]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/spi/spi.c
spi: docbook: fix parsing error
[mirror_ubuntu-jammy-kernel.git] / drivers / spi / spi.c
1 /*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
43
44 static void spidev_release(struct device *dev)
45 {
46 struct spi_device *spi = to_spi_device(dev);
47
48 /* spi masters may cleanup for released devices */
49 if (spi->master->cleanup)
50 spi->master->cleanup(spi);
51
52 spi_master_put(spi->master);
53 kfree(spi);
54 }
55
56 static ssize_t
57 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58 {
59 const struct spi_device *spi = to_spi_device(dev);
60 int len;
61
62 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63 if (len != -ENODEV)
64 return len;
65
66 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67 }
68 static DEVICE_ATTR_RO(modalias);
69
70 #define SPI_STATISTICS_ATTRS(field, file) \
71 static ssize_t spi_master_##field##_show(struct device *dev, \
72 struct device_attribute *attr, \
73 char *buf) \
74 { \
75 struct spi_master *master = container_of(dev, \
76 struct spi_master, dev); \
77 return spi_statistics_##field##_show(&master->statistics, buf); \
78 } \
79 static struct device_attribute dev_attr_spi_master_##field = { \
80 .attr = { .name = file, .mode = S_IRUGO }, \
81 .show = spi_master_##field##_show, \
82 }; \
83 static ssize_t spi_device_##field##_show(struct device *dev, \
84 struct device_attribute *attr, \
85 char *buf) \
86 { \
87 struct spi_device *spi = to_spi_device(dev); \
88 return spi_statistics_##field##_show(&spi->statistics, buf); \
89 } \
90 static struct device_attribute dev_attr_spi_device_##field = { \
91 .attr = { .name = file, .mode = S_IRUGO }, \
92 .show = spi_device_##field##_show, \
93 }
94
95 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
96 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
97 char *buf) \
98 { \
99 unsigned long flags; \
100 ssize_t len; \
101 spin_lock_irqsave(&stat->lock, flags); \
102 len = sprintf(buf, format_string, stat->field); \
103 spin_unlock_irqrestore(&stat->lock, flags); \
104 return len; \
105 } \
106 SPI_STATISTICS_ATTRS(name, file)
107
108 #define SPI_STATISTICS_SHOW(field, format_string) \
109 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
110 field, format_string)
111
112 SPI_STATISTICS_SHOW(messages, "%lu");
113 SPI_STATISTICS_SHOW(transfers, "%lu");
114 SPI_STATISTICS_SHOW(errors, "%lu");
115 SPI_STATISTICS_SHOW(timedout, "%lu");
116
117 SPI_STATISTICS_SHOW(spi_sync, "%lu");
118 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
119 SPI_STATISTICS_SHOW(spi_async, "%lu");
120
121 SPI_STATISTICS_SHOW(bytes, "%llu");
122 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
123 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
124
125 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
126 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
127 "transfer_bytes_histo_" number, \
128 transfer_bytes_histo[index], "%lu")
129 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
146
147 static struct attribute *spi_dev_attrs[] = {
148 &dev_attr_modalias.attr,
149 NULL,
150 };
151
152 static const struct attribute_group spi_dev_group = {
153 .attrs = spi_dev_attrs,
154 };
155
156 static struct attribute *spi_device_statistics_attrs[] = {
157 &dev_attr_spi_device_messages.attr,
158 &dev_attr_spi_device_transfers.attr,
159 &dev_attr_spi_device_errors.attr,
160 &dev_attr_spi_device_timedout.attr,
161 &dev_attr_spi_device_spi_sync.attr,
162 &dev_attr_spi_device_spi_sync_immediate.attr,
163 &dev_attr_spi_device_spi_async.attr,
164 &dev_attr_spi_device_bytes.attr,
165 &dev_attr_spi_device_bytes_rx.attr,
166 &dev_attr_spi_device_bytes_tx.attr,
167 &dev_attr_spi_device_transfer_bytes_histo0.attr,
168 &dev_attr_spi_device_transfer_bytes_histo1.attr,
169 &dev_attr_spi_device_transfer_bytes_histo2.attr,
170 &dev_attr_spi_device_transfer_bytes_histo3.attr,
171 &dev_attr_spi_device_transfer_bytes_histo4.attr,
172 &dev_attr_spi_device_transfer_bytes_histo5.attr,
173 &dev_attr_spi_device_transfer_bytes_histo6.attr,
174 &dev_attr_spi_device_transfer_bytes_histo7.attr,
175 &dev_attr_spi_device_transfer_bytes_histo8.attr,
176 &dev_attr_spi_device_transfer_bytes_histo9.attr,
177 &dev_attr_spi_device_transfer_bytes_histo10.attr,
178 &dev_attr_spi_device_transfer_bytes_histo11.attr,
179 &dev_attr_spi_device_transfer_bytes_histo12.attr,
180 &dev_attr_spi_device_transfer_bytes_histo13.attr,
181 &dev_attr_spi_device_transfer_bytes_histo14.attr,
182 &dev_attr_spi_device_transfer_bytes_histo15.attr,
183 &dev_attr_spi_device_transfer_bytes_histo16.attr,
184 NULL,
185 };
186
187 static const struct attribute_group spi_device_statistics_group = {
188 .name = "statistics",
189 .attrs = spi_device_statistics_attrs,
190 };
191
192 static const struct attribute_group *spi_dev_groups[] = {
193 &spi_dev_group,
194 &spi_device_statistics_group,
195 NULL,
196 };
197
198 static struct attribute *spi_master_statistics_attrs[] = {
199 &dev_attr_spi_master_messages.attr,
200 &dev_attr_spi_master_transfers.attr,
201 &dev_attr_spi_master_errors.attr,
202 &dev_attr_spi_master_timedout.attr,
203 &dev_attr_spi_master_spi_sync.attr,
204 &dev_attr_spi_master_spi_sync_immediate.attr,
205 &dev_attr_spi_master_spi_async.attr,
206 &dev_attr_spi_master_bytes.attr,
207 &dev_attr_spi_master_bytes_rx.attr,
208 &dev_attr_spi_master_bytes_tx.attr,
209 &dev_attr_spi_master_transfer_bytes_histo0.attr,
210 &dev_attr_spi_master_transfer_bytes_histo1.attr,
211 &dev_attr_spi_master_transfer_bytes_histo2.attr,
212 &dev_attr_spi_master_transfer_bytes_histo3.attr,
213 &dev_attr_spi_master_transfer_bytes_histo4.attr,
214 &dev_attr_spi_master_transfer_bytes_histo5.attr,
215 &dev_attr_spi_master_transfer_bytes_histo6.attr,
216 &dev_attr_spi_master_transfer_bytes_histo7.attr,
217 &dev_attr_spi_master_transfer_bytes_histo8.attr,
218 &dev_attr_spi_master_transfer_bytes_histo9.attr,
219 &dev_attr_spi_master_transfer_bytes_histo10.attr,
220 &dev_attr_spi_master_transfer_bytes_histo11.attr,
221 &dev_attr_spi_master_transfer_bytes_histo12.attr,
222 &dev_attr_spi_master_transfer_bytes_histo13.attr,
223 &dev_attr_spi_master_transfer_bytes_histo14.attr,
224 &dev_attr_spi_master_transfer_bytes_histo15.attr,
225 &dev_attr_spi_master_transfer_bytes_histo16.attr,
226 NULL,
227 };
228
229 static const struct attribute_group spi_master_statistics_group = {
230 .name = "statistics",
231 .attrs = spi_master_statistics_attrs,
232 };
233
234 static const struct attribute_group *spi_master_groups[] = {
235 &spi_master_statistics_group,
236 NULL,
237 };
238
239 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
240 struct spi_transfer *xfer,
241 struct spi_master *master)
242 {
243 unsigned long flags;
244 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
245
246 if (l2len < 0)
247 l2len = 0;
248
249 spin_lock_irqsave(&stats->lock, flags);
250
251 stats->transfers++;
252 stats->transfer_bytes_histo[l2len]++;
253
254 stats->bytes += xfer->len;
255 if ((xfer->tx_buf) &&
256 (xfer->tx_buf != master->dummy_tx))
257 stats->bytes_tx += xfer->len;
258 if ((xfer->rx_buf) &&
259 (xfer->rx_buf != master->dummy_rx))
260 stats->bytes_rx += xfer->len;
261
262 spin_unlock_irqrestore(&stats->lock, flags);
263 }
264 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
265
266 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
267 * and the sysfs version makes coldplug work too.
268 */
269
270 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
271 const struct spi_device *sdev)
272 {
273 while (id->name[0]) {
274 if (!strcmp(sdev->modalias, id->name))
275 return id;
276 id++;
277 }
278 return NULL;
279 }
280
281 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
282 {
283 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
284
285 return spi_match_id(sdrv->id_table, sdev);
286 }
287 EXPORT_SYMBOL_GPL(spi_get_device_id);
288
289 static int spi_match_device(struct device *dev, struct device_driver *drv)
290 {
291 const struct spi_device *spi = to_spi_device(dev);
292 const struct spi_driver *sdrv = to_spi_driver(drv);
293
294 /* Attempt an OF style match */
295 if (of_driver_match_device(dev, drv))
296 return 1;
297
298 /* Then try ACPI */
299 if (acpi_driver_match_device(dev, drv))
300 return 1;
301
302 if (sdrv->id_table)
303 return !!spi_match_id(sdrv->id_table, spi);
304
305 return strcmp(spi->modalias, drv->name) == 0;
306 }
307
308 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
309 {
310 const struct spi_device *spi = to_spi_device(dev);
311 int rc;
312
313 rc = acpi_device_uevent_modalias(dev, env);
314 if (rc != -ENODEV)
315 return rc;
316
317 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
318 return 0;
319 }
320
321 struct bus_type spi_bus_type = {
322 .name = "spi",
323 .dev_groups = spi_dev_groups,
324 .match = spi_match_device,
325 .uevent = spi_uevent,
326 };
327 EXPORT_SYMBOL_GPL(spi_bus_type);
328
329
330 static int spi_drv_probe(struct device *dev)
331 {
332 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
333 struct spi_device *spi = to_spi_device(dev);
334 int ret;
335
336 ret = of_clk_set_defaults(dev->of_node, false);
337 if (ret)
338 return ret;
339
340 if (dev->of_node) {
341 spi->irq = of_irq_get(dev->of_node, 0);
342 if (spi->irq == -EPROBE_DEFER)
343 return -EPROBE_DEFER;
344 if (spi->irq < 0)
345 spi->irq = 0;
346 }
347
348 ret = dev_pm_domain_attach(dev, true);
349 if (ret != -EPROBE_DEFER) {
350 ret = sdrv->probe(spi);
351 if (ret)
352 dev_pm_domain_detach(dev, true);
353 }
354
355 return ret;
356 }
357
358 static int spi_drv_remove(struct device *dev)
359 {
360 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
361 int ret;
362
363 ret = sdrv->remove(to_spi_device(dev));
364 dev_pm_domain_detach(dev, true);
365
366 return ret;
367 }
368
369 static void spi_drv_shutdown(struct device *dev)
370 {
371 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
372
373 sdrv->shutdown(to_spi_device(dev));
374 }
375
376 /**
377 * __spi_register_driver - register a SPI driver
378 * @owner: owner module of the driver to register
379 * @sdrv: the driver to register
380 * Context: can sleep
381 *
382 * Return: zero on success, else a negative error code.
383 */
384 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
385 {
386 sdrv->driver.owner = owner;
387 sdrv->driver.bus = &spi_bus_type;
388 if (sdrv->probe)
389 sdrv->driver.probe = spi_drv_probe;
390 if (sdrv->remove)
391 sdrv->driver.remove = spi_drv_remove;
392 if (sdrv->shutdown)
393 sdrv->driver.shutdown = spi_drv_shutdown;
394 return driver_register(&sdrv->driver);
395 }
396 EXPORT_SYMBOL_GPL(__spi_register_driver);
397
398 /*-------------------------------------------------------------------------*/
399
400 /* SPI devices should normally not be created by SPI device drivers; that
401 * would make them board-specific. Similarly with SPI master drivers.
402 * Device registration normally goes into like arch/.../mach.../board-YYY.c
403 * with other readonly (flashable) information about mainboard devices.
404 */
405
406 struct boardinfo {
407 struct list_head list;
408 struct spi_board_info board_info;
409 };
410
411 static LIST_HEAD(board_list);
412 static LIST_HEAD(spi_master_list);
413
414 /*
415 * Used to protect add/del opertion for board_info list and
416 * spi_master list, and their matching process
417 */
418 static DEFINE_MUTEX(board_lock);
419
420 /**
421 * spi_alloc_device - Allocate a new SPI device
422 * @master: Controller to which device is connected
423 * Context: can sleep
424 *
425 * Allows a driver to allocate and initialize a spi_device without
426 * registering it immediately. This allows a driver to directly
427 * fill the spi_device with device parameters before calling
428 * spi_add_device() on it.
429 *
430 * Caller is responsible to call spi_add_device() on the returned
431 * spi_device structure to add it to the SPI master. If the caller
432 * needs to discard the spi_device without adding it, then it should
433 * call spi_dev_put() on it.
434 *
435 * Return: a pointer to the new device, or NULL.
436 */
437 struct spi_device *spi_alloc_device(struct spi_master *master)
438 {
439 struct spi_device *spi;
440
441 if (!spi_master_get(master))
442 return NULL;
443
444 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
445 if (!spi) {
446 spi_master_put(master);
447 return NULL;
448 }
449
450 spi->master = master;
451 spi->dev.parent = &master->dev;
452 spi->dev.bus = &spi_bus_type;
453 spi->dev.release = spidev_release;
454 spi->cs_gpio = -ENOENT;
455
456 spin_lock_init(&spi->statistics.lock);
457
458 device_initialize(&spi->dev);
459 return spi;
460 }
461 EXPORT_SYMBOL_GPL(spi_alloc_device);
462
463 static void spi_dev_set_name(struct spi_device *spi)
464 {
465 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
466
467 if (adev) {
468 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
469 return;
470 }
471
472 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
473 spi->chip_select);
474 }
475
476 static int spi_dev_check(struct device *dev, void *data)
477 {
478 struct spi_device *spi = to_spi_device(dev);
479 struct spi_device *new_spi = data;
480
481 if (spi->master == new_spi->master &&
482 spi->chip_select == new_spi->chip_select)
483 return -EBUSY;
484 return 0;
485 }
486
487 /**
488 * spi_add_device - Add spi_device allocated with spi_alloc_device
489 * @spi: spi_device to register
490 *
491 * Companion function to spi_alloc_device. Devices allocated with
492 * spi_alloc_device can be added onto the spi bus with this function.
493 *
494 * Return: 0 on success; negative errno on failure
495 */
496 int spi_add_device(struct spi_device *spi)
497 {
498 static DEFINE_MUTEX(spi_add_lock);
499 struct spi_master *master = spi->master;
500 struct device *dev = master->dev.parent;
501 int status;
502
503 /* Chipselects are numbered 0..max; validate. */
504 if (spi->chip_select >= master->num_chipselect) {
505 dev_err(dev, "cs%d >= max %d\n",
506 spi->chip_select,
507 master->num_chipselect);
508 return -EINVAL;
509 }
510
511 /* Set the bus ID string */
512 spi_dev_set_name(spi);
513
514 /* We need to make sure there's no other device with this
515 * chipselect **BEFORE** we call setup(), else we'll trash
516 * its configuration. Lock against concurrent add() calls.
517 */
518 mutex_lock(&spi_add_lock);
519
520 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
521 if (status) {
522 dev_err(dev, "chipselect %d already in use\n",
523 spi->chip_select);
524 goto done;
525 }
526
527 if (master->cs_gpios)
528 spi->cs_gpio = master->cs_gpios[spi->chip_select];
529
530 /* Drivers may modify this initial i/o setup, but will
531 * normally rely on the device being setup. Devices
532 * using SPI_CS_HIGH can't coexist well otherwise...
533 */
534 status = spi_setup(spi);
535 if (status < 0) {
536 dev_err(dev, "can't setup %s, status %d\n",
537 dev_name(&spi->dev), status);
538 goto done;
539 }
540
541 /* Device may be bound to an active driver when this returns */
542 status = device_add(&spi->dev);
543 if (status < 0)
544 dev_err(dev, "can't add %s, status %d\n",
545 dev_name(&spi->dev), status);
546 else
547 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
548
549 done:
550 mutex_unlock(&spi_add_lock);
551 return status;
552 }
553 EXPORT_SYMBOL_GPL(spi_add_device);
554
555 /**
556 * spi_new_device - instantiate one new SPI device
557 * @master: Controller to which device is connected
558 * @chip: Describes the SPI device
559 * Context: can sleep
560 *
561 * On typical mainboards, this is purely internal; and it's not needed
562 * after board init creates the hard-wired devices. Some development
563 * platforms may not be able to use spi_register_board_info though, and
564 * this is exported so that for example a USB or parport based adapter
565 * driver could add devices (which it would learn about out-of-band).
566 *
567 * Return: the new device, or NULL.
568 */
569 struct spi_device *spi_new_device(struct spi_master *master,
570 struct spi_board_info *chip)
571 {
572 struct spi_device *proxy;
573 int status;
574
575 /* NOTE: caller did any chip->bus_num checks necessary.
576 *
577 * Also, unless we change the return value convention to use
578 * error-or-pointer (not NULL-or-pointer), troubleshootability
579 * suggests syslogged diagnostics are best here (ugh).
580 */
581
582 proxy = spi_alloc_device(master);
583 if (!proxy)
584 return NULL;
585
586 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
587
588 proxy->chip_select = chip->chip_select;
589 proxy->max_speed_hz = chip->max_speed_hz;
590 proxy->mode = chip->mode;
591 proxy->irq = chip->irq;
592 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
593 proxy->dev.platform_data = (void *) chip->platform_data;
594 proxy->controller_data = chip->controller_data;
595 proxy->controller_state = NULL;
596
597 status = spi_add_device(proxy);
598 if (status < 0) {
599 spi_dev_put(proxy);
600 return NULL;
601 }
602
603 return proxy;
604 }
605 EXPORT_SYMBOL_GPL(spi_new_device);
606
607 /**
608 * spi_unregister_device - unregister a single SPI device
609 * @spi: spi_device to unregister
610 *
611 * Start making the passed SPI device vanish. Normally this would be handled
612 * by spi_unregister_master().
613 */
614 void spi_unregister_device(struct spi_device *spi)
615 {
616 if (!spi)
617 return;
618
619 if (spi->dev.of_node)
620 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
621 device_unregister(&spi->dev);
622 }
623 EXPORT_SYMBOL_GPL(spi_unregister_device);
624
625 static void spi_match_master_to_boardinfo(struct spi_master *master,
626 struct spi_board_info *bi)
627 {
628 struct spi_device *dev;
629
630 if (master->bus_num != bi->bus_num)
631 return;
632
633 dev = spi_new_device(master, bi);
634 if (!dev)
635 dev_err(master->dev.parent, "can't create new device for %s\n",
636 bi->modalias);
637 }
638
639 /**
640 * spi_register_board_info - register SPI devices for a given board
641 * @info: array of chip descriptors
642 * @n: how many descriptors are provided
643 * Context: can sleep
644 *
645 * Board-specific early init code calls this (probably during arch_initcall)
646 * with segments of the SPI device table. Any device nodes are created later,
647 * after the relevant parent SPI controller (bus_num) is defined. We keep
648 * this table of devices forever, so that reloading a controller driver will
649 * not make Linux forget about these hard-wired devices.
650 *
651 * Other code can also call this, e.g. a particular add-on board might provide
652 * SPI devices through its expansion connector, so code initializing that board
653 * would naturally declare its SPI devices.
654 *
655 * The board info passed can safely be __initdata ... but be careful of
656 * any embedded pointers (platform_data, etc), they're copied as-is.
657 *
658 * Return: zero on success, else a negative error code.
659 */
660 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
661 {
662 struct boardinfo *bi;
663 int i;
664
665 if (!n)
666 return -EINVAL;
667
668 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
669 if (!bi)
670 return -ENOMEM;
671
672 for (i = 0; i < n; i++, bi++, info++) {
673 struct spi_master *master;
674
675 memcpy(&bi->board_info, info, sizeof(*info));
676 mutex_lock(&board_lock);
677 list_add_tail(&bi->list, &board_list);
678 list_for_each_entry(master, &spi_master_list, list)
679 spi_match_master_to_boardinfo(master, &bi->board_info);
680 mutex_unlock(&board_lock);
681 }
682
683 return 0;
684 }
685
686 /*-------------------------------------------------------------------------*/
687
688 static void spi_set_cs(struct spi_device *spi, bool enable)
689 {
690 if (spi->mode & SPI_CS_HIGH)
691 enable = !enable;
692
693 if (gpio_is_valid(spi->cs_gpio))
694 gpio_set_value(spi->cs_gpio, !enable);
695 else if (spi->master->set_cs)
696 spi->master->set_cs(spi, !enable);
697 }
698
699 #ifdef CONFIG_HAS_DMA
700 static int spi_map_buf(struct spi_master *master, struct device *dev,
701 struct sg_table *sgt, void *buf, size_t len,
702 enum dma_data_direction dir)
703 {
704 const bool vmalloced_buf = is_vmalloc_addr(buf);
705 int desc_len;
706 int sgs;
707 struct page *vm_page;
708 void *sg_buf;
709 size_t min;
710 int i, ret;
711
712 if (vmalloced_buf) {
713 desc_len = PAGE_SIZE;
714 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
715 } else {
716 desc_len = master->max_dma_len;
717 sgs = DIV_ROUND_UP(len, desc_len);
718 }
719
720 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
721 if (ret != 0)
722 return ret;
723
724 for (i = 0; i < sgs; i++) {
725
726 if (vmalloced_buf) {
727 min = min_t(size_t,
728 len, desc_len - offset_in_page(buf));
729 vm_page = vmalloc_to_page(buf);
730 if (!vm_page) {
731 sg_free_table(sgt);
732 return -ENOMEM;
733 }
734 sg_set_page(&sgt->sgl[i], vm_page,
735 min, offset_in_page(buf));
736 } else {
737 min = min_t(size_t, len, desc_len);
738 sg_buf = buf;
739 sg_set_buf(&sgt->sgl[i], sg_buf, min);
740 }
741
742
743 buf += min;
744 len -= min;
745 }
746
747 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
748 if (!ret)
749 ret = -ENOMEM;
750 if (ret < 0) {
751 sg_free_table(sgt);
752 return ret;
753 }
754
755 sgt->nents = ret;
756
757 return 0;
758 }
759
760 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
761 struct sg_table *sgt, enum dma_data_direction dir)
762 {
763 if (sgt->orig_nents) {
764 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
765 sg_free_table(sgt);
766 }
767 }
768
769 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
770 {
771 struct device *tx_dev, *rx_dev;
772 struct spi_transfer *xfer;
773 int ret;
774
775 if (!master->can_dma)
776 return 0;
777
778 if (master->dma_tx)
779 tx_dev = master->dma_tx->device->dev;
780 else
781 tx_dev = &master->dev;
782
783 if (master->dma_rx)
784 rx_dev = master->dma_rx->device->dev;
785 else
786 rx_dev = &master->dev;
787
788 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
789 if (!master->can_dma(master, msg->spi, xfer))
790 continue;
791
792 if (xfer->tx_buf != NULL) {
793 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
794 (void *)xfer->tx_buf, xfer->len,
795 DMA_TO_DEVICE);
796 if (ret != 0)
797 return ret;
798 }
799
800 if (xfer->rx_buf != NULL) {
801 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
802 xfer->rx_buf, xfer->len,
803 DMA_FROM_DEVICE);
804 if (ret != 0) {
805 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
806 DMA_TO_DEVICE);
807 return ret;
808 }
809 }
810 }
811
812 master->cur_msg_mapped = true;
813
814 return 0;
815 }
816
817 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
818 {
819 struct spi_transfer *xfer;
820 struct device *tx_dev, *rx_dev;
821
822 if (!master->cur_msg_mapped || !master->can_dma)
823 return 0;
824
825 if (master->dma_tx)
826 tx_dev = master->dma_tx->device->dev;
827 else
828 tx_dev = &master->dev;
829
830 if (master->dma_rx)
831 rx_dev = master->dma_rx->device->dev;
832 else
833 rx_dev = &master->dev;
834
835 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
836 if (!master->can_dma(master, msg->spi, xfer))
837 continue;
838
839 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
840 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
841 }
842
843 return 0;
844 }
845 #else /* !CONFIG_HAS_DMA */
846 static inline int __spi_map_msg(struct spi_master *master,
847 struct spi_message *msg)
848 {
849 return 0;
850 }
851
852 static inline int __spi_unmap_msg(struct spi_master *master,
853 struct spi_message *msg)
854 {
855 return 0;
856 }
857 #endif /* !CONFIG_HAS_DMA */
858
859 static inline int spi_unmap_msg(struct spi_master *master,
860 struct spi_message *msg)
861 {
862 struct spi_transfer *xfer;
863
864 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
865 /*
866 * Restore the original value of tx_buf or rx_buf if they are
867 * NULL.
868 */
869 if (xfer->tx_buf == master->dummy_tx)
870 xfer->tx_buf = NULL;
871 if (xfer->rx_buf == master->dummy_rx)
872 xfer->rx_buf = NULL;
873 }
874
875 return __spi_unmap_msg(master, msg);
876 }
877
878 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
879 {
880 struct spi_transfer *xfer;
881 void *tmp;
882 unsigned int max_tx, max_rx;
883
884 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
885 max_tx = 0;
886 max_rx = 0;
887
888 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
889 if ((master->flags & SPI_MASTER_MUST_TX) &&
890 !xfer->tx_buf)
891 max_tx = max(xfer->len, max_tx);
892 if ((master->flags & SPI_MASTER_MUST_RX) &&
893 !xfer->rx_buf)
894 max_rx = max(xfer->len, max_rx);
895 }
896
897 if (max_tx) {
898 tmp = krealloc(master->dummy_tx, max_tx,
899 GFP_KERNEL | GFP_DMA);
900 if (!tmp)
901 return -ENOMEM;
902 master->dummy_tx = tmp;
903 memset(tmp, 0, max_tx);
904 }
905
906 if (max_rx) {
907 tmp = krealloc(master->dummy_rx, max_rx,
908 GFP_KERNEL | GFP_DMA);
909 if (!tmp)
910 return -ENOMEM;
911 master->dummy_rx = tmp;
912 }
913
914 if (max_tx || max_rx) {
915 list_for_each_entry(xfer, &msg->transfers,
916 transfer_list) {
917 if (!xfer->tx_buf)
918 xfer->tx_buf = master->dummy_tx;
919 if (!xfer->rx_buf)
920 xfer->rx_buf = master->dummy_rx;
921 }
922 }
923 }
924
925 return __spi_map_msg(master, msg);
926 }
927
928 /*
929 * spi_transfer_one_message - Default implementation of transfer_one_message()
930 *
931 * This is a standard implementation of transfer_one_message() for
932 * drivers which impelment a transfer_one() operation. It provides
933 * standard handling of delays and chip select management.
934 */
935 static int spi_transfer_one_message(struct spi_master *master,
936 struct spi_message *msg)
937 {
938 struct spi_transfer *xfer;
939 bool keep_cs = false;
940 int ret = 0;
941 unsigned long ms = 1;
942 struct spi_statistics *statm = &master->statistics;
943 struct spi_statistics *stats = &msg->spi->statistics;
944
945 spi_set_cs(msg->spi, true);
946
947 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
948 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
949
950 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
951 trace_spi_transfer_start(msg, xfer);
952
953 spi_statistics_add_transfer_stats(statm, xfer, master);
954 spi_statistics_add_transfer_stats(stats, xfer, master);
955
956 if (xfer->tx_buf || xfer->rx_buf) {
957 reinit_completion(&master->xfer_completion);
958
959 ret = master->transfer_one(master, msg->spi, xfer);
960 if (ret < 0) {
961 SPI_STATISTICS_INCREMENT_FIELD(statm,
962 errors);
963 SPI_STATISTICS_INCREMENT_FIELD(stats,
964 errors);
965 dev_err(&msg->spi->dev,
966 "SPI transfer failed: %d\n", ret);
967 goto out;
968 }
969
970 if (ret > 0) {
971 ret = 0;
972 ms = xfer->len * 8 * 1000 / xfer->speed_hz;
973 ms += ms + 100; /* some tolerance */
974
975 ms = wait_for_completion_timeout(&master->xfer_completion,
976 msecs_to_jiffies(ms));
977 }
978
979 if (ms == 0) {
980 SPI_STATISTICS_INCREMENT_FIELD(statm,
981 timedout);
982 SPI_STATISTICS_INCREMENT_FIELD(stats,
983 timedout);
984 dev_err(&msg->spi->dev,
985 "SPI transfer timed out\n");
986 msg->status = -ETIMEDOUT;
987 }
988 } else {
989 if (xfer->len)
990 dev_err(&msg->spi->dev,
991 "Bufferless transfer has length %u\n",
992 xfer->len);
993 }
994
995 trace_spi_transfer_stop(msg, xfer);
996
997 if (msg->status != -EINPROGRESS)
998 goto out;
999
1000 if (xfer->delay_usecs)
1001 udelay(xfer->delay_usecs);
1002
1003 if (xfer->cs_change) {
1004 if (list_is_last(&xfer->transfer_list,
1005 &msg->transfers)) {
1006 keep_cs = true;
1007 } else {
1008 spi_set_cs(msg->spi, false);
1009 udelay(10);
1010 spi_set_cs(msg->spi, true);
1011 }
1012 }
1013
1014 msg->actual_length += xfer->len;
1015 }
1016
1017 out:
1018 if (ret != 0 || !keep_cs)
1019 spi_set_cs(msg->spi, false);
1020
1021 if (msg->status == -EINPROGRESS)
1022 msg->status = ret;
1023
1024 if (msg->status && master->handle_err)
1025 master->handle_err(master, msg);
1026
1027 spi_res_release(master, msg);
1028
1029 spi_finalize_current_message(master);
1030
1031 return ret;
1032 }
1033
1034 /**
1035 * spi_finalize_current_transfer - report completion of a transfer
1036 * @master: the master reporting completion
1037 *
1038 * Called by SPI drivers using the core transfer_one_message()
1039 * implementation to notify it that the current interrupt driven
1040 * transfer has finished and the next one may be scheduled.
1041 */
1042 void spi_finalize_current_transfer(struct spi_master *master)
1043 {
1044 complete(&master->xfer_completion);
1045 }
1046 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1047
1048 /**
1049 * __spi_pump_messages - function which processes spi message queue
1050 * @master: master to process queue for
1051 * @in_kthread: true if we are in the context of the message pump thread
1052 *
1053 * This function checks if there is any spi message in the queue that
1054 * needs processing and if so call out to the driver to initialize hardware
1055 * and transfer each message.
1056 *
1057 * Note that it is called both from the kthread itself and also from
1058 * inside spi_sync(); the queue extraction handling at the top of the
1059 * function should deal with this safely.
1060 */
1061 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1062 {
1063 unsigned long flags;
1064 bool was_busy = false;
1065 int ret;
1066
1067 /* Lock queue */
1068 spin_lock_irqsave(&master->queue_lock, flags);
1069
1070 /* Make sure we are not already running a message */
1071 if (master->cur_msg) {
1072 spin_unlock_irqrestore(&master->queue_lock, flags);
1073 return;
1074 }
1075
1076 /* If another context is idling the device then defer */
1077 if (master->idling) {
1078 queue_kthread_work(&master->kworker, &master->pump_messages);
1079 spin_unlock_irqrestore(&master->queue_lock, flags);
1080 return;
1081 }
1082
1083 /* Check if the queue is idle */
1084 if (list_empty(&master->queue) || !master->running) {
1085 if (!master->busy) {
1086 spin_unlock_irqrestore(&master->queue_lock, flags);
1087 return;
1088 }
1089
1090 /* Only do teardown in the thread */
1091 if (!in_kthread) {
1092 queue_kthread_work(&master->kworker,
1093 &master->pump_messages);
1094 spin_unlock_irqrestore(&master->queue_lock, flags);
1095 return;
1096 }
1097
1098 master->busy = false;
1099 master->idling = true;
1100 spin_unlock_irqrestore(&master->queue_lock, flags);
1101
1102 kfree(master->dummy_rx);
1103 master->dummy_rx = NULL;
1104 kfree(master->dummy_tx);
1105 master->dummy_tx = NULL;
1106 if (master->unprepare_transfer_hardware &&
1107 master->unprepare_transfer_hardware(master))
1108 dev_err(&master->dev,
1109 "failed to unprepare transfer hardware\n");
1110 if (master->auto_runtime_pm) {
1111 pm_runtime_mark_last_busy(master->dev.parent);
1112 pm_runtime_put_autosuspend(master->dev.parent);
1113 }
1114 trace_spi_master_idle(master);
1115
1116 spin_lock_irqsave(&master->queue_lock, flags);
1117 master->idling = false;
1118 spin_unlock_irqrestore(&master->queue_lock, flags);
1119 return;
1120 }
1121
1122 /* Extract head of queue */
1123 master->cur_msg =
1124 list_first_entry(&master->queue, struct spi_message, queue);
1125
1126 list_del_init(&master->cur_msg->queue);
1127 if (master->busy)
1128 was_busy = true;
1129 else
1130 master->busy = true;
1131 spin_unlock_irqrestore(&master->queue_lock, flags);
1132
1133 if (!was_busy && master->auto_runtime_pm) {
1134 ret = pm_runtime_get_sync(master->dev.parent);
1135 if (ret < 0) {
1136 dev_err(&master->dev, "Failed to power device: %d\n",
1137 ret);
1138 return;
1139 }
1140 }
1141
1142 if (!was_busy)
1143 trace_spi_master_busy(master);
1144
1145 if (!was_busy && master->prepare_transfer_hardware) {
1146 ret = master->prepare_transfer_hardware(master);
1147 if (ret) {
1148 dev_err(&master->dev,
1149 "failed to prepare transfer hardware\n");
1150
1151 if (master->auto_runtime_pm)
1152 pm_runtime_put(master->dev.parent);
1153 return;
1154 }
1155 }
1156
1157 trace_spi_message_start(master->cur_msg);
1158
1159 if (master->prepare_message) {
1160 ret = master->prepare_message(master, master->cur_msg);
1161 if (ret) {
1162 dev_err(&master->dev,
1163 "failed to prepare message: %d\n", ret);
1164 master->cur_msg->status = ret;
1165 spi_finalize_current_message(master);
1166 return;
1167 }
1168 master->cur_msg_prepared = true;
1169 }
1170
1171 ret = spi_map_msg(master, master->cur_msg);
1172 if (ret) {
1173 master->cur_msg->status = ret;
1174 spi_finalize_current_message(master);
1175 return;
1176 }
1177
1178 ret = master->transfer_one_message(master, master->cur_msg);
1179 if (ret) {
1180 dev_err(&master->dev,
1181 "failed to transfer one message from queue\n");
1182 return;
1183 }
1184 }
1185
1186 /**
1187 * spi_pump_messages - kthread work function which processes spi message queue
1188 * @work: pointer to kthread work struct contained in the master struct
1189 */
1190 static void spi_pump_messages(struct kthread_work *work)
1191 {
1192 struct spi_master *master =
1193 container_of(work, struct spi_master, pump_messages);
1194
1195 __spi_pump_messages(master, true);
1196 }
1197
1198 static int spi_init_queue(struct spi_master *master)
1199 {
1200 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1201
1202 master->running = false;
1203 master->busy = false;
1204
1205 init_kthread_worker(&master->kworker);
1206 master->kworker_task = kthread_run(kthread_worker_fn,
1207 &master->kworker, "%s",
1208 dev_name(&master->dev));
1209 if (IS_ERR(master->kworker_task)) {
1210 dev_err(&master->dev, "failed to create message pump task\n");
1211 return PTR_ERR(master->kworker_task);
1212 }
1213 init_kthread_work(&master->pump_messages, spi_pump_messages);
1214
1215 /*
1216 * Master config will indicate if this controller should run the
1217 * message pump with high (realtime) priority to reduce the transfer
1218 * latency on the bus by minimising the delay between a transfer
1219 * request and the scheduling of the message pump thread. Without this
1220 * setting the message pump thread will remain at default priority.
1221 */
1222 if (master->rt) {
1223 dev_info(&master->dev,
1224 "will run message pump with realtime priority\n");
1225 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1226 }
1227
1228 return 0;
1229 }
1230
1231 /**
1232 * spi_get_next_queued_message() - called by driver to check for queued
1233 * messages
1234 * @master: the master to check for queued messages
1235 *
1236 * If there are more messages in the queue, the next message is returned from
1237 * this call.
1238 *
1239 * Return: the next message in the queue, else NULL if the queue is empty.
1240 */
1241 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1242 {
1243 struct spi_message *next;
1244 unsigned long flags;
1245
1246 /* get a pointer to the next message, if any */
1247 spin_lock_irqsave(&master->queue_lock, flags);
1248 next = list_first_entry_or_null(&master->queue, struct spi_message,
1249 queue);
1250 spin_unlock_irqrestore(&master->queue_lock, flags);
1251
1252 return next;
1253 }
1254 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1255
1256 /**
1257 * spi_finalize_current_message() - the current message is complete
1258 * @master: the master to return the message to
1259 *
1260 * Called by the driver to notify the core that the message in the front of the
1261 * queue is complete and can be removed from the queue.
1262 */
1263 void spi_finalize_current_message(struct spi_master *master)
1264 {
1265 struct spi_message *mesg;
1266 unsigned long flags;
1267 int ret;
1268
1269 spin_lock_irqsave(&master->queue_lock, flags);
1270 mesg = master->cur_msg;
1271 spin_unlock_irqrestore(&master->queue_lock, flags);
1272
1273 spi_unmap_msg(master, mesg);
1274
1275 if (master->cur_msg_prepared && master->unprepare_message) {
1276 ret = master->unprepare_message(master, mesg);
1277 if (ret) {
1278 dev_err(&master->dev,
1279 "failed to unprepare message: %d\n", ret);
1280 }
1281 }
1282
1283 spin_lock_irqsave(&master->queue_lock, flags);
1284 master->cur_msg = NULL;
1285 master->cur_msg_prepared = false;
1286 queue_kthread_work(&master->kworker, &master->pump_messages);
1287 spin_unlock_irqrestore(&master->queue_lock, flags);
1288
1289 trace_spi_message_done(mesg);
1290
1291 mesg->state = NULL;
1292 if (mesg->complete)
1293 mesg->complete(mesg->context);
1294 }
1295 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1296
1297 static int spi_start_queue(struct spi_master *master)
1298 {
1299 unsigned long flags;
1300
1301 spin_lock_irqsave(&master->queue_lock, flags);
1302
1303 if (master->running || master->busy) {
1304 spin_unlock_irqrestore(&master->queue_lock, flags);
1305 return -EBUSY;
1306 }
1307
1308 master->running = true;
1309 master->cur_msg = NULL;
1310 spin_unlock_irqrestore(&master->queue_lock, flags);
1311
1312 queue_kthread_work(&master->kworker, &master->pump_messages);
1313
1314 return 0;
1315 }
1316
1317 static int spi_stop_queue(struct spi_master *master)
1318 {
1319 unsigned long flags;
1320 unsigned limit = 500;
1321 int ret = 0;
1322
1323 spin_lock_irqsave(&master->queue_lock, flags);
1324
1325 /*
1326 * This is a bit lame, but is optimized for the common execution path.
1327 * A wait_queue on the master->busy could be used, but then the common
1328 * execution path (pump_messages) would be required to call wake_up or
1329 * friends on every SPI message. Do this instead.
1330 */
1331 while ((!list_empty(&master->queue) || master->busy) && limit--) {
1332 spin_unlock_irqrestore(&master->queue_lock, flags);
1333 usleep_range(10000, 11000);
1334 spin_lock_irqsave(&master->queue_lock, flags);
1335 }
1336
1337 if (!list_empty(&master->queue) || master->busy)
1338 ret = -EBUSY;
1339 else
1340 master->running = false;
1341
1342 spin_unlock_irqrestore(&master->queue_lock, flags);
1343
1344 if (ret) {
1345 dev_warn(&master->dev,
1346 "could not stop message queue\n");
1347 return ret;
1348 }
1349 return ret;
1350 }
1351
1352 static int spi_destroy_queue(struct spi_master *master)
1353 {
1354 int ret;
1355
1356 ret = spi_stop_queue(master);
1357
1358 /*
1359 * flush_kthread_worker will block until all work is done.
1360 * If the reason that stop_queue timed out is that the work will never
1361 * finish, then it does no good to call flush/stop thread, so
1362 * return anyway.
1363 */
1364 if (ret) {
1365 dev_err(&master->dev, "problem destroying queue\n");
1366 return ret;
1367 }
1368
1369 flush_kthread_worker(&master->kworker);
1370 kthread_stop(master->kworker_task);
1371
1372 return 0;
1373 }
1374
1375 static int __spi_queued_transfer(struct spi_device *spi,
1376 struct spi_message *msg,
1377 bool need_pump)
1378 {
1379 struct spi_master *master = spi->master;
1380 unsigned long flags;
1381
1382 spin_lock_irqsave(&master->queue_lock, flags);
1383
1384 if (!master->running) {
1385 spin_unlock_irqrestore(&master->queue_lock, flags);
1386 return -ESHUTDOWN;
1387 }
1388 msg->actual_length = 0;
1389 msg->status = -EINPROGRESS;
1390
1391 list_add_tail(&msg->queue, &master->queue);
1392 if (!master->busy && need_pump)
1393 queue_kthread_work(&master->kworker, &master->pump_messages);
1394
1395 spin_unlock_irqrestore(&master->queue_lock, flags);
1396 return 0;
1397 }
1398
1399 /**
1400 * spi_queued_transfer - transfer function for queued transfers
1401 * @spi: spi device which is requesting transfer
1402 * @msg: spi message which is to handled is queued to driver queue
1403 *
1404 * Return: zero on success, else a negative error code.
1405 */
1406 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1407 {
1408 return __spi_queued_transfer(spi, msg, true);
1409 }
1410
1411 static int spi_master_initialize_queue(struct spi_master *master)
1412 {
1413 int ret;
1414
1415 master->transfer = spi_queued_transfer;
1416 if (!master->transfer_one_message)
1417 master->transfer_one_message = spi_transfer_one_message;
1418
1419 /* Initialize and start queue */
1420 ret = spi_init_queue(master);
1421 if (ret) {
1422 dev_err(&master->dev, "problem initializing queue\n");
1423 goto err_init_queue;
1424 }
1425 master->queued = true;
1426 ret = spi_start_queue(master);
1427 if (ret) {
1428 dev_err(&master->dev, "problem starting queue\n");
1429 goto err_start_queue;
1430 }
1431
1432 return 0;
1433
1434 err_start_queue:
1435 spi_destroy_queue(master);
1436 err_init_queue:
1437 return ret;
1438 }
1439
1440 /*-------------------------------------------------------------------------*/
1441
1442 #if defined(CONFIG_OF)
1443 static struct spi_device *
1444 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1445 {
1446 struct spi_device *spi;
1447 int rc;
1448 u32 value;
1449
1450 /* Alloc an spi_device */
1451 spi = spi_alloc_device(master);
1452 if (!spi) {
1453 dev_err(&master->dev, "spi_device alloc error for %s\n",
1454 nc->full_name);
1455 rc = -ENOMEM;
1456 goto err_out;
1457 }
1458
1459 /* Select device driver */
1460 rc = of_modalias_node(nc, spi->modalias,
1461 sizeof(spi->modalias));
1462 if (rc < 0) {
1463 dev_err(&master->dev, "cannot find modalias for %s\n",
1464 nc->full_name);
1465 goto err_out;
1466 }
1467
1468 /* Device address */
1469 rc = of_property_read_u32(nc, "reg", &value);
1470 if (rc) {
1471 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1472 nc->full_name, rc);
1473 goto err_out;
1474 }
1475 spi->chip_select = value;
1476
1477 /* Mode (clock phase/polarity/etc.) */
1478 if (of_find_property(nc, "spi-cpha", NULL))
1479 spi->mode |= SPI_CPHA;
1480 if (of_find_property(nc, "spi-cpol", NULL))
1481 spi->mode |= SPI_CPOL;
1482 if (of_find_property(nc, "spi-cs-high", NULL))
1483 spi->mode |= SPI_CS_HIGH;
1484 if (of_find_property(nc, "spi-3wire", NULL))
1485 spi->mode |= SPI_3WIRE;
1486 if (of_find_property(nc, "spi-lsb-first", NULL))
1487 spi->mode |= SPI_LSB_FIRST;
1488
1489 /* Device DUAL/QUAD mode */
1490 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1491 switch (value) {
1492 case 1:
1493 break;
1494 case 2:
1495 spi->mode |= SPI_TX_DUAL;
1496 break;
1497 case 4:
1498 spi->mode |= SPI_TX_QUAD;
1499 break;
1500 default:
1501 dev_warn(&master->dev,
1502 "spi-tx-bus-width %d not supported\n",
1503 value);
1504 break;
1505 }
1506 }
1507
1508 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1509 switch (value) {
1510 case 1:
1511 break;
1512 case 2:
1513 spi->mode |= SPI_RX_DUAL;
1514 break;
1515 case 4:
1516 spi->mode |= SPI_RX_QUAD;
1517 break;
1518 default:
1519 dev_warn(&master->dev,
1520 "spi-rx-bus-width %d not supported\n",
1521 value);
1522 break;
1523 }
1524 }
1525
1526 /* Device speed */
1527 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1528 if (rc) {
1529 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1530 nc->full_name, rc);
1531 goto err_out;
1532 }
1533 spi->max_speed_hz = value;
1534
1535 /* Store a pointer to the node in the device structure */
1536 of_node_get(nc);
1537 spi->dev.of_node = nc;
1538
1539 /* Register the new device */
1540 rc = spi_add_device(spi);
1541 if (rc) {
1542 dev_err(&master->dev, "spi_device register error %s\n",
1543 nc->full_name);
1544 goto err_out;
1545 }
1546
1547 return spi;
1548
1549 err_out:
1550 spi_dev_put(spi);
1551 return ERR_PTR(rc);
1552 }
1553
1554 /**
1555 * of_register_spi_devices() - Register child devices onto the SPI bus
1556 * @master: Pointer to spi_master device
1557 *
1558 * Registers an spi_device for each child node of master node which has a 'reg'
1559 * property.
1560 */
1561 static void of_register_spi_devices(struct spi_master *master)
1562 {
1563 struct spi_device *spi;
1564 struct device_node *nc;
1565
1566 if (!master->dev.of_node)
1567 return;
1568
1569 for_each_available_child_of_node(master->dev.of_node, nc) {
1570 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1571 continue;
1572 spi = of_register_spi_device(master, nc);
1573 if (IS_ERR(spi))
1574 dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1575 nc->full_name);
1576 }
1577 }
1578 #else
1579 static void of_register_spi_devices(struct spi_master *master) { }
1580 #endif
1581
1582 #ifdef CONFIG_ACPI
1583 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1584 {
1585 struct spi_device *spi = data;
1586
1587 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1588 struct acpi_resource_spi_serialbus *sb;
1589
1590 sb = &ares->data.spi_serial_bus;
1591 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1592 spi->chip_select = sb->device_selection;
1593 spi->max_speed_hz = sb->connection_speed;
1594
1595 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1596 spi->mode |= SPI_CPHA;
1597 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1598 spi->mode |= SPI_CPOL;
1599 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1600 spi->mode |= SPI_CS_HIGH;
1601 }
1602 } else if (spi->irq < 0) {
1603 struct resource r;
1604
1605 if (acpi_dev_resource_interrupt(ares, 0, &r))
1606 spi->irq = r.start;
1607 }
1608
1609 /* Always tell the ACPI core to skip this resource */
1610 return 1;
1611 }
1612
1613 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1614 void *data, void **return_value)
1615 {
1616 struct spi_master *master = data;
1617 struct list_head resource_list;
1618 struct acpi_device *adev;
1619 struct spi_device *spi;
1620 int ret;
1621
1622 if (acpi_bus_get_device(handle, &adev))
1623 return AE_OK;
1624 if (acpi_bus_get_status(adev) || !adev->status.present)
1625 return AE_OK;
1626
1627 spi = spi_alloc_device(master);
1628 if (!spi) {
1629 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1630 dev_name(&adev->dev));
1631 return AE_NO_MEMORY;
1632 }
1633
1634 ACPI_COMPANION_SET(&spi->dev, adev);
1635 spi->irq = -1;
1636
1637 INIT_LIST_HEAD(&resource_list);
1638 ret = acpi_dev_get_resources(adev, &resource_list,
1639 acpi_spi_add_resource, spi);
1640 acpi_dev_free_resource_list(&resource_list);
1641
1642 if (ret < 0 || !spi->max_speed_hz) {
1643 spi_dev_put(spi);
1644 return AE_OK;
1645 }
1646
1647 if (spi->irq < 0)
1648 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1649
1650 adev->power.flags.ignore_parent = true;
1651 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1652 if (spi_add_device(spi)) {
1653 adev->power.flags.ignore_parent = false;
1654 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1655 dev_name(&adev->dev));
1656 spi_dev_put(spi);
1657 }
1658
1659 return AE_OK;
1660 }
1661
1662 static void acpi_register_spi_devices(struct spi_master *master)
1663 {
1664 acpi_status status;
1665 acpi_handle handle;
1666
1667 handle = ACPI_HANDLE(master->dev.parent);
1668 if (!handle)
1669 return;
1670
1671 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1672 acpi_spi_add_device, NULL,
1673 master, NULL);
1674 if (ACPI_FAILURE(status))
1675 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1676 }
1677 #else
1678 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1679 #endif /* CONFIG_ACPI */
1680
1681 static void spi_master_release(struct device *dev)
1682 {
1683 struct spi_master *master;
1684
1685 master = container_of(dev, struct spi_master, dev);
1686 kfree(master);
1687 }
1688
1689 static struct class spi_master_class = {
1690 .name = "spi_master",
1691 .owner = THIS_MODULE,
1692 .dev_release = spi_master_release,
1693 .dev_groups = spi_master_groups,
1694 };
1695
1696
1697 /**
1698 * spi_alloc_master - allocate SPI master controller
1699 * @dev: the controller, possibly using the platform_bus
1700 * @size: how much zeroed driver-private data to allocate; the pointer to this
1701 * memory is in the driver_data field of the returned device,
1702 * accessible with spi_master_get_devdata().
1703 * Context: can sleep
1704 *
1705 * This call is used only by SPI master controller drivers, which are the
1706 * only ones directly touching chip registers. It's how they allocate
1707 * an spi_master structure, prior to calling spi_register_master().
1708 *
1709 * This must be called from context that can sleep.
1710 *
1711 * The caller is responsible for assigning the bus number and initializing
1712 * the master's methods before calling spi_register_master(); and (after errors
1713 * adding the device) calling spi_master_put() to prevent a memory leak.
1714 *
1715 * Return: the SPI master structure on success, else NULL.
1716 */
1717 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1718 {
1719 struct spi_master *master;
1720
1721 if (!dev)
1722 return NULL;
1723
1724 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1725 if (!master)
1726 return NULL;
1727
1728 device_initialize(&master->dev);
1729 master->bus_num = -1;
1730 master->num_chipselect = 1;
1731 master->dev.class = &spi_master_class;
1732 master->dev.parent = dev;
1733 spi_master_set_devdata(master, &master[1]);
1734
1735 return master;
1736 }
1737 EXPORT_SYMBOL_GPL(spi_alloc_master);
1738
1739 #ifdef CONFIG_OF
1740 static int of_spi_register_master(struct spi_master *master)
1741 {
1742 int nb, i, *cs;
1743 struct device_node *np = master->dev.of_node;
1744
1745 if (!np)
1746 return 0;
1747
1748 nb = of_gpio_named_count(np, "cs-gpios");
1749 master->num_chipselect = max_t(int, nb, master->num_chipselect);
1750
1751 /* Return error only for an incorrectly formed cs-gpios property */
1752 if (nb == 0 || nb == -ENOENT)
1753 return 0;
1754 else if (nb < 0)
1755 return nb;
1756
1757 cs = devm_kzalloc(&master->dev,
1758 sizeof(int) * master->num_chipselect,
1759 GFP_KERNEL);
1760 master->cs_gpios = cs;
1761
1762 if (!master->cs_gpios)
1763 return -ENOMEM;
1764
1765 for (i = 0; i < master->num_chipselect; i++)
1766 cs[i] = -ENOENT;
1767
1768 for (i = 0; i < nb; i++)
1769 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1770
1771 return 0;
1772 }
1773 #else
1774 static int of_spi_register_master(struct spi_master *master)
1775 {
1776 return 0;
1777 }
1778 #endif
1779
1780 /**
1781 * spi_register_master - register SPI master controller
1782 * @master: initialized master, originally from spi_alloc_master()
1783 * Context: can sleep
1784 *
1785 * SPI master controllers connect to their drivers using some non-SPI bus,
1786 * such as the platform bus. The final stage of probe() in that code
1787 * includes calling spi_register_master() to hook up to this SPI bus glue.
1788 *
1789 * SPI controllers use board specific (often SOC specific) bus numbers,
1790 * and board-specific addressing for SPI devices combines those numbers
1791 * with chip select numbers. Since SPI does not directly support dynamic
1792 * device identification, boards need configuration tables telling which
1793 * chip is at which address.
1794 *
1795 * This must be called from context that can sleep. It returns zero on
1796 * success, else a negative error code (dropping the master's refcount).
1797 * After a successful return, the caller is responsible for calling
1798 * spi_unregister_master().
1799 *
1800 * Return: zero on success, else a negative error code.
1801 */
1802 int spi_register_master(struct spi_master *master)
1803 {
1804 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1805 struct device *dev = master->dev.parent;
1806 struct boardinfo *bi;
1807 int status = -ENODEV;
1808 int dynamic = 0;
1809
1810 if (!dev)
1811 return -ENODEV;
1812
1813 status = of_spi_register_master(master);
1814 if (status)
1815 return status;
1816
1817 /* even if it's just one always-selected device, there must
1818 * be at least one chipselect
1819 */
1820 if (master->num_chipselect == 0)
1821 return -EINVAL;
1822
1823 if ((master->bus_num < 0) && master->dev.of_node)
1824 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1825
1826 /* convention: dynamically assigned bus IDs count down from the max */
1827 if (master->bus_num < 0) {
1828 /* FIXME switch to an IDR based scheme, something like
1829 * I2C now uses, so we can't run out of "dynamic" IDs
1830 */
1831 master->bus_num = atomic_dec_return(&dyn_bus_id);
1832 dynamic = 1;
1833 }
1834
1835 INIT_LIST_HEAD(&master->queue);
1836 spin_lock_init(&master->queue_lock);
1837 spin_lock_init(&master->bus_lock_spinlock);
1838 mutex_init(&master->bus_lock_mutex);
1839 master->bus_lock_flag = 0;
1840 init_completion(&master->xfer_completion);
1841 if (!master->max_dma_len)
1842 master->max_dma_len = INT_MAX;
1843
1844 /* register the device, then userspace will see it.
1845 * registration fails if the bus ID is in use.
1846 */
1847 dev_set_name(&master->dev, "spi%u", master->bus_num);
1848 status = device_add(&master->dev);
1849 if (status < 0)
1850 goto done;
1851 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1852 dynamic ? " (dynamic)" : "");
1853
1854 /* If we're using a queued driver, start the queue */
1855 if (master->transfer)
1856 dev_info(dev, "master is unqueued, this is deprecated\n");
1857 else {
1858 status = spi_master_initialize_queue(master);
1859 if (status) {
1860 device_del(&master->dev);
1861 goto done;
1862 }
1863 }
1864 /* add statistics */
1865 spin_lock_init(&master->statistics.lock);
1866
1867 mutex_lock(&board_lock);
1868 list_add_tail(&master->list, &spi_master_list);
1869 list_for_each_entry(bi, &board_list, list)
1870 spi_match_master_to_boardinfo(master, &bi->board_info);
1871 mutex_unlock(&board_lock);
1872
1873 /* Register devices from the device tree and ACPI */
1874 of_register_spi_devices(master);
1875 acpi_register_spi_devices(master);
1876 done:
1877 return status;
1878 }
1879 EXPORT_SYMBOL_GPL(spi_register_master);
1880
1881 static void devm_spi_unregister(struct device *dev, void *res)
1882 {
1883 spi_unregister_master(*(struct spi_master **)res);
1884 }
1885
1886 /**
1887 * dev_spi_register_master - register managed SPI master controller
1888 * @dev: device managing SPI master
1889 * @master: initialized master, originally from spi_alloc_master()
1890 * Context: can sleep
1891 *
1892 * Register a SPI device as with spi_register_master() which will
1893 * automatically be unregister
1894 *
1895 * Return: zero on success, else a negative error code.
1896 */
1897 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1898 {
1899 struct spi_master **ptr;
1900 int ret;
1901
1902 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1903 if (!ptr)
1904 return -ENOMEM;
1905
1906 ret = spi_register_master(master);
1907 if (!ret) {
1908 *ptr = master;
1909 devres_add(dev, ptr);
1910 } else {
1911 devres_free(ptr);
1912 }
1913
1914 return ret;
1915 }
1916 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1917
1918 static int __unregister(struct device *dev, void *null)
1919 {
1920 spi_unregister_device(to_spi_device(dev));
1921 return 0;
1922 }
1923
1924 /**
1925 * spi_unregister_master - unregister SPI master controller
1926 * @master: the master being unregistered
1927 * Context: can sleep
1928 *
1929 * This call is used only by SPI master controller drivers, which are the
1930 * only ones directly touching chip registers.
1931 *
1932 * This must be called from context that can sleep.
1933 */
1934 void spi_unregister_master(struct spi_master *master)
1935 {
1936 int dummy;
1937
1938 if (master->queued) {
1939 if (spi_destroy_queue(master))
1940 dev_err(&master->dev, "queue remove failed\n");
1941 }
1942
1943 mutex_lock(&board_lock);
1944 list_del(&master->list);
1945 mutex_unlock(&board_lock);
1946
1947 dummy = device_for_each_child(&master->dev, NULL, __unregister);
1948 device_unregister(&master->dev);
1949 }
1950 EXPORT_SYMBOL_GPL(spi_unregister_master);
1951
1952 int spi_master_suspend(struct spi_master *master)
1953 {
1954 int ret;
1955
1956 /* Basically no-ops for non-queued masters */
1957 if (!master->queued)
1958 return 0;
1959
1960 ret = spi_stop_queue(master);
1961 if (ret)
1962 dev_err(&master->dev, "queue stop failed\n");
1963
1964 return ret;
1965 }
1966 EXPORT_SYMBOL_GPL(spi_master_suspend);
1967
1968 int spi_master_resume(struct spi_master *master)
1969 {
1970 int ret;
1971
1972 if (!master->queued)
1973 return 0;
1974
1975 ret = spi_start_queue(master);
1976 if (ret)
1977 dev_err(&master->dev, "queue restart failed\n");
1978
1979 return ret;
1980 }
1981 EXPORT_SYMBOL_GPL(spi_master_resume);
1982
1983 static int __spi_master_match(struct device *dev, const void *data)
1984 {
1985 struct spi_master *m;
1986 const u16 *bus_num = data;
1987
1988 m = container_of(dev, struct spi_master, dev);
1989 return m->bus_num == *bus_num;
1990 }
1991
1992 /**
1993 * spi_busnum_to_master - look up master associated with bus_num
1994 * @bus_num: the master's bus number
1995 * Context: can sleep
1996 *
1997 * This call may be used with devices that are registered after
1998 * arch init time. It returns a refcounted pointer to the relevant
1999 * spi_master (which the caller must release), or NULL if there is
2000 * no such master registered.
2001 *
2002 * Return: the SPI master structure on success, else NULL.
2003 */
2004 struct spi_master *spi_busnum_to_master(u16 bus_num)
2005 {
2006 struct device *dev;
2007 struct spi_master *master = NULL;
2008
2009 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2010 __spi_master_match);
2011 if (dev)
2012 master = container_of(dev, struct spi_master, dev);
2013 /* reference got in class_find_device */
2014 return master;
2015 }
2016 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2017
2018 /*-------------------------------------------------------------------------*/
2019
2020 /* Core methods for SPI resource management */
2021
2022 /**
2023 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2024 * during the processing of a spi_message while using
2025 * spi_transfer_one
2026 * @spi: the spi device for which we allocate memory
2027 * @release: the release code to execute for this resource
2028 * @size: size to alloc and return
2029 * @gfp: GFP allocation flags
2030 *
2031 * Return: the pointer to the allocated data
2032 *
2033 * This may get enhanced in the future to allocate from a memory pool
2034 * of the @spi_device or @spi_master to avoid repeated allocations.
2035 */
2036 void *spi_res_alloc(struct spi_device *spi,
2037 spi_res_release_t release,
2038 size_t size, gfp_t gfp)
2039 {
2040 struct spi_res *sres;
2041
2042 sres = kzalloc(sizeof(*sres) + size, gfp);
2043 if (!sres)
2044 return NULL;
2045
2046 INIT_LIST_HEAD(&sres->entry);
2047 sres->release = release;
2048
2049 return sres->data;
2050 }
2051 EXPORT_SYMBOL_GPL(spi_res_alloc);
2052
2053 /**
2054 * spi_res_free - free an spi resource
2055 * @res: pointer to the custom data of a resource
2056 *
2057 */
2058 void spi_res_free(void *res)
2059 {
2060 struct spi_res *sres = container_of(res, struct spi_res, data);
2061
2062 if (!res)
2063 return;
2064
2065 WARN_ON(!list_empty(&sres->entry));
2066 kfree(sres);
2067 }
2068 EXPORT_SYMBOL_GPL(spi_res_free);
2069
2070 /**
2071 * spi_res_add - add a spi_res to the spi_message
2072 * @message: the spi message
2073 * @res: the spi_resource
2074 */
2075 void spi_res_add(struct spi_message *message, void *res)
2076 {
2077 struct spi_res *sres = container_of(res, struct spi_res, data);
2078
2079 WARN_ON(!list_empty(&sres->entry));
2080 list_add_tail(&sres->entry, &message->resources);
2081 }
2082 EXPORT_SYMBOL_GPL(spi_res_add);
2083
2084 /**
2085 * spi_res_release - release all spi resources for this message
2086 * @master: the @spi_master
2087 * @message: the @spi_message
2088 */
2089 void spi_res_release(struct spi_master *master,
2090 struct spi_message *message)
2091 {
2092 struct spi_res *res;
2093
2094 while (!list_empty(&message->resources)) {
2095 res = list_last_entry(&message->resources,
2096 struct spi_res, entry);
2097
2098 if (res->release)
2099 res->release(master, message, res->data);
2100
2101 list_del(&res->entry);
2102
2103 kfree(res);
2104 }
2105 }
2106 EXPORT_SYMBOL_GPL(spi_res_release);
2107
2108 /*-------------------------------------------------------------------------*/
2109
2110 /* Core methods for SPI master protocol drivers. Some of the
2111 * other core methods are currently defined as inline functions.
2112 */
2113
2114 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2115 {
2116 if (master->bits_per_word_mask) {
2117 /* Only 32 bits fit in the mask */
2118 if (bits_per_word > 32)
2119 return -EINVAL;
2120 if (!(master->bits_per_word_mask &
2121 SPI_BPW_MASK(bits_per_word)))
2122 return -EINVAL;
2123 }
2124
2125 return 0;
2126 }
2127
2128 /**
2129 * spi_setup - setup SPI mode and clock rate
2130 * @spi: the device whose settings are being modified
2131 * Context: can sleep, and no requests are queued to the device
2132 *
2133 * SPI protocol drivers may need to update the transfer mode if the
2134 * device doesn't work with its default. They may likewise need
2135 * to update clock rates or word sizes from initial values. This function
2136 * changes those settings, and must be called from a context that can sleep.
2137 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2138 * effect the next time the device is selected and data is transferred to
2139 * or from it. When this function returns, the spi device is deselected.
2140 *
2141 * Note that this call will fail if the protocol driver specifies an option
2142 * that the underlying controller or its driver does not support. For
2143 * example, not all hardware supports wire transfers using nine bit words,
2144 * LSB-first wire encoding, or active-high chipselects.
2145 *
2146 * Return: zero on success, else a negative error code.
2147 */
2148 int spi_setup(struct spi_device *spi)
2149 {
2150 unsigned bad_bits, ugly_bits;
2151 int status;
2152
2153 /* check mode to prevent that DUAL and QUAD set at the same time
2154 */
2155 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2156 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2157 dev_err(&spi->dev,
2158 "setup: can not select dual and quad at the same time\n");
2159 return -EINVAL;
2160 }
2161 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2162 */
2163 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2164 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2165 return -EINVAL;
2166 /* help drivers fail *cleanly* when they need options
2167 * that aren't supported with their current master
2168 */
2169 bad_bits = spi->mode & ~spi->master->mode_bits;
2170 ugly_bits = bad_bits &
2171 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2172 if (ugly_bits) {
2173 dev_warn(&spi->dev,
2174 "setup: ignoring unsupported mode bits %x\n",
2175 ugly_bits);
2176 spi->mode &= ~ugly_bits;
2177 bad_bits &= ~ugly_bits;
2178 }
2179 if (bad_bits) {
2180 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2181 bad_bits);
2182 return -EINVAL;
2183 }
2184
2185 if (!spi->bits_per_word)
2186 spi->bits_per_word = 8;
2187
2188 status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2189 if (status)
2190 return status;
2191
2192 if (!spi->max_speed_hz)
2193 spi->max_speed_hz = spi->master->max_speed_hz;
2194
2195 if (spi->master->setup)
2196 status = spi->master->setup(spi);
2197
2198 spi_set_cs(spi, false);
2199
2200 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2201 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2202 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2203 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2204 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2205 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2206 spi->bits_per_word, spi->max_speed_hz,
2207 status);
2208
2209 return status;
2210 }
2211 EXPORT_SYMBOL_GPL(spi_setup);
2212
2213 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2214 {
2215 struct spi_master *master = spi->master;
2216 struct spi_transfer *xfer;
2217 int w_size;
2218
2219 if (list_empty(&message->transfers))
2220 return -EINVAL;
2221
2222 /* Half-duplex links include original MicroWire, and ones with
2223 * only one data pin like SPI_3WIRE (switches direction) or where
2224 * either MOSI or MISO is missing. They can also be caused by
2225 * software limitations.
2226 */
2227 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2228 || (spi->mode & SPI_3WIRE)) {
2229 unsigned flags = master->flags;
2230
2231 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2232 if (xfer->rx_buf && xfer->tx_buf)
2233 return -EINVAL;
2234 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2235 return -EINVAL;
2236 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2237 return -EINVAL;
2238 }
2239 }
2240
2241 /**
2242 * Set transfer bits_per_word and max speed as spi device default if
2243 * it is not set for this transfer.
2244 * Set transfer tx_nbits and rx_nbits as single transfer default
2245 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2246 */
2247 message->frame_length = 0;
2248 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2249 message->frame_length += xfer->len;
2250 if (!xfer->bits_per_word)
2251 xfer->bits_per_word = spi->bits_per_word;
2252
2253 if (!xfer->speed_hz)
2254 xfer->speed_hz = spi->max_speed_hz;
2255 if (!xfer->speed_hz)
2256 xfer->speed_hz = master->max_speed_hz;
2257
2258 if (master->max_speed_hz &&
2259 xfer->speed_hz > master->max_speed_hz)
2260 xfer->speed_hz = master->max_speed_hz;
2261
2262 if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2263 return -EINVAL;
2264
2265 /*
2266 * SPI transfer length should be multiple of SPI word size
2267 * where SPI word size should be power-of-two multiple
2268 */
2269 if (xfer->bits_per_word <= 8)
2270 w_size = 1;
2271 else if (xfer->bits_per_word <= 16)
2272 w_size = 2;
2273 else
2274 w_size = 4;
2275
2276 /* No partial transfers accepted */
2277 if (xfer->len % w_size)
2278 return -EINVAL;
2279
2280 if (xfer->speed_hz && master->min_speed_hz &&
2281 xfer->speed_hz < master->min_speed_hz)
2282 return -EINVAL;
2283
2284 if (xfer->tx_buf && !xfer->tx_nbits)
2285 xfer->tx_nbits = SPI_NBITS_SINGLE;
2286 if (xfer->rx_buf && !xfer->rx_nbits)
2287 xfer->rx_nbits = SPI_NBITS_SINGLE;
2288 /* check transfer tx/rx_nbits:
2289 * 1. check the value matches one of single, dual and quad
2290 * 2. check tx/rx_nbits match the mode in spi_device
2291 */
2292 if (xfer->tx_buf) {
2293 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2294 xfer->tx_nbits != SPI_NBITS_DUAL &&
2295 xfer->tx_nbits != SPI_NBITS_QUAD)
2296 return -EINVAL;
2297 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2298 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2299 return -EINVAL;
2300 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2301 !(spi->mode & SPI_TX_QUAD))
2302 return -EINVAL;
2303 }
2304 /* check transfer rx_nbits */
2305 if (xfer->rx_buf) {
2306 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2307 xfer->rx_nbits != SPI_NBITS_DUAL &&
2308 xfer->rx_nbits != SPI_NBITS_QUAD)
2309 return -EINVAL;
2310 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2311 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2312 return -EINVAL;
2313 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2314 !(spi->mode & SPI_RX_QUAD))
2315 return -EINVAL;
2316 }
2317 }
2318
2319 message->status = -EINPROGRESS;
2320
2321 return 0;
2322 }
2323
2324 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2325 {
2326 struct spi_master *master = spi->master;
2327
2328 message->spi = spi;
2329
2330 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2331 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2332
2333 trace_spi_message_submit(message);
2334
2335 return master->transfer(spi, message);
2336 }
2337
2338 /**
2339 * spi_async - asynchronous SPI transfer
2340 * @spi: device with which data will be exchanged
2341 * @message: describes the data transfers, including completion callback
2342 * Context: any (irqs may be blocked, etc)
2343 *
2344 * This call may be used in_irq and other contexts which can't sleep,
2345 * as well as from task contexts which can sleep.
2346 *
2347 * The completion callback is invoked in a context which can't sleep.
2348 * Before that invocation, the value of message->status is undefined.
2349 * When the callback is issued, message->status holds either zero (to
2350 * indicate complete success) or a negative error code. After that
2351 * callback returns, the driver which issued the transfer request may
2352 * deallocate the associated memory; it's no longer in use by any SPI
2353 * core or controller driver code.
2354 *
2355 * Note that although all messages to a spi_device are handled in
2356 * FIFO order, messages may go to different devices in other orders.
2357 * Some device might be higher priority, or have various "hard" access
2358 * time requirements, for example.
2359 *
2360 * On detection of any fault during the transfer, processing of
2361 * the entire message is aborted, and the device is deselected.
2362 * Until returning from the associated message completion callback,
2363 * no other spi_message queued to that device will be processed.
2364 * (This rule applies equally to all the synchronous transfer calls,
2365 * which are wrappers around this core asynchronous primitive.)
2366 *
2367 * Return: zero on success, else a negative error code.
2368 */
2369 int spi_async(struct spi_device *spi, struct spi_message *message)
2370 {
2371 struct spi_master *master = spi->master;
2372 int ret;
2373 unsigned long flags;
2374
2375 ret = __spi_validate(spi, message);
2376 if (ret != 0)
2377 return ret;
2378
2379 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2380
2381 if (master->bus_lock_flag)
2382 ret = -EBUSY;
2383 else
2384 ret = __spi_async(spi, message);
2385
2386 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2387
2388 return ret;
2389 }
2390 EXPORT_SYMBOL_GPL(spi_async);
2391
2392 /**
2393 * spi_async_locked - version of spi_async with exclusive bus usage
2394 * @spi: device with which data will be exchanged
2395 * @message: describes the data transfers, including completion callback
2396 * Context: any (irqs may be blocked, etc)
2397 *
2398 * This call may be used in_irq and other contexts which can't sleep,
2399 * as well as from task contexts which can sleep.
2400 *
2401 * The completion callback is invoked in a context which can't sleep.
2402 * Before that invocation, the value of message->status is undefined.
2403 * When the callback is issued, message->status holds either zero (to
2404 * indicate complete success) or a negative error code. After that
2405 * callback returns, the driver which issued the transfer request may
2406 * deallocate the associated memory; it's no longer in use by any SPI
2407 * core or controller driver code.
2408 *
2409 * Note that although all messages to a spi_device are handled in
2410 * FIFO order, messages may go to different devices in other orders.
2411 * Some device might be higher priority, or have various "hard" access
2412 * time requirements, for example.
2413 *
2414 * On detection of any fault during the transfer, processing of
2415 * the entire message is aborted, and the device is deselected.
2416 * Until returning from the associated message completion callback,
2417 * no other spi_message queued to that device will be processed.
2418 * (This rule applies equally to all the synchronous transfer calls,
2419 * which are wrappers around this core asynchronous primitive.)
2420 *
2421 * Return: zero on success, else a negative error code.
2422 */
2423 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2424 {
2425 struct spi_master *master = spi->master;
2426 int ret;
2427 unsigned long flags;
2428
2429 ret = __spi_validate(spi, message);
2430 if (ret != 0)
2431 return ret;
2432
2433 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2434
2435 ret = __spi_async(spi, message);
2436
2437 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2438
2439 return ret;
2440
2441 }
2442 EXPORT_SYMBOL_GPL(spi_async_locked);
2443
2444
2445 /*-------------------------------------------------------------------------*/
2446
2447 /* Utility methods for SPI master protocol drivers, layered on
2448 * top of the core. Some other utility methods are defined as
2449 * inline functions.
2450 */
2451
2452 static void spi_complete(void *arg)
2453 {
2454 complete(arg);
2455 }
2456
2457 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2458 int bus_locked)
2459 {
2460 DECLARE_COMPLETION_ONSTACK(done);
2461 int status;
2462 struct spi_master *master = spi->master;
2463 unsigned long flags;
2464
2465 status = __spi_validate(spi, message);
2466 if (status != 0)
2467 return status;
2468
2469 message->complete = spi_complete;
2470 message->context = &done;
2471 message->spi = spi;
2472
2473 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2474 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2475
2476 if (!bus_locked)
2477 mutex_lock(&master->bus_lock_mutex);
2478
2479 /* If we're not using the legacy transfer method then we will
2480 * try to transfer in the calling context so special case.
2481 * This code would be less tricky if we could remove the
2482 * support for driver implemented message queues.
2483 */
2484 if (master->transfer == spi_queued_transfer) {
2485 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2486
2487 trace_spi_message_submit(message);
2488
2489 status = __spi_queued_transfer(spi, message, false);
2490
2491 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2492 } else {
2493 status = spi_async_locked(spi, message);
2494 }
2495
2496 if (!bus_locked)
2497 mutex_unlock(&master->bus_lock_mutex);
2498
2499 if (status == 0) {
2500 /* Push out the messages in the calling context if we
2501 * can.
2502 */
2503 if (master->transfer == spi_queued_transfer) {
2504 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2505 spi_sync_immediate);
2506 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2507 spi_sync_immediate);
2508 __spi_pump_messages(master, false);
2509 }
2510
2511 wait_for_completion(&done);
2512 status = message->status;
2513 }
2514 message->context = NULL;
2515 return status;
2516 }
2517
2518 /**
2519 * spi_sync - blocking/synchronous SPI data transfers
2520 * @spi: device with which data will be exchanged
2521 * @message: describes the data transfers
2522 * Context: can sleep
2523 *
2524 * This call may only be used from a context that may sleep. The sleep
2525 * is non-interruptible, and has no timeout. Low-overhead controller
2526 * drivers may DMA directly into and out of the message buffers.
2527 *
2528 * Note that the SPI device's chip select is active during the message,
2529 * and then is normally disabled between messages. Drivers for some
2530 * frequently-used devices may want to minimize costs of selecting a chip,
2531 * by leaving it selected in anticipation that the next message will go
2532 * to the same chip. (That may increase power usage.)
2533 *
2534 * Also, the caller is guaranteeing that the memory associated with the
2535 * message will not be freed before this call returns.
2536 *
2537 * Return: zero on success, else a negative error code.
2538 */
2539 int spi_sync(struct spi_device *spi, struct spi_message *message)
2540 {
2541 return __spi_sync(spi, message, 0);
2542 }
2543 EXPORT_SYMBOL_GPL(spi_sync);
2544
2545 /**
2546 * spi_sync_locked - version of spi_sync with exclusive bus usage
2547 * @spi: device with which data will be exchanged
2548 * @message: describes the data transfers
2549 * Context: can sleep
2550 *
2551 * This call may only be used from a context that may sleep. The sleep
2552 * is non-interruptible, and has no timeout. Low-overhead controller
2553 * drivers may DMA directly into and out of the message buffers.
2554 *
2555 * This call should be used by drivers that require exclusive access to the
2556 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2557 * be released by a spi_bus_unlock call when the exclusive access is over.
2558 *
2559 * Return: zero on success, else a negative error code.
2560 */
2561 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2562 {
2563 return __spi_sync(spi, message, 1);
2564 }
2565 EXPORT_SYMBOL_GPL(spi_sync_locked);
2566
2567 /**
2568 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2569 * @master: SPI bus master that should be locked for exclusive bus access
2570 * Context: can sleep
2571 *
2572 * This call may only be used from a context that may sleep. The sleep
2573 * is non-interruptible, and has no timeout.
2574 *
2575 * This call should be used by drivers that require exclusive access to the
2576 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2577 * exclusive access is over. Data transfer must be done by spi_sync_locked
2578 * and spi_async_locked calls when the SPI bus lock is held.
2579 *
2580 * Return: always zero.
2581 */
2582 int spi_bus_lock(struct spi_master *master)
2583 {
2584 unsigned long flags;
2585
2586 mutex_lock(&master->bus_lock_mutex);
2587
2588 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2589 master->bus_lock_flag = 1;
2590 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2591
2592 /* mutex remains locked until spi_bus_unlock is called */
2593
2594 return 0;
2595 }
2596 EXPORT_SYMBOL_GPL(spi_bus_lock);
2597
2598 /**
2599 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2600 * @master: SPI bus master that was locked for exclusive bus access
2601 * Context: can sleep
2602 *
2603 * This call may only be used from a context that may sleep. The sleep
2604 * is non-interruptible, and has no timeout.
2605 *
2606 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2607 * call.
2608 *
2609 * Return: always zero.
2610 */
2611 int spi_bus_unlock(struct spi_master *master)
2612 {
2613 master->bus_lock_flag = 0;
2614
2615 mutex_unlock(&master->bus_lock_mutex);
2616
2617 return 0;
2618 }
2619 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2620
2621 /* portable code must never pass more than 32 bytes */
2622 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
2623
2624 static u8 *buf;
2625
2626 /**
2627 * spi_write_then_read - SPI synchronous write followed by read
2628 * @spi: device with which data will be exchanged
2629 * @txbuf: data to be written (need not be dma-safe)
2630 * @n_tx: size of txbuf, in bytes
2631 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2632 * @n_rx: size of rxbuf, in bytes
2633 * Context: can sleep
2634 *
2635 * This performs a half duplex MicroWire style transaction with the
2636 * device, sending txbuf and then reading rxbuf. The return value
2637 * is zero for success, else a negative errno status code.
2638 * This call may only be used from a context that may sleep.
2639 *
2640 * Parameters to this routine are always copied using a small buffer;
2641 * portable code should never use this for more than 32 bytes.
2642 * Performance-sensitive or bulk transfer code should instead use
2643 * spi_{async,sync}() calls with dma-safe buffers.
2644 *
2645 * Return: zero on success, else a negative error code.
2646 */
2647 int spi_write_then_read(struct spi_device *spi,
2648 const void *txbuf, unsigned n_tx,
2649 void *rxbuf, unsigned n_rx)
2650 {
2651 static DEFINE_MUTEX(lock);
2652
2653 int status;
2654 struct spi_message message;
2655 struct spi_transfer x[2];
2656 u8 *local_buf;
2657
2658 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2659 * copying here, (as a pure convenience thing), but we can
2660 * keep heap costs out of the hot path unless someone else is
2661 * using the pre-allocated buffer or the transfer is too large.
2662 */
2663 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2664 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2665 GFP_KERNEL | GFP_DMA);
2666 if (!local_buf)
2667 return -ENOMEM;
2668 } else {
2669 local_buf = buf;
2670 }
2671
2672 spi_message_init(&message);
2673 memset(x, 0, sizeof(x));
2674 if (n_tx) {
2675 x[0].len = n_tx;
2676 spi_message_add_tail(&x[0], &message);
2677 }
2678 if (n_rx) {
2679 x[1].len = n_rx;
2680 spi_message_add_tail(&x[1], &message);
2681 }
2682
2683 memcpy(local_buf, txbuf, n_tx);
2684 x[0].tx_buf = local_buf;
2685 x[1].rx_buf = local_buf + n_tx;
2686
2687 /* do the i/o */
2688 status = spi_sync(spi, &message);
2689 if (status == 0)
2690 memcpy(rxbuf, x[1].rx_buf, n_rx);
2691
2692 if (x[0].tx_buf == buf)
2693 mutex_unlock(&lock);
2694 else
2695 kfree(local_buf);
2696
2697 return status;
2698 }
2699 EXPORT_SYMBOL_GPL(spi_write_then_read);
2700
2701 /*-------------------------------------------------------------------------*/
2702
2703 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
2704 static int __spi_of_device_match(struct device *dev, void *data)
2705 {
2706 return dev->of_node == data;
2707 }
2708
2709 /* must call put_device() when done with returned spi_device device */
2710 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
2711 {
2712 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
2713 __spi_of_device_match);
2714 return dev ? to_spi_device(dev) : NULL;
2715 }
2716
2717 static int __spi_of_master_match(struct device *dev, const void *data)
2718 {
2719 return dev->of_node == data;
2720 }
2721
2722 /* the spi masters are not using spi_bus, so we find it with another way */
2723 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
2724 {
2725 struct device *dev;
2726
2727 dev = class_find_device(&spi_master_class, NULL, node,
2728 __spi_of_master_match);
2729 if (!dev)
2730 return NULL;
2731
2732 /* reference got in class_find_device */
2733 return container_of(dev, struct spi_master, dev);
2734 }
2735
2736 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
2737 void *arg)
2738 {
2739 struct of_reconfig_data *rd = arg;
2740 struct spi_master *master;
2741 struct spi_device *spi;
2742
2743 switch (of_reconfig_get_state_change(action, arg)) {
2744 case OF_RECONFIG_CHANGE_ADD:
2745 master = of_find_spi_master_by_node(rd->dn->parent);
2746 if (master == NULL)
2747 return NOTIFY_OK; /* not for us */
2748
2749 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
2750 put_device(&master->dev);
2751 return NOTIFY_OK;
2752 }
2753
2754 spi = of_register_spi_device(master, rd->dn);
2755 put_device(&master->dev);
2756
2757 if (IS_ERR(spi)) {
2758 pr_err("%s: failed to create for '%s'\n",
2759 __func__, rd->dn->full_name);
2760 return notifier_from_errno(PTR_ERR(spi));
2761 }
2762 break;
2763
2764 case OF_RECONFIG_CHANGE_REMOVE:
2765 /* already depopulated? */
2766 if (!of_node_check_flag(rd->dn, OF_POPULATED))
2767 return NOTIFY_OK;
2768
2769 /* find our device by node */
2770 spi = of_find_spi_device_by_node(rd->dn);
2771 if (spi == NULL)
2772 return NOTIFY_OK; /* no? not meant for us */
2773
2774 /* unregister takes one ref away */
2775 spi_unregister_device(spi);
2776
2777 /* and put the reference of the find */
2778 put_device(&spi->dev);
2779 break;
2780 }
2781
2782 return NOTIFY_OK;
2783 }
2784
2785 static struct notifier_block spi_of_notifier = {
2786 .notifier_call = of_spi_notify,
2787 };
2788 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2789 extern struct notifier_block spi_of_notifier;
2790 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2791
2792 static int __init spi_init(void)
2793 {
2794 int status;
2795
2796 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2797 if (!buf) {
2798 status = -ENOMEM;
2799 goto err0;
2800 }
2801
2802 status = bus_register(&spi_bus_type);
2803 if (status < 0)
2804 goto err1;
2805
2806 status = class_register(&spi_master_class);
2807 if (status < 0)
2808 goto err2;
2809
2810 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2811 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
2812
2813 return 0;
2814
2815 err2:
2816 bus_unregister(&spi_bus_type);
2817 err1:
2818 kfree(buf);
2819 buf = NULL;
2820 err0:
2821 return status;
2822 }
2823
2824 /* board_info is normally registered in arch_initcall(),
2825 * but even essential drivers wait till later
2826 *
2827 * REVISIT only boardinfo really needs static linking. the rest (device and
2828 * driver registration) _could_ be dynamically linked (modular) ... costs
2829 * include needing to have boardinfo data structures be much more public.
2830 */
2831 postcore_initcall(spi_init);
2832