]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/spi/spi.c
Merge tag 'for-linus-5.6b-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41
42 #include "internals.h"
43
44 static DEFINE_IDR(spi_master_idr);
45
46 static void spidev_release(struct device *dev)
47 {
48 struct spi_device *spi = to_spi_device(dev);
49
50 /* spi controllers may cleanup for released devices */
51 if (spi->controller->cleanup)
52 spi->controller->cleanup(spi);
53
54 spi_controller_put(spi->controller);
55 kfree(spi->driver_override);
56 kfree(spi);
57 }
58
59 static ssize_t
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61 {
62 const struct spi_device *spi = to_spi_device(dev);
63 int len;
64
65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 if (len != -ENODEV)
67 return len;
68
69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
70 }
71 static DEVICE_ATTR_RO(modalias);
72
73 static ssize_t driver_override_store(struct device *dev,
74 struct device_attribute *a,
75 const char *buf, size_t count)
76 {
77 struct spi_device *spi = to_spi_device(dev);
78 const char *end = memchr(buf, '\n', count);
79 const size_t len = end ? end - buf : count;
80 const char *driver_override, *old;
81
82 /* We need to keep extra room for a newline when displaying value */
83 if (len >= (PAGE_SIZE - 1))
84 return -EINVAL;
85
86 driver_override = kstrndup(buf, len, GFP_KERNEL);
87 if (!driver_override)
88 return -ENOMEM;
89
90 device_lock(dev);
91 old = spi->driver_override;
92 if (len) {
93 spi->driver_override = driver_override;
94 } else {
95 /* Empty string, disable driver override */
96 spi->driver_override = NULL;
97 kfree(driver_override);
98 }
99 device_unlock(dev);
100 kfree(old);
101
102 return count;
103 }
104
105 static ssize_t driver_override_show(struct device *dev,
106 struct device_attribute *a, char *buf)
107 {
108 const struct spi_device *spi = to_spi_device(dev);
109 ssize_t len;
110
111 device_lock(dev);
112 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
113 device_unlock(dev);
114 return len;
115 }
116 static DEVICE_ATTR_RW(driver_override);
117
118 #define SPI_STATISTICS_ATTRS(field, file) \
119 static ssize_t spi_controller_##field##_show(struct device *dev, \
120 struct device_attribute *attr, \
121 char *buf) \
122 { \
123 struct spi_controller *ctlr = container_of(dev, \
124 struct spi_controller, dev); \
125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
126 } \
127 static struct device_attribute dev_attr_spi_controller_##field = { \
128 .attr = { .name = file, .mode = 0444 }, \
129 .show = spi_controller_##field##_show, \
130 }; \
131 static ssize_t spi_device_##field##_show(struct device *dev, \
132 struct device_attribute *attr, \
133 char *buf) \
134 { \
135 struct spi_device *spi = to_spi_device(dev); \
136 return spi_statistics_##field##_show(&spi->statistics, buf); \
137 } \
138 static struct device_attribute dev_attr_spi_device_##field = { \
139 .attr = { .name = file, .mode = 0444 }, \
140 .show = spi_device_##field##_show, \
141 }
142
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145 char *buf) \
146 { \
147 unsigned long flags; \
148 ssize_t len; \
149 spin_lock_irqsave(&stat->lock, flags); \
150 len = sprintf(buf, format_string, stat->field); \
151 spin_unlock_irqrestore(&stat->lock, flags); \
152 return len; \
153 } \
154 SPI_STATISTICS_ATTRS(name, file)
155
156 #define SPI_STATISTICS_SHOW(field, format_string) \
157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
158 field, format_string)
159
160 SPI_STATISTICS_SHOW(messages, "%lu");
161 SPI_STATISTICS_SHOW(transfers, "%lu");
162 SPI_STATISTICS_SHOW(errors, "%lu");
163 SPI_STATISTICS_SHOW(timedout, "%lu");
164
165 SPI_STATISTICS_SHOW(spi_sync, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167 SPI_STATISTICS_SHOW(spi_async, "%lu");
168
169 SPI_STATISTICS_SHOW(bytes, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
172
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
175 "transfer_bytes_histo_" number, \
176 transfer_bytes_histo[index], "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
194
195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
196
197 static struct attribute *spi_dev_attrs[] = {
198 &dev_attr_modalias.attr,
199 &dev_attr_driver_override.attr,
200 NULL,
201 };
202
203 static const struct attribute_group spi_dev_group = {
204 .attrs = spi_dev_attrs,
205 };
206
207 static struct attribute *spi_device_statistics_attrs[] = {
208 &dev_attr_spi_device_messages.attr,
209 &dev_attr_spi_device_transfers.attr,
210 &dev_attr_spi_device_errors.attr,
211 &dev_attr_spi_device_timedout.attr,
212 &dev_attr_spi_device_spi_sync.attr,
213 &dev_attr_spi_device_spi_sync_immediate.attr,
214 &dev_attr_spi_device_spi_async.attr,
215 &dev_attr_spi_device_bytes.attr,
216 &dev_attr_spi_device_bytes_rx.attr,
217 &dev_attr_spi_device_bytes_tx.attr,
218 &dev_attr_spi_device_transfer_bytes_histo0.attr,
219 &dev_attr_spi_device_transfer_bytes_histo1.attr,
220 &dev_attr_spi_device_transfer_bytes_histo2.attr,
221 &dev_attr_spi_device_transfer_bytes_histo3.attr,
222 &dev_attr_spi_device_transfer_bytes_histo4.attr,
223 &dev_attr_spi_device_transfer_bytes_histo5.attr,
224 &dev_attr_spi_device_transfer_bytes_histo6.attr,
225 &dev_attr_spi_device_transfer_bytes_histo7.attr,
226 &dev_attr_spi_device_transfer_bytes_histo8.attr,
227 &dev_attr_spi_device_transfer_bytes_histo9.attr,
228 &dev_attr_spi_device_transfer_bytes_histo10.attr,
229 &dev_attr_spi_device_transfer_bytes_histo11.attr,
230 &dev_attr_spi_device_transfer_bytes_histo12.attr,
231 &dev_attr_spi_device_transfer_bytes_histo13.attr,
232 &dev_attr_spi_device_transfer_bytes_histo14.attr,
233 &dev_attr_spi_device_transfer_bytes_histo15.attr,
234 &dev_attr_spi_device_transfer_bytes_histo16.attr,
235 &dev_attr_spi_device_transfers_split_maxsize.attr,
236 NULL,
237 };
238
239 static const struct attribute_group spi_device_statistics_group = {
240 .name = "statistics",
241 .attrs = spi_device_statistics_attrs,
242 };
243
244 static const struct attribute_group *spi_dev_groups[] = {
245 &spi_dev_group,
246 &spi_device_statistics_group,
247 NULL,
248 };
249
250 static struct attribute *spi_controller_statistics_attrs[] = {
251 &dev_attr_spi_controller_messages.attr,
252 &dev_attr_spi_controller_transfers.attr,
253 &dev_attr_spi_controller_errors.attr,
254 &dev_attr_spi_controller_timedout.attr,
255 &dev_attr_spi_controller_spi_sync.attr,
256 &dev_attr_spi_controller_spi_sync_immediate.attr,
257 &dev_attr_spi_controller_spi_async.attr,
258 &dev_attr_spi_controller_bytes.attr,
259 &dev_attr_spi_controller_bytes_rx.attr,
260 &dev_attr_spi_controller_bytes_tx.attr,
261 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
262 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
263 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
264 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
265 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
266 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
267 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
268 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
269 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
270 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
271 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
272 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
273 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
274 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
275 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
276 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
277 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
278 &dev_attr_spi_controller_transfers_split_maxsize.attr,
279 NULL,
280 };
281
282 static const struct attribute_group spi_controller_statistics_group = {
283 .name = "statistics",
284 .attrs = spi_controller_statistics_attrs,
285 };
286
287 static const struct attribute_group *spi_master_groups[] = {
288 &spi_controller_statistics_group,
289 NULL,
290 };
291
292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293 struct spi_transfer *xfer,
294 struct spi_controller *ctlr)
295 {
296 unsigned long flags;
297 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
298
299 if (l2len < 0)
300 l2len = 0;
301
302 spin_lock_irqsave(&stats->lock, flags);
303
304 stats->transfers++;
305 stats->transfer_bytes_histo[l2len]++;
306
307 stats->bytes += xfer->len;
308 if ((xfer->tx_buf) &&
309 (xfer->tx_buf != ctlr->dummy_tx))
310 stats->bytes_tx += xfer->len;
311 if ((xfer->rx_buf) &&
312 (xfer->rx_buf != ctlr->dummy_rx))
313 stats->bytes_rx += xfer->len;
314
315 spin_unlock_irqrestore(&stats->lock, flags);
316 }
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
318
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320 * and the sysfs version makes coldplug work too.
321 */
322
323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324 const struct spi_device *sdev)
325 {
326 while (id->name[0]) {
327 if (!strcmp(sdev->modalias, id->name))
328 return id;
329 id++;
330 }
331 return NULL;
332 }
333
334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
335 {
336 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
337
338 return spi_match_id(sdrv->id_table, sdev);
339 }
340 EXPORT_SYMBOL_GPL(spi_get_device_id);
341
342 static int spi_match_device(struct device *dev, struct device_driver *drv)
343 {
344 const struct spi_device *spi = to_spi_device(dev);
345 const struct spi_driver *sdrv = to_spi_driver(drv);
346
347 /* Check override first, and if set, only use the named driver */
348 if (spi->driver_override)
349 return strcmp(spi->driver_override, drv->name) == 0;
350
351 /* Attempt an OF style match */
352 if (of_driver_match_device(dev, drv))
353 return 1;
354
355 /* Then try ACPI */
356 if (acpi_driver_match_device(dev, drv))
357 return 1;
358
359 if (sdrv->id_table)
360 return !!spi_match_id(sdrv->id_table, spi);
361
362 return strcmp(spi->modalias, drv->name) == 0;
363 }
364
365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
366 {
367 const struct spi_device *spi = to_spi_device(dev);
368 int rc;
369
370 rc = acpi_device_uevent_modalias(dev, env);
371 if (rc != -ENODEV)
372 return rc;
373
374 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
375 }
376
377 struct bus_type spi_bus_type = {
378 .name = "spi",
379 .dev_groups = spi_dev_groups,
380 .match = spi_match_device,
381 .uevent = spi_uevent,
382 };
383 EXPORT_SYMBOL_GPL(spi_bus_type);
384
385
386 static int spi_drv_probe(struct device *dev)
387 {
388 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
389 struct spi_device *spi = to_spi_device(dev);
390 int ret;
391
392 ret = of_clk_set_defaults(dev->of_node, false);
393 if (ret)
394 return ret;
395
396 if (dev->of_node) {
397 spi->irq = of_irq_get(dev->of_node, 0);
398 if (spi->irq == -EPROBE_DEFER)
399 return -EPROBE_DEFER;
400 if (spi->irq < 0)
401 spi->irq = 0;
402 }
403
404 ret = dev_pm_domain_attach(dev, true);
405 if (ret)
406 return ret;
407
408 ret = sdrv->probe(spi);
409 if (ret)
410 dev_pm_domain_detach(dev, true);
411
412 return ret;
413 }
414
415 static int spi_drv_remove(struct device *dev)
416 {
417 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
418 int ret;
419
420 ret = sdrv->remove(to_spi_device(dev));
421 dev_pm_domain_detach(dev, true);
422
423 return ret;
424 }
425
426 static void spi_drv_shutdown(struct device *dev)
427 {
428 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
429
430 sdrv->shutdown(to_spi_device(dev));
431 }
432
433 /**
434 * __spi_register_driver - register a SPI driver
435 * @owner: owner module of the driver to register
436 * @sdrv: the driver to register
437 * Context: can sleep
438 *
439 * Return: zero on success, else a negative error code.
440 */
441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
442 {
443 sdrv->driver.owner = owner;
444 sdrv->driver.bus = &spi_bus_type;
445 if (sdrv->probe)
446 sdrv->driver.probe = spi_drv_probe;
447 if (sdrv->remove)
448 sdrv->driver.remove = spi_drv_remove;
449 if (sdrv->shutdown)
450 sdrv->driver.shutdown = spi_drv_shutdown;
451 return driver_register(&sdrv->driver);
452 }
453 EXPORT_SYMBOL_GPL(__spi_register_driver);
454
455 /*-------------------------------------------------------------------------*/
456
457 /* SPI devices should normally not be created by SPI device drivers; that
458 * would make them board-specific. Similarly with SPI controller drivers.
459 * Device registration normally goes into like arch/.../mach.../board-YYY.c
460 * with other readonly (flashable) information about mainboard devices.
461 */
462
463 struct boardinfo {
464 struct list_head list;
465 struct spi_board_info board_info;
466 };
467
468 static LIST_HEAD(board_list);
469 static LIST_HEAD(spi_controller_list);
470
471 /*
472 * Used to protect add/del operation for board_info list and
473 * spi_controller list, and their matching process
474 * also used to protect object of type struct idr
475 */
476 static DEFINE_MUTEX(board_lock);
477
478 /**
479 * spi_alloc_device - Allocate a new SPI device
480 * @ctlr: Controller to which device is connected
481 * Context: can sleep
482 *
483 * Allows a driver to allocate and initialize a spi_device without
484 * registering it immediately. This allows a driver to directly
485 * fill the spi_device with device parameters before calling
486 * spi_add_device() on it.
487 *
488 * Caller is responsible to call spi_add_device() on the returned
489 * spi_device structure to add it to the SPI controller. If the caller
490 * needs to discard the spi_device without adding it, then it should
491 * call spi_dev_put() on it.
492 *
493 * Return: a pointer to the new device, or NULL.
494 */
495 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
496 {
497 struct spi_device *spi;
498
499 if (!spi_controller_get(ctlr))
500 return NULL;
501
502 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
503 if (!spi) {
504 spi_controller_put(ctlr);
505 return NULL;
506 }
507
508 spi->master = spi->controller = ctlr;
509 spi->dev.parent = &ctlr->dev;
510 spi->dev.bus = &spi_bus_type;
511 spi->dev.release = spidev_release;
512 spi->cs_gpio = -ENOENT;
513
514 spin_lock_init(&spi->statistics.lock);
515
516 device_initialize(&spi->dev);
517 return spi;
518 }
519 EXPORT_SYMBOL_GPL(spi_alloc_device);
520
521 static void spi_dev_set_name(struct spi_device *spi)
522 {
523 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
524
525 if (adev) {
526 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
527 return;
528 }
529
530 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
531 spi->chip_select);
532 }
533
534 static int spi_dev_check(struct device *dev, void *data)
535 {
536 struct spi_device *spi = to_spi_device(dev);
537 struct spi_device *new_spi = data;
538
539 if (spi->controller == new_spi->controller &&
540 spi->chip_select == new_spi->chip_select)
541 return -EBUSY;
542 return 0;
543 }
544
545 /**
546 * spi_add_device - Add spi_device allocated with spi_alloc_device
547 * @spi: spi_device to register
548 *
549 * Companion function to spi_alloc_device. Devices allocated with
550 * spi_alloc_device can be added onto the spi bus with this function.
551 *
552 * Return: 0 on success; negative errno on failure
553 */
554 int spi_add_device(struct spi_device *spi)
555 {
556 static DEFINE_MUTEX(spi_add_lock);
557 struct spi_controller *ctlr = spi->controller;
558 struct device *dev = ctlr->dev.parent;
559 int status;
560
561 /* Chipselects are numbered 0..max; validate. */
562 if (spi->chip_select >= ctlr->num_chipselect) {
563 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
564 ctlr->num_chipselect);
565 return -EINVAL;
566 }
567
568 /* Set the bus ID string */
569 spi_dev_set_name(spi);
570
571 /* We need to make sure there's no other device with this
572 * chipselect **BEFORE** we call setup(), else we'll trash
573 * its configuration. Lock against concurrent add() calls.
574 */
575 mutex_lock(&spi_add_lock);
576
577 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
578 if (status) {
579 dev_err(dev, "chipselect %d already in use\n",
580 spi->chip_select);
581 goto done;
582 }
583
584 /* Descriptors take precedence */
585 if (ctlr->cs_gpiods)
586 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
587 else if (ctlr->cs_gpios)
588 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
589
590 /* Drivers may modify this initial i/o setup, but will
591 * normally rely on the device being setup. Devices
592 * using SPI_CS_HIGH can't coexist well otherwise...
593 */
594 status = spi_setup(spi);
595 if (status < 0) {
596 dev_err(dev, "can't setup %s, status %d\n",
597 dev_name(&spi->dev), status);
598 goto done;
599 }
600
601 /* Device may be bound to an active driver when this returns */
602 status = device_add(&spi->dev);
603 if (status < 0)
604 dev_err(dev, "can't add %s, status %d\n",
605 dev_name(&spi->dev), status);
606 else
607 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
608
609 done:
610 mutex_unlock(&spi_add_lock);
611 return status;
612 }
613 EXPORT_SYMBOL_GPL(spi_add_device);
614
615 /**
616 * spi_new_device - instantiate one new SPI device
617 * @ctlr: Controller to which device is connected
618 * @chip: Describes the SPI device
619 * Context: can sleep
620 *
621 * On typical mainboards, this is purely internal; and it's not needed
622 * after board init creates the hard-wired devices. Some development
623 * platforms may not be able to use spi_register_board_info though, and
624 * this is exported so that for example a USB or parport based adapter
625 * driver could add devices (which it would learn about out-of-band).
626 *
627 * Return: the new device, or NULL.
628 */
629 struct spi_device *spi_new_device(struct spi_controller *ctlr,
630 struct spi_board_info *chip)
631 {
632 struct spi_device *proxy;
633 int status;
634
635 /* NOTE: caller did any chip->bus_num checks necessary.
636 *
637 * Also, unless we change the return value convention to use
638 * error-or-pointer (not NULL-or-pointer), troubleshootability
639 * suggests syslogged diagnostics are best here (ugh).
640 */
641
642 proxy = spi_alloc_device(ctlr);
643 if (!proxy)
644 return NULL;
645
646 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
647
648 proxy->chip_select = chip->chip_select;
649 proxy->max_speed_hz = chip->max_speed_hz;
650 proxy->mode = chip->mode;
651 proxy->irq = chip->irq;
652 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
653 proxy->dev.platform_data = (void *) chip->platform_data;
654 proxy->controller_data = chip->controller_data;
655 proxy->controller_state = NULL;
656
657 if (chip->properties) {
658 status = device_add_properties(&proxy->dev, chip->properties);
659 if (status) {
660 dev_err(&ctlr->dev,
661 "failed to add properties to '%s': %d\n",
662 chip->modalias, status);
663 goto err_dev_put;
664 }
665 }
666
667 status = spi_add_device(proxy);
668 if (status < 0)
669 goto err_remove_props;
670
671 return proxy;
672
673 err_remove_props:
674 if (chip->properties)
675 device_remove_properties(&proxy->dev);
676 err_dev_put:
677 spi_dev_put(proxy);
678 return NULL;
679 }
680 EXPORT_SYMBOL_GPL(spi_new_device);
681
682 /**
683 * spi_unregister_device - unregister a single SPI device
684 * @spi: spi_device to unregister
685 *
686 * Start making the passed SPI device vanish. Normally this would be handled
687 * by spi_unregister_controller().
688 */
689 void spi_unregister_device(struct spi_device *spi)
690 {
691 if (!spi)
692 return;
693
694 if (spi->dev.of_node) {
695 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
696 of_node_put(spi->dev.of_node);
697 }
698 if (ACPI_COMPANION(&spi->dev))
699 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
700 device_unregister(&spi->dev);
701 }
702 EXPORT_SYMBOL_GPL(spi_unregister_device);
703
704 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
705 struct spi_board_info *bi)
706 {
707 struct spi_device *dev;
708
709 if (ctlr->bus_num != bi->bus_num)
710 return;
711
712 dev = spi_new_device(ctlr, bi);
713 if (!dev)
714 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
715 bi->modalias);
716 }
717
718 /**
719 * spi_register_board_info - register SPI devices for a given board
720 * @info: array of chip descriptors
721 * @n: how many descriptors are provided
722 * Context: can sleep
723 *
724 * Board-specific early init code calls this (probably during arch_initcall)
725 * with segments of the SPI device table. Any device nodes are created later,
726 * after the relevant parent SPI controller (bus_num) is defined. We keep
727 * this table of devices forever, so that reloading a controller driver will
728 * not make Linux forget about these hard-wired devices.
729 *
730 * Other code can also call this, e.g. a particular add-on board might provide
731 * SPI devices through its expansion connector, so code initializing that board
732 * would naturally declare its SPI devices.
733 *
734 * The board info passed can safely be __initdata ... but be careful of
735 * any embedded pointers (platform_data, etc), they're copied as-is.
736 * Device properties are deep-copied though.
737 *
738 * Return: zero on success, else a negative error code.
739 */
740 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
741 {
742 struct boardinfo *bi;
743 int i;
744
745 if (!n)
746 return 0;
747
748 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
749 if (!bi)
750 return -ENOMEM;
751
752 for (i = 0; i < n; i++, bi++, info++) {
753 struct spi_controller *ctlr;
754
755 memcpy(&bi->board_info, info, sizeof(*info));
756 if (info->properties) {
757 bi->board_info.properties =
758 property_entries_dup(info->properties);
759 if (IS_ERR(bi->board_info.properties))
760 return PTR_ERR(bi->board_info.properties);
761 }
762
763 mutex_lock(&board_lock);
764 list_add_tail(&bi->list, &board_list);
765 list_for_each_entry(ctlr, &spi_controller_list, list)
766 spi_match_controller_to_boardinfo(ctlr,
767 &bi->board_info);
768 mutex_unlock(&board_lock);
769 }
770
771 return 0;
772 }
773
774 /*-------------------------------------------------------------------------*/
775
776 static void spi_set_cs(struct spi_device *spi, bool enable)
777 {
778 bool enable1 = enable;
779
780 if (!spi->controller->set_cs_timing) {
781 if (enable1)
782 spi_delay_exec(&spi->controller->cs_setup, NULL);
783 else
784 spi_delay_exec(&spi->controller->cs_hold, NULL);
785 }
786
787 if (spi->mode & SPI_CS_HIGH)
788 enable = !enable;
789
790 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
791 /*
792 * Honour the SPI_NO_CS flag and invert the enable line, as
793 * active low is default for SPI. Execution paths that handle
794 * polarity inversion in gpiolib (such as device tree) will
795 * enforce active high using the SPI_CS_HIGH resulting in a
796 * double inversion through the code above.
797 */
798 if (!(spi->mode & SPI_NO_CS)) {
799 if (spi->cs_gpiod)
800 gpiod_set_value_cansleep(spi->cs_gpiod,
801 !enable);
802 else
803 gpio_set_value_cansleep(spi->cs_gpio, !enable);
804 }
805 /* Some SPI masters need both GPIO CS & slave_select */
806 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
807 spi->controller->set_cs)
808 spi->controller->set_cs(spi, !enable);
809 } else if (spi->controller->set_cs) {
810 spi->controller->set_cs(spi, !enable);
811 }
812
813 if (!spi->controller->set_cs_timing) {
814 if (!enable1)
815 spi_delay_exec(&spi->controller->cs_inactive, NULL);
816 }
817 }
818
819 #ifdef CONFIG_HAS_DMA
820 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
821 struct sg_table *sgt, void *buf, size_t len,
822 enum dma_data_direction dir)
823 {
824 const bool vmalloced_buf = is_vmalloc_addr(buf);
825 unsigned int max_seg_size = dma_get_max_seg_size(dev);
826 #ifdef CONFIG_HIGHMEM
827 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
828 (unsigned long)buf < (PKMAP_BASE +
829 (LAST_PKMAP * PAGE_SIZE)));
830 #else
831 const bool kmap_buf = false;
832 #endif
833 int desc_len;
834 int sgs;
835 struct page *vm_page;
836 struct scatterlist *sg;
837 void *sg_buf;
838 size_t min;
839 int i, ret;
840
841 if (vmalloced_buf || kmap_buf) {
842 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
843 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
844 } else if (virt_addr_valid(buf)) {
845 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
846 sgs = DIV_ROUND_UP(len, desc_len);
847 } else {
848 return -EINVAL;
849 }
850
851 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
852 if (ret != 0)
853 return ret;
854
855 sg = &sgt->sgl[0];
856 for (i = 0; i < sgs; i++) {
857
858 if (vmalloced_buf || kmap_buf) {
859 /*
860 * Next scatterlist entry size is the minimum between
861 * the desc_len and the remaining buffer length that
862 * fits in a page.
863 */
864 min = min_t(size_t, desc_len,
865 min_t(size_t, len,
866 PAGE_SIZE - offset_in_page(buf)));
867 if (vmalloced_buf)
868 vm_page = vmalloc_to_page(buf);
869 else
870 vm_page = kmap_to_page(buf);
871 if (!vm_page) {
872 sg_free_table(sgt);
873 return -ENOMEM;
874 }
875 sg_set_page(sg, vm_page,
876 min, offset_in_page(buf));
877 } else {
878 min = min_t(size_t, len, desc_len);
879 sg_buf = buf;
880 sg_set_buf(sg, sg_buf, min);
881 }
882
883 buf += min;
884 len -= min;
885 sg = sg_next(sg);
886 }
887
888 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
889 if (!ret)
890 ret = -ENOMEM;
891 if (ret < 0) {
892 sg_free_table(sgt);
893 return ret;
894 }
895
896 sgt->nents = ret;
897
898 return 0;
899 }
900
901 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
902 struct sg_table *sgt, enum dma_data_direction dir)
903 {
904 if (sgt->orig_nents) {
905 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
906 sg_free_table(sgt);
907 }
908 }
909
910 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
911 {
912 struct device *tx_dev, *rx_dev;
913 struct spi_transfer *xfer;
914 int ret;
915
916 if (!ctlr->can_dma)
917 return 0;
918
919 if (ctlr->dma_tx)
920 tx_dev = ctlr->dma_tx->device->dev;
921 else
922 tx_dev = ctlr->dev.parent;
923
924 if (ctlr->dma_rx)
925 rx_dev = ctlr->dma_rx->device->dev;
926 else
927 rx_dev = ctlr->dev.parent;
928
929 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
930 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
931 continue;
932
933 if (xfer->tx_buf != NULL) {
934 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
935 (void *)xfer->tx_buf, xfer->len,
936 DMA_TO_DEVICE);
937 if (ret != 0)
938 return ret;
939 }
940
941 if (xfer->rx_buf != NULL) {
942 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
943 xfer->rx_buf, xfer->len,
944 DMA_FROM_DEVICE);
945 if (ret != 0) {
946 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
947 DMA_TO_DEVICE);
948 return ret;
949 }
950 }
951 }
952
953 ctlr->cur_msg_mapped = true;
954
955 return 0;
956 }
957
958 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
959 {
960 struct spi_transfer *xfer;
961 struct device *tx_dev, *rx_dev;
962
963 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
964 return 0;
965
966 if (ctlr->dma_tx)
967 tx_dev = ctlr->dma_tx->device->dev;
968 else
969 tx_dev = ctlr->dev.parent;
970
971 if (ctlr->dma_rx)
972 rx_dev = ctlr->dma_rx->device->dev;
973 else
974 rx_dev = ctlr->dev.parent;
975
976 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
977 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
978 continue;
979
980 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
981 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
982 }
983
984 return 0;
985 }
986 #else /* !CONFIG_HAS_DMA */
987 static inline int __spi_map_msg(struct spi_controller *ctlr,
988 struct spi_message *msg)
989 {
990 return 0;
991 }
992
993 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
994 struct spi_message *msg)
995 {
996 return 0;
997 }
998 #endif /* !CONFIG_HAS_DMA */
999
1000 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1001 struct spi_message *msg)
1002 {
1003 struct spi_transfer *xfer;
1004
1005 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1006 /*
1007 * Restore the original value of tx_buf or rx_buf if they are
1008 * NULL.
1009 */
1010 if (xfer->tx_buf == ctlr->dummy_tx)
1011 xfer->tx_buf = NULL;
1012 if (xfer->rx_buf == ctlr->dummy_rx)
1013 xfer->rx_buf = NULL;
1014 }
1015
1016 return __spi_unmap_msg(ctlr, msg);
1017 }
1018
1019 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1020 {
1021 struct spi_transfer *xfer;
1022 void *tmp;
1023 unsigned int max_tx, max_rx;
1024
1025 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
1026 max_tx = 0;
1027 max_rx = 0;
1028
1029 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1030 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1031 !xfer->tx_buf)
1032 max_tx = max(xfer->len, max_tx);
1033 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1034 !xfer->rx_buf)
1035 max_rx = max(xfer->len, max_rx);
1036 }
1037
1038 if (max_tx) {
1039 tmp = krealloc(ctlr->dummy_tx, max_tx,
1040 GFP_KERNEL | GFP_DMA);
1041 if (!tmp)
1042 return -ENOMEM;
1043 ctlr->dummy_tx = tmp;
1044 memset(tmp, 0, max_tx);
1045 }
1046
1047 if (max_rx) {
1048 tmp = krealloc(ctlr->dummy_rx, max_rx,
1049 GFP_KERNEL | GFP_DMA);
1050 if (!tmp)
1051 return -ENOMEM;
1052 ctlr->dummy_rx = tmp;
1053 }
1054
1055 if (max_tx || max_rx) {
1056 list_for_each_entry(xfer, &msg->transfers,
1057 transfer_list) {
1058 if (!xfer->len)
1059 continue;
1060 if (!xfer->tx_buf)
1061 xfer->tx_buf = ctlr->dummy_tx;
1062 if (!xfer->rx_buf)
1063 xfer->rx_buf = ctlr->dummy_rx;
1064 }
1065 }
1066 }
1067
1068 return __spi_map_msg(ctlr, msg);
1069 }
1070
1071 static int spi_transfer_wait(struct spi_controller *ctlr,
1072 struct spi_message *msg,
1073 struct spi_transfer *xfer)
1074 {
1075 struct spi_statistics *statm = &ctlr->statistics;
1076 struct spi_statistics *stats = &msg->spi->statistics;
1077 unsigned long long ms = 1;
1078
1079 if (spi_controller_is_slave(ctlr)) {
1080 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1081 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1082 return -EINTR;
1083 }
1084 } else {
1085 ms = 8LL * 1000LL * xfer->len;
1086 do_div(ms, xfer->speed_hz);
1087 ms += ms + 200; /* some tolerance */
1088
1089 if (ms > UINT_MAX)
1090 ms = UINT_MAX;
1091
1092 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1093 msecs_to_jiffies(ms));
1094
1095 if (ms == 0) {
1096 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1097 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1098 dev_err(&msg->spi->dev,
1099 "SPI transfer timed out\n");
1100 return -ETIMEDOUT;
1101 }
1102 }
1103
1104 return 0;
1105 }
1106
1107 static void _spi_transfer_delay_ns(u32 ns)
1108 {
1109 if (!ns)
1110 return;
1111 if (ns <= 1000) {
1112 ndelay(ns);
1113 } else {
1114 u32 us = DIV_ROUND_UP(ns, 1000);
1115
1116 if (us <= 10)
1117 udelay(us);
1118 else
1119 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1120 }
1121 }
1122
1123 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1124 {
1125 u32 delay = _delay->value;
1126 u32 unit = _delay->unit;
1127 u32 hz;
1128
1129 if (!delay)
1130 return 0;
1131
1132 switch (unit) {
1133 case SPI_DELAY_UNIT_USECS:
1134 delay *= 1000;
1135 break;
1136 case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1137 break;
1138 case SPI_DELAY_UNIT_SCK:
1139 /* clock cycles need to be obtained from spi_transfer */
1140 if (!xfer)
1141 return -EINVAL;
1142 /* if there is no effective speed know, then approximate
1143 * by underestimating with half the requested hz
1144 */
1145 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1146 if (!hz)
1147 return -EINVAL;
1148 delay *= DIV_ROUND_UP(1000000000, hz);
1149 break;
1150 default:
1151 return -EINVAL;
1152 }
1153
1154 return delay;
1155 }
1156 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1157
1158 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1159 {
1160 int delay;
1161
1162 if (!_delay)
1163 return -EINVAL;
1164
1165 delay = spi_delay_to_ns(_delay, xfer);
1166 if (delay < 0)
1167 return delay;
1168
1169 _spi_transfer_delay_ns(delay);
1170
1171 return 0;
1172 }
1173 EXPORT_SYMBOL_GPL(spi_delay_exec);
1174
1175 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1176 struct spi_transfer *xfer)
1177 {
1178 u32 delay = xfer->cs_change_delay.value;
1179 u32 unit = xfer->cs_change_delay.unit;
1180 int ret;
1181
1182 /* return early on "fast" mode - for everything but USECS */
1183 if (!delay) {
1184 if (unit == SPI_DELAY_UNIT_USECS)
1185 _spi_transfer_delay_ns(10000);
1186 return;
1187 }
1188
1189 ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1190 if (ret) {
1191 dev_err_once(&msg->spi->dev,
1192 "Use of unsupported delay unit %i, using default of 10us\n",
1193 unit);
1194 _spi_transfer_delay_ns(10000);
1195 }
1196 }
1197
1198 /*
1199 * spi_transfer_one_message - Default implementation of transfer_one_message()
1200 *
1201 * This is a standard implementation of transfer_one_message() for
1202 * drivers which implement a transfer_one() operation. It provides
1203 * standard handling of delays and chip select management.
1204 */
1205 static int spi_transfer_one_message(struct spi_controller *ctlr,
1206 struct spi_message *msg)
1207 {
1208 struct spi_transfer *xfer;
1209 bool keep_cs = false;
1210 int ret = 0;
1211 struct spi_statistics *statm = &ctlr->statistics;
1212 struct spi_statistics *stats = &msg->spi->statistics;
1213
1214 spi_set_cs(msg->spi, true);
1215
1216 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1217 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1218
1219 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1220 trace_spi_transfer_start(msg, xfer);
1221
1222 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1223 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1224
1225 if (!ctlr->ptp_sts_supported) {
1226 xfer->ptp_sts_word_pre = 0;
1227 ptp_read_system_prets(xfer->ptp_sts);
1228 }
1229
1230 if (xfer->tx_buf || xfer->rx_buf) {
1231 reinit_completion(&ctlr->xfer_completion);
1232
1233 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1234 if (ret < 0) {
1235 SPI_STATISTICS_INCREMENT_FIELD(statm,
1236 errors);
1237 SPI_STATISTICS_INCREMENT_FIELD(stats,
1238 errors);
1239 dev_err(&msg->spi->dev,
1240 "SPI transfer failed: %d\n", ret);
1241 goto out;
1242 }
1243
1244 if (ret > 0) {
1245 ret = spi_transfer_wait(ctlr, msg, xfer);
1246 if (ret < 0)
1247 msg->status = ret;
1248 }
1249 } else {
1250 if (xfer->len)
1251 dev_err(&msg->spi->dev,
1252 "Bufferless transfer has length %u\n",
1253 xfer->len);
1254 }
1255
1256 if (!ctlr->ptp_sts_supported) {
1257 ptp_read_system_postts(xfer->ptp_sts);
1258 xfer->ptp_sts_word_post = xfer->len;
1259 }
1260
1261 trace_spi_transfer_stop(msg, xfer);
1262
1263 if (msg->status != -EINPROGRESS)
1264 goto out;
1265
1266 spi_transfer_delay_exec(xfer);
1267
1268 if (xfer->cs_change) {
1269 if (list_is_last(&xfer->transfer_list,
1270 &msg->transfers)) {
1271 keep_cs = true;
1272 } else {
1273 spi_set_cs(msg->spi, false);
1274 _spi_transfer_cs_change_delay(msg, xfer);
1275 spi_set_cs(msg->spi, true);
1276 }
1277 }
1278
1279 msg->actual_length += xfer->len;
1280 }
1281
1282 out:
1283 if (ret != 0 || !keep_cs)
1284 spi_set_cs(msg->spi, false);
1285
1286 if (msg->status == -EINPROGRESS)
1287 msg->status = ret;
1288
1289 if (msg->status && ctlr->handle_err)
1290 ctlr->handle_err(ctlr, msg);
1291
1292 spi_res_release(ctlr, msg);
1293
1294 spi_finalize_current_message(ctlr);
1295
1296 return ret;
1297 }
1298
1299 /**
1300 * spi_finalize_current_transfer - report completion of a transfer
1301 * @ctlr: the controller reporting completion
1302 *
1303 * Called by SPI drivers using the core transfer_one_message()
1304 * implementation to notify it that the current interrupt driven
1305 * transfer has finished and the next one may be scheduled.
1306 */
1307 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1308 {
1309 complete(&ctlr->xfer_completion);
1310 }
1311 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1312
1313 /**
1314 * __spi_pump_messages - function which processes spi message queue
1315 * @ctlr: controller to process queue for
1316 * @in_kthread: true if we are in the context of the message pump thread
1317 *
1318 * This function checks if there is any spi message in the queue that
1319 * needs processing and if so call out to the driver to initialize hardware
1320 * and transfer each message.
1321 *
1322 * Note that it is called both from the kthread itself and also from
1323 * inside spi_sync(); the queue extraction handling at the top of the
1324 * function should deal with this safely.
1325 */
1326 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1327 {
1328 struct spi_transfer *xfer;
1329 struct spi_message *msg;
1330 bool was_busy = false;
1331 unsigned long flags;
1332 int ret;
1333
1334 /* Lock queue */
1335 spin_lock_irqsave(&ctlr->queue_lock, flags);
1336
1337 /* Make sure we are not already running a message */
1338 if (ctlr->cur_msg) {
1339 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1340 return;
1341 }
1342
1343 /* If another context is idling the device then defer */
1344 if (ctlr->idling) {
1345 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1346 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1347 return;
1348 }
1349
1350 /* Check if the queue is idle */
1351 if (list_empty(&ctlr->queue) || !ctlr->running) {
1352 if (!ctlr->busy) {
1353 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1354 return;
1355 }
1356
1357 /* Only do teardown in the thread */
1358 if (!in_kthread) {
1359 kthread_queue_work(&ctlr->kworker,
1360 &ctlr->pump_messages);
1361 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1362 return;
1363 }
1364
1365 ctlr->busy = false;
1366 ctlr->idling = true;
1367 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1368
1369 kfree(ctlr->dummy_rx);
1370 ctlr->dummy_rx = NULL;
1371 kfree(ctlr->dummy_tx);
1372 ctlr->dummy_tx = NULL;
1373 if (ctlr->unprepare_transfer_hardware &&
1374 ctlr->unprepare_transfer_hardware(ctlr))
1375 dev_err(&ctlr->dev,
1376 "failed to unprepare transfer hardware\n");
1377 if (ctlr->auto_runtime_pm) {
1378 pm_runtime_mark_last_busy(ctlr->dev.parent);
1379 pm_runtime_put_autosuspend(ctlr->dev.parent);
1380 }
1381 trace_spi_controller_idle(ctlr);
1382
1383 spin_lock_irqsave(&ctlr->queue_lock, flags);
1384 ctlr->idling = false;
1385 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1386 return;
1387 }
1388
1389 /* Extract head of queue */
1390 msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1391 ctlr->cur_msg = msg;
1392
1393 list_del_init(&msg->queue);
1394 if (ctlr->busy)
1395 was_busy = true;
1396 else
1397 ctlr->busy = true;
1398 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1399
1400 mutex_lock(&ctlr->io_mutex);
1401
1402 if (!was_busy && ctlr->auto_runtime_pm) {
1403 ret = pm_runtime_get_sync(ctlr->dev.parent);
1404 if (ret < 0) {
1405 pm_runtime_put_noidle(ctlr->dev.parent);
1406 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1407 ret);
1408 mutex_unlock(&ctlr->io_mutex);
1409 return;
1410 }
1411 }
1412
1413 if (!was_busy)
1414 trace_spi_controller_busy(ctlr);
1415
1416 if (!was_busy && ctlr->prepare_transfer_hardware) {
1417 ret = ctlr->prepare_transfer_hardware(ctlr);
1418 if (ret) {
1419 dev_err(&ctlr->dev,
1420 "failed to prepare transfer hardware: %d\n",
1421 ret);
1422
1423 if (ctlr->auto_runtime_pm)
1424 pm_runtime_put(ctlr->dev.parent);
1425
1426 msg->status = ret;
1427 spi_finalize_current_message(ctlr);
1428
1429 mutex_unlock(&ctlr->io_mutex);
1430 return;
1431 }
1432 }
1433
1434 trace_spi_message_start(msg);
1435
1436 if (ctlr->prepare_message) {
1437 ret = ctlr->prepare_message(ctlr, msg);
1438 if (ret) {
1439 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1440 ret);
1441 msg->status = ret;
1442 spi_finalize_current_message(ctlr);
1443 goto out;
1444 }
1445 ctlr->cur_msg_prepared = true;
1446 }
1447
1448 ret = spi_map_msg(ctlr, msg);
1449 if (ret) {
1450 msg->status = ret;
1451 spi_finalize_current_message(ctlr);
1452 goto out;
1453 }
1454
1455 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1456 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1457 xfer->ptp_sts_word_pre = 0;
1458 ptp_read_system_prets(xfer->ptp_sts);
1459 }
1460 }
1461
1462 ret = ctlr->transfer_one_message(ctlr, msg);
1463 if (ret) {
1464 dev_err(&ctlr->dev,
1465 "failed to transfer one message from queue\n");
1466 goto out;
1467 }
1468
1469 out:
1470 mutex_unlock(&ctlr->io_mutex);
1471
1472 /* Prod the scheduler in case transfer_one() was busy waiting */
1473 if (!ret)
1474 cond_resched();
1475 }
1476
1477 /**
1478 * spi_pump_messages - kthread work function which processes spi message queue
1479 * @work: pointer to kthread work struct contained in the controller struct
1480 */
1481 static void spi_pump_messages(struct kthread_work *work)
1482 {
1483 struct spi_controller *ctlr =
1484 container_of(work, struct spi_controller, pump_messages);
1485
1486 __spi_pump_messages(ctlr, true);
1487 }
1488
1489 /**
1490 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1491 * TX timestamp for the requested byte from the SPI
1492 * transfer. The frequency with which this function
1493 * must be called (once per word, once for the whole
1494 * transfer, once per batch of words etc) is arbitrary
1495 * as long as the @tx buffer offset is greater than or
1496 * equal to the requested byte at the time of the
1497 * call. The timestamp is only taken once, at the
1498 * first such call. It is assumed that the driver
1499 * advances its @tx buffer pointer monotonically.
1500 * @ctlr: Pointer to the spi_controller structure of the driver
1501 * @xfer: Pointer to the transfer being timestamped
1502 * @progress: How many words (not bytes) have been transferred so far
1503 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1504 * transfer, for less jitter in time measurement. Only compatible
1505 * with PIO drivers. If true, must follow up with
1506 * spi_take_timestamp_post or otherwise system will crash.
1507 * WARNING: for fully predictable results, the CPU frequency must
1508 * also be under control (governor).
1509 */
1510 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1511 struct spi_transfer *xfer,
1512 size_t progress, bool irqs_off)
1513 {
1514 if (!xfer->ptp_sts)
1515 return;
1516
1517 if (xfer->timestamped_pre)
1518 return;
1519
1520 if (progress < xfer->ptp_sts_word_pre)
1521 return;
1522
1523 /* Capture the resolution of the timestamp */
1524 xfer->ptp_sts_word_pre = progress;
1525
1526 xfer->timestamped_pre = true;
1527
1528 if (irqs_off) {
1529 local_irq_save(ctlr->irq_flags);
1530 preempt_disable();
1531 }
1532
1533 ptp_read_system_prets(xfer->ptp_sts);
1534 }
1535 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1536
1537 /**
1538 * spi_take_timestamp_post - helper for drivers to collect the end of the
1539 * TX timestamp for the requested byte from the SPI
1540 * transfer. Can be called with an arbitrary
1541 * frequency: only the first call where @tx exceeds
1542 * or is equal to the requested word will be
1543 * timestamped.
1544 * @ctlr: Pointer to the spi_controller structure of the driver
1545 * @xfer: Pointer to the transfer being timestamped
1546 * @progress: How many words (not bytes) have been transferred so far
1547 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1548 */
1549 void spi_take_timestamp_post(struct spi_controller *ctlr,
1550 struct spi_transfer *xfer,
1551 size_t progress, bool irqs_off)
1552 {
1553 if (!xfer->ptp_sts)
1554 return;
1555
1556 if (xfer->timestamped_post)
1557 return;
1558
1559 if (progress < xfer->ptp_sts_word_post)
1560 return;
1561
1562 ptp_read_system_postts(xfer->ptp_sts);
1563
1564 if (irqs_off) {
1565 local_irq_restore(ctlr->irq_flags);
1566 preempt_enable();
1567 }
1568
1569 /* Capture the resolution of the timestamp */
1570 xfer->ptp_sts_word_post = progress;
1571
1572 xfer->timestamped_post = true;
1573 }
1574 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1575
1576 /**
1577 * spi_set_thread_rt - set the controller to pump at realtime priority
1578 * @ctlr: controller to boost priority of
1579 *
1580 * This can be called because the controller requested realtime priority
1581 * (by setting the ->rt value before calling spi_register_controller()) or
1582 * because a device on the bus said that its transfers needed realtime
1583 * priority.
1584 *
1585 * NOTE: at the moment if any device on a bus says it needs realtime then
1586 * the thread will be at realtime priority for all transfers on that
1587 * controller. If this eventually becomes a problem we may see if we can
1588 * find a way to boost the priority only temporarily during relevant
1589 * transfers.
1590 */
1591 static void spi_set_thread_rt(struct spi_controller *ctlr)
1592 {
1593 struct sched_param param = { .sched_priority = MAX_RT_PRIO / 2 };
1594
1595 dev_info(&ctlr->dev,
1596 "will run message pump with realtime priority\n");
1597 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1598 }
1599
1600 static int spi_init_queue(struct spi_controller *ctlr)
1601 {
1602 ctlr->running = false;
1603 ctlr->busy = false;
1604
1605 kthread_init_worker(&ctlr->kworker);
1606 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1607 "%s", dev_name(&ctlr->dev));
1608 if (IS_ERR(ctlr->kworker_task)) {
1609 dev_err(&ctlr->dev, "failed to create message pump task\n");
1610 return PTR_ERR(ctlr->kworker_task);
1611 }
1612 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1613
1614 /*
1615 * Controller config will indicate if this controller should run the
1616 * message pump with high (realtime) priority to reduce the transfer
1617 * latency on the bus by minimising the delay between a transfer
1618 * request and the scheduling of the message pump thread. Without this
1619 * setting the message pump thread will remain at default priority.
1620 */
1621 if (ctlr->rt)
1622 spi_set_thread_rt(ctlr);
1623
1624 return 0;
1625 }
1626
1627 /**
1628 * spi_get_next_queued_message() - called by driver to check for queued
1629 * messages
1630 * @ctlr: the controller to check for queued messages
1631 *
1632 * If there are more messages in the queue, the next message is returned from
1633 * this call.
1634 *
1635 * Return: the next message in the queue, else NULL if the queue is empty.
1636 */
1637 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1638 {
1639 struct spi_message *next;
1640 unsigned long flags;
1641
1642 /* get a pointer to the next message, if any */
1643 spin_lock_irqsave(&ctlr->queue_lock, flags);
1644 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1645 queue);
1646 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1647
1648 return next;
1649 }
1650 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1651
1652 /**
1653 * spi_finalize_current_message() - the current message is complete
1654 * @ctlr: the controller to return the message to
1655 *
1656 * Called by the driver to notify the core that the message in the front of the
1657 * queue is complete and can be removed from the queue.
1658 */
1659 void spi_finalize_current_message(struct spi_controller *ctlr)
1660 {
1661 struct spi_transfer *xfer;
1662 struct spi_message *mesg;
1663 unsigned long flags;
1664 int ret;
1665
1666 spin_lock_irqsave(&ctlr->queue_lock, flags);
1667 mesg = ctlr->cur_msg;
1668 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1669
1670 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1671 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1672 ptp_read_system_postts(xfer->ptp_sts);
1673 xfer->ptp_sts_word_post = xfer->len;
1674 }
1675 }
1676
1677 if (unlikely(ctlr->ptp_sts_supported)) {
1678 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1679 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped_pre);
1680 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped_post);
1681 }
1682 }
1683
1684 spi_unmap_msg(ctlr, mesg);
1685
1686 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1687 ret = ctlr->unprepare_message(ctlr, mesg);
1688 if (ret) {
1689 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1690 ret);
1691 }
1692 }
1693
1694 spin_lock_irqsave(&ctlr->queue_lock, flags);
1695 ctlr->cur_msg = NULL;
1696 ctlr->cur_msg_prepared = false;
1697 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1698 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1699
1700 trace_spi_message_done(mesg);
1701
1702 mesg->state = NULL;
1703 if (mesg->complete)
1704 mesg->complete(mesg->context);
1705 }
1706 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1707
1708 static int spi_start_queue(struct spi_controller *ctlr)
1709 {
1710 unsigned long flags;
1711
1712 spin_lock_irqsave(&ctlr->queue_lock, flags);
1713
1714 if (ctlr->running || ctlr->busy) {
1715 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1716 return -EBUSY;
1717 }
1718
1719 ctlr->running = true;
1720 ctlr->cur_msg = NULL;
1721 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1722
1723 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1724
1725 return 0;
1726 }
1727
1728 static int spi_stop_queue(struct spi_controller *ctlr)
1729 {
1730 unsigned long flags;
1731 unsigned limit = 500;
1732 int ret = 0;
1733
1734 spin_lock_irqsave(&ctlr->queue_lock, flags);
1735
1736 /*
1737 * This is a bit lame, but is optimized for the common execution path.
1738 * A wait_queue on the ctlr->busy could be used, but then the common
1739 * execution path (pump_messages) would be required to call wake_up or
1740 * friends on every SPI message. Do this instead.
1741 */
1742 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1743 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1744 usleep_range(10000, 11000);
1745 spin_lock_irqsave(&ctlr->queue_lock, flags);
1746 }
1747
1748 if (!list_empty(&ctlr->queue) || ctlr->busy)
1749 ret = -EBUSY;
1750 else
1751 ctlr->running = false;
1752
1753 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1754
1755 if (ret) {
1756 dev_warn(&ctlr->dev, "could not stop message queue\n");
1757 return ret;
1758 }
1759 return ret;
1760 }
1761
1762 static int spi_destroy_queue(struct spi_controller *ctlr)
1763 {
1764 int ret;
1765
1766 ret = spi_stop_queue(ctlr);
1767
1768 /*
1769 * kthread_flush_worker will block until all work is done.
1770 * If the reason that stop_queue timed out is that the work will never
1771 * finish, then it does no good to call flush/stop thread, so
1772 * return anyway.
1773 */
1774 if (ret) {
1775 dev_err(&ctlr->dev, "problem destroying queue\n");
1776 return ret;
1777 }
1778
1779 kthread_flush_worker(&ctlr->kworker);
1780 kthread_stop(ctlr->kworker_task);
1781
1782 return 0;
1783 }
1784
1785 static int __spi_queued_transfer(struct spi_device *spi,
1786 struct spi_message *msg,
1787 bool need_pump)
1788 {
1789 struct spi_controller *ctlr = spi->controller;
1790 unsigned long flags;
1791
1792 spin_lock_irqsave(&ctlr->queue_lock, flags);
1793
1794 if (!ctlr->running) {
1795 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1796 return -ESHUTDOWN;
1797 }
1798 msg->actual_length = 0;
1799 msg->status = -EINPROGRESS;
1800
1801 list_add_tail(&msg->queue, &ctlr->queue);
1802 if (!ctlr->busy && need_pump)
1803 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1804
1805 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1806 return 0;
1807 }
1808
1809 /**
1810 * spi_queued_transfer - transfer function for queued transfers
1811 * @spi: spi device which is requesting transfer
1812 * @msg: spi message which is to handled is queued to driver queue
1813 *
1814 * Return: zero on success, else a negative error code.
1815 */
1816 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1817 {
1818 return __spi_queued_transfer(spi, msg, true);
1819 }
1820
1821 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1822 {
1823 int ret;
1824
1825 ctlr->transfer = spi_queued_transfer;
1826 if (!ctlr->transfer_one_message)
1827 ctlr->transfer_one_message = spi_transfer_one_message;
1828
1829 /* Initialize and start queue */
1830 ret = spi_init_queue(ctlr);
1831 if (ret) {
1832 dev_err(&ctlr->dev, "problem initializing queue\n");
1833 goto err_init_queue;
1834 }
1835 ctlr->queued = true;
1836 ret = spi_start_queue(ctlr);
1837 if (ret) {
1838 dev_err(&ctlr->dev, "problem starting queue\n");
1839 goto err_start_queue;
1840 }
1841
1842 return 0;
1843
1844 err_start_queue:
1845 spi_destroy_queue(ctlr);
1846 err_init_queue:
1847 return ret;
1848 }
1849
1850 /**
1851 * spi_flush_queue - Send all pending messages in the queue from the callers'
1852 * context
1853 * @ctlr: controller to process queue for
1854 *
1855 * This should be used when one wants to ensure all pending messages have been
1856 * sent before doing something. Is used by the spi-mem code to make sure SPI
1857 * memory operations do not preempt regular SPI transfers that have been queued
1858 * before the spi-mem operation.
1859 */
1860 void spi_flush_queue(struct spi_controller *ctlr)
1861 {
1862 if (ctlr->transfer == spi_queued_transfer)
1863 __spi_pump_messages(ctlr, false);
1864 }
1865
1866 /*-------------------------------------------------------------------------*/
1867
1868 #if defined(CONFIG_OF)
1869 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1870 struct device_node *nc)
1871 {
1872 u32 value;
1873 int rc;
1874
1875 /* Mode (clock phase/polarity/etc.) */
1876 if (of_property_read_bool(nc, "spi-cpha"))
1877 spi->mode |= SPI_CPHA;
1878 if (of_property_read_bool(nc, "spi-cpol"))
1879 spi->mode |= SPI_CPOL;
1880 if (of_property_read_bool(nc, "spi-3wire"))
1881 spi->mode |= SPI_3WIRE;
1882 if (of_property_read_bool(nc, "spi-lsb-first"))
1883 spi->mode |= SPI_LSB_FIRST;
1884 if (of_property_read_bool(nc, "spi-cs-high"))
1885 spi->mode |= SPI_CS_HIGH;
1886
1887 /* Device DUAL/QUAD mode */
1888 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1889 switch (value) {
1890 case 1:
1891 break;
1892 case 2:
1893 spi->mode |= SPI_TX_DUAL;
1894 break;
1895 case 4:
1896 spi->mode |= SPI_TX_QUAD;
1897 break;
1898 case 8:
1899 spi->mode |= SPI_TX_OCTAL;
1900 break;
1901 default:
1902 dev_warn(&ctlr->dev,
1903 "spi-tx-bus-width %d not supported\n",
1904 value);
1905 break;
1906 }
1907 }
1908
1909 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1910 switch (value) {
1911 case 1:
1912 break;
1913 case 2:
1914 spi->mode |= SPI_RX_DUAL;
1915 break;
1916 case 4:
1917 spi->mode |= SPI_RX_QUAD;
1918 break;
1919 case 8:
1920 spi->mode |= SPI_RX_OCTAL;
1921 break;
1922 default:
1923 dev_warn(&ctlr->dev,
1924 "spi-rx-bus-width %d not supported\n",
1925 value);
1926 break;
1927 }
1928 }
1929
1930 if (spi_controller_is_slave(ctlr)) {
1931 if (!of_node_name_eq(nc, "slave")) {
1932 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1933 nc);
1934 return -EINVAL;
1935 }
1936 return 0;
1937 }
1938
1939 /* Device address */
1940 rc = of_property_read_u32(nc, "reg", &value);
1941 if (rc) {
1942 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1943 nc, rc);
1944 return rc;
1945 }
1946 spi->chip_select = value;
1947
1948 /*
1949 * For descriptors associated with the device, polarity inversion is
1950 * handled in the gpiolib, so all gpio chip selects are "active high"
1951 * in the logical sense, the gpiolib will invert the line if need be.
1952 */
1953 if ((ctlr->use_gpio_descriptors) && ctlr->cs_gpiods &&
1954 ctlr->cs_gpiods[spi->chip_select])
1955 spi->mode |= SPI_CS_HIGH;
1956
1957 /* Device speed */
1958 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1959 if (rc) {
1960 dev_err(&ctlr->dev,
1961 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1962 return rc;
1963 }
1964 spi->max_speed_hz = value;
1965
1966 return 0;
1967 }
1968
1969 static struct spi_device *
1970 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1971 {
1972 struct spi_device *spi;
1973 int rc;
1974
1975 /* Alloc an spi_device */
1976 spi = spi_alloc_device(ctlr);
1977 if (!spi) {
1978 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1979 rc = -ENOMEM;
1980 goto err_out;
1981 }
1982
1983 /* Select device driver */
1984 rc = of_modalias_node(nc, spi->modalias,
1985 sizeof(spi->modalias));
1986 if (rc < 0) {
1987 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1988 goto err_out;
1989 }
1990
1991 rc = of_spi_parse_dt(ctlr, spi, nc);
1992 if (rc)
1993 goto err_out;
1994
1995 /* Store a pointer to the node in the device structure */
1996 of_node_get(nc);
1997 spi->dev.of_node = nc;
1998
1999 /* Register the new device */
2000 rc = spi_add_device(spi);
2001 if (rc) {
2002 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2003 goto err_of_node_put;
2004 }
2005
2006 return spi;
2007
2008 err_of_node_put:
2009 of_node_put(nc);
2010 err_out:
2011 spi_dev_put(spi);
2012 return ERR_PTR(rc);
2013 }
2014
2015 /**
2016 * of_register_spi_devices() - Register child devices onto the SPI bus
2017 * @ctlr: Pointer to spi_controller device
2018 *
2019 * Registers an spi_device for each child node of controller node which
2020 * represents a valid SPI slave.
2021 */
2022 static void of_register_spi_devices(struct spi_controller *ctlr)
2023 {
2024 struct spi_device *spi;
2025 struct device_node *nc;
2026
2027 if (!ctlr->dev.of_node)
2028 return;
2029
2030 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2031 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2032 continue;
2033 spi = of_register_spi_device(ctlr, nc);
2034 if (IS_ERR(spi)) {
2035 dev_warn(&ctlr->dev,
2036 "Failed to create SPI device for %pOF\n", nc);
2037 of_node_clear_flag(nc, OF_POPULATED);
2038 }
2039 }
2040 }
2041 #else
2042 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2043 #endif
2044
2045 #ifdef CONFIG_ACPI
2046 struct acpi_spi_lookup {
2047 struct spi_controller *ctlr;
2048 u32 max_speed_hz;
2049 u32 mode;
2050 int irq;
2051 u8 bits_per_word;
2052 u8 chip_select;
2053 };
2054
2055 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2056 struct acpi_spi_lookup *lookup)
2057 {
2058 const union acpi_object *obj;
2059
2060 if (!x86_apple_machine)
2061 return;
2062
2063 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2064 && obj->buffer.length >= 4)
2065 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2066
2067 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2068 && obj->buffer.length == 8)
2069 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2070
2071 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2072 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2073 lookup->mode |= SPI_LSB_FIRST;
2074
2075 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2076 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2077 lookup->mode |= SPI_CPOL;
2078
2079 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2080 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2081 lookup->mode |= SPI_CPHA;
2082 }
2083
2084 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2085 {
2086 struct acpi_spi_lookup *lookup = data;
2087 struct spi_controller *ctlr = lookup->ctlr;
2088
2089 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2090 struct acpi_resource_spi_serialbus *sb;
2091 acpi_handle parent_handle;
2092 acpi_status status;
2093
2094 sb = &ares->data.spi_serial_bus;
2095 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2096
2097 status = acpi_get_handle(NULL,
2098 sb->resource_source.string_ptr,
2099 &parent_handle);
2100
2101 if (ACPI_FAILURE(status) ||
2102 ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2103 return -ENODEV;
2104
2105 /*
2106 * ACPI DeviceSelection numbering is handled by the
2107 * host controller driver in Windows and can vary
2108 * from driver to driver. In Linux we always expect
2109 * 0 .. max - 1 so we need to ask the driver to
2110 * translate between the two schemes.
2111 */
2112 if (ctlr->fw_translate_cs) {
2113 int cs = ctlr->fw_translate_cs(ctlr,
2114 sb->device_selection);
2115 if (cs < 0)
2116 return cs;
2117 lookup->chip_select = cs;
2118 } else {
2119 lookup->chip_select = sb->device_selection;
2120 }
2121
2122 lookup->max_speed_hz = sb->connection_speed;
2123
2124 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2125 lookup->mode |= SPI_CPHA;
2126 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2127 lookup->mode |= SPI_CPOL;
2128 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2129 lookup->mode |= SPI_CS_HIGH;
2130 }
2131 } else if (lookup->irq < 0) {
2132 struct resource r;
2133
2134 if (acpi_dev_resource_interrupt(ares, 0, &r))
2135 lookup->irq = r.start;
2136 }
2137
2138 /* Always tell the ACPI core to skip this resource */
2139 return 1;
2140 }
2141
2142 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2143 struct acpi_device *adev)
2144 {
2145 acpi_handle parent_handle = NULL;
2146 struct list_head resource_list;
2147 struct acpi_spi_lookup lookup = {};
2148 struct spi_device *spi;
2149 int ret;
2150
2151 if (acpi_bus_get_status(adev) || !adev->status.present ||
2152 acpi_device_enumerated(adev))
2153 return AE_OK;
2154
2155 lookup.ctlr = ctlr;
2156 lookup.irq = -1;
2157
2158 INIT_LIST_HEAD(&resource_list);
2159 ret = acpi_dev_get_resources(adev, &resource_list,
2160 acpi_spi_add_resource, &lookup);
2161 acpi_dev_free_resource_list(&resource_list);
2162
2163 if (ret < 0)
2164 /* found SPI in _CRS but it points to another controller */
2165 return AE_OK;
2166
2167 if (!lookup.max_speed_hz &&
2168 !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
2169 ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2170 /* Apple does not use _CRS but nested devices for SPI slaves */
2171 acpi_spi_parse_apple_properties(adev, &lookup);
2172 }
2173
2174 if (!lookup.max_speed_hz)
2175 return AE_OK;
2176
2177 spi = spi_alloc_device(ctlr);
2178 if (!spi) {
2179 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2180 dev_name(&adev->dev));
2181 return AE_NO_MEMORY;
2182 }
2183
2184 ACPI_COMPANION_SET(&spi->dev, adev);
2185 spi->max_speed_hz = lookup.max_speed_hz;
2186 spi->mode = lookup.mode;
2187 spi->irq = lookup.irq;
2188 spi->bits_per_word = lookup.bits_per_word;
2189 spi->chip_select = lookup.chip_select;
2190
2191 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2192 sizeof(spi->modalias));
2193
2194 if (spi->irq < 0)
2195 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2196
2197 acpi_device_set_enumerated(adev);
2198
2199 adev->power.flags.ignore_parent = true;
2200 if (spi_add_device(spi)) {
2201 adev->power.flags.ignore_parent = false;
2202 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2203 dev_name(&adev->dev));
2204 spi_dev_put(spi);
2205 }
2206
2207 return AE_OK;
2208 }
2209
2210 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2211 void *data, void **return_value)
2212 {
2213 struct spi_controller *ctlr = data;
2214 struct acpi_device *adev;
2215
2216 if (acpi_bus_get_device(handle, &adev))
2217 return AE_OK;
2218
2219 return acpi_register_spi_device(ctlr, adev);
2220 }
2221
2222 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32
2223
2224 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2225 {
2226 acpi_status status;
2227 acpi_handle handle;
2228
2229 handle = ACPI_HANDLE(ctlr->dev.parent);
2230 if (!handle)
2231 return;
2232
2233 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2234 SPI_ACPI_ENUMERATE_MAX_DEPTH,
2235 acpi_spi_add_device, NULL, ctlr, NULL);
2236 if (ACPI_FAILURE(status))
2237 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2238 }
2239 #else
2240 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2241 #endif /* CONFIG_ACPI */
2242
2243 static void spi_controller_release(struct device *dev)
2244 {
2245 struct spi_controller *ctlr;
2246
2247 ctlr = container_of(dev, struct spi_controller, dev);
2248 kfree(ctlr);
2249 }
2250
2251 static struct class spi_master_class = {
2252 .name = "spi_master",
2253 .owner = THIS_MODULE,
2254 .dev_release = spi_controller_release,
2255 .dev_groups = spi_master_groups,
2256 };
2257
2258 #ifdef CONFIG_SPI_SLAVE
2259 /**
2260 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2261 * controller
2262 * @spi: device used for the current transfer
2263 */
2264 int spi_slave_abort(struct spi_device *spi)
2265 {
2266 struct spi_controller *ctlr = spi->controller;
2267
2268 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2269 return ctlr->slave_abort(ctlr);
2270
2271 return -ENOTSUPP;
2272 }
2273 EXPORT_SYMBOL_GPL(spi_slave_abort);
2274
2275 static int match_true(struct device *dev, void *data)
2276 {
2277 return 1;
2278 }
2279
2280 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2281 char *buf)
2282 {
2283 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2284 dev);
2285 struct device *child;
2286
2287 child = device_find_child(&ctlr->dev, NULL, match_true);
2288 return sprintf(buf, "%s\n",
2289 child ? to_spi_device(child)->modalias : NULL);
2290 }
2291
2292 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2293 const char *buf, size_t count)
2294 {
2295 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2296 dev);
2297 struct spi_device *spi;
2298 struct device *child;
2299 char name[32];
2300 int rc;
2301
2302 rc = sscanf(buf, "%31s", name);
2303 if (rc != 1 || !name[0])
2304 return -EINVAL;
2305
2306 child = device_find_child(&ctlr->dev, NULL, match_true);
2307 if (child) {
2308 /* Remove registered slave */
2309 device_unregister(child);
2310 put_device(child);
2311 }
2312
2313 if (strcmp(name, "(null)")) {
2314 /* Register new slave */
2315 spi = spi_alloc_device(ctlr);
2316 if (!spi)
2317 return -ENOMEM;
2318
2319 strlcpy(spi->modalias, name, sizeof(spi->modalias));
2320
2321 rc = spi_add_device(spi);
2322 if (rc) {
2323 spi_dev_put(spi);
2324 return rc;
2325 }
2326 }
2327
2328 return count;
2329 }
2330
2331 static DEVICE_ATTR_RW(slave);
2332
2333 static struct attribute *spi_slave_attrs[] = {
2334 &dev_attr_slave.attr,
2335 NULL,
2336 };
2337
2338 static const struct attribute_group spi_slave_group = {
2339 .attrs = spi_slave_attrs,
2340 };
2341
2342 static const struct attribute_group *spi_slave_groups[] = {
2343 &spi_controller_statistics_group,
2344 &spi_slave_group,
2345 NULL,
2346 };
2347
2348 static struct class spi_slave_class = {
2349 .name = "spi_slave",
2350 .owner = THIS_MODULE,
2351 .dev_release = spi_controller_release,
2352 .dev_groups = spi_slave_groups,
2353 };
2354 #else
2355 extern struct class spi_slave_class; /* dummy */
2356 #endif
2357
2358 /**
2359 * __spi_alloc_controller - allocate an SPI master or slave controller
2360 * @dev: the controller, possibly using the platform_bus
2361 * @size: how much zeroed driver-private data to allocate; the pointer to this
2362 * memory is in the driver_data field of the returned device, accessible
2363 * with spi_controller_get_devdata(); the memory is cacheline aligned;
2364 * drivers granting DMA access to portions of their private data need to
2365 * round up @size using ALIGN(size, dma_get_cache_alignment()).
2366 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2367 * slave (true) controller
2368 * Context: can sleep
2369 *
2370 * This call is used only by SPI controller drivers, which are the
2371 * only ones directly touching chip registers. It's how they allocate
2372 * an spi_controller structure, prior to calling spi_register_controller().
2373 *
2374 * This must be called from context that can sleep.
2375 *
2376 * The caller is responsible for assigning the bus number and initializing the
2377 * controller's methods before calling spi_register_controller(); and (after
2378 * errors adding the device) calling spi_controller_put() to prevent a memory
2379 * leak.
2380 *
2381 * Return: the SPI controller structure on success, else NULL.
2382 */
2383 struct spi_controller *__spi_alloc_controller(struct device *dev,
2384 unsigned int size, bool slave)
2385 {
2386 struct spi_controller *ctlr;
2387 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2388
2389 if (!dev)
2390 return NULL;
2391
2392 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2393 if (!ctlr)
2394 return NULL;
2395
2396 device_initialize(&ctlr->dev);
2397 ctlr->bus_num = -1;
2398 ctlr->num_chipselect = 1;
2399 ctlr->slave = slave;
2400 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2401 ctlr->dev.class = &spi_slave_class;
2402 else
2403 ctlr->dev.class = &spi_master_class;
2404 ctlr->dev.parent = dev;
2405 pm_suspend_ignore_children(&ctlr->dev, true);
2406 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2407
2408 return ctlr;
2409 }
2410 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2411
2412 #ifdef CONFIG_OF
2413 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2414 {
2415 int nb, i, *cs;
2416 struct device_node *np = ctlr->dev.of_node;
2417
2418 if (!np)
2419 return 0;
2420
2421 nb = of_gpio_named_count(np, "cs-gpios");
2422 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2423
2424 /* Return error only for an incorrectly formed cs-gpios property */
2425 if (nb == 0 || nb == -ENOENT)
2426 return 0;
2427 else if (nb < 0)
2428 return nb;
2429
2430 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2431 GFP_KERNEL);
2432 ctlr->cs_gpios = cs;
2433
2434 if (!ctlr->cs_gpios)
2435 return -ENOMEM;
2436
2437 for (i = 0; i < ctlr->num_chipselect; i++)
2438 cs[i] = -ENOENT;
2439
2440 for (i = 0; i < nb; i++)
2441 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2442
2443 return 0;
2444 }
2445 #else
2446 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2447 {
2448 return 0;
2449 }
2450 #endif
2451
2452 /**
2453 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2454 * @ctlr: The SPI master to grab GPIO descriptors for
2455 */
2456 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2457 {
2458 int nb, i;
2459 struct gpio_desc **cs;
2460 struct device *dev = &ctlr->dev;
2461 unsigned long native_cs_mask = 0;
2462 unsigned int num_cs_gpios = 0;
2463
2464 nb = gpiod_count(dev, "cs");
2465 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2466
2467 /* No GPIOs at all is fine, else return the error */
2468 if (nb == 0 || nb == -ENOENT)
2469 return 0;
2470 else if (nb < 0)
2471 return nb;
2472
2473 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2474 GFP_KERNEL);
2475 if (!cs)
2476 return -ENOMEM;
2477 ctlr->cs_gpiods = cs;
2478
2479 for (i = 0; i < nb; i++) {
2480 /*
2481 * Most chipselects are active low, the inverted
2482 * semantics are handled by special quirks in gpiolib,
2483 * so initializing them GPIOD_OUT_LOW here means
2484 * "unasserted", in most cases this will drive the physical
2485 * line high.
2486 */
2487 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2488 GPIOD_OUT_LOW);
2489 if (IS_ERR(cs[i]))
2490 return PTR_ERR(cs[i]);
2491
2492 if (cs[i]) {
2493 /*
2494 * If we find a CS GPIO, name it after the device and
2495 * chip select line.
2496 */
2497 char *gpioname;
2498
2499 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2500 dev_name(dev), i);
2501 if (!gpioname)
2502 return -ENOMEM;
2503 gpiod_set_consumer_name(cs[i], gpioname);
2504 num_cs_gpios++;
2505 continue;
2506 }
2507
2508 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2509 dev_err(dev, "Invalid native chip select %d\n", i);
2510 return -EINVAL;
2511 }
2512 native_cs_mask |= BIT(i);
2513 }
2514
2515 ctlr->unused_native_cs = ffz(native_cs_mask);
2516 if (num_cs_gpios && ctlr->max_native_cs &&
2517 ctlr->unused_native_cs >= ctlr->max_native_cs) {
2518 dev_err(dev, "No unused native chip select available\n");
2519 return -EINVAL;
2520 }
2521
2522 return 0;
2523 }
2524
2525 static int spi_controller_check_ops(struct spi_controller *ctlr)
2526 {
2527 /*
2528 * The controller may implement only the high-level SPI-memory like
2529 * operations if it does not support regular SPI transfers, and this is
2530 * valid use case.
2531 * If ->mem_ops is NULL, we request that at least one of the
2532 * ->transfer_xxx() method be implemented.
2533 */
2534 if (ctlr->mem_ops) {
2535 if (!ctlr->mem_ops->exec_op)
2536 return -EINVAL;
2537 } else if (!ctlr->transfer && !ctlr->transfer_one &&
2538 !ctlr->transfer_one_message) {
2539 return -EINVAL;
2540 }
2541
2542 return 0;
2543 }
2544
2545 /**
2546 * spi_register_controller - register SPI master or slave controller
2547 * @ctlr: initialized master, originally from spi_alloc_master() or
2548 * spi_alloc_slave()
2549 * Context: can sleep
2550 *
2551 * SPI controllers connect to their drivers using some non-SPI bus,
2552 * such as the platform bus. The final stage of probe() in that code
2553 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2554 *
2555 * SPI controllers use board specific (often SOC specific) bus numbers,
2556 * and board-specific addressing for SPI devices combines those numbers
2557 * with chip select numbers. Since SPI does not directly support dynamic
2558 * device identification, boards need configuration tables telling which
2559 * chip is at which address.
2560 *
2561 * This must be called from context that can sleep. It returns zero on
2562 * success, else a negative error code (dropping the controller's refcount).
2563 * After a successful return, the caller is responsible for calling
2564 * spi_unregister_controller().
2565 *
2566 * Return: zero on success, else a negative error code.
2567 */
2568 int spi_register_controller(struct spi_controller *ctlr)
2569 {
2570 struct device *dev = ctlr->dev.parent;
2571 struct boardinfo *bi;
2572 int status;
2573 int id, first_dynamic;
2574
2575 if (!dev)
2576 return -ENODEV;
2577
2578 /*
2579 * Make sure all necessary hooks are implemented before registering
2580 * the SPI controller.
2581 */
2582 status = spi_controller_check_ops(ctlr);
2583 if (status)
2584 return status;
2585
2586 if (ctlr->bus_num >= 0) {
2587 /* devices with a fixed bus num must check-in with the num */
2588 mutex_lock(&board_lock);
2589 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2590 ctlr->bus_num + 1, GFP_KERNEL);
2591 mutex_unlock(&board_lock);
2592 if (WARN(id < 0, "couldn't get idr"))
2593 return id == -ENOSPC ? -EBUSY : id;
2594 ctlr->bus_num = id;
2595 } else if (ctlr->dev.of_node) {
2596 /* allocate dynamic bus number using Linux idr */
2597 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2598 if (id >= 0) {
2599 ctlr->bus_num = id;
2600 mutex_lock(&board_lock);
2601 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2602 ctlr->bus_num + 1, GFP_KERNEL);
2603 mutex_unlock(&board_lock);
2604 if (WARN(id < 0, "couldn't get idr"))
2605 return id == -ENOSPC ? -EBUSY : id;
2606 }
2607 }
2608 if (ctlr->bus_num < 0) {
2609 first_dynamic = of_alias_get_highest_id("spi");
2610 if (first_dynamic < 0)
2611 first_dynamic = 0;
2612 else
2613 first_dynamic++;
2614
2615 mutex_lock(&board_lock);
2616 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2617 0, GFP_KERNEL);
2618 mutex_unlock(&board_lock);
2619 if (WARN(id < 0, "couldn't get idr"))
2620 return id;
2621 ctlr->bus_num = id;
2622 }
2623 INIT_LIST_HEAD(&ctlr->queue);
2624 spin_lock_init(&ctlr->queue_lock);
2625 spin_lock_init(&ctlr->bus_lock_spinlock);
2626 mutex_init(&ctlr->bus_lock_mutex);
2627 mutex_init(&ctlr->io_mutex);
2628 ctlr->bus_lock_flag = 0;
2629 init_completion(&ctlr->xfer_completion);
2630 if (!ctlr->max_dma_len)
2631 ctlr->max_dma_len = INT_MAX;
2632
2633 /* register the device, then userspace will see it.
2634 * registration fails if the bus ID is in use.
2635 */
2636 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2637
2638 if (!spi_controller_is_slave(ctlr)) {
2639 if (ctlr->use_gpio_descriptors) {
2640 status = spi_get_gpio_descs(ctlr);
2641 if (status)
2642 goto free_bus_id;
2643 /*
2644 * A controller using GPIO descriptors always
2645 * supports SPI_CS_HIGH if need be.
2646 */
2647 ctlr->mode_bits |= SPI_CS_HIGH;
2648 } else {
2649 /* Legacy code path for GPIOs from DT */
2650 status = of_spi_get_gpio_numbers(ctlr);
2651 if (status)
2652 goto free_bus_id;
2653 }
2654 }
2655
2656 /*
2657 * Even if it's just one always-selected device, there must
2658 * be at least one chipselect.
2659 */
2660 if (!ctlr->num_chipselect) {
2661 status = -EINVAL;
2662 goto free_bus_id;
2663 }
2664
2665 status = device_add(&ctlr->dev);
2666 if (status < 0)
2667 goto free_bus_id;
2668 dev_dbg(dev, "registered %s %s\n",
2669 spi_controller_is_slave(ctlr) ? "slave" : "master",
2670 dev_name(&ctlr->dev));
2671
2672 /*
2673 * If we're using a queued driver, start the queue. Note that we don't
2674 * need the queueing logic if the driver is only supporting high-level
2675 * memory operations.
2676 */
2677 if (ctlr->transfer) {
2678 dev_info(dev, "controller is unqueued, this is deprecated\n");
2679 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2680 status = spi_controller_initialize_queue(ctlr);
2681 if (status) {
2682 device_del(&ctlr->dev);
2683 goto free_bus_id;
2684 }
2685 }
2686 /* add statistics */
2687 spin_lock_init(&ctlr->statistics.lock);
2688
2689 mutex_lock(&board_lock);
2690 list_add_tail(&ctlr->list, &spi_controller_list);
2691 list_for_each_entry(bi, &board_list, list)
2692 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2693 mutex_unlock(&board_lock);
2694
2695 /* Register devices from the device tree and ACPI */
2696 of_register_spi_devices(ctlr);
2697 acpi_register_spi_devices(ctlr);
2698 return status;
2699
2700 free_bus_id:
2701 mutex_lock(&board_lock);
2702 idr_remove(&spi_master_idr, ctlr->bus_num);
2703 mutex_unlock(&board_lock);
2704 return status;
2705 }
2706 EXPORT_SYMBOL_GPL(spi_register_controller);
2707
2708 static void devm_spi_unregister(struct device *dev, void *res)
2709 {
2710 spi_unregister_controller(*(struct spi_controller **)res);
2711 }
2712
2713 /**
2714 * devm_spi_register_controller - register managed SPI master or slave
2715 * controller
2716 * @dev: device managing SPI controller
2717 * @ctlr: initialized controller, originally from spi_alloc_master() or
2718 * spi_alloc_slave()
2719 * Context: can sleep
2720 *
2721 * Register a SPI device as with spi_register_controller() which will
2722 * automatically be unregistered and freed.
2723 *
2724 * Return: zero on success, else a negative error code.
2725 */
2726 int devm_spi_register_controller(struct device *dev,
2727 struct spi_controller *ctlr)
2728 {
2729 struct spi_controller **ptr;
2730 int ret;
2731
2732 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2733 if (!ptr)
2734 return -ENOMEM;
2735
2736 ret = spi_register_controller(ctlr);
2737 if (!ret) {
2738 *ptr = ctlr;
2739 devres_add(dev, ptr);
2740 } else {
2741 devres_free(ptr);
2742 }
2743
2744 return ret;
2745 }
2746 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2747
2748 static int __unregister(struct device *dev, void *null)
2749 {
2750 spi_unregister_device(to_spi_device(dev));
2751 return 0;
2752 }
2753
2754 /**
2755 * spi_unregister_controller - unregister SPI master or slave controller
2756 * @ctlr: the controller being unregistered
2757 * Context: can sleep
2758 *
2759 * This call is used only by SPI controller drivers, which are the
2760 * only ones directly touching chip registers.
2761 *
2762 * This must be called from context that can sleep.
2763 *
2764 * Note that this function also drops a reference to the controller.
2765 */
2766 void spi_unregister_controller(struct spi_controller *ctlr)
2767 {
2768 struct spi_controller *found;
2769 int id = ctlr->bus_num;
2770
2771 /* First make sure that this controller was ever added */
2772 mutex_lock(&board_lock);
2773 found = idr_find(&spi_master_idr, id);
2774 mutex_unlock(&board_lock);
2775 if (ctlr->queued) {
2776 if (spi_destroy_queue(ctlr))
2777 dev_err(&ctlr->dev, "queue remove failed\n");
2778 }
2779 mutex_lock(&board_lock);
2780 list_del(&ctlr->list);
2781 mutex_unlock(&board_lock);
2782
2783 device_for_each_child(&ctlr->dev, NULL, __unregister);
2784 device_unregister(&ctlr->dev);
2785 /* free bus id */
2786 mutex_lock(&board_lock);
2787 if (found == ctlr)
2788 idr_remove(&spi_master_idr, id);
2789 mutex_unlock(&board_lock);
2790 }
2791 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2792
2793 int spi_controller_suspend(struct spi_controller *ctlr)
2794 {
2795 int ret;
2796
2797 /* Basically no-ops for non-queued controllers */
2798 if (!ctlr->queued)
2799 return 0;
2800
2801 ret = spi_stop_queue(ctlr);
2802 if (ret)
2803 dev_err(&ctlr->dev, "queue stop failed\n");
2804
2805 return ret;
2806 }
2807 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2808
2809 int spi_controller_resume(struct spi_controller *ctlr)
2810 {
2811 int ret;
2812
2813 if (!ctlr->queued)
2814 return 0;
2815
2816 ret = spi_start_queue(ctlr);
2817 if (ret)
2818 dev_err(&ctlr->dev, "queue restart failed\n");
2819
2820 return ret;
2821 }
2822 EXPORT_SYMBOL_GPL(spi_controller_resume);
2823
2824 static int __spi_controller_match(struct device *dev, const void *data)
2825 {
2826 struct spi_controller *ctlr;
2827 const u16 *bus_num = data;
2828
2829 ctlr = container_of(dev, struct spi_controller, dev);
2830 return ctlr->bus_num == *bus_num;
2831 }
2832
2833 /**
2834 * spi_busnum_to_master - look up master associated with bus_num
2835 * @bus_num: the master's bus number
2836 * Context: can sleep
2837 *
2838 * This call may be used with devices that are registered after
2839 * arch init time. It returns a refcounted pointer to the relevant
2840 * spi_controller (which the caller must release), or NULL if there is
2841 * no such master registered.
2842 *
2843 * Return: the SPI master structure on success, else NULL.
2844 */
2845 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2846 {
2847 struct device *dev;
2848 struct spi_controller *ctlr = NULL;
2849
2850 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2851 __spi_controller_match);
2852 if (dev)
2853 ctlr = container_of(dev, struct spi_controller, dev);
2854 /* reference got in class_find_device */
2855 return ctlr;
2856 }
2857 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2858
2859 /*-------------------------------------------------------------------------*/
2860
2861 /* Core methods for SPI resource management */
2862
2863 /**
2864 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2865 * during the processing of a spi_message while using
2866 * spi_transfer_one
2867 * @spi: the spi device for which we allocate memory
2868 * @release: the release code to execute for this resource
2869 * @size: size to alloc and return
2870 * @gfp: GFP allocation flags
2871 *
2872 * Return: the pointer to the allocated data
2873 *
2874 * This may get enhanced in the future to allocate from a memory pool
2875 * of the @spi_device or @spi_controller to avoid repeated allocations.
2876 */
2877 void *spi_res_alloc(struct spi_device *spi,
2878 spi_res_release_t release,
2879 size_t size, gfp_t gfp)
2880 {
2881 struct spi_res *sres;
2882
2883 sres = kzalloc(sizeof(*sres) + size, gfp);
2884 if (!sres)
2885 return NULL;
2886
2887 INIT_LIST_HEAD(&sres->entry);
2888 sres->release = release;
2889
2890 return sres->data;
2891 }
2892 EXPORT_SYMBOL_GPL(spi_res_alloc);
2893
2894 /**
2895 * spi_res_free - free an spi resource
2896 * @res: pointer to the custom data of a resource
2897 *
2898 */
2899 void spi_res_free(void *res)
2900 {
2901 struct spi_res *sres = container_of(res, struct spi_res, data);
2902
2903 if (!res)
2904 return;
2905
2906 WARN_ON(!list_empty(&sres->entry));
2907 kfree(sres);
2908 }
2909 EXPORT_SYMBOL_GPL(spi_res_free);
2910
2911 /**
2912 * spi_res_add - add a spi_res to the spi_message
2913 * @message: the spi message
2914 * @res: the spi_resource
2915 */
2916 void spi_res_add(struct spi_message *message, void *res)
2917 {
2918 struct spi_res *sres = container_of(res, struct spi_res, data);
2919
2920 WARN_ON(!list_empty(&sres->entry));
2921 list_add_tail(&sres->entry, &message->resources);
2922 }
2923 EXPORT_SYMBOL_GPL(spi_res_add);
2924
2925 /**
2926 * spi_res_release - release all spi resources for this message
2927 * @ctlr: the @spi_controller
2928 * @message: the @spi_message
2929 */
2930 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2931 {
2932 struct spi_res *res, *tmp;
2933
2934 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
2935 if (res->release)
2936 res->release(ctlr, message, res->data);
2937
2938 list_del(&res->entry);
2939
2940 kfree(res);
2941 }
2942 }
2943 EXPORT_SYMBOL_GPL(spi_res_release);
2944
2945 /*-------------------------------------------------------------------------*/
2946
2947 /* Core methods for spi_message alterations */
2948
2949 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2950 struct spi_message *msg,
2951 void *res)
2952 {
2953 struct spi_replaced_transfers *rxfer = res;
2954 size_t i;
2955
2956 /* call extra callback if requested */
2957 if (rxfer->release)
2958 rxfer->release(ctlr, msg, res);
2959
2960 /* insert replaced transfers back into the message */
2961 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2962
2963 /* remove the formerly inserted entries */
2964 for (i = 0; i < rxfer->inserted; i++)
2965 list_del(&rxfer->inserted_transfers[i].transfer_list);
2966 }
2967
2968 /**
2969 * spi_replace_transfers - replace transfers with several transfers
2970 * and register change with spi_message.resources
2971 * @msg: the spi_message we work upon
2972 * @xfer_first: the first spi_transfer we want to replace
2973 * @remove: number of transfers to remove
2974 * @insert: the number of transfers we want to insert instead
2975 * @release: extra release code necessary in some circumstances
2976 * @extradatasize: extra data to allocate (with alignment guarantees
2977 * of struct @spi_transfer)
2978 * @gfp: gfp flags
2979 *
2980 * Returns: pointer to @spi_replaced_transfers,
2981 * PTR_ERR(...) in case of errors.
2982 */
2983 struct spi_replaced_transfers *spi_replace_transfers(
2984 struct spi_message *msg,
2985 struct spi_transfer *xfer_first,
2986 size_t remove,
2987 size_t insert,
2988 spi_replaced_release_t release,
2989 size_t extradatasize,
2990 gfp_t gfp)
2991 {
2992 struct spi_replaced_transfers *rxfer;
2993 struct spi_transfer *xfer;
2994 size_t i;
2995
2996 /* allocate the structure using spi_res */
2997 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2998 struct_size(rxfer, inserted_transfers, insert)
2999 + extradatasize,
3000 gfp);
3001 if (!rxfer)
3002 return ERR_PTR(-ENOMEM);
3003
3004 /* the release code to invoke before running the generic release */
3005 rxfer->release = release;
3006
3007 /* assign extradata */
3008 if (extradatasize)
3009 rxfer->extradata =
3010 &rxfer->inserted_transfers[insert];
3011
3012 /* init the replaced_transfers list */
3013 INIT_LIST_HEAD(&rxfer->replaced_transfers);
3014
3015 /* assign the list_entry after which we should reinsert
3016 * the @replaced_transfers - it may be spi_message.messages!
3017 */
3018 rxfer->replaced_after = xfer_first->transfer_list.prev;
3019
3020 /* remove the requested number of transfers */
3021 for (i = 0; i < remove; i++) {
3022 /* if the entry after replaced_after it is msg->transfers
3023 * then we have been requested to remove more transfers
3024 * than are in the list
3025 */
3026 if (rxfer->replaced_after->next == &msg->transfers) {
3027 dev_err(&msg->spi->dev,
3028 "requested to remove more spi_transfers than are available\n");
3029 /* insert replaced transfers back into the message */
3030 list_splice(&rxfer->replaced_transfers,
3031 rxfer->replaced_after);
3032
3033 /* free the spi_replace_transfer structure */
3034 spi_res_free(rxfer);
3035
3036 /* and return with an error */
3037 return ERR_PTR(-EINVAL);
3038 }
3039
3040 /* remove the entry after replaced_after from list of
3041 * transfers and add it to list of replaced_transfers
3042 */
3043 list_move_tail(rxfer->replaced_after->next,
3044 &rxfer->replaced_transfers);
3045 }
3046
3047 /* create copy of the given xfer with identical settings
3048 * based on the first transfer to get removed
3049 */
3050 for (i = 0; i < insert; i++) {
3051 /* we need to run in reverse order */
3052 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3053
3054 /* copy all spi_transfer data */
3055 memcpy(xfer, xfer_first, sizeof(*xfer));
3056
3057 /* add to list */
3058 list_add(&xfer->transfer_list, rxfer->replaced_after);
3059
3060 /* clear cs_change and delay for all but the last */
3061 if (i) {
3062 xfer->cs_change = false;
3063 xfer->delay_usecs = 0;
3064 xfer->delay.value = 0;
3065 }
3066 }
3067
3068 /* set up inserted */
3069 rxfer->inserted = insert;
3070
3071 /* and register it with spi_res/spi_message */
3072 spi_res_add(msg, rxfer);
3073
3074 return rxfer;
3075 }
3076 EXPORT_SYMBOL_GPL(spi_replace_transfers);
3077
3078 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3079 struct spi_message *msg,
3080 struct spi_transfer **xferp,
3081 size_t maxsize,
3082 gfp_t gfp)
3083 {
3084 struct spi_transfer *xfer = *xferp, *xfers;
3085 struct spi_replaced_transfers *srt;
3086 size_t offset;
3087 size_t count, i;
3088
3089 /* calculate how many we have to replace */
3090 count = DIV_ROUND_UP(xfer->len, maxsize);
3091
3092 /* create replacement */
3093 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3094 if (IS_ERR(srt))
3095 return PTR_ERR(srt);
3096 xfers = srt->inserted_transfers;
3097
3098 /* now handle each of those newly inserted spi_transfers
3099 * note that the replacements spi_transfers all are preset
3100 * to the same values as *xferp, so tx_buf, rx_buf and len
3101 * are all identical (as well as most others)
3102 * so we just have to fix up len and the pointers.
3103 *
3104 * this also includes support for the depreciated
3105 * spi_message.is_dma_mapped interface
3106 */
3107
3108 /* the first transfer just needs the length modified, so we
3109 * run it outside the loop
3110 */
3111 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3112
3113 /* all the others need rx_buf/tx_buf also set */
3114 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3115 /* update rx_buf, tx_buf and dma */
3116 if (xfers[i].rx_buf)
3117 xfers[i].rx_buf += offset;
3118 if (xfers[i].rx_dma)
3119 xfers[i].rx_dma += offset;
3120 if (xfers[i].tx_buf)
3121 xfers[i].tx_buf += offset;
3122 if (xfers[i].tx_dma)
3123 xfers[i].tx_dma += offset;
3124
3125 /* update length */
3126 xfers[i].len = min(maxsize, xfers[i].len - offset);
3127 }
3128
3129 /* we set up xferp to the last entry we have inserted,
3130 * so that we skip those already split transfers
3131 */
3132 *xferp = &xfers[count - 1];
3133
3134 /* increment statistics counters */
3135 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3136 transfers_split_maxsize);
3137 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3138 transfers_split_maxsize);
3139
3140 return 0;
3141 }
3142
3143 /**
3144 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
3145 * when an individual transfer exceeds a
3146 * certain size
3147 * @ctlr: the @spi_controller for this transfer
3148 * @msg: the @spi_message to transform
3149 * @maxsize: the maximum when to apply this
3150 * @gfp: GFP allocation flags
3151 *
3152 * Return: status of transformation
3153 */
3154 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3155 struct spi_message *msg,
3156 size_t maxsize,
3157 gfp_t gfp)
3158 {
3159 struct spi_transfer *xfer;
3160 int ret;
3161
3162 /* iterate over the transfer_list,
3163 * but note that xfer is advanced to the last transfer inserted
3164 * to avoid checking sizes again unnecessarily (also xfer does
3165 * potentiall belong to a different list by the time the
3166 * replacement has happened
3167 */
3168 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3169 if (xfer->len > maxsize) {
3170 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3171 maxsize, gfp);
3172 if (ret)
3173 return ret;
3174 }
3175 }
3176
3177 return 0;
3178 }
3179 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3180
3181 /*-------------------------------------------------------------------------*/
3182
3183 /* Core methods for SPI controller protocol drivers. Some of the
3184 * other core methods are currently defined as inline functions.
3185 */
3186
3187 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3188 u8 bits_per_word)
3189 {
3190 if (ctlr->bits_per_word_mask) {
3191 /* Only 32 bits fit in the mask */
3192 if (bits_per_word > 32)
3193 return -EINVAL;
3194 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3195 return -EINVAL;
3196 }
3197
3198 return 0;
3199 }
3200
3201 /**
3202 * spi_setup - setup SPI mode and clock rate
3203 * @spi: the device whose settings are being modified
3204 * Context: can sleep, and no requests are queued to the device
3205 *
3206 * SPI protocol drivers may need to update the transfer mode if the
3207 * device doesn't work with its default. They may likewise need
3208 * to update clock rates or word sizes from initial values. This function
3209 * changes those settings, and must be called from a context that can sleep.
3210 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3211 * effect the next time the device is selected and data is transferred to
3212 * or from it. When this function returns, the spi device is deselected.
3213 *
3214 * Note that this call will fail if the protocol driver specifies an option
3215 * that the underlying controller or its driver does not support. For
3216 * example, not all hardware supports wire transfers using nine bit words,
3217 * LSB-first wire encoding, or active-high chipselects.
3218 *
3219 * Return: zero on success, else a negative error code.
3220 */
3221 int spi_setup(struct spi_device *spi)
3222 {
3223 unsigned bad_bits, ugly_bits;
3224 int status;
3225
3226 /* check mode to prevent that DUAL and QUAD set at the same time
3227 */
3228 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3229 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
3230 dev_err(&spi->dev,
3231 "setup: can not select dual and quad at the same time\n");
3232 return -EINVAL;
3233 }
3234 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3235 */
3236 if ((spi->mode & SPI_3WIRE) && (spi->mode &
3237 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3238 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3239 return -EINVAL;
3240 /* help drivers fail *cleanly* when they need options
3241 * that aren't supported with their current controller
3242 * SPI_CS_WORD has a fallback software implementation,
3243 * so it is ignored here.
3244 */
3245 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
3246 /* nothing prevents from working with active-high CS in case if it
3247 * is driven by GPIO.
3248 */
3249 if (gpio_is_valid(spi->cs_gpio))
3250 bad_bits &= ~SPI_CS_HIGH;
3251 ugly_bits = bad_bits &
3252 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3253 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3254 if (ugly_bits) {
3255 dev_warn(&spi->dev,
3256 "setup: ignoring unsupported mode bits %x\n",
3257 ugly_bits);
3258 spi->mode &= ~ugly_bits;
3259 bad_bits &= ~ugly_bits;
3260 }
3261 if (bad_bits) {
3262 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3263 bad_bits);
3264 return -EINVAL;
3265 }
3266
3267 if (!spi->bits_per_word)
3268 spi->bits_per_word = 8;
3269
3270 status = __spi_validate_bits_per_word(spi->controller,
3271 spi->bits_per_word);
3272 if (status)
3273 return status;
3274
3275 if (!spi->max_speed_hz)
3276 spi->max_speed_hz = spi->controller->max_speed_hz;
3277
3278 if (spi->controller->setup)
3279 status = spi->controller->setup(spi);
3280
3281 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3282 status = pm_runtime_get_sync(spi->controller->dev.parent);
3283 if (status < 0) {
3284 pm_runtime_put_noidle(spi->controller->dev.parent);
3285 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3286 status);
3287 return status;
3288 }
3289
3290 /*
3291 * We do not want to return positive value from pm_runtime_get,
3292 * there are many instances of devices calling spi_setup() and
3293 * checking for a non-zero return value instead of a negative
3294 * return value.
3295 */
3296 status = 0;
3297
3298 spi_set_cs(spi, false);
3299 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3300 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3301 } else {
3302 spi_set_cs(spi, false);
3303 }
3304
3305 if (spi->rt && !spi->controller->rt) {
3306 spi->controller->rt = true;
3307 spi_set_thread_rt(spi->controller);
3308 }
3309
3310 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3311 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3312 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3313 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3314 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3315 (spi->mode & SPI_LOOP) ? "loopback, " : "",
3316 spi->bits_per_word, spi->max_speed_hz,
3317 status);
3318
3319 return status;
3320 }
3321 EXPORT_SYMBOL_GPL(spi_setup);
3322
3323 /**
3324 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3325 * @spi: the device that requires specific CS timing configuration
3326 * @setup: CS setup time specified via @spi_delay
3327 * @hold: CS hold time specified via @spi_delay
3328 * @inactive: CS inactive delay between transfers specified via @spi_delay
3329 *
3330 * Return: zero on success, else a negative error code.
3331 */
3332 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup,
3333 struct spi_delay *hold, struct spi_delay *inactive)
3334 {
3335 size_t len;
3336
3337 if (spi->controller->set_cs_timing)
3338 return spi->controller->set_cs_timing(spi, setup, hold,
3339 inactive);
3340
3341 if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) ||
3342 (hold && hold->unit == SPI_DELAY_UNIT_SCK) ||
3343 (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) {
3344 dev_err(&spi->dev,
3345 "Clock-cycle delays for CS not supported in SW mode\n");
3346 return -ENOTSUPP;
3347 }
3348
3349 len = sizeof(struct spi_delay);
3350
3351 /* copy delays to controller */
3352 if (setup)
3353 memcpy(&spi->controller->cs_setup, setup, len);
3354 else
3355 memset(&spi->controller->cs_setup, 0, len);
3356
3357 if (hold)
3358 memcpy(&spi->controller->cs_hold, hold, len);
3359 else
3360 memset(&spi->controller->cs_hold, 0, len);
3361
3362 if (inactive)
3363 memcpy(&spi->controller->cs_inactive, inactive, len);
3364 else
3365 memset(&spi->controller->cs_inactive, 0, len);
3366
3367 return 0;
3368 }
3369 EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3370
3371 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3372 struct spi_device *spi)
3373 {
3374 int delay1, delay2;
3375
3376 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3377 if (delay1 < 0)
3378 return delay1;
3379
3380 delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3381 if (delay2 < 0)
3382 return delay2;
3383
3384 if (delay1 < delay2)
3385 memcpy(&xfer->word_delay, &spi->word_delay,
3386 sizeof(xfer->word_delay));
3387
3388 return 0;
3389 }
3390
3391 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3392 {
3393 struct spi_controller *ctlr = spi->controller;
3394 struct spi_transfer *xfer;
3395 int w_size;
3396
3397 if (list_empty(&message->transfers))
3398 return -EINVAL;
3399
3400 /* If an SPI controller does not support toggling the CS line on each
3401 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3402 * for the CS line, we can emulate the CS-per-word hardware function by
3403 * splitting transfers into one-word transfers and ensuring that
3404 * cs_change is set for each transfer.
3405 */
3406 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3407 spi->cs_gpiod ||
3408 gpio_is_valid(spi->cs_gpio))) {
3409 size_t maxsize;
3410 int ret;
3411
3412 maxsize = (spi->bits_per_word + 7) / 8;
3413
3414 /* spi_split_transfers_maxsize() requires message->spi */
3415 message->spi = spi;
3416
3417 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3418 GFP_KERNEL);
3419 if (ret)
3420 return ret;
3421
3422 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3423 /* don't change cs_change on the last entry in the list */
3424 if (list_is_last(&xfer->transfer_list, &message->transfers))
3425 break;
3426 xfer->cs_change = 1;
3427 }
3428 }
3429
3430 /* Half-duplex links include original MicroWire, and ones with
3431 * only one data pin like SPI_3WIRE (switches direction) or where
3432 * either MOSI or MISO is missing. They can also be caused by
3433 * software limitations.
3434 */
3435 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3436 (spi->mode & SPI_3WIRE)) {
3437 unsigned flags = ctlr->flags;
3438
3439 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3440 if (xfer->rx_buf && xfer->tx_buf)
3441 return -EINVAL;
3442 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3443 return -EINVAL;
3444 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3445 return -EINVAL;
3446 }
3447 }
3448
3449 /**
3450 * Set transfer bits_per_word and max speed as spi device default if
3451 * it is not set for this transfer.
3452 * Set transfer tx_nbits and rx_nbits as single transfer default
3453 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3454 * Ensure transfer word_delay is at least as long as that required by
3455 * device itself.
3456 */
3457 message->frame_length = 0;
3458 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3459 xfer->effective_speed_hz = 0;
3460 message->frame_length += xfer->len;
3461 if (!xfer->bits_per_word)
3462 xfer->bits_per_word = spi->bits_per_word;
3463
3464 if (!xfer->speed_hz)
3465 xfer->speed_hz = spi->max_speed_hz;
3466
3467 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3468 xfer->speed_hz = ctlr->max_speed_hz;
3469
3470 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3471 return -EINVAL;
3472
3473 /*
3474 * SPI transfer length should be multiple of SPI word size
3475 * where SPI word size should be power-of-two multiple
3476 */
3477 if (xfer->bits_per_word <= 8)
3478 w_size = 1;
3479 else if (xfer->bits_per_word <= 16)
3480 w_size = 2;
3481 else
3482 w_size = 4;
3483
3484 /* No partial transfers accepted */
3485 if (xfer->len % w_size)
3486 return -EINVAL;
3487
3488 if (xfer->speed_hz && ctlr->min_speed_hz &&
3489 xfer->speed_hz < ctlr->min_speed_hz)
3490 return -EINVAL;
3491
3492 if (xfer->tx_buf && !xfer->tx_nbits)
3493 xfer->tx_nbits = SPI_NBITS_SINGLE;
3494 if (xfer->rx_buf && !xfer->rx_nbits)
3495 xfer->rx_nbits = SPI_NBITS_SINGLE;
3496 /* check transfer tx/rx_nbits:
3497 * 1. check the value matches one of single, dual and quad
3498 * 2. check tx/rx_nbits match the mode in spi_device
3499 */
3500 if (xfer->tx_buf) {
3501 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3502 xfer->tx_nbits != SPI_NBITS_DUAL &&
3503 xfer->tx_nbits != SPI_NBITS_QUAD)
3504 return -EINVAL;
3505 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3506 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3507 return -EINVAL;
3508 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3509 !(spi->mode & SPI_TX_QUAD))
3510 return -EINVAL;
3511 }
3512 /* check transfer rx_nbits */
3513 if (xfer->rx_buf) {
3514 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3515 xfer->rx_nbits != SPI_NBITS_DUAL &&
3516 xfer->rx_nbits != SPI_NBITS_QUAD)
3517 return -EINVAL;
3518 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3519 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3520 return -EINVAL;
3521 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3522 !(spi->mode & SPI_RX_QUAD))
3523 return -EINVAL;
3524 }
3525
3526 if (_spi_xfer_word_delay_update(xfer, spi))
3527 return -EINVAL;
3528 }
3529
3530 message->status = -EINPROGRESS;
3531
3532 return 0;
3533 }
3534
3535 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3536 {
3537 struct spi_controller *ctlr = spi->controller;
3538 struct spi_transfer *xfer;
3539
3540 /*
3541 * Some controllers do not support doing regular SPI transfers. Return
3542 * ENOTSUPP when this is the case.
3543 */
3544 if (!ctlr->transfer)
3545 return -ENOTSUPP;
3546
3547 message->spi = spi;
3548
3549 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3550 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3551
3552 trace_spi_message_submit(message);
3553
3554 if (!ctlr->ptp_sts_supported) {
3555 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3556 xfer->ptp_sts_word_pre = 0;
3557 ptp_read_system_prets(xfer->ptp_sts);
3558 }
3559 }
3560
3561 return ctlr->transfer(spi, message);
3562 }
3563
3564 /**
3565 * spi_async - asynchronous SPI transfer
3566 * @spi: device with which data will be exchanged
3567 * @message: describes the data transfers, including completion callback
3568 * Context: any (irqs may be blocked, etc)
3569 *
3570 * This call may be used in_irq and other contexts which can't sleep,
3571 * as well as from task contexts which can sleep.
3572 *
3573 * The completion callback is invoked in a context which can't sleep.
3574 * Before that invocation, the value of message->status is undefined.
3575 * When the callback is issued, message->status holds either zero (to
3576 * indicate complete success) or a negative error code. After that
3577 * callback returns, the driver which issued the transfer request may
3578 * deallocate the associated memory; it's no longer in use by any SPI
3579 * core or controller driver code.
3580 *
3581 * Note that although all messages to a spi_device are handled in
3582 * FIFO order, messages may go to different devices in other orders.
3583 * Some device might be higher priority, or have various "hard" access
3584 * time requirements, for example.
3585 *
3586 * On detection of any fault during the transfer, processing of
3587 * the entire message is aborted, and the device is deselected.
3588 * Until returning from the associated message completion callback,
3589 * no other spi_message queued to that device will be processed.
3590 * (This rule applies equally to all the synchronous transfer calls,
3591 * which are wrappers around this core asynchronous primitive.)
3592 *
3593 * Return: zero on success, else a negative error code.
3594 */
3595 int spi_async(struct spi_device *spi, struct spi_message *message)
3596 {
3597 struct spi_controller *ctlr = spi->controller;
3598 int ret;
3599 unsigned long flags;
3600
3601 ret = __spi_validate(spi, message);
3602 if (ret != 0)
3603 return ret;
3604
3605 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3606
3607 if (ctlr->bus_lock_flag)
3608 ret = -EBUSY;
3609 else
3610 ret = __spi_async(spi, message);
3611
3612 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3613
3614 return ret;
3615 }
3616 EXPORT_SYMBOL_GPL(spi_async);
3617
3618 /**
3619 * spi_async_locked - version of spi_async with exclusive bus usage
3620 * @spi: device with which data will be exchanged
3621 * @message: describes the data transfers, including completion callback
3622 * Context: any (irqs may be blocked, etc)
3623 *
3624 * This call may be used in_irq and other contexts which can't sleep,
3625 * as well as from task contexts which can sleep.
3626 *
3627 * The completion callback is invoked in a context which can't sleep.
3628 * Before that invocation, the value of message->status is undefined.
3629 * When the callback is issued, message->status holds either zero (to
3630 * indicate complete success) or a negative error code. After that
3631 * callback returns, the driver which issued the transfer request may
3632 * deallocate the associated memory; it's no longer in use by any SPI
3633 * core or controller driver code.
3634 *
3635 * Note that although all messages to a spi_device are handled in
3636 * FIFO order, messages may go to different devices in other orders.
3637 * Some device might be higher priority, or have various "hard" access
3638 * time requirements, for example.
3639 *
3640 * On detection of any fault during the transfer, processing of
3641 * the entire message is aborted, and the device is deselected.
3642 * Until returning from the associated message completion callback,
3643 * no other spi_message queued to that device will be processed.
3644 * (This rule applies equally to all the synchronous transfer calls,
3645 * which are wrappers around this core asynchronous primitive.)
3646 *
3647 * Return: zero on success, else a negative error code.
3648 */
3649 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3650 {
3651 struct spi_controller *ctlr = spi->controller;
3652 int ret;
3653 unsigned long flags;
3654
3655 ret = __spi_validate(spi, message);
3656 if (ret != 0)
3657 return ret;
3658
3659 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3660
3661 ret = __spi_async(spi, message);
3662
3663 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3664
3665 return ret;
3666
3667 }
3668 EXPORT_SYMBOL_GPL(spi_async_locked);
3669
3670 /*-------------------------------------------------------------------------*/
3671
3672 /* Utility methods for SPI protocol drivers, layered on
3673 * top of the core. Some other utility methods are defined as
3674 * inline functions.
3675 */
3676
3677 static void spi_complete(void *arg)
3678 {
3679 complete(arg);
3680 }
3681
3682 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3683 {
3684 DECLARE_COMPLETION_ONSTACK(done);
3685 int status;
3686 struct spi_controller *ctlr = spi->controller;
3687 unsigned long flags;
3688
3689 status = __spi_validate(spi, message);
3690 if (status != 0)
3691 return status;
3692
3693 message->complete = spi_complete;
3694 message->context = &done;
3695 message->spi = spi;
3696
3697 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3698 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3699
3700 /* If we're not using the legacy transfer method then we will
3701 * try to transfer in the calling context so special case.
3702 * This code would be less tricky if we could remove the
3703 * support for driver implemented message queues.
3704 */
3705 if (ctlr->transfer == spi_queued_transfer) {
3706 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3707
3708 trace_spi_message_submit(message);
3709
3710 status = __spi_queued_transfer(spi, message, false);
3711
3712 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3713 } else {
3714 status = spi_async_locked(spi, message);
3715 }
3716
3717 if (status == 0) {
3718 /* Push out the messages in the calling context if we
3719 * can.
3720 */
3721 if (ctlr->transfer == spi_queued_transfer) {
3722 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3723 spi_sync_immediate);
3724 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3725 spi_sync_immediate);
3726 __spi_pump_messages(ctlr, false);
3727 }
3728
3729 wait_for_completion(&done);
3730 status = message->status;
3731 }
3732 message->context = NULL;
3733 return status;
3734 }
3735
3736 /**
3737 * spi_sync - blocking/synchronous SPI data transfers
3738 * @spi: device with which data will be exchanged
3739 * @message: describes the data transfers
3740 * Context: can sleep
3741 *
3742 * This call may only be used from a context that may sleep. The sleep
3743 * is non-interruptible, and has no timeout. Low-overhead controller
3744 * drivers may DMA directly into and out of the message buffers.
3745 *
3746 * Note that the SPI device's chip select is active during the message,
3747 * and then is normally disabled between messages. Drivers for some
3748 * frequently-used devices may want to minimize costs of selecting a chip,
3749 * by leaving it selected in anticipation that the next message will go
3750 * to the same chip. (That may increase power usage.)
3751 *
3752 * Also, the caller is guaranteeing that the memory associated with the
3753 * message will not be freed before this call returns.
3754 *
3755 * Return: zero on success, else a negative error code.
3756 */
3757 int spi_sync(struct spi_device *spi, struct spi_message *message)
3758 {
3759 int ret;
3760
3761 mutex_lock(&spi->controller->bus_lock_mutex);
3762 ret = __spi_sync(spi, message);
3763 mutex_unlock(&spi->controller->bus_lock_mutex);
3764
3765 return ret;
3766 }
3767 EXPORT_SYMBOL_GPL(spi_sync);
3768
3769 /**
3770 * spi_sync_locked - version of spi_sync with exclusive bus usage
3771 * @spi: device with which data will be exchanged
3772 * @message: describes the data transfers
3773 * Context: can sleep
3774 *
3775 * This call may only be used from a context that may sleep. The sleep
3776 * is non-interruptible, and has no timeout. Low-overhead controller
3777 * drivers may DMA directly into and out of the message buffers.
3778 *
3779 * This call should be used by drivers that require exclusive access to the
3780 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3781 * be released by a spi_bus_unlock call when the exclusive access is over.
3782 *
3783 * Return: zero on success, else a negative error code.
3784 */
3785 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3786 {
3787 return __spi_sync(spi, message);
3788 }
3789 EXPORT_SYMBOL_GPL(spi_sync_locked);
3790
3791 /**
3792 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3793 * @ctlr: SPI bus master that should be locked for exclusive bus access
3794 * Context: can sleep
3795 *
3796 * This call may only be used from a context that may sleep. The sleep
3797 * is non-interruptible, and has no timeout.
3798 *
3799 * This call should be used by drivers that require exclusive access to the
3800 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3801 * exclusive access is over. Data transfer must be done by spi_sync_locked
3802 * and spi_async_locked calls when the SPI bus lock is held.
3803 *
3804 * Return: always zero.
3805 */
3806 int spi_bus_lock(struct spi_controller *ctlr)
3807 {
3808 unsigned long flags;
3809
3810 mutex_lock(&ctlr->bus_lock_mutex);
3811
3812 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3813 ctlr->bus_lock_flag = 1;
3814 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3815
3816 /* mutex remains locked until spi_bus_unlock is called */
3817
3818 return 0;
3819 }
3820 EXPORT_SYMBOL_GPL(spi_bus_lock);
3821
3822 /**
3823 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3824 * @ctlr: SPI bus master that was locked for exclusive bus access
3825 * Context: can sleep
3826 *
3827 * This call may only be used from a context that may sleep. The sleep
3828 * is non-interruptible, and has no timeout.
3829 *
3830 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3831 * call.
3832 *
3833 * Return: always zero.
3834 */
3835 int spi_bus_unlock(struct spi_controller *ctlr)
3836 {
3837 ctlr->bus_lock_flag = 0;
3838
3839 mutex_unlock(&ctlr->bus_lock_mutex);
3840
3841 return 0;
3842 }
3843 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3844
3845 /* portable code must never pass more than 32 bytes */
3846 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3847
3848 static u8 *buf;
3849
3850 /**
3851 * spi_write_then_read - SPI synchronous write followed by read
3852 * @spi: device with which data will be exchanged
3853 * @txbuf: data to be written (need not be dma-safe)
3854 * @n_tx: size of txbuf, in bytes
3855 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3856 * @n_rx: size of rxbuf, in bytes
3857 * Context: can sleep
3858 *
3859 * This performs a half duplex MicroWire style transaction with the
3860 * device, sending txbuf and then reading rxbuf. The return value
3861 * is zero for success, else a negative errno status code.
3862 * This call may only be used from a context that may sleep.
3863 *
3864 * Parameters to this routine are always copied using a small buffer;
3865 * portable code should never use this for more than 32 bytes.
3866 * Performance-sensitive or bulk transfer code should instead use
3867 * spi_{async,sync}() calls with dma-safe buffers.
3868 *
3869 * Return: zero on success, else a negative error code.
3870 */
3871 int spi_write_then_read(struct spi_device *spi,
3872 const void *txbuf, unsigned n_tx,
3873 void *rxbuf, unsigned n_rx)
3874 {
3875 static DEFINE_MUTEX(lock);
3876
3877 int status;
3878 struct spi_message message;
3879 struct spi_transfer x[2];
3880 u8 *local_buf;
3881
3882 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3883 * copying here, (as a pure convenience thing), but we can
3884 * keep heap costs out of the hot path unless someone else is
3885 * using the pre-allocated buffer or the transfer is too large.
3886 */
3887 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3888 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3889 GFP_KERNEL | GFP_DMA);
3890 if (!local_buf)
3891 return -ENOMEM;
3892 } else {
3893 local_buf = buf;
3894 }
3895
3896 spi_message_init(&message);
3897 memset(x, 0, sizeof(x));
3898 if (n_tx) {
3899 x[0].len = n_tx;
3900 spi_message_add_tail(&x[0], &message);
3901 }
3902 if (n_rx) {
3903 x[1].len = n_rx;
3904 spi_message_add_tail(&x[1], &message);
3905 }
3906
3907 memcpy(local_buf, txbuf, n_tx);
3908 x[0].tx_buf = local_buf;
3909 x[1].rx_buf = local_buf + n_tx;
3910
3911 /* do the i/o */
3912 status = spi_sync(spi, &message);
3913 if (status == 0)
3914 memcpy(rxbuf, x[1].rx_buf, n_rx);
3915
3916 if (x[0].tx_buf == buf)
3917 mutex_unlock(&lock);
3918 else
3919 kfree(local_buf);
3920
3921 return status;
3922 }
3923 EXPORT_SYMBOL_GPL(spi_write_then_read);
3924
3925 /*-------------------------------------------------------------------------*/
3926
3927 #if IS_ENABLED(CONFIG_OF)
3928 /* must call put_device() when done with returned spi_device device */
3929 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3930 {
3931 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
3932
3933 return dev ? to_spi_device(dev) : NULL;
3934 }
3935 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3936 #endif /* IS_ENABLED(CONFIG_OF) */
3937
3938 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3939 /* the spi controllers are not using spi_bus, so we find it with another way */
3940 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3941 {
3942 struct device *dev;
3943
3944 dev = class_find_device_by_of_node(&spi_master_class, node);
3945 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3946 dev = class_find_device_by_of_node(&spi_slave_class, node);
3947 if (!dev)
3948 return NULL;
3949
3950 /* reference got in class_find_device */
3951 return container_of(dev, struct spi_controller, dev);
3952 }
3953
3954 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3955 void *arg)
3956 {
3957 struct of_reconfig_data *rd = arg;
3958 struct spi_controller *ctlr;
3959 struct spi_device *spi;
3960
3961 switch (of_reconfig_get_state_change(action, arg)) {
3962 case OF_RECONFIG_CHANGE_ADD:
3963 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3964 if (ctlr == NULL)
3965 return NOTIFY_OK; /* not for us */
3966
3967 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3968 put_device(&ctlr->dev);
3969 return NOTIFY_OK;
3970 }
3971
3972 spi = of_register_spi_device(ctlr, rd->dn);
3973 put_device(&ctlr->dev);
3974
3975 if (IS_ERR(spi)) {
3976 pr_err("%s: failed to create for '%pOF'\n",
3977 __func__, rd->dn);
3978 of_node_clear_flag(rd->dn, OF_POPULATED);
3979 return notifier_from_errno(PTR_ERR(spi));
3980 }
3981 break;
3982
3983 case OF_RECONFIG_CHANGE_REMOVE:
3984 /* already depopulated? */
3985 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3986 return NOTIFY_OK;
3987
3988 /* find our device by node */
3989 spi = of_find_spi_device_by_node(rd->dn);
3990 if (spi == NULL)
3991 return NOTIFY_OK; /* no? not meant for us */
3992
3993 /* unregister takes one ref away */
3994 spi_unregister_device(spi);
3995
3996 /* and put the reference of the find */
3997 put_device(&spi->dev);
3998 break;
3999 }
4000
4001 return NOTIFY_OK;
4002 }
4003
4004 static struct notifier_block spi_of_notifier = {
4005 .notifier_call = of_spi_notify,
4006 };
4007 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4008 extern struct notifier_block spi_of_notifier;
4009 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4010
4011 #if IS_ENABLED(CONFIG_ACPI)
4012 static int spi_acpi_controller_match(struct device *dev, const void *data)
4013 {
4014 return ACPI_COMPANION(dev->parent) == data;
4015 }
4016
4017 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4018 {
4019 struct device *dev;
4020
4021 dev = class_find_device(&spi_master_class, NULL, adev,
4022 spi_acpi_controller_match);
4023 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4024 dev = class_find_device(&spi_slave_class, NULL, adev,
4025 spi_acpi_controller_match);
4026 if (!dev)
4027 return NULL;
4028
4029 return container_of(dev, struct spi_controller, dev);
4030 }
4031
4032 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4033 {
4034 struct device *dev;
4035
4036 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4037 return dev ? to_spi_device(dev) : NULL;
4038 }
4039
4040 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4041 void *arg)
4042 {
4043 struct acpi_device *adev = arg;
4044 struct spi_controller *ctlr;
4045 struct spi_device *spi;
4046
4047 switch (value) {
4048 case ACPI_RECONFIG_DEVICE_ADD:
4049 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4050 if (!ctlr)
4051 break;
4052
4053 acpi_register_spi_device(ctlr, adev);
4054 put_device(&ctlr->dev);
4055 break;
4056 case ACPI_RECONFIG_DEVICE_REMOVE:
4057 if (!acpi_device_enumerated(adev))
4058 break;
4059
4060 spi = acpi_spi_find_device_by_adev(adev);
4061 if (!spi)
4062 break;
4063
4064 spi_unregister_device(spi);
4065 put_device(&spi->dev);
4066 break;
4067 }
4068
4069 return NOTIFY_OK;
4070 }
4071
4072 static struct notifier_block spi_acpi_notifier = {
4073 .notifier_call = acpi_spi_notify,
4074 };
4075 #else
4076 extern struct notifier_block spi_acpi_notifier;
4077 #endif
4078
4079 static int __init spi_init(void)
4080 {
4081 int status;
4082
4083 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4084 if (!buf) {
4085 status = -ENOMEM;
4086 goto err0;
4087 }
4088
4089 status = bus_register(&spi_bus_type);
4090 if (status < 0)
4091 goto err1;
4092
4093 status = class_register(&spi_master_class);
4094 if (status < 0)
4095 goto err2;
4096
4097 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4098 status = class_register(&spi_slave_class);
4099 if (status < 0)
4100 goto err3;
4101 }
4102
4103 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4104 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4105 if (IS_ENABLED(CONFIG_ACPI))
4106 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4107
4108 return 0;
4109
4110 err3:
4111 class_unregister(&spi_master_class);
4112 err2:
4113 bus_unregister(&spi_bus_type);
4114 err1:
4115 kfree(buf);
4116 buf = NULL;
4117 err0:
4118 return status;
4119 }
4120
4121 /* board_info is normally registered in arch_initcall(),
4122 * but even essential drivers wait till later
4123 *
4124 * REVISIT only boardinfo really needs static linking. the rest (device and
4125 * driver registration) _could_ be dynamically linked (modular) ... costs
4126 * include needing to have boardinfo data structures be much more public.
4127 */
4128 postcore_initcall(spi_init);