]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/spi/spi.c
Input: wm97xx: add new AC97 bus support
[mirror_ubuntu-focal-kernel.git] / drivers / spi / spi.c
1 /*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/property.h>
35 #include <linux/export.h>
36 #include <linux/sched/rt.h>
37 #include <uapi/linux/sched/types.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/ioport.h>
41 #include <linux/acpi.h>
42 #include <linux/highmem.h>
43 #include <linux/idr.h>
44 #include <linux/platform_data/x86/apple.h>
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/spi.h>
48 #define SPI_DYN_FIRST_BUS_NUM 0
49
50 static DEFINE_IDR(spi_master_idr);
51
52 static void spidev_release(struct device *dev)
53 {
54 struct spi_device *spi = to_spi_device(dev);
55
56 /* spi controllers may cleanup for released devices */
57 if (spi->controller->cleanup)
58 spi->controller->cleanup(spi);
59
60 spi_controller_put(spi->controller);
61 kfree(spi);
62 }
63
64 static ssize_t
65 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
66 {
67 const struct spi_device *spi = to_spi_device(dev);
68 int len;
69
70 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
71 if (len != -ENODEV)
72 return len;
73
74 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
75 }
76 static DEVICE_ATTR_RO(modalias);
77
78 #define SPI_STATISTICS_ATTRS(field, file) \
79 static ssize_t spi_controller_##field##_show(struct device *dev, \
80 struct device_attribute *attr, \
81 char *buf) \
82 { \
83 struct spi_controller *ctlr = container_of(dev, \
84 struct spi_controller, dev); \
85 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
86 } \
87 static struct device_attribute dev_attr_spi_controller_##field = { \
88 .attr = { .name = file, .mode = 0444 }, \
89 .show = spi_controller_##field##_show, \
90 }; \
91 static ssize_t spi_device_##field##_show(struct device *dev, \
92 struct device_attribute *attr, \
93 char *buf) \
94 { \
95 struct spi_device *spi = to_spi_device(dev); \
96 return spi_statistics_##field##_show(&spi->statistics, buf); \
97 } \
98 static struct device_attribute dev_attr_spi_device_##field = { \
99 .attr = { .name = file, .mode = 0444 }, \
100 .show = spi_device_##field##_show, \
101 }
102
103 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
104 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
105 char *buf) \
106 { \
107 unsigned long flags; \
108 ssize_t len; \
109 spin_lock_irqsave(&stat->lock, flags); \
110 len = sprintf(buf, format_string, stat->field); \
111 spin_unlock_irqrestore(&stat->lock, flags); \
112 return len; \
113 } \
114 SPI_STATISTICS_ATTRS(name, file)
115
116 #define SPI_STATISTICS_SHOW(field, format_string) \
117 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
118 field, format_string)
119
120 SPI_STATISTICS_SHOW(messages, "%lu");
121 SPI_STATISTICS_SHOW(transfers, "%lu");
122 SPI_STATISTICS_SHOW(errors, "%lu");
123 SPI_STATISTICS_SHOW(timedout, "%lu");
124
125 SPI_STATISTICS_SHOW(spi_sync, "%lu");
126 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
127 SPI_STATISTICS_SHOW(spi_async, "%lu");
128
129 SPI_STATISTICS_SHOW(bytes, "%llu");
130 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
131 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
132
133 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
134 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
135 "transfer_bytes_histo_" number, \
136 transfer_bytes_histo[index], "%lu")
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
147 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
148 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
149 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
150 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
151 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
152 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
153 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
154
155 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
156
157 static struct attribute *spi_dev_attrs[] = {
158 &dev_attr_modalias.attr,
159 NULL,
160 };
161
162 static const struct attribute_group spi_dev_group = {
163 .attrs = spi_dev_attrs,
164 };
165
166 static struct attribute *spi_device_statistics_attrs[] = {
167 &dev_attr_spi_device_messages.attr,
168 &dev_attr_spi_device_transfers.attr,
169 &dev_attr_spi_device_errors.attr,
170 &dev_attr_spi_device_timedout.attr,
171 &dev_attr_spi_device_spi_sync.attr,
172 &dev_attr_spi_device_spi_sync_immediate.attr,
173 &dev_attr_spi_device_spi_async.attr,
174 &dev_attr_spi_device_bytes.attr,
175 &dev_attr_spi_device_bytes_rx.attr,
176 &dev_attr_spi_device_bytes_tx.attr,
177 &dev_attr_spi_device_transfer_bytes_histo0.attr,
178 &dev_attr_spi_device_transfer_bytes_histo1.attr,
179 &dev_attr_spi_device_transfer_bytes_histo2.attr,
180 &dev_attr_spi_device_transfer_bytes_histo3.attr,
181 &dev_attr_spi_device_transfer_bytes_histo4.attr,
182 &dev_attr_spi_device_transfer_bytes_histo5.attr,
183 &dev_attr_spi_device_transfer_bytes_histo6.attr,
184 &dev_attr_spi_device_transfer_bytes_histo7.attr,
185 &dev_attr_spi_device_transfer_bytes_histo8.attr,
186 &dev_attr_spi_device_transfer_bytes_histo9.attr,
187 &dev_attr_spi_device_transfer_bytes_histo10.attr,
188 &dev_attr_spi_device_transfer_bytes_histo11.attr,
189 &dev_attr_spi_device_transfer_bytes_histo12.attr,
190 &dev_attr_spi_device_transfer_bytes_histo13.attr,
191 &dev_attr_spi_device_transfer_bytes_histo14.attr,
192 &dev_attr_spi_device_transfer_bytes_histo15.attr,
193 &dev_attr_spi_device_transfer_bytes_histo16.attr,
194 &dev_attr_spi_device_transfers_split_maxsize.attr,
195 NULL,
196 };
197
198 static const struct attribute_group spi_device_statistics_group = {
199 .name = "statistics",
200 .attrs = spi_device_statistics_attrs,
201 };
202
203 static const struct attribute_group *spi_dev_groups[] = {
204 &spi_dev_group,
205 &spi_device_statistics_group,
206 NULL,
207 };
208
209 static struct attribute *spi_controller_statistics_attrs[] = {
210 &dev_attr_spi_controller_messages.attr,
211 &dev_attr_spi_controller_transfers.attr,
212 &dev_attr_spi_controller_errors.attr,
213 &dev_attr_spi_controller_timedout.attr,
214 &dev_attr_spi_controller_spi_sync.attr,
215 &dev_attr_spi_controller_spi_sync_immediate.attr,
216 &dev_attr_spi_controller_spi_async.attr,
217 &dev_attr_spi_controller_bytes.attr,
218 &dev_attr_spi_controller_bytes_rx.attr,
219 &dev_attr_spi_controller_bytes_tx.attr,
220 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
221 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
222 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
223 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
224 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
225 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
226 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
227 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
228 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
229 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
230 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
231 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
232 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
233 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
234 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
235 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
236 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
237 &dev_attr_spi_controller_transfers_split_maxsize.attr,
238 NULL,
239 };
240
241 static const struct attribute_group spi_controller_statistics_group = {
242 .name = "statistics",
243 .attrs = spi_controller_statistics_attrs,
244 };
245
246 static const struct attribute_group *spi_master_groups[] = {
247 &spi_controller_statistics_group,
248 NULL,
249 };
250
251 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
252 struct spi_transfer *xfer,
253 struct spi_controller *ctlr)
254 {
255 unsigned long flags;
256 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
257
258 if (l2len < 0)
259 l2len = 0;
260
261 spin_lock_irqsave(&stats->lock, flags);
262
263 stats->transfers++;
264 stats->transfer_bytes_histo[l2len]++;
265
266 stats->bytes += xfer->len;
267 if ((xfer->tx_buf) &&
268 (xfer->tx_buf != ctlr->dummy_tx))
269 stats->bytes_tx += xfer->len;
270 if ((xfer->rx_buf) &&
271 (xfer->rx_buf != ctlr->dummy_rx))
272 stats->bytes_rx += xfer->len;
273
274 spin_unlock_irqrestore(&stats->lock, flags);
275 }
276 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
277
278 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
279 * and the sysfs version makes coldplug work too.
280 */
281
282 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
283 const struct spi_device *sdev)
284 {
285 while (id->name[0]) {
286 if (!strcmp(sdev->modalias, id->name))
287 return id;
288 id++;
289 }
290 return NULL;
291 }
292
293 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
294 {
295 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
296
297 return spi_match_id(sdrv->id_table, sdev);
298 }
299 EXPORT_SYMBOL_GPL(spi_get_device_id);
300
301 static int spi_match_device(struct device *dev, struct device_driver *drv)
302 {
303 const struct spi_device *spi = to_spi_device(dev);
304 const struct spi_driver *sdrv = to_spi_driver(drv);
305
306 /* Attempt an OF style match */
307 if (of_driver_match_device(dev, drv))
308 return 1;
309
310 /* Then try ACPI */
311 if (acpi_driver_match_device(dev, drv))
312 return 1;
313
314 if (sdrv->id_table)
315 return !!spi_match_id(sdrv->id_table, spi);
316
317 return strcmp(spi->modalias, drv->name) == 0;
318 }
319
320 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
321 {
322 const struct spi_device *spi = to_spi_device(dev);
323 int rc;
324
325 rc = acpi_device_uevent_modalias(dev, env);
326 if (rc != -ENODEV)
327 return rc;
328
329 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
330 }
331
332 struct bus_type spi_bus_type = {
333 .name = "spi",
334 .dev_groups = spi_dev_groups,
335 .match = spi_match_device,
336 .uevent = spi_uevent,
337 };
338 EXPORT_SYMBOL_GPL(spi_bus_type);
339
340
341 static int spi_drv_probe(struct device *dev)
342 {
343 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
344 struct spi_device *spi = to_spi_device(dev);
345 int ret;
346
347 ret = of_clk_set_defaults(dev->of_node, false);
348 if (ret)
349 return ret;
350
351 if (dev->of_node) {
352 spi->irq = of_irq_get(dev->of_node, 0);
353 if (spi->irq == -EPROBE_DEFER)
354 return -EPROBE_DEFER;
355 if (spi->irq < 0)
356 spi->irq = 0;
357 }
358
359 ret = dev_pm_domain_attach(dev, true);
360 if (ret != -EPROBE_DEFER) {
361 ret = sdrv->probe(spi);
362 if (ret)
363 dev_pm_domain_detach(dev, true);
364 }
365
366 return ret;
367 }
368
369 static int spi_drv_remove(struct device *dev)
370 {
371 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
372 int ret;
373
374 ret = sdrv->remove(to_spi_device(dev));
375 dev_pm_domain_detach(dev, true);
376
377 return ret;
378 }
379
380 static void spi_drv_shutdown(struct device *dev)
381 {
382 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
383
384 sdrv->shutdown(to_spi_device(dev));
385 }
386
387 /**
388 * __spi_register_driver - register a SPI driver
389 * @owner: owner module of the driver to register
390 * @sdrv: the driver to register
391 * Context: can sleep
392 *
393 * Return: zero on success, else a negative error code.
394 */
395 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
396 {
397 sdrv->driver.owner = owner;
398 sdrv->driver.bus = &spi_bus_type;
399 if (sdrv->probe)
400 sdrv->driver.probe = spi_drv_probe;
401 if (sdrv->remove)
402 sdrv->driver.remove = spi_drv_remove;
403 if (sdrv->shutdown)
404 sdrv->driver.shutdown = spi_drv_shutdown;
405 return driver_register(&sdrv->driver);
406 }
407 EXPORT_SYMBOL_GPL(__spi_register_driver);
408
409 /*-------------------------------------------------------------------------*/
410
411 /* SPI devices should normally not be created by SPI device drivers; that
412 * would make them board-specific. Similarly with SPI controller drivers.
413 * Device registration normally goes into like arch/.../mach.../board-YYY.c
414 * with other readonly (flashable) information about mainboard devices.
415 */
416
417 struct boardinfo {
418 struct list_head list;
419 struct spi_board_info board_info;
420 };
421
422 static LIST_HEAD(board_list);
423 static LIST_HEAD(spi_controller_list);
424
425 /*
426 * Used to protect add/del opertion for board_info list and
427 * spi_controller list, and their matching process
428 * also used to protect object of type struct idr
429 */
430 static DEFINE_MUTEX(board_lock);
431
432 /**
433 * spi_alloc_device - Allocate a new SPI device
434 * @ctlr: Controller to which device is connected
435 * Context: can sleep
436 *
437 * Allows a driver to allocate and initialize a spi_device without
438 * registering it immediately. This allows a driver to directly
439 * fill the spi_device with device parameters before calling
440 * spi_add_device() on it.
441 *
442 * Caller is responsible to call spi_add_device() on the returned
443 * spi_device structure to add it to the SPI controller. If the caller
444 * needs to discard the spi_device without adding it, then it should
445 * call spi_dev_put() on it.
446 *
447 * Return: a pointer to the new device, or NULL.
448 */
449 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
450 {
451 struct spi_device *spi;
452
453 if (!spi_controller_get(ctlr))
454 return NULL;
455
456 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
457 if (!spi) {
458 spi_controller_put(ctlr);
459 return NULL;
460 }
461
462 spi->master = spi->controller = ctlr;
463 spi->dev.parent = &ctlr->dev;
464 spi->dev.bus = &spi_bus_type;
465 spi->dev.release = spidev_release;
466 spi->cs_gpio = -ENOENT;
467
468 spin_lock_init(&spi->statistics.lock);
469
470 device_initialize(&spi->dev);
471 return spi;
472 }
473 EXPORT_SYMBOL_GPL(spi_alloc_device);
474
475 static void spi_dev_set_name(struct spi_device *spi)
476 {
477 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
478
479 if (adev) {
480 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
481 return;
482 }
483
484 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
485 spi->chip_select);
486 }
487
488 static int spi_dev_check(struct device *dev, void *data)
489 {
490 struct spi_device *spi = to_spi_device(dev);
491 struct spi_device *new_spi = data;
492
493 if (spi->controller == new_spi->controller &&
494 spi->chip_select == new_spi->chip_select)
495 return -EBUSY;
496 return 0;
497 }
498
499 /**
500 * spi_add_device - Add spi_device allocated with spi_alloc_device
501 * @spi: spi_device to register
502 *
503 * Companion function to spi_alloc_device. Devices allocated with
504 * spi_alloc_device can be added onto the spi bus with this function.
505 *
506 * Return: 0 on success; negative errno on failure
507 */
508 int spi_add_device(struct spi_device *spi)
509 {
510 static DEFINE_MUTEX(spi_add_lock);
511 struct spi_controller *ctlr = spi->controller;
512 struct device *dev = ctlr->dev.parent;
513 int status;
514
515 /* Chipselects are numbered 0..max; validate. */
516 if (spi->chip_select >= ctlr->num_chipselect) {
517 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
518 ctlr->num_chipselect);
519 return -EINVAL;
520 }
521
522 /* Set the bus ID string */
523 spi_dev_set_name(spi);
524
525 /* We need to make sure there's no other device with this
526 * chipselect **BEFORE** we call setup(), else we'll trash
527 * its configuration. Lock against concurrent add() calls.
528 */
529 mutex_lock(&spi_add_lock);
530
531 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
532 if (status) {
533 dev_err(dev, "chipselect %d already in use\n",
534 spi->chip_select);
535 goto done;
536 }
537
538 if (ctlr->cs_gpios)
539 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
540
541 /* Drivers may modify this initial i/o setup, but will
542 * normally rely on the device being setup. Devices
543 * using SPI_CS_HIGH can't coexist well otherwise...
544 */
545 status = spi_setup(spi);
546 if (status < 0) {
547 dev_err(dev, "can't setup %s, status %d\n",
548 dev_name(&spi->dev), status);
549 goto done;
550 }
551
552 /* Device may be bound to an active driver when this returns */
553 status = device_add(&spi->dev);
554 if (status < 0)
555 dev_err(dev, "can't add %s, status %d\n",
556 dev_name(&spi->dev), status);
557 else
558 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
559
560 done:
561 mutex_unlock(&spi_add_lock);
562 return status;
563 }
564 EXPORT_SYMBOL_GPL(spi_add_device);
565
566 /**
567 * spi_new_device - instantiate one new SPI device
568 * @ctlr: Controller to which device is connected
569 * @chip: Describes the SPI device
570 * Context: can sleep
571 *
572 * On typical mainboards, this is purely internal; and it's not needed
573 * after board init creates the hard-wired devices. Some development
574 * platforms may not be able to use spi_register_board_info though, and
575 * this is exported so that for example a USB or parport based adapter
576 * driver could add devices (which it would learn about out-of-band).
577 *
578 * Return: the new device, or NULL.
579 */
580 struct spi_device *spi_new_device(struct spi_controller *ctlr,
581 struct spi_board_info *chip)
582 {
583 struct spi_device *proxy;
584 int status;
585
586 /* NOTE: caller did any chip->bus_num checks necessary.
587 *
588 * Also, unless we change the return value convention to use
589 * error-or-pointer (not NULL-or-pointer), troubleshootability
590 * suggests syslogged diagnostics are best here (ugh).
591 */
592
593 proxy = spi_alloc_device(ctlr);
594 if (!proxy)
595 return NULL;
596
597 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
598
599 proxy->chip_select = chip->chip_select;
600 proxy->max_speed_hz = chip->max_speed_hz;
601 proxy->mode = chip->mode;
602 proxy->irq = chip->irq;
603 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
604 proxy->dev.platform_data = (void *) chip->platform_data;
605 proxy->controller_data = chip->controller_data;
606 proxy->controller_state = NULL;
607
608 if (chip->properties) {
609 status = device_add_properties(&proxy->dev, chip->properties);
610 if (status) {
611 dev_err(&ctlr->dev,
612 "failed to add properties to '%s': %d\n",
613 chip->modalias, status);
614 goto err_dev_put;
615 }
616 }
617
618 status = spi_add_device(proxy);
619 if (status < 0)
620 goto err_remove_props;
621
622 return proxy;
623
624 err_remove_props:
625 if (chip->properties)
626 device_remove_properties(&proxy->dev);
627 err_dev_put:
628 spi_dev_put(proxy);
629 return NULL;
630 }
631 EXPORT_SYMBOL_GPL(spi_new_device);
632
633 /**
634 * spi_unregister_device - unregister a single SPI device
635 * @spi: spi_device to unregister
636 *
637 * Start making the passed SPI device vanish. Normally this would be handled
638 * by spi_unregister_controller().
639 */
640 void spi_unregister_device(struct spi_device *spi)
641 {
642 if (!spi)
643 return;
644
645 if (spi->dev.of_node) {
646 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
647 of_node_put(spi->dev.of_node);
648 }
649 if (ACPI_COMPANION(&spi->dev))
650 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
651 device_unregister(&spi->dev);
652 }
653 EXPORT_SYMBOL_GPL(spi_unregister_device);
654
655 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
656 struct spi_board_info *bi)
657 {
658 struct spi_device *dev;
659
660 if (ctlr->bus_num != bi->bus_num)
661 return;
662
663 dev = spi_new_device(ctlr, bi);
664 if (!dev)
665 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
666 bi->modalias);
667 }
668
669 /**
670 * spi_register_board_info - register SPI devices for a given board
671 * @info: array of chip descriptors
672 * @n: how many descriptors are provided
673 * Context: can sleep
674 *
675 * Board-specific early init code calls this (probably during arch_initcall)
676 * with segments of the SPI device table. Any device nodes are created later,
677 * after the relevant parent SPI controller (bus_num) is defined. We keep
678 * this table of devices forever, so that reloading a controller driver will
679 * not make Linux forget about these hard-wired devices.
680 *
681 * Other code can also call this, e.g. a particular add-on board might provide
682 * SPI devices through its expansion connector, so code initializing that board
683 * would naturally declare its SPI devices.
684 *
685 * The board info passed can safely be __initdata ... but be careful of
686 * any embedded pointers (platform_data, etc), they're copied as-is.
687 * Device properties are deep-copied though.
688 *
689 * Return: zero on success, else a negative error code.
690 */
691 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
692 {
693 struct boardinfo *bi;
694 int i;
695
696 if (!n)
697 return 0;
698
699 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
700 if (!bi)
701 return -ENOMEM;
702
703 for (i = 0; i < n; i++, bi++, info++) {
704 struct spi_controller *ctlr;
705
706 memcpy(&bi->board_info, info, sizeof(*info));
707 if (info->properties) {
708 bi->board_info.properties =
709 property_entries_dup(info->properties);
710 if (IS_ERR(bi->board_info.properties))
711 return PTR_ERR(bi->board_info.properties);
712 }
713
714 mutex_lock(&board_lock);
715 list_add_tail(&bi->list, &board_list);
716 list_for_each_entry(ctlr, &spi_controller_list, list)
717 spi_match_controller_to_boardinfo(ctlr,
718 &bi->board_info);
719 mutex_unlock(&board_lock);
720 }
721
722 return 0;
723 }
724
725 /*-------------------------------------------------------------------------*/
726
727 static void spi_set_cs(struct spi_device *spi, bool enable)
728 {
729 if (spi->mode & SPI_CS_HIGH)
730 enable = !enable;
731
732 if (gpio_is_valid(spi->cs_gpio)) {
733 gpio_set_value(spi->cs_gpio, !enable);
734 /* Some SPI masters need both GPIO CS & slave_select */
735 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
736 spi->controller->set_cs)
737 spi->controller->set_cs(spi, !enable);
738 } else if (spi->controller->set_cs) {
739 spi->controller->set_cs(spi, !enable);
740 }
741 }
742
743 #ifdef CONFIG_HAS_DMA
744 static int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
745 struct sg_table *sgt, void *buf, size_t len,
746 enum dma_data_direction dir)
747 {
748 const bool vmalloced_buf = is_vmalloc_addr(buf);
749 unsigned int max_seg_size = dma_get_max_seg_size(dev);
750 #ifdef CONFIG_HIGHMEM
751 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
752 (unsigned long)buf < (PKMAP_BASE +
753 (LAST_PKMAP * PAGE_SIZE)));
754 #else
755 const bool kmap_buf = false;
756 #endif
757 int desc_len;
758 int sgs;
759 struct page *vm_page;
760 struct scatterlist *sg;
761 void *sg_buf;
762 size_t min;
763 int i, ret;
764
765 if (vmalloced_buf || kmap_buf) {
766 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
767 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
768 } else if (virt_addr_valid(buf)) {
769 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
770 sgs = DIV_ROUND_UP(len, desc_len);
771 } else {
772 return -EINVAL;
773 }
774
775 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
776 if (ret != 0)
777 return ret;
778
779 sg = &sgt->sgl[0];
780 for (i = 0; i < sgs; i++) {
781
782 if (vmalloced_buf || kmap_buf) {
783 min = min_t(size_t,
784 len, desc_len - offset_in_page(buf));
785 if (vmalloced_buf)
786 vm_page = vmalloc_to_page(buf);
787 else
788 vm_page = kmap_to_page(buf);
789 if (!vm_page) {
790 sg_free_table(sgt);
791 return -ENOMEM;
792 }
793 sg_set_page(sg, vm_page,
794 min, offset_in_page(buf));
795 } else {
796 min = min_t(size_t, len, desc_len);
797 sg_buf = buf;
798 sg_set_buf(sg, sg_buf, min);
799 }
800
801 buf += min;
802 len -= min;
803 sg = sg_next(sg);
804 }
805
806 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
807 if (!ret)
808 ret = -ENOMEM;
809 if (ret < 0) {
810 sg_free_table(sgt);
811 return ret;
812 }
813
814 sgt->nents = ret;
815
816 return 0;
817 }
818
819 static void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
820 struct sg_table *sgt, enum dma_data_direction dir)
821 {
822 if (sgt->orig_nents) {
823 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
824 sg_free_table(sgt);
825 }
826 }
827
828 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
829 {
830 struct device *tx_dev, *rx_dev;
831 struct spi_transfer *xfer;
832 int ret;
833
834 if (!ctlr->can_dma)
835 return 0;
836
837 if (ctlr->dma_tx)
838 tx_dev = ctlr->dma_tx->device->dev;
839 else
840 tx_dev = ctlr->dev.parent;
841
842 if (ctlr->dma_rx)
843 rx_dev = ctlr->dma_rx->device->dev;
844 else
845 rx_dev = ctlr->dev.parent;
846
847 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
848 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
849 continue;
850
851 if (xfer->tx_buf != NULL) {
852 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
853 (void *)xfer->tx_buf, xfer->len,
854 DMA_TO_DEVICE);
855 if (ret != 0)
856 return ret;
857 }
858
859 if (xfer->rx_buf != NULL) {
860 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
861 xfer->rx_buf, xfer->len,
862 DMA_FROM_DEVICE);
863 if (ret != 0) {
864 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
865 DMA_TO_DEVICE);
866 return ret;
867 }
868 }
869 }
870
871 ctlr->cur_msg_mapped = true;
872
873 return 0;
874 }
875
876 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
877 {
878 struct spi_transfer *xfer;
879 struct device *tx_dev, *rx_dev;
880
881 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
882 return 0;
883
884 if (ctlr->dma_tx)
885 tx_dev = ctlr->dma_tx->device->dev;
886 else
887 tx_dev = ctlr->dev.parent;
888
889 if (ctlr->dma_rx)
890 rx_dev = ctlr->dma_rx->device->dev;
891 else
892 rx_dev = ctlr->dev.parent;
893
894 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
895 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
896 continue;
897
898 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
899 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
900 }
901
902 return 0;
903 }
904 #else /* !CONFIG_HAS_DMA */
905 static inline int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
906 struct sg_table *sgt, void *buf, size_t len,
907 enum dma_data_direction dir)
908 {
909 return -EINVAL;
910 }
911
912 static inline void spi_unmap_buf(struct spi_controller *ctlr,
913 struct device *dev, struct sg_table *sgt,
914 enum dma_data_direction dir)
915 {
916 }
917
918 static inline int __spi_map_msg(struct spi_controller *ctlr,
919 struct spi_message *msg)
920 {
921 return 0;
922 }
923
924 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
925 struct spi_message *msg)
926 {
927 return 0;
928 }
929 #endif /* !CONFIG_HAS_DMA */
930
931 static inline int spi_unmap_msg(struct spi_controller *ctlr,
932 struct spi_message *msg)
933 {
934 struct spi_transfer *xfer;
935
936 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
937 /*
938 * Restore the original value of tx_buf or rx_buf if they are
939 * NULL.
940 */
941 if (xfer->tx_buf == ctlr->dummy_tx)
942 xfer->tx_buf = NULL;
943 if (xfer->rx_buf == ctlr->dummy_rx)
944 xfer->rx_buf = NULL;
945 }
946
947 return __spi_unmap_msg(ctlr, msg);
948 }
949
950 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
951 {
952 struct spi_transfer *xfer;
953 void *tmp;
954 unsigned int max_tx, max_rx;
955
956 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
957 max_tx = 0;
958 max_rx = 0;
959
960 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
961 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
962 !xfer->tx_buf)
963 max_tx = max(xfer->len, max_tx);
964 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
965 !xfer->rx_buf)
966 max_rx = max(xfer->len, max_rx);
967 }
968
969 if (max_tx) {
970 tmp = krealloc(ctlr->dummy_tx, max_tx,
971 GFP_KERNEL | GFP_DMA);
972 if (!tmp)
973 return -ENOMEM;
974 ctlr->dummy_tx = tmp;
975 memset(tmp, 0, max_tx);
976 }
977
978 if (max_rx) {
979 tmp = krealloc(ctlr->dummy_rx, max_rx,
980 GFP_KERNEL | GFP_DMA);
981 if (!tmp)
982 return -ENOMEM;
983 ctlr->dummy_rx = tmp;
984 }
985
986 if (max_tx || max_rx) {
987 list_for_each_entry(xfer, &msg->transfers,
988 transfer_list) {
989 if (!xfer->tx_buf)
990 xfer->tx_buf = ctlr->dummy_tx;
991 if (!xfer->rx_buf)
992 xfer->rx_buf = ctlr->dummy_rx;
993 }
994 }
995 }
996
997 return __spi_map_msg(ctlr, msg);
998 }
999
1000 /*
1001 * spi_transfer_one_message - Default implementation of transfer_one_message()
1002 *
1003 * This is a standard implementation of transfer_one_message() for
1004 * drivers which implement a transfer_one() operation. It provides
1005 * standard handling of delays and chip select management.
1006 */
1007 static int spi_transfer_one_message(struct spi_controller *ctlr,
1008 struct spi_message *msg)
1009 {
1010 struct spi_transfer *xfer;
1011 bool keep_cs = false;
1012 int ret = 0;
1013 unsigned long long ms = 1;
1014 struct spi_statistics *statm = &ctlr->statistics;
1015 struct spi_statistics *stats = &msg->spi->statistics;
1016
1017 spi_set_cs(msg->spi, true);
1018
1019 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1020 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1021
1022 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1023 trace_spi_transfer_start(msg, xfer);
1024
1025 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1026 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1027
1028 if (xfer->tx_buf || xfer->rx_buf) {
1029 reinit_completion(&ctlr->xfer_completion);
1030
1031 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1032 if (ret < 0) {
1033 SPI_STATISTICS_INCREMENT_FIELD(statm,
1034 errors);
1035 SPI_STATISTICS_INCREMENT_FIELD(stats,
1036 errors);
1037 dev_err(&msg->spi->dev,
1038 "SPI transfer failed: %d\n", ret);
1039 goto out;
1040 }
1041
1042 if (ret > 0) {
1043 ret = 0;
1044 ms = 8LL * 1000LL * xfer->len;
1045 do_div(ms, xfer->speed_hz);
1046 ms += ms + 200; /* some tolerance */
1047
1048 if (ms > UINT_MAX)
1049 ms = UINT_MAX;
1050
1051 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1052 msecs_to_jiffies(ms));
1053 }
1054
1055 if (ms == 0) {
1056 SPI_STATISTICS_INCREMENT_FIELD(statm,
1057 timedout);
1058 SPI_STATISTICS_INCREMENT_FIELD(stats,
1059 timedout);
1060 dev_err(&msg->spi->dev,
1061 "SPI transfer timed out\n");
1062 msg->status = -ETIMEDOUT;
1063 }
1064 } else {
1065 if (xfer->len)
1066 dev_err(&msg->spi->dev,
1067 "Bufferless transfer has length %u\n",
1068 xfer->len);
1069 }
1070
1071 trace_spi_transfer_stop(msg, xfer);
1072
1073 if (msg->status != -EINPROGRESS)
1074 goto out;
1075
1076 if (xfer->delay_usecs) {
1077 u16 us = xfer->delay_usecs;
1078
1079 if (us <= 10)
1080 udelay(us);
1081 else
1082 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1083 }
1084
1085 if (xfer->cs_change) {
1086 if (list_is_last(&xfer->transfer_list,
1087 &msg->transfers)) {
1088 keep_cs = true;
1089 } else {
1090 spi_set_cs(msg->spi, false);
1091 udelay(10);
1092 spi_set_cs(msg->spi, true);
1093 }
1094 }
1095
1096 msg->actual_length += xfer->len;
1097 }
1098
1099 out:
1100 if (ret != 0 || !keep_cs)
1101 spi_set_cs(msg->spi, false);
1102
1103 if (msg->status == -EINPROGRESS)
1104 msg->status = ret;
1105
1106 if (msg->status && ctlr->handle_err)
1107 ctlr->handle_err(ctlr, msg);
1108
1109 spi_res_release(ctlr, msg);
1110
1111 spi_finalize_current_message(ctlr);
1112
1113 return ret;
1114 }
1115
1116 /**
1117 * spi_finalize_current_transfer - report completion of a transfer
1118 * @ctlr: the controller reporting completion
1119 *
1120 * Called by SPI drivers using the core transfer_one_message()
1121 * implementation to notify it that the current interrupt driven
1122 * transfer has finished and the next one may be scheduled.
1123 */
1124 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1125 {
1126 complete(&ctlr->xfer_completion);
1127 }
1128 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1129
1130 /**
1131 * __spi_pump_messages - function which processes spi message queue
1132 * @ctlr: controller to process queue for
1133 * @in_kthread: true if we are in the context of the message pump thread
1134 *
1135 * This function checks if there is any spi message in the queue that
1136 * needs processing and if so call out to the driver to initialize hardware
1137 * and transfer each message.
1138 *
1139 * Note that it is called both from the kthread itself and also from
1140 * inside spi_sync(); the queue extraction handling at the top of the
1141 * function should deal with this safely.
1142 */
1143 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1144 {
1145 unsigned long flags;
1146 bool was_busy = false;
1147 int ret;
1148
1149 /* Lock queue */
1150 spin_lock_irqsave(&ctlr->queue_lock, flags);
1151
1152 /* Make sure we are not already running a message */
1153 if (ctlr->cur_msg) {
1154 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1155 return;
1156 }
1157
1158 /* If another context is idling the device then defer */
1159 if (ctlr->idling) {
1160 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1161 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1162 return;
1163 }
1164
1165 /* Check if the queue is idle */
1166 if (list_empty(&ctlr->queue) || !ctlr->running) {
1167 if (!ctlr->busy) {
1168 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1169 return;
1170 }
1171
1172 /* Only do teardown in the thread */
1173 if (!in_kthread) {
1174 kthread_queue_work(&ctlr->kworker,
1175 &ctlr->pump_messages);
1176 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1177 return;
1178 }
1179
1180 ctlr->busy = false;
1181 ctlr->idling = true;
1182 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1183
1184 kfree(ctlr->dummy_rx);
1185 ctlr->dummy_rx = NULL;
1186 kfree(ctlr->dummy_tx);
1187 ctlr->dummy_tx = NULL;
1188 if (ctlr->unprepare_transfer_hardware &&
1189 ctlr->unprepare_transfer_hardware(ctlr))
1190 dev_err(&ctlr->dev,
1191 "failed to unprepare transfer hardware\n");
1192 if (ctlr->auto_runtime_pm) {
1193 pm_runtime_mark_last_busy(ctlr->dev.parent);
1194 pm_runtime_put_autosuspend(ctlr->dev.parent);
1195 }
1196 trace_spi_controller_idle(ctlr);
1197
1198 spin_lock_irqsave(&ctlr->queue_lock, flags);
1199 ctlr->idling = false;
1200 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1201 return;
1202 }
1203
1204 /* Extract head of queue */
1205 ctlr->cur_msg =
1206 list_first_entry(&ctlr->queue, struct spi_message, queue);
1207
1208 list_del_init(&ctlr->cur_msg->queue);
1209 if (ctlr->busy)
1210 was_busy = true;
1211 else
1212 ctlr->busy = true;
1213 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1214
1215 mutex_lock(&ctlr->io_mutex);
1216
1217 if (!was_busy && ctlr->auto_runtime_pm) {
1218 ret = pm_runtime_get_sync(ctlr->dev.parent);
1219 if (ret < 0) {
1220 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1221 ret);
1222 mutex_unlock(&ctlr->io_mutex);
1223 return;
1224 }
1225 }
1226
1227 if (!was_busy)
1228 trace_spi_controller_busy(ctlr);
1229
1230 if (!was_busy && ctlr->prepare_transfer_hardware) {
1231 ret = ctlr->prepare_transfer_hardware(ctlr);
1232 if (ret) {
1233 dev_err(&ctlr->dev,
1234 "failed to prepare transfer hardware\n");
1235
1236 if (ctlr->auto_runtime_pm)
1237 pm_runtime_put(ctlr->dev.parent);
1238 mutex_unlock(&ctlr->io_mutex);
1239 return;
1240 }
1241 }
1242
1243 trace_spi_message_start(ctlr->cur_msg);
1244
1245 if (ctlr->prepare_message) {
1246 ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1247 if (ret) {
1248 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1249 ret);
1250 ctlr->cur_msg->status = ret;
1251 spi_finalize_current_message(ctlr);
1252 goto out;
1253 }
1254 ctlr->cur_msg_prepared = true;
1255 }
1256
1257 ret = spi_map_msg(ctlr, ctlr->cur_msg);
1258 if (ret) {
1259 ctlr->cur_msg->status = ret;
1260 spi_finalize_current_message(ctlr);
1261 goto out;
1262 }
1263
1264 ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1265 if (ret) {
1266 dev_err(&ctlr->dev,
1267 "failed to transfer one message from queue\n");
1268 goto out;
1269 }
1270
1271 out:
1272 mutex_unlock(&ctlr->io_mutex);
1273
1274 /* Prod the scheduler in case transfer_one() was busy waiting */
1275 if (!ret)
1276 cond_resched();
1277 }
1278
1279 /**
1280 * spi_pump_messages - kthread work function which processes spi message queue
1281 * @work: pointer to kthread work struct contained in the controller struct
1282 */
1283 static void spi_pump_messages(struct kthread_work *work)
1284 {
1285 struct spi_controller *ctlr =
1286 container_of(work, struct spi_controller, pump_messages);
1287
1288 __spi_pump_messages(ctlr, true);
1289 }
1290
1291 static int spi_init_queue(struct spi_controller *ctlr)
1292 {
1293 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1294
1295 ctlr->running = false;
1296 ctlr->busy = false;
1297
1298 kthread_init_worker(&ctlr->kworker);
1299 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1300 "%s", dev_name(&ctlr->dev));
1301 if (IS_ERR(ctlr->kworker_task)) {
1302 dev_err(&ctlr->dev, "failed to create message pump task\n");
1303 return PTR_ERR(ctlr->kworker_task);
1304 }
1305 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1306
1307 /*
1308 * Controller config will indicate if this controller should run the
1309 * message pump with high (realtime) priority to reduce the transfer
1310 * latency on the bus by minimising the delay between a transfer
1311 * request and the scheduling of the message pump thread. Without this
1312 * setting the message pump thread will remain at default priority.
1313 */
1314 if (ctlr->rt) {
1315 dev_info(&ctlr->dev,
1316 "will run message pump with realtime priority\n");
1317 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1318 }
1319
1320 return 0;
1321 }
1322
1323 /**
1324 * spi_get_next_queued_message() - called by driver to check for queued
1325 * messages
1326 * @ctlr: the controller to check for queued messages
1327 *
1328 * If there are more messages in the queue, the next message is returned from
1329 * this call.
1330 *
1331 * Return: the next message in the queue, else NULL if the queue is empty.
1332 */
1333 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1334 {
1335 struct spi_message *next;
1336 unsigned long flags;
1337
1338 /* get a pointer to the next message, if any */
1339 spin_lock_irqsave(&ctlr->queue_lock, flags);
1340 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1341 queue);
1342 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1343
1344 return next;
1345 }
1346 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1347
1348 /**
1349 * spi_finalize_current_message() - the current message is complete
1350 * @ctlr: the controller to return the message to
1351 *
1352 * Called by the driver to notify the core that the message in the front of the
1353 * queue is complete and can be removed from the queue.
1354 */
1355 void spi_finalize_current_message(struct spi_controller *ctlr)
1356 {
1357 struct spi_message *mesg;
1358 unsigned long flags;
1359 int ret;
1360
1361 spin_lock_irqsave(&ctlr->queue_lock, flags);
1362 mesg = ctlr->cur_msg;
1363 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1364
1365 spi_unmap_msg(ctlr, mesg);
1366
1367 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1368 ret = ctlr->unprepare_message(ctlr, mesg);
1369 if (ret) {
1370 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1371 ret);
1372 }
1373 }
1374
1375 spin_lock_irqsave(&ctlr->queue_lock, flags);
1376 ctlr->cur_msg = NULL;
1377 ctlr->cur_msg_prepared = false;
1378 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1379 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1380
1381 trace_spi_message_done(mesg);
1382
1383 mesg->state = NULL;
1384 if (mesg->complete)
1385 mesg->complete(mesg->context);
1386 }
1387 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1388
1389 static int spi_start_queue(struct spi_controller *ctlr)
1390 {
1391 unsigned long flags;
1392
1393 spin_lock_irqsave(&ctlr->queue_lock, flags);
1394
1395 if (ctlr->running || ctlr->busy) {
1396 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1397 return -EBUSY;
1398 }
1399
1400 ctlr->running = true;
1401 ctlr->cur_msg = NULL;
1402 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1403
1404 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1405
1406 return 0;
1407 }
1408
1409 static int spi_stop_queue(struct spi_controller *ctlr)
1410 {
1411 unsigned long flags;
1412 unsigned limit = 500;
1413 int ret = 0;
1414
1415 spin_lock_irqsave(&ctlr->queue_lock, flags);
1416
1417 /*
1418 * This is a bit lame, but is optimized for the common execution path.
1419 * A wait_queue on the ctlr->busy could be used, but then the common
1420 * execution path (pump_messages) would be required to call wake_up or
1421 * friends on every SPI message. Do this instead.
1422 */
1423 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1424 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1425 usleep_range(10000, 11000);
1426 spin_lock_irqsave(&ctlr->queue_lock, flags);
1427 }
1428
1429 if (!list_empty(&ctlr->queue) || ctlr->busy)
1430 ret = -EBUSY;
1431 else
1432 ctlr->running = false;
1433
1434 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1435
1436 if (ret) {
1437 dev_warn(&ctlr->dev, "could not stop message queue\n");
1438 return ret;
1439 }
1440 return ret;
1441 }
1442
1443 static int spi_destroy_queue(struct spi_controller *ctlr)
1444 {
1445 int ret;
1446
1447 ret = spi_stop_queue(ctlr);
1448
1449 /*
1450 * kthread_flush_worker will block until all work is done.
1451 * If the reason that stop_queue timed out is that the work will never
1452 * finish, then it does no good to call flush/stop thread, so
1453 * return anyway.
1454 */
1455 if (ret) {
1456 dev_err(&ctlr->dev, "problem destroying queue\n");
1457 return ret;
1458 }
1459
1460 kthread_flush_worker(&ctlr->kworker);
1461 kthread_stop(ctlr->kworker_task);
1462
1463 return 0;
1464 }
1465
1466 static int __spi_queued_transfer(struct spi_device *spi,
1467 struct spi_message *msg,
1468 bool need_pump)
1469 {
1470 struct spi_controller *ctlr = spi->controller;
1471 unsigned long flags;
1472
1473 spin_lock_irqsave(&ctlr->queue_lock, flags);
1474
1475 if (!ctlr->running) {
1476 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1477 return -ESHUTDOWN;
1478 }
1479 msg->actual_length = 0;
1480 msg->status = -EINPROGRESS;
1481
1482 list_add_tail(&msg->queue, &ctlr->queue);
1483 if (!ctlr->busy && need_pump)
1484 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1485
1486 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1487 return 0;
1488 }
1489
1490 /**
1491 * spi_queued_transfer - transfer function for queued transfers
1492 * @spi: spi device which is requesting transfer
1493 * @msg: spi message which is to handled is queued to driver queue
1494 *
1495 * Return: zero on success, else a negative error code.
1496 */
1497 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1498 {
1499 return __spi_queued_transfer(spi, msg, true);
1500 }
1501
1502 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1503 {
1504 int ret;
1505
1506 ctlr->transfer = spi_queued_transfer;
1507 if (!ctlr->transfer_one_message)
1508 ctlr->transfer_one_message = spi_transfer_one_message;
1509
1510 /* Initialize and start queue */
1511 ret = spi_init_queue(ctlr);
1512 if (ret) {
1513 dev_err(&ctlr->dev, "problem initializing queue\n");
1514 goto err_init_queue;
1515 }
1516 ctlr->queued = true;
1517 ret = spi_start_queue(ctlr);
1518 if (ret) {
1519 dev_err(&ctlr->dev, "problem starting queue\n");
1520 goto err_start_queue;
1521 }
1522
1523 return 0;
1524
1525 err_start_queue:
1526 spi_destroy_queue(ctlr);
1527 err_init_queue:
1528 return ret;
1529 }
1530
1531 /*-------------------------------------------------------------------------*/
1532
1533 #if defined(CONFIG_OF)
1534 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1535 struct device_node *nc)
1536 {
1537 u32 value;
1538 int rc;
1539
1540 /* Mode (clock phase/polarity/etc.) */
1541 if (of_property_read_bool(nc, "spi-cpha"))
1542 spi->mode |= SPI_CPHA;
1543 if (of_property_read_bool(nc, "spi-cpol"))
1544 spi->mode |= SPI_CPOL;
1545 if (of_property_read_bool(nc, "spi-cs-high"))
1546 spi->mode |= SPI_CS_HIGH;
1547 if (of_property_read_bool(nc, "spi-3wire"))
1548 spi->mode |= SPI_3WIRE;
1549 if (of_property_read_bool(nc, "spi-lsb-first"))
1550 spi->mode |= SPI_LSB_FIRST;
1551
1552 /* Device DUAL/QUAD mode */
1553 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1554 switch (value) {
1555 case 1:
1556 break;
1557 case 2:
1558 spi->mode |= SPI_TX_DUAL;
1559 break;
1560 case 4:
1561 spi->mode |= SPI_TX_QUAD;
1562 break;
1563 default:
1564 dev_warn(&ctlr->dev,
1565 "spi-tx-bus-width %d not supported\n",
1566 value);
1567 break;
1568 }
1569 }
1570
1571 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1572 switch (value) {
1573 case 1:
1574 break;
1575 case 2:
1576 spi->mode |= SPI_RX_DUAL;
1577 break;
1578 case 4:
1579 spi->mode |= SPI_RX_QUAD;
1580 break;
1581 default:
1582 dev_warn(&ctlr->dev,
1583 "spi-rx-bus-width %d not supported\n",
1584 value);
1585 break;
1586 }
1587 }
1588
1589 if (spi_controller_is_slave(ctlr)) {
1590 if (strcmp(nc->name, "slave")) {
1591 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1592 nc);
1593 return -EINVAL;
1594 }
1595 return 0;
1596 }
1597
1598 /* Device address */
1599 rc = of_property_read_u32(nc, "reg", &value);
1600 if (rc) {
1601 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1602 nc, rc);
1603 return rc;
1604 }
1605 spi->chip_select = value;
1606
1607 /* Device speed */
1608 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1609 if (rc) {
1610 dev_err(&ctlr->dev,
1611 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1612 return rc;
1613 }
1614 spi->max_speed_hz = value;
1615
1616 return 0;
1617 }
1618
1619 static struct spi_device *
1620 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1621 {
1622 struct spi_device *spi;
1623 int rc;
1624
1625 /* Alloc an spi_device */
1626 spi = spi_alloc_device(ctlr);
1627 if (!spi) {
1628 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1629 rc = -ENOMEM;
1630 goto err_out;
1631 }
1632
1633 /* Select device driver */
1634 rc = of_modalias_node(nc, spi->modalias,
1635 sizeof(spi->modalias));
1636 if (rc < 0) {
1637 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1638 goto err_out;
1639 }
1640
1641 rc = of_spi_parse_dt(ctlr, spi, nc);
1642 if (rc)
1643 goto err_out;
1644
1645 /* Store a pointer to the node in the device structure */
1646 of_node_get(nc);
1647 spi->dev.of_node = nc;
1648
1649 /* Register the new device */
1650 rc = spi_add_device(spi);
1651 if (rc) {
1652 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1653 goto err_of_node_put;
1654 }
1655
1656 return spi;
1657
1658 err_of_node_put:
1659 of_node_put(nc);
1660 err_out:
1661 spi_dev_put(spi);
1662 return ERR_PTR(rc);
1663 }
1664
1665 /**
1666 * of_register_spi_devices() - Register child devices onto the SPI bus
1667 * @ctlr: Pointer to spi_controller device
1668 *
1669 * Registers an spi_device for each child node of controller node which
1670 * represents a valid SPI slave.
1671 */
1672 static void of_register_spi_devices(struct spi_controller *ctlr)
1673 {
1674 struct spi_device *spi;
1675 struct device_node *nc;
1676
1677 if (!ctlr->dev.of_node)
1678 return;
1679
1680 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1681 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1682 continue;
1683 spi = of_register_spi_device(ctlr, nc);
1684 if (IS_ERR(spi)) {
1685 dev_warn(&ctlr->dev,
1686 "Failed to create SPI device for %pOF\n", nc);
1687 of_node_clear_flag(nc, OF_POPULATED);
1688 }
1689 }
1690 }
1691 #else
1692 static void of_register_spi_devices(struct spi_controller *ctlr) { }
1693 #endif
1694
1695 #ifdef CONFIG_ACPI
1696 static void acpi_spi_parse_apple_properties(struct spi_device *spi)
1697 {
1698 struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
1699 const union acpi_object *obj;
1700
1701 if (!x86_apple_machine)
1702 return;
1703
1704 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1705 && obj->buffer.length >= 4)
1706 spi->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1707
1708 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1709 && obj->buffer.length == 8)
1710 spi->bits_per_word = *(u64 *)obj->buffer.pointer;
1711
1712 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1713 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1714 spi->mode |= SPI_LSB_FIRST;
1715
1716 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1717 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1718 spi->mode |= SPI_CPOL;
1719
1720 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1721 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1722 spi->mode |= SPI_CPHA;
1723 }
1724
1725 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1726 {
1727 struct spi_device *spi = data;
1728 struct spi_controller *ctlr = spi->controller;
1729
1730 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1731 struct acpi_resource_spi_serialbus *sb;
1732
1733 sb = &ares->data.spi_serial_bus;
1734 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1735 /*
1736 * ACPI DeviceSelection numbering is handled by the
1737 * host controller driver in Windows and can vary
1738 * from driver to driver. In Linux we always expect
1739 * 0 .. max - 1 so we need to ask the driver to
1740 * translate between the two schemes.
1741 */
1742 if (ctlr->fw_translate_cs) {
1743 int cs = ctlr->fw_translate_cs(ctlr,
1744 sb->device_selection);
1745 if (cs < 0)
1746 return cs;
1747 spi->chip_select = cs;
1748 } else {
1749 spi->chip_select = sb->device_selection;
1750 }
1751
1752 spi->max_speed_hz = sb->connection_speed;
1753
1754 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1755 spi->mode |= SPI_CPHA;
1756 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1757 spi->mode |= SPI_CPOL;
1758 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1759 spi->mode |= SPI_CS_HIGH;
1760 }
1761 } else if (spi->irq < 0) {
1762 struct resource r;
1763
1764 if (acpi_dev_resource_interrupt(ares, 0, &r))
1765 spi->irq = r.start;
1766 }
1767
1768 /* Always tell the ACPI core to skip this resource */
1769 return 1;
1770 }
1771
1772 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1773 struct acpi_device *adev)
1774 {
1775 struct list_head resource_list;
1776 struct spi_device *spi;
1777 int ret;
1778
1779 if (acpi_bus_get_status(adev) || !adev->status.present ||
1780 acpi_device_enumerated(adev))
1781 return AE_OK;
1782
1783 spi = spi_alloc_device(ctlr);
1784 if (!spi) {
1785 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1786 dev_name(&adev->dev));
1787 return AE_NO_MEMORY;
1788 }
1789
1790 ACPI_COMPANION_SET(&spi->dev, adev);
1791 spi->irq = -1;
1792
1793 INIT_LIST_HEAD(&resource_list);
1794 ret = acpi_dev_get_resources(adev, &resource_list,
1795 acpi_spi_add_resource, spi);
1796 acpi_dev_free_resource_list(&resource_list);
1797
1798 acpi_spi_parse_apple_properties(spi);
1799
1800 if (ret < 0 || !spi->max_speed_hz) {
1801 spi_dev_put(spi);
1802 return AE_OK;
1803 }
1804
1805 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1806 sizeof(spi->modalias));
1807
1808 if (spi->irq < 0)
1809 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1810
1811 acpi_device_set_enumerated(adev);
1812
1813 adev->power.flags.ignore_parent = true;
1814 if (spi_add_device(spi)) {
1815 adev->power.flags.ignore_parent = false;
1816 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1817 dev_name(&adev->dev));
1818 spi_dev_put(spi);
1819 }
1820
1821 return AE_OK;
1822 }
1823
1824 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1825 void *data, void **return_value)
1826 {
1827 struct spi_controller *ctlr = data;
1828 struct acpi_device *adev;
1829
1830 if (acpi_bus_get_device(handle, &adev))
1831 return AE_OK;
1832
1833 return acpi_register_spi_device(ctlr, adev);
1834 }
1835
1836 static void acpi_register_spi_devices(struct spi_controller *ctlr)
1837 {
1838 acpi_status status;
1839 acpi_handle handle;
1840
1841 handle = ACPI_HANDLE(ctlr->dev.parent);
1842 if (!handle)
1843 return;
1844
1845 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1846 acpi_spi_add_device, NULL, ctlr, NULL);
1847 if (ACPI_FAILURE(status))
1848 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1849 }
1850 #else
1851 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1852 #endif /* CONFIG_ACPI */
1853
1854 static void spi_controller_release(struct device *dev)
1855 {
1856 struct spi_controller *ctlr;
1857
1858 ctlr = container_of(dev, struct spi_controller, dev);
1859 kfree(ctlr);
1860 }
1861
1862 static struct class spi_master_class = {
1863 .name = "spi_master",
1864 .owner = THIS_MODULE,
1865 .dev_release = spi_controller_release,
1866 .dev_groups = spi_master_groups,
1867 };
1868
1869 #ifdef CONFIG_SPI_SLAVE
1870 /**
1871 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1872 * controller
1873 * @spi: device used for the current transfer
1874 */
1875 int spi_slave_abort(struct spi_device *spi)
1876 {
1877 struct spi_controller *ctlr = spi->controller;
1878
1879 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1880 return ctlr->slave_abort(ctlr);
1881
1882 return -ENOTSUPP;
1883 }
1884 EXPORT_SYMBOL_GPL(spi_slave_abort);
1885
1886 static int match_true(struct device *dev, void *data)
1887 {
1888 return 1;
1889 }
1890
1891 static ssize_t spi_slave_show(struct device *dev,
1892 struct device_attribute *attr, char *buf)
1893 {
1894 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1895 dev);
1896 struct device *child;
1897
1898 child = device_find_child(&ctlr->dev, NULL, match_true);
1899 return sprintf(buf, "%s\n",
1900 child ? to_spi_device(child)->modalias : NULL);
1901 }
1902
1903 static ssize_t spi_slave_store(struct device *dev,
1904 struct device_attribute *attr, const char *buf,
1905 size_t count)
1906 {
1907 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1908 dev);
1909 struct spi_device *spi;
1910 struct device *child;
1911 char name[32];
1912 int rc;
1913
1914 rc = sscanf(buf, "%31s", name);
1915 if (rc != 1 || !name[0])
1916 return -EINVAL;
1917
1918 child = device_find_child(&ctlr->dev, NULL, match_true);
1919 if (child) {
1920 /* Remove registered slave */
1921 device_unregister(child);
1922 put_device(child);
1923 }
1924
1925 if (strcmp(name, "(null)")) {
1926 /* Register new slave */
1927 spi = spi_alloc_device(ctlr);
1928 if (!spi)
1929 return -ENOMEM;
1930
1931 strlcpy(spi->modalias, name, sizeof(spi->modalias));
1932
1933 rc = spi_add_device(spi);
1934 if (rc) {
1935 spi_dev_put(spi);
1936 return rc;
1937 }
1938 }
1939
1940 return count;
1941 }
1942
1943 static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
1944
1945 static struct attribute *spi_slave_attrs[] = {
1946 &dev_attr_slave.attr,
1947 NULL,
1948 };
1949
1950 static const struct attribute_group spi_slave_group = {
1951 .attrs = spi_slave_attrs,
1952 };
1953
1954 static const struct attribute_group *spi_slave_groups[] = {
1955 &spi_controller_statistics_group,
1956 &spi_slave_group,
1957 NULL,
1958 };
1959
1960 static struct class spi_slave_class = {
1961 .name = "spi_slave",
1962 .owner = THIS_MODULE,
1963 .dev_release = spi_controller_release,
1964 .dev_groups = spi_slave_groups,
1965 };
1966 #else
1967 extern struct class spi_slave_class; /* dummy */
1968 #endif
1969
1970 /**
1971 * __spi_alloc_controller - allocate an SPI master or slave controller
1972 * @dev: the controller, possibly using the platform_bus
1973 * @size: how much zeroed driver-private data to allocate; the pointer to this
1974 * memory is in the driver_data field of the returned device,
1975 * accessible with spi_controller_get_devdata().
1976 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
1977 * slave (true) controller
1978 * Context: can sleep
1979 *
1980 * This call is used only by SPI controller drivers, which are the
1981 * only ones directly touching chip registers. It's how they allocate
1982 * an spi_controller structure, prior to calling spi_register_controller().
1983 *
1984 * This must be called from context that can sleep.
1985 *
1986 * The caller is responsible for assigning the bus number and initializing the
1987 * controller's methods before calling spi_register_controller(); and (after
1988 * errors adding the device) calling spi_controller_put() to prevent a memory
1989 * leak.
1990 *
1991 * Return: the SPI controller structure on success, else NULL.
1992 */
1993 struct spi_controller *__spi_alloc_controller(struct device *dev,
1994 unsigned int size, bool slave)
1995 {
1996 struct spi_controller *ctlr;
1997
1998 if (!dev)
1999 return NULL;
2000
2001 ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2002 if (!ctlr)
2003 return NULL;
2004
2005 device_initialize(&ctlr->dev);
2006 ctlr->bus_num = -1;
2007 ctlr->num_chipselect = 1;
2008 ctlr->slave = slave;
2009 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2010 ctlr->dev.class = &spi_slave_class;
2011 else
2012 ctlr->dev.class = &spi_master_class;
2013 ctlr->dev.parent = dev;
2014 pm_suspend_ignore_children(&ctlr->dev, true);
2015 spi_controller_set_devdata(ctlr, &ctlr[1]);
2016
2017 return ctlr;
2018 }
2019 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2020
2021 #ifdef CONFIG_OF
2022 static int of_spi_register_master(struct spi_controller *ctlr)
2023 {
2024 int nb, i, *cs;
2025 struct device_node *np = ctlr->dev.of_node;
2026
2027 if (!np)
2028 return 0;
2029
2030 nb = of_gpio_named_count(np, "cs-gpios");
2031 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2032
2033 /* Return error only for an incorrectly formed cs-gpios property */
2034 if (nb == 0 || nb == -ENOENT)
2035 return 0;
2036 else if (nb < 0)
2037 return nb;
2038
2039 cs = devm_kzalloc(&ctlr->dev, sizeof(int) * ctlr->num_chipselect,
2040 GFP_KERNEL);
2041 ctlr->cs_gpios = cs;
2042
2043 if (!ctlr->cs_gpios)
2044 return -ENOMEM;
2045
2046 for (i = 0; i < ctlr->num_chipselect; i++)
2047 cs[i] = -ENOENT;
2048
2049 for (i = 0; i < nb; i++)
2050 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2051
2052 return 0;
2053 }
2054 #else
2055 static int of_spi_register_master(struct spi_controller *ctlr)
2056 {
2057 return 0;
2058 }
2059 #endif
2060
2061 /**
2062 * spi_register_controller - register SPI master or slave controller
2063 * @ctlr: initialized master, originally from spi_alloc_master() or
2064 * spi_alloc_slave()
2065 * Context: can sleep
2066 *
2067 * SPI controllers connect to their drivers using some non-SPI bus,
2068 * such as the platform bus. The final stage of probe() in that code
2069 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2070 *
2071 * SPI controllers use board specific (often SOC specific) bus numbers,
2072 * and board-specific addressing for SPI devices combines those numbers
2073 * with chip select numbers. Since SPI does not directly support dynamic
2074 * device identification, boards need configuration tables telling which
2075 * chip is at which address.
2076 *
2077 * This must be called from context that can sleep. It returns zero on
2078 * success, else a negative error code (dropping the controller's refcount).
2079 * After a successful return, the caller is responsible for calling
2080 * spi_unregister_controller().
2081 *
2082 * Return: zero on success, else a negative error code.
2083 */
2084 int spi_register_controller(struct spi_controller *ctlr)
2085 {
2086 struct device *dev = ctlr->dev.parent;
2087 struct boardinfo *bi;
2088 int status = -ENODEV;
2089 int id;
2090
2091 if (!dev)
2092 return -ENODEV;
2093
2094 if (!spi_controller_is_slave(ctlr)) {
2095 status = of_spi_register_master(ctlr);
2096 if (status)
2097 return status;
2098 }
2099
2100 /* even if it's just one always-selected device, there must
2101 * be at least one chipselect
2102 */
2103 if (ctlr->num_chipselect == 0)
2104 return -EINVAL;
2105 /* allocate dynamic bus number using Linux idr */
2106 if ((ctlr->bus_num < 0) && ctlr->dev.of_node) {
2107 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2108 if (id >= 0) {
2109 ctlr->bus_num = id;
2110 mutex_lock(&board_lock);
2111 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2112 ctlr->bus_num + 1, GFP_KERNEL);
2113 mutex_unlock(&board_lock);
2114 if (WARN(id < 0, "couldn't get idr"))
2115 return id == -ENOSPC ? -EBUSY : id;
2116 }
2117 }
2118 if (ctlr->bus_num < 0) {
2119 mutex_lock(&board_lock);
2120 id = idr_alloc(&spi_master_idr, ctlr, SPI_DYN_FIRST_BUS_NUM, 0,
2121 GFP_KERNEL);
2122 mutex_unlock(&board_lock);
2123 if (WARN(id < 0, "couldn't get idr"))
2124 return id;
2125 ctlr->bus_num = id;
2126 }
2127 INIT_LIST_HEAD(&ctlr->queue);
2128 spin_lock_init(&ctlr->queue_lock);
2129 spin_lock_init(&ctlr->bus_lock_spinlock);
2130 mutex_init(&ctlr->bus_lock_mutex);
2131 mutex_init(&ctlr->io_mutex);
2132 ctlr->bus_lock_flag = 0;
2133 init_completion(&ctlr->xfer_completion);
2134 if (!ctlr->max_dma_len)
2135 ctlr->max_dma_len = INT_MAX;
2136
2137 /* register the device, then userspace will see it.
2138 * registration fails if the bus ID is in use.
2139 */
2140 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2141 status = device_add(&ctlr->dev);
2142 if (status < 0) {
2143 /* free bus id */
2144 mutex_lock(&board_lock);
2145 idr_remove(&spi_master_idr, ctlr->bus_num);
2146 mutex_unlock(&board_lock);
2147 goto done;
2148 }
2149 dev_dbg(dev, "registered %s %s\n",
2150 spi_controller_is_slave(ctlr) ? "slave" : "master",
2151 dev_name(&ctlr->dev));
2152
2153 /* If we're using a queued driver, start the queue */
2154 if (ctlr->transfer)
2155 dev_info(dev, "controller is unqueued, this is deprecated\n");
2156 else {
2157 status = spi_controller_initialize_queue(ctlr);
2158 if (status) {
2159 device_del(&ctlr->dev);
2160 /* free bus id */
2161 mutex_lock(&board_lock);
2162 idr_remove(&spi_master_idr, ctlr->bus_num);
2163 mutex_unlock(&board_lock);
2164 goto done;
2165 }
2166 }
2167 /* add statistics */
2168 spin_lock_init(&ctlr->statistics.lock);
2169
2170 mutex_lock(&board_lock);
2171 list_add_tail(&ctlr->list, &spi_controller_list);
2172 list_for_each_entry(bi, &board_list, list)
2173 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2174 mutex_unlock(&board_lock);
2175
2176 /* Register devices from the device tree and ACPI */
2177 of_register_spi_devices(ctlr);
2178 acpi_register_spi_devices(ctlr);
2179 done:
2180 return status;
2181 }
2182 EXPORT_SYMBOL_GPL(spi_register_controller);
2183
2184 static void devm_spi_unregister(struct device *dev, void *res)
2185 {
2186 spi_unregister_controller(*(struct spi_controller **)res);
2187 }
2188
2189 /**
2190 * devm_spi_register_controller - register managed SPI master or slave
2191 * controller
2192 * @dev: device managing SPI controller
2193 * @ctlr: initialized controller, originally from spi_alloc_master() or
2194 * spi_alloc_slave()
2195 * Context: can sleep
2196 *
2197 * Register a SPI device as with spi_register_controller() which will
2198 * automatically be unregister
2199 *
2200 * Return: zero on success, else a negative error code.
2201 */
2202 int devm_spi_register_controller(struct device *dev,
2203 struct spi_controller *ctlr)
2204 {
2205 struct spi_controller **ptr;
2206 int ret;
2207
2208 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2209 if (!ptr)
2210 return -ENOMEM;
2211
2212 ret = spi_register_controller(ctlr);
2213 if (!ret) {
2214 *ptr = ctlr;
2215 devres_add(dev, ptr);
2216 } else {
2217 devres_free(ptr);
2218 }
2219
2220 return ret;
2221 }
2222 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2223
2224 static int __unregister(struct device *dev, void *null)
2225 {
2226 spi_unregister_device(to_spi_device(dev));
2227 return 0;
2228 }
2229
2230 /**
2231 * spi_unregister_controller - unregister SPI master or slave controller
2232 * @ctlr: the controller being unregistered
2233 * Context: can sleep
2234 *
2235 * This call is used only by SPI controller drivers, which are the
2236 * only ones directly touching chip registers.
2237 *
2238 * This must be called from context that can sleep.
2239 */
2240 void spi_unregister_controller(struct spi_controller *ctlr)
2241 {
2242 struct spi_controller *found;
2243 int dummy;
2244
2245 /* First make sure that this controller was ever added */
2246 mutex_lock(&board_lock);
2247 found = idr_find(&spi_master_idr, ctlr->bus_num);
2248 mutex_unlock(&board_lock);
2249 if (found != ctlr) {
2250 dev_dbg(&ctlr->dev,
2251 "attempting to delete unregistered controller [%s]\n",
2252 dev_name(&ctlr->dev));
2253 return;
2254 }
2255 if (ctlr->queued) {
2256 if (spi_destroy_queue(ctlr))
2257 dev_err(&ctlr->dev, "queue remove failed\n");
2258 }
2259 mutex_lock(&board_lock);
2260 list_del(&ctlr->list);
2261 mutex_unlock(&board_lock);
2262
2263 dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
2264 device_unregister(&ctlr->dev);
2265 /* free bus id */
2266 mutex_lock(&board_lock);
2267 idr_remove(&spi_master_idr, ctlr->bus_num);
2268 mutex_unlock(&board_lock);
2269 }
2270 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2271
2272 int spi_controller_suspend(struct spi_controller *ctlr)
2273 {
2274 int ret;
2275
2276 /* Basically no-ops for non-queued controllers */
2277 if (!ctlr->queued)
2278 return 0;
2279
2280 ret = spi_stop_queue(ctlr);
2281 if (ret)
2282 dev_err(&ctlr->dev, "queue stop failed\n");
2283
2284 return ret;
2285 }
2286 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2287
2288 int spi_controller_resume(struct spi_controller *ctlr)
2289 {
2290 int ret;
2291
2292 if (!ctlr->queued)
2293 return 0;
2294
2295 ret = spi_start_queue(ctlr);
2296 if (ret)
2297 dev_err(&ctlr->dev, "queue restart failed\n");
2298
2299 return ret;
2300 }
2301 EXPORT_SYMBOL_GPL(spi_controller_resume);
2302
2303 static int __spi_controller_match(struct device *dev, const void *data)
2304 {
2305 struct spi_controller *ctlr;
2306 const u16 *bus_num = data;
2307
2308 ctlr = container_of(dev, struct spi_controller, dev);
2309 return ctlr->bus_num == *bus_num;
2310 }
2311
2312 /**
2313 * spi_busnum_to_master - look up master associated with bus_num
2314 * @bus_num: the master's bus number
2315 * Context: can sleep
2316 *
2317 * This call may be used with devices that are registered after
2318 * arch init time. It returns a refcounted pointer to the relevant
2319 * spi_controller (which the caller must release), or NULL if there is
2320 * no such master registered.
2321 *
2322 * Return: the SPI master structure on success, else NULL.
2323 */
2324 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2325 {
2326 struct device *dev;
2327 struct spi_controller *ctlr = NULL;
2328
2329 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2330 __spi_controller_match);
2331 if (dev)
2332 ctlr = container_of(dev, struct spi_controller, dev);
2333 /* reference got in class_find_device */
2334 return ctlr;
2335 }
2336 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2337
2338 /*-------------------------------------------------------------------------*/
2339
2340 /* Core methods for SPI resource management */
2341
2342 /**
2343 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2344 * during the processing of a spi_message while using
2345 * spi_transfer_one
2346 * @spi: the spi device for which we allocate memory
2347 * @release: the release code to execute for this resource
2348 * @size: size to alloc and return
2349 * @gfp: GFP allocation flags
2350 *
2351 * Return: the pointer to the allocated data
2352 *
2353 * This may get enhanced in the future to allocate from a memory pool
2354 * of the @spi_device or @spi_controller to avoid repeated allocations.
2355 */
2356 void *spi_res_alloc(struct spi_device *spi,
2357 spi_res_release_t release,
2358 size_t size, gfp_t gfp)
2359 {
2360 struct spi_res *sres;
2361
2362 sres = kzalloc(sizeof(*sres) + size, gfp);
2363 if (!sres)
2364 return NULL;
2365
2366 INIT_LIST_HEAD(&sres->entry);
2367 sres->release = release;
2368
2369 return sres->data;
2370 }
2371 EXPORT_SYMBOL_GPL(spi_res_alloc);
2372
2373 /**
2374 * spi_res_free - free an spi resource
2375 * @res: pointer to the custom data of a resource
2376 *
2377 */
2378 void spi_res_free(void *res)
2379 {
2380 struct spi_res *sres = container_of(res, struct spi_res, data);
2381
2382 if (!res)
2383 return;
2384
2385 WARN_ON(!list_empty(&sres->entry));
2386 kfree(sres);
2387 }
2388 EXPORT_SYMBOL_GPL(spi_res_free);
2389
2390 /**
2391 * spi_res_add - add a spi_res to the spi_message
2392 * @message: the spi message
2393 * @res: the spi_resource
2394 */
2395 void spi_res_add(struct spi_message *message, void *res)
2396 {
2397 struct spi_res *sres = container_of(res, struct spi_res, data);
2398
2399 WARN_ON(!list_empty(&sres->entry));
2400 list_add_tail(&sres->entry, &message->resources);
2401 }
2402 EXPORT_SYMBOL_GPL(spi_res_add);
2403
2404 /**
2405 * spi_res_release - release all spi resources for this message
2406 * @ctlr: the @spi_controller
2407 * @message: the @spi_message
2408 */
2409 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2410 {
2411 struct spi_res *res;
2412
2413 while (!list_empty(&message->resources)) {
2414 res = list_last_entry(&message->resources,
2415 struct spi_res, entry);
2416
2417 if (res->release)
2418 res->release(ctlr, message, res->data);
2419
2420 list_del(&res->entry);
2421
2422 kfree(res);
2423 }
2424 }
2425 EXPORT_SYMBOL_GPL(spi_res_release);
2426
2427 /*-------------------------------------------------------------------------*/
2428
2429 /* Core methods for spi_message alterations */
2430
2431 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2432 struct spi_message *msg,
2433 void *res)
2434 {
2435 struct spi_replaced_transfers *rxfer = res;
2436 size_t i;
2437
2438 /* call extra callback if requested */
2439 if (rxfer->release)
2440 rxfer->release(ctlr, msg, res);
2441
2442 /* insert replaced transfers back into the message */
2443 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2444
2445 /* remove the formerly inserted entries */
2446 for (i = 0; i < rxfer->inserted; i++)
2447 list_del(&rxfer->inserted_transfers[i].transfer_list);
2448 }
2449
2450 /**
2451 * spi_replace_transfers - replace transfers with several transfers
2452 * and register change with spi_message.resources
2453 * @msg: the spi_message we work upon
2454 * @xfer_first: the first spi_transfer we want to replace
2455 * @remove: number of transfers to remove
2456 * @insert: the number of transfers we want to insert instead
2457 * @release: extra release code necessary in some circumstances
2458 * @extradatasize: extra data to allocate (with alignment guarantees
2459 * of struct @spi_transfer)
2460 * @gfp: gfp flags
2461 *
2462 * Returns: pointer to @spi_replaced_transfers,
2463 * PTR_ERR(...) in case of errors.
2464 */
2465 struct spi_replaced_transfers *spi_replace_transfers(
2466 struct spi_message *msg,
2467 struct spi_transfer *xfer_first,
2468 size_t remove,
2469 size_t insert,
2470 spi_replaced_release_t release,
2471 size_t extradatasize,
2472 gfp_t gfp)
2473 {
2474 struct spi_replaced_transfers *rxfer;
2475 struct spi_transfer *xfer;
2476 size_t i;
2477
2478 /* allocate the structure using spi_res */
2479 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2480 insert * sizeof(struct spi_transfer)
2481 + sizeof(struct spi_replaced_transfers)
2482 + extradatasize,
2483 gfp);
2484 if (!rxfer)
2485 return ERR_PTR(-ENOMEM);
2486
2487 /* the release code to invoke before running the generic release */
2488 rxfer->release = release;
2489
2490 /* assign extradata */
2491 if (extradatasize)
2492 rxfer->extradata =
2493 &rxfer->inserted_transfers[insert];
2494
2495 /* init the replaced_transfers list */
2496 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2497
2498 /* assign the list_entry after which we should reinsert
2499 * the @replaced_transfers - it may be spi_message.messages!
2500 */
2501 rxfer->replaced_after = xfer_first->transfer_list.prev;
2502
2503 /* remove the requested number of transfers */
2504 for (i = 0; i < remove; i++) {
2505 /* if the entry after replaced_after it is msg->transfers
2506 * then we have been requested to remove more transfers
2507 * than are in the list
2508 */
2509 if (rxfer->replaced_after->next == &msg->transfers) {
2510 dev_err(&msg->spi->dev,
2511 "requested to remove more spi_transfers than are available\n");
2512 /* insert replaced transfers back into the message */
2513 list_splice(&rxfer->replaced_transfers,
2514 rxfer->replaced_after);
2515
2516 /* free the spi_replace_transfer structure */
2517 spi_res_free(rxfer);
2518
2519 /* and return with an error */
2520 return ERR_PTR(-EINVAL);
2521 }
2522
2523 /* remove the entry after replaced_after from list of
2524 * transfers and add it to list of replaced_transfers
2525 */
2526 list_move_tail(rxfer->replaced_after->next,
2527 &rxfer->replaced_transfers);
2528 }
2529
2530 /* create copy of the given xfer with identical settings
2531 * based on the first transfer to get removed
2532 */
2533 for (i = 0; i < insert; i++) {
2534 /* we need to run in reverse order */
2535 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2536
2537 /* copy all spi_transfer data */
2538 memcpy(xfer, xfer_first, sizeof(*xfer));
2539
2540 /* add to list */
2541 list_add(&xfer->transfer_list, rxfer->replaced_after);
2542
2543 /* clear cs_change and delay_usecs for all but the last */
2544 if (i) {
2545 xfer->cs_change = false;
2546 xfer->delay_usecs = 0;
2547 }
2548 }
2549
2550 /* set up inserted */
2551 rxfer->inserted = insert;
2552
2553 /* and register it with spi_res/spi_message */
2554 spi_res_add(msg, rxfer);
2555
2556 return rxfer;
2557 }
2558 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2559
2560 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2561 struct spi_message *msg,
2562 struct spi_transfer **xferp,
2563 size_t maxsize,
2564 gfp_t gfp)
2565 {
2566 struct spi_transfer *xfer = *xferp, *xfers;
2567 struct spi_replaced_transfers *srt;
2568 size_t offset;
2569 size_t count, i;
2570
2571 /* warn once about this fact that we are splitting a transfer */
2572 dev_warn_once(&msg->spi->dev,
2573 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2574 xfer->len, maxsize);
2575
2576 /* calculate how many we have to replace */
2577 count = DIV_ROUND_UP(xfer->len, maxsize);
2578
2579 /* create replacement */
2580 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2581 if (IS_ERR(srt))
2582 return PTR_ERR(srt);
2583 xfers = srt->inserted_transfers;
2584
2585 /* now handle each of those newly inserted spi_transfers
2586 * note that the replacements spi_transfers all are preset
2587 * to the same values as *xferp, so tx_buf, rx_buf and len
2588 * are all identical (as well as most others)
2589 * so we just have to fix up len and the pointers.
2590 *
2591 * this also includes support for the depreciated
2592 * spi_message.is_dma_mapped interface
2593 */
2594
2595 /* the first transfer just needs the length modified, so we
2596 * run it outside the loop
2597 */
2598 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2599
2600 /* all the others need rx_buf/tx_buf also set */
2601 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2602 /* update rx_buf, tx_buf and dma */
2603 if (xfers[i].rx_buf)
2604 xfers[i].rx_buf += offset;
2605 if (xfers[i].rx_dma)
2606 xfers[i].rx_dma += offset;
2607 if (xfers[i].tx_buf)
2608 xfers[i].tx_buf += offset;
2609 if (xfers[i].tx_dma)
2610 xfers[i].tx_dma += offset;
2611
2612 /* update length */
2613 xfers[i].len = min(maxsize, xfers[i].len - offset);
2614 }
2615
2616 /* we set up xferp to the last entry we have inserted,
2617 * so that we skip those already split transfers
2618 */
2619 *xferp = &xfers[count - 1];
2620
2621 /* increment statistics counters */
2622 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2623 transfers_split_maxsize);
2624 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2625 transfers_split_maxsize);
2626
2627 return 0;
2628 }
2629
2630 /**
2631 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2632 * when an individual transfer exceeds a
2633 * certain size
2634 * @ctlr: the @spi_controller for this transfer
2635 * @msg: the @spi_message to transform
2636 * @maxsize: the maximum when to apply this
2637 * @gfp: GFP allocation flags
2638 *
2639 * Return: status of transformation
2640 */
2641 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2642 struct spi_message *msg,
2643 size_t maxsize,
2644 gfp_t gfp)
2645 {
2646 struct spi_transfer *xfer;
2647 int ret;
2648
2649 /* iterate over the transfer_list,
2650 * but note that xfer is advanced to the last transfer inserted
2651 * to avoid checking sizes again unnecessarily (also xfer does
2652 * potentiall belong to a different list by the time the
2653 * replacement has happened
2654 */
2655 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2656 if (xfer->len > maxsize) {
2657 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2658 maxsize, gfp);
2659 if (ret)
2660 return ret;
2661 }
2662 }
2663
2664 return 0;
2665 }
2666 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2667
2668 /*-------------------------------------------------------------------------*/
2669
2670 /* Core methods for SPI controller protocol drivers. Some of the
2671 * other core methods are currently defined as inline functions.
2672 */
2673
2674 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2675 u8 bits_per_word)
2676 {
2677 if (ctlr->bits_per_word_mask) {
2678 /* Only 32 bits fit in the mask */
2679 if (bits_per_word > 32)
2680 return -EINVAL;
2681 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2682 return -EINVAL;
2683 }
2684
2685 return 0;
2686 }
2687
2688 /**
2689 * spi_setup - setup SPI mode and clock rate
2690 * @spi: the device whose settings are being modified
2691 * Context: can sleep, and no requests are queued to the device
2692 *
2693 * SPI protocol drivers may need to update the transfer mode if the
2694 * device doesn't work with its default. They may likewise need
2695 * to update clock rates or word sizes from initial values. This function
2696 * changes those settings, and must be called from a context that can sleep.
2697 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2698 * effect the next time the device is selected and data is transferred to
2699 * or from it. When this function returns, the spi device is deselected.
2700 *
2701 * Note that this call will fail if the protocol driver specifies an option
2702 * that the underlying controller or its driver does not support. For
2703 * example, not all hardware supports wire transfers using nine bit words,
2704 * LSB-first wire encoding, or active-high chipselects.
2705 *
2706 * Return: zero on success, else a negative error code.
2707 */
2708 int spi_setup(struct spi_device *spi)
2709 {
2710 unsigned bad_bits, ugly_bits;
2711 int status;
2712
2713 /* check mode to prevent that DUAL and QUAD set at the same time
2714 */
2715 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2716 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2717 dev_err(&spi->dev,
2718 "setup: can not select dual and quad at the same time\n");
2719 return -EINVAL;
2720 }
2721 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2722 */
2723 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2724 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2725 return -EINVAL;
2726 /* help drivers fail *cleanly* when they need options
2727 * that aren't supported with their current controller
2728 */
2729 bad_bits = spi->mode & ~spi->controller->mode_bits;
2730 ugly_bits = bad_bits &
2731 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2732 if (ugly_bits) {
2733 dev_warn(&spi->dev,
2734 "setup: ignoring unsupported mode bits %x\n",
2735 ugly_bits);
2736 spi->mode &= ~ugly_bits;
2737 bad_bits &= ~ugly_bits;
2738 }
2739 if (bad_bits) {
2740 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2741 bad_bits);
2742 return -EINVAL;
2743 }
2744
2745 if (!spi->bits_per_word)
2746 spi->bits_per_word = 8;
2747
2748 status = __spi_validate_bits_per_word(spi->controller,
2749 spi->bits_per_word);
2750 if (status)
2751 return status;
2752
2753 if (!spi->max_speed_hz)
2754 spi->max_speed_hz = spi->controller->max_speed_hz;
2755
2756 if (spi->controller->setup)
2757 status = spi->controller->setup(spi);
2758
2759 spi_set_cs(spi, false);
2760
2761 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2762 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2763 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2764 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2765 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2766 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2767 spi->bits_per_word, spi->max_speed_hz,
2768 status);
2769
2770 return status;
2771 }
2772 EXPORT_SYMBOL_GPL(spi_setup);
2773
2774 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2775 {
2776 struct spi_controller *ctlr = spi->controller;
2777 struct spi_transfer *xfer;
2778 int w_size;
2779
2780 if (list_empty(&message->transfers))
2781 return -EINVAL;
2782
2783 /* Half-duplex links include original MicroWire, and ones with
2784 * only one data pin like SPI_3WIRE (switches direction) or where
2785 * either MOSI or MISO is missing. They can also be caused by
2786 * software limitations.
2787 */
2788 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
2789 (spi->mode & SPI_3WIRE)) {
2790 unsigned flags = ctlr->flags;
2791
2792 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2793 if (xfer->rx_buf && xfer->tx_buf)
2794 return -EINVAL;
2795 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
2796 return -EINVAL;
2797 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
2798 return -EINVAL;
2799 }
2800 }
2801
2802 /**
2803 * Set transfer bits_per_word and max speed as spi device default if
2804 * it is not set for this transfer.
2805 * Set transfer tx_nbits and rx_nbits as single transfer default
2806 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2807 */
2808 message->frame_length = 0;
2809 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2810 message->frame_length += xfer->len;
2811 if (!xfer->bits_per_word)
2812 xfer->bits_per_word = spi->bits_per_word;
2813
2814 if (!xfer->speed_hz)
2815 xfer->speed_hz = spi->max_speed_hz;
2816 if (!xfer->speed_hz)
2817 xfer->speed_hz = ctlr->max_speed_hz;
2818
2819 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
2820 xfer->speed_hz = ctlr->max_speed_hz;
2821
2822 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
2823 return -EINVAL;
2824
2825 /*
2826 * SPI transfer length should be multiple of SPI word size
2827 * where SPI word size should be power-of-two multiple
2828 */
2829 if (xfer->bits_per_word <= 8)
2830 w_size = 1;
2831 else if (xfer->bits_per_word <= 16)
2832 w_size = 2;
2833 else
2834 w_size = 4;
2835
2836 /* No partial transfers accepted */
2837 if (xfer->len % w_size)
2838 return -EINVAL;
2839
2840 if (xfer->speed_hz && ctlr->min_speed_hz &&
2841 xfer->speed_hz < ctlr->min_speed_hz)
2842 return -EINVAL;
2843
2844 if (xfer->tx_buf && !xfer->tx_nbits)
2845 xfer->tx_nbits = SPI_NBITS_SINGLE;
2846 if (xfer->rx_buf && !xfer->rx_nbits)
2847 xfer->rx_nbits = SPI_NBITS_SINGLE;
2848 /* check transfer tx/rx_nbits:
2849 * 1. check the value matches one of single, dual and quad
2850 * 2. check tx/rx_nbits match the mode in spi_device
2851 */
2852 if (xfer->tx_buf) {
2853 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2854 xfer->tx_nbits != SPI_NBITS_DUAL &&
2855 xfer->tx_nbits != SPI_NBITS_QUAD)
2856 return -EINVAL;
2857 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2858 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2859 return -EINVAL;
2860 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2861 !(spi->mode & SPI_TX_QUAD))
2862 return -EINVAL;
2863 }
2864 /* check transfer rx_nbits */
2865 if (xfer->rx_buf) {
2866 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2867 xfer->rx_nbits != SPI_NBITS_DUAL &&
2868 xfer->rx_nbits != SPI_NBITS_QUAD)
2869 return -EINVAL;
2870 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2871 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2872 return -EINVAL;
2873 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2874 !(spi->mode & SPI_RX_QUAD))
2875 return -EINVAL;
2876 }
2877 }
2878
2879 message->status = -EINPROGRESS;
2880
2881 return 0;
2882 }
2883
2884 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2885 {
2886 struct spi_controller *ctlr = spi->controller;
2887
2888 message->spi = spi;
2889
2890 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
2891 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2892
2893 trace_spi_message_submit(message);
2894
2895 return ctlr->transfer(spi, message);
2896 }
2897
2898 /**
2899 * spi_async - asynchronous SPI transfer
2900 * @spi: device with which data will be exchanged
2901 * @message: describes the data transfers, including completion callback
2902 * Context: any (irqs may be blocked, etc)
2903 *
2904 * This call may be used in_irq and other contexts which can't sleep,
2905 * as well as from task contexts which can sleep.
2906 *
2907 * The completion callback is invoked in a context which can't sleep.
2908 * Before that invocation, the value of message->status is undefined.
2909 * When the callback is issued, message->status holds either zero (to
2910 * indicate complete success) or a negative error code. After that
2911 * callback returns, the driver which issued the transfer request may
2912 * deallocate the associated memory; it's no longer in use by any SPI
2913 * core or controller driver code.
2914 *
2915 * Note that although all messages to a spi_device are handled in
2916 * FIFO order, messages may go to different devices in other orders.
2917 * Some device might be higher priority, or have various "hard" access
2918 * time requirements, for example.
2919 *
2920 * On detection of any fault during the transfer, processing of
2921 * the entire message is aborted, and the device is deselected.
2922 * Until returning from the associated message completion callback,
2923 * no other spi_message queued to that device will be processed.
2924 * (This rule applies equally to all the synchronous transfer calls,
2925 * which are wrappers around this core asynchronous primitive.)
2926 *
2927 * Return: zero on success, else a negative error code.
2928 */
2929 int spi_async(struct spi_device *spi, struct spi_message *message)
2930 {
2931 struct spi_controller *ctlr = spi->controller;
2932 int ret;
2933 unsigned long flags;
2934
2935 ret = __spi_validate(spi, message);
2936 if (ret != 0)
2937 return ret;
2938
2939 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
2940
2941 if (ctlr->bus_lock_flag)
2942 ret = -EBUSY;
2943 else
2944 ret = __spi_async(spi, message);
2945
2946 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
2947
2948 return ret;
2949 }
2950 EXPORT_SYMBOL_GPL(spi_async);
2951
2952 /**
2953 * spi_async_locked - version of spi_async with exclusive bus usage
2954 * @spi: device with which data will be exchanged
2955 * @message: describes the data transfers, including completion callback
2956 * Context: any (irqs may be blocked, etc)
2957 *
2958 * This call may be used in_irq and other contexts which can't sleep,
2959 * as well as from task contexts which can sleep.
2960 *
2961 * The completion callback is invoked in a context which can't sleep.
2962 * Before that invocation, the value of message->status is undefined.
2963 * When the callback is issued, message->status holds either zero (to
2964 * indicate complete success) or a negative error code. After that
2965 * callback returns, the driver which issued the transfer request may
2966 * deallocate the associated memory; it's no longer in use by any SPI
2967 * core or controller driver code.
2968 *
2969 * Note that although all messages to a spi_device are handled in
2970 * FIFO order, messages may go to different devices in other orders.
2971 * Some device might be higher priority, or have various "hard" access
2972 * time requirements, for example.
2973 *
2974 * On detection of any fault during the transfer, processing of
2975 * the entire message is aborted, and the device is deselected.
2976 * Until returning from the associated message completion callback,
2977 * no other spi_message queued to that device will be processed.
2978 * (This rule applies equally to all the synchronous transfer calls,
2979 * which are wrappers around this core asynchronous primitive.)
2980 *
2981 * Return: zero on success, else a negative error code.
2982 */
2983 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2984 {
2985 struct spi_controller *ctlr = spi->controller;
2986 int ret;
2987 unsigned long flags;
2988
2989 ret = __spi_validate(spi, message);
2990 if (ret != 0)
2991 return ret;
2992
2993 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
2994
2995 ret = __spi_async(spi, message);
2996
2997 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
2998
2999 return ret;
3000
3001 }
3002 EXPORT_SYMBOL_GPL(spi_async_locked);
3003
3004
3005 int spi_flash_read(struct spi_device *spi,
3006 struct spi_flash_read_message *msg)
3007
3008 {
3009 struct spi_controller *master = spi->controller;
3010 struct device *rx_dev = NULL;
3011 int ret;
3012
3013 if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
3014 msg->addr_nbits == SPI_NBITS_DUAL) &&
3015 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3016 return -EINVAL;
3017 if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
3018 msg->addr_nbits == SPI_NBITS_QUAD) &&
3019 !(spi->mode & SPI_TX_QUAD))
3020 return -EINVAL;
3021 if (msg->data_nbits == SPI_NBITS_DUAL &&
3022 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3023 return -EINVAL;
3024 if (msg->data_nbits == SPI_NBITS_QUAD &&
3025 !(spi->mode & SPI_RX_QUAD))
3026 return -EINVAL;
3027
3028 if (master->auto_runtime_pm) {
3029 ret = pm_runtime_get_sync(master->dev.parent);
3030 if (ret < 0) {
3031 dev_err(&master->dev, "Failed to power device: %d\n",
3032 ret);
3033 return ret;
3034 }
3035 }
3036
3037 mutex_lock(&master->bus_lock_mutex);
3038 mutex_lock(&master->io_mutex);
3039 if (master->dma_rx && master->spi_flash_can_dma(spi, msg)) {
3040 rx_dev = master->dma_rx->device->dev;
3041 ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
3042 msg->buf, msg->len,
3043 DMA_FROM_DEVICE);
3044 if (!ret)
3045 msg->cur_msg_mapped = true;
3046 }
3047 ret = master->spi_flash_read(spi, msg);
3048 if (msg->cur_msg_mapped)
3049 spi_unmap_buf(master, rx_dev, &msg->rx_sg,
3050 DMA_FROM_DEVICE);
3051 mutex_unlock(&master->io_mutex);
3052 mutex_unlock(&master->bus_lock_mutex);
3053
3054 if (master->auto_runtime_pm)
3055 pm_runtime_put(master->dev.parent);
3056
3057 return ret;
3058 }
3059 EXPORT_SYMBOL_GPL(spi_flash_read);
3060
3061 /*-------------------------------------------------------------------------*/
3062
3063 /* Utility methods for SPI protocol drivers, layered on
3064 * top of the core. Some other utility methods are defined as
3065 * inline functions.
3066 */
3067
3068 static void spi_complete(void *arg)
3069 {
3070 complete(arg);
3071 }
3072
3073 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3074 {
3075 DECLARE_COMPLETION_ONSTACK(done);
3076 int status;
3077 struct spi_controller *ctlr = spi->controller;
3078 unsigned long flags;
3079
3080 status = __spi_validate(spi, message);
3081 if (status != 0)
3082 return status;
3083
3084 message->complete = spi_complete;
3085 message->context = &done;
3086 message->spi = spi;
3087
3088 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3089 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3090
3091 /* If we're not using the legacy transfer method then we will
3092 * try to transfer in the calling context so special case.
3093 * This code would be less tricky if we could remove the
3094 * support for driver implemented message queues.
3095 */
3096 if (ctlr->transfer == spi_queued_transfer) {
3097 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3098
3099 trace_spi_message_submit(message);
3100
3101 status = __spi_queued_transfer(spi, message, false);
3102
3103 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3104 } else {
3105 status = spi_async_locked(spi, message);
3106 }
3107
3108 if (status == 0) {
3109 /* Push out the messages in the calling context if we
3110 * can.
3111 */
3112 if (ctlr->transfer == spi_queued_transfer) {
3113 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3114 spi_sync_immediate);
3115 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3116 spi_sync_immediate);
3117 __spi_pump_messages(ctlr, false);
3118 }
3119
3120 wait_for_completion(&done);
3121 status = message->status;
3122 }
3123 message->context = NULL;
3124 return status;
3125 }
3126
3127 /**
3128 * spi_sync - blocking/synchronous SPI data transfers
3129 * @spi: device with which data will be exchanged
3130 * @message: describes the data transfers
3131 * Context: can sleep
3132 *
3133 * This call may only be used from a context that may sleep. The sleep
3134 * is non-interruptible, and has no timeout. Low-overhead controller
3135 * drivers may DMA directly into and out of the message buffers.
3136 *
3137 * Note that the SPI device's chip select is active during the message,
3138 * and then is normally disabled between messages. Drivers for some
3139 * frequently-used devices may want to minimize costs of selecting a chip,
3140 * by leaving it selected in anticipation that the next message will go
3141 * to the same chip. (That may increase power usage.)
3142 *
3143 * Also, the caller is guaranteeing that the memory associated with the
3144 * message will not be freed before this call returns.
3145 *
3146 * Return: zero on success, else a negative error code.
3147 */
3148 int spi_sync(struct spi_device *spi, struct spi_message *message)
3149 {
3150 int ret;
3151
3152 mutex_lock(&spi->controller->bus_lock_mutex);
3153 ret = __spi_sync(spi, message);
3154 mutex_unlock(&spi->controller->bus_lock_mutex);
3155
3156 return ret;
3157 }
3158 EXPORT_SYMBOL_GPL(spi_sync);
3159
3160 /**
3161 * spi_sync_locked - version of spi_sync with exclusive bus usage
3162 * @spi: device with which data will be exchanged
3163 * @message: describes the data transfers
3164 * Context: can sleep
3165 *
3166 * This call may only be used from a context that may sleep. The sleep
3167 * is non-interruptible, and has no timeout. Low-overhead controller
3168 * drivers may DMA directly into and out of the message buffers.
3169 *
3170 * This call should be used by drivers that require exclusive access to the
3171 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3172 * be released by a spi_bus_unlock call when the exclusive access is over.
3173 *
3174 * Return: zero on success, else a negative error code.
3175 */
3176 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3177 {
3178 return __spi_sync(spi, message);
3179 }
3180 EXPORT_SYMBOL_GPL(spi_sync_locked);
3181
3182 /**
3183 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3184 * @ctlr: SPI bus master that should be locked for exclusive bus access
3185 * Context: can sleep
3186 *
3187 * This call may only be used from a context that may sleep. The sleep
3188 * is non-interruptible, and has no timeout.
3189 *
3190 * This call should be used by drivers that require exclusive access to the
3191 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3192 * exclusive access is over. Data transfer must be done by spi_sync_locked
3193 * and spi_async_locked calls when the SPI bus lock is held.
3194 *
3195 * Return: always zero.
3196 */
3197 int spi_bus_lock(struct spi_controller *ctlr)
3198 {
3199 unsigned long flags;
3200
3201 mutex_lock(&ctlr->bus_lock_mutex);
3202
3203 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3204 ctlr->bus_lock_flag = 1;
3205 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3206
3207 /* mutex remains locked until spi_bus_unlock is called */
3208
3209 return 0;
3210 }
3211 EXPORT_SYMBOL_GPL(spi_bus_lock);
3212
3213 /**
3214 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3215 * @ctlr: SPI bus master that was locked for exclusive bus access
3216 * Context: can sleep
3217 *
3218 * This call may only be used from a context that may sleep. The sleep
3219 * is non-interruptible, and has no timeout.
3220 *
3221 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3222 * call.
3223 *
3224 * Return: always zero.
3225 */
3226 int spi_bus_unlock(struct spi_controller *ctlr)
3227 {
3228 ctlr->bus_lock_flag = 0;
3229
3230 mutex_unlock(&ctlr->bus_lock_mutex);
3231
3232 return 0;
3233 }
3234 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3235
3236 /* portable code must never pass more than 32 bytes */
3237 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3238
3239 static u8 *buf;
3240
3241 /**
3242 * spi_write_then_read - SPI synchronous write followed by read
3243 * @spi: device with which data will be exchanged
3244 * @txbuf: data to be written (need not be dma-safe)
3245 * @n_tx: size of txbuf, in bytes
3246 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3247 * @n_rx: size of rxbuf, in bytes
3248 * Context: can sleep
3249 *
3250 * This performs a half duplex MicroWire style transaction with the
3251 * device, sending txbuf and then reading rxbuf. The return value
3252 * is zero for success, else a negative errno status code.
3253 * This call may only be used from a context that may sleep.
3254 *
3255 * Parameters to this routine are always copied using a small buffer;
3256 * portable code should never use this for more than 32 bytes.
3257 * Performance-sensitive or bulk transfer code should instead use
3258 * spi_{async,sync}() calls with dma-safe buffers.
3259 *
3260 * Return: zero on success, else a negative error code.
3261 */
3262 int spi_write_then_read(struct spi_device *spi,
3263 const void *txbuf, unsigned n_tx,
3264 void *rxbuf, unsigned n_rx)
3265 {
3266 static DEFINE_MUTEX(lock);
3267
3268 int status;
3269 struct spi_message message;
3270 struct spi_transfer x[2];
3271 u8 *local_buf;
3272
3273 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3274 * copying here, (as a pure convenience thing), but we can
3275 * keep heap costs out of the hot path unless someone else is
3276 * using the pre-allocated buffer or the transfer is too large.
3277 */
3278 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3279 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3280 GFP_KERNEL | GFP_DMA);
3281 if (!local_buf)
3282 return -ENOMEM;
3283 } else {
3284 local_buf = buf;
3285 }
3286
3287 spi_message_init(&message);
3288 memset(x, 0, sizeof(x));
3289 if (n_tx) {
3290 x[0].len = n_tx;
3291 spi_message_add_tail(&x[0], &message);
3292 }
3293 if (n_rx) {
3294 x[1].len = n_rx;
3295 spi_message_add_tail(&x[1], &message);
3296 }
3297
3298 memcpy(local_buf, txbuf, n_tx);
3299 x[0].tx_buf = local_buf;
3300 x[1].rx_buf = local_buf + n_tx;
3301
3302 /* do the i/o */
3303 status = spi_sync(spi, &message);
3304 if (status == 0)
3305 memcpy(rxbuf, x[1].rx_buf, n_rx);
3306
3307 if (x[0].tx_buf == buf)
3308 mutex_unlock(&lock);
3309 else
3310 kfree(local_buf);
3311
3312 return status;
3313 }
3314 EXPORT_SYMBOL_GPL(spi_write_then_read);
3315
3316 /*-------------------------------------------------------------------------*/
3317
3318 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3319 static int __spi_of_device_match(struct device *dev, void *data)
3320 {
3321 return dev->of_node == data;
3322 }
3323
3324 /* must call put_device() when done with returned spi_device device */
3325 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3326 {
3327 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3328 __spi_of_device_match);
3329 return dev ? to_spi_device(dev) : NULL;
3330 }
3331
3332 static int __spi_of_controller_match(struct device *dev, const void *data)
3333 {
3334 return dev->of_node == data;
3335 }
3336
3337 /* the spi controllers are not using spi_bus, so we find it with another way */
3338 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3339 {
3340 struct device *dev;
3341
3342 dev = class_find_device(&spi_master_class, NULL, node,
3343 __spi_of_controller_match);
3344 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3345 dev = class_find_device(&spi_slave_class, NULL, node,
3346 __spi_of_controller_match);
3347 if (!dev)
3348 return NULL;
3349
3350 /* reference got in class_find_device */
3351 return container_of(dev, struct spi_controller, dev);
3352 }
3353
3354 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3355 void *arg)
3356 {
3357 struct of_reconfig_data *rd = arg;
3358 struct spi_controller *ctlr;
3359 struct spi_device *spi;
3360
3361 switch (of_reconfig_get_state_change(action, arg)) {
3362 case OF_RECONFIG_CHANGE_ADD:
3363 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3364 if (ctlr == NULL)
3365 return NOTIFY_OK; /* not for us */
3366
3367 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3368 put_device(&ctlr->dev);
3369 return NOTIFY_OK;
3370 }
3371
3372 spi = of_register_spi_device(ctlr, rd->dn);
3373 put_device(&ctlr->dev);
3374
3375 if (IS_ERR(spi)) {
3376 pr_err("%s: failed to create for '%pOF'\n",
3377 __func__, rd->dn);
3378 of_node_clear_flag(rd->dn, OF_POPULATED);
3379 return notifier_from_errno(PTR_ERR(spi));
3380 }
3381 break;
3382
3383 case OF_RECONFIG_CHANGE_REMOVE:
3384 /* already depopulated? */
3385 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3386 return NOTIFY_OK;
3387
3388 /* find our device by node */
3389 spi = of_find_spi_device_by_node(rd->dn);
3390 if (spi == NULL)
3391 return NOTIFY_OK; /* no? not meant for us */
3392
3393 /* unregister takes one ref away */
3394 spi_unregister_device(spi);
3395
3396 /* and put the reference of the find */
3397 put_device(&spi->dev);
3398 break;
3399 }
3400
3401 return NOTIFY_OK;
3402 }
3403
3404 static struct notifier_block spi_of_notifier = {
3405 .notifier_call = of_spi_notify,
3406 };
3407 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3408 extern struct notifier_block spi_of_notifier;
3409 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3410
3411 #if IS_ENABLED(CONFIG_ACPI)
3412 static int spi_acpi_controller_match(struct device *dev, const void *data)
3413 {
3414 return ACPI_COMPANION(dev->parent) == data;
3415 }
3416
3417 static int spi_acpi_device_match(struct device *dev, void *data)
3418 {
3419 return ACPI_COMPANION(dev) == data;
3420 }
3421
3422 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3423 {
3424 struct device *dev;
3425
3426 dev = class_find_device(&spi_master_class, NULL, adev,
3427 spi_acpi_controller_match);
3428 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3429 dev = class_find_device(&spi_slave_class, NULL, adev,
3430 spi_acpi_controller_match);
3431 if (!dev)
3432 return NULL;
3433
3434 return container_of(dev, struct spi_controller, dev);
3435 }
3436
3437 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3438 {
3439 struct device *dev;
3440
3441 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3442
3443 return dev ? to_spi_device(dev) : NULL;
3444 }
3445
3446 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3447 void *arg)
3448 {
3449 struct acpi_device *adev = arg;
3450 struct spi_controller *ctlr;
3451 struct spi_device *spi;
3452
3453 switch (value) {
3454 case ACPI_RECONFIG_DEVICE_ADD:
3455 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3456 if (!ctlr)
3457 break;
3458
3459 acpi_register_spi_device(ctlr, adev);
3460 put_device(&ctlr->dev);
3461 break;
3462 case ACPI_RECONFIG_DEVICE_REMOVE:
3463 if (!acpi_device_enumerated(adev))
3464 break;
3465
3466 spi = acpi_spi_find_device_by_adev(adev);
3467 if (!spi)
3468 break;
3469
3470 spi_unregister_device(spi);
3471 put_device(&spi->dev);
3472 break;
3473 }
3474
3475 return NOTIFY_OK;
3476 }
3477
3478 static struct notifier_block spi_acpi_notifier = {
3479 .notifier_call = acpi_spi_notify,
3480 };
3481 #else
3482 extern struct notifier_block spi_acpi_notifier;
3483 #endif
3484
3485 static int __init spi_init(void)
3486 {
3487 int status;
3488
3489 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3490 if (!buf) {
3491 status = -ENOMEM;
3492 goto err0;
3493 }
3494
3495 status = bus_register(&spi_bus_type);
3496 if (status < 0)
3497 goto err1;
3498
3499 status = class_register(&spi_master_class);
3500 if (status < 0)
3501 goto err2;
3502
3503 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3504 status = class_register(&spi_slave_class);
3505 if (status < 0)
3506 goto err3;
3507 }
3508
3509 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3510 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3511 if (IS_ENABLED(CONFIG_ACPI))
3512 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3513
3514 return 0;
3515
3516 err3:
3517 class_unregister(&spi_master_class);
3518 err2:
3519 bus_unregister(&spi_bus_type);
3520 err1:
3521 kfree(buf);
3522 buf = NULL;
3523 err0:
3524 return status;
3525 }
3526
3527 /* board_info is normally registered in arch_initcall(),
3528 * but even essential drivers wait till later
3529 *
3530 * REVISIT only boardinfo really needs static linking. the rest (device and
3531 * driver registration) _could_ be dynamically linked (modular) ... costs
3532 * include needing to have boardinfo data structures be much more public.
3533 */
3534 postcore_initcall(spi_init);
3535