value) {
1681 case 1:
1682 break;
1683 case 2:
1684 spi->mode |= SPI_RX_DUAL;
1685 break;
1686 case 4:
1687 spi->mode |= SPI_RX_QUAD;
1688 break;
1689 case 8:
1690 spi->mode |= SPI_RX_OCTAL;
1691 break;
1692 default:
1693 dev_warn(&ctlr->dev,
1694 "spi-rx-bus-width %d not supported\n",
1695 value);
1696 break;
1697 }
1698 }
1699
1700 if (spi_controller_is_slave(ctlr)) {
1701 if (!of_node_name_eq(nc, "slave")) {
1702 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1703 nc);
1704 return -EINVAL;
1705 }
1706 return 0;
1707 }
1708
1709 /* Device address */
1710 rc = of_property_read_u32(nc, "reg", &value);
1711 if (rc) {
1712 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1713 nc, rc);
1714 return rc;
1715 }
1716 spi->chip_select = value;
1717
1718 /* Device speed */
1719 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1720 if (rc) {
1721 dev_err(&ctlr->dev,
1722 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1723 return rc;
1724 }
1725 spi->max_speed_hz = value;
1726
1727 return 0;
1728 }
1729
1730 static struct spi_device *
1731 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1732 {
1733 struct spi_device *spi;
1734 int rc;
1735
1736 /* Alloc an spi_device */
1737 spi = spi_alloc_device(ctlr);
1738 if (!spi) {
1739 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1740 rc = -ENOMEM;
1741 goto err_out;
1742 }
1743
1744 /* Select device driver */
1745 rc = of_modalias_node(nc, spi->modalias,
1746 sizeof(spi->modalias));
1747 if (rc < 0) {
1748 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1749 goto err_out;
1750 }
1751
1752 rc = of_spi_parse_dt(ctlr, spi, nc);
1753 if (rc)
1754 goto err_out;
1755
1756 /* Store a pointer to the node in the device structure */
1757 of_node_get(nc);
1758 spi->dev.of_node = nc;
1759
1760 /* Register the new device */
1761 rc = spi_add_device(spi);
1762 if (rc) {
1763 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1764 goto err_of_node_put;
1765 }
1766
1767 return spi;
1768
1769 err_of_node_put:
1770 of_node_put(nc);
1771 err_out:
1772 spi_dev_put(spi);
1773 return ERR_PTR(rc);
1774 }
1775
1776 /**
1777 * of_register_spi_devices() - Register child devices onto the SPI bus
1778 * @ctlr: Pointer to spi_controller device
1779 *
1780 * Registers an spi_device for each child node of controller node which
1781 * represents a valid SPI slave.
1782 */
1783 static void of_register_spi_devices(struct spi_controller *ctlr)
1784 {
1785 struct spi_device *spi;
1786 struct device_node *nc;
1787
1788 if (!ctlr->dev.of_node)
1789 return;
1790
1791 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1792 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1793 continue;
1794 spi = of_register_spi_device(ctlr, nc);
1795 if (IS_ERR(spi)) {
1796 dev_warn(&ctlr->dev,
1797 "Failed to create SPI device for %pOF\n", nc);
1798 of_node_clear_flag(nc, OF_POPULATED);
1799 }
1800 }
1801 }
1802 #else
1803 static void of_register_spi_devices(struct spi_controller *ctlr) { }
1804 #endif
1805
1806 #ifdef CONFIG_ACPI
1807 static void acpi_spi_parse_apple_properties(struct spi_device *spi)
1808 {
1809 struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
1810 const union acpi_object *obj;
1811
1812 if (!x86_apple_machine)
1813 return;
1814
1815 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1816 && obj->buffer.length >= 4)
1817 spi->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1818
1819 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1820 && obj->buffer.length == 8)
1821 spi->bits_per_word = *(u64 *)obj->buffer.pointer;
1822
1823 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1824 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1825 spi->mode |= SPI_LSB_FIRST;
1826
1827 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1828 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1829 spi->mode |= SPI_CPOL;
1830
1831 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1832 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1833 spi->mode |= SPI_CPHA;
1834 }
1835
1836 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1837 {
1838 struct spi_device *spi = data;
1839 struct spi_controller *ctlr = spi->controller;
1840
1841 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1842 struct acpi_resource_spi_serialbus *sb;
1843
1844 sb = &ares->data.spi_serial_bus;
1845 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1846 /*
1847 * ACPI DeviceSelection numbering is handled by the
1848 * host controller driver in Windows and can vary
1849 * from driver to driver. In Linux we always expect
1850 * 0 .. max - 1 so we need to ask the driver to
1851 * translate between the two schemes.
1852 */
1853 if (ctlr->fw_translate_cs) {
1854 int cs = ctlr->fw_translate_cs(ctlr,
1855 sb->device_selection);
1856 if (cs < 0)
1857 return cs;
1858 spi->chip_select = cs;
1859 } else {
1860 spi->chip_select = sb->device_selection;
1861 }
1862
1863 spi->max_speed_hz = sb->connection_speed;
1864
1865 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1866 spi->mode |= SPI_CPHA;
1867 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1868 spi->mode |= SPI_CPOL;
1869 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1870 spi->mode |= SPI_CS_HIGH;
1871 }
1872 } else if (spi->irq < 0) {
1873 struct resource r;
1874
1875 if (acpi_dev_resource_interrupt(ares, 0, &r))
1876 spi->irq = r.start;
1877 }
1878
1879 /* Always tell the ACPI core to skip this resource */
1880 return 1;
1881 }
1882
1883 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1884 struct acpi_device *adev)
1885 {
1886 struct list_head resource_list;
1887 struct spi_device *spi;
1888 int ret;
1889
1890 if (acpi_bus_get_status(adev) || !adev->status.present ||
1891 acpi_device_enumerated(adev))
1892 return AE_OK;
1893
1894 spi = spi_alloc_device(ctlr);
1895 if (!spi) {
1896 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1897 dev_name(&adev->dev));
1898 return AE_NO_MEMORY;
1899 }
1900
1901 ACPI_COMPANION_SET(&spi->dev, adev);
1902 spi->irq = -1;
1903
1904 INIT_LIST_HEAD(&resource_list);
1905 ret = acpi_dev_get_resources(adev, &resource_list,
1906 acpi_spi_add_resource, spi);
1907 acpi_dev_free_resource_list(&resource_list);
1908
1909 acpi_spi_parse_apple_properties(spi);
1910
1911 if (ret < 0 || !spi->max_speed_hz) {
1912 spi_dev_put(spi);
1913 return AE_OK;
1914 }
1915
1916 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1917 sizeof(spi->modalias));
1918
1919 if (spi->irq < 0)
1920 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1921
1922 acpi_device_set_enumerated(adev);
1923
1924 adev->power.flags.ignore_parent = true;
1925 if (spi_add_device(spi)) {
1926 adev->power.flags.ignore_parent = false;
1927 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1928 dev_name(&adev->dev));
1929 spi_dev_put(spi);
1930 }
1931
1932 return AE_OK;
1933 }
1934
1935 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1936 void *data, void **return_value)
1937 {
1938 struct spi_controller *ctlr = data;
1939 struct acpi_device *adev;
1940
1941 if (acpi_bus_get_device(handle, &adev))
1942 return AE_OK;
1943
1944 return acpi_register_spi_device(ctlr, adev);
1945 }
1946
1947 static void acpi_register_spi_devices(struct spi_controller *ctlr)
1948 {
1949 acpi_status status;
1950 acpi_handle handle;
1951
1952 handle = ACPI_HANDLE(ctlr->dev.parent);
1953 if (!handle)
1954 return;
1955
1956 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1957 acpi_spi_add_device, NULL, ctlr, NULL);
1958 if (ACPI_FAILURE(status))
1959 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1960 }
1961 #else
1962 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1963 #endif /* CONFIG_ACPI */
1964
1965 static void spi_controller_release(struct device *dev)
1966 {
1967 struct spi_controller *ctlr;
1968
1969 ctlr = container_of(dev, struct spi_controller, dev);
1970 kfree(ctlr);
1971 }
1972
1973 static struct class spi_master_class = {
1974 .name = "spi_master",
1975 .owner = THIS_MODULE,
1976 .dev_release = spi_controller_release,
1977 .dev_groups = spi_master_groups,
1978 };
1979
1980 #ifdef CONFIG_SPI_SLAVE
1981 /**
1982 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1983 * controller
1984 * @spi: device used for the current transfer
1985 */
1986 int spi_slave_abort(struct spi_device *spi)
1987 {
1988 struct spi_controller *ctlr = spi->controller;
1989
1990 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1991 return ctlr->slave_abort(ctlr);
1992
1993 return -ENOTSUPP;
1994 }
1995 EXPORT_SYMBOL_GPL(spi_slave_abort);
1996
1997 static int match_true(struct device *dev, void *data)
1998 {
1999 return 1;
2000 }
2001
2002 static ssize_t spi_slave_show(struct device *dev,
2003 struct device_attribute *attr, char *buf)
2004 {
2005 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2006 dev);
2007 struct device *child;
2008
2009 child = device_find_child(&ctlr->dev, NULL, match_true);
2010 return sprintf(buf, "%s\n",
2011 child ? to_spi_device(child)->modalias : NULL);
2012 }
2013
2014 static ssize_t spi_slave_store(struct device *dev,
2015 struct device_attribute *attr, const char *buf,
2016 size_t count)
2017 {
2018 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2019 dev);
2020 struct spi_device *spi;
2021 struct device *child;
2022 char name[32];
2023 int rc;
2024
2025 rc = sscanf(buf, "%31s", name);
2026 if (rc != 1 || !name[0])
2027 return -EINVAL;
2028
2029 child = device_find_child(&ctlr->dev, NULL, match_true);
2030 if (child) {
2031 /* Remove registered slave */
2032 device_unregister(child);
2033 put_device(child);
2034 }
2035
2036 if (strcmp(name, "(null)")) {
2037 /* Register new slave */
2038 spi = spi_alloc_device(ctlr);
2039 if (!spi)
2040 return -ENOMEM;
2041
2042 strlcpy(spi->modalias, name, sizeof(spi->modalias));
2043
2044 rc = spi_add_device(spi);
2045 if (rc) {
2046 spi_dev_put(spi);
2047 return rc;
2048 }
2049 }
2050
2051 return count;
2052 }
2053
2054 static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
2055
2056 static struct attribute *spi_slave_attrs[] = {
2057 &dev_attr_slave.attr,
2058 NULL,
2059 };
2060
2061 static const struct attribute_group spi_slave_group = {
2062 .attrs = spi_slave_attrs,
2063 };
2064
2065 static const struct attribute_group *spi_slave_groups[] = {
2066 &spi_controller_statistics_group,
2067 &spi_slave_group,
2068 NULL,
2069 };
2070
2071 static struct class spi_slave_class = {
2072 .name = "spi_slave",
2073 .owner = THIS_MODULE,
2074 .dev_release = spi_controller_release,
2075 .dev_groups = spi_slave_groups,
2076 };
2077 #else
2078 extern struct class spi_slave_class; /* dummy */
2079 #endif
2080
2081 /**
2082 * __spi_alloc_controller - allocate an SPI master or slave controller
2083 * @dev: the controller, possibly using the platform_bus
2084 * @size: how much zeroed driver-private data to allocate; the pointer to this
2085 * memory is in the driver_data field of the returned device,
2086 * accessible with spi_controller_get_devdata().
2087 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2088 * slave (true) controller
2089 * Context: can sleep
2090 *
2091 * This call is used only by SPI controller drivers, which are the
2092 * only ones directly touching chip registers. It's how they allocate
2093 * an spi_controller structure, prior to calling spi_register_controller().
2094 *
2095 * This must be called from context that can sleep.
2096 *
2097 * The caller is responsible for assigning the bus number and initializing the
2098 * controller's methods before calling spi_register_controller(); and (after
2099 * errors adding the device) calling spi_controller_put() to prevent a memory
2100 * leak.
2101 *
2102 * Return: the SPI controller structure on success, else NULL.
2103 */
2104 struct spi_controller *__spi_alloc_controller(struct device *dev,
2105 unsigned int size, bool slave)
2106 {
2107 struct spi_controller *ctlr;
2108
2109 if (!dev)
2110 return NULL;
2111
2112 ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2113 if (!ctlr)
2114 return NULL;
2115
2116 device_initialize(&ctlr->dev);
2117 ctlr->bus_num = -1;
2118 ctlr->num_chipselect = 1;
2119 ctlr->slave = slave;
2120 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2121 ctlr->dev.class = &spi_slave_class;
2122 else
2123 ctlr->dev.class = &spi_master_class;
2124 ctlr->dev.parent = dev;
2125 pm_suspend_ignore_children(&ctlr->dev, true);
2126 spi_controller_set_devdata(ctlr, &ctlr[1]);
2127
2128 return ctlr;
2129 }
2130 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2131
2132 #ifdef CONFIG_OF
2133 static int of_spi_register_master(struct spi_controller *ctlr)
2134 {
2135 int nb, i, *cs;
2136 struct device_node *np = ctlr->dev.of_node;
2137
2138 if (!np)
2139 return 0;
2140
2141 nb = of_gpio_named_count(np, "cs-gpios");
2142 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2143
2144 /* Return error only for an incorrectly formed cs-gpios property */
2145 if (nb == 0 || nb == -ENOENT)
2146 return 0;
2147 else if (nb < 0)
2148 return nb;
2149
2150 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2151 GFP_KERNEL);
2152 ctlr->cs_gpios = cs;
2153
2154 if (!ctlr->cs_gpios)
2155 return -ENOMEM;
2156
2157 for (i = 0; i < ctlr->num_chipselect; i++)
2158 cs[i] = -ENOENT;
2159
2160 for (i = 0; i < nb; i++)
2161 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2162
2163 return 0;
2164 }
2165 #else
2166 static int of_spi_register_master(struct spi_controller *ctlr)
2167 {
2168 return 0;
2169 }
2170 #endif
2171
2172 /**
2173 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2174 * @ctlr: The SPI master to grab GPIO descriptors for
2175 */
2176 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2177 {
2178 int nb, i;
2179 struct gpio_desc **cs;
2180 struct device *dev = &ctlr->dev;
2181
2182 nb = gpiod_count(dev, "cs");
2183 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2184
2185 /* No GPIOs at all is fine, else return the error */
2186 if (nb == 0 || nb == -ENOENT)
2187 return 0;
2188 else if (nb < 0)
2189 return nb;
2190
2191 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2192 GFP_KERNEL);
2193 if (!cs)
2194 return -ENOMEM;
2195 ctlr->cs_gpiods = cs;
2196
2197 for (i = 0; i < nb; i++) {
2198 /*
2199 * Most chipselects are active low, the inverted
2200 * semantics are handled by special quirks in gpiolib,
2201 * so initializing them GPIOD_OUT_LOW here means
2202 * "unasserted", in most cases this will drive the physical
2203 * line high.
2204 */
2205 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2206 GPIOD_OUT_LOW);
2207 if (IS_ERR(cs[i]))
2208 return PTR_ERR(cs[i]);
2209
2210 if (cs[i]) {
2211 /*
2212 * If we find a CS GPIO, name it after the device and
2213 * chip select line.
2214 */
2215 char *gpioname;
2216
2217 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2218 dev_name(dev), i);
2219 if (!gpioname)
2220 return -ENOMEM;
2221 gpiod_set_consumer_name(cs[i], gpioname);
2222 }
2223 }
2224
2225 return 0;
2226 }
2227
2228 static int spi_controller_check_ops(struct spi_controller *ctlr)
2229 {
2230 /*
2231 * The controller may implement only the high-level SPI-memory like
2232 * operations if it does not support regular SPI transfers, and this is
2233 * valid use case.
2234 * If ->mem_ops is NULL, we request that at least one of the
2235 * ->transfer_xxx() method be implemented.
2236 */
2237 if (ctlr->mem_ops) {
2238 if (!ctlr->mem_ops->exec_op)
2239 return -EINVAL;
2240 } else if (!ctlr->transfer && !ctlr->transfer_one &&
2241 !ctlr->transfer_one_message) {
2242 return -EINVAL;
2243 }
2244
2245 return 0;
2246 }
2247
2248 /**
2249 * spi_register_controller - register SPI master or slave controller
2250 * @ctlr: initialized master, originally from spi_alloc_master() or
2251 * spi_alloc_slave()
2252 * Context: can sleep
2253 *
2254 * SPI controllers connect to their drivers using some non-SPI bus,
2255 * such as the platform bus. The final stage of probe() in that code
2256 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2257 *
2258 * SPI controllers use board specific (often SOC specific) bus numbers,
2259 * and board-specific addressing for SPI devices combines those numbers
2260 * with chip select numbers. Since SPI does not directly support dynamic
2261 * device identification, boards need configuration tables telling which
2262 * chip is at which address.
2263 *
2264 * This must be called from context that can sleep. It returns zero on
2265 * success, else a negative error code (dropping the controller's refcount).
2266 * After a successful return, the caller is responsible for calling
2267 * spi_unregister_controller().
2268 *
2269 * Return: zero on success, else a negative error code.
2270 */
2271 int spi_register_controller(struct spi_controller *ctlr)
2272 {
2273 struct device *dev = ctlr->dev.parent;
2274 struct boardinfo *bi;
2275 int status;
2276 int id, first_dynamic;
2277
2278 if (!dev)
2279 return -ENODEV;
2280
2281 /*
2282 * Make sure all necessary hooks are implemented before registering
2283 * the SPI controller.
2284 */
2285 status = spi_controller_check_ops(ctlr);
2286 if (status)
2287 return status;
2288
2289 /* even if it's just one always-selected device, there must
2290 * be at least one chipselect
2291 */
2292 if (ctlr->num_chipselect == 0)
2293 return -EINVAL;
2294 if (ctlr->bus_num >= 0) {
2295 /* devices with a fixed bus num must check-in with the num */
2296 mutex_lock(&board_lock);
2297 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2298 ctlr->bus_num + 1, GFP_KERNEL);
2299 mutex_unlock(&board_lock);
2300 if (WARN(id < 0, "couldn't get idr"))
2301 return id == -ENOSPC ? -EBUSY : id;
2302 ctlr->bus_num = id;
2303 } else if (ctlr->dev.of_node) {
2304 /* allocate dynamic bus number using Linux idr */
2305 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2306 if (id >= 0) {
2307 ctlr->bus_num = id;
2308 mutex_lock(&board_lock);
2309 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2310 ctlr->bus_num + 1, GFP_KERNEL);
2311 mutex_unlock(&board_lock);
2312 if (WARN(id < 0, "couldn't get idr"))
2313 return id == -ENOSPC ? -EBUSY : id;
2314 }
2315 }
2316 if (ctlr->bus_num < 0) {
2317 first_dynamic = of_alias_get_highest_id("spi");
2318 if (first_dynamic < 0)
2319 first_dynamic = 0;
2320 else
2321 first_dynamic++;
2322
2323 mutex_lock(&board_lock);
2324 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2325 0, GFP_KERNEL);
2326 mutex_unlock(&board_lock);
2327 if (WARN(id < 0, "couldn't get idr"))
2328 return id;
2329 ctlr->bus_num = id;
2330 }
2331 INIT_LIST_HEAD(&ctlr->queue);
2332 spin_lock_init(&ctlr->queue_lock);
2333 spin_lock_init(&ctlr->bus_lock_spinlock);
2334 mutex_init(&ctlr->bus_lock_mutex);
2335 mutex_init(&ctlr->io_mutex);
2336 ctlr->bus_lock_flag = 0;
2337 init_completion(&ctlr->xfer_completion);
2338 if (!ctlr->max_dma_len)
2339 ctlr->max_dma_len = INT_MAX;
2340
2341 /* register the device, then userspace will see it.
2342 * registration fails if the bus ID is in use.
2343 */
2344 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2345
2346 if (!spi_controller_is_slave(ctlr)) {
2347 if (ctlr->use_gpio_descriptors) {
2348 status = spi_get_gpio_descs(ctlr);
2349 if (status)
2350 return status;
2351 /*
2352 * A controller using GPIO descriptors always
2353 * supports SPI_CS_HIGH if need be.
2354 */
2355 ctlr->mode_bits |= SPI_CS_HIGH;
2356 } else {
2357 /* Legacy code path for GPIOs from DT */
2358 status = of_spi_register_master(ctlr);
2359 if (status)
2360 return status;
2361 }
2362 }
2363
2364 status = device_add(&ctlr->dev);
2365 if (status < 0) {
2366 /* free bus id */
2367 mutex_lock(&board_lock);
2368 idr_remove(&spi_master_idr, ctlr->bus_num);
2369 mutex_unlock(&board_lock);
2370 goto done;
2371 }
2372 dev_dbg(dev, "registered %s %s\n",
2373 spi_controller_is_slave(ctlr) ? "slave" : "master",
2374 dev_name(&ctlr->dev));
2375
2376 /*
2377 * If we're using a queued driver, start the queue. Note that we don't
2378 * need the queueing logic if the driver is only supporting high-level
2379 * memory operations.
2380 */
2381 if (ctlr->transfer) {
2382 dev_info(dev, "controller is unqueued, this is deprecated\n");
2383 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2384 status = spi_controller_initialize_queue(ctlr);
2385 if (status) {
2386 device_del(&ctlr->dev);
2387 /* free bus id */
2388 mutex_lock(&board_lock);
2389 idr_remove(&spi_master_idr, ctlr->bus_num);
2390 mutex_unlock(&board_lock);
2391 goto done;
2392 }
2393 }
2394 /* add statistics */
2395 spin_lock_init(&ctlr->statistics.lock);
2396
2397 mutex_lock(&board_lock);
2398 list_add_tail(&ctlr->list, &spi_controller_list);
2399 list_for_each_entry(bi, &board_list, list)
2400 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2401 mutex_unlock(&board_lock);
2402
2403 /* Register devices from the device tree and ACPI */
2404 of_register_spi_devices(ctlr);
2405 acpi_register_spi_devices(ctlr);
2406 done:
2407 return status;
2408 }
2409 EXPORT_SYMBOL_GPL(spi_register_controller);
2410
2411 static void devm_spi_unregister(struct device *dev, void *res)
2412 {
2413 spi_unregister_controller(*(struct spi_controller **)res);
2414 }
2415
2416 /**
2417 * devm_spi_register_controller - register managed SPI master or slave
2418 * controller
2419 * @dev: device managing SPI controller
2420 * @ctlr: initialized controller, originally from spi_alloc_master() or
2421 * spi_alloc_slave()
2422 * Context: can sleep
2423 *
2424 * Register a SPI device as with spi_register_controller() which will
2425 * automatically be unregistered and freed.
2426 *
2427 * Return: zero on success, else a negative error code.
2428 */
2429 int devm_spi_register_controller(struct device *dev,
2430 struct spi_controller *ctlr)
2431 {
2432 struct spi_controller **ptr;
2433 int ret;
2434
2435 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2436 if (!ptr)
2437 return -ENOMEM;
2438
2439 ret = spi_register_controller(ctlr);
2440 if (!ret) {
2441 *ptr = ctlr;
2442 devres_add(dev, ptr);
2443 } else {
2444 devres_free(ptr);
2445 }
2446
2447 return ret;
2448 }
2449 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2450
2451 static int __unregister(struct device *dev, void *null)
2452 {
2453 spi_unregister_device(to_spi_device(dev));
2454 return 0;
2455 }
2456
2457 /**
2458 * spi_unregister_controller - unregister SPI master or slave controller
2459 * @ctlr: the controller being unregistered
2460 * Context: can sleep
2461 *
2462 * This call is used only by SPI controller drivers, which are the
2463 * only ones directly touching chip registers.
2464 *
2465 * This must be called from context that can sleep.
2466 *
2467 * Note that this function also drops a reference to the controller.
2468 */
2469 void spi_unregister_controller(struct spi_controller *ctlr)
2470 {
2471 struct spi_controller *found;
2472 int id = ctlr->bus_num;
2473 int dummy;
2474
2475 /* First make sure that this controller was ever added */
2476 mutex_lock(&board_lock);
2477 found = idr_find(&spi_master_idr, id);
2478 mutex_unlock(&board_lock);
2479 if (ctlr->queued) {
2480 if (spi_destroy_queue(ctlr))
2481 dev_err(&ctlr->dev, "queue remove failed\n");
2482 }
2483 mutex_lock(&board_lock);
2484 list_del(&ctlr->list);
2485 mutex_unlock(&board_lock);
2486
2487 dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
2488 device_unregister(&ctlr->dev);
2489 /* free bus id */
2490 mutex_lock(&board_lock);
2491 if (found == ctlr)
2492 idr_remove(&spi_master_idr, id);
2493 mutex_unlock(&board_lock);
2494 }
2495 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2496
2497 int spi_controller_suspend(struct spi_controller *ctlr)
2498 {
2499 int ret;
2500
2501 /* Basically no-ops for non-queued controllers */
2502 if (!ctlr->queued)
2503 return 0;
2504
2505 ret = spi_stop_queue(ctlr);
2506 if (ret)
2507 dev_err(&ctlr->dev, "queue stop failed\n");
2508
2509 return ret;
2510 }
2511 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2512
2513 int spi_controller_resume(struct spi_controller *ctlr)
2514 {
2515 int ret;
2516
2517 if (!ctlr->queued)
2518 return 0;
2519
2520 ret = spi_start_queue(ctlr);
2521 if (ret)
2522 dev_err(&ctlr->dev, "queue restart failed\n");
2523
2524 return ret;
2525 }
2526 EXPORT_SYMBOL_GPL(spi_controller_resume);
2527
2528 static int __spi_controller_match(struct device *dev, const void *data)
2529 {
2530 struct spi_controller *ctlr;
2531 const u16 *bus_num = data;
2532
2533 ctlr = container_of(dev, struct spi_controller, dev);
2534 return ctlr->bus_num == *bus_num;
2535 }
2536
2537 /**
2538 * spi_busnum_to_master - look up master associated with bus_num
2539 * @bus_num: the master's bus number
2540 * Context: can sleep
2541 *
2542 * This call may be used with devices that are registered after
2543 * arch init time. It returns a refcounted pointer to the relevant
2544 * spi_controller (which the caller must release), or NULL if there is
2545 * no such master registered.
2546 *
2547 * Return: the SPI master structure on success, else NULL.
2548 */
2549 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2550 {
2551 struct device *dev;
2552 struct spi_controller *ctlr = NULL;
2553
2554 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2555 __spi_controller_match);
2556 if (dev)
2557 ctlr = container_of(dev, struct spi_controller, dev);
2558 /* reference got in class_find_device */
2559 return ctlr;
2560 }
2561 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2562
2563 /*-------------------------------------------------------------------------*/
2564
2565 /* Core methods for SPI resource management */
2566
2567 /**
2568 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2569 * during the processing of a spi_message while using
2570 * spi_transfer_one
2571 * @spi: the spi device for which we allocate memory
2572 * @release: the release code to execute for this resource
2573 * @size: size to alloc and return
2574 * @gfp: GFP allocation flags
2575 *
2576 * Return: the pointer to the allocated data
2577 *
2578 * This may get enhanced in the future to allocate from a memory pool
2579 * of the @spi_device or @spi_controller to avoid repeated allocations.
2580 */
2581 void *spi_res_alloc(struct spi_device *spi,
2582 spi_res_release_t release,
2583 size_t size, gfp_t gfp)
2584 {
2585 struct spi_res *sres;
2586
2587 sres = kzalloc(sizeof(*sres) + size, gfp);
2588 if (!sres)
2589 return NULL;
2590
2591 INIT_LIST_HEAD(&sres->entry);
2592 sres->release = release;
2593
2594 return sres->data;
2595 }
2596 EXPORT_SYMBOL_GPL(spi_res_alloc);
2597
2598 /**
2599 * spi_res_free - free an spi resource
2600 * @res: pointer to the custom data of a resource
2601 *
2602 */
2603 void spi_res_free(void *res)
2604 {
2605 struct spi_res *sres = container_of(res, struct spi_res, data);
2606
2607 if (!res)
2608 return;
2609
2610 WARN_ON(!list_empty(&sres->entry));
2611 kfree(sres);
2612 }
2613 EXPORT_SYMBOL_GPL(spi_res_free);
2614
2615 /**
2616 * spi_res_add - add a spi_res to the spi_message
2617 * @message: the spi message
2618 * @res: the spi_resource
2619 */
2620 void spi_res_add(struct spi_message *message, void *res)
2621 {
2622 struct spi_res *sres = container_of(res, struct spi_res, data);
2623
2624 WARN_ON(!list_empty(&sres->entry));
2625 list_add_tail(&sres->entry, &message->resources);
2626 }
2627 EXPORT_SYMBOL_GPL(spi_res_add);
2628
2629 /**
2630 * spi_res_release - release all spi resources for this message
2631 * @ctlr: the @spi_controller
2632 * @message: the @spi_message
2633 */
2634 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2635 {
2636 struct spi_res *res;
2637
2638 while (!list_empty(&message->resources)) {
2639 res = list_last_entry(&message->resources,
2640 struct spi_res, entry);
2641
2642 if (res->release)
2643 res->release(ctlr, message, res->data);
2644
2645 list_del(&res->entry);
2646
2647 kfree(res);
2648 }
2649 }
2650 EXPORT_SYMBOL_GPL(spi_res_release);
2651
2652 /*-------------------------------------------------------------------------*/
2653
2654 /* Core methods for spi_message alterations */
2655
2656 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2657 struct spi_message *msg,
2658 void *res)
2659 {
2660 struct spi_replaced_transfers *rxfer = res;
2661 size_t i;
2662
2663 /* call extra callback if requested */
2664 if (rxfer->release)
2665 rxfer->release(ctlr, msg, res);
2666
2667 /* insert replaced transfers back into the message */
2668 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2669
2670 /* remove the formerly inserted entries */
2671 for (i = 0; i < rxfer->inserted; i++)
2672 list_del(&rxfer->inserted_transfers[i].transfer_list);
2673 }
2674
2675 /**
2676 * spi_replace_transfers - replace transfers with several transfers
2677 * and register change with spi_message.resources
2678 * @msg: the spi_message we work upon
2679 * @xfer_first: the first spi_transfer we want to replace
2680 * @remove: number of transfers to remove
2681 * @insert: the number of transfers we want to insert instead
2682 * @release: extra release code necessary in some circumstances
2683 * @extradatasize: extra data to allocate (with alignment guarantees
2684 * of struct @spi_transfer)
2685 * @gfp: gfp flags
2686 *
2687 * Returns: pointer to @spi_replaced_transfers,
2688 * PTR_ERR(...) in case of errors.
2689 */
2690 struct spi_replaced_transfers *spi_replace_transfers(
2691 struct spi_message *msg,
2692 struct spi_transfer *xfer_first,
2693 size_t remove,
2694 size_t insert,
2695 spi_replaced_release_t release,
2696 size_t extradatasize,
2697 gfp_t gfp)
2698 {
2699 struct spi_replaced_transfers *rxfer;
2700 struct spi_transfer *xfer;
2701 size_t i;
2702
2703 /* allocate the structure using spi_res */
2704 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2705 insert * sizeof(struct spi_transfer)
2706 + sizeof(struct spi_replaced_transfers)
2707 + extradatasize,
2708 gfp);
2709 if (!rxfer)
2710 return ERR_PTR(-ENOMEM);
2711
2712 /* the release code to invoke before running the generic release */
2713 rxfer->release = release;
2714
2715 /* assign extradata */
2716 if (extradatasize)
2717 rxfer->extradata =
2718 &rxfer->inserted_transfers[insert];
2719
2720 /* init the replaced_transfers list */
2721 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2722
2723 /* assign the list_entry after which we should reinsert
2724 * the @replaced_transfers - it may be spi_message.messages!
2725 */
2726 rxfer->replaced_after = xfer_first->transfer_list.prev;
2727
2728 /* remove the requested number of transfers */
2729 for (i = 0; i < remove; i++) {
2730 /* if the entry after replaced_after it is msg->transfers
2731 * then we have been requested to remove more transfers
2732 * than are in the list
2733 */
2734 if (rxfer->replaced_after->next == &msg->transfers) {
2735 dev_err(&msg->spi->dev,
2736 "requested to remove more spi_transfers than are available\n");
2737 /* insert replaced transfers back into the message */
2738 list_splice(&rxfer->replaced_transfers,
2739 rxfer->replaced_after);
2740
2741 /* free the spi_replace_transfer structure */
2742 spi_res_free(rxfer);
2743
2744 /* and return with an error */
2745 return ERR_PTR(-EINVAL);
2746 }
2747
2748 /* remove the entry after replaced_after from list of
2749 * transfers and add it to list of replaced_transfers
2750 */
2751 list_move_tail(rxfer->replaced_after->next,
2752 &rxfer->replaced_transfers);
2753 }
2754
2755 /* create copy of the given xfer with identical settings
2756 * based on the first transfer to get removed
2757 */
2758 for (i = 0; i < insert; i++) {
2759 /* we need to run in reverse order */
2760 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2761
2762 /* copy all spi_transfer data */
2763 memcpy(xfer, xfer_first, sizeof(*xfer));
2764
2765 /* add to list */
2766 list_add(&xfer->transfer_list, rxfer->replaced_after);
2767
2768 /* clear cs_change and delay_usecs for all but the last */
2769 if (i) {
2770 xfer->cs_change = false;
2771 xfer->delay_usecs = 0;
2772 }
2773 }
2774
2775 /* set up inserted */
2776 rxfer->inserted = insert;
2777
2778 /* and register it with spi_res/spi_message */
2779 spi_res_add(msg, rxfer);
2780
2781 return rxfer;
2782 }
2783 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2784
2785 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2786 struct spi_message *msg,
2787 struct spi_transfer **xferp,
2788 size_t maxsize,
2789 gfp_t gfp)
2790 {
2791 struct spi_transfer *xfer = *xferp, *xfers;
2792 struct spi_replaced_transfers *srt;
2793 size_t offset;
2794 size_t count, i;
2795
2796 /* calculate how many we have to replace */
2797 count = DIV_ROUND_UP(xfer->len, maxsize);
2798
2799 /* create replacement */
2800 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2801 if (IS_ERR(srt))
2802 return PTR_ERR(srt);
2803 xfers = srt->inserted_transfers;
2804
2805 /* now handle each of those newly inserted spi_transfers
2806 * note that the replacements spi_transfers all are preset
2807 * to the same values as *xferp, so tx_buf, rx_buf and len
2808 * are all identical (as well as most others)
2809 * so we just have to fix up len and the pointers.
2810 *
2811 * this also includes support for the depreciated
2812 * spi_message.is_dma_mapped interface
2813 */
2814
2815 /* the first transfer just needs the length modified, so we
2816 * run it outside the loop
2817 */
2818 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2819
2820 /* all the others need rx_buf/tx_buf also set */
2821 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2822 /* update rx_buf, tx_buf and dma */
2823 if (xfers[i].rx_buf)
2824 xfers[i].rx_buf += offset;
2825 if (xfers[i].rx_dma)
2826 xfers[i].rx_dma += offset;
2827 if (xfers[i].tx_buf)
2828 xfers[i].tx_buf += offset;
2829 if (xfers[i].tx_dma)
2830 xfers[i].tx_dma += offset;
2831
2832 /* update length */
2833 xfers[i].len = min(maxsize, xfers[i].len - offset);
2834 }
2835
2836 /* we set up xferp to the last entry we have inserted,
2837 * so that we skip those already split transfers
2838 */
2839 *xferp = &xfers[count - 1];
2840
2841 /* increment statistics counters */
2842 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2843 transfers_split_maxsize);
2844 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2845 transfers_split_maxsize);
2846
2847 return 0;
2848 }
2849
2850 /**
2851 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2852 * when an individual transfer exceeds a
2853 * certain size
2854 * @ctlr: the @spi_controller for this transfer
2855 * @msg: the @spi_message to transform
2856 * @maxsize: the maximum when to apply this
2857 * @gfp: GFP allocation flags
2858 *
2859 * Return: status of transformation
2860 */
2861 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2862 struct spi_message *msg,
2863 size_t maxsize,
2864 gfp_t gfp)
2865 {
2866 struct spi_transfer *xfer;
2867 int ret;
2868
2869 /* iterate over the transfer_list,
2870 * but note that xfer is advanced to the last transfer inserted
2871 * to avoid checking sizes again unnecessarily (also xfer does
2872 * potentiall belong to a different list by the time the
2873 * replacement has happened
2874 */
2875 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2876 if (xfer->len > maxsize) {
2877 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2878 maxsize, gfp);
2879 if (ret)
2880 return ret;
2881 }
2882 }
2883
2884 return 0;
2885 }
2886 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2887
2888 /*-------------------------------------------------------------------------*/
2889
2890 /* Core methods for SPI controller protocol drivers. Some of the
2891 * other core methods are currently defined as inline functions.
2892 */
2893
2894 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2895 u8 bits_per_word)
2896 {
2897 if (ctlr->bits_per_word_mask) {
2898 /* Only 32 bits fit in the mask */
2899 if (bits_per_word > 32)
2900 return -EINVAL;
2901 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2902 return -EINVAL;
2903 }
2904
2905 return 0;
2906 }
2907
2908 /**
2909 * spi_setup - setup SPI mode and clock rate
2910 * @spi: the device whose settings are being modified
2911 * Context: can sleep, and no requests are queued to the device
2912 *
2913 * SPI protocol drivers may need to update the transfer mode if the
2914 * device doesn't work with its default. They may likewise need
2915 * to update clock rates or word sizes from initial values. This function
2916 * changes those settings, and must be called from a context that can sleep.
2917 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2918 * effect the next time the device is selected and data is transferred to
2919 * or from it. When this function returns, the spi device is deselected.
2920 *
2921 * Note that this call will fail if the protocol driver specifies an option
2922 * that the underlying controller or its driver does not support. For
2923 * example, not all hardware supports wire transfers using nine bit words,
2924 * LSB-first wire encoding, or active-high chipselects.
2925 *
2926 * Return: zero on success, else a negative error code.
2927 */
2928 int spi_setup(struct spi_device *spi)
2929 {
2930 unsigned bad_bits, ugly_bits;
2931 int status;
2932
2933 /* check mode to prevent that DUAL and QUAD set at the same time
2934 */
2935 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2936 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2937 dev_err(&spi->dev,
2938 "setup: can not select dual and quad at the same time\n");
2939 return -EINVAL;
2940 }
2941 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2942 */
2943 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2944 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
2945 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
2946 return -EINVAL;
2947 /* help drivers fail *cleanly* when they need options
2948 * that aren't supported with their current controller
2949 * SPI_CS_WORD has a fallback software implementation,
2950 * so it is ignored here.
2951 */
2952 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
2953 /* nothing prevents from working with active-high CS in case if it
2954 * is driven by GPIO.
2955 */
2956 if (gpio_is_valid(spi->cs_gpio))
2957 bad_bits &= ~SPI_CS_HIGH;
2958 ugly_bits = bad_bits &
2959 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
2960 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
2961 if (ugly_bits) {
2962 dev_warn(&spi->dev,
2963 "setup: ignoring unsupported mode bits %x\n",
2964 ugly_bits);
2965 spi->mode &= ~ugly_bits;
2966 bad_bits &= ~ugly_bits;
2967 }
2968 if (bad_bits) {
2969 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2970 bad_bits);
2971 return -EINVAL;
2972 }
2973
2974 if (!spi->bits_per_word)
2975 spi->bits_per_word = 8;
2976
2977 status = __spi_validate_bits_per_word(spi->controller,
2978 spi->bits_per_word);
2979 if (status)
2980 return status;
2981
2982 if (!spi->max_speed_hz)
2983 spi->max_speed_hz = spi->controller->max_speed_hz;
2984
2985 if (spi->controller->setup)
2986 status = spi->controller->setup(spi);
2987
2988 spi_set_cs(spi, false);
2989
2990 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2991 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2992 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2993 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2994 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2995 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2996 spi->bits_per_word, spi->max_speed_hz,
2997 status);
2998
2999 return status;
3000 }
3001 EXPORT_SYMBOL_GPL(spi_setup);
3002
3003 /**
3004 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3005 * @spi: the device that requires specific CS timing configuration
3006 * @setup: CS setup time in terms of clock count
3007 * @hold: CS hold time in terms of clock count
3008 * @inactive_dly: CS inactive delay between transfers in terms of clock count
3009 */
3010 void spi_set_cs_timing(struct spi_device *spi, u8 setup, u8 hold,
3011 u8 inactive_dly)
3012 {
3013 if (spi->controller->set_cs_timing)
3014 spi->controller->set_cs_timing(spi, setup, hold, inactive_dly);
3015 }
3016 EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3017
3018 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3019 {
3020 struct spi_controller *ctlr = spi->controller;
3021 struct spi_transfer *xfer;
3022 int w_size;
3023
3024 if (list_empty(&message->transfers))
3025 return -EINVAL;
3026
3027 /* If an SPI controller does not support toggling the CS line on each
3028 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3029 * for the CS line, we can emulate the CS-per-word hardware function by
3030 * splitting transfers into one-word transfers and ensuring that
3031 * cs_change is set for each transfer.
3032 */
3033 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3034 spi->cs_gpiod ||
3035 gpio_is_valid(spi->cs_gpio))) {
3036 size_t maxsize;
3037 int ret;
3038
3039 maxsize = (spi->bits_per_word + 7) / 8;
3040
3041 /* spi_split_transfers_maxsize() requires message->spi */
3042 message->spi = spi;
3043
3044 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3045 GFP_KERNEL);
3046 if (ret)
3047 return ret;
3048
3049 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3050 /* don't change cs_change on the last entry in the list */
3051 if (list_is_last(&xfer->transfer_list, &message->transfers))
3052 break;
3053 xfer->cs_change = 1;
3054 }
3055 }
3056
3057 /* Half-duplex links include original MicroWire, and ones with
3058 * only one data pin like SPI_3WIRE (switches direction) or where
3059 * either MOSI or MISO is missing. They can also be caused by
3060 * software limitations.
3061 */
3062 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3063 (spi->mode & SPI_3WIRE)) {
3064 unsigned flags = ctlr->flags;
3065
3066 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3067 if (xfer->rx_buf && xfer->tx_buf)
3068 return -EINVAL;
3069 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3070 return -EINVAL;
3071 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3072 return -EINVAL;
3073 }
3074 }
3075
3076 /**
3077 * Set transfer bits_per_word and max speed as spi device default if
3078 * it is not set for this transfer.
3079 * Set transfer tx_nbits and rx_nbits as single transfer default
3080 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3081 * Ensure transfer word_delay is at least as long as that required by
3082 * device itself.
3083 */
3084 message->frame_length = 0;
3085 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3086 message->frame_length += xfer->len;
3087 if (!xfer->bits_per_word)
3088 xfer->bits_per_word = spi->bits_per_word;
3089
3090 if (!xfer->speed_hz)
3091 xfer->speed_hz = spi->max_speed_hz;
3092
3093 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3094 xfer->speed_hz = ctlr->max_speed_hz;
3095
3096 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3097 return -EINVAL;
3098
3099 /*
3100 * SPI transfer length should be multiple of SPI word size
3101 * where SPI word size should be power-of-two multiple
3102 */
3103 if (xfer->bits_per_word <= 8)
3104 w_size = 1;
3105 else if (xfer->bits_per_word <= 16)
3106 w_size = 2;
3107 else
3108 w_size = 4;
3109
3110 /* No partial transfers accepted */
3111 if (xfer->len % w_size)
3112 return -EINVAL;
3113
3114 if (xfer->speed_hz && ctlr->min_speed_hz &&
3115 xfer->speed_hz < ctlr->min_speed_hz)
3116 return -EINVAL;
3117
3118 if (xfer->tx_buf && !xfer->tx_nbits)
3119 xfer->tx_nbits = SPI_NBITS_SINGLE;
3120 if (xfer->rx_buf && !xfer->rx_nbits)
3121 xfer->rx_nbits = SPI_NBITS_SINGLE;
3122 /* check transfer tx/rx_nbits:
3123 * 1. check the value matches one of single, dual and quad
3124 * 2. check tx/rx_nbits match the mode in spi_device
3125 */
3126 if (xfer->tx_buf) {
3127 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3128 xfer->tx_nbits != SPI_NBITS_DUAL &&
3129 xfer->tx_nbits != SPI_NBITS_QUAD)
3130 return -EINVAL;
3131 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3132 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3133 return -EINVAL;
3134 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3135 !(spi->mode & SPI_TX_QUAD))
3136 return -EINVAL;
3137 }
3138 /* check transfer rx_nbits */
3139 if (xfer->rx_buf) {
3140 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3141 xfer->rx_nbits != SPI_NBITS_DUAL &&
3142 xfer->rx_nbits != SPI_NBITS_QUAD)
3143 return -EINVAL;
3144 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3145 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3146 return -EINVAL;
3147 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3148 !(spi->mode & SPI_RX_QUAD))
3149 return -EINVAL;
3150 }
3151
3152 if (xfer->word_delay_usecs < spi->word_delay_usecs)
3153 xfer->word_delay_usecs = spi->word_delay_usecs;
3154 }
3155
3156 message->status = -EINPROGRESS;
3157
3158 return 0;
3159 }
3160
3161 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3162 {
3163 struct spi_controller *ctlr = spi->controller;
3164
3165 /*
3166 * Some controllers do not support doing regular SPI transfers. Return
3167 * ENOTSUPP when this is the case.
3168 */
3169 if (!ctlr->transfer)
3170 return -ENOTSUPP;
3171
3172 message->spi = spi;
3173
3174 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3175 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3176
3177 trace_spi_message_submit(message);
3178
3179 return ctlr->transfer(spi, message);
3180 }
3181
3182 /**
3183 * spi_async - asynchronous SPI transfer
3184 * @spi: device with which data will be exchanged
3185 * @message: describes the data transfers, including completion callback
3186 * Context: any (irqs may be blocked, etc)
3187 *
3188 * This call may be used in_irq and other contexts which can't sleep,
3189 * as well as from task contexts which can sleep.
3190 *
3191 * The completion callback is invoked in a context which can't sleep.
3192 * Before that invocation, the value of message->status is undefined.
3193 * When the callback is issued, message->status holds either zero (to
3194 * indicate complete success) or a negative error code. After that
3195 * callback returns, the driver which issued the transfer request may
3196 * deallocate the associated memory; it's no longer in use by any SPI
3197 * core or controller driver code.
3198 *
3199 * Note that although all messages to a spi_device are handled in
3200 * FIFO order, messages may go to different devices in other orders.
3201 * Some device might be higher priority, or have various "hard" access
3202 * time requirements, for example.
3203 *
3204 * On detection of any fault during the transfer, processing of
3205 * the entire message is aborted, and the device is deselected.
3206 * Until returning from the associated message completion callback,
3207 * no other spi_message queued to that device will be processed.
3208 * (This rule applies equally to all the synchronous transfer calls,
3209 * which are wrappers around this core asynchronous primitive.)
3210 *
3211 * Return: zero on success, else a negative error code.
3212 */
3213 int spi_async(struct spi_device *spi, struct spi_message *message)
3214 {
3215 struct spi_controller *ctlr = spi->controller;
3216 int ret;
3217 unsigned long flags;
3218
3219 ret = __spi_validate(spi, message);
3220 if (ret != 0)
3221 return ret;
3222
3223 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3224
3225 if (ctlr->bus_lock_flag)
3226 ret = -EBUSY;
3227 else
3228 ret = __spi_async(spi, message);
3229
3230 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3231
3232 return ret;
3233 }
3234 EXPORT_SYMBOL_GPL(spi_async);
3235
3236 /**
3237 * spi_async_locked - version of spi_async with exclusive bus usage
3238 * @spi: device with which data will be exchanged
3239 * @message: describes the data transfers, including completion callback
3240 * Context: any (irqs may be blocked, etc)
3241 *
3242 * This call may be used in_irq and other contexts which can't sleep,
3243 * as well as from task contexts which can sleep.
3244 *
3245 * The completion callback is invoked in a context which can't sleep.
3246 * Before that invocation, the value of message->status is undefined.
3247 * When the callback is issued, message->status holds either zero (to
3248 * indicate complete success) or a negative error code. After that
3249 * callback returns, the driver which issued the transfer request may
3250 * deallocate the associated memory; it's no longer in use by any SPI
3251 * core or controller driver code.
3252 *
3253 * Note that although all messages to a spi_device are handled in
3254 * FIFO order, messages may go to different devices in other orders.
3255 * Some device might be higher priority, or have various "hard" access
3256 * time requirements, for example.
3257 *
3258 * On detection of any fault during the transfer, processing of
3259 * the entire message is aborted, and the device is deselected.
3260 * Until returning from the associated message completion callback,
3261 * no other spi_message queued to that device will be processed.
3262 * (This rule applies equally to all the synchronous transfer calls,
3263 * which are wrappers around this core asynchronous primitive.)
3264 *
3265 * Return: zero on success, else a negative error code.
3266 */
3267 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3268 {
3269 struct spi_controller *ctlr = spi->controller;
3270 int ret;
3271 unsigned long flags;
3272
3273 ret = __spi_validate(spi, message);
3274 if (ret != 0)
3275 return ret;
3276
3277 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3278
3279 ret = __spi_async(spi, message);
3280
3281 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3282
3283 return ret;
3284
3285 }
3286 EXPORT_SYMBOL_GPL(spi_async_locked);
3287
3288 /*-------------------------------------------------------------------------*/
3289
3290 /* Utility methods for SPI protocol drivers, layered on
3291 * top of the core. Some other utility methods are defined as
3292 * inline functions.
3293 */
3294
3295 static void spi_complete(void *arg)
3296 {
3297 complete(arg);
3298 }
3299
3300 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3301 {
3302 DECLARE_COMPLETION_ONSTACK(done);
3303 int status;
3304 struct spi_controller *ctlr = spi->controller;
3305 unsigned long flags;
3306
3307 status = __spi_validate(spi, message);
3308 if (status != 0)
3309 return status;
3310
3311 message->complete = spi_complete;
3312 message->context = &done;
3313 message->spi = spi;
3314
3315 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3316 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3317
3318 /* If we're not using the legacy transfer method then we will
3319 * try to transfer in the calling context so special case.
3320 * This code would be less tricky if we could remove the
3321 * support for driver implemented message queues.
3322 */
3323 if (ctlr->transfer == spi_queued_transfer) {
3324 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3325
3326 trace_spi_message_submit(message);
3327
3328 status = __spi_queued_transfer(spi, message, false);
3329
3330 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3331 } else {
3332 status = spi_async_locked(spi, message);
3333 }
3334
3335 if (status == 0) {
3336 /* Push out the messages in the calling context if we
3337 * can.
3338 */
3339 if (ctlr->transfer == spi_queued_transfer) {
3340 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3341 spi_sync_immediate);
3342 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3343 spi_sync_immediate);
3344 __spi_pump_messages(ctlr, false);
3345 }
3346
3347 wait_for_completion(&done);
3348 status = message->status;
3349 }
3350 message->context = NULL;
3351 return status;
3352 }
3353
3354 /**
3355 * spi_sync - blocking/synchronous SPI data transfers
3356 * @spi: device with which data will be exchanged
3357 * @message: describes the data transfers
3358 * Context: can sleep
3359 *
3360 * This call may only be used from a context that may sleep. The sleep
3361 * is non-interruptible, and has no timeout. Low-overhead controller
3362 * drivers may DMA directly into and out of the message buffers.
3363 *
3364 * Note that the SPI device's chip select is active during the message,
3365 * and then is normally disabled between messages. Drivers for some
3366 * frequently-used devices may want to minimize costs of selecting a chip,
3367 * by leaving it selected in anticipation that the next message will go
3368 * to the same chip. (That may increase power usage.)
3369 *
3370 * Also, the caller is guaranteeing that the memory associated with the
3371 * message will not be freed before this call returns.
3372 *
3373 * Return: zero on success, else a negative error code.
3374 */
3375 int spi_sync(struct spi_device *spi, struct spi_message *message)
3376 {
3377 int ret;
3378
3379 mutex_lock(&spi->controller->bus_lock_mutex);
3380 ret = __spi_sync(spi, message);
3381 mutex_unlock(&spi->controller->bus_lock_mutex);
3382
3383 return ret;
3384 }
3385 EXPORT_SYMBOL_GPL(spi_sync);
3386
3387 /**
3388 * spi_sync_locked - version of spi_sync with exclusive bus usage
3389 * @spi: device with which data will be exchanged
3390 * @message: describes the data transfers
3391 * Context: can sleep
3392 *
3393 * This call may only be used from a context that may sleep. The sleep
3394 * is non-interruptible, and has no timeout. Low-overhead controller
3395 * drivers may DMA directly into and out of the message buffers.
3396 *
3397 * This call should be used by drivers that require exclusive access to the
3398 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3399 * be released by a spi_bus_unlock call when the exclusive access is over.
3400 *
3401 * Return: zero on success, else a negative error code.
3402 */
3403 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3404 {
3405 return __spi_sync(spi, message);
3406 }
3407 EXPORT_SYMBOL_GPL(spi_sync_locked);
3408
3409 /**
3410 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3411 * @ctlr: SPI bus master that should be locked for exclusive bus access
3412 * Context: can sleep
3413 *
3414 * This call may only be used from a context that may sleep. The sleep
3415 * is non-interruptible, and has no timeout.
3416 *
3417 * This call should be used by drivers that require exclusive access to the
3418 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3419 * exclusive access is over. Data transfer must be done by spi_sync_locked
3420 * and spi_async_locked calls when the SPI bus lock is held.
3421 *
3422 * Return: always zero.
3423 */
3424 int spi_bus_lock(struct spi_controller *ctlr)
3425 {
3426 unsigned long flags;
3427
3428 mutex_lock(&ctlr->bus_lock_mutex);
3429
3430 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3431 ctlr->bus_lock_flag = 1;
3432 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3433
3434 /* mutex remains locked until spi_bus_unlock is called */
3435
3436 return 0;
3437 }
3438 EXPORT_SYMBOL_GPL(spi_bus_lock);
3439
3440 /**
3441 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3442 * @ctlr: SPI bus master that was locked for exclusive bus access
3443 * Context: can sleep
3444 *
3445 * This call may only be used from a context that may sleep. The sleep
3446 * is non-interruptible, and has no timeout.
3447 *
3448 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3449 * call.
3450 *
3451 * Return: always zero.
3452 */
3453 int spi_bus_unlock(struct spi_controller *ctlr)
3454 {
3455 ctlr->bus_lock_flag = 0;
3456
3457 mutex_unlock(&ctlr->bus_lock_mutex);
3458
3459 return 0;
3460 }
3461 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3462
3463 /* portable code must never pass more than 32 bytes */
3464 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3465
3466 static u8 *buf;
3467
3468 /**
3469 * spi_write_then_read - SPI synchronous write followed by read
3470 * @spi: device with which data will be exchanged
3471 * @txbuf: data to be written (need not be dma-safe)
3472 * @n_tx: size of txbuf, in bytes
3473 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3474 * @n_rx: size of rxbuf, in bytes
3475 * Context: can sleep
3476 *
3477 * This performs a half duplex MicroWire style transaction with the
3478 * device, sending txbuf and then reading rxbuf. The return value
3479 * is zero for success, else a negative errno status code.
3480 * This call may only be used from a context that may sleep.
3481 *
3482 * Parameters to this routine are always copied using a small buffer;
3483 * portable code should never use this for more than 32 bytes.
3484 * Performance-sensitive or bulk transfer code should instead use
3485 * spi_{async,sync}() calls with dma-safe buffers.
3486 *
3487 * Return: zero on success, else a negative error code.
3488 */
3489 int spi_write_then_read(struct spi_device *spi,
3490 const void *txbuf, unsigned n_tx,
3491 void *rxbuf, unsigned n_rx)
3492 {
3493 static DEFINE_MUTEX(lock);
3494
3495 int status;
3496 struct spi_message message;
3497 struct spi_transfer x[2];
3498 u8 *local_buf;
3499
3500 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3501 * copying here, (as a pure convenience thing), but we can
3502 * keep heap costs out of the hot path unless someone else is
3503 * using the pre-allocated buffer or the transfer is too large.
3504 */
3505 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3506 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3507 GFP_KERNEL | GFP_DMA);
3508 if (!local_buf)
3509 return -ENOMEM;
3510 } else {
3511 local_buf = buf;
3512 }
3513
3514 spi_message_init(&message);
3515 memset(x, 0, sizeof(x));
3516 if (n_tx) {
3517 x[0].len = n_tx;
3518 spi_message_add_tail(&x[0], &message);
3519 }
3520 if (n_rx) {
3521 x[1].len = n_rx;
3522 spi_message_add_tail(&x[1], &message);
3523 }
3524
3525 memcpy(local_buf, txbuf, n_tx);
3526 x[0].tx_buf = local_buf;
3527 x[1].rx_buf = local_buf + n_tx;
3528
3529 /* do the i/o */
3530 status = spi_sync(spi, &message);
3531 if (status == 0)
3532 memcpy(rxbuf, x[1].rx_buf, n_rx);
3533
3534 if (x[0].tx_buf == buf)
3535 mutex_unlock(&lock);
3536 else
3537 kfree(local_buf);
3538
3539 return status;
3540 }
3541 EXPORT_SYMBOL_GPL(spi_write_then_read);
3542
3543 /*-------------------------------------------------------------------------*/
3544
3545 #if IS_ENABLED(CONFIG_OF)
3546 static int __spi_of_device_match(struct device *dev, void *data)
3547 {
3548 return dev->of_node == data;
3549 }
3550
3551 /* must call put_device() when done with returned spi_device device */
3552 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3553 {
3554 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3555 __spi_of_device_match);
3556 return dev ? to_spi_device(dev) : NULL;
3557 }
3558 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3559 #endif /* IS_ENABLED(CONFIG_OF) */
3560
3561 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3562 static int __spi_of_controller_match(struct device *dev, const void *data)
3563 {
3564 return dev->of_node == data;
3565 }
3566
3567 /* the spi controllers are not using spi_bus, so we find it with another way */
3568 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3569 {
3570 struct device *dev;
3571
3572 dev = class_find_device(&spi_master_class, NULL, node,
3573 __spi_of_controller_match);
3574 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3575 dev = class_find_device(&spi_slave_class, NULL, node,
3576 __spi_of_controller_match);
3577 if (!dev)
3578 return NULL;
3579
3580 /* reference got in class_find_device */
3581 return container_of(dev, struct spi_controller, dev);
3582 }
3583
3584 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3585 void *arg)
3586 {
3587 struct of_reconfig_data *rd = arg;
3588 struct spi_controller *ctlr;
3589 struct spi_device *spi;
3590
3591 switch (of_reconfig_get_state_change(action, arg)) {
3592 case OF_RECONFIG_CHANGE_ADD:
3593 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3594 if (ctlr == NULL)
3595 return NOTIFY_OK; /* not for us */
3596
3597 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3598 put_device(&ctlr->dev);
3599 return NOTIFY_OK;
3600 }
3601
3602 spi = of_register_spi_device(ctlr, rd->dn);
3603 put_device(&ctlr->dev);
3604
3605 if (IS_ERR(spi)) {
3606 pr_err("%s: failed to create for '%pOF'\n",
3607 __func__, rd->dn);
3608 of_node_clear_flag(rd->dn, OF_POPULATED);
3609 return notifier_from_errno(PTR_ERR(spi));
3610 }
3611 break;
3612
3613 case OF_RECONFIG_CHANGE_REMOVE:
3614 /* already depopulated? */
3615 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3616 return NOTIFY_OK;
3617
3618 /* find our device by node */
3619 spi = of_find_spi_device_by_node(rd->dn);
3620 if (spi == NULL)
3621 return NOTIFY_OK; /* no? not meant for us */
3622
3623 /* unregister takes one ref away */
3624 spi_unregister_device(spi);
3625
3626 /* and put the reference of the find */
3627 put_device(&spi->dev);
3628 break;
3629 }
3630
3631 return NOTIFY_OK;
3632 }
3633
3634 static struct notifier_block spi_of_notifier = {
3635 .notifier_call = of_spi_notify,
3636 };
3637 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3638 extern struct notifier_block spi_of_notifier;
3639 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3640
3641 #if IS_ENABLED(CONFIG_ACPI)
3642 static int spi_acpi_controller_match(struct device *dev, const void *data)
3643 {
3644 return ACPI_COMPANION(dev->parent) == data;
3645 }
3646
3647 static int spi_acpi_device_match(struct device *dev, void *data)
3648 {
3649 return ACPI_COMPANION(dev) == data;
3650 }
3651
3652 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3653 {
3654 struct device *dev;
3655
3656 dev = class_find_device(&spi_master_class, NULL, adev,
3657 spi_acpi_controller_match);
3658 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3659 dev = class_find_device(&spi_slave_class, NULL, adev,
3660 spi_acpi_controller_match);
3661 if (!dev)
3662 return NULL;
3663
3664 return container_of(dev, struct spi_controller, dev);
3665 }
3666
3667 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3668 {
3669 struct device *dev;
3670
3671 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3672
3673 return dev ? to_spi_device(dev) : NULL;
3674 }
3675
3676 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3677 void *arg)
3678 {
3679 struct acpi_device *adev = arg;
3680 struct spi_controller *ctlr;
3681 struct spi_device *spi;
3682
3683 switch (value) {
3684 case ACPI_RECONFIG_DEVICE_ADD:
3685 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3686 if (!ctlr)
3687 break;
3688
3689 acpi_register_spi_device(ctlr, adev);
3690 put_device(&ctlr->dev);
3691 break;
3692 case ACPI_RECONFIG_DEVICE_REMOVE:
3693 if (!acpi_device_enumerated(adev))
3694 break;
3695
3696 spi = acpi_spi_find_device_by_adev(adev);
3697 if (!spi)
3698 break;
3699
3700 spi_unregister_device(spi);
3701 put_device(&spi->dev);
3702 break;
3703 }
3704
3705 return NOTIFY_OK;
3706 }
3707
3708 static struct notifier_block spi_acpi_notifier = {
3709 .notifier_call = acpi_spi_notify,
3710 };
3711 #else
3712 extern struct notifier_block spi_acpi_notifier;
3713 #endif
3714
3715 static int __init spi_init(void)
3716 {
3717 int status;
3718
3719 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3720 if (!buf) {
3721 status = -ENOMEM;
3722 goto err0;
3723 }
3724
3725 status = bus_register(&spi_bus_type);
3726 if (status < 0)
3727 goto err1;
3728
3729 status = class_register(&spi_master_class);
3730 if (status < 0)
3731 goto err2;
3732
3733 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3734 status = class_register(&spi_slave_class);
3735 if (status < 0)
3736 goto err3;
3737 }
3738
3739 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3740 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3741 if (IS_ENABLED(CONFIG_ACPI))
3742 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3743
3744 return 0;
3745
3746 err3:
3747 class_unregister(&spi_master_class);
3748 err2:
3749 bus_unregister(&spi_bus_type);
3750 err1:
3751 kfree(buf);
3752 buf = NULL;
3753 err0:
3754 return status;
3755 }
3756
3757 /* board_info is normally registered in arch_initcall(),
3758 * but even essential drivers wait till later
3759 *
3760 * REVISIT only boardinfo really needs static linking. the rest (device and
3761 * driver registration) _could_ be dynamically linked (modular) ... costs
3762 * include needing to have boardinfo data structures be much more public.
3763 */
3764 postcore_initcall(spi_init);
3765