]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/spi/spi.c
timekeeping: Repair ktime_get_coarse*() granularity
[mirror_ubuntu-jammy-kernel.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41
42 #include "internals.h"
43
44 static DEFINE_IDR(spi_master_idr);
45
46 static void spidev_release(struct device *dev)
47 {
48 struct spi_device *spi = to_spi_device(dev);
49
50 /* spi controllers may cleanup for released devices */
51 if (spi->controller->cleanup)
52 spi->controller->cleanup(spi);
53
54 spi_controller_put(spi->controller);
55 kfree(spi->driver_override);
56 kfree(spi);
57 }
58
59 static ssize_t
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61 {
62 const struct spi_device *spi = to_spi_device(dev);
63 int len;
64
65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 if (len != -ENODEV)
67 return len;
68
69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
70 }
71 static DEVICE_ATTR_RO(modalias);
72
73 static ssize_t driver_override_store(struct device *dev,
74 struct device_attribute *a,
75 const char *buf, size_t count)
76 {
77 struct spi_device *spi = to_spi_device(dev);
78 const char *end = memchr(buf, '\n', count);
79 const size_t len = end ? end - buf : count;
80 const char *driver_override, *old;
81
82 /* We need to keep extra room for a newline when displaying value */
83 if (len >= (PAGE_SIZE - 1))
84 return -EINVAL;
85
86 driver_override = kstrndup(buf, len, GFP_KERNEL);
87 if (!driver_override)
88 return -ENOMEM;
89
90 device_lock(dev);
91 old = spi->driver_override;
92 if (len) {
93 spi->driver_override = driver_override;
94 } else {
95 /* Emptry string, disable driver override */
96 spi->driver_override = NULL;
97 kfree(driver_override);
98 }
99 device_unlock(dev);
100 kfree(old);
101
102 return count;
103 }
104
105 static ssize_t driver_override_show(struct device *dev,
106 struct device_attribute *a, char *buf)
107 {
108 const struct spi_device *spi = to_spi_device(dev);
109 ssize_t len;
110
111 device_lock(dev);
112 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
113 device_unlock(dev);
114 return len;
115 }
116 static DEVICE_ATTR_RW(driver_override);
117
118 #define SPI_STATISTICS_ATTRS(field, file) \
119 static ssize_t spi_controller_##field##_show(struct device *dev, \
120 struct device_attribute *attr, \
121 char *buf) \
122 { \
123 struct spi_controller *ctlr = container_of(dev, \
124 struct spi_controller, dev); \
125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
126 } \
127 static struct device_attribute dev_attr_spi_controller_##field = { \
128 .attr = { .name = file, .mode = 0444 }, \
129 .show = spi_controller_##field##_show, \
130 }; \
131 static ssize_t spi_device_##field##_show(struct device *dev, \
132 struct device_attribute *attr, \
133 char *buf) \
134 { \
135 struct spi_device *spi = to_spi_device(dev); \
136 return spi_statistics_##field##_show(&spi->statistics, buf); \
137 } \
138 static struct device_attribute dev_attr_spi_device_##field = { \
139 .attr = { .name = file, .mode = 0444 }, \
140 .show = spi_device_##field##_show, \
141 }
142
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145 char *buf) \
146 { \
147 unsigned long flags; \
148 ssize_t len; \
149 spin_lock_irqsave(&stat->lock, flags); \
150 len = sprintf(buf, format_string, stat->field); \
151 spin_unlock_irqrestore(&stat->lock, flags); \
152 return len; \
153 } \
154 SPI_STATISTICS_ATTRS(name, file)
155
156 #define SPI_STATISTICS_SHOW(field, format_string) \
157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
158 field, format_string)
159
160 SPI_STATISTICS_SHOW(messages, "%lu");
161 SPI_STATISTICS_SHOW(transfers, "%lu");
162 SPI_STATISTICS_SHOW(errors, "%lu");
163 SPI_STATISTICS_SHOW(timedout, "%lu");
164
165 SPI_STATISTICS_SHOW(spi_sync, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167 SPI_STATISTICS_SHOW(spi_async, "%lu");
168
169 SPI_STATISTICS_SHOW(bytes, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
172
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
175 "transfer_bytes_histo_" number, \
176 transfer_bytes_histo[index], "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
194
195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
196
197 static struct attribute *spi_dev_attrs[] = {
198 &dev_attr_modalias.attr,
199 &dev_attr_driver_override.attr,
200 NULL,
201 };
202
203 static const struct attribute_group spi_dev_group = {
204 .attrs = spi_dev_attrs,
205 };
206
207 static struct attribute *spi_device_statistics_attrs[] = {
208 &dev_attr_spi_device_messages.attr,
209 &dev_attr_spi_device_transfers.attr,
210 &dev_attr_spi_device_errors.attr,
211 &dev_attr_spi_device_timedout.attr,
212 &dev_attr_spi_device_spi_sync.attr,
213 &dev_attr_spi_device_spi_sync_immediate.attr,
214 &dev_attr_spi_device_spi_async.attr,
215 &dev_attr_spi_device_bytes.attr,
216 &dev_attr_spi_device_bytes_rx.attr,
217 &dev_attr_spi_device_bytes_tx.attr,
218 &dev_attr_spi_device_transfer_bytes_histo0.attr,
219 &dev_attr_spi_device_transfer_bytes_histo1.attr,
220 &dev_attr_spi_device_transfer_bytes_histo2.attr,
221 &dev_attr_spi_device_transfer_bytes_histo3.attr,
222 &dev_attr_spi_device_transfer_bytes_histo4.attr,
223 &dev_attr_spi_device_transfer_bytes_histo5.attr,
224 &dev_attr_spi_device_transfer_bytes_histo6.attr,
225 &dev_attr_spi_device_transfer_bytes_histo7.attr,
226 &dev_attr_spi_device_transfer_bytes_histo8.attr,
227 &dev_attr_spi_device_transfer_bytes_histo9.attr,
228 &dev_attr_spi_device_transfer_bytes_histo10.attr,
229 &dev_attr_spi_device_transfer_bytes_histo11.attr,
230 &dev_attr_spi_device_transfer_bytes_histo12.attr,
231 &dev_attr_spi_device_transfer_bytes_histo13.attr,
232 &dev_attr_spi_device_transfer_bytes_histo14.attr,
233 &dev_attr_spi_device_transfer_bytes_histo15.attr,
234 &dev_attr_spi_device_transfer_bytes_histo16.attr,
235 &dev_attr_spi_device_transfers_split_maxsize.attr,
236 NULL,
237 };
238
239 static const struct attribute_group spi_device_statistics_group = {
240 .name = "statistics",
241 .attrs = spi_device_statistics_attrs,
242 };
243
244 static const struct attribute_group *spi_dev_groups[] = {
245 &spi_dev_group,
246 &spi_device_statistics_group,
247 NULL,
248 };
249
250 static struct attribute *spi_controller_statistics_attrs[] = {
251 &dev_attr_spi_controller_messages.attr,
252 &dev_attr_spi_controller_transfers.attr,
253 &dev_attr_spi_controller_errors.attr,
254 &dev_attr_spi_controller_timedout.attr,
255 &dev_attr_spi_controller_spi_sync.attr,
256 &dev_attr_spi_controller_spi_sync_immediate.attr,
257 &dev_attr_spi_controller_spi_async.attr,
258 &dev_attr_spi_controller_bytes.attr,
259 &dev_attr_spi_controller_bytes_rx.attr,
260 &dev_attr_spi_controller_bytes_tx.attr,
261 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
262 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
263 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
264 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
265 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
266 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
267 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
268 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
269 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
270 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
271 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
272 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
273 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
274 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
275 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
276 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
277 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
278 &dev_attr_spi_controller_transfers_split_maxsize.attr,
279 NULL,
280 };
281
282 static const struct attribute_group spi_controller_statistics_group = {
283 .name = "statistics",
284 .attrs = spi_controller_statistics_attrs,
285 };
286
287 static const struct attribute_group *spi_master_groups[] = {
288 &spi_controller_statistics_group,
289 NULL,
290 };
291
292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293 struct spi_transfer *xfer,
294 struct spi_controller *ctlr)
295 {
296 unsigned long flags;
297 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
298
299 if (l2len < 0)
300 l2len = 0;
301
302 spin_lock_irqsave(&stats->lock, flags);
303
304 stats->transfers++;
305 stats->transfer_bytes_histo[l2len]++;
306
307 stats->bytes += xfer->len;
308 if ((xfer->tx_buf) &&
309 (xfer->tx_buf != ctlr->dummy_tx))
310 stats->bytes_tx += xfer->len;
311 if ((xfer->rx_buf) &&
312 (xfer->rx_buf != ctlr->dummy_rx))
313 stats->bytes_rx += xfer->len;
314
315 spin_unlock_irqrestore(&stats->lock, flags);
316 }
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
318
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320 * and the sysfs version makes coldplug work too.
321 */
322
323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324 const struct spi_device *sdev)
325 {
326 while (id->name[0]) {
327 if (!strcmp(sdev->modalias, id->name))
328 return id;
329 id++;
330 }
331 return NULL;
332 }
333
334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
335 {
336 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
337
338 return spi_match_id(sdrv->id_table, sdev);
339 }
340 EXPORT_SYMBOL_GPL(spi_get_device_id);
341
342 static int spi_match_device(struct device *dev, struct device_driver *drv)
343 {
344 const struct spi_device *spi = to_spi_device(dev);
345 const struct spi_driver *sdrv = to_spi_driver(drv);
346
347 /* Check override first, and if set, only use the named driver */
348 if (spi->driver_override)
349 return strcmp(spi->driver_override, drv->name) == 0;
350
351 /* Attempt an OF style match */
352 if (of_driver_match_device(dev, drv))
353 return 1;
354
355 /* Then try ACPI */
356 if (acpi_driver_match_device(dev, drv))
357 return 1;
358
359 if (sdrv->id_table)
360 return !!spi_match_id(sdrv->id_table, spi);
361
362 return strcmp(spi->modalias, drv->name) == 0;
363 }
364
365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
366 {
367 const struct spi_device *spi = to_spi_device(dev);
368 int rc;
369
370 rc = acpi_device_uevent_modalias(dev, env);
371 if (rc != -ENODEV)
372 return rc;
373
374 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
375 }
376
377 struct bus_type spi_bus_type = {
378 .name = "spi",
379 .dev_groups = spi_dev_groups,
380 .match = spi_match_device,
381 .uevent = spi_uevent,
382 };
383 EXPORT_SYMBOL_GPL(spi_bus_type);
384
385
386 static int spi_drv_probe(struct device *dev)
387 {
388 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
389 struct spi_device *spi = to_spi_device(dev);
390 int ret;
391
392 ret = of_clk_set_defaults(dev->of_node, false);
393 if (ret)
394 return ret;
395
396 if (dev->of_node) {
397 spi->irq = of_irq_get(dev->of_node, 0);
398 if (spi->irq == -EPROBE_DEFER)
399 return -EPROBE_DEFER;
400 if (spi->irq < 0)
401 spi->irq = 0;
402 }
403
404 ret = dev_pm_domain_attach(dev, true);
405 if (ret)
406 return ret;
407
408 ret = sdrv->probe(spi);
409 if (ret)
410 dev_pm_domain_detach(dev, true);
411
412 return ret;
413 }
414
415 static int spi_drv_remove(struct device *dev)
416 {
417 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
418 int ret;
419
420 ret = sdrv->remove(to_spi_device(dev));
421 dev_pm_domain_detach(dev, true);
422
423 return ret;
424 }
425
426 static void spi_drv_shutdown(struct device *dev)
427 {
428 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
429
430 sdrv->shutdown(to_spi_device(dev));
431 }
432
433 /**
434 * __spi_register_driver - register a SPI driver
435 * @owner: owner module of the driver to register
436 * @sdrv: the driver to register
437 * Context: can sleep
438 *
439 * Return: zero on success, else a negative error code.
440 */
441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
442 {
443 sdrv->driver.owner = owner;
444 sdrv->driver.bus = &spi_bus_type;
445 if (sdrv->probe)
446 sdrv->driver.probe = spi_drv_probe;
447 if (sdrv->remove)
448 sdrv->driver.remove = spi_drv_remove;
449 if (sdrv->shutdown)
450 sdrv->driver.shutdown = spi_drv_shutdown;
451 return driver_register(&sdrv->driver);
452 }
453 EXPORT_SYMBOL_GPL(__spi_register_driver);
454
455 /*-------------------------------------------------------------------------*/
456
457 /* SPI devices should normally not be created by SPI device drivers; that
458 * would make them board-specific. Similarly with SPI controller drivers.
459 * Device registration normally goes into like arch/.../mach.../board-YYY.c
460 * with other readonly (flashable) information about mainboard devices.
461 */
462
463 struct boardinfo {
464 struct list_head list;
465 struct spi_board_info board_info;
466 };
467
468 static LIST_HEAD(board_list);
469 static LIST_HEAD(spi_controller_list);
470
471 /*
472 * Used to protect add/del opertion for board_info list and
473 * spi_controller list, and their matching process
474 * also used to protect object of type struct idr
475 */
476 static DEFINE_MUTEX(board_lock);
477
478 /**
479 * spi_alloc_device - Allocate a new SPI device
480 * @ctlr: Controller to which device is connected
481 * Context: can sleep
482 *
483 * Allows a driver to allocate and initialize a spi_device without
484 * registering it immediately. This allows a driver to directly
485 * fill the spi_device with device parameters before calling
486 * spi_add_device() on it.
487 *
488 * Caller is responsible to call spi_add_device() on the returned
489 * spi_device structure to add it to the SPI controller. If the caller
490 * needs to discard the spi_device without adding it, then it should
491 * call spi_dev_put() on it.
492 *
493 * Return: a pointer to the new device, or NULL.
494 */
495 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
496 {
497 struct spi_device *spi;
498
499 if (!spi_controller_get(ctlr))
500 return NULL;
501
502 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
503 if (!spi) {
504 spi_controller_put(ctlr);
505 return NULL;
506 }
507
508 spi->master = spi->controller = ctlr;
509 spi->dev.parent = &ctlr->dev;
510 spi->dev.bus = &spi_bus_type;
511 spi->dev.release = spidev_release;
512 spi->cs_gpio = -ENOENT;
513
514 spin_lock_init(&spi->statistics.lock);
515
516 device_initialize(&spi->dev);
517 return spi;
518 }
519 EXPORT_SYMBOL_GPL(spi_alloc_device);
520
521 static void spi_dev_set_name(struct spi_device *spi)
522 {
523 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
524
525 if (adev) {
526 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
527 return;
528 }
529
530 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
531 spi->chip_select);
532 }
533
534 static int spi_dev_check(struct device *dev, void *data)
535 {
536 struct spi_device *spi = to_spi_device(dev);
537 struct spi_device *new_spi = data;
538
539 if (spi->controller == new_spi->controller &&
540 spi->chip_select == new_spi->chip_select)
541 return -EBUSY;
542 return 0;
543 }
544
545 /**
546 * spi_add_device - Add spi_device allocated with spi_alloc_device
547 * @spi: spi_device to register
548 *
549 * Companion function to spi_alloc_device. Devices allocated with
550 * spi_alloc_device can be added onto the spi bus with this function.
551 *
552 * Return: 0 on success; negative errno on failure
553 */
554 int spi_add_device(struct spi_device *spi)
555 {
556 static DEFINE_MUTEX(spi_add_lock);
557 struct spi_controller *ctlr = spi->controller;
558 struct device *dev = ctlr->dev.parent;
559 int status;
560
561 /* Chipselects are numbered 0..max; validate. */
562 if (spi->chip_select >= ctlr->num_chipselect) {
563 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
564 ctlr->num_chipselect);
565 return -EINVAL;
566 }
567
568 /* Set the bus ID string */
569 spi_dev_set_name(spi);
570
571 /* We need to make sure there's no other device with this
572 * chipselect **BEFORE** we call setup(), else we'll trash
573 * its configuration. Lock against concurrent add() calls.
574 */
575 mutex_lock(&spi_add_lock);
576
577 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
578 if (status) {
579 dev_err(dev, "chipselect %d already in use\n",
580 spi->chip_select);
581 goto done;
582 }
583
584 /* Descriptors take precedence */
585 if (ctlr->cs_gpiods)
586 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
587 else if (ctlr->cs_gpios)
588 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
589
590 /* Drivers may modify this initial i/o setup, but will
591 * normally rely on the device being setup. Devices
592 * using SPI_CS_HIGH can't coexist well otherwise...
593 */
594 status = spi_setup(spi);
595 if (status < 0) {
596 dev_err(dev, "can't setup %s, status %d\n",
597 dev_name(&spi->dev), status);
598 goto done;
599 }
600
601 /* Device may be bound to an active driver when this returns */
602 status = device_add(&spi->dev);
603 if (status < 0)
604 dev_err(dev, "can't add %s, status %d\n",
605 dev_name(&spi->dev), status);
606 else
607 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
608
609 done:
610 mutex_unlock(&spi_add_lock);
611 return status;
612 }
613 EXPORT_SYMBOL_GPL(spi_add_device);
614
615 /**
616 * spi_new_device - instantiate one new SPI device
617 * @ctlr: Controller to which device is connected
618 * @chip: Describes the SPI device
619 * Context: can sleep
620 *
621 * On typical mainboards, this is purely internal; and it's not needed
622 * after board init creates the hard-wired devices. Some development
623 * platforms may not be able to use spi_register_board_info though, and
624 * this is exported so that for example a USB or parport based adapter
625 * driver could add devices (which it would learn about out-of-band).
626 *
627 * Return: the new device, or NULL.
628 */
629 struct spi_device *spi_new_device(struct spi_controller *ctlr,
630 struct spi_board_info *chip)
631 {
632 struct spi_device *proxy;
633 int status;
634
635 /* NOTE: caller did any chip->bus_num checks necessary.
636 *
637 * Also, unless we change the return value convention to use
638 * error-or-pointer (not NULL-or-pointer), troubleshootability
639 * suggests syslogged diagnostics are best here (ugh).
640 */
641
642 proxy = spi_alloc_device(ctlr);
643 if (!proxy)
644 return NULL;
645
646 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
647
648 proxy->chip_select = chip->chip_select;
649 proxy->max_speed_hz = chip->max_speed_hz;
650 proxy->mode = chip->mode;
651 proxy->irq = chip->irq;
652 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
653 proxy->dev.platform_data = (void *) chip->platform_data;
654 proxy->controller_data = chip->controller_data;
655 proxy->controller_state = NULL;
656
657 if (chip->properties) {
658 status = device_add_properties(&proxy->dev, chip->properties);
659 if (status) {
660 dev_err(&ctlr->dev,
661 "failed to add properties to '%s': %d\n",
662 chip->modalias, status);
663 goto err_dev_put;
664 }
665 }
666
667 status = spi_add_device(proxy);
668 if (status < 0)
669 goto err_remove_props;
670
671 return proxy;
672
673 err_remove_props:
674 if (chip->properties)
675 device_remove_properties(&proxy->dev);
676 err_dev_put:
677 spi_dev_put(proxy);
678 return NULL;
679 }
680 EXPORT_SYMBOL_GPL(spi_new_device);
681
682 /**
683 * spi_unregister_device - unregister a single SPI device
684 * @spi: spi_device to unregister
685 *
686 * Start making the passed SPI device vanish. Normally this would be handled
687 * by spi_unregister_controller().
688 */
689 void spi_unregister_device(struct spi_device *spi)
690 {
691 if (!spi)
692 return;
693
694 if (spi->dev.of_node) {
695 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
696 of_node_put(spi->dev.of_node);
697 }
698 if (ACPI_COMPANION(&spi->dev))
699 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
700 device_unregister(&spi->dev);
701 }
702 EXPORT_SYMBOL_GPL(spi_unregister_device);
703
704 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
705 struct spi_board_info *bi)
706 {
707 struct spi_device *dev;
708
709 if (ctlr->bus_num != bi->bus_num)
710 return;
711
712 dev = spi_new_device(ctlr, bi);
713 if (!dev)
714 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
715 bi->modalias);
716 }
717
718 /**
719 * spi_register_board_info - register SPI devices for a given board
720 * @info: array of chip descriptors
721 * @n: how many descriptors are provided
722 * Context: can sleep
723 *
724 * Board-specific early init code calls this (probably during arch_initcall)
725 * with segments of the SPI device table. Any device nodes are created later,
726 * after the relevant parent SPI controller (bus_num) is defined. We keep
727 * this table of devices forever, so that reloading a controller driver will
728 * not make Linux forget about these hard-wired devices.
729 *
730 * Other code can also call this, e.g. a particular add-on board might provide
731 * SPI devices through its expansion connector, so code initializing that board
732 * would naturally declare its SPI devices.
733 *
734 * The board info passed can safely be __initdata ... but be careful of
735 * any embedded pointers (platform_data, etc), they're copied as-is.
736 * Device properties are deep-copied though.
737 *
738 * Return: zero on success, else a negative error code.
739 */
740 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
741 {
742 struct boardinfo *bi;
743 int i;
744
745 if (!n)
746 return 0;
747
748 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
749 if (!bi)
750 return -ENOMEM;
751
752 for (i = 0; i < n; i++, bi++, info++) {
753 struct spi_controller *ctlr;
754
755 memcpy(&bi->board_info, info, sizeof(*info));
756 if (info->properties) {
757 bi->board_info.properties =
758 property_entries_dup(info->properties);
759 if (IS_ERR(bi->board_info.properties))
760 return PTR_ERR(bi->board_info.properties);
761 }
762
763 mutex_lock(&board_lock);
764 list_add_tail(&bi->list, &board_list);
765 list_for_each_entry(ctlr, &spi_controller_list, list)
766 spi_match_controller_to_boardinfo(ctlr,
767 &bi->board_info);
768 mutex_unlock(&board_lock);
769 }
770
771 return 0;
772 }
773
774 /*-------------------------------------------------------------------------*/
775
776 static void spi_set_cs(struct spi_device *spi, bool enable)
777 {
778 if (spi->mode & SPI_CS_HIGH)
779 enable = !enable;
780
781 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
782 /*
783 * Honour the SPI_NO_CS flag and invert the enable line, as
784 * active low is default for SPI. Execution paths that handle
785 * polarity inversion in gpiolib (such as device tree) will
786 * enforce active high using the SPI_CS_HIGH resulting in a
787 * double inversion through the code above.
788 */
789 if (!(spi->mode & SPI_NO_CS)) {
790 if (spi->cs_gpiod)
791 gpiod_set_value_cansleep(spi->cs_gpiod,
792 !enable);
793 else
794 gpio_set_value_cansleep(spi->cs_gpio, !enable);
795 }
796 /* Some SPI masters need both GPIO CS & slave_select */
797 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
798 spi->controller->set_cs)
799 spi->controller->set_cs(spi, !enable);
800 } else if (spi->controller->set_cs) {
801 spi->controller->set_cs(spi, !enable);
802 }
803 }
804
805 #ifdef CONFIG_HAS_DMA
806 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
807 struct sg_table *sgt, void *buf, size_t len,
808 enum dma_data_direction dir)
809 {
810 const bool vmalloced_buf = is_vmalloc_addr(buf);
811 unsigned int max_seg_size = dma_get_max_seg_size(dev);
812 #ifdef CONFIG_HIGHMEM
813 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
814 (unsigned long)buf < (PKMAP_BASE +
815 (LAST_PKMAP * PAGE_SIZE)));
816 #else
817 const bool kmap_buf = false;
818 #endif
819 int desc_len;
820 int sgs;
821 struct page *vm_page;
822 struct scatterlist *sg;
823 void *sg_buf;
824 size_t min;
825 int i, ret;
826
827 if (vmalloced_buf || kmap_buf) {
828 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
829 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
830 } else if (virt_addr_valid(buf)) {
831 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
832 sgs = DIV_ROUND_UP(len, desc_len);
833 } else {
834 return -EINVAL;
835 }
836
837 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
838 if (ret != 0)
839 return ret;
840
841 sg = &sgt->sgl[0];
842 for (i = 0; i < sgs; i++) {
843
844 if (vmalloced_buf || kmap_buf) {
845 /*
846 * Next scatterlist entry size is the minimum between
847 * the desc_len and the remaining buffer length that
848 * fits in a page.
849 */
850 min = min_t(size_t, desc_len,
851 min_t(size_t, len,
852 PAGE_SIZE - offset_in_page(buf)));
853 if (vmalloced_buf)
854 vm_page = vmalloc_to_page(buf);
855 else
856 vm_page = kmap_to_page(buf);
857 if (!vm_page) {
858 sg_free_table(sgt);
859 return -ENOMEM;
860 }
861 sg_set_page(sg, vm_page,
862 min, offset_in_page(buf));
863 } else {
864 min = min_t(size_t, len, desc_len);
865 sg_buf = buf;
866 sg_set_buf(sg, sg_buf, min);
867 }
868
869 buf += min;
870 len -= min;
871 sg = sg_next(sg);
872 }
873
874 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
875 if (!ret)
876 ret = -ENOMEM;
877 if (ret < 0) {
878 sg_free_table(sgt);
879 return ret;
880 }
881
882 sgt->nents = ret;
883
884 return 0;
885 }
886
887 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
888 struct sg_table *sgt, enum dma_data_direction dir)
889 {
890 if (sgt->orig_nents) {
891 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
892 sg_free_table(sgt);
893 }
894 }
895
896 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
897 {
898 struct device *tx_dev, *rx_dev;
899 struct spi_transfer *xfer;
900 int ret;
901
902 if (!ctlr->can_dma)
903 return 0;
904
905 if (ctlr->dma_tx)
906 tx_dev = ctlr->dma_tx->device->dev;
907 else
908 tx_dev = ctlr->dev.parent;
909
910 if (ctlr->dma_rx)
911 rx_dev = ctlr->dma_rx->device->dev;
912 else
913 rx_dev = ctlr->dev.parent;
914
915 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
916 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
917 continue;
918
919 if (xfer->tx_buf != NULL) {
920 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
921 (void *)xfer->tx_buf, xfer->len,
922 DMA_TO_DEVICE);
923 if (ret != 0)
924 return ret;
925 }
926
927 if (xfer->rx_buf != NULL) {
928 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
929 xfer->rx_buf, xfer->len,
930 DMA_FROM_DEVICE);
931 if (ret != 0) {
932 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
933 DMA_TO_DEVICE);
934 return ret;
935 }
936 }
937 }
938
939 ctlr->cur_msg_mapped = true;
940
941 return 0;
942 }
943
944 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
945 {
946 struct spi_transfer *xfer;
947 struct device *tx_dev, *rx_dev;
948
949 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
950 return 0;
951
952 if (ctlr->dma_tx)
953 tx_dev = ctlr->dma_tx->device->dev;
954 else
955 tx_dev = ctlr->dev.parent;
956
957 if (ctlr->dma_rx)
958 rx_dev = ctlr->dma_rx->device->dev;
959 else
960 rx_dev = ctlr->dev.parent;
961
962 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
963 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
964 continue;
965
966 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
967 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
968 }
969
970 return 0;
971 }
972 #else /* !CONFIG_HAS_DMA */
973 static inline int __spi_map_msg(struct spi_controller *ctlr,
974 struct spi_message *msg)
975 {
976 return 0;
977 }
978
979 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
980 struct spi_message *msg)
981 {
982 return 0;
983 }
984 #endif /* !CONFIG_HAS_DMA */
985
986 static inline int spi_unmap_msg(struct spi_controller *ctlr,
987 struct spi_message *msg)
988 {
989 struct spi_transfer *xfer;
990
991 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
992 /*
993 * Restore the original value of tx_buf or rx_buf if they are
994 * NULL.
995 */
996 if (xfer->tx_buf == ctlr->dummy_tx)
997 xfer->tx_buf = NULL;
998 if (xfer->rx_buf == ctlr->dummy_rx)
999 xfer->rx_buf = NULL;
1000 }
1001
1002 return __spi_unmap_msg(ctlr, msg);
1003 }
1004
1005 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1006 {
1007 struct spi_transfer *xfer;
1008 void *tmp;
1009 unsigned int max_tx, max_rx;
1010
1011 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
1012 max_tx = 0;
1013 max_rx = 0;
1014
1015 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1016 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1017 !xfer->tx_buf)
1018 max_tx = max(xfer->len, max_tx);
1019 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1020 !xfer->rx_buf)
1021 max_rx = max(xfer->len, max_rx);
1022 }
1023
1024 if (max_tx) {
1025 tmp = krealloc(ctlr->dummy_tx, max_tx,
1026 GFP_KERNEL | GFP_DMA);
1027 if (!tmp)
1028 return -ENOMEM;
1029 ctlr->dummy_tx = tmp;
1030 memset(tmp, 0, max_tx);
1031 }
1032
1033 if (max_rx) {
1034 tmp = krealloc(ctlr->dummy_rx, max_rx,
1035 GFP_KERNEL | GFP_DMA);
1036 if (!tmp)
1037 return -ENOMEM;
1038 ctlr->dummy_rx = tmp;
1039 }
1040
1041 if (max_tx || max_rx) {
1042 list_for_each_entry(xfer, &msg->transfers,
1043 transfer_list) {
1044 if (!xfer->len)
1045 continue;
1046 if (!xfer->tx_buf)
1047 xfer->tx_buf = ctlr->dummy_tx;
1048 if (!xfer->rx_buf)
1049 xfer->rx_buf = ctlr->dummy_rx;
1050 }
1051 }
1052 }
1053
1054 return __spi_map_msg(ctlr, msg);
1055 }
1056
1057 static int spi_transfer_wait(struct spi_controller *ctlr,
1058 struct spi_message *msg,
1059 struct spi_transfer *xfer)
1060 {
1061 struct spi_statistics *statm = &ctlr->statistics;
1062 struct spi_statistics *stats = &msg->spi->statistics;
1063 unsigned long long ms = 1;
1064
1065 if (spi_controller_is_slave(ctlr)) {
1066 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1067 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1068 return -EINTR;
1069 }
1070 } else {
1071 ms = 8LL * 1000LL * xfer->len;
1072 do_div(ms, xfer->speed_hz);
1073 ms += ms + 200; /* some tolerance */
1074
1075 if (ms > UINT_MAX)
1076 ms = UINT_MAX;
1077
1078 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1079 msecs_to_jiffies(ms));
1080
1081 if (ms == 0) {
1082 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1083 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1084 dev_err(&msg->spi->dev,
1085 "SPI transfer timed out\n");
1086 return -ETIMEDOUT;
1087 }
1088 }
1089
1090 return 0;
1091 }
1092
1093 /*
1094 * spi_transfer_one_message - Default implementation of transfer_one_message()
1095 *
1096 * This is a standard implementation of transfer_one_message() for
1097 * drivers which implement a transfer_one() operation. It provides
1098 * standard handling of delays and chip select management.
1099 */
1100 static int spi_transfer_one_message(struct spi_controller *ctlr,
1101 struct spi_message *msg)
1102 {
1103 struct spi_transfer *xfer;
1104 bool keep_cs = false;
1105 int ret = 0;
1106 struct spi_statistics *statm = &ctlr->statistics;
1107 struct spi_statistics *stats = &msg->spi->statistics;
1108
1109 spi_set_cs(msg->spi, true);
1110
1111 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1112 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1113
1114 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1115 trace_spi_transfer_start(msg, xfer);
1116
1117 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1118 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1119
1120 if (xfer->tx_buf || xfer->rx_buf) {
1121 reinit_completion(&ctlr->xfer_completion);
1122
1123 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1124 if (ret < 0) {
1125 SPI_STATISTICS_INCREMENT_FIELD(statm,
1126 errors);
1127 SPI_STATISTICS_INCREMENT_FIELD(stats,
1128 errors);
1129 dev_err(&msg->spi->dev,
1130 "SPI transfer failed: %d\n", ret);
1131 goto out;
1132 }
1133
1134 if (ret > 0) {
1135 ret = spi_transfer_wait(ctlr, msg, xfer);
1136 if (ret < 0)
1137 msg->status = ret;
1138 }
1139 } else {
1140 if (xfer->len)
1141 dev_err(&msg->spi->dev,
1142 "Bufferless transfer has length %u\n",
1143 xfer->len);
1144 }
1145
1146 trace_spi_transfer_stop(msg, xfer);
1147
1148 if (msg->status != -EINPROGRESS)
1149 goto out;
1150
1151 if (xfer->delay_usecs) {
1152 u16 us = xfer->delay_usecs;
1153
1154 if (us <= 10)
1155 udelay(us);
1156 else
1157 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1158 }
1159
1160 if (xfer->cs_change) {
1161 if (list_is_last(&xfer->transfer_list,
1162 &msg->transfers)) {
1163 keep_cs = true;
1164 } else {
1165 spi_set_cs(msg->spi, false);
1166 udelay(10);
1167 spi_set_cs(msg->spi, true);
1168 }
1169 }
1170
1171 msg->actual_length += xfer->len;
1172 }
1173
1174 out:
1175 if (ret != 0 || !keep_cs)
1176 spi_set_cs(msg->spi, false);
1177
1178 if (msg->status == -EINPROGRESS)
1179 msg->status = ret;
1180
1181 if (msg->status && ctlr->handle_err)
1182 ctlr->handle_err(ctlr, msg);
1183
1184 spi_finalize_current_message(ctlr);
1185
1186 spi_res_release(ctlr, msg);
1187
1188 return ret;
1189 }
1190
1191 /**
1192 * spi_finalize_current_transfer - report completion of a transfer
1193 * @ctlr: the controller reporting completion
1194 *
1195 * Called by SPI drivers using the core transfer_one_message()
1196 * implementation to notify it that the current interrupt driven
1197 * transfer has finished and the next one may be scheduled.
1198 */
1199 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1200 {
1201 complete(&ctlr->xfer_completion);
1202 }
1203 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1204
1205 /**
1206 * __spi_pump_messages - function which processes spi message queue
1207 * @ctlr: controller to process queue for
1208 * @in_kthread: true if we are in the context of the message pump thread
1209 *
1210 * This function checks if there is any spi message in the queue that
1211 * needs processing and if so call out to the driver to initialize hardware
1212 * and transfer each message.
1213 *
1214 * Note that it is called both from the kthread itself and also from
1215 * inside spi_sync(); the queue extraction handling at the top of the
1216 * function should deal with this safely.
1217 */
1218 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1219 {
1220 unsigned long flags;
1221 bool was_busy = false;
1222 int ret;
1223
1224 /* Lock queue */
1225 spin_lock_irqsave(&ctlr->queue_lock, flags);
1226
1227 /* Make sure we are not already running a message */
1228 if (ctlr->cur_msg) {
1229 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1230 return;
1231 }
1232
1233 /* If another context is idling the device then defer */
1234 if (ctlr->idling) {
1235 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1236 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1237 return;
1238 }
1239
1240 /* Check if the queue is idle */
1241 if (list_empty(&ctlr->queue) || !ctlr->running) {
1242 if (!ctlr->busy) {
1243 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1244 return;
1245 }
1246
1247 /* Only do teardown in the thread */
1248 if (!in_kthread) {
1249 kthread_queue_work(&ctlr->kworker,
1250 &ctlr->pump_messages);
1251 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1252 return;
1253 }
1254
1255 ctlr->busy = false;
1256 ctlr->idling = true;
1257 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1258
1259 kfree(ctlr->dummy_rx);
1260 ctlr->dummy_rx = NULL;
1261 kfree(ctlr->dummy_tx);
1262 ctlr->dummy_tx = NULL;
1263 if (ctlr->unprepare_transfer_hardware &&
1264 ctlr->unprepare_transfer_hardware(ctlr))
1265 dev_err(&ctlr->dev,
1266 "failed to unprepare transfer hardware\n");
1267 if (ctlr->auto_runtime_pm) {
1268 pm_runtime_mark_last_busy(ctlr->dev.parent);
1269 pm_runtime_put_autosuspend(ctlr->dev.parent);
1270 }
1271 trace_spi_controller_idle(ctlr);
1272
1273 spin_lock_irqsave(&ctlr->queue_lock, flags);
1274 ctlr->idling = false;
1275 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1276 return;
1277 }
1278
1279 /* Extract head of queue */
1280 ctlr->cur_msg =
1281 list_first_entry(&ctlr->queue, struct spi_message, queue);
1282
1283 list_del_init(&ctlr->cur_msg->queue);
1284 if (ctlr->busy)
1285 was_busy = true;
1286 else
1287 ctlr->busy = true;
1288 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1289
1290 mutex_lock(&ctlr->io_mutex);
1291
1292 if (!was_busy && ctlr->auto_runtime_pm) {
1293 ret = pm_runtime_get_sync(ctlr->dev.parent);
1294 if (ret < 0) {
1295 pm_runtime_put_noidle(ctlr->dev.parent);
1296 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1297 ret);
1298 mutex_unlock(&ctlr->io_mutex);
1299 return;
1300 }
1301 }
1302
1303 if (!was_busy)
1304 trace_spi_controller_busy(ctlr);
1305
1306 if (!was_busy && ctlr->prepare_transfer_hardware) {
1307 ret = ctlr->prepare_transfer_hardware(ctlr);
1308 if (ret) {
1309 dev_err(&ctlr->dev,
1310 "failed to prepare transfer hardware\n");
1311
1312 if (ctlr->auto_runtime_pm)
1313 pm_runtime_put(ctlr->dev.parent);
1314 mutex_unlock(&ctlr->io_mutex);
1315 return;
1316 }
1317 }
1318
1319 trace_spi_message_start(ctlr->cur_msg);
1320
1321 if (ctlr->prepare_message) {
1322 ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1323 if (ret) {
1324 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1325 ret);
1326 ctlr->cur_msg->status = ret;
1327 spi_finalize_current_message(ctlr);
1328 goto out;
1329 }
1330 ctlr->cur_msg_prepared = true;
1331 }
1332
1333 ret = spi_map_msg(ctlr, ctlr->cur_msg);
1334 if (ret) {
1335 ctlr->cur_msg->status = ret;
1336 spi_finalize_current_message(ctlr);
1337 goto out;
1338 }
1339
1340 ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1341 if (ret) {
1342 dev_err(&ctlr->dev,
1343 "failed to transfer one message from queue\n");
1344 goto out;
1345 }
1346
1347 out:
1348 mutex_unlock(&ctlr->io_mutex);
1349
1350 /* Prod the scheduler in case transfer_one() was busy waiting */
1351 if (!ret)
1352 cond_resched();
1353 }
1354
1355 /**
1356 * spi_pump_messages - kthread work function which processes spi message queue
1357 * @work: pointer to kthread work struct contained in the controller struct
1358 */
1359 static void spi_pump_messages(struct kthread_work *work)
1360 {
1361 struct spi_controller *ctlr =
1362 container_of(work, struct spi_controller, pump_messages);
1363
1364 __spi_pump_messages(ctlr, true);
1365 }
1366
1367 static int spi_init_queue(struct spi_controller *ctlr)
1368 {
1369 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1370
1371 ctlr->running = false;
1372 ctlr->busy = false;
1373
1374 kthread_init_worker(&ctlr->kworker);
1375 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1376 "%s", dev_name(&ctlr->dev));
1377 if (IS_ERR(ctlr->kworker_task)) {
1378 dev_err(&ctlr->dev, "failed to create message pump task\n");
1379 return PTR_ERR(ctlr->kworker_task);
1380 }
1381 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1382
1383 /*
1384 * Controller config will indicate if this controller should run the
1385 * message pump with high (realtime) priority to reduce the transfer
1386 * latency on the bus by minimising the delay between a transfer
1387 * request and the scheduling of the message pump thread. Without this
1388 * setting the message pump thread will remain at default priority.
1389 */
1390 if (ctlr->rt) {
1391 dev_info(&ctlr->dev,
1392 "will run message pump with realtime priority\n");
1393 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1394 }
1395
1396 return 0;
1397 }
1398
1399 /**
1400 * spi_get_next_queued_message() - called by driver to check for queued
1401 * messages
1402 * @ctlr: the controller to check for queued messages
1403 *
1404 * If there are more messages in the queue, the next message is returned from
1405 * this call.
1406 *
1407 * Return: the next message in the queue, else NULL if the queue is empty.
1408 */
1409 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1410 {
1411 struct spi_message *next;
1412 unsigned long flags;
1413
1414 /* get a pointer to the next message, if any */
1415 spin_lock_irqsave(&ctlr->queue_lock, flags);
1416 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1417 queue);
1418 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1419
1420 return next;
1421 }
1422 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1423
1424 /**
1425 * spi_finalize_current_message() - the current message is complete
1426 * @ctlr: the controller to return the message to
1427 *
1428 * Called by the driver to notify the core that the message in the front of the
1429 * queue is complete and can be removed from the queue.
1430 */
1431 void spi_finalize_current_message(struct spi_controller *ctlr)
1432 {
1433 struct spi_message *mesg;
1434 unsigned long flags;
1435 int ret;
1436
1437 spin_lock_irqsave(&ctlr->queue_lock, flags);
1438 mesg = ctlr->cur_msg;
1439 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1440
1441 spi_unmap_msg(ctlr, mesg);
1442
1443 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1444 ret = ctlr->unprepare_message(ctlr, mesg);
1445 if (ret) {
1446 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1447 ret);
1448 }
1449 }
1450
1451 spin_lock_irqsave(&ctlr->queue_lock, flags);
1452 ctlr->cur_msg = NULL;
1453 ctlr->cur_msg_prepared = false;
1454 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1455 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1456
1457 trace_spi_message_done(mesg);
1458
1459 mesg->state = NULL;
1460 if (mesg->complete)
1461 mesg->complete(mesg->context);
1462 }
1463 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1464
1465 static int spi_start_queue(struct spi_controller *ctlr)
1466 {
1467 unsigned long flags;
1468
1469 spin_lock_irqsave(&ctlr->queue_lock, flags);
1470
1471 if (ctlr->running || ctlr->busy) {
1472 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1473 return -EBUSY;
1474 }
1475
1476 ctlr->running = true;
1477 ctlr->cur_msg = NULL;
1478 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1479
1480 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1481
1482 return 0;
1483 }
1484
1485 static int spi_stop_queue(struct spi_controller *ctlr)
1486 {
1487 unsigned long flags;
1488 unsigned limit = 500;
1489 int ret = 0;
1490
1491 spin_lock_irqsave(&ctlr->queue_lock, flags);
1492
1493 /*
1494 * This is a bit lame, but is optimized for the common execution path.
1495 * A wait_queue on the ctlr->busy could be used, but then the common
1496 * execution path (pump_messages) would be required to call wake_up or
1497 * friends on every SPI message. Do this instead.
1498 */
1499 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1500 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1501 usleep_range(10000, 11000);
1502 spin_lock_irqsave(&ctlr->queue_lock, flags);
1503 }
1504
1505 if (!list_empty(&ctlr->queue) || ctlr->busy)
1506 ret = -EBUSY;
1507 else
1508 ctlr->running = false;
1509
1510 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1511
1512 if (ret) {
1513 dev_warn(&ctlr->dev, "could not stop message queue\n");
1514 return ret;
1515 }
1516 return ret;
1517 }
1518
1519 static int spi_destroy_queue(struct spi_controller *ctlr)
1520 {
1521 int ret;
1522
1523 ret = spi_stop_queue(ctlr);
1524
1525 /*
1526 * kthread_flush_worker will block until all work is done.
1527 * If the reason that stop_queue timed out is that the work will never
1528 * finish, then it does no good to call flush/stop thread, so
1529 * return anyway.
1530 */
1531 if (ret) {
1532 dev_err(&ctlr->dev, "problem destroying queue\n");
1533 return ret;
1534 }
1535
1536 kthread_flush_worker(&ctlr->kworker);
1537 kthread_stop(ctlr->kworker_task);
1538
1539 return 0;
1540 }
1541
1542 static int __spi_queued_transfer(struct spi_device *spi,
1543 struct spi_message *msg,
1544 bool need_pump)
1545 {
1546 struct spi_controller *ctlr = spi->controller;
1547 unsigned long flags;
1548
1549 spin_lock_irqsave(&ctlr->queue_lock, flags);
1550
1551 if (!ctlr->running) {
1552 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1553 return -ESHUTDOWN;
1554 }
1555 msg->actual_length = 0;
1556 msg->status = -EINPROGRESS;
1557
1558 list_add_tail(&msg->queue, &ctlr->queue);
1559 if (!ctlr->busy && need_pump)
1560 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1561
1562 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1563 return 0;
1564 }
1565
1566 /**
1567 * spi_queued_transfer - transfer function for queued transfers
1568 * @spi: spi device which is requesting transfer
1569 * @msg: spi message which is to handled is queued to driver queue
1570 *
1571 * Return: zero on success, else a negative error code.
1572 */
1573 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1574 {
1575 return __spi_queued_transfer(spi, msg, true);
1576 }
1577
1578 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1579 {
1580 int ret;
1581
1582 ctlr->transfer = spi_queued_transfer;
1583 if (!ctlr->transfer_one_message)
1584 ctlr->transfer_one_message = spi_transfer_one_message;
1585
1586 /* Initialize and start queue */
1587 ret = spi_init_queue(ctlr);
1588 if (ret) {
1589 dev_err(&ctlr->dev, "problem initializing queue\n");
1590 goto err_init_queue;
1591 }
1592 ctlr->queued = true;
1593 ret = spi_start_queue(ctlr);
1594 if (ret) {
1595 dev_err(&ctlr->dev, "problem starting queue\n");
1596 goto err_start_queue;
1597 }
1598
1599 return 0;
1600
1601 err_start_queue:
1602 spi_destroy_queue(ctlr);
1603 err_init_queue:
1604 return ret;
1605 }
1606
1607 /**
1608 * spi_flush_queue - Send all pending messages in the queue from the callers'
1609 * context
1610 * @ctlr: controller to process queue for
1611 *
1612 * This should be used when one wants to ensure all pending messages have been
1613 * sent before doing something. Is used by the spi-mem code to make sure SPI
1614 * memory operations do not preempt regular SPI transfers that have been queued
1615 * before the spi-mem operation.
1616 */
1617 void spi_flush_queue(struct spi_controller *ctlr)
1618 {
1619 if (ctlr->transfer == spi_queued_transfer)
1620 __spi_pump_messages(ctlr, false);
1621 }
1622
1623 /*-------------------------------------------------------------------------*/
1624
1625 #if defined(CONFIG_OF)
1626 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1627 struct device_node *nc)
1628 {
1629 u32 value;
1630 int rc;
1631
1632 /* Mode (clock phase/polarity/etc.) */
1633 if (of_property_read_bool(nc, "spi-cpha"))
1634 spi->mode |= SPI_CPHA;
1635 if (of_property_read_bool(nc, "spi-cpol"))
1636 spi->mode |= SPI_CPOL;
1637 if (of_property_read_bool(nc, "spi-3wire"))
1638 spi->mode |= SPI_3WIRE;
1639 if (of_property_read_bool(nc, "spi-lsb-first"))
1640 spi->mode |= SPI_LSB_FIRST;
1641
1642 /*
1643 * For descriptors associated with the device, polarity inversion is
1644 * handled in the gpiolib, so all chip selects are "active high" in
1645 * the logical sense, the gpiolib will invert the line if need be.
1646 */
1647 if (ctlr->use_gpio_descriptors)
1648 spi->mode |= SPI_CS_HIGH;
1649 else if (of_property_read_bool(nc, "spi-cs-high"))
1650 spi->mode |= SPI_CS_HIGH;
1651
1652 /* Device DUAL/QUAD mode */
1653 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1654 switch (value) {
1655 case 1:
1656 break;
1657 case 2:
1658 spi->mode |= SPI_TX_DUAL;
1659 break;
1660 case 4:
1661 spi->mode |= SPI_TX_QUAD;
1662 break;
1663 case 8:
1664 spi->mode |= SPI_TX_OCTAL;
1665 break;
1666 default:
1667 dev_warn(&ctlr->dev,
1668 "spi-tx-bus-width %d not supported\n",
1669 value);
1670 break;
1671 }
1672 }
1673
1674 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1675 switch (value) {
1676 case 1:
1677 break;
1678 case 2:
1679 spi->mode |= SPI_RX_DUAL;
1680 break;
1681 case 4:
1682 spi->mode |= SPI_RX_QUAD;
1683 break;
1684 case 8:
1685 spi->mode |= SPI_RX_OCTAL;
1686 break;
1687 default:
1688 dev_warn(&ctlr->dev,
1689 "spi-rx-bus-width %d not supported\n",
1690 value);
1691 break;
1692 }
1693 }
1694
1695 if (spi_controller_is_slave(ctlr)) {
1696 if (!of_node_name_eq(nc, "slave")) {
1697 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1698 nc);
1699 return -EINVAL;
1700 }
1701 return 0;
1702 }
1703
1704 /* Device address */
1705 rc = of_property_read_u32(nc, "reg", &value);
1706 if (rc) {
1707 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1708 nc, rc);
1709 return rc;
1710 }
1711 spi->chip_select = value;
1712
1713 /* Device speed */
1714 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1715 if (rc) {
1716 dev_err(&ctlr->dev,
1717 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1718 return rc;
1719 }
1720 spi->max_speed_hz = value;
1721
1722 return 0;
1723 }
1724
1725 static struct spi_device *
1726 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1727 {
1728 struct spi_device *spi;
1729 int rc;
1730
1731 /* Alloc an spi_device */
1732 spi = spi_alloc_device(ctlr);
1733 if (!spi) {
1734 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1735 rc = -ENOMEM;
1736 goto err_out;
1737 }
1738
1739 /* Select device driver */
1740 rc = of_modalias_node(nc, spi->modalias,
1741 sizeof(spi->modalias));
1742 if (rc < 0) {
1743 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1744 goto err_out;
1745 }
1746
1747 rc = of_spi_parse_dt(ctlr, spi, nc);
1748 if (rc)
1749 goto err_out;
1750
1751 /* Store a pointer to the node in the device structure */
1752 of_node_get(nc);
1753 spi->dev.of_node = nc;
1754
1755 /* Register the new device */
1756 rc = spi_add_device(spi);
1757 if (rc) {
1758 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1759 goto err_of_node_put;
1760 }
1761
1762 return spi;
1763
1764 err_of_node_put:
1765 of_node_put(nc);
1766 err_out:
1767 spi_dev_put(spi);
1768 return ERR_PTR(rc);
1769 }
1770
1771 /**
1772 * of_register_spi_devices() - Register child devices onto the SPI bus
1773 * @ctlr: Pointer to spi_controller device
1774 *
1775 * Registers an spi_device for each child node of controller node which
1776 * represents a valid SPI slave.
1777 */
1778 static void of_register_spi_devices(struct spi_controller *ctlr)
1779 {
1780 struct spi_device *spi;
1781 struct device_node *nc;
1782
1783 if (!ctlr->dev.of_node)
1784 return;
1785
1786 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1787 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1788 continue;
1789 spi = of_register_spi_device(ctlr, nc);
1790 if (IS_ERR(spi)) {
1791 dev_warn(&ctlr->dev,
1792 "Failed to create SPI device for %pOF\n", nc);
1793 of_node_clear_flag(nc, OF_POPULATED);
1794 }
1795 }
1796 }
1797 #else
1798 static void of_register_spi_devices(struct spi_controller *ctlr) { }
1799 #endif
1800
1801 #ifdef CONFIG_ACPI
1802 static void acpi_spi_parse_apple_properties(struct spi_device *spi)
1803 {
1804 struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
1805 const union acpi_object *obj;
1806
1807 if (!x86_apple_machine)
1808 return;
1809
1810 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1811 && obj->buffer.length >= 4)
1812 spi->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1813
1814 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1815 && obj->buffer.length == 8)
1816 spi->bits_per_word = *(u64 *)obj->buffer.pointer;
1817
1818 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1819 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1820 spi->mode |= SPI_LSB_FIRST;
1821
1822 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1823 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1824 spi->mode |= SPI_CPOL;
1825
1826 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1827 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1828 spi->mode |= SPI_CPHA;
1829 }
1830
1831 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1832 {
1833 struct spi_device *spi = data;
1834 struct spi_controller *ctlr = spi->controller;
1835
1836 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1837 struct acpi_resource_spi_serialbus *sb;
1838
1839 sb = &ares->data.spi_serial_bus;
1840 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1841 /*
1842 * ACPI DeviceSelection numbering is handled by the
1843 * host controller driver in Windows and can vary
1844 * from driver to driver. In Linux we always expect
1845 * 0 .. max - 1 so we need to ask the driver to
1846 * translate between the two schemes.
1847 */
1848 if (ctlr->fw_translate_cs) {
1849 int cs = ctlr->fw_translate_cs(ctlr,
1850 sb->device_selection);
1851 if (cs < 0)
1852 return cs;
1853 spi->chip_select = cs;
1854 } else {
1855 spi->chip_select = sb->device_selection;
1856 }
1857
1858 spi->max_speed_hz = sb->connection_speed;
1859
1860 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1861 spi->mode |= SPI_CPHA;
1862 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1863 spi->mode |= SPI_CPOL;
1864 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1865 spi->mode |= SPI_CS_HIGH;
1866 }
1867 } else if (spi->irq < 0) {
1868 struct resource r;
1869
1870 if (acpi_dev_resource_interrupt(ares, 0, &r))
1871 spi->irq = r.start;
1872 }
1873
1874 /* Always tell the ACPI core to skip this resource */
1875 return 1;
1876 }
1877
1878 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1879 struct acpi_device *adev)
1880 {
1881 struct list_head resource_list;
1882 struct spi_device *spi;
1883 int ret;
1884
1885 if (acpi_bus_get_status(adev) || !adev->status.present ||
1886 acpi_device_enumerated(adev))
1887 return AE_OK;
1888
1889 spi = spi_alloc_device(ctlr);
1890 if (!spi) {
1891 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1892 dev_name(&adev->dev));
1893 return AE_NO_MEMORY;
1894 }
1895
1896 ACPI_COMPANION_SET(&spi->dev, adev);
1897 spi->irq = -1;
1898
1899 INIT_LIST_HEAD(&resource_list);
1900 ret = acpi_dev_get_resources(adev, &resource_list,
1901 acpi_spi_add_resource, spi);
1902 acpi_dev_free_resource_list(&resource_list);
1903
1904 acpi_spi_parse_apple_properties(spi);
1905
1906 if (ret < 0 || !spi->max_speed_hz) {
1907 spi_dev_put(spi);
1908 return AE_OK;
1909 }
1910
1911 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1912 sizeof(spi->modalias));
1913
1914 if (spi->irq < 0)
1915 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1916
1917 acpi_device_set_enumerated(adev);
1918
1919 adev->power.flags.ignore_parent = true;
1920 if (spi_add_device(spi)) {
1921 adev->power.flags.ignore_parent = false;
1922 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1923 dev_name(&adev->dev));
1924 spi_dev_put(spi);
1925 }
1926
1927 return AE_OK;
1928 }
1929
1930 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1931 void *data, void **return_value)
1932 {
1933 struct spi_controller *ctlr = data;
1934 struct acpi_device *adev;
1935
1936 if (acpi_bus_get_device(handle, &adev))
1937 return AE_OK;
1938
1939 return acpi_register_spi_device(ctlr, adev);
1940 }
1941
1942 static void acpi_register_spi_devices(struct spi_controller *ctlr)
1943 {
1944 acpi_status status;
1945 acpi_handle handle;
1946
1947 handle = ACPI_HANDLE(ctlr->dev.parent);
1948 if (!handle)
1949 return;
1950
1951 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1952 acpi_spi_add_device, NULL, ctlr, NULL);
1953 if (ACPI_FAILURE(status))
1954 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1955 }
1956 #else
1957 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1958 #endif /* CONFIG_ACPI */
1959
1960 static void spi_controller_release(struct device *dev)
1961 {
1962 struct spi_controller *ctlr;
1963
1964 ctlr = container_of(dev, struct spi_controller, dev);
1965 kfree(ctlr);
1966 }
1967
1968 static struct class spi_master_class = {
1969 .name = "spi_master",
1970 .owner = THIS_MODULE,
1971 .dev_release = spi_controller_release,
1972 .dev_groups = spi_master_groups,
1973 };
1974
1975 #ifdef CONFIG_SPI_SLAVE
1976 /**
1977 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1978 * controller
1979 * @spi: device used for the current transfer
1980 */
1981 int spi_slave_abort(struct spi_device *spi)
1982 {
1983 struct spi_controller *ctlr = spi->controller;
1984
1985 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1986 return ctlr->slave_abort(ctlr);
1987
1988 return -ENOTSUPP;
1989 }
1990 EXPORT_SYMBOL_GPL(spi_slave_abort);
1991
1992 static int match_true(struct device *dev, void *data)
1993 {
1994 return 1;
1995 }
1996
1997 static ssize_t spi_slave_show(struct device *dev,
1998 struct device_attribute *attr, char *buf)
1999 {
2000 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2001 dev);
2002 struct device *child;
2003
2004 child = device_find_child(&ctlr->dev, NULL, match_true);
2005 return sprintf(buf, "%s\n",
2006 child ? to_spi_device(child)->modalias : NULL);
2007 }
2008
2009 static ssize_t spi_slave_store(struct device *dev,
2010 struct device_attribute *attr, const char *buf,
2011 size_t count)
2012 {
2013 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2014 dev);
2015 struct spi_device *spi;
2016 struct device *child;
2017 char name[32];
2018 int rc;
2019
2020 rc = sscanf(buf, "%31s", name);
2021 if (rc != 1 || !name[0])
2022 return -EINVAL;
2023
2024 child = device_find_child(&ctlr->dev, NULL, match_true);
2025 if (child) {
2026 /* Remove registered slave */
2027 device_unregister(child);
2028 put_device(child);
2029 }
2030
2031 if (strcmp(name, "(null)")) {
2032 /* Register new slave */
2033 spi = spi_alloc_device(ctlr);
2034 if (!spi)
2035 return -ENOMEM;
2036
2037 strlcpy(spi->modalias, name, sizeof(spi->modalias));
2038
2039 rc = spi_add_device(spi);
2040 if (rc) {
2041 spi_dev_put(spi);
2042 return rc;
2043 }
2044 }
2045
2046 return count;
2047 }
2048
2049 static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
2050
2051 static struct attribute *spi_slave_attrs[] = {
2052 &dev_attr_slave.attr,
2053 NULL,
2054 };
2055
2056 static const struct attribute_group spi_slave_group = {
2057 .attrs = spi_slave_attrs,
2058 };
2059
2060 static const struct attribute_group *spi_slave_groups[] = {
2061 &spi_controller_statistics_group,
2062 &spi_slave_group,
2063 NULL,
2064 };
2065
2066 static struct class spi_slave_class = {
2067 .name = "spi_slave",
2068 .owner = THIS_MODULE,
2069 .dev_release = spi_controller_release,
2070 .dev_groups = spi_slave_groups,
2071 };
2072 #else
2073 extern struct class spi_slave_class; /* dummy */
2074 #endif
2075
2076 /**
2077 * __spi_alloc_controller - allocate an SPI master or slave controller
2078 * @dev: the controller, possibly using the platform_bus
2079 * @size: how much zeroed driver-private data to allocate; the pointer to this
2080 * memory is in the driver_data field of the returned device,
2081 * accessible with spi_controller_get_devdata().
2082 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2083 * slave (true) controller
2084 * Context: can sleep
2085 *
2086 * This call is used only by SPI controller drivers, which are the
2087 * only ones directly touching chip registers. It's how they allocate
2088 * an spi_controller structure, prior to calling spi_register_controller().
2089 *
2090 * This must be called from context that can sleep.
2091 *
2092 * The caller is responsible for assigning the bus number and initializing the
2093 * controller's methods before calling spi_register_controller(); and (after
2094 * errors adding the device) calling spi_controller_put() to prevent a memory
2095 * leak.
2096 *
2097 * Return: the SPI controller structure on success, else NULL.
2098 */
2099 struct spi_controller *__spi_alloc_controller(struct device *dev,
2100 unsigned int size, bool slave)
2101 {
2102 struct spi_controller *ctlr;
2103
2104 if (!dev)
2105 return NULL;
2106
2107 ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2108 if (!ctlr)
2109 return NULL;
2110
2111 device_initialize(&ctlr->dev);
2112 ctlr->bus_num = -1;
2113 ctlr->num_chipselect = 1;
2114 ctlr->slave = slave;
2115 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2116 ctlr->dev.class = &spi_slave_class;
2117 else
2118 ctlr->dev.class = &spi_master_class;
2119 ctlr->dev.parent = dev;
2120 pm_suspend_ignore_children(&ctlr->dev, true);
2121 spi_controller_set_devdata(ctlr, &ctlr[1]);
2122
2123 return ctlr;
2124 }
2125 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2126
2127 #ifdef CONFIG_OF
2128 static int of_spi_register_master(struct spi_controller *ctlr)
2129 {
2130 int nb, i, *cs;
2131 struct device_node *np = ctlr->dev.of_node;
2132
2133 if (!np)
2134 return 0;
2135
2136 nb = of_gpio_named_count(np, "cs-gpios");
2137 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2138
2139 /* Return error only for an incorrectly formed cs-gpios property */
2140 if (nb == 0 || nb == -ENOENT)
2141 return 0;
2142 else if (nb < 0)
2143 return nb;
2144
2145 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2146 GFP_KERNEL);
2147 ctlr->cs_gpios = cs;
2148
2149 if (!ctlr->cs_gpios)
2150 return -ENOMEM;
2151
2152 for (i = 0; i < ctlr->num_chipselect; i++)
2153 cs[i] = -ENOENT;
2154
2155 for (i = 0; i < nb; i++)
2156 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2157
2158 return 0;
2159 }
2160 #else
2161 static int of_spi_register_master(struct spi_controller *ctlr)
2162 {
2163 return 0;
2164 }
2165 #endif
2166
2167 /**
2168 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2169 * @ctlr: The SPI master to grab GPIO descriptors for
2170 */
2171 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2172 {
2173 int nb, i;
2174 struct gpio_desc **cs;
2175 struct device *dev = &ctlr->dev;
2176
2177 nb = gpiod_count(dev, "cs");
2178 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2179
2180 /* No GPIOs at all is fine, else return the error */
2181 if (nb == 0 || nb == -ENOENT)
2182 return 0;
2183 else if (nb < 0)
2184 return nb;
2185
2186 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2187 GFP_KERNEL);
2188 if (!cs)
2189 return -ENOMEM;
2190 ctlr->cs_gpiods = cs;
2191
2192 for (i = 0; i < nb; i++) {
2193 /*
2194 * Most chipselects are active low, the inverted
2195 * semantics are handled by special quirks in gpiolib,
2196 * so initializing them GPIOD_OUT_LOW here means
2197 * "unasserted", in most cases this will drive the physical
2198 * line high.
2199 */
2200 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2201 GPIOD_OUT_LOW);
2202 if (IS_ERR(cs[i]))
2203 return PTR_ERR(cs[i]);
2204
2205 if (cs[i]) {
2206 /*
2207 * If we find a CS GPIO, name it after the device and
2208 * chip select line.
2209 */
2210 char *gpioname;
2211
2212 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2213 dev_name(dev), i);
2214 if (!gpioname)
2215 return -ENOMEM;
2216 gpiod_set_consumer_name(cs[i], gpioname);
2217 }
2218 }
2219
2220 return 0;
2221 }
2222
2223 static int spi_controller_check_ops(struct spi_controller *ctlr)
2224 {
2225 /*
2226 * The controller may implement only the high-level SPI-memory like
2227 * operations if it does not support regular SPI transfers, and this is
2228 * valid use case.
2229 * If ->mem_ops is NULL, we request that at least one of the
2230 * ->transfer_xxx() method be implemented.
2231 */
2232 if (ctlr->mem_ops) {
2233 if (!ctlr->mem_ops->exec_op)
2234 return -EINVAL;
2235 } else if (!ctlr->transfer && !ctlr->transfer_one &&
2236 !ctlr->transfer_one_message) {
2237 return -EINVAL;
2238 }
2239
2240 return 0;
2241 }
2242
2243 /**
2244 * spi_register_controller - register SPI master or slave controller
2245 * @ctlr: initialized master, originally from spi_alloc_master() or
2246 * spi_alloc_slave()
2247 * Context: can sleep
2248 *
2249 * SPI controllers connect to their drivers using some non-SPI bus,
2250 * such as the platform bus. The final stage of probe() in that code
2251 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2252 *
2253 * SPI controllers use board specific (often SOC specific) bus numbers,
2254 * and board-specific addressing for SPI devices combines those numbers
2255 * with chip select numbers. Since SPI does not directly support dynamic
2256 * device identification, boards need configuration tables telling which
2257 * chip is at which address.
2258 *
2259 * This must be called from context that can sleep. It returns zero on
2260 * success, else a negative error code (dropping the controller's refcount).
2261 * After a successful return, the caller is responsible for calling
2262 * spi_unregister_controller().
2263 *
2264 * Return: zero on success, else a negative error code.
2265 */
2266 int spi_register_controller(struct spi_controller *ctlr)
2267 {
2268 struct device *dev = ctlr->dev.parent;
2269 struct boardinfo *bi;
2270 int status;
2271 int id, first_dynamic;
2272
2273 if (!dev)
2274 return -ENODEV;
2275
2276 /*
2277 * Make sure all necessary hooks are implemented before registering
2278 * the SPI controller.
2279 */
2280 status = spi_controller_check_ops(ctlr);
2281 if (status)
2282 return status;
2283
2284 /* even if it's just one always-selected device, there must
2285 * be at least one chipselect
2286 */
2287 if (ctlr->num_chipselect == 0)
2288 return -EINVAL;
2289 if (ctlr->bus_num >= 0) {
2290 /* devices with a fixed bus num must check-in with the num */
2291 mutex_lock(&board_lock);
2292 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2293 ctlr->bus_num + 1, GFP_KERNEL);
2294 mutex_unlock(&board_lock);
2295 if (WARN(id < 0, "couldn't get idr"))
2296 return id == -ENOSPC ? -EBUSY : id;
2297 ctlr->bus_num = id;
2298 } else if (ctlr->dev.of_node) {
2299 /* allocate dynamic bus number using Linux idr */
2300 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2301 if (id >= 0) {
2302 ctlr->bus_num = id;
2303 mutex_lock(&board_lock);
2304 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2305 ctlr->bus_num + 1, GFP_KERNEL);
2306 mutex_unlock(&board_lock);
2307 if (WARN(id < 0, "couldn't get idr"))
2308 return id == -ENOSPC ? -EBUSY : id;
2309 }
2310 }
2311 if (ctlr->bus_num < 0) {
2312 first_dynamic = of_alias_get_highest_id("spi");
2313 if (first_dynamic < 0)
2314 first_dynamic = 0;
2315 else
2316 first_dynamic++;
2317
2318 mutex_lock(&board_lock);
2319 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2320 0, GFP_KERNEL);
2321 mutex_unlock(&board_lock);
2322 if (WARN(id < 0, "couldn't get idr"))
2323 return id;
2324 ctlr->bus_num = id;
2325 }
2326 INIT_LIST_HEAD(&ctlr->queue);
2327 spin_lock_init(&ctlr->queue_lock);
2328 spin_lock_init(&ctlr->bus_lock_spinlock);
2329 mutex_init(&ctlr->bus_lock_mutex);
2330 mutex_init(&ctlr->io_mutex);
2331 ctlr->bus_lock_flag = 0;
2332 init_completion(&ctlr->xfer_completion);
2333 if (!ctlr->max_dma_len)
2334 ctlr->max_dma_len = INT_MAX;
2335
2336 /* register the device, then userspace will see it.
2337 * registration fails if the bus ID is in use.
2338 */
2339 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2340
2341 if (!spi_controller_is_slave(ctlr)) {
2342 if (ctlr->use_gpio_descriptors) {
2343 status = spi_get_gpio_descs(ctlr);
2344 if (status)
2345 return status;
2346 /*
2347 * A controller using GPIO descriptors always
2348 * supports SPI_CS_HIGH if need be.
2349 */
2350 ctlr->mode_bits |= SPI_CS_HIGH;
2351 } else {
2352 /* Legacy code path for GPIOs from DT */
2353 status = of_spi_register_master(ctlr);
2354 if (status)
2355 return status;
2356 }
2357 }
2358
2359 status = device_add(&ctlr->dev);
2360 if (status < 0) {
2361 /* free bus id */
2362 mutex_lock(&board_lock);
2363 idr_remove(&spi_master_idr, ctlr->bus_num);
2364 mutex_unlock(&board_lock);
2365 goto done;
2366 }
2367 dev_dbg(dev, "registered %s %s\n",
2368 spi_controller_is_slave(ctlr) ? "slave" : "master",
2369 dev_name(&ctlr->dev));
2370
2371 /*
2372 * If we're using a queued driver, start the queue. Note that we don't
2373 * need the queueing logic if the driver is only supporting high-level
2374 * memory operations.
2375 */
2376 if (ctlr->transfer) {
2377 dev_info(dev, "controller is unqueued, this is deprecated\n");
2378 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2379 status = spi_controller_initialize_queue(ctlr);
2380 if (status) {
2381 device_del(&ctlr->dev);
2382 /* free bus id */
2383 mutex_lock(&board_lock);
2384 idr_remove(&spi_master_idr, ctlr->bus_num);
2385 mutex_unlock(&board_lock);
2386 goto done;
2387 }
2388 }
2389 /* add statistics */
2390 spin_lock_init(&ctlr->statistics.lock);
2391
2392 mutex_lock(&board_lock);
2393 list_add_tail(&ctlr->list, &spi_controller_list);
2394 list_for_each_entry(bi, &board_list, list)
2395 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2396 mutex_unlock(&board_lock);
2397
2398 /* Register devices from the device tree and ACPI */
2399 of_register_spi_devices(ctlr);
2400 acpi_register_spi_devices(ctlr);
2401 done:
2402 return status;
2403 }
2404 EXPORT_SYMBOL_GPL(spi_register_controller);
2405
2406 static void devm_spi_unregister(struct device *dev, void *res)
2407 {
2408 spi_unregister_controller(*(struct spi_controller **)res);
2409 }
2410
2411 /**
2412 * devm_spi_register_controller - register managed SPI master or slave
2413 * controller
2414 * @dev: device managing SPI controller
2415 * @ctlr: initialized controller, originally from spi_alloc_master() or
2416 * spi_alloc_slave()
2417 * Context: can sleep
2418 *
2419 * Register a SPI device as with spi_register_controller() which will
2420 * automatically be unregistered and freed.
2421 *
2422 * Return: zero on success, else a negative error code.
2423 */
2424 int devm_spi_register_controller(struct device *dev,
2425 struct spi_controller *ctlr)
2426 {
2427 struct spi_controller **ptr;
2428 int ret;
2429
2430 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2431 if (!ptr)
2432 return -ENOMEM;
2433
2434 ret = spi_register_controller(ctlr);
2435 if (!ret) {
2436 *ptr = ctlr;
2437 devres_add(dev, ptr);
2438 } else {
2439 devres_free(ptr);
2440 }
2441
2442 return ret;
2443 }
2444 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2445
2446 static int __unregister(struct device *dev, void *null)
2447 {
2448 spi_unregister_device(to_spi_device(dev));
2449 return 0;
2450 }
2451
2452 /**
2453 * spi_unregister_controller - unregister SPI master or slave controller
2454 * @ctlr: the controller being unregistered
2455 * Context: can sleep
2456 *
2457 * This call is used only by SPI controller drivers, which are the
2458 * only ones directly touching chip registers.
2459 *
2460 * This must be called from context that can sleep.
2461 *
2462 * Note that this function also drops a reference to the controller.
2463 */
2464 void spi_unregister_controller(struct spi_controller *ctlr)
2465 {
2466 struct spi_controller *found;
2467 int id = ctlr->bus_num;
2468 int dummy;
2469
2470 /* First make sure that this controller was ever added */
2471 mutex_lock(&board_lock);
2472 found = idr_find(&spi_master_idr, id);
2473 mutex_unlock(&board_lock);
2474 if (ctlr->queued) {
2475 if (spi_destroy_queue(ctlr))
2476 dev_err(&ctlr->dev, "queue remove failed\n");
2477 }
2478 mutex_lock(&board_lock);
2479 list_del(&ctlr->list);
2480 mutex_unlock(&board_lock);
2481
2482 dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
2483 device_unregister(&ctlr->dev);
2484 /* free bus id */
2485 mutex_lock(&board_lock);
2486 if (found == ctlr)
2487 idr_remove(&spi_master_idr, id);
2488 mutex_unlock(&board_lock);
2489 }
2490 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2491
2492 int spi_controller_suspend(struct spi_controller *ctlr)
2493 {
2494 int ret;
2495
2496 /* Basically no-ops for non-queued controllers */
2497 if (!ctlr->queued)
2498 return 0;
2499
2500 ret = spi_stop_queue(ctlr);
2501 if (ret)
2502 dev_err(&ctlr->dev, "queue stop failed\n");
2503
2504 return ret;
2505 }
2506 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2507
2508 int spi_controller_resume(struct spi_controller *ctlr)
2509 {
2510 int ret;
2511
2512 if (!ctlr->queued)
2513 return 0;
2514
2515 ret = spi_start_queue(ctlr);
2516 if (ret)
2517 dev_err(&ctlr->dev, "queue restart failed\n");
2518
2519 return ret;
2520 }
2521 EXPORT_SYMBOL_GPL(spi_controller_resume);
2522
2523 static int __spi_controller_match(struct device *dev, const void *data)
2524 {
2525 struct spi_controller *ctlr;
2526 const u16 *bus_num = data;
2527
2528 ctlr = container_of(dev, struct spi_controller, dev);
2529 return ctlr->bus_num == *bus_num;
2530 }
2531
2532 /**
2533 * spi_busnum_to_master - look up master associated with bus_num
2534 * @bus_num: the master's bus number
2535 * Context: can sleep
2536 *
2537 * This call may be used with devices that are registered after
2538 * arch init time. It returns a refcounted pointer to the relevant
2539 * spi_controller (which the caller must release), or NULL if there is
2540 * no such master registered.
2541 *
2542 * Return: the SPI master structure on success, else NULL.
2543 */
2544 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2545 {
2546 struct device *dev;
2547 struct spi_controller *ctlr = NULL;
2548
2549 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2550 __spi_controller_match);
2551 if (dev)
2552 ctlr = container_of(dev, struct spi_controller, dev);
2553 /* reference got in class_find_device */
2554 return ctlr;
2555 }
2556 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2557
2558 /*-------------------------------------------------------------------------*/
2559
2560 /* Core methods for SPI resource management */
2561
2562 /**
2563 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2564 * during the processing of a spi_message while using
2565 * spi_transfer_one
2566 * @spi: the spi device for which we allocate memory
2567 * @release: the release code to execute for this resource
2568 * @size: size to alloc and return
2569 * @gfp: GFP allocation flags
2570 *
2571 * Return: the pointer to the allocated data
2572 *
2573 * This may get enhanced in the future to allocate from a memory pool
2574 * of the @spi_device or @spi_controller to avoid repeated allocations.
2575 */
2576 void *spi_res_alloc(struct spi_device *spi,
2577 spi_res_release_t release,
2578 size_t size, gfp_t gfp)
2579 {
2580 struct spi_res *sres;
2581
2582 sres = kzalloc(sizeof(*sres) + size, gfp);
2583 if (!sres)
2584 return NULL;
2585
2586 INIT_LIST_HEAD(&sres->entry);
2587 sres->release = release;
2588
2589 return sres->data;
2590 }
2591 EXPORT_SYMBOL_GPL(spi_res_alloc);
2592
2593 /**
2594 * spi_res_free - free an spi resource
2595 * @res: pointer to the custom data of a resource
2596 *
2597 */
2598 void spi_res_free(void *res)
2599 {
2600 struct spi_res *sres = container_of(res, struct spi_res, data);
2601
2602 if (!res)
2603 return;
2604
2605 WARN_ON(!list_empty(&sres->entry));
2606 kfree(sres);
2607 }
2608 EXPORT_SYMBOL_GPL(spi_res_free);
2609
2610 /**
2611 * spi_res_add - add a spi_res to the spi_message
2612 * @message: the spi message
2613 * @res: the spi_resource
2614 */
2615 void spi_res_add(struct spi_message *message, void *res)
2616 {
2617 struct spi_res *sres = container_of(res, struct spi_res, data);
2618
2619 WARN_ON(!list_empty(&sres->entry));
2620 list_add_tail(&sres->entry, &message->resources);
2621 }
2622 EXPORT_SYMBOL_GPL(spi_res_add);
2623
2624 /**
2625 * spi_res_release - release all spi resources for this message
2626 * @ctlr: the @spi_controller
2627 * @message: the @spi_message
2628 */
2629 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2630 {
2631 struct spi_res *res;
2632
2633 while (!list_empty(&message->resources)) {
2634 res = list_last_entry(&message->resources,
2635 struct spi_res, entry);
2636
2637 if (res->release)
2638 res->release(ctlr, message, res->data);
2639
2640 list_del(&res->entry);
2641
2642 kfree(res);
2643 }
2644 }
2645 EXPORT_SYMBOL_GPL(spi_res_release);
2646
2647 /*-------------------------------------------------------------------------*/
2648
2649 /* Core methods for spi_message alterations */
2650
2651 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2652 struct spi_message *msg,
2653 void *res)
2654 {
2655 struct spi_replaced_transfers *rxfer = res;
2656 size_t i;
2657
2658 /* call extra callback if requested */
2659 if (rxfer->release)
2660 rxfer->release(ctlr, msg, res);
2661
2662 /* insert replaced transfers back into the message */
2663 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2664
2665 /* remove the formerly inserted entries */
2666 for (i = 0; i < rxfer->inserted; i++)
2667 list_del(&rxfer->inserted_transfers[i].transfer_list);
2668 }
2669
2670 /**
2671 * spi_replace_transfers - replace transfers with several transfers
2672 * and register change with spi_message.resources
2673 * @msg: the spi_message we work upon
2674 * @xfer_first: the first spi_transfer we want to replace
2675 * @remove: number of transfers to remove
2676 * @insert: the number of transfers we want to insert instead
2677 * @release: extra release code necessary in some circumstances
2678 * @extradatasize: extra data to allocate (with alignment guarantees
2679 * of struct @spi_transfer)
2680 * @gfp: gfp flags
2681 *
2682 * Returns: pointer to @spi_replaced_transfers,
2683 * PTR_ERR(...) in case of errors.
2684 */
2685 struct spi_replaced_transfers *spi_replace_transfers(
2686 struct spi_message *msg,
2687 struct spi_transfer *xfer_first,
2688 size_t remove,
2689 size_t insert,
2690 spi_replaced_release_t release,
2691 size_t extradatasize,
2692 gfp_t gfp)
2693 {
2694 struct spi_replaced_transfers *rxfer;
2695 struct spi_transfer *xfer;
2696 size_t i;
2697
2698 /* allocate the structure using spi_res */
2699 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2700 insert * sizeof(struct spi_transfer)
2701 + sizeof(struct spi_replaced_transfers)
2702 + extradatasize,
2703 gfp);
2704 if (!rxfer)
2705 return ERR_PTR(-ENOMEM);
2706
2707 /* the release code to invoke before running the generic release */
2708 rxfer->release = release;
2709
2710 /* assign extradata */
2711 if (extradatasize)
2712 rxfer->extradata =
2713 &rxfer->inserted_transfers[insert];
2714
2715 /* init the replaced_transfers list */
2716 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2717
2718 /* assign the list_entry after which we should reinsert
2719 * the @replaced_transfers - it may be spi_message.messages!
2720 */
2721 rxfer->replaced_after = xfer_first->transfer_list.prev;
2722
2723 /* remove the requested number of transfers */
2724 for (i = 0; i < remove; i++) {
2725 /* if the entry after replaced_after it is msg->transfers
2726 * then we have been requested to remove more transfers
2727 * than are in the list
2728 */
2729 if (rxfer->replaced_after->next == &msg->transfers) {
2730 dev_err(&msg->spi->dev,
2731 "requested to remove more spi_transfers than are available\n");
2732 /* insert replaced transfers back into the message */
2733 list_splice(&rxfer->replaced_transfers,
2734 rxfer->replaced_after);
2735
2736 /* free the spi_replace_transfer structure */
2737 spi_res_free(rxfer);
2738
2739 /* and return with an error */
2740 return ERR_PTR(-EINVAL);
2741 }
2742
2743 /* remove the entry after replaced_after from list of
2744 * transfers and add it to list of replaced_transfers
2745 */
2746 list_move_tail(rxfer->replaced_after->next,
2747 &rxfer->replaced_transfers);
2748 }
2749
2750 /* create copy of the given xfer with identical settings
2751 * based on the first transfer to get removed
2752 */
2753 for (i = 0; i < insert; i++) {
2754 /* we need to run in reverse order */
2755 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2756
2757 /* copy all spi_transfer data */
2758 memcpy(xfer, xfer_first, sizeof(*xfer));
2759
2760 /* add to list */
2761 list_add(&xfer->transfer_list, rxfer->replaced_after);
2762
2763 /* clear cs_change and delay_usecs for all but the last */
2764 if (i) {
2765 xfer->cs_change = false;
2766 xfer->delay_usecs = 0;
2767 }
2768 }
2769
2770 /* set up inserted */
2771 rxfer->inserted = insert;
2772
2773 /* and register it with spi_res/spi_message */
2774 spi_res_add(msg, rxfer);
2775
2776 return rxfer;
2777 }
2778 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2779
2780 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2781 struct spi_message *msg,
2782 struct spi_transfer **xferp,
2783 size_t maxsize,
2784 gfp_t gfp)
2785 {
2786 struct spi_transfer *xfer = *xferp, *xfers;
2787 struct spi_replaced_transfers *srt;
2788 size_t offset;
2789 size_t count, i;
2790
2791 /* calculate how many we have to replace */
2792 count = DIV_ROUND_UP(xfer->len, maxsize);
2793
2794 /* create replacement */
2795 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2796 if (IS_ERR(srt))
2797 return PTR_ERR(srt);
2798 xfers = srt->inserted_transfers;
2799
2800 /* now handle each of those newly inserted spi_transfers
2801 * note that the replacements spi_transfers all are preset
2802 * to the same values as *xferp, so tx_buf, rx_buf and len
2803 * are all identical (as well as most others)
2804 * so we just have to fix up len and the pointers.
2805 *
2806 * this also includes support for the depreciated
2807 * spi_message.is_dma_mapped interface
2808 */
2809
2810 /* the first transfer just needs the length modified, so we
2811 * run it outside the loop
2812 */
2813 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2814
2815 /* all the others need rx_buf/tx_buf also set */
2816 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2817 /* update rx_buf, tx_buf and dma */
2818 if (xfers[i].rx_buf)
2819 xfers[i].rx_buf += offset;
2820 if (xfers[i].rx_dma)
2821 xfers[i].rx_dma += offset;
2822 if (xfers[i].tx_buf)
2823 xfers[i].tx_buf += offset;
2824 if (xfers[i].tx_dma)
2825 xfers[i].tx_dma += offset;
2826
2827 /* update length */
2828 xfers[i].len = min(maxsize, xfers[i].len - offset);
2829 }
2830
2831 /* we set up xferp to the last entry we have inserted,
2832 * so that we skip those already split transfers
2833 */
2834 *xferp = &xfers[count - 1];
2835
2836 /* increment statistics counters */
2837 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2838 transfers_split_maxsize);
2839 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2840 transfers_split_maxsize);
2841
2842 return 0;
2843 }
2844
2845 /**
2846 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2847 * when an individual transfer exceeds a
2848 * certain size
2849 * @ctlr: the @spi_controller for this transfer
2850 * @msg: the @spi_message to transform
2851 * @maxsize: the maximum when to apply this
2852 * @gfp: GFP allocation flags
2853 *
2854 * Return: status of transformation
2855 */
2856 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2857 struct spi_message *msg,
2858 size_t maxsize,
2859 gfp_t gfp)
2860 {
2861 struct spi_transfer *xfer;
2862 int ret;
2863
2864 /* iterate over the transfer_list,
2865 * but note that xfer is advanced to the last transfer inserted
2866 * to avoid checking sizes again unnecessarily (also xfer does
2867 * potentiall belong to a different list by the time the
2868 * replacement has happened
2869 */
2870 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2871 if (xfer->len > maxsize) {
2872 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2873 maxsize, gfp);
2874 if (ret)
2875 return ret;
2876 }
2877 }
2878
2879 return 0;
2880 }
2881 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2882
2883 /*-------------------------------------------------------------------------*/
2884
2885 /* Core methods for SPI controller protocol drivers. Some of the
2886 * other core methods are currently defined as inline functions.
2887 */
2888
2889 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2890 u8 bits_per_word)
2891 {
2892 if (ctlr->bits_per_word_mask) {
2893 /* Only 32 bits fit in the mask */
2894 if (bits_per_word > 32)
2895 return -EINVAL;
2896 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2897 return -EINVAL;
2898 }
2899
2900 return 0;
2901 }
2902
2903 /**
2904 * spi_setup - setup SPI mode and clock rate
2905 * @spi: the device whose settings are being modified
2906 * Context: can sleep, and no requests are queued to the device
2907 *
2908 * SPI protocol drivers may need to update the transfer mode if the
2909 * device doesn't work with its default. They may likewise need
2910 * to update clock rates or word sizes from initial values. This function
2911 * changes those settings, and must be called from a context that can sleep.
2912 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2913 * effect the next time the device is selected and data is transferred to
2914 * or from it. When this function returns, the spi device is deselected.
2915 *
2916 * Note that this call will fail if the protocol driver specifies an option
2917 * that the underlying controller or its driver does not support. For
2918 * example, not all hardware supports wire transfers using nine bit words,
2919 * LSB-first wire encoding, or active-high chipselects.
2920 *
2921 * Return: zero on success, else a negative error code.
2922 */
2923 int spi_setup(struct spi_device *spi)
2924 {
2925 unsigned bad_bits, ugly_bits;
2926 int status;
2927
2928 /* check mode to prevent that DUAL and QUAD set at the same time
2929 */
2930 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2931 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2932 dev_err(&spi->dev,
2933 "setup: can not select dual and quad at the same time\n");
2934 return -EINVAL;
2935 }
2936 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2937 */
2938 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2939 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
2940 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
2941 return -EINVAL;
2942 /* help drivers fail *cleanly* when they need options
2943 * that aren't supported with their current controller
2944 * SPI_CS_WORD has a fallback software implementation,
2945 * so it is ignored here.
2946 */
2947 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
2948 /* nothing prevents from working with active-high CS in case if it
2949 * is driven by GPIO.
2950 */
2951 if (gpio_is_valid(spi->cs_gpio))
2952 bad_bits &= ~SPI_CS_HIGH;
2953 ugly_bits = bad_bits &
2954 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
2955 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
2956 if (ugly_bits) {
2957 dev_warn(&spi->dev,
2958 "setup: ignoring unsupported mode bits %x\n",
2959 ugly_bits);
2960 spi->mode &= ~ugly_bits;
2961 bad_bits &= ~ugly_bits;
2962 }
2963 if (bad_bits) {
2964 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2965 bad_bits);
2966 return -EINVAL;
2967 }
2968
2969 if (!spi->bits_per_word)
2970 spi->bits_per_word = 8;
2971
2972 status = __spi_validate_bits_per_word(spi->controller,
2973 spi->bits_per_word);
2974 if (status)
2975 return status;
2976
2977 if (!spi->max_speed_hz)
2978 spi->max_speed_hz = spi->controller->max_speed_hz;
2979
2980 if (spi->controller->setup)
2981 status = spi->controller->setup(spi);
2982
2983 spi_set_cs(spi, false);
2984
2985 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2986 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2987 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2988 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2989 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2990 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2991 spi->bits_per_word, spi->max_speed_hz,
2992 status);
2993
2994 return status;
2995 }
2996 EXPORT_SYMBOL_GPL(spi_setup);
2997
2998 /**
2999 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3000 * @spi: the device that requires specific CS timing configuration
3001 * @setup: CS setup time in terms of clock count
3002 * @hold: CS hold time in terms of clock count
3003 * @inactive_dly: CS inactive delay between transfers in terms of clock count
3004 */
3005 void spi_set_cs_timing(struct spi_device *spi, u8 setup, u8 hold,
3006 u8 inactive_dly)
3007 {
3008 if (spi->controller->set_cs_timing)
3009 spi->controller->set_cs_timing(spi, setup, hold, inactive_dly);
3010 }
3011 EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3012
3013 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3014 {
3015 struct spi_controller *ctlr = spi->controller;
3016 struct spi_transfer *xfer;
3017 int w_size;
3018
3019 if (list_empty(&message->transfers))
3020 return -EINVAL;
3021
3022 /* If an SPI controller does not support toggling the CS line on each
3023 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3024 * for the CS line, we can emulate the CS-per-word hardware function by
3025 * splitting transfers into one-word transfers and ensuring that
3026 * cs_change is set for each transfer.
3027 */
3028 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3029 spi->cs_gpiod ||
3030 gpio_is_valid(spi->cs_gpio))) {
3031 size_t maxsize;
3032 int ret;
3033
3034 maxsize = (spi->bits_per_word + 7) / 8;
3035
3036 /* spi_split_transfers_maxsize() requires message->spi */
3037 message->spi = spi;
3038
3039 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3040 GFP_KERNEL);
3041 if (ret)
3042 return ret;
3043
3044 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3045 /* don't change cs_change on the last entry in the list */
3046 if (list_is_last(&xfer->transfer_list, &message->transfers))
3047 break;
3048 xfer->cs_change = 1;
3049 }
3050 }
3051
3052 /* Half-duplex links include original MicroWire, and ones with
3053 * only one data pin like SPI_3WIRE (switches direction) or where
3054 * either MOSI or MISO is missing. They can also be caused by
3055 * software limitations.
3056 */
3057 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3058 (spi->mode & SPI_3WIRE)) {
3059 unsigned flags = ctlr->flags;
3060
3061 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3062 if (xfer->rx_buf && xfer->tx_buf)
3063 return -EINVAL;
3064 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3065 return -EINVAL;
3066 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3067 return -EINVAL;
3068 }
3069 }
3070
3071 /**
3072 * Set transfer bits_per_word and max speed as spi device default if
3073 * it is not set for this transfer.
3074 * Set transfer tx_nbits and rx_nbits as single transfer default
3075 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3076 * Ensure transfer word_delay is at least as long as that required by
3077 * device itself.
3078 */
3079 message->frame_length = 0;
3080 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3081 message->frame_length += xfer->len;
3082 if (!xfer->bits_per_word)
3083 xfer->bits_per_word = spi->bits_per_word;
3084
3085 if (!xfer->speed_hz)
3086 xfer->speed_hz = spi->max_speed_hz;
3087
3088 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3089 xfer->speed_hz = ctlr->max_speed_hz;
3090
3091 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3092 return -EINVAL;
3093
3094 /*
3095 * SPI transfer length should be multiple of SPI word size
3096 * where SPI word size should be power-of-two multiple
3097 */
3098 if (xfer->bits_per_word <= 8)
3099 w_size = 1;
3100 else if (xfer->bits_per_word <= 16)
3101 w_size = 2;
3102 else
3103 w_size = 4;
3104
3105 /* No partial transfers accepted */
3106 if (xfer->len % w_size)
3107 return -EINVAL;
3108
3109 if (xfer->speed_hz && ctlr->min_speed_hz &&
3110 xfer->speed_hz < ctlr->min_speed_hz)
3111 return -EINVAL;
3112
3113 if (xfer->tx_buf && !xfer->tx_nbits)
3114 xfer->tx_nbits = SPI_NBITS_SINGLE;
3115 if (xfer->rx_buf && !xfer->rx_nbits)
3116 xfer->rx_nbits = SPI_NBITS_SINGLE;
3117 /* check transfer tx/rx_nbits:
3118 * 1. check the value matches one of single, dual and quad
3119 * 2. check tx/rx_nbits match the mode in spi_device
3120 */
3121 if (xfer->tx_buf) {
3122 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3123 xfer->tx_nbits != SPI_NBITS_DUAL &&
3124 xfer->tx_nbits != SPI_NBITS_QUAD)
3125 return -EINVAL;
3126 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3127 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3128 return -EINVAL;
3129 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3130 !(spi->mode & SPI_TX_QUAD))
3131 return -EINVAL;
3132 }
3133 /* check transfer rx_nbits */
3134 if (xfer->rx_buf) {
3135 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3136 xfer->rx_nbits != SPI_NBITS_DUAL &&
3137 xfer->rx_nbits != SPI_NBITS_QUAD)
3138 return -EINVAL;
3139 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3140 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3141 return -EINVAL;
3142 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3143 !(spi->mode & SPI_RX_QUAD))
3144 return -EINVAL;
3145 }
3146
3147 if (xfer->word_delay_usecs < spi->word_delay_usecs)
3148 xfer->word_delay_usecs = spi->word_delay_usecs;
3149 }
3150
3151 message->status = -EINPROGRESS;
3152
3153 return 0;
3154 }
3155
3156 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3157 {
3158 struct spi_controller *ctlr = spi->controller;
3159
3160 /*
3161 * Some controllers do not support doing regular SPI transfers. Return
3162 * ENOTSUPP when this is the case.
3163 */
3164 if (!ctlr->transfer)
3165 return -ENOTSUPP;
3166
3167 message->spi = spi;
3168
3169 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3170 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3171
3172 trace_spi_message_submit(message);
3173
3174 return ctlr->transfer(spi, message);
3175 }
3176
3177 /**
3178 * spi_async - asynchronous SPI transfer
3179 * @spi: device with which data will be exchanged
3180 * @message: describes the data transfers, including completion callback
3181 * Context: any (irqs may be blocked, etc)
3182 *
3183 * This call may be used in_irq and other contexts which can't sleep,
3184 * as well as from task contexts which can sleep.
3185 *
3186 * The completion callback is invoked in a context which can't sleep.
3187 * Before that invocation, the value of message->status is undefined.
3188 * When the callback is issued, message->status holds either zero (to
3189 * indicate complete success) or a negative error code. After that
3190 * callback returns, the driver which issued the transfer request may
3191 * deallocate the associated memory; it's no longer in use by any SPI
3192 * core or controller driver code.
3193 *
3194 * Note that although all messages to a spi_device are handled in
3195 * FIFO order, messages may go to different devices in other orders.
3196 * Some device might be higher priority, or have various "hard" access
3197 * time requirements, for example.
3198 *
3199 * On detection of any fault during the transfer, processing of
3200 * the entire message is aborted, and the device is deselected.
3201 * Until returning from the associated message completion callback,
3202 * no other spi_message queued to that device will be processed.
3203 * (This rule applies equally to all the synchronous transfer calls,
3204 * which are wrappers around this core asynchronous primitive.)
3205 *
3206 * Return: zero on success, else a negative error code.
3207 */
3208 int spi_async(struct spi_device *spi, struct spi_message *message)
3209 {
3210 struct spi_controller *ctlr = spi->controller;
3211 int ret;
3212 unsigned long flags;
3213
3214 ret = __spi_validate(spi, message);
3215 if (ret != 0)
3216 return ret;
3217
3218 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3219
3220 if (ctlr->bus_lock_flag)
3221 ret = -EBUSY;
3222 else
3223 ret = __spi_async(spi, message);
3224
3225 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3226
3227 return ret;
3228 }
3229 EXPORT_SYMBOL_GPL(spi_async);
3230
3231 /**
3232 * spi_async_locked - version of spi_async with exclusive bus usage
3233 * @spi: device with which data will be exchanged
3234 * @message: describes the data transfers, including completion callback
3235 * Context: any (irqs may be blocked, etc)
3236 *
3237 * This call may be used in_irq and other contexts which can't sleep,
3238 * as well as from task contexts which can sleep.
3239 *
3240 * The completion callback is invoked in a context which can't sleep.
3241 * Before that invocation, the value of message->status is undefined.
3242 * When the callback is issued, message->status holds either zero (to
3243 * indicate complete success) or a negative error code. After that
3244 * callback returns, the driver which issued the transfer request may
3245 * deallocate the associated memory; it's no longer in use by any SPI
3246 * core or controller driver code.
3247 *
3248 * Note that although all messages to a spi_device are handled in
3249 * FIFO order, messages may go to different devices in other orders.
3250 * Some device might be higher priority, or have various "hard" access
3251 * time requirements, for example.
3252 *
3253 * On detection of any fault during the transfer, processing of
3254 * the entire message is aborted, and the device is deselected.
3255 * Until returning from the associated message completion callback,
3256 * no other spi_message queued to that device will be processed.
3257 * (This rule applies equally to all the synchronous transfer calls,
3258 * which are wrappers around this core asynchronous primitive.)
3259 *
3260 * Return: zero on success, else a negative error code.
3261 */
3262 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3263 {
3264 struct spi_controller *ctlr = spi->controller;
3265 int ret;
3266 unsigned long flags;
3267
3268 ret = __spi_validate(spi, message);
3269 if (ret != 0)
3270 return ret;
3271
3272 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3273
3274 ret = __spi_async(spi, message);
3275
3276 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3277
3278 return ret;
3279
3280 }
3281 EXPORT_SYMBOL_GPL(spi_async_locked);
3282
3283 /*-------------------------------------------------------------------------*/
3284
3285 /* Utility methods for SPI protocol drivers, layered on
3286 * top of the core. Some other utility methods are defined as
3287 * inline functions.
3288 */
3289
3290 static void spi_complete(void *arg)
3291 {
3292 complete(arg);
3293 }
3294
3295 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3296 {
3297 DECLARE_COMPLETION_ONSTACK(done);
3298 int status;
3299 struct spi_controller *ctlr = spi->controller;
3300 unsigned long flags;
3301
3302 status = __spi_validate(spi, message);
3303 if (status != 0)
3304 return status;
3305
3306 message->complete = spi_complete;
3307 message->context = &done;
3308 message->spi = spi;
3309
3310 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3311 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3312
3313 /* If we're not using the legacy transfer method then we will
3314 * try to transfer in the calling context so special case.
3315 * This code would be less tricky if we could remove the
3316 * support for driver implemented message queues.
3317 */
3318 if (ctlr->transfer == spi_queued_transfer) {
3319 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3320
3321 trace_spi_message_submit(message);
3322
3323 status = __spi_queued_transfer(spi, message, false);
3324
3325 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3326 } else {
3327 status = spi_async_locked(spi, message);
3328 }
3329
3330 if (status == 0) {
3331 /* Push out the messages in the calling context if we
3332 * can.
3333 */
3334 if (ctlr->transfer == spi_queued_transfer) {
3335 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3336 spi_sync_immediate);
3337 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3338 spi_sync_immediate);
3339 __spi_pump_messages(ctlr, false);
3340 }
3341
3342 wait_for_completion(&done);
3343 status = message->status;
3344 }
3345 message->context = NULL;
3346 return status;
3347 }
3348
3349 /**
3350 * spi_sync - blocking/synchronous SPI data transfers
3351 * @spi: device with which data will be exchanged
3352 * @message: describes the data transfers
3353 * Context: can sleep
3354 *
3355 * This call may only be used from a context that may sleep. The sleep
3356 * is non-interruptible, and has no timeout. Low-overhead controller
3357 * drivers may DMA directly into and out of the message buffers.
3358 *
3359 * Note that the SPI device's chip select is active during the message,
3360 * and then is normally disabled between messages. Drivers for some
3361 * frequently-used devices may want to minimize costs of selecting a chip,
3362 * by leaving it selected in anticipation that the next message will go
3363 * to the same chip. (That may increase power usage.)
3364 *
3365 * Also, the caller is guaranteeing that the memory associated with the
3366 * message will not be freed before this call returns.
3367 *
3368 * Return: zero on success, else a negative error code.
3369 */
3370 int spi_sync(struct spi_device *spi, struct spi_message *message)
3371 {
3372 int ret;
3373
3374 mutex_lock(&spi->controller->bus_lock_mutex);
3375 ret = __spi_sync(spi, message);
3376 mutex_unlock(&spi->controller->bus_lock_mutex);
3377
3378 return ret;
3379 }
3380 EXPORT_SYMBOL_GPL(spi_sync);
3381
3382 /**
3383 * spi_sync_locked - version of spi_sync with exclusive bus usage
3384 * @spi: device with which data will be exchanged
3385 * @message: describes the data transfers
3386 * Context: can sleep
3387 *
3388 * This call may only be used from a context that may sleep. The sleep
3389 * is non-interruptible, and has no timeout. Low-overhead controller
3390 * drivers may DMA directly into and out of the message buffers.
3391 *
3392 * This call should be used by drivers that require exclusive access to the
3393 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3394 * be released by a spi_bus_unlock call when the exclusive access is over.
3395 *
3396 * Return: zero on success, else a negative error code.
3397 */
3398 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3399 {
3400 return __spi_sync(spi, message);
3401 }
3402 EXPORT_SYMBOL_GPL(spi_sync_locked);
3403
3404 /**
3405 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3406 * @ctlr: SPI bus master that should be locked for exclusive bus access
3407 * Context: can sleep
3408 *
3409 * This call may only be used from a context that may sleep. The sleep
3410 * is non-interruptible, and has no timeout.
3411 *
3412 * This call should be used by drivers that require exclusive access to the
3413 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3414 * exclusive access is over. Data transfer must be done by spi_sync_locked
3415 * and spi_async_locked calls when the SPI bus lock is held.
3416 *
3417 * Return: always zero.
3418 */
3419 int spi_bus_lock(struct spi_controller *ctlr)
3420 {
3421 unsigned long flags;
3422
3423 mutex_lock(&ctlr->bus_lock_mutex);
3424
3425 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3426 ctlr->bus_lock_flag = 1;
3427 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3428
3429 /* mutex remains locked until spi_bus_unlock is called */
3430
3431 return 0;
3432 }
3433 EXPORT_SYMBOL_GPL(spi_bus_lock);
3434
3435 /**
3436 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3437 * @ctlr: SPI bus master that was locked for exclusive bus access
3438 * Context: can sleep
3439 *
3440 * This call may only be used from a context that may sleep. The sleep
3441 * is non-interruptible, and has no timeout.
3442 *
3443 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3444 * call.
3445 *
3446 * Return: always zero.
3447 */
3448 int spi_bus_unlock(struct spi_controller *ctlr)
3449 {
3450 ctlr->bus_lock_flag = 0;
3451
3452 mutex_unlock(&ctlr->bus_lock_mutex);
3453
3454 return 0;
3455 }
3456 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3457
3458 /* portable code must never pass more than 32 bytes */
3459 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3460
3461 static u8 *buf;
3462
3463 /**
3464 * spi_write_then_read - SPI synchronous write followed by read
3465 * @spi: device with which data will be exchanged
3466 * @txbuf: data to be written (need not be dma-safe)
3467 * @n_tx: size of txbuf, in bytes
3468 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3469 * @n_rx: size of rxbuf, in bytes
3470 * Context: can sleep
3471 *
3472 * This performs a half duplex MicroWire style transaction with the
3473 * device, sending txbuf and then reading rxbuf. The return value
3474 * is zero for success, else a negative errno status code.
3475 * This call may only be used from a context that may sleep.
3476 *
3477 * Parameters to this routine are always copied using a small buffer;
3478 * portable code should never use this for more than 32 bytes.
3479 * Performance-sensitive or bulk transfer code should instead use
3480 * spi_{async,sync}() calls with dma-safe buffers.
3481 *
3482 * Return: zero on success, else a negative error code.
3483 */
3484 int spi_write_then_read(struct spi_device *spi,
3485 const void *txbuf, unsigned n_tx,
3486 void *rxbuf, unsigned n_rx)
3487 {
3488 static DEFINE_MUTEX(lock);
3489
3490 int status;
3491 struct spi_message message;
3492 struct spi_transfer x[2];
3493 u8 *local_buf;
3494
3495 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3496 * copying here, (as a pure convenience thing), but we can
3497 * keep heap costs out of the hot path unless someone else is
3498 * using the pre-allocated buffer or the transfer is too large.
3499 */
3500 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3501 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3502 GFP_KERNEL | GFP_DMA);
3503 if (!local_buf)
3504 return -ENOMEM;
3505 } else {
3506 local_buf = buf;
3507 }
3508
3509 spi_message_init(&message);
3510 memset(x, 0, sizeof(x));
3511 if (n_tx) {
3512 x[0].len = n_tx;
3513 spi_message_add_tail(&x[0], &message);
3514 }
3515 if (n_rx) {
3516 x[1].len = n_rx;
3517 spi_message_add_tail(&x[1], &message);
3518 }
3519
3520 memcpy(local_buf, txbuf, n_tx);
3521 x[0].tx_buf = local_buf;
3522 x[1].rx_buf = local_buf + n_tx;
3523
3524 /* do the i/o */
3525 status = spi_sync(spi, &message);
3526 if (status == 0)
3527 memcpy(rxbuf, x[1].rx_buf, n_rx);
3528
3529 if (x[0].tx_buf == buf)
3530 mutex_unlock(&lock);
3531 else
3532 kfree(local_buf);
3533
3534 return status;
3535 }
3536 EXPORT_SYMBOL_GPL(spi_write_then_read);
3537
3538 /*-------------------------------------------------------------------------*/
3539
3540 #if IS_ENABLED(CONFIG_OF)
3541 static int __spi_of_device_match(struct device *dev, void *data)
3542 {
3543 return dev->of_node == data;
3544 }
3545
3546 /* must call put_device() when done with returned spi_device device */
3547 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3548 {
3549 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3550 __spi_of_device_match);
3551 return dev ? to_spi_device(dev) : NULL;
3552 }
3553 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3554 #endif /* IS_ENABLED(CONFIG_OF) */
3555
3556 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3557 static int __spi_of_controller_match(struct device *dev, const void *data)
3558 {
3559 return dev->of_node == data;
3560 }
3561
3562 /* the spi controllers are not using spi_bus, so we find it with another way */
3563 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3564 {
3565 struct device *dev;
3566
3567 dev = class_find_device(&spi_master_class, NULL, node,
3568 __spi_of_controller_match);
3569 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3570 dev = class_find_device(&spi_slave_class, NULL, node,
3571 __spi_of_controller_match);
3572 if (!dev)
3573 return NULL;
3574
3575 /* reference got in class_find_device */
3576 return container_of(dev, struct spi_controller, dev);
3577 }
3578
3579 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3580 void *arg)
3581 {
3582 struct of_reconfig_data *rd = arg;
3583 struct spi_controller *ctlr;
3584 struct spi_device *spi;
3585
3586 switch (of_reconfig_get_state_change(action, arg)) {
3587 case OF_RECONFIG_CHANGE_ADD:
3588 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3589 if (ctlr == NULL)
3590 return NOTIFY_OK; /* not for us */
3591
3592 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3593 put_device(&ctlr->dev);
3594 return NOTIFY_OK;
3595 }
3596
3597 spi = of_register_spi_device(ctlr, rd->dn);
3598 put_device(&ctlr->dev);
3599
3600 if (IS_ERR(spi)) {
3601 pr_err("%s: failed to create for '%pOF'\n",
3602 __func__, rd->dn);
3603 of_node_clear_flag(rd->dn, OF_POPULATED);
3604 return notifier_from_errno(PTR_ERR(spi));
3605 }
3606 break;
3607
3608 case OF_RECONFIG_CHANGE_REMOVE:
3609 /* already depopulated? */
3610 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3611 return NOTIFY_OK;
3612
3613 /* find our device by node */
3614 spi = of_find_spi_device_by_node(rd->dn);
3615 if (spi == NULL)
3616 return NOTIFY_OK; /* no? not meant for us */
3617
3618 /* unregister takes one ref away */
3619 spi_unregister_device(spi);
3620
3621 /* and put the reference of the find */
3622 put_device(&spi->dev);
3623 break;
3624 }
3625
3626 return NOTIFY_OK;
3627 }
3628
3629 static struct notifier_block spi_of_notifier = {
3630 .notifier_call = of_spi_notify,
3631 };
3632 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3633 extern struct notifier_block spi_of_notifier;
3634 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3635
3636 #if IS_ENABLED(CONFIG_ACPI)
3637 static int spi_acpi_controller_match(struct device *dev, const void *data)
3638 {
3639 return ACPI_COMPANION(dev->parent) == data;
3640 }
3641
3642 static int spi_acpi_device_match(struct device *dev, void *data)
3643 {
3644 return ACPI_COMPANION(dev) == data;
3645 }
3646
3647 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3648 {
3649 struct device *dev;
3650
3651 dev = class_find_device(&spi_master_class, NULL, adev,
3652 spi_acpi_controller_match);
3653 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3654 dev = class_find_device(&spi_slave_class, NULL, adev,
3655 spi_acpi_controller_match);
3656 if (!dev)
3657 return NULL;
3658
3659 return container_of(dev, struct spi_controller, dev);
3660 }
3661
3662 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3663 {
3664 struct device *dev;
3665
3666 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3667
3668 return dev ? to_spi_device(dev) : NULL;
3669 }
3670
3671 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3672 void *arg)
3673 {
3674 struct acpi_device *adev = arg;
3675 struct spi_controller *ctlr;
3676 struct spi_device *spi;
3677
3678 switch (value) {
3679 case ACPI_RECONFIG_DEVICE_ADD:
3680 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3681 if (!ctlr)
3682 break;
3683
3684 acpi_register_spi_device(ctlr, adev);
3685 put_device(&ctlr->dev);
3686 break;
3687 case ACPI_RECONFIG_DEVICE_REMOVE:
3688 if (!acpi_device_enumerated(adev))
3689 break;
3690
3691 spi = acpi_spi_find_device_by_adev(adev);
3692 if (!spi)
3693 break;
3694
3695 spi_unregister_device(spi);
3696 put_device(&spi->dev);
3697 break;
3698 }
3699
3700 return NOTIFY_OK;
3701 }
3702
3703 static struct notifier_block spi_acpi_notifier = {
3704 .notifier_call = acpi_spi_notify,
3705 };
3706 #else
3707 extern struct notifier_block spi_acpi_notifier;
3708 #endif
3709
3710 static int __init spi_init(void)
3711 {
3712 int status;
3713
3714 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3715 if (!buf) {
3716 status = -ENOMEM;
3717 goto err0;
3718 }
3719
3720 status = bus_register(&spi_bus_type);
3721 if (status < 0)
3722 goto err1;
3723
3724 status = class_register(&spi_master_class);
3725 if (status < 0)
3726 goto err2;
3727
3728 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3729 status = class_register(&spi_slave_class);
3730 if (status < 0)
3731 goto err3;
3732 }
3733
3734 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3735 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3736 if (IS_ENABLED(CONFIG_ACPI))
3737 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3738
3739 return 0;
3740
3741 err3:
3742 class_unregister(&spi_master_class);
3743 err2:
3744 bus_unregister(&spi_bus_type);
3745 err1:
3746 kfree(buf);
3747 buf = NULL;
3748 err0:
3749 return status;
3750 }
3751
3752 /* board_info is normally registered in arch_initcall(),
3753 * but even essential drivers wait till later
3754 *
3755 * REVISIT only boardinfo really needs static linking. the rest (device and
3756 * driver registration) _could_ be dynamically linked (modular) ... costs
3757 * include needing to have boardinfo data structures be much more public.
3758 */
3759 postcore_initcall(spi_init);
3760