]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/spi/spi.c
spi: Add missing pm_runtime_put_noidle() after failed get
[mirror_ubuntu-bionic-kernel.git] / drivers / spi / spi.c
1 /*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/property.h>
35 #include <linux/export.h>
36 #include <linux/sched/rt.h>
37 #include <uapi/linux/sched/types.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/ioport.h>
41 #include <linux/acpi.h>
42 #include <linux/highmem.h>
43 #include <linux/idr.h>
44 #include <linux/platform_data/x86/apple.h>
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/spi.h>
48
49 static DEFINE_IDR(spi_master_idr);
50
51 static void spidev_release(struct device *dev)
52 {
53 struct spi_device *spi = to_spi_device(dev);
54
55 /* spi controllers may cleanup for released devices */
56 if (spi->controller->cleanup)
57 spi->controller->cleanup(spi);
58
59 spi_controller_put(spi->controller);
60 kfree(spi);
61 }
62
63 static ssize_t
64 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
65 {
66 const struct spi_device *spi = to_spi_device(dev);
67 int len;
68
69 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
70 if (len != -ENODEV)
71 return len;
72
73 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
74 }
75 static DEVICE_ATTR_RO(modalias);
76
77 #define SPI_STATISTICS_ATTRS(field, file) \
78 static ssize_t spi_controller_##field##_show(struct device *dev, \
79 struct device_attribute *attr, \
80 char *buf) \
81 { \
82 struct spi_controller *ctlr = container_of(dev, \
83 struct spi_controller, dev); \
84 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
85 } \
86 static struct device_attribute dev_attr_spi_controller_##field = { \
87 .attr = { .name = file, .mode = 0444 }, \
88 .show = spi_controller_##field##_show, \
89 }; \
90 static ssize_t spi_device_##field##_show(struct device *dev, \
91 struct device_attribute *attr, \
92 char *buf) \
93 { \
94 struct spi_device *spi = to_spi_device(dev); \
95 return spi_statistics_##field##_show(&spi->statistics, buf); \
96 } \
97 static struct device_attribute dev_attr_spi_device_##field = { \
98 .attr = { .name = file, .mode = 0444 }, \
99 .show = spi_device_##field##_show, \
100 }
101
102 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
103 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
104 char *buf) \
105 { \
106 unsigned long flags; \
107 ssize_t len; \
108 spin_lock_irqsave(&stat->lock, flags); \
109 len = sprintf(buf, format_string, stat->field); \
110 spin_unlock_irqrestore(&stat->lock, flags); \
111 return len; \
112 } \
113 SPI_STATISTICS_ATTRS(name, file)
114
115 #define SPI_STATISTICS_SHOW(field, format_string) \
116 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
117 field, format_string)
118
119 SPI_STATISTICS_SHOW(messages, "%lu");
120 SPI_STATISTICS_SHOW(transfers, "%lu");
121 SPI_STATISTICS_SHOW(errors, "%lu");
122 SPI_STATISTICS_SHOW(timedout, "%lu");
123
124 SPI_STATISTICS_SHOW(spi_sync, "%lu");
125 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
126 SPI_STATISTICS_SHOW(spi_async, "%lu");
127
128 SPI_STATISTICS_SHOW(bytes, "%llu");
129 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
130 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
131
132 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
133 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
134 "transfer_bytes_histo_" number, \
135 transfer_bytes_histo[index], "%lu")
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
147 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
148 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
149 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
150 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
151 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
152 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
153
154 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
155
156 static struct attribute *spi_dev_attrs[] = {
157 &dev_attr_modalias.attr,
158 NULL,
159 };
160
161 static const struct attribute_group spi_dev_group = {
162 .attrs = spi_dev_attrs,
163 };
164
165 static struct attribute *spi_device_statistics_attrs[] = {
166 &dev_attr_spi_device_messages.attr,
167 &dev_attr_spi_device_transfers.attr,
168 &dev_attr_spi_device_errors.attr,
169 &dev_attr_spi_device_timedout.attr,
170 &dev_attr_spi_device_spi_sync.attr,
171 &dev_attr_spi_device_spi_sync_immediate.attr,
172 &dev_attr_spi_device_spi_async.attr,
173 &dev_attr_spi_device_bytes.attr,
174 &dev_attr_spi_device_bytes_rx.attr,
175 &dev_attr_spi_device_bytes_tx.attr,
176 &dev_attr_spi_device_transfer_bytes_histo0.attr,
177 &dev_attr_spi_device_transfer_bytes_histo1.attr,
178 &dev_attr_spi_device_transfer_bytes_histo2.attr,
179 &dev_attr_spi_device_transfer_bytes_histo3.attr,
180 &dev_attr_spi_device_transfer_bytes_histo4.attr,
181 &dev_attr_spi_device_transfer_bytes_histo5.attr,
182 &dev_attr_spi_device_transfer_bytes_histo6.attr,
183 &dev_attr_spi_device_transfer_bytes_histo7.attr,
184 &dev_attr_spi_device_transfer_bytes_histo8.attr,
185 &dev_attr_spi_device_transfer_bytes_histo9.attr,
186 &dev_attr_spi_device_transfer_bytes_histo10.attr,
187 &dev_attr_spi_device_transfer_bytes_histo11.attr,
188 &dev_attr_spi_device_transfer_bytes_histo12.attr,
189 &dev_attr_spi_device_transfer_bytes_histo13.attr,
190 &dev_attr_spi_device_transfer_bytes_histo14.attr,
191 &dev_attr_spi_device_transfer_bytes_histo15.attr,
192 &dev_attr_spi_device_transfer_bytes_histo16.attr,
193 &dev_attr_spi_device_transfers_split_maxsize.attr,
194 NULL,
195 };
196
197 static const struct attribute_group spi_device_statistics_group = {
198 .name = "statistics",
199 .attrs = spi_device_statistics_attrs,
200 };
201
202 static const struct attribute_group *spi_dev_groups[] = {
203 &spi_dev_group,
204 &spi_device_statistics_group,
205 NULL,
206 };
207
208 static struct attribute *spi_controller_statistics_attrs[] = {
209 &dev_attr_spi_controller_messages.attr,
210 &dev_attr_spi_controller_transfers.attr,
211 &dev_attr_spi_controller_errors.attr,
212 &dev_attr_spi_controller_timedout.attr,
213 &dev_attr_spi_controller_spi_sync.attr,
214 &dev_attr_spi_controller_spi_sync_immediate.attr,
215 &dev_attr_spi_controller_spi_async.attr,
216 &dev_attr_spi_controller_bytes.attr,
217 &dev_attr_spi_controller_bytes_rx.attr,
218 &dev_attr_spi_controller_bytes_tx.attr,
219 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
220 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
221 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
222 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
223 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
224 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
225 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
226 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
227 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
228 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
229 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
230 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
231 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
232 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
233 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
234 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
235 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
236 &dev_attr_spi_controller_transfers_split_maxsize.attr,
237 NULL,
238 };
239
240 static const struct attribute_group spi_controller_statistics_group = {
241 .name = "statistics",
242 .attrs = spi_controller_statistics_attrs,
243 };
244
245 static const struct attribute_group *spi_master_groups[] = {
246 &spi_controller_statistics_group,
247 NULL,
248 };
249
250 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
251 struct spi_transfer *xfer,
252 struct spi_controller *ctlr)
253 {
254 unsigned long flags;
255 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
256
257 if (l2len < 0)
258 l2len = 0;
259
260 spin_lock_irqsave(&stats->lock, flags);
261
262 stats->transfers++;
263 stats->transfer_bytes_histo[l2len]++;
264
265 stats->bytes += xfer->len;
266 if ((xfer->tx_buf) &&
267 (xfer->tx_buf != ctlr->dummy_tx))
268 stats->bytes_tx += xfer->len;
269 if ((xfer->rx_buf) &&
270 (xfer->rx_buf != ctlr->dummy_rx))
271 stats->bytes_rx += xfer->len;
272
273 spin_unlock_irqrestore(&stats->lock, flags);
274 }
275 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
276
277 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
278 * and the sysfs version makes coldplug work too.
279 */
280
281 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
282 const struct spi_device *sdev)
283 {
284 while (id->name[0]) {
285 if (!strcmp(sdev->modalias, id->name))
286 return id;
287 id++;
288 }
289 return NULL;
290 }
291
292 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
293 {
294 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
295
296 return spi_match_id(sdrv->id_table, sdev);
297 }
298 EXPORT_SYMBOL_GPL(spi_get_device_id);
299
300 static int spi_match_device(struct device *dev, struct device_driver *drv)
301 {
302 const struct spi_device *spi = to_spi_device(dev);
303 const struct spi_driver *sdrv = to_spi_driver(drv);
304
305 /* Attempt an OF style match */
306 if (of_driver_match_device(dev, drv))
307 return 1;
308
309 /* Then try ACPI */
310 if (acpi_driver_match_device(dev, drv))
311 return 1;
312
313 if (sdrv->id_table)
314 return !!spi_match_id(sdrv->id_table, spi);
315
316 return strcmp(spi->modalias, drv->name) == 0;
317 }
318
319 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
320 {
321 const struct spi_device *spi = to_spi_device(dev);
322 int rc;
323
324 rc = acpi_device_uevent_modalias(dev, env);
325 if (rc != -ENODEV)
326 return rc;
327
328 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
329 }
330
331 struct bus_type spi_bus_type = {
332 .name = "spi",
333 .dev_groups = spi_dev_groups,
334 .match = spi_match_device,
335 .uevent = spi_uevent,
336 };
337 EXPORT_SYMBOL_GPL(spi_bus_type);
338
339
340 static int spi_drv_probe(struct device *dev)
341 {
342 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
343 struct spi_device *spi = to_spi_device(dev);
344 int ret;
345
346 ret = of_clk_set_defaults(dev->of_node, false);
347 if (ret)
348 return ret;
349
350 if (dev->of_node) {
351 spi->irq = of_irq_get(dev->of_node, 0);
352 if (spi->irq == -EPROBE_DEFER)
353 return -EPROBE_DEFER;
354 if (spi->irq < 0)
355 spi->irq = 0;
356 }
357
358 ret = dev_pm_domain_attach(dev, true);
359 if (ret != -EPROBE_DEFER) {
360 ret = sdrv->probe(spi);
361 if (ret)
362 dev_pm_domain_detach(dev, true);
363 }
364
365 return ret;
366 }
367
368 static int spi_drv_remove(struct device *dev)
369 {
370 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
371 int ret;
372
373 ret = sdrv->remove(to_spi_device(dev));
374 dev_pm_domain_detach(dev, true);
375
376 return ret;
377 }
378
379 static void spi_drv_shutdown(struct device *dev)
380 {
381 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
382
383 sdrv->shutdown(to_spi_device(dev));
384 }
385
386 /**
387 * __spi_register_driver - register a SPI driver
388 * @owner: owner module of the driver to register
389 * @sdrv: the driver to register
390 * Context: can sleep
391 *
392 * Return: zero on success, else a negative error code.
393 */
394 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
395 {
396 sdrv->driver.owner = owner;
397 sdrv->driver.bus = &spi_bus_type;
398 if (sdrv->probe)
399 sdrv->driver.probe = spi_drv_probe;
400 if (sdrv->remove)
401 sdrv->driver.remove = spi_drv_remove;
402 if (sdrv->shutdown)
403 sdrv->driver.shutdown = spi_drv_shutdown;
404 return driver_register(&sdrv->driver);
405 }
406 EXPORT_SYMBOL_GPL(__spi_register_driver);
407
408 /*-------------------------------------------------------------------------*/
409
410 /* SPI devices should normally not be created by SPI device drivers; that
411 * would make them board-specific. Similarly with SPI controller drivers.
412 * Device registration normally goes into like arch/.../mach.../board-YYY.c
413 * with other readonly (flashable) information about mainboard devices.
414 */
415
416 struct boardinfo {
417 struct list_head list;
418 struct spi_board_info board_info;
419 };
420
421 static LIST_HEAD(board_list);
422 static LIST_HEAD(spi_controller_list);
423
424 /*
425 * Used to protect add/del opertion for board_info list and
426 * spi_controller list, and their matching process
427 * also used to protect object of type struct idr
428 */
429 static DEFINE_MUTEX(board_lock);
430
431 /**
432 * spi_alloc_device - Allocate a new SPI device
433 * @ctlr: Controller to which device is connected
434 * Context: can sleep
435 *
436 * Allows a driver to allocate and initialize a spi_device without
437 * registering it immediately. This allows a driver to directly
438 * fill the spi_device with device parameters before calling
439 * spi_add_device() on it.
440 *
441 * Caller is responsible to call spi_add_device() on the returned
442 * spi_device structure to add it to the SPI controller. If the caller
443 * needs to discard the spi_device without adding it, then it should
444 * call spi_dev_put() on it.
445 *
446 * Return: a pointer to the new device, or NULL.
447 */
448 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
449 {
450 struct spi_device *spi;
451
452 if (!spi_controller_get(ctlr))
453 return NULL;
454
455 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
456 if (!spi) {
457 spi_controller_put(ctlr);
458 return NULL;
459 }
460
461 spi->master = spi->controller = ctlr;
462 spi->dev.parent = &ctlr->dev;
463 spi->dev.bus = &spi_bus_type;
464 spi->dev.release = spidev_release;
465 spi->cs_gpio = -ENOENT;
466
467 spin_lock_init(&spi->statistics.lock);
468
469 device_initialize(&spi->dev);
470 return spi;
471 }
472 EXPORT_SYMBOL_GPL(spi_alloc_device);
473
474 static void spi_dev_set_name(struct spi_device *spi)
475 {
476 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
477
478 if (adev) {
479 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
480 return;
481 }
482
483 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
484 spi->chip_select);
485 }
486
487 static int spi_dev_check(struct device *dev, void *data)
488 {
489 struct spi_device *spi = to_spi_device(dev);
490 struct spi_device *new_spi = data;
491
492 if (spi->controller == new_spi->controller &&
493 spi->chip_select == new_spi->chip_select)
494 return -EBUSY;
495 return 0;
496 }
497
498 /**
499 * spi_add_device - Add spi_device allocated with spi_alloc_device
500 * @spi: spi_device to register
501 *
502 * Companion function to spi_alloc_device. Devices allocated with
503 * spi_alloc_device can be added onto the spi bus with this function.
504 *
505 * Return: 0 on success; negative errno on failure
506 */
507 int spi_add_device(struct spi_device *spi)
508 {
509 static DEFINE_MUTEX(spi_add_lock);
510 struct spi_controller *ctlr = spi->controller;
511 struct device *dev = ctlr->dev.parent;
512 int status;
513
514 /* Chipselects are numbered 0..max; validate. */
515 if (spi->chip_select >= ctlr->num_chipselect) {
516 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
517 ctlr->num_chipselect);
518 return -EINVAL;
519 }
520
521 /* Set the bus ID string */
522 spi_dev_set_name(spi);
523
524 /* We need to make sure there's no other device with this
525 * chipselect **BEFORE** we call setup(), else we'll trash
526 * its configuration. Lock against concurrent add() calls.
527 */
528 mutex_lock(&spi_add_lock);
529
530 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
531 if (status) {
532 dev_err(dev, "chipselect %d already in use\n",
533 spi->chip_select);
534 goto done;
535 }
536
537 if (ctlr->cs_gpios)
538 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
539
540 /* Drivers may modify this initial i/o setup, but will
541 * normally rely on the device being setup. Devices
542 * using SPI_CS_HIGH can't coexist well otherwise...
543 */
544 status = spi_setup(spi);
545 if (status < 0) {
546 dev_err(dev, "can't setup %s, status %d\n",
547 dev_name(&spi->dev), status);
548 goto done;
549 }
550
551 /* Device may be bound to an active driver when this returns */
552 status = device_add(&spi->dev);
553 if (status < 0)
554 dev_err(dev, "can't add %s, status %d\n",
555 dev_name(&spi->dev), status);
556 else
557 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
558
559 done:
560 mutex_unlock(&spi_add_lock);
561 return status;
562 }
563 EXPORT_SYMBOL_GPL(spi_add_device);
564
565 /**
566 * spi_new_device - instantiate one new SPI device
567 * @ctlr: Controller to which device is connected
568 * @chip: Describes the SPI device
569 * Context: can sleep
570 *
571 * On typical mainboards, this is purely internal; and it's not needed
572 * after board init creates the hard-wired devices. Some development
573 * platforms may not be able to use spi_register_board_info though, and
574 * this is exported so that for example a USB or parport based adapter
575 * driver could add devices (which it would learn about out-of-band).
576 *
577 * Return: the new device, or NULL.
578 */
579 struct spi_device *spi_new_device(struct spi_controller *ctlr,
580 struct spi_board_info *chip)
581 {
582 struct spi_device *proxy;
583 int status;
584
585 /* NOTE: caller did any chip->bus_num checks necessary.
586 *
587 * Also, unless we change the return value convention to use
588 * error-or-pointer (not NULL-or-pointer), troubleshootability
589 * suggests syslogged diagnostics are best here (ugh).
590 */
591
592 proxy = spi_alloc_device(ctlr);
593 if (!proxy)
594 return NULL;
595
596 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
597
598 proxy->chip_select = chip->chip_select;
599 proxy->max_speed_hz = chip->max_speed_hz;
600 proxy->mode = chip->mode;
601 proxy->irq = chip->irq;
602 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
603 proxy->dev.platform_data = (void *) chip->platform_data;
604 proxy->controller_data = chip->controller_data;
605 proxy->controller_state = NULL;
606
607 if (chip->properties) {
608 status = device_add_properties(&proxy->dev, chip->properties);
609 if (status) {
610 dev_err(&ctlr->dev,
611 "failed to add properties to '%s': %d\n",
612 chip->modalias, status);
613 goto err_dev_put;
614 }
615 }
616
617 status = spi_add_device(proxy);
618 if (status < 0)
619 goto err_remove_props;
620
621 return proxy;
622
623 err_remove_props:
624 if (chip->properties)
625 device_remove_properties(&proxy->dev);
626 err_dev_put:
627 spi_dev_put(proxy);
628 return NULL;
629 }
630 EXPORT_SYMBOL_GPL(spi_new_device);
631
632 /**
633 * spi_unregister_device - unregister a single SPI device
634 * @spi: spi_device to unregister
635 *
636 * Start making the passed SPI device vanish. Normally this would be handled
637 * by spi_unregister_controller().
638 */
639 void spi_unregister_device(struct spi_device *spi)
640 {
641 if (!spi)
642 return;
643
644 if (spi->dev.of_node) {
645 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
646 of_node_put(spi->dev.of_node);
647 }
648 if (ACPI_COMPANION(&spi->dev))
649 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
650 device_unregister(&spi->dev);
651 }
652 EXPORT_SYMBOL_GPL(spi_unregister_device);
653
654 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
655 struct spi_board_info *bi)
656 {
657 struct spi_device *dev;
658
659 if (ctlr->bus_num != bi->bus_num)
660 return;
661
662 dev = spi_new_device(ctlr, bi);
663 if (!dev)
664 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
665 bi->modalias);
666 }
667
668 /**
669 * spi_register_board_info - register SPI devices for a given board
670 * @info: array of chip descriptors
671 * @n: how many descriptors are provided
672 * Context: can sleep
673 *
674 * Board-specific early init code calls this (probably during arch_initcall)
675 * with segments of the SPI device table. Any device nodes are created later,
676 * after the relevant parent SPI controller (bus_num) is defined. We keep
677 * this table of devices forever, so that reloading a controller driver will
678 * not make Linux forget about these hard-wired devices.
679 *
680 * Other code can also call this, e.g. a particular add-on board might provide
681 * SPI devices through its expansion connector, so code initializing that board
682 * would naturally declare its SPI devices.
683 *
684 * The board info passed can safely be __initdata ... but be careful of
685 * any embedded pointers (platform_data, etc), they're copied as-is.
686 * Device properties are deep-copied though.
687 *
688 * Return: zero on success, else a negative error code.
689 */
690 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
691 {
692 struct boardinfo *bi;
693 int i;
694
695 if (!n)
696 return 0;
697
698 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
699 if (!bi)
700 return -ENOMEM;
701
702 for (i = 0; i < n; i++, bi++, info++) {
703 struct spi_controller *ctlr;
704
705 memcpy(&bi->board_info, info, sizeof(*info));
706 if (info->properties) {
707 bi->board_info.properties =
708 property_entries_dup(info->properties);
709 if (IS_ERR(bi->board_info.properties))
710 return PTR_ERR(bi->board_info.properties);
711 }
712
713 mutex_lock(&board_lock);
714 list_add_tail(&bi->list, &board_list);
715 list_for_each_entry(ctlr, &spi_controller_list, list)
716 spi_match_controller_to_boardinfo(ctlr,
717 &bi->board_info);
718 mutex_unlock(&board_lock);
719 }
720
721 return 0;
722 }
723
724 /*-------------------------------------------------------------------------*/
725
726 static void spi_set_cs(struct spi_device *spi, bool enable)
727 {
728 if (spi->mode & SPI_CS_HIGH)
729 enable = !enable;
730
731 if (gpio_is_valid(spi->cs_gpio)) {
732 gpio_set_value(spi->cs_gpio, !enable);
733 /* Some SPI masters need both GPIO CS & slave_select */
734 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
735 spi->controller->set_cs)
736 spi->controller->set_cs(spi, !enable);
737 } else if (spi->controller->set_cs) {
738 spi->controller->set_cs(spi, !enable);
739 }
740 }
741
742 #ifdef CONFIG_HAS_DMA
743 static int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
744 struct sg_table *sgt, void *buf, size_t len,
745 enum dma_data_direction dir)
746 {
747 const bool vmalloced_buf = is_vmalloc_addr(buf);
748 unsigned int max_seg_size = dma_get_max_seg_size(dev);
749 #ifdef CONFIG_HIGHMEM
750 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
751 (unsigned long)buf < (PKMAP_BASE +
752 (LAST_PKMAP * PAGE_SIZE)));
753 #else
754 const bool kmap_buf = false;
755 #endif
756 int desc_len;
757 int sgs;
758 struct page *vm_page;
759 struct scatterlist *sg;
760 void *sg_buf;
761 size_t min;
762 int i, ret;
763
764 if (vmalloced_buf || kmap_buf) {
765 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
766 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
767 } else if (virt_addr_valid(buf)) {
768 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
769 sgs = DIV_ROUND_UP(len, desc_len);
770 } else {
771 return -EINVAL;
772 }
773
774 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
775 if (ret != 0)
776 return ret;
777
778 sg = &sgt->sgl[0];
779 for (i = 0; i < sgs; i++) {
780
781 if (vmalloced_buf || kmap_buf) {
782 /*
783 * Next scatterlist entry size is the minimum between
784 * the desc_len and the remaining buffer length that
785 * fits in a page.
786 */
787 min = min_t(size_t, desc_len,
788 min_t(size_t, len,
789 PAGE_SIZE - offset_in_page(buf)));
790 if (vmalloced_buf)
791 vm_page = vmalloc_to_page(buf);
792 else
793 vm_page = kmap_to_page(buf);
794 if (!vm_page) {
795 sg_free_table(sgt);
796 return -ENOMEM;
797 }
798 sg_set_page(sg, vm_page,
799 min, offset_in_page(buf));
800 } else {
801 min = min_t(size_t, len, desc_len);
802 sg_buf = buf;
803 sg_set_buf(sg, sg_buf, min);
804 }
805
806 buf += min;
807 len -= min;
808 sg = sg_next(sg);
809 }
810
811 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
812 if (!ret)
813 ret = -ENOMEM;
814 if (ret < 0) {
815 sg_free_table(sgt);
816 return ret;
817 }
818
819 sgt->nents = ret;
820
821 return 0;
822 }
823
824 static void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
825 struct sg_table *sgt, enum dma_data_direction dir)
826 {
827 if (sgt->orig_nents) {
828 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
829 sg_free_table(sgt);
830 }
831 }
832
833 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
834 {
835 struct device *tx_dev, *rx_dev;
836 struct spi_transfer *xfer;
837 int ret;
838
839 if (!ctlr->can_dma)
840 return 0;
841
842 if (ctlr->dma_tx)
843 tx_dev = ctlr->dma_tx->device->dev;
844 else
845 tx_dev = ctlr->dev.parent;
846
847 if (ctlr->dma_rx)
848 rx_dev = ctlr->dma_rx->device->dev;
849 else
850 rx_dev = ctlr->dev.parent;
851
852 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
853 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
854 continue;
855
856 if (xfer->tx_buf != NULL) {
857 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
858 (void *)xfer->tx_buf, xfer->len,
859 DMA_TO_DEVICE);
860 if (ret != 0)
861 return ret;
862 }
863
864 if (xfer->rx_buf != NULL) {
865 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
866 xfer->rx_buf, xfer->len,
867 DMA_FROM_DEVICE);
868 if (ret != 0) {
869 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
870 DMA_TO_DEVICE);
871 return ret;
872 }
873 }
874 }
875
876 ctlr->cur_msg_mapped = true;
877
878 return 0;
879 }
880
881 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
882 {
883 struct spi_transfer *xfer;
884 struct device *tx_dev, *rx_dev;
885
886 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
887 return 0;
888
889 if (ctlr->dma_tx)
890 tx_dev = ctlr->dma_tx->device->dev;
891 else
892 tx_dev = ctlr->dev.parent;
893
894 if (ctlr->dma_rx)
895 rx_dev = ctlr->dma_rx->device->dev;
896 else
897 rx_dev = ctlr->dev.parent;
898
899 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
900 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
901 continue;
902
903 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
904 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
905 }
906
907 return 0;
908 }
909 #else /* !CONFIG_HAS_DMA */
910 static inline int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
911 struct sg_table *sgt, void *buf, size_t len,
912 enum dma_data_direction dir)
913 {
914 return -EINVAL;
915 }
916
917 static inline void spi_unmap_buf(struct spi_controller *ctlr,
918 struct device *dev, struct sg_table *sgt,
919 enum dma_data_direction dir)
920 {
921 }
922
923 static inline int __spi_map_msg(struct spi_controller *ctlr,
924 struct spi_message *msg)
925 {
926 return 0;
927 }
928
929 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
930 struct spi_message *msg)
931 {
932 return 0;
933 }
934 #endif /* !CONFIG_HAS_DMA */
935
936 static inline int spi_unmap_msg(struct spi_controller *ctlr,
937 struct spi_message *msg)
938 {
939 struct spi_transfer *xfer;
940
941 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
942 /*
943 * Restore the original value of tx_buf or rx_buf if they are
944 * NULL.
945 */
946 if (xfer->tx_buf == ctlr->dummy_tx)
947 xfer->tx_buf = NULL;
948 if (xfer->rx_buf == ctlr->dummy_rx)
949 xfer->rx_buf = NULL;
950 }
951
952 return __spi_unmap_msg(ctlr, msg);
953 }
954
955 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
956 {
957 struct spi_transfer *xfer;
958 void *tmp;
959 unsigned int max_tx, max_rx;
960
961 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
962 max_tx = 0;
963 max_rx = 0;
964
965 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
966 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
967 !xfer->tx_buf)
968 max_tx = max(xfer->len, max_tx);
969 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
970 !xfer->rx_buf)
971 max_rx = max(xfer->len, max_rx);
972 }
973
974 if (max_tx) {
975 tmp = krealloc(ctlr->dummy_tx, max_tx,
976 GFP_KERNEL | GFP_DMA);
977 if (!tmp)
978 return -ENOMEM;
979 ctlr->dummy_tx = tmp;
980 memset(tmp, 0, max_tx);
981 }
982
983 if (max_rx) {
984 tmp = krealloc(ctlr->dummy_rx, max_rx,
985 GFP_KERNEL | GFP_DMA);
986 if (!tmp)
987 return -ENOMEM;
988 ctlr->dummy_rx = tmp;
989 }
990
991 if (max_tx || max_rx) {
992 list_for_each_entry(xfer, &msg->transfers,
993 transfer_list) {
994 if (!xfer->tx_buf)
995 xfer->tx_buf = ctlr->dummy_tx;
996 if (!xfer->rx_buf)
997 xfer->rx_buf = ctlr->dummy_rx;
998 }
999 }
1000 }
1001
1002 return __spi_map_msg(ctlr, msg);
1003 }
1004
1005 /*
1006 * spi_transfer_one_message - Default implementation of transfer_one_message()
1007 *
1008 * This is a standard implementation of transfer_one_message() for
1009 * drivers which implement a transfer_one() operation. It provides
1010 * standard handling of delays and chip select management.
1011 */
1012 static int spi_transfer_one_message(struct spi_controller *ctlr,
1013 struct spi_message *msg)
1014 {
1015 struct spi_transfer *xfer;
1016 bool keep_cs = false;
1017 int ret = 0;
1018 unsigned long long ms = 1;
1019 struct spi_statistics *statm = &ctlr->statistics;
1020 struct spi_statistics *stats = &msg->spi->statistics;
1021
1022 spi_set_cs(msg->spi, true);
1023
1024 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1025 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1026
1027 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1028 trace_spi_transfer_start(msg, xfer);
1029
1030 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1031 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1032
1033 if (xfer->tx_buf || xfer->rx_buf) {
1034 reinit_completion(&ctlr->xfer_completion);
1035
1036 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1037 if (ret < 0) {
1038 SPI_STATISTICS_INCREMENT_FIELD(statm,
1039 errors);
1040 SPI_STATISTICS_INCREMENT_FIELD(stats,
1041 errors);
1042 dev_err(&msg->spi->dev,
1043 "SPI transfer failed: %d\n", ret);
1044 goto out;
1045 }
1046
1047 if (ret > 0) {
1048 ret = 0;
1049 ms = 8LL * 1000LL * xfer->len;
1050 do_div(ms, xfer->speed_hz);
1051 ms += ms + 200; /* some tolerance */
1052
1053 if (ms > UINT_MAX)
1054 ms = UINT_MAX;
1055
1056 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1057 msecs_to_jiffies(ms));
1058 }
1059
1060 if (ms == 0) {
1061 SPI_STATISTICS_INCREMENT_FIELD(statm,
1062 timedout);
1063 SPI_STATISTICS_INCREMENT_FIELD(stats,
1064 timedout);
1065 dev_err(&msg->spi->dev,
1066 "SPI transfer timed out\n");
1067 msg->status = -ETIMEDOUT;
1068 }
1069 } else {
1070 if (xfer->len)
1071 dev_err(&msg->spi->dev,
1072 "Bufferless transfer has length %u\n",
1073 xfer->len);
1074 }
1075
1076 trace_spi_transfer_stop(msg, xfer);
1077
1078 if (msg->status != -EINPROGRESS)
1079 goto out;
1080
1081 if (xfer->delay_usecs) {
1082 u16 us = xfer->delay_usecs;
1083
1084 if (us <= 10)
1085 udelay(us);
1086 else
1087 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1088 }
1089
1090 if (xfer->cs_change) {
1091 if (list_is_last(&xfer->transfer_list,
1092 &msg->transfers)) {
1093 keep_cs = true;
1094 } else {
1095 spi_set_cs(msg->spi, false);
1096 udelay(10);
1097 spi_set_cs(msg->spi, true);
1098 }
1099 }
1100
1101 msg->actual_length += xfer->len;
1102 }
1103
1104 out:
1105 if (ret != 0 || !keep_cs)
1106 spi_set_cs(msg->spi, false);
1107
1108 if (msg->status == -EINPROGRESS)
1109 msg->status = ret;
1110
1111 if (msg->status && ctlr->handle_err)
1112 ctlr->handle_err(ctlr, msg);
1113
1114 spi_res_release(ctlr, msg);
1115
1116 spi_finalize_current_message(ctlr);
1117
1118 return ret;
1119 }
1120
1121 /**
1122 * spi_finalize_current_transfer - report completion of a transfer
1123 * @ctlr: the controller reporting completion
1124 *
1125 * Called by SPI drivers using the core transfer_one_message()
1126 * implementation to notify it that the current interrupt driven
1127 * transfer has finished and the next one may be scheduled.
1128 */
1129 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1130 {
1131 complete(&ctlr->xfer_completion);
1132 }
1133 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1134
1135 /**
1136 * __spi_pump_messages - function which processes spi message queue
1137 * @ctlr: controller to process queue for
1138 * @in_kthread: true if we are in the context of the message pump thread
1139 *
1140 * This function checks if there is any spi message in the queue that
1141 * needs processing and if so call out to the driver to initialize hardware
1142 * and transfer each message.
1143 *
1144 * Note that it is called both from the kthread itself and also from
1145 * inside spi_sync(); the queue extraction handling at the top of the
1146 * function should deal with this safely.
1147 */
1148 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1149 {
1150 unsigned long flags;
1151 bool was_busy = false;
1152 int ret;
1153
1154 /* Lock queue */
1155 spin_lock_irqsave(&ctlr->queue_lock, flags);
1156
1157 /* Make sure we are not already running a message */
1158 if (ctlr->cur_msg) {
1159 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1160 return;
1161 }
1162
1163 /* If another context is idling the device then defer */
1164 if (ctlr->idling) {
1165 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1166 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1167 return;
1168 }
1169
1170 /* Check if the queue is idle */
1171 if (list_empty(&ctlr->queue) || !ctlr->running) {
1172 if (!ctlr->busy) {
1173 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1174 return;
1175 }
1176
1177 /* Only do teardown in the thread */
1178 if (!in_kthread) {
1179 kthread_queue_work(&ctlr->kworker,
1180 &ctlr->pump_messages);
1181 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1182 return;
1183 }
1184
1185 ctlr->busy = false;
1186 ctlr->idling = true;
1187 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1188
1189 kfree(ctlr->dummy_rx);
1190 ctlr->dummy_rx = NULL;
1191 kfree(ctlr->dummy_tx);
1192 ctlr->dummy_tx = NULL;
1193 if (ctlr->unprepare_transfer_hardware &&
1194 ctlr->unprepare_transfer_hardware(ctlr))
1195 dev_err(&ctlr->dev,
1196 "failed to unprepare transfer hardware\n");
1197 if (ctlr->auto_runtime_pm) {
1198 pm_runtime_mark_last_busy(ctlr->dev.parent);
1199 pm_runtime_put_autosuspend(ctlr->dev.parent);
1200 }
1201 trace_spi_controller_idle(ctlr);
1202
1203 spin_lock_irqsave(&ctlr->queue_lock, flags);
1204 ctlr->idling = false;
1205 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1206 return;
1207 }
1208
1209 /* Extract head of queue */
1210 ctlr->cur_msg =
1211 list_first_entry(&ctlr->queue, struct spi_message, queue);
1212
1213 list_del_init(&ctlr->cur_msg->queue);
1214 if (ctlr->busy)
1215 was_busy = true;
1216 else
1217 ctlr->busy = true;
1218 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1219
1220 mutex_lock(&ctlr->io_mutex);
1221
1222 if (!was_busy && ctlr->auto_runtime_pm) {
1223 ret = pm_runtime_get_sync(ctlr->dev.parent);
1224 if (ret < 0) {
1225 pm_runtime_put_noidle(ctlr->dev.parent);
1226 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1227 ret);
1228 mutex_unlock(&ctlr->io_mutex);
1229 return;
1230 }
1231 }
1232
1233 if (!was_busy)
1234 trace_spi_controller_busy(ctlr);
1235
1236 if (!was_busy && ctlr->prepare_transfer_hardware) {
1237 ret = ctlr->prepare_transfer_hardware(ctlr);
1238 if (ret) {
1239 dev_err(&ctlr->dev,
1240 "failed to prepare transfer hardware\n");
1241
1242 if (ctlr->auto_runtime_pm)
1243 pm_runtime_put(ctlr->dev.parent);
1244 mutex_unlock(&ctlr->io_mutex);
1245 return;
1246 }
1247 }
1248
1249 trace_spi_message_start(ctlr->cur_msg);
1250
1251 if (ctlr->prepare_message) {
1252 ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1253 if (ret) {
1254 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1255 ret);
1256 ctlr->cur_msg->status = ret;
1257 spi_finalize_current_message(ctlr);
1258 goto out;
1259 }
1260 ctlr->cur_msg_prepared = true;
1261 }
1262
1263 ret = spi_map_msg(ctlr, ctlr->cur_msg);
1264 if (ret) {
1265 ctlr->cur_msg->status = ret;
1266 spi_finalize_current_message(ctlr);
1267 goto out;
1268 }
1269
1270 ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1271 if (ret) {
1272 dev_err(&ctlr->dev,
1273 "failed to transfer one message from queue\n");
1274 goto out;
1275 }
1276
1277 out:
1278 mutex_unlock(&ctlr->io_mutex);
1279
1280 /* Prod the scheduler in case transfer_one() was busy waiting */
1281 if (!ret)
1282 cond_resched();
1283 }
1284
1285 /**
1286 * spi_pump_messages - kthread work function which processes spi message queue
1287 * @work: pointer to kthread work struct contained in the controller struct
1288 */
1289 static void spi_pump_messages(struct kthread_work *work)
1290 {
1291 struct spi_controller *ctlr =
1292 container_of(work, struct spi_controller, pump_messages);
1293
1294 __spi_pump_messages(ctlr, true);
1295 }
1296
1297 static int spi_init_queue(struct spi_controller *ctlr)
1298 {
1299 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1300
1301 ctlr->running = false;
1302 ctlr->busy = false;
1303
1304 kthread_init_worker(&ctlr->kworker);
1305 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1306 "%s", dev_name(&ctlr->dev));
1307 if (IS_ERR(ctlr->kworker_task)) {
1308 dev_err(&ctlr->dev, "failed to create message pump task\n");
1309 return PTR_ERR(ctlr->kworker_task);
1310 }
1311 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1312
1313 /*
1314 * Controller config will indicate if this controller should run the
1315 * message pump with high (realtime) priority to reduce the transfer
1316 * latency on the bus by minimising the delay between a transfer
1317 * request and the scheduling of the message pump thread. Without this
1318 * setting the message pump thread will remain at default priority.
1319 */
1320 if (ctlr->rt) {
1321 dev_info(&ctlr->dev,
1322 "will run message pump with realtime priority\n");
1323 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1324 }
1325
1326 return 0;
1327 }
1328
1329 /**
1330 * spi_get_next_queued_message() - called by driver to check for queued
1331 * messages
1332 * @ctlr: the controller to check for queued messages
1333 *
1334 * If there are more messages in the queue, the next message is returned from
1335 * this call.
1336 *
1337 * Return: the next message in the queue, else NULL if the queue is empty.
1338 */
1339 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1340 {
1341 struct spi_message *next;
1342 unsigned long flags;
1343
1344 /* get a pointer to the next message, if any */
1345 spin_lock_irqsave(&ctlr->queue_lock, flags);
1346 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1347 queue);
1348 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1349
1350 return next;
1351 }
1352 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1353
1354 /**
1355 * spi_finalize_current_message() - the current message is complete
1356 * @ctlr: the controller to return the message to
1357 *
1358 * Called by the driver to notify the core that the message in the front of the
1359 * queue is complete and can be removed from the queue.
1360 */
1361 void spi_finalize_current_message(struct spi_controller *ctlr)
1362 {
1363 struct spi_message *mesg;
1364 unsigned long flags;
1365 int ret;
1366
1367 spin_lock_irqsave(&ctlr->queue_lock, flags);
1368 mesg = ctlr->cur_msg;
1369 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1370
1371 spi_unmap_msg(ctlr, mesg);
1372
1373 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1374 ret = ctlr->unprepare_message(ctlr, mesg);
1375 if (ret) {
1376 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1377 ret);
1378 }
1379 }
1380
1381 spin_lock_irqsave(&ctlr->queue_lock, flags);
1382 ctlr->cur_msg = NULL;
1383 ctlr->cur_msg_prepared = false;
1384 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1385 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1386
1387 trace_spi_message_done(mesg);
1388
1389 mesg->state = NULL;
1390 if (mesg->complete)
1391 mesg->complete(mesg->context);
1392 }
1393 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1394
1395 static int spi_start_queue(struct spi_controller *ctlr)
1396 {
1397 unsigned long flags;
1398
1399 spin_lock_irqsave(&ctlr->queue_lock, flags);
1400
1401 if (ctlr->running || ctlr->busy) {
1402 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1403 return -EBUSY;
1404 }
1405
1406 ctlr->running = true;
1407 ctlr->cur_msg = NULL;
1408 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1409
1410 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1411
1412 return 0;
1413 }
1414
1415 static int spi_stop_queue(struct spi_controller *ctlr)
1416 {
1417 unsigned long flags;
1418 unsigned limit = 500;
1419 int ret = 0;
1420
1421 spin_lock_irqsave(&ctlr->queue_lock, flags);
1422
1423 /*
1424 * This is a bit lame, but is optimized for the common execution path.
1425 * A wait_queue on the ctlr->busy could be used, but then the common
1426 * execution path (pump_messages) would be required to call wake_up or
1427 * friends on every SPI message. Do this instead.
1428 */
1429 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1430 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1431 usleep_range(10000, 11000);
1432 spin_lock_irqsave(&ctlr->queue_lock, flags);
1433 }
1434
1435 if (!list_empty(&ctlr->queue) || ctlr->busy)
1436 ret = -EBUSY;
1437 else
1438 ctlr->running = false;
1439
1440 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1441
1442 if (ret) {
1443 dev_warn(&ctlr->dev, "could not stop message queue\n");
1444 return ret;
1445 }
1446 return ret;
1447 }
1448
1449 static int spi_destroy_queue(struct spi_controller *ctlr)
1450 {
1451 int ret;
1452
1453 ret = spi_stop_queue(ctlr);
1454
1455 /*
1456 * kthread_flush_worker will block until all work is done.
1457 * If the reason that stop_queue timed out is that the work will never
1458 * finish, then it does no good to call flush/stop thread, so
1459 * return anyway.
1460 */
1461 if (ret) {
1462 dev_err(&ctlr->dev, "problem destroying queue\n");
1463 return ret;
1464 }
1465
1466 kthread_flush_worker(&ctlr->kworker);
1467 kthread_stop(ctlr->kworker_task);
1468
1469 return 0;
1470 }
1471
1472 static int __spi_queued_transfer(struct spi_device *spi,
1473 struct spi_message *msg,
1474 bool need_pump)
1475 {
1476 struct spi_controller *ctlr = spi->controller;
1477 unsigned long flags;
1478
1479 spin_lock_irqsave(&ctlr->queue_lock, flags);
1480
1481 if (!ctlr->running) {
1482 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1483 return -ESHUTDOWN;
1484 }
1485 msg->actual_length = 0;
1486 msg->status = -EINPROGRESS;
1487
1488 list_add_tail(&msg->queue, &ctlr->queue);
1489 if (!ctlr->busy && need_pump)
1490 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1491
1492 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1493 return 0;
1494 }
1495
1496 /**
1497 * spi_queued_transfer - transfer function for queued transfers
1498 * @spi: spi device which is requesting transfer
1499 * @msg: spi message which is to handled is queued to driver queue
1500 *
1501 * Return: zero on success, else a negative error code.
1502 */
1503 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1504 {
1505 return __spi_queued_transfer(spi, msg, true);
1506 }
1507
1508 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1509 {
1510 int ret;
1511
1512 ctlr->transfer = spi_queued_transfer;
1513 if (!ctlr->transfer_one_message)
1514 ctlr->transfer_one_message = spi_transfer_one_message;
1515
1516 /* Initialize and start queue */
1517 ret = spi_init_queue(ctlr);
1518 if (ret) {
1519 dev_err(&ctlr->dev, "problem initializing queue\n");
1520 goto err_init_queue;
1521 }
1522 ctlr->queued = true;
1523 ret = spi_start_queue(ctlr);
1524 if (ret) {
1525 dev_err(&ctlr->dev, "problem starting queue\n");
1526 goto err_start_queue;
1527 }
1528
1529 return 0;
1530
1531 err_start_queue:
1532 spi_destroy_queue(ctlr);
1533 err_init_queue:
1534 return ret;
1535 }
1536
1537 /*-------------------------------------------------------------------------*/
1538
1539 #if defined(CONFIG_OF)
1540 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1541 struct device_node *nc)
1542 {
1543 u32 value;
1544 int rc;
1545
1546 /* Mode (clock phase/polarity/etc.) */
1547 if (of_property_read_bool(nc, "spi-cpha"))
1548 spi->mode |= SPI_CPHA;
1549 if (of_property_read_bool(nc, "spi-cpol"))
1550 spi->mode |= SPI_CPOL;
1551 if (of_property_read_bool(nc, "spi-cs-high"))
1552 spi->mode |= SPI_CS_HIGH;
1553 if (of_property_read_bool(nc, "spi-3wire"))
1554 spi->mode |= SPI_3WIRE;
1555 if (of_property_read_bool(nc, "spi-lsb-first"))
1556 spi->mode |= SPI_LSB_FIRST;
1557
1558 /* Device DUAL/QUAD mode */
1559 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1560 switch (value) {
1561 case 1:
1562 break;
1563 case 2:
1564 spi->mode |= SPI_TX_DUAL;
1565 break;
1566 case 4:
1567 spi->mode |= SPI_TX_QUAD;
1568 break;
1569 default:
1570 dev_warn(&ctlr->dev,
1571 "spi-tx-bus-width %d not supported\n",
1572 value);
1573 break;
1574 }
1575 }
1576
1577 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1578 switch (value) {
1579 case 1:
1580 break;
1581 case 2:
1582 spi->mode |= SPI_RX_DUAL;
1583 break;
1584 case 4:
1585 spi->mode |= SPI_RX_QUAD;
1586 break;
1587 default:
1588 dev_warn(&ctlr->dev,
1589 "spi-rx-bus-width %d not supported\n",
1590 value);
1591 break;
1592 }
1593 }
1594
1595 if (spi_controller_is_slave(ctlr)) {
1596 if (strcmp(nc->name, "slave")) {
1597 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1598 nc);
1599 return -EINVAL;
1600 }
1601 return 0;
1602 }
1603
1604 /* Device address */
1605 rc = of_property_read_u32(nc, "reg", &value);
1606 if (rc) {
1607 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1608 nc, rc);
1609 return rc;
1610 }
1611 spi->chip_select = value;
1612
1613 /* Device speed */
1614 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1615 if (rc) {
1616 dev_err(&ctlr->dev,
1617 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1618 return rc;
1619 }
1620 spi->max_speed_hz = value;
1621
1622 return 0;
1623 }
1624
1625 static struct spi_device *
1626 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1627 {
1628 struct spi_device *spi;
1629 int rc;
1630
1631 /* Alloc an spi_device */
1632 spi = spi_alloc_device(ctlr);
1633 if (!spi) {
1634 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1635 rc = -ENOMEM;
1636 goto err_out;
1637 }
1638
1639 /* Select device driver */
1640 rc = of_modalias_node(nc, spi->modalias,
1641 sizeof(spi->modalias));
1642 if (rc < 0) {
1643 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1644 goto err_out;
1645 }
1646
1647 rc = of_spi_parse_dt(ctlr, spi, nc);
1648 if (rc)
1649 goto err_out;
1650
1651 /* Store a pointer to the node in the device structure */
1652 of_node_get(nc);
1653 spi->dev.of_node = nc;
1654
1655 /* Register the new device */
1656 rc = spi_add_device(spi);
1657 if (rc) {
1658 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1659 goto err_of_node_put;
1660 }
1661
1662 return spi;
1663
1664 err_of_node_put:
1665 of_node_put(nc);
1666 err_out:
1667 spi_dev_put(spi);
1668 return ERR_PTR(rc);
1669 }
1670
1671 /**
1672 * of_register_spi_devices() - Register child devices onto the SPI bus
1673 * @ctlr: Pointer to spi_controller device
1674 *
1675 * Registers an spi_device for each child node of controller node which
1676 * represents a valid SPI slave.
1677 */
1678 static void of_register_spi_devices(struct spi_controller *ctlr)
1679 {
1680 struct spi_device *spi;
1681 struct device_node *nc;
1682
1683 if (!ctlr->dev.of_node)
1684 return;
1685
1686 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1687 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1688 continue;
1689 spi = of_register_spi_device(ctlr, nc);
1690 if (IS_ERR(spi)) {
1691 dev_warn(&ctlr->dev,
1692 "Failed to create SPI device for %pOF\n", nc);
1693 of_node_clear_flag(nc, OF_POPULATED);
1694 }
1695 }
1696 }
1697 #else
1698 static void of_register_spi_devices(struct spi_controller *ctlr) { }
1699 #endif
1700
1701 #ifdef CONFIG_ACPI
1702 static void acpi_spi_parse_apple_properties(struct spi_device *spi)
1703 {
1704 struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
1705 const union acpi_object *obj;
1706
1707 if (!x86_apple_machine)
1708 return;
1709
1710 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1711 && obj->buffer.length >= 4)
1712 spi->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1713
1714 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1715 && obj->buffer.length == 8)
1716 spi->bits_per_word = *(u64 *)obj->buffer.pointer;
1717
1718 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1719 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1720 spi->mode |= SPI_LSB_FIRST;
1721
1722 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1723 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1724 spi->mode |= SPI_CPOL;
1725
1726 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1727 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1728 spi->mode |= SPI_CPHA;
1729 }
1730
1731 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1732 {
1733 struct spi_device *spi = data;
1734 struct spi_controller *ctlr = spi->controller;
1735
1736 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1737 struct acpi_resource_spi_serialbus *sb;
1738
1739 sb = &ares->data.spi_serial_bus;
1740 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1741 /*
1742 * ACPI DeviceSelection numbering is handled by the
1743 * host controller driver in Windows and can vary
1744 * from driver to driver. In Linux we always expect
1745 * 0 .. max - 1 so we need to ask the driver to
1746 * translate between the two schemes.
1747 */
1748 if (ctlr->fw_translate_cs) {
1749 int cs = ctlr->fw_translate_cs(ctlr,
1750 sb->device_selection);
1751 if (cs < 0)
1752 return cs;
1753 spi->chip_select = cs;
1754 } else {
1755 spi->chip_select = sb->device_selection;
1756 }
1757
1758 spi->max_speed_hz = sb->connection_speed;
1759
1760 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1761 spi->mode |= SPI_CPHA;
1762 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1763 spi->mode |= SPI_CPOL;
1764 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1765 spi->mode |= SPI_CS_HIGH;
1766 }
1767 } else if (spi->irq < 0) {
1768 struct resource r;
1769
1770 if (acpi_dev_resource_interrupt(ares, 0, &r))
1771 spi->irq = r.start;
1772 }
1773
1774 /* Always tell the ACPI core to skip this resource */
1775 return 1;
1776 }
1777
1778 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1779 struct acpi_device *adev)
1780 {
1781 struct list_head resource_list;
1782 struct spi_device *spi;
1783 int ret;
1784
1785 if (acpi_bus_get_status(adev) || !adev->status.present ||
1786 acpi_device_enumerated(adev))
1787 return AE_OK;
1788
1789 spi = spi_alloc_device(ctlr);
1790 if (!spi) {
1791 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1792 dev_name(&adev->dev));
1793 return AE_NO_MEMORY;
1794 }
1795
1796 ACPI_COMPANION_SET(&spi->dev, adev);
1797 spi->irq = -1;
1798
1799 INIT_LIST_HEAD(&resource_list);
1800 ret = acpi_dev_get_resources(adev, &resource_list,
1801 acpi_spi_add_resource, spi);
1802 acpi_dev_free_resource_list(&resource_list);
1803
1804 acpi_spi_parse_apple_properties(spi);
1805
1806 if (ret < 0 || !spi->max_speed_hz) {
1807 spi_dev_put(spi);
1808 return AE_OK;
1809 }
1810
1811 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1812 sizeof(spi->modalias));
1813
1814 if (spi->irq < 0)
1815 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1816
1817 acpi_device_set_enumerated(adev);
1818
1819 adev->power.flags.ignore_parent = true;
1820 if (spi_add_device(spi)) {
1821 adev->power.flags.ignore_parent = false;
1822 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1823 dev_name(&adev->dev));
1824 spi_dev_put(spi);
1825 }
1826
1827 return AE_OK;
1828 }
1829
1830 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1831 void *data, void **return_value)
1832 {
1833 struct spi_controller *ctlr = data;
1834 struct acpi_device *adev;
1835
1836 if (acpi_bus_get_device(handle, &adev))
1837 return AE_OK;
1838
1839 return acpi_register_spi_device(ctlr, adev);
1840 }
1841
1842 static void acpi_register_spi_devices(struct spi_controller *ctlr)
1843 {
1844 acpi_status status;
1845 acpi_handle handle;
1846
1847 handle = ACPI_HANDLE(ctlr->dev.parent);
1848 if (!handle)
1849 return;
1850
1851 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1852 acpi_spi_add_device, NULL, ctlr, NULL);
1853 if (ACPI_FAILURE(status))
1854 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1855 }
1856 #else
1857 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1858 #endif /* CONFIG_ACPI */
1859
1860 static void spi_controller_release(struct device *dev)
1861 {
1862 struct spi_controller *ctlr;
1863
1864 ctlr = container_of(dev, struct spi_controller, dev);
1865 kfree(ctlr);
1866 }
1867
1868 static struct class spi_master_class = {
1869 .name = "spi_master",
1870 .owner = THIS_MODULE,
1871 .dev_release = spi_controller_release,
1872 .dev_groups = spi_master_groups,
1873 };
1874
1875 #ifdef CONFIG_SPI_SLAVE
1876 /**
1877 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1878 * controller
1879 * @spi: device used for the current transfer
1880 */
1881 int spi_slave_abort(struct spi_device *spi)
1882 {
1883 struct spi_controller *ctlr = spi->controller;
1884
1885 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1886 return ctlr->slave_abort(ctlr);
1887
1888 return -ENOTSUPP;
1889 }
1890 EXPORT_SYMBOL_GPL(spi_slave_abort);
1891
1892 static int match_true(struct device *dev, void *data)
1893 {
1894 return 1;
1895 }
1896
1897 static ssize_t spi_slave_show(struct device *dev,
1898 struct device_attribute *attr, char *buf)
1899 {
1900 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1901 dev);
1902 struct device *child;
1903
1904 child = device_find_child(&ctlr->dev, NULL, match_true);
1905 return sprintf(buf, "%s\n",
1906 child ? to_spi_device(child)->modalias : NULL);
1907 }
1908
1909 static ssize_t spi_slave_store(struct device *dev,
1910 struct device_attribute *attr, const char *buf,
1911 size_t count)
1912 {
1913 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1914 dev);
1915 struct spi_device *spi;
1916 struct device *child;
1917 char name[32];
1918 int rc;
1919
1920 rc = sscanf(buf, "%31s", name);
1921 if (rc != 1 || !name[0])
1922 return -EINVAL;
1923
1924 child = device_find_child(&ctlr->dev, NULL, match_true);
1925 if (child) {
1926 /* Remove registered slave */
1927 device_unregister(child);
1928 put_device(child);
1929 }
1930
1931 if (strcmp(name, "(null)")) {
1932 /* Register new slave */
1933 spi = spi_alloc_device(ctlr);
1934 if (!spi)
1935 return -ENOMEM;
1936
1937 strlcpy(spi->modalias, name, sizeof(spi->modalias));
1938
1939 rc = spi_add_device(spi);
1940 if (rc) {
1941 spi_dev_put(spi);
1942 return rc;
1943 }
1944 }
1945
1946 return count;
1947 }
1948
1949 static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
1950
1951 static struct attribute *spi_slave_attrs[] = {
1952 &dev_attr_slave.attr,
1953 NULL,
1954 };
1955
1956 static const struct attribute_group spi_slave_group = {
1957 .attrs = spi_slave_attrs,
1958 };
1959
1960 static const struct attribute_group *spi_slave_groups[] = {
1961 &spi_controller_statistics_group,
1962 &spi_slave_group,
1963 NULL,
1964 };
1965
1966 static struct class spi_slave_class = {
1967 .name = "spi_slave",
1968 .owner = THIS_MODULE,
1969 .dev_release = spi_controller_release,
1970 .dev_groups = spi_slave_groups,
1971 };
1972 #else
1973 extern struct class spi_slave_class; /* dummy */
1974 #endif
1975
1976 /**
1977 * __spi_alloc_controller - allocate an SPI master or slave controller
1978 * @dev: the controller, possibly using the platform_bus
1979 * @size: how much zeroed driver-private data to allocate; the pointer to this
1980 * memory is in the driver_data field of the returned device,
1981 * accessible with spi_controller_get_devdata().
1982 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
1983 * slave (true) controller
1984 * Context: can sleep
1985 *
1986 * This call is used only by SPI controller drivers, which are the
1987 * only ones directly touching chip registers. It's how they allocate
1988 * an spi_controller structure, prior to calling spi_register_controller().
1989 *
1990 * This must be called from context that can sleep.
1991 *
1992 * The caller is responsible for assigning the bus number and initializing the
1993 * controller's methods before calling spi_register_controller(); and (after
1994 * errors adding the device) calling spi_controller_put() to prevent a memory
1995 * leak.
1996 *
1997 * Return: the SPI controller structure on success, else NULL.
1998 */
1999 struct spi_controller *__spi_alloc_controller(struct device *dev,
2000 unsigned int size, bool slave)
2001 {
2002 struct spi_controller *ctlr;
2003
2004 if (!dev)
2005 return NULL;
2006
2007 ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2008 if (!ctlr)
2009 return NULL;
2010
2011 device_initialize(&ctlr->dev);
2012 ctlr->bus_num = -1;
2013 ctlr->num_chipselect = 1;
2014 ctlr->slave = slave;
2015 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2016 ctlr->dev.class = &spi_slave_class;
2017 else
2018 ctlr->dev.class = &spi_master_class;
2019 ctlr->dev.parent = dev;
2020 pm_suspend_ignore_children(&ctlr->dev, true);
2021 spi_controller_set_devdata(ctlr, &ctlr[1]);
2022
2023 return ctlr;
2024 }
2025 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2026
2027 #ifdef CONFIG_OF
2028 static int of_spi_register_master(struct spi_controller *ctlr)
2029 {
2030 int nb, i, *cs;
2031 struct device_node *np = ctlr->dev.of_node;
2032
2033 if (!np)
2034 return 0;
2035
2036 nb = of_gpio_named_count(np, "cs-gpios");
2037 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2038
2039 /* Return error only for an incorrectly formed cs-gpios property */
2040 if (nb == 0 || nb == -ENOENT)
2041 return 0;
2042 else if (nb < 0)
2043 return nb;
2044
2045 cs = devm_kzalloc(&ctlr->dev, sizeof(int) * ctlr->num_chipselect,
2046 GFP_KERNEL);
2047 ctlr->cs_gpios = cs;
2048
2049 if (!ctlr->cs_gpios)
2050 return -ENOMEM;
2051
2052 for (i = 0; i < ctlr->num_chipselect; i++)
2053 cs[i] = -ENOENT;
2054
2055 for (i = 0; i < nb; i++)
2056 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2057
2058 return 0;
2059 }
2060 #else
2061 static int of_spi_register_master(struct spi_controller *ctlr)
2062 {
2063 return 0;
2064 }
2065 #endif
2066
2067 /**
2068 * spi_register_controller - register SPI master or slave controller
2069 * @ctlr: initialized master, originally from spi_alloc_master() or
2070 * spi_alloc_slave()
2071 * Context: can sleep
2072 *
2073 * SPI controllers connect to their drivers using some non-SPI bus,
2074 * such as the platform bus. The final stage of probe() in that code
2075 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2076 *
2077 * SPI controllers use board specific (often SOC specific) bus numbers,
2078 * and board-specific addressing for SPI devices combines those numbers
2079 * with chip select numbers. Since SPI does not directly support dynamic
2080 * device identification, boards need configuration tables telling which
2081 * chip is at which address.
2082 *
2083 * This must be called from context that can sleep. It returns zero on
2084 * success, else a negative error code (dropping the controller's refcount).
2085 * After a successful return, the caller is responsible for calling
2086 * spi_unregister_controller().
2087 *
2088 * Return: zero on success, else a negative error code.
2089 */
2090 int spi_register_controller(struct spi_controller *ctlr)
2091 {
2092 struct device *dev = ctlr->dev.parent;
2093 struct boardinfo *bi;
2094 int status = -ENODEV;
2095 int id, first_dynamic;
2096
2097 if (!dev)
2098 return -ENODEV;
2099
2100 if (!spi_controller_is_slave(ctlr)) {
2101 status = of_spi_register_master(ctlr);
2102 if (status)
2103 return status;
2104 }
2105
2106 /* even if it's just one always-selected device, there must
2107 * be at least one chipselect
2108 */
2109 if (ctlr->num_chipselect == 0)
2110 return -EINVAL;
2111 /* allocate dynamic bus number using Linux idr */
2112 if ((ctlr->bus_num < 0) && ctlr->dev.of_node) {
2113 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2114 if (id >= 0) {
2115 ctlr->bus_num = id;
2116 mutex_lock(&board_lock);
2117 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2118 ctlr->bus_num + 1, GFP_KERNEL);
2119 mutex_unlock(&board_lock);
2120 if (WARN(id < 0, "couldn't get idr"))
2121 return id == -ENOSPC ? -EBUSY : id;
2122 }
2123 }
2124 if (ctlr->bus_num < 0) {
2125 first_dynamic = of_alias_get_highest_id("spi");
2126 if (first_dynamic < 0)
2127 first_dynamic = 0;
2128 else
2129 first_dynamic++;
2130
2131 mutex_lock(&board_lock);
2132 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2133 0, GFP_KERNEL);
2134 mutex_unlock(&board_lock);
2135 if (WARN(id < 0, "couldn't get idr"))
2136 return id;
2137 ctlr->bus_num = id;
2138 }
2139 INIT_LIST_HEAD(&ctlr->queue);
2140 spin_lock_init(&ctlr->queue_lock);
2141 spin_lock_init(&ctlr->bus_lock_spinlock);
2142 mutex_init(&ctlr->bus_lock_mutex);
2143 mutex_init(&ctlr->io_mutex);
2144 ctlr->bus_lock_flag = 0;
2145 init_completion(&ctlr->xfer_completion);
2146 if (!ctlr->max_dma_len)
2147 ctlr->max_dma_len = INT_MAX;
2148
2149 /* register the device, then userspace will see it.
2150 * registration fails if the bus ID is in use.
2151 */
2152 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2153 status = device_add(&ctlr->dev);
2154 if (status < 0) {
2155 /* free bus id */
2156 mutex_lock(&board_lock);
2157 idr_remove(&spi_master_idr, ctlr->bus_num);
2158 mutex_unlock(&board_lock);
2159 goto done;
2160 }
2161 dev_dbg(dev, "registered %s %s\n",
2162 spi_controller_is_slave(ctlr) ? "slave" : "master",
2163 dev_name(&ctlr->dev));
2164
2165 /* If we're using a queued driver, start the queue */
2166 if (ctlr->transfer)
2167 dev_info(dev, "controller is unqueued, this is deprecated\n");
2168 else {
2169 status = spi_controller_initialize_queue(ctlr);
2170 if (status) {
2171 device_del(&ctlr->dev);
2172 /* free bus id */
2173 mutex_lock(&board_lock);
2174 idr_remove(&spi_master_idr, ctlr->bus_num);
2175 mutex_unlock(&board_lock);
2176 goto done;
2177 }
2178 }
2179 /* add statistics */
2180 spin_lock_init(&ctlr->statistics.lock);
2181
2182 mutex_lock(&board_lock);
2183 list_add_tail(&ctlr->list, &spi_controller_list);
2184 list_for_each_entry(bi, &board_list, list)
2185 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2186 mutex_unlock(&board_lock);
2187
2188 /* Register devices from the device tree and ACPI */
2189 of_register_spi_devices(ctlr);
2190 acpi_register_spi_devices(ctlr);
2191 done:
2192 return status;
2193 }
2194 EXPORT_SYMBOL_GPL(spi_register_controller);
2195
2196 static void devm_spi_unregister(struct device *dev, void *res)
2197 {
2198 spi_unregister_controller(*(struct spi_controller **)res);
2199 }
2200
2201 /**
2202 * devm_spi_register_controller - register managed SPI master or slave
2203 * controller
2204 * @dev: device managing SPI controller
2205 * @ctlr: initialized controller, originally from spi_alloc_master() or
2206 * spi_alloc_slave()
2207 * Context: can sleep
2208 *
2209 * Register a SPI device as with spi_register_controller() which will
2210 * automatically be unregistered and freed.
2211 *
2212 * Return: zero on success, else a negative error code.
2213 */
2214 int devm_spi_register_controller(struct device *dev,
2215 struct spi_controller *ctlr)
2216 {
2217 struct spi_controller **ptr;
2218 int ret;
2219
2220 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2221 if (!ptr)
2222 return -ENOMEM;
2223
2224 ret = spi_register_controller(ctlr);
2225 if (!ret) {
2226 *ptr = ctlr;
2227 devres_add(dev, ptr);
2228 } else {
2229 devres_free(ptr);
2230 }
2231
2232 return ret;
2233 }
2234 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2235
2236 static int __unregister(struct device *dev, void *null)
2237 {
2238 spi_unregister_device(to_spi_device(dev));
2239 return 0;
2240 }
2241
2242 /**
2243 * spi_unregister_controller - unregister SPI master or slave controller
2244 * @ctlr: the controller being unregistered
2245 * Context: can sleep
2246 *
2247 * This call is used only by SPI controller drivers, which are the
2248 * only ones directly touching chip registers.
2249 *
2250 * This must be called from context that can sleep.
2251 *
2252 * Note that this function also drops a reference to the controller.
2253 */
2254 void spi_unregister_controller(struct spi_controller *ctlr)
2255 {
2256 struct spi_controller *found;
2257 int id = ctlr->bus_num;
2258 int dummy;
2259
2260 /* First make sure that this controller was ever added */
2261 mutex_lock(&board_lock);
2262 found = idr_find(&spi_master_idr, id);
2263 mutex_unlock(&board_lock);
2264 if (ctlr->queued) {
2265 if (spi_destroy_queue(ctlr))
2266 dev_err(&ctlr->dev, "queue remove failed\n");
2267 }
2268 mutex_lock(&board_lock);
2269 list_del(&ctlr->list);
2270 mutex_unlock(&board_lock);
2271
2272 dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
2273 device_unregister(&ctlr->dev);
2274 /* free bus id */
2275 mutex_lock(&board_lock);
2276 if (found == ctlr)
2277 idr_remove(&spi_master_idr, id);
2278 mutex_unlock(&board_lock);
2279 }
2280 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2281
2282 int spi_controller_suspend(struct spi_controller *ctlr)
2283 {
2284 int ret;
2285
2286 /* Basically no-ops for non-queued controllers */
2287 if (!ctlr->queued)
2288 return 0;
2289
2290 ret = spi_stop_queue(ctlr);
2291 if (ret)
2292 dev_err(&ctlr->dev, "queue stop failed\n");
2293
2294 return ret;
2295 }
2296 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2297
2298 int spi_controller_resume(struct spi_controller *ctlr)
2299 {
2300 int ret;
2301
2302 if (!ctlr->queued)
2303 return 0;
2304
2305 ret = spi_start_queue(ctlr);
2306 if (ret)
2307 dev_err(&ctlr->dev, "queue restart failed\n");
2308
2309 return ret;
2310 }
2311 EXPORT_SYMBOL_GPL(spi_controller_resume);
2312
2313 static int __spi_controller_match(struct device *dev, const void *data)
2314 {
2315 struct spi_controller *ctlr;
2316 const u16 *bus_num = data;
2317
2318 ctlr = container_of(dev, struct spi_controller, dev);
2319 return ctlr->bus_num == *bus_num;
2320 }
2321
2322 /**
2323 * spi_busnum_to_master - look up master associated with bus_num
2324 * @bus_num: the master's bus number
2325 * Context: can sleep
2326 *
2327 * This call may be used with devices that are registered after
2328 * arch init time. It returns a refcounted pointer to the relevant
2329 * spi_controller (which the caller must release), or NULL if there is
2330 * no such master registered.
2331 *
2332 * Return: the SPI master structure on success, else NULL.
2333 */
2334 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2335 {
2336 struct device *dev;
2337 struct spi_controller *ctlr = NULL;
2338
2339 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2340 __spi_controller_match);
2341 if (dev)
2342 ctlr = container_of(dev, struct spi_controller, dev);
2343 /* reference got in class_find_device */
2344 return ctlr;
2345 }
2346 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2347
2348 /*-------------------------------------------------------------------------*/
2349
2350 /* Core methods for SPI resource management */
2351
2352 /**
2353 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2354 * during the processing of a spi_message while using
2355 * spi_transfer_one
2356 * @spi: the spi device for which we allocate memory
2357 * @release: the release code to execute for this resource
2358 * @size: size to alloc and return
2359 * @gfp: GFP allocation flags
2360 *
2361 * Return: the pointer to the allocated data
2362 *
2363 * This may get enhanced in the future to allocate from a memory pool
2364 * of the @spi_device or @spi_controller to avoid repeated allocations.
2365 */
2366 void *spi_res_alloc(struct spi_device *spi,
2367 spi_res_release_t release,
2368 size_t size, gfp_t gfp)
2369 {
2370 struct spi_res *sres;
2371
2372 sres = kzalloc(sizeof(*sres) + size, gfp);
2373 if (!sres)
2374 return NULL;
2375
2376 INIT_LIST_HEAD(&sres->entry);
2377 sres->release = release;
2378
2379 return sres->data;
2380 }
2381 EXPORT_SYMBOL_GPL(spi_res_alloc);
2382
2383 /**
2384 * spi_res_free - free an spi resource
2385 * @res: pointer to the custom data of a resource
2386 *
2387 */
2388 void spi_res_free(void *res)
2389 {
2390 struct spi_res *sres = container_of(res, struct spi_res, data);
2391
2392 if (!res)
2393 return;
2394
2395 WARN_ON(!list_empty(&sres->entry));
2396 kfree(sres);
2397 }
2398 EXPORT_SYMBOL_GPL(spi_res_free);
2399
2400 /**
2401 * spi_res_add - add a spi_res to the spi_message
2402 * @message: the spi message
2403 * @res: the spi_resource
2404 */
2405 void spi_res_add(struct spi_message *message, void *res)
2406 {
2407 struct spi_res *sres = container_of(res, struct spi_res, data);
2408
2409 WARN_ON(!list_empty(&sres->entry));
2410 list_add_tail(&sres->entry, &message->resources);
2411 }
2412 EXPORT_SYMBOL_GPL(spi_res_add);
2413
2414 /**
2415 * spi_res_release - release all spi resources for this message
2416 * @ctlr: the @spi_controller
2417 * @message: the @spi_message
2418 */
2419 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2420 {
2421 struct spi_res *res;
2422
2423 while (!list_empty(&message->resources)) {
2424 res = list_last_entry(&message->resources,
2425 struct spi_res, entry);
2426
2427 if (res->release)
2428 res->release(ctlr, message, res->data);
2429
2430 list_del(&res->entry);
2431
2432 kfree(res);
2433 }
2434 }
2435 EXPORT_SYMBOL_GPL(spi_res_release);
2436
2437 /*-------------------------------------------------------------------------*/
2438
2439 /* Core methods for spi_message alterations */
2440
2441 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2442 struct spi_message *msg,
2443 void *res)
2444 {
2445 struct spi_replaced_transfers *rxfer = res;
2446 size_t i;
2447
2448 /* call extra callback if requested */
2449 if (rxfer->release)
2450 rxfer->release(ctlr, msg, res);
2451
2452 /* insert replaced transfers back into the message */
2453 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2454
2455 /* remove the formerly inserted entries */
2456 for (i = 0; i < rxfer->inserted; i++)
2457 list_del(&rxfer->inserted_transfers[i].transfer_list);
2458 }
2459
2460 /**
2461 * spi_replace_transfers - replace transfers with several transfers
2462 * and register change with spi_message.resources
2463 * @msg: the spi_message we work upon
2464 * @xfer_first: the first spi_transfer we want to replace
2465 * @remove: number of transfers to remove
2466 * @insert: the number of transfers we want to insert instead
2467 * @release: extra release code necessary in some circumstances
2468 * @extradatasize: extra data to allocate (with alignment guarantees
2469 * of struct @spi_transfer)
2470 * @gfp: gfp flags
2471 *
2472 * Returns: pointer to @spi_replaced_transfers,
2473 * PTR_ERR(...) in case of errors.
2474 */
2475 struct spi_replaced_transfers *spi_replace_transfers(
2476 struct spi_message *msg,
2477 struct spi_transfer *xfer_first,
2478 size_t remove,
2479 size_t insert,
2480 spi_replaced_release_t release,
2481 size_t extradatasize,
2482 gfp_t gfp)
2483 {
2484 struct spi_replaced_transfers *rxfer;
2485 struct spi_transfer *xfer;
2486 size_t i;
2487
2488 /* allocate the structure using spi_res */
2489 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2490 insert * sizeof(struct spi_transfer)
2491 + sizeof(struct spi_replaced_transfers)
2492 + extradatasize,
2493 gfp);
2494 if (!rxfer)
2495 return ERR_PTR(-ENOMEM);
2496
2497 /* the release code to invoke before running the generic release */
2498 rxfer->release = release;
2499
2500 /* assign extradata */
2501 if (extradatasize)
2502 rxfer->extradata =
2503 &rxfer->inserted_transfers[insert];
2504
2505 /* init the replaced_transfers list */
2506 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2507
2508 /* assign the list_entry after which we should reinsert
2509 * the @replaced_transfers - it may be spi_message.messages!
2510 */
2511 rxfer->replaced_after = xfer_first->transfer_list.prev;
2512
2513 /* remove the requested number of transfers */
2514 for (i = 0; i < remove; i++) {
2515 /* if the entry after replaced_after it is msg->transfers
2516 * then we have been requested to remove more transfers
2517 * than are in the list
2518 */
2519 if (rxfer->replaced_after->next == &msg->transfers) {
2520 dev_err(&msg->spi->dev,
2521 "requested to remove more spi_transfers than are available\n");
2522 /* insert replaced transfers back into the message */
2523 list_splice(&rxfer->replaced_transfers,
2524 rxfer->replaced_after);
2525
2526 /* free the spi_replace_transfer structure */
2527 spi_res_free(rxfer);
2528
2529 /* and return with an error */
2530 return ERR_PTR(-EINVAL);
2531 }
2532
2533 /* remove the entry after replaced_after from list of
2534 * transfers and add it to list of replaced_transfers
2535 */
2536 list_move_tail(rxfer->replaced_after->next,
2537 &rxfer->replaced_transfers);
2538 }
2539
2540 /* create copy of the given xfer with identical settings
2541 * based on the first transfer to get removed
2542 */
2543 for (i = 0; i < insert; i++) {
2544 /* we need to run in reverse order */
2545 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2546
2547 /* copy all spi_transfer data */
2548 memcpy(xfer, xfer_first, sizeof(*xfer));
2549
2550 /* add to list */
2551 list_add(&xfer->transfer_list, rxfer->replaced_after);
2552
2553 /* clear cs_change and delay_usecs for all but the last */
2554 if (i) {
2555 xfer->cs_change = false;
2556 xfer->delay_usecs = 0;
2557 }
2558 }
2559
2560 /* set up inserted */
2561 rxfer->inserted = insert;
2562
2563 /* and register it with spi_res/spi_message */
2564 spi_res_add(msg, rxfer);
2565
2566 return rxfer;
2567 }
2568 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2569
2570 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2571 struct spi_message *msg,
2572 struct spi_transfer **xferp,
2573 size_t maxsize,
2574 gfp_t gfp)
2575 {
2576 struct spi_transfer *xfer = *xferp, *xfers;
2577 struct spi_replaced_transfers *srt;
2578 size_t offset;
2579 size_t count, i;
2580
2581 /* warn once about this fact that we are splitting a transfer */
2582 dev_warn_once(&msg->spi->dev,
2583 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2584 xfer->len, maxsize);
2585
2586 /* calculate how many we have to replace */
2587 count = DIV_ROUND_UP(xfer->len, maxsize);
2588
2589 /* create replacement */
2590 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2591 if (IS_ERR(srt))
2592 return PTR_ERR(srt);
2593 xfers = srt->inserted_transfers;
2594
2595 /* now handle each of those newly inserted spi_transfers
2596 * note that the replacements spi_transfers all are preset
2597 * to the same values as *xferp, so tx_buf, rx_buf and len
2598 * are all identical (as well as most others)
2599 * so we just have to fix up len and the pointers.
2600 *
2601 * this also includes support for the depreciated
2602 * spi_message.is_dma_mapped interface
2603 */
2604
2605 /* the first transfer just needs the length modified, so we
2606 * run it outside the loop
2607 */
2608 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2609
2610 /* all the others need rx_buf/tx_buf also set */
2611 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2612 /* update rx_buf, tx_buf and dma */
2613 if (xfers[i].rx_buf)
2614 xfers[i].rx_buf += offset;
2615 if (xfers[i].rx_dma)
2616 xfers[i].rx_dma += offset;
2617 if (xfers[i].tx_buf)
2618 xfers[i].tx_buf += offset;
2619 if (xfers[i].tx_dma)
2620 xfers[i].tx_dma += offset;
2621
2622 /* update length */
2623 xfers[i].len = min(maxsize, xfers[i].len - offset);
2624 }
2625
2626 /* we set up xferp to the last entry we have inserted,
2627 * so that we skip those already split transfers
2628 */
2629 *xferp = &xfers[count - 1];
2630
2631 /* increment statistics counters */
2632 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2633 transfers_split_maxsize);
2634 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2635 transfers_split_maxsize);
2636
2637 return 0;
2638 }
2639
2640 /**
2641 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2642 * when an individual transfer exceeds a
2643 * certain size
2644 * @ctlr: the @spi_controller for this transfer
2645 * @msg: the @spi_message to transform
2646 * @maxsize: the maximum when to apply this
2647 * @gfp: GFP allocation flags
2648 *
2649 * Return: status of transformation
2650 */
2651 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2652 struct spi_message *msg,
2653 size_t maxsize,
2654 gfp_t gfp)
2655 {
2656 struct spi_transfer *xfer;
2657 int ret;
2658
2659 /* iterate over the transfer_list,
2660 * but note that xfer is advanced to the last transfer inserted
2661 * to avoid checking sizes again unnecessarily (also xfer does
2662 * potentiall belong to a different list by the time the
2663 * replacement has happened
2664 */
2665 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2666 if (xfer->len > maxsize) {
2667 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2668 maxsize, gfp);
2669 if (ret)
2670 return ret;
2671 }
2672 }
2673
2674 return 0;
2675 }
2676 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2677
2678 /*-------------------------------------------------------------------------*/
2679
2680 /* Core methods for SPI controller protocol drivers. Some of the
2681 * other core methods are currently defined as inline functions.
2682 */
2683
2684 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2685 u8 bits_per_word)
2686 {
2687 if (ctlr->bits_per_word_mask) {
2688 /* Only 32 bits fit in the mask */
2689 if (bits_per_word > 32)
2690 return -EINVAL;
2691 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2692 return -EINVAL;
2693 }
2694
2695 return 0;
2696 }
2697
2698 /**
2699 * spi_setup - setup SPI mode and clock rate
2700 * @spi: the device whose settings are being modified
2701 * Context: can sleep, and no requests are queued to the device
2702 *
2703 * SPI protocol drivers may need to update the transfer mode if the
2704 * device doesn't work with its default. They may likewise need
2705 * to update clock rates or word sizes from initial values. This function
2706 * changes those settings, and must be called from a context that can sleep.
2707 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2708 * effect the next time the device is selected and data is transferred to
2709 * or from it. When this function returns, the spi device is deselected.
2710 *
2711 * Note that this call will fail if the protocol driver specifies an option
2712 * that the underlying controller or its driver does not support. For
2713 * example, not all hardware supports wire transfers using nine bit words,
2714 * LSB-first wire encoding, or active-high chipselects.
2715 *
2716 * Return: zero on success, else a negative error code.
2717 */
2718 int spi_setup(struct spi_device *spi)
2719 {
2720 unsigned bad_bits, ugly_bits;
2721 int status;
2722
2723 /* check mode to prevent that DUAL and QUAD set at the same time
2724 */
2725 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2726 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2727 dev_err(&spi->dev,
2728 "setup: can not select dual and quad at the same time\n");
2729 return -EINVAL;
2730 }
2731 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2732 */
2733 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2734 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2735 return -EINVAL;
2736 /* help drivers fail *cleanly* when they need options
2737 * that aren't supported with their current controller
2738 */
2739 bad_bits = spi->mode & ~spi->controller->mode_bits;
2740 ugly_bits = bad_bits &
2741 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2742 if (ugly_bits) {
2743 dev_warn(&spi->dev,
2744 "setup: ignoring unsupported mode bits %x\n",
2745 ugly_bits);
2746 spi->mode &= ~ugly_bits;
2747 bad_bits &= ~ugly_bits;
2748 }
2749 if (bad_bits) {
2750 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2751 bad_bits);
2752 return -EINVAL;
2753 }
2754
2755 if (!spi->bits_per_word)
2756 spi->bits_per_word = 8;
2757
2758 status = __spi_validate_bits_per_word(spi->controller,
2759 spi->bits_per_word);
2760 if (status)
2761 return status;
2762
2763 if (!spi->max_speed_hz)
2764 spi->max_speed_hz = spi->controller->max_speed_hz;
2765
2766 if (spi->controller->setup)
2767 status = spi->controller->setup(spi);
2768
2769 spi_set_cs(spi, false);
2770
2771 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2772 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2773 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2774 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2775 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2776 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2777 spi->bits_per_word, spi->max_speed_hz,
2778 status);
2779
2780 return status;
2781 }
2782 EXPORT_SYMBOL_GPL(spi_setup);
2783
2784 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2785 {
2786 struct spi_controller *ctlr = spi->controller;
2787 struct spi_transfer *xfer;
2788 int w_size;
2789
2790 if (list_empty(&message->transfers))
2791 return -EINVAL;
2792
2793 /* Half-duplex links include original MicroWire, and ones with
2794 * only one data pin like SPI_3WIRE (switches direction) or where
2795 * either MOSI or MISO is missing. They can also be caused by
2796 * software limitations.
2797 */
2798 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
2799 (spi->mode & SPI_3WIRE)) {
2800 unsigned flags = ctlr->flags;
2801
2802 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2803 if (xfer->rx_buf && xfer->tx_buf)
2804 return -EINVAL;
2805 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
2806 return -EINVAL;
2807 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
2808 return -EINVAL;
2809 }
2810 }
2811
2812 /**
2813 * Set transfer bits_per_word and max speed as spi device default if
2814 * it is not set for this transfer.
2815 * Set transfer tx_nbits and rx_nbits as single transfer default
2816 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2817 */
2818 message->frame_length = 0;
2819 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2820 message->frame_length += xfer->len;
2821 if (!xfer->bits_per_word)
2822 xfer->bits_per_word = spi->bits_per_word;
2823
2824 if (!xfer->speed_hz)
2825 xfer->speed_hz = spi->max_speed_hz;
2826 if (!xfer->speed_hz)
2827 xfer->speed_hz = ctlr->max_speed_hz;
2828
2829 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
2830 xfer->speed_hz = ctlr->max_speed_hz;
2831
2832 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
2833 return -EINVAL;
2834
2835 /*
2836 * SPI transfer length should be multiple of SPI word size
2837 * where SPI word size should be power-of-two multiple
2838 */
2839 if (xfer->bits_per_word <= 8)
2840 w_size = 1;
2841 else if (xfer->bits_per_word <= 16)
2842 w_size = 2;
2843 else
2844 w_size = 4;
2845
2846 /* No partial transfers accepted */
2847 if (xfer->len % w_size)
2848 return -EINVAL;
2849
2850 if (xfer->speed_hz && ctlr->min_speed_hz &&
2851 xfer->speed_hz < ctlr->min_speed_hz)
2852 return -EINVAL;
2853
2854 if (xfer->tx_buf && !xfer->tx_nbits)
2855 xfer->tx_nbits = SPI_NBITS_SINGLE;
2856 if (xfer->rx_buf && !xfer->rx_nbits)
2857 xfer->rx_nbits = SPI_NBITS_SINGLE;
2858 /* check transfer tx/rx_nbits:
2859 * 1. check the value matches one of single, dual and quad
2860 * 2. check tx/rx_nbits match the mode in spi_device
2861 */
2862 if (xfer->tx_buf) {
2863 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2864 xfer->tx_nbits != SPI_NBITS_DUAL &&
2865 xfer->tx_nbits != SPI_NBITS_QUAD)
2866 return -EINVAL;
2867 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2868 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2869 return -EINVAL;
2870 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2871 !(spi->mode & SPI_TX_QUAD))
2872 return -EINVAL;
2873 }
2874 /* check transfer rx_nbits */
2875 if (xfer->rx_buf) {
2876 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2877 xfer->rx_nbits != SPI_NBITS_DUAL &&
2878 xfer->rx_nbits != SPI_NBITS_QUAD)
2879 return -EINVAL;
2880 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2881 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2882 return -EINVAL;
2883 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2884 !(spi->mode & SPI_RX_QUAD))
2885 return -EINVAL;
2886 }
2887 }
2888
2889 message->status = -EINPROGRESS;
2890
2891 return 0;
2892 }
2893
2894 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2895 {
2896 struct spi_controller *ctlr = spi->controller;
2897
2898 message->spi = spi;
2899
2900 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
2901 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2902
2903 trace_spi_message_submit(message);
2904
2905 return ctlr->transfer(spi, message);
2906 }
2907
2908 /**
2909 * spi_async - asynchronous SPI transfer
2910 * @spi: device with which data will be exchanged
2911 * @message: describes the data transfers, including completion callback
2912 * Context: any (irqs may be blocked, etc)
2913 *
2914 * This call may be used in_irq and other contexts which can't sleep,
2915 * as well as from task contexts which can sleep.
2916 *
2917 * The completion callback is invoked in a context which can't sleep.
2918 * Before that invocation, the value of message->status is undefined.
2919 * When the callback is issued, message->status holds either zero (to
2920 * indicate complete success) or a negative error code. After that
2921 * callback returns, the driver which issued the transfer request may
2922 * deallocate the associated memory; it's no longer in use by any SPI
2923 * core or controller driver code.
2924 *
2925 * Note that although all messages to a spi_device are handled in
2926 * FIFO order, messages may go to different devices in other orders.
2927 * Some device might be higher priority, or have various "hard" access
2928 * time requirements, for example.
2929 *
2930 * On detection of any fault during the transfer, processing of
2931 * the entire message is aborted, and the device is deselected.
2932 * Until returning from the associated message completion callback,
2933 * no other spi_message queued to that device will be processed.
2934 * (This rule applies equally to all the synchronous transfer calls,
2935 * which are wrappers around this core asynchronous primitive.)
2936 *
2937 * Return: zero on success, else a negative error code.
2938 */
2939 int spi_async(struct spi_device *spi, struct spi_message *message)
2940 {
2941 struct spi_controller *ctlr = spi->controller;
2942 int ret;
2943 unsigned long flags;
2944
2945 ret = __spi_validate(spi, message);
2946 if (ret != 0)
2947 return ret;
2948
2949 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
2950
2951 if (ctlr->bus_lock_flag)
2952 ret = -EBUSY;
2953 else
2954 ret = __spi_async(spi, message);
2955
2956 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
2957
2958 return ret;
2959 }
2960 EXPORT_SYMBOL_GPL(spi_async);
2961
2962 /**
2963 * spi_async_locked - version of spi_async with exclusive bus usage
2964 * @spi: device with which data will be exchanged
2965 * @message: describes the data transfers, including completion callback
2966 * Context: any (irqs may be blocked, etc)
2967 *
2968 * This call may be used in_irq and other contexts which can't sleep,
2969 * as well as from task contexts which can sleep.
2970 *
2971 * The completion callback is invoked in a context which can't sleep.
2972 * Before that invocation, the value of message->status is undefined.
2973 * When the callback is issued, message->status holds either zero (to
2974 * indicate complete success) or a negative error code. After that
2975 * callback returns, the driver which issued the transfer request may
2976 * deallocate the associated memory; it's no longer in use by any SPI
2977 * core or controller driver code.
2978 *
2979 * Note that although all messages to a spi_device are handled in
2980 * FIFO order, messages may go to different devices in other orders.
2981 * Some device might be higher priority, or have various "hard" access
2982 * time requirements, for example.
2983 *
2984 * On detection of any fault during the transfer, processing of
2985 * the entire message is aborted, and the device is deselected.
2986 * Until returning from the associated message completion callback,
2987 * no other spi_message queued to that device will be processed.
2988 * (This rule applies equally to all the synchronous transfer calls,
2989 * which are wrappers around this core asynchronous primitive.)
2990 *
2991 * Return: zero on success, else a negative error code.
2992 */
2993 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2994 {
2995 struct spi_controller *ctlr = spi->controller;
2996 int ret;
2997 unsigned long flags;
2998
2999 ret = __spi_validate(spi, message);
3000 if (ret != 0)
3001 return ret;
3002
3003 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3004
3005 ret = __spi_async(spi, message);
3006
3007 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3008
3009 return ret;
3010
3011 }
3012 EXPORT_SYMBOL_GPL(spi_async_locked);
3013
3014
3015 int spi_flash_read(struct spi_device *spi,
3016 struct spi_flash_read_message *msg)
3017
3018 {
3019 struct spi_controller *master = spi->controller;
3020 struct device *rx_dev = NULL;
3021 int ret;
3022
3023 if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
3024 msg->addr_nbits == SPI_NBITS_DUAL) &&
3025 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3026 return -EINVAL;
3027 if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
3028 msg->addr_nbits == SPI_NBITS_QUAD) &&
3029 !(spi->mode & SPI_TX_QUAD))
3030 return -EINVAL;
3031 if (msg->data_nbits == SPI_NBITS_DUAL &&
3032 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3033 return -EINVAL;
3034 if (msg->data_nbits == SPI_NBITS_QUAD &&
3035 !(spi->mode & SPI_RX_QUAD))
3036 return -EINVAL;
3037
3038 if (master->auto_runtime_pm) {
3039 ret = pm_runtime_get_sync(master->dev.parent);
3040 if (ret < 0) {
3041 dev_err(&master->dev, "Failed to power device: %d\n",
3042 ret);
3043 return ret;
3044 }
3045 }
3046
3047 mutex_lock(&master->bus_lock_mutex);
3048 mutex_lock(&master->io_mutex);
3049 if (master->dma_rx && master->spi_flash_can_dma(spi, msg)) {
3050 rx_dev = master->dma_rx->device->dev;
3051 ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
3052 msg->buf, msg->len,
3053 DMA_FROM_DEVICE);
3054 if (!ret)
3055 msg->cur_msg_mapped = true;
3056 }
3057 ret = master->spi_flash_read(spi, msg);
3058 if (msg->cur_msg_mapped)
3059 spi_unmap_buf(master, rx_dev, &msg->rx_sg,
3060 DMA_FROM_DEVICE);
3061 mutex_unlock(&master->io_mutex);
3062 mutex_unlock(&master->bus_lock_mutex);
3063
3064 if (master->auto_runtime_pm)
3065 pm_runtime_put(master->dev.parent);
3066
3067 return ret;
3068 }
3069 EXPORT_SYMBOL_GPL(spi_flash_read);
3070
3071 /*-------------------------------------------------------------------------*/
3072
3073 /* Utility methods for SPI protocol drivers, layered on
3074 * top of the core. Some other utility methods are defined as
3075 * inline functions.
3076 */
3077
3078 static void spi_complete(void *arg)
3079 {
3080 complete(arg);
3081 }
3082
3083 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3084 {
3085 DECLARE_COMPLETION_ONSTACK(done);
3086 int status;
3087 struct spi_controller *ctlr = spi->controller;
3088 unsigned long flags;
3089
3090 status = __spi_validate(spi, message);
3091 if (status != 0)
3092 return status;
3093
3094 message->complete = spi_complete;
3095 message->context = &done;
3096 message->spi = spi;
3097
3098 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3099 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3100
3101 /* If we're not using the legacy transfer method then we will
3102 * try to transfer in the calling context so special case.
3103 * This code would be less tricky if we could remove the
3104 * support for driver implemented message queues.
3105 */
3106 if (ctlr->transfer == spi_queued_transfer) {
3107 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3108
3109 trace_spi_message_submit(message);
3110
3111 status = __spi_queued_transfer(spi, message, false);
3112
3113 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3114 } else {
3115 status = spi_async_locked(spi, message);
3116 }
3117
3118 if (status == 0) {
3119 /* Push out the messages in the calling context if we
3120 * can.
3121 */
3122 if (ctlr->transfer == spi_queued_transfer) {
3123 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3124 spi_sync_immediate);
3125 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3126 spi_sync_immediate);
3127 __spi_pump_messages(ctlr, false);
3128 }
3129
3130 wait_for_completion(&done);
3131 status = message->status;
3132 }
3133 message->context = NULL;
3134 return status;
3135 }
3136
3137 /**
3138 * spi_sync - blocking/synchronous SPI data transfers
3139 * @spi: device with which data will be exchanged
3140 * @message: describes the data transfers
3141 * Context: can sleep
3142 *
3143 * This call may only be used from a context that may sleep. The sleep
3144 * is non-interruptible, and has no timeout. Low-overhead controller
3145 * drivers may DMA directly into and out of the message buffers.
3146 *
3147 * Note that the SPI device's chip select is active during the message,
3148 * and then is normally disabled between messages. Drivers for some
3149 * frequently-used devices may want to minimize costs of selecting a chip,
3150 * by leaving it selected in anticipation that the next message will go
3151 * to the same chip. (That may increase power usage.)
3152 *
3153 * Also, the caller is guaranteeing that the memory associated with the
3154 * message will not be freed before this call returns.
3155 *
3156 * Return: zero on success, else a negative error code.
3157 */
3158 int spi_sync(struct spi_device *spi, struct spi_message *message)
3159 {
3160 int ret;
3161
3162 mutex_lock(&spi->controller->bus_lock_mutex);
3163 ret = __spi_sync(spi, message);
3164 mutex_unlock(&spi->controller->bus_lock_mutex);
3165
3166 return ret;
3167 }
3168 EXPORT_SYMBOL_GPL(spi_sync);
3169
3170 /**
3171 * spi_sync_locked - version of spi_sync with exclusive bus usage
3172 * @spi: device with which data will be exchanged
3173 * @message: describes the data transfers
3174 * Context: can sleep
3175 *
3176 * This call may only be used from a context that may sleep. The sleep
3177 * is non-interruptible, and has no timeout. Low-overhead controller
3178 * drivers may DMA directly into and out of the message buffers.
3179 *
3180 * This call should be used by drivers that require exclusive access to the
3181 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3182 * be released by a spi_bus_unlock call when the exclusive access is over.
3183 *
3184 * Return: zero on success, else a negative error code.
3185 */
3186 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3187 {
3188 return __spi_sync(spi, message);
3189 }
3190 EXPORT_SYMBOL_GPL(spi_sync_locked);
3191
3192 /**
3193 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3194 * @ctlr: SPI bus master that should be locked for exclusive bus access
3195 * Context: can sleep
3196 *
3197 * This call may only be used from a context that may sleep. The sleep
3198 * is non-interruptible, and has no timeout.
3199 *
3200 * This call should be used by drivers that require exclusive access to the
3201 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3202 * exclusive access is over. Data transfer must be done by spi_sync_locked
3203 * and spi_async_locked calls when the SPI bus lock is held.
3204 *
3205 * Return: always zero.
3206 */
3207 int spi_bus_lock(struct spi_controller *ctlr)
3208 {
3209 unsigned long flags;
3210
3211 mutex_lock(&ctlr->bus_lock_mutex);
3212
3213 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3214 ctlr->bus_lock_flag = 1;
3215 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3216
3217 /* mutex remains locked until spi_bus_unlock is called */
3218
3219 return 0;
3220 }
3221 EXPORT_SYMBOL_GPL(spi_bus_lock);
3222
3223 /**
3224 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3225 * @ctlr: SPI bus master that was locked for exclusive bus access
3226 * Context: can sleep
3227 *
3228 * This call may only be used from a context that may sleep. The sleep
3229 * is non-interruptible, and has no timeout.
3230 *
3231 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3232 * call.
3233 *
3234 * Return: always zero.
3235 */
3236 int spi_bus_unlock(struct spi_controller *ctlr)
3237 {
3238 ctlr->bus_lock_flag = 0;
3239
3240 mutex_unlock(&ctlr->bus_lock_mutex);
3241
3242 return 0;
3243 }
3244 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3245
3246 /* portable code must never pass more than 32 bytes */
3247 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3248
3249 static u8 *buf;
3250
3251 /**
3252 * spi_write_then_read - SPI synchronous write followed by read
3253 * @spi: device with which data will be exchanged
3254 * @txbuf: data to be written (need not be dma-safe)
3255 * @n_tx: size of txbuf, in bytes
3256 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3257 * @n_rx: size of rxbuf, in bytes
3258 * Context: can sleep
3259 *
3260 * This performs a half duplex MicroWire style transaction with the
3261 * device, sending txbuf and then reading rxbuf. The return value
3262 * is zero for success, else a negative errno status code.
3263 * This call may only be used from a context that may sleep.
3264 *
3265 * Parameters to this routine are always copied using a small buffer;
3266 * portable code should never use this for more than 32 bytes.
3267 * Performance-sensitive or bulk transfer code should instead use
3268 * spi_{async,sync}() calls with dma-safe buffers.
3269 *
3270 * Return: zero on success, else a negative error code.
3271 */
3272 int spi_write_then_read(struct spi_device *spi,
3273 const void *txbuf, unsigned n_tx,
3274 void *rxbuf, unsigned n_rx)
3275 {
3276 static DEFINE_MUTEX(lock);
3277
3278 int status;
3279 struct spi_message message;
3280 struct spi_transfer x[2];
3281 u8 *local_buf;
3282
3283 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3284 * copying here, (as a pure convenience thing), but we can
3285 * keep heap costs out of the hot path unless someone else is
3286 * using the pre-allocated buffer or the transfer is too large.
3287 */
3288 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3289 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3290 GFP_KERNEL | GFP_DMA);
3291 if (!local_buf)
3292 return -ENOMEM;
3293 } else {
3294 local_buf = buf;
3295 }
3296
3297 spi_message_init(&message);
3298 memset(x, 0, sizeof(x));
3299 if (n_tx) {
3300 x[0].len = n_tx;
3301 spi_message_add_tail(&x[0], &message);
3302 }
3303 if (n_rx) {
3304 x[1].len = n_rx;
3305 spi_message_add_tail(&x[1], &message);
3306 }
3307
3308 memcpy(local_buf, txbuf, n_tx);
3309 x[0].tx_buf = local_buf;
3310 x[1].rx_buf = local_buf + n_tx;
3311
3312 /* do the i/o */
3313 status = spi_sync(spi, &message);
3314 if (status == 0)
3315 memcpy(rxbuf, x[1].rx_buf, n_rx);
3316
3317 if (x[0].tx_buf == buf)
3318 mutex_unlock(&lock);
3319 else
3320 kfree(local_buf);
3321
3322 return status;
3323 }
3324 EXPORT_SYMBOL_GPL(spi_write_then_read);
3325
3326 /*-------------------------------------------------------------------------*/
3327
3328 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3329 static int __spi_of_device_match(struct device *dev, void *data)
3330 {
3331 return dev->of_node == data;
3332 }
3333
3334 /* must call put_device() when done with returned spi_device device */
3335 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3336 {
3337 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3338 __spi_of_device_match);
3339 return dev ? to_spi_device(dev) : NULL;
3340 }
3341
3342 static int __spi_of_controller_match(struct device *dev, const void *data)
3343 {
3344 return dev->of_node == data;
3345 }
3346
3347 /* the spi controllers are not using spi_bus, so we find it with another way */
3348 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3349 {
3350 struct device *dev;
3351
3352 dev = class_find_device(&spi_master_class, NULL, node,
3353 __spi_of_controller_match);
3354 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3355 dev = class_find_device(&spi_slave_class, NULL, node,
3356 __spi_of_controller_match);
3357 if (!dev)
3358 return NULL;
3359
3360 /* reference got in class_find_device */
3361 return container_of(dev, struct spi_controller, dev);
3362 }
3363
3364 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3365 void *arg)
3366 {
3367 struct of_reconfig_data *rd = arg;
3368 struct spi_controller *ctlr;
3369 struct spi_device *spi;
3370
3371 switch (of_reconfig_get_state_change(action, arg)) {
3372 case OF_RECONFIG_CHANGE_ADD:
3373 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3374 if (ctlr == NULL)
3375 return NOTIFY_OK; /* not for us */
3376
3377 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3378 put_device(&ctlr->dev);
3379 return NOTIFY_OK;
3380 }
3381
3382 spi = of_register_spi_device(ctlr, rd->dn);
3383 put_device(&ctlr->dev);
3384
3385 if (IS_ERR(spi)) {
3386 pr_err("%s: failed to create for '%pOF'\n",
3387 __func__, rd->dn);
3388 of_node_clear_flag(rd->dn, OF_POPULATED);
3389 return notifier_from_errno(PTR_ERR(spi));
3390 }
3391 break;
3392
3393 case OF_RECONFIG_CHANGE_REMOVE:
3394 /* already depopulated? */
3395 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3396 return NOTIFY_OK;
3397
3398 /* find our device by node */
3399 spi = of_find_spi_device_by_node(rd->dn);
3400 if (spi == NULL)
3401 return NOTIFY_OK; /* no? not meant for us */
3402
3403 /* unregister takes one ref away */
3404 spi_unregister_device(spi);
3405
3406 /* and put the reference of the find */
3407 put_device(&spi->dev);
3408 break;
3409 }
3410
3411 return NOTIFY_OK;
3412 }
3413
3414 static struct notifier_block spi_of_notifier = {
3415 .notifier_call = of_spi_notify,
3416 };
3417 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3418 extern struct notifier_block spi_of_notifier;
3419 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3420
3421 #if IS_ENABLED(CONFIG_ACPI)
3422 static int spi_acpi_controller_match(struct device *dev, const void *data)
3423 {
3424 return ACPI_COMPANION(dev->parent) == data;
3425 }
3426
3427 static int spi_acpi_device_match(struct device *dev, void *data)
3428 {
3429 return ACPI_COMPANION(dev) == data;
3430 }
3431
3432 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3433 {
3434 struct device *dev;
3435
3436 dev = class_find_device(&spi_master_class, NULL, adev,
3437 spi_acpi_controller_match);
3438 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3439 dev = class_find_device(&spi_slave_class, NULL, adev,
3440 spi_acpi_controller_match);
3441 if (!dev)
3442 return NULL;
3443
3444 return container_of(dev, struct spi_controller, dev);
3445 }
3446
3447 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3448 {
3449 struct device *dev;
3450
3451 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3452
3453 return dev ? to_spi_device(dev) : NULL;
3454 }
3455
3456 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3457 void *arg)
3458 {
3459 struct acpi_device *adev = arg;
3460 struct spi_controller *ctlr;
3461 struct spi_device *spi;
3462
3463 switch (value) {
3464 case ACPI_RECONFIG_DEVICE_ADD:
3465 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3466 if (!ctlr)
3467 break;
3468
3469 acpi_register_spi_device(ctlr, adev);
3470 put_device(&ctlr->dev);
3471 break;
3472 case ACPI_RECONFIG_DEVICE_REMOVE:
3473 if (!acpi_device_enumerated(adev))
3474 break;
3475
3476 spi = acpi_spi_find_device_by_adev(adev);
3477 if (!spi)
3478 break;
3479
3480 spi_unregister_device(spi);
3481 put_device(&spi->dev);
3482 break;
3483 }
3484
3485 return NOTIFY_OK;
3486 }
3487
3488 static struct notifier_block spi_acpi_notifier = {
3489 .notifier_call = acpi_spi_notify,
3490 };
3491 #else
3492 extern struct notifier_block spi_acpi_notifier;
3493 #endif
3494
3495 static int __init spi_init(void)
3496 {
3497 int status;
3498
3499 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3500 if (!buf) {
3501 status = -ENOMEM;
3502 goto err0;
3503 }
3504
3505 status = bus_register(&spi_bus_type);
3506 if (status < 0)
3507 goto err1;
3508
3509 status = class_register(&spi_master_class);
3510 if (status < 0)
3511 goto err2;
3512
3513 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3514 status = class_register(&spi_slave_class);
3515 if (status < 0)
3516 goto err3;
3517 }
3518
3519 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3520 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3521 if (IS_ENABLED(CONFIG_ACPI))
3522 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3523
3524 return 0;
3525
3526 err3:
3527 class_unregister(&spi_master_class);
3528 err2:
3529 bus_unregister(&spi_bus_type);
3530 err1:
3531 kfree(buf);
3532 buf = NULL;
3533 err0:
3534 return status;
3535 }
3536
3537 /* board_info is normally registered in arch_initcall(),
3538 * but even essential drivers wait till later
3539 *
3540 * REVISIT only boardinfo really needs static linking. the rest (device and
3541 * driver registration) _could_ be dynamically linked (modular) ... costs
3542 * include needing to have boardinfo data structures be much more public.
3543 */
3544 postcore_initcall(spi_init);
3545