]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/spi/spi.c
Merge remote-tracking branch 'spi/fix/core' into spi-linus
[mirror_ubuntu-zesty-kernel.git] / drivers / spi / spi.c
1 /*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/kmod.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/cache.h>
27 #include <linux/mutex.h>
28 #include <linux/of_device.h>
29 #include <linux/of_irq.h>
30 #include <linux/slab.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/spi/spi.h>
33 #include <linux/of_gpio.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/export.h>
36 #include <linux/sched/rt.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/ioport.h>
40 #include <linux/acpi.h>
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/spi.h>
44
45 static void spidev_release(struct device *dev)
46 {
47 struct spi_device *spi = to_spi_device(dev);
48
49 /* spi masters may cleanup for released devices */
50 if (spi->master->cleanup)
51 spi->master->cleanup(spi);
52
53 spi_master_put(spi->master);
54 kfree(spi);
55 }
56
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60 const struct spi_device *spi = to_spi_device(dev);
61 int len;
62
63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 if (len != -ENODEV)
65 return len;
66
67 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70
71 static struct attribute *spi_dev_attrs[] = {
72 &dev_attr_modalias.attr,
73 NULL,
74 };
75 ATTRIBUTE_GROUPS(spi_dev);
76
77 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
78 * and the sysfs version makes coldplug work too.
79 */
80
81 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
82 const struct spi_device *sdev)
83 {
84 while (id->name[0]) {
85 if (!strcmp(sdev->modalias, id->name))
86 return id;
87 id++;
88 }
89 return NULL;
90 }
91
92 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
93 {
94 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
95
96 return spi_match_id(sdrv->id_table, sdev);
97 }
98 EXPORT_SYMBOL_GPL(spi_get_device_id);
99
100 static int spi_match_device(struct device *dev, struct device_driver *drv)
101 {
102 const struct spi_device *spi = to_spi_device(dev);
103 const struct spi_driver *sdrv = to_spi_driver(drv);
104
105 /* Attempt an OF style match */
106 if (of_driver_match_device(dev, drv))
107 return 1;
108
109 /* Then try ACPI */
110 if (acpi_driver_match_device(dev, drv))
111 return 1;
112
113 if (sdrv->id_table)
114 return !!spi_match_id(sdrv->id_table, spi);
115
116 return strcmp(spi->modalias, drv->name) == 0;
117 }
118
119 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
120 {
121 const struct spi_device *spi = to_spi_device(dev);
122 int rc;
123
124 rc = acpi_device_uevent_modalias(dev, env);
125 if (rc != -ENODEV)
126 return rc;
127
128 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
129 return 0;
130 }
131
132 #ifdef CONFIG_PM_SLEEP
133 static int spi_legacy_suspend(struct device *dev, pm_message_t message)
134 {
135 int value = 0;
136 struct spi_driver *drv = to_spi_driver(dev->driver);
137
138 /* suspend will stop irqs and dma; no more i/o */
139 if (drv) {
140 if (drv->suspend)
141 value = drv->suspend(to_spi_device(dev), message);
142 else
143 dev_dbg(dev, "... can't suspend\n");
144 }
145 return value;
146 }
147
148 static int spi_legacy_resume(struct device *dev)
149 {
150 int value = 0;
151 struct spi_driver *drv = to_spi_driver(dev->driver);
152
153 /* resume may restart the i/o queue */
154 if (drv) {
155 if (drv->resume)
156 value = drv->resume(to_spi_device(dev));
157 else
158 dev_dbg(dev, "... can't resume\n");
159 }
160 return value;
161 }
162
163 static int spi_pm_suspend(struct device *dev)
164 {
165 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
166
167 if (pm)
168 return pm_generic_suspend(dev);
169 else
170 return spi_legacy_suspend(dev, PMSG_SUSPEND);
171 }
172
173 static int spi_pm_resume(struct device *dev)
174 {
175 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
176
177 if (pm)
178 return pm_generic_resume(dev);
179 else
180 return spi_legacy_resume(dev);
181 }
182
183 static int spi_pm_freeze(struct device *dev)
184 {
185 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
186
187 if (pm)
188 return pm_generic_freeze(dev);
189 else
190 return spi_legacy_suspend(dev, PMSG_FREEZE);
191 }
192
193 static int spi_pm_thaw(struct device *dev)
194 {
195 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
196
197 if (pm)
198 return pm_generic_thaw(dev);
199 else
200 return spi_legacy_resume(dev);
201 }
202
203 static int spi_pm_poweroff(struct device *dev)
204 {
205 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
206
207 if (pm)
208 return pm_generic_poweroff(dev);
209 else
210 return spi_legacy_suspend(dev, PMSG_HIBERNATE);
211 }
212
213 static int spi_pm_restore(struct device *dev)
214 {
215 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
216
217 if (pm)
218 return pm_generic_restore(dev);
219 else
220 return spi_legacy_resume(dev);
221 }
222 #else
223 #define spi_pm_suspend NULL
224 #define spi_pm_resume NULL
225 #define spi_pm_freeze NULL
226 #define spi_pm_thaw NULL
227 #define spi_pm_poweroff NULL
228 #define spi_pm_restore NULL
229 #endif
230
231 static const struct dev_pm_ops spi_pm = {
232 .suspend = spi_pm_suspend,
233 .resume = spi_pm_resume,
234 .freeze = spi_pm_freeze,
235 .thaw = spi_pm_thaw,
236 .poweroff = spi_pm_poweroff,
237 .restore = spi_pm_restore,
238 SET_RUNTIME_PM_OPS(
239 pm_generic_runtime_suspend,
240 pm_generic_runtime_resume,
241 NULL
242 )
243 };
244
245 struct bus_type spi_bus_type = {
246 .name = "spi",
247 .dev_groups = spi_dev_groups,
248 .match = spi_match_device,
249 .uevent = spi_uevent,
250 .pm = &spi_pm,
251 };
252 EXPORT_SYMBOL_GPL(spi_bus_type);
253
254
255 static int spi_drv_probe(struct device *dev)
256 {
257 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
258 struct spi_device *spi = to_spi_device(dev);
259 int ret;
260
261 acpi_dev_pm_attach(&spi->dev, true);
262 ret = sdrv->probe(spi);
263 if (ret)
264 acpi_dev_pm_detach(&spi->dev, true);
265
266 return ret;
267 }
268
269 static int spi_drv_remove(struct device *dev)
270 {
271 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
272 struct spi_device *spi = to_spi_device(dev);
273 int ret;
274
275 ret = sdrv->remove(spi);
276 acpi_dev_pm_detach(&spi->dev, true);
277
278 return ret;
279 }
280
281 static void spi_drv_shutdown(struct device *dev)
282 {
283 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
284
285 sdrv->shutdown(to_spi_device(dev));
286 }
287
288 /**
289 * spi_register_driver - register a SPI driver
290 * @sdrv: the driver to register
291 * Context: can sleep
292 */
293 int spi_register_driver(struct spi_driver *sdrv)
294 {
295 sdrv->driver.bus = &spi_bus_type;
296 if (sdrv->probe)
297 sdrv->driver.probe = spi_drv_probe;
298 if (sdrv->remove)
299 sdrv->driver.remove = spi_drv_remove;
300 if (sdrv->shutdown)
301 sdrv->driver.shutdown = spi_drv_shutdown;
302 return driver_register(&sdrv->driver);
303 }
304 EXPORT_SYMBOL_GPL(spi_register_driver);
305
306 /*-------------------------------------------------------------------------*/
307
308 /* SPI devices should normally not be created by SPI device drivers; that
309 * would make them board-specific. Similarly with SPI master drivers.
310 * Device registration normally goes into like arch/.../mach.../board-YYY.c
311 * with other readonly (flashable) information about mainboard devices.
312 */
313
314 struct boardinfo {
315 struct list_head list;
316 struct spi_board_info board_info;
317 };
318
319 static LIST_HEAD(board_list);
320 static LIST_HEAD(spi_master_list);
321
322 /*
323 * Used to protect add/del opertion for board_info list and
324 * spi_master list, and their matching process
325 */
326 static DEFINE_MUTEX(board_lock);
327
328 /**
329 * spi_alloc_device - Allocate a new SPI device
330 * @master: Controller to which device is connected
331 * Context: can sleep
332 *
333 * Allows a driver to allocate and initialize a spi_device without
334 * registering it immediately. This allows a driver to directly
335 * fill the spi_device with device parameters before calling
336 * spi_add_device() on it.
337 *
338 * Caller is responsible to call spi_add_device() on the returned
339 * spi_device structure to add it to the SPI master. If the caller
340 * needs to discard the spi_device without adding it, then it should
341 * call spi_dev_put() on it.
342 *
343 * Returns a pointer to the new device, or NULL.
344 */
345 struct spi_device *spi_alloc_device(struct spi_master *master)
346 {
347 struct spi_device *spi;
348 struct device *dev = master->dev.parent;
349
350 if (!spi_master_get(master))
351 return NULL;
352
353 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
354 if (!spi) {
355 dev_err(dev, "cannot alloc spi_device\n");
356 spi_master_put(master);
357 return NULL;
358 }
359
360 spi->master = master;
361 spi->dev.parent = &master->dev;
362 spi->dev.bus = &spi_bus_type;
363 spi->dev.release = spidev_release;
364 spi->cs_gpio = -ENOENT;
365 device_initialize(&spi->dev);
366 return spi;
367 }
368 EXPORT_SYMBOL_GPL(spi_alloc_device);
369
370 static void spi_dev_set_name(struct spi_device *spi)
371 {
372 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
373
374 if (adev) {
375 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
376 return;
377 }
378
379 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
380 spi->chip_select);
381 }
382
383 static int spi_dev_check(struct device *dev, void *data)
384 {
385 struct spi_device *spi = to_spi_device(dev);
386 struct spi_device *new_spi = data;
387
388 if (spi->master == new_spi->master &&
389 spi->chip_select == new_spi->chip_select)
390 return -EBUSY;
391 return 0;
392 }
393
394 /**
395 * spi_add_device - Add spi_device allocated with spi_alloc_device
396 * @spi: spi_device to register
397 *
398 * Companion function to spi_alloc_device. Devices allocated with
399 * spi_alloc_device can be added onto the spi bus with this function.
400 *
401 * Returns 0 on success; negative errno on failure
402 */
403 int spi_add_device(struct spi_device *spi)
404 {
405 static DEFINE_MUTEX(spi_add_lock);
406 struct spi_master *master = spi->master;
407 struct device *dev = master->dev.parent;
408 int status;
409
410 /* Chipselects are numbered 0..max; validate. */
411 if (spi->chip_select >= master->num_chipselect) {
412 dev_err(dev, "cs%d >= max %d\n",
413 spi->chip_select,
414 master->num_chipselect);
415 return -EINVAL;
416 }
417
418 /* Set the bus ID string */
419 spi_dev_set_name(spi);
420
421 /* We need to make sure there's no other device with this
422 * chipselect **BEFORE** we call setup(), else we'll trash
423 * its configuration. Lock against concurrent add() calls.
424 */
425 mutex_lock(&spi_add_lock);
426
427 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
428 if (status) {
429 dev_err(dev, "chipselect %d already in use\n",
430 spi->chip_select);
431 goto done;
432 }
433
434 if (master->cs_gpios)
435 spi->cs_gpio = master->cs_gpios[spi->chip_select];
436
437 /* Drivers may modify this initial i/o setup, but will
438 * normally rely on the device being setup. Devices
439 * using SPI_CS_HIGH can't coexist well otherwise...
440 */
441 status = spi_setup(spi);
442 if (status < 0) {
443 dev_err(dev, "can't setup %s, status %d\n",
444 dev_name(&spi->dev), status);
445 goto done;
446 }
447
448 /* Device may be bound to an active driver when this returns */
449 status = device_add(&spi->dev);
450 if (status < 0)
451 dev_err(dev, "can't add %s, status %d\n",
452 dev_name(&spi->dev), status);
453 else
454 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
455
456 done:
457 mutex_unlock(&spi_add_lock);
458 return status;
459 }
460 EXPORT_SYMBOL_GPL(spi_add_device);
461
462 /**
463 * spi_new_device - instantiate one new SPI device
464 * @master: Controller to which device is connected
465 * @chip: Describes the SPI device
466 * Context: can sleep
467 *
468 * On typical mainboards, this is purely internal; and it's not needed
469 * after board init creates the hard-wired devices. Some development
470 * platforms may not be able to use spi_register_board_info though, and
471 * this is exported so that for example a USB or parport based adapter
472 * driver could add devices (which it would learn about out-of-band).
473 *
474 * Returns the new device, or NULL.
475 */
476 struct spi_device *spi_new_device(struct spi_master *master,
477 struct spi_board_info *chip)
478 {
479 struct spi_device *proxy;
480 int status;
481
482 /* NOTE: caller did any chip->bus_num checks necessary.
483 *
484 * Also, unless we change the return value convention to use
485 * error-or-pointer (not NULL-or-pointer), troubleshootability
486 * suggests syslogged diagnostics are best here (ugh).
487 */
488
489 proxy = spi_alloc_device(master);
490 if (!proxy)
491 return NULL;
492
493 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
494
495 proxy->chip_select = chip->chip_select;
496 proxy->max_speed_hz = chip->max_speed_hz;
497 proxy->mode = chip->mode;
498 proxy->irq = chip->irq;
499 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
500 proxy->dev.platform_data = (void *) chip->platform_data;
501 proxy->controller_data = chip->controller_data;
502 proxy->controller_state = NULL;
503
504 status = spi_add_device(proxy);
505 if (status < 0) {
506 spi_dev_put(proxy);
507 return NULL;
508 }
509
510 return proxy;
511 }
512 EXPORT_SYMBOL_GPL(spi_new_device);
513
514 static void spi_match_master_to_boardinfo(struct spi_master *master,
515 struct spi_board_info *bi)
516 {
517 struct spi_device *dev;
518
519 if (master->bus_num != bi->bus_num)
520 return;
521
522 dev = spi_new_device(master, bi);
523 if (!dev)
524 dev_err(master->dev.parent, "can't create new device for %s\n",
525 bi->modalias);
526 }
527
528 /**
529 * spi_register_board_info - register SPI devices for a given board
530 * @info: array of chip descriptors
531 * @n: how many descriptors are provided
532 * Context: can sleep
533 *
534 * Board-specific early init code calls this (probably during arch_initcall)
535 * with segments of the SPI device table. Any device nodes are created later,
536 * after the relevant parent SPI controller (bus_num) is defined. We keep
537 * this table of devices forever, so that reloading a controller driver will
538 * not make Linux forget about these hard-wired devices.
539 *
540 * Other code can also call this, e.g. a particular add-on board might provide
541 * SPI devices through its expansion connector, so code initializing that board
542 * would naturally declare its SPI devices.
543 *
544 * The board info passed can safely be __initdata ... but be careful of
545 * any embedded pointers (platform_data, etc), they're copied as-is.
546 */
547 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
548 {
549 struct boardinfo *bi;
550 int i;
551
552 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
553 if (!bi)
554 return -ENOMEM;
555
556 for (i = 0; i < n; i++, bi++, info++) {
557 struct spi_master *master;
558
559 memcpy(&bi->board_info, info, sizeof(*info));
560 mutex_lock(&board_lock);
561 list_add_tail(&bi->list, &board_list);
562 list_for_each_entry(master, &spi_master_list, list)
563 spi_match_master_to_boardinfo(master, &bi->board_info);
564 mutex_unlock(&board_lock);
565 }
566
567 return 0;
568 }
569
570 /*-------------------------------------------------------------------------*/
571
572 static void spi_set_cs(struct spi_device *spi, bool enable)
573 {
574 if (spi->mode & SPI_CS_HIGH)
575 enable = !enable;
576
577 if (spi->cs_gpio >= 0)
578 gpio_set_value(spi->cs_gpio, !enable);
579 else if (spi->master->set_cs)
580 spi->master->set_cs(spi, !enable);
581 }
582
583 /*
584 * spi_transfer_one_message - Default implementation of transfer_one_message()
585 *
586 * This is a standard implementation of transfer_one_message() for
587 * drivers which impelment a transfer_one() operation. It provides
588 * standard handling of delays and chip select management.
589 */
590 static int spi_transfer_one_message(struct spi_master *master,
591 struct spi_message *msg)
592 {
593 struct spi_transfer *xfer;
594 bool cur_cs = true;
595 bool keep_cs = false;
596 int ret = 0;
597
598 spi_set_cs(msg->spi, true);
599
600 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
601 trace_spi_transfer_start(msg, xfer);
602
603 reinit_completion(&master->xfer_completion);
604
605 ret = master->transfer_one(master, msg->spi, xfer);
606 if (ret < 0) {
607 dev_err(&msg->spi->dev,
608 "SPI transfer failed: %d\n", ret);
609 goto out;
610 }
611
612 if (ret > 0) {
613 ret = 0;
614 wait_for_completion(&master->xfer_completion);
615 }
616
617 trace_spi_transfer_stop(msg, xfer);
618
619 if (msg->status != -EINPROGRESS)
620 goto out;
621
622 if (xfer->delay_usecs)
623 udelay(xfer->delay_usecs);
624
625 if (xfer->cs_change) {
626 if (list_is_last(&xfer->transfer_list,
627 &msg->transfers)) {
628 keep_cs = true;
629 } else {
630 cur_cs = !cur_cs;
631 spi_set_cs(msg->spi, cur_cs);
632 }
633 }
634
635 msg->actual_length += xfer->len;
636 }
637
638 out:
639 if (ret != 0 || !keep_cs)
640 spi_set_cs(msg->spi, false);
641
642 if (msg->status == -EINPROGRESS)
643 msg->status = ret;
644
645 spi_finalize_current_message(master);
646
647 return ret;
648 }
649
650 /**
651 * spi_finalize_current_transfer - report completion of a transfer
652 *
653 * Called by SPI drivers using the core transfer_one_message()
654 * implementation to notify it that the current interrupt driven
655 * transfer has finished and the next one may be scheduled.
656 */
657 void spi_finalize_current_transfer(struct spi_master *master)
658 {
659 complete(&master->xfer_completion);
660 }
661 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
662
663 /**
664 * spi_pump_messages - kthread work function which processes spi message queue
665 * @work: pointer to kthread work struct contained in the master struct
666 *
667 * This function checks if there is any spi message in the queue that
668 * needs processing and if so call out to the driver to initialize hardware
669 * and transfer each message.
670 *
671 */
672 static void spi_pump_messages(struct kthread_work *work)
673 {
674 struct spi_master *master =
675 container_of(work, struct spi_master, pump_messages);
676 unsigned long flags;
677 bool was_busy = false;
678 int ret;
679
680 /* Lock queue and check for queue work */
681 spin_lock_irqsave(&master->queue_lock, flags);
682 if (list_empty(&master->queue) || !master->running) {
683 if (!master->busy) {
684 spin_unlock_irqrestore(&master->queue_lock, flags);
685 return;
686 }
687 master->busy = false;
688 spin_unlock_irqrestore(&master->queue_lock, flags);
689 if (master->unprepare_transfer_hardware &&
690 master->unprepare_transfer_hardware(master))
691 dev_err(&master->dev,
692 "failed to unprepare transfer hardware\n");
693 if (master->auto_runtime_pm) {
694 pm_runtime_mark_last_busy(master->dev.parent);
695 pm_runtime_put_autosuspend(master->dev.parent);
696 }
697 trace_spi_master_idle(master);
698 return;
699 }
700
701 /* Make sure we are not already running a message */
702 if (master->cur_msg) {
703 spin_unlock_irqrestore(&master->queue_lock, flags);
704 return;
705 }
706 /* Extract head of queue */
707 master->cur_msg =
708 list_first_entry(&master->queue, struct spi_message, queue);
709
710 list_del_init(&master->cur_msg->queue);
711 if (master->busy)
712 was_busy = true;
713 else
714 master->busy = true;
715 spin_unlock_irqrestore(&master->queue_lock, flags);
716
717 if (!was_busy && master->auto_runtime_pm) {
718 ret = pm_runtime_get_sync(master->dev.parent);
719 if (ret < 0) {
720 dev_err(&master->dev, "Failed to power device: %d\n",
721 ret);
722 return;
723 }
724 }
725
726 if (!was_busy)
727 trace_spi_master_busy(master);
728
729 if (!was_busy && master->prepare_transfer_hardware) {
730 ret = master->prepare_transfer_hardware(master);
731 if (ret) {
732 dev_err(&master->dev,
733 "failed to prepare transfer hardware\n");
734
735 if (master->auto_runtime_pm)
736 pm_runtime_put(master->dev.parent);
737 return;
738 }
739 }
740
741 trace_spi_message_start(master->cur_msg);
742
743 if (master->prepare_message) {
744 ret = master->prepare_message(master, master->cur_msg);
745 if (ret) {
746 dev_err(&master->dev,
747 "failed to prepare message: %d\n", ret);
748 master->cur_msg->status = ret;
749 spi_finalize_current_message(master);
750 return;
751 }
752 master->cur_msg_prepared = true;
753 }
754
755 ret = master->transfer_one_message(master, master->cur_msg);
756 if (ret) {
757 dev_err(&master->dev,
758 "failed to transfer one message from queue\n");
759 return;
760 }
761 }
762
763 static int spi_init_queue(struct spi_master *master)
764 {
765 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
766
767 INIT_LIST_HEAD(&master->queue);
768 spin_lock_init(&master->queue_lock);
769
770 master->running = false;
771 master->busy = false;
772
773 init_kthread_worker(&master->kworker);
774 master->kworker_task = kthread_run(kthread_worker_fn,
775 &master->kworker, "%s",
776 dev_name(&master->dev));
777 if (IS_ERR(master->kworker_task)) {
778 dev_err(&master->dev, "failed to create message pump task\n");
779 return -ENOMEM;
780 }
781 init_kthread_work(&master->pump_messages, spi_pump_messages);
782
783 /*
784 * Master config will indicate if this controller should run the
785 * message pump with high (realtime) priority to reduce the transfer
786 * latency on the bus by minimising the delay between a transfer
787 * request and the scheduling of the message pump thread. Without this
788 * setting the message pump thread will remain at default priority.
789 */
790 if (master->rt) {
791 dev_info(&master->dev,
792 "will run message pump with realtime priority\n");
793 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
794 }
795
796 return 0;
797 }
798
799 /**
800 * spi_get_next_queued_message() - called by driver to check for queued
801 * messages
802 * @master: the master to check for queued messages
803 *
804 * If there are more messages in the queue, the next message is returned from
805 * this call.
806 */
807 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
808 {
809 struct spi_message *next;
810 unsigned long flags;
811
812 /* get a pointer to the next message, if any */
813 spin_lock_irqsave(&master->queue_lock, flags);
814 next = list_first_entry_or_null(&master->queue, struct spi_message,
815 queue);
816 spin_unlock_irqrestore(&master->queue_lock, flags);
817
818 return next;
819 }
820 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
821
822 /**
823 * spi_finalize_current_message() - the current message is complete
824 * @master: the master to return the message to
825 *
826 * Called by the driver to notify the core that the message in the front of the
827 * queue is complete and can be removed from the queue.
828 */
829 void spi_finalize_current_message(struct spi_master *master)
830 {
831 struct spi_message *mesg;
832 unsigned long flags;
833 int ret;
834
835 spin_lock_irqsave(&master->queue_lock, flags);
836 mesg = master->cur_msg;
837 master->cur_msg = NULL;
838
839 queue_kthread_work(&master->kworker, &master->pump_messages);
840 spin_unlock_irqrestore(&master->queue_lock, flags);
841
842 if (master->cur_msg_prepared && master->unprepare_message) {
843 ret = master->unprepare_message(master, mesg);
844 if (ret) {
845 dev_err(&master->dev,
846 "failed to unprepare message: %d\n", ret);
847 }
848 }
849 master->cur_msg_prepared = false;
850
851 mesg->state = NULL;
852 if (mesg->complete)
853 mesg->complete(mesg->context);
854
855 trace_spi_message_done(mesg);
856 }
857 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
858
859 static int spi_start_queue(struct spi_master *master)
860 {
861 unsigned long flags;
862
863 spin_lock_irqsave(&master->queue_lock, flags);
864
865 if (master->running || master->busy) {
866 spin_unlock_irqrestore(&master->queue_lock, flags);
867 return -EBUSY;
868 }
869
870 master->running = true;
871 master->cur_msg = NULL;
872 spin_unlock_irqrestore(&master->queue_lock, flags);
873
874 queue_kthread_work(&master->kworker, &master->pump_messages);
875
876 return 0;
877 }
878
879 static int spi_stop_queue(struct spi_master *master)
880 {
881 unsigned long flags;
882 unsigned limit = 500;
883 int ret = 0;
884
885 spin_lock_irqsave(&master->queue_lock, flags);
886
887 /*
888 * This is a bit lame, but is optimized for the common execution path.
889 * A wait_queue on the master->busy could be used, but then the common
890 * execution path (pump_messages) would be required to call wake_up or
891 * friends on every SPI message. Do this instead.
892 */
893 while ((!list_empty(&master->queue) || master->busy) && limit--) {
894 spin_unlock_irqrestore(&master->queue_lock, flags);
895 msleep(10);
896 spin_lock_irqsave(&master->queue_lock, flags);
897 }
898
899 if (!list_empty(&master->queue) || master->busy)
900 ret = -EBUSY;
901 else
902 master->running = false;
903
904 spin_unlock_irqrestore(&master->queue_lock, flags);
905
906 if (ret) {
907 dev_warn(&master->dev,
908 "could not stop message queue\n");
909 return ret;
910 }
911 return ret;
912 }
913
914 static int spi_destroy_queue(struct spi_master *master)
915 {
916 int ret;
917
918 ret = spi_stop_queue(master);
919
920 /*
921 * flush_kthread_worker will block until all work is done.
922 * If the reason that stop_queue timed out is that the work will never
923 * finish, then it does no good to call flush/stop thread, so
924 * return anyway.
925 */
926 if (ret) {
927 dev_err(&master->dev, "problem destroying queue\n");
928 return ret;
929 }
930
931 flush_kthread_worker(&master->kworker);
932 kthread_stop(master->kworker_task);
933
934 return 0;
935 }
936
937 /**
938 * spi_queued_transfer - transfer function for queued transfers
939 * @spi: spi device which is requesting transfer
940 * @msg: spi message which is to handled is queued to driver queue
941 */
942 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
943 {
944 struct spi_master *master = spi->master;
945 unsigned long flags;
946
947 spin_lock_irqsave(&master->queue_lock, flags);
948
949 if (!master->running) {
950 spin_unlock_irqrestore(&master->queue_lock, flags);
951 return -ESHUTDOWN;
952 }
953 msg->actual_length = 0;
954 msg->status = -EINPROGRESS;
955
956 list_add_tail(&msg->queue, &master->queue);
957 if (!master->busy)
958 queue_kthread_work(&master->kworker, &master->pump_messages);
959
960 spin_unlock_irqrestore(&master->queue_lock, flags);
961 return 0;
962 }
963
964 static int spi_master_initialize_queue(struct spi_master *master)
965 {
966 int ret;
967
968 master->queued = true;
969 master->transfer = spi_queued_transfer;
970 if (!master->transfer_one_message)
971 master->transfer_one_message = spi_transfer_one_message;
972
973 /* Initialize and start queue */
974 ret = spi_init_queue(master);
975 if (ret) {
976 dev_err(&master->dev, "problem initializing queue\n");
977 goto err_init_queue;
978 }
979 ret = spi_start_queue(master);
980 if (ret) {
981 dev_err(&master->dev, "problem starting queue\n");
982 goto err_start_queue;
983 }
984
985 return 0;
986
987 err_start_queue:
988 err_init_queue:
989 spi_destroy_queue(master);
990 return ret;
991 }
992
993 /*-------------------------------------------------------------------------*/
994
995 #if defined(CONFIG_OF)
996 /**
997 * of_register_spi_devices() - Register child devices onto the SPI bus
998 * @master: Pointer to spi_master device
999 *
1000 * Registers an spi_device for each child node of master node which has a 'reg'
1001 * property.
1002 */
1003 static void of_register_spi_devices(struct spi_master *master)
1004 {
1005 struct spi_device *spi;
1006 struct device_node *nc;
1007 int rc;
1008 u32 value;
1009
1010 if (!master->dev.of_node)
1011 return;
1012
1013 for_each_available_child_of_node(master->dev.of_node, nc) {
1014 /* Alloc an spi_device */
1015 spi = spi_alloc_device(master);
1016 if (!spi) {
1017 dev_err(&master->dev, "spi_device alloc error for %s\n",
1018 nc->full_name);
1019 spi_dev_put(spi);
1020 continue;
1021 }
1022
1023 /* Select device driver */
1024 if (of_modalias_node(nc, spi->modalias,
1025 sizeof(spi->modalias)) < 0) {
1026 dev_err(&master->dev, "cannot find modalias for %s\n",
1027 nc->full_name);
1028 spi_dev_put(spi);
1029 continue;
1030 }
1031
1032 /* Device address */
1033 rc = of_property_read_u32(nc, "reg", &value);
1034 if (rc) {
1035 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1036 nc->full_name, rc);
1037 spi_dev_put(spi);
1038 continue;
1039 }
1040 spi->chip_select = value;
1041
1042 /* Mode (clock phase/polarity/etc.) */
1043 if (of_find_property(nc, "spi-cpha", NULL))
1044 spi->mode |= SPI_CPHA;
1045 if (of_find_property(nc, "spi-cpol", NULL))
1046 spi->mode |= SPI_CPOL;
1047 if (of_find_property(nc, "spi-cs-high", NULL))
1048 spi->mode |= SPI_CS_HIGH;
1049 if (of_find_property(nc, "spi-3wire", NULL))
1050 spi->mode |= SPI_3WIRE;
1051
1052 /* Device DUAL/QUAD mode */
1053 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1054 switch (value) {
1055 case 1:
1056 break;
1057 case 2:
1058 spi->mode |= SPI_TX_DUAL;
1059 break;
1060 case 4:
1061 spi->mode |= SPI_TX_QUAD;
1062 break;
1063 default:
1064 dev_err(&master->dev,
1065 "spi-tx-bus-width %d not supported\n",
1066 value);
1067 spi_dev_put(spi);
1068 continue;
1069 }
1070 }
1071
1072 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1073 switch (value) {
1074 case 1:
1075 break;
1076 case 2:
1077 spi->mode |= SPI_RX_DUAL;
1078 break;
1079 case 4:
1080 spi->mode |= SPI_RX_QUAD;
1081 break;
1082 default:
1083 dev_err(&master->dev,
1084 "spi-rx-bus-width %d not supported\n",
1085 value);
1086 spi_dev_put(spi);
1087 continue;
1088 }
1089 }
1090
1091 /* Device speed */
1092 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1093 if (rc) {
1094 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1095 nc->full_name, rc);
1096 spi_dev_put(spi);
1097 continue;
1098 }
1099 spi->max_speed_hz = value;
1100
1101 /* IRQ */
1102 spi->irq = irq_of_parse_and_map(nc, 0);
1103
1104 /* Store a pointer to the node in the device structure */
1105 of_node_get(nc);
1106 spi->dev.of_node = nc;
1107
1108 /* Register the new device */
1109 request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
1110 rc = spi_add_device(spi);
1111 if (rc) {
1112 dev_err(&master->dev, "spi_device register error %s\n",
1113 nc->full_name);
1114 spi_dev_put(spi);
1115 }
1116
1117 }
1118 }
1119 #else
1120 static void of_register_spi_devices(struct spi_master *master) { }
1121 #endif
1122
1123 #ifdef CONFIG_ACPI
1124 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1125 {
1126 struct spi_device *spi = data;
1127
1128 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1129 struct acpi_resource_spi_serialbus *sb;
1130
1131 sb = &ares->data.spi_serial_bus;
1132 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1133 spi->chip_select = sb->device_selection;
1134 spi->max_speed_hz = sb->connection_speed;
1135
1136 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1137 spi->mode |= SPI_CPHA;
1138 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1139 spi->mode |= SPI_CPOL;
1140 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1141 spi->mode |= SPI_CS_HIGH;
1142 }
1143 } else if (spi->irq < 0) {
1144 struct resource r;
1145
1146 if (acpi_dev_resource_interrupt(ares, 0, &r))
1147 spi->irq = r.start;
1148 }
1149
1150 /* Always tell the ACPI core to skip this resource */
1151 return 1;
1152 }
1153
1154 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1155 void *data, void **return_value)
1156 {
1157 struct spi_master *master = data;
1158 struct list_head resource_list;
1159 struct acpi_device *adev;
1160 struct spi_device *spi;
1161 int ret;
1162
1163 if (acpi_bus_get_device(handle, &adev))
1164 return AE_OK;
1165 if (acpi_bus_get_status(adev) || !adev->status.present)
1166 return AE_OK;
1167
1168 spi = spi_alloc_device(master);
1169 if (!spi) {
1170 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1171 dev_name(&adev->dev));
1172 return AE_NO_MEMORY;
1173 }
1174
1175 ACPI_COMPANION_SET(&spi->dev, adev);
1176 spi->irq = -1;
1177
1178 INIT_LIST_HEAD(&resource_list);
1179 ret = acpi_dev_get_resources(adev, &resource_list,
1180 acpi_spi_add_resource, spi);
1181 acpi_dev_free_resource_list(&resource_list);
1182
1183 if (ret < 0 || !spi->max_speed_hz) {
1184 spi_dev_put(spi);
1185 return AE_OK;
1186 }
1187
1188 adev->power.flags.ignore_parent = true;
1189 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1190 if (spi_add_device(spi)) {
1191 adev->power.flags.ignore_parent = false;
1192 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1193 dev_name(&adev->dev));
1194 spi_dev_put(spi);
1195 }
1196
1197 return AE_OK;
1198 }
1199
1200 static void acpi_register_spi_devices(struct spi_master *master)
1201 {
1202 acpi_status status;
1203 acpi_handle handle;
1204
1205 handle = ACPI_HANDLE(master->dev.parent);
1206 if (!handle)
1207 return;
1208
1209 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1210 acpi_spi_add_device, NULL,
1211 master, NULL);
1212 if (ACPI_FAILURE(status))
1213 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1214 }
1215 #else
1216 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1217 #endif /* CONFIG_ACPI */
1218
1219 static void spi_master_release(struct device *dev)
1220 {
1221 struct spi_master *master;
1222
1223 master = container_of(dev, struct spi_master, dev);
1224 kfree(master);
1225 }
1226
1227 static struct class spi_master_class = {
1228 .name = "spi_master",
1229 .owner = THIS_MODULE,
1230 .dev_release = spi_master_release,
1231 };
1232
1233
1234
1235 /**
1236 * spi_alloc_master - allocate SPI master controller
1237 * @dev: the controller, possibly using the platform_bus
1238 * @size: how much zeroed driver-private data to allocate; the pointer to this
1239 * memory is in the driver_data field of the returned device,
1240 * accessible with spi_master_get_devdata().
1241 * Context: can sleep
1242 *
1243 * This call is used only by SPI master controller drivers, which are the
1244 * only ones directly touching chip registers. It's how they allocate
1245 * an spi_master structure, prior to calling spi_register_master().
1246 *
1247 * This must be called from context that can sleep. It returns the SPI
1248 * master structure on success, else NULL.
1249 *
1250 * The caller is responsible for assigning the bus number and initializing
1251 * the master's methods before calling spi_register_master(); and (after errors
1252 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1253 * leak.
1254 */
1255 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1256 {
1257 struct spi_master *master;
1258
1259 if (!dev)
1260 return NULL;
1261
1262 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1263 if (!master)
1264 return NULL;
1265
1266 device_initialize(&master->dev);
1267 master->bus_num = -1;
1268 master->num_chipselect = 1;
1269 master->dev.class = &spi_master_class;
1270 master->dev.parent = get_device(dev);
1271 spi_master_set_devdata(master, &master[1]);
1272
1273 return master;
1274 }
1275 EXPORT_SYMBOL_GPL(spi_alloc_master);
1276
1277 #ifdef CONFIG_OF
1278 static int of_spi_register_master(struct spi_master *master)
1279 {
1280 int nb, i, *cs;
1281 struct device_node *np = master->dev.of_node;
1282
1283 if (!np)
1284 return 0;
1285
1286 nb = of_gpio_named_count(np, "cs-gpios");
1287 master->num_chipselect = max_t(int, nb, master->num_chipselect);
1288
1289 /* Return error only for an incorrectly formed cs-gpios property */
1290 if (nb == 0 || nb == -ENOENT)
1291 return 0;
1292 else if (nb < 0)
1293 return nb;
1294
1295 cs = devm_kzalloc(&master->dev,
1296 sizeof(int) * master->num_chipselect,
1297 GFP_KERNEL);
1298 master->cs_gpios = cs;
1299
1300 if (!master->cs_gpios)
1301 return -ENOMEM;
1302
1303 for (i = 0; i < master->num_chipselect; i++)
1304 cs[i] = -ENOENT;
1305
1306 for (i = 0; i < nb; i++)
1307 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1308
1309 return 0;
1310 }
1311 #else
1312 static int of_spi_register_master(struct spi_master *master)
1313 {
1314 return 0;
1315 }
1316 #endif
1317
1318 /**
1319 * spi_register_master - register SPI master controller
1320 * @master: initialized master, originally from spi_alloc_master()
1321 * Context: can sleep
1322 *
1323 * SPI master controllers connect to their drivers using some non-SPI bus,
1324 * such as the platform bus. The final stage of probe() in that code
1325 * includes calling spi_register_master() to hook up to this SPI bus glue.
1326 *
1327 * SPI controllers use board specific (often SOC specific) bus numbers,
1328 * and board-specific addressing for SPI devices combines those numbers
1329 * with chip select numbers. Since SPI does not directly support dynamic
1330 * device identification, boards need configuration tables telling which
1331 * chip is at which address.
1332 *
1333 * This must be called from context that can sleep. It returns zero on
1334 * success, else a negative error code (dropping the master's refcount).
1335 * After a successful return, the caller is responsible for calling
1336 * spi_unregister_master().
1337 */
1338 int spi_register_master(struct spi_master *master)
1339 {
1340 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1341 struct device *dev = master->dev.parent;
1342 struct boardinfo *bi;
1343 int status = -ENODEV;
1344 int dynamic = 0;
1345
1346 if (!dev)
1347 return -ENODEV;
1348
1349 status = of_spi_register_master(master);
1350 if (status)
1351 return status;
1352
1353 /* even if it's just one always-selected device, there must
1354 * be at least one chipselect
1355 */
1356 if (master->num_chipselect == 0)
1357 return -EINVAL;
1358
1359 if ((master->bus_num < 0) && master->dev.of_node)
1360 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1361
1362 /* convention: dynamically assigned bus IDs count down from the max */
1363 if (master->bus_num < 0) {
1364 /* FIXME switch to an IDR based scheme, something like
1365 * I2C now uses, so we can't run out of "dynamic" IDs
1366 */
1367 master->bus_num = atomic_dec_return(&dyn_bus_id);
1368 dynamic = 1;
1369 }
1370
1371 spin_lock_init(&master->bus_lock_spinlock);
1372 mutex_init(&master->bus_lock_mutex);
1373 master->bus_lock_flag = 0;
1374 init_completion(&master->xfer_completion);
1375
1376 /* register the device, then userspace will see it.
1377 * registration fails if the bus ID is in use.
1378 */
1379 dev_set_name(&master->dev, "spi%u", master->bus_num);
1380 status = device_add(&master->dev);
1381 if (status < 0)
1382 goto done;
1383 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1384 dynamic ? " (dynamic)" : "");
1385
1386 /* If we're using a queued driver, start the queue */
1387 if (master->transfer)
1388 dev_info(dev, "master is unqueued, this is deprecated\n");
1389 else {
1390 status = spi_master_initialize_queue(master);
1391 if (status) {
1392 device_del(&master->dev);
1393 goto done;
1394 }
1395 }
1396
1397 mutex_lock(&board_lock);
1398 list_add_tail(&master->list, &spi_master_list);
1399 list_for_each_entry(bi, &board_list, list)
1400 spi_match_master_to_boardinfo(master, &bi->board_info);
1401 mutex_unlock(&board_lock);
1402
1403 /* Register devices from the device tree and ACPI */
1404 of_register_spi_devices(master);
1405 acpi_register_spi_devices(master);
1406 done:
1407 return status;
1408 }
1409 EXPORT_SYMBOL_GPL(spi_register_master);
1410
1411 static void devm_spi_unregister(struct device *dev, void *res)
1412 {
1413 spi_unregister_master(*(struct spi_master **)res);
1414 }
1415
1416 /**
1417 * dev_spi_register_master - register managed SPI master controller
1418 * @dev: device managing SPI master
1419 * @master: initialized master, originally from spi_alloc_master()
1420 * Context: can sleep
1421 *
1422 * Register a SPI device as with spi_register_master() which will
1423 * automatically be unregister
1424 */
1425 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1426 {
1427 struct spi_master **ptr;
1428 int ret;
1429
1430 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1431 if (!ptr)
1432 return -ENOMEM;
1433
1434 ret = spi_register_master(master);
1435 if (!ret) {
1436 *ptr = master;
1437 devres_add(dev, ptr);
1438 } else {
1439 devres_free(ptr);
1440 }
1441
1442 return ret;
1443 }
1444 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1445
1446 static int __unregister(struct device *dev, void *null)
1447 {
1448 spi_unregister_device(to_spi_device(dev));
1449 return 0;
1450 }
1451
1452 /**
1453 * spi_unregister_master - unregister SPI master controller
1454 * @master: the master being unregistered
1455 * Context: can sleep
1456 *
1457 * This call is used only by SPI master controller drivers, which are the
1458 * only ones directly touching chip registers.
1459 *
1460 * This must be called from context that can sleep.
1461 */
1462 void spi_unregister_master(struct spi_master *master)
1463 {
1464 int dummy;
1465
1466 if (master->queued) {
1467 if (spi_destroy_queue(master))
1468 dev_err(&master->dev, "queue remove failed\n");
1469 }
1470
1471 mutex_lock(&board_lock);
1472 list_del(&master->list);
1473 mutex_unlock(&board_lock);
1474
1475 dummy = device_for_each_child(&master->dev, NULL, __unregister);
1476 device_unregister(&master->dev);
1477 }
1478 EXPORT_SYMBOL_GPL(spi_unregister_master);
1479
1480 int spi_master_suspend(struct spi_master *master)
1481 {
1482 int ret;
1483
1484 /* Basically no-ops for non-queued masters */
1485 if (!master->queued)
1486 return 0;
1487
1488 ret = spi_stop_queue(master);
1489 if (ret)
1490 dev_err(&master->dev, "queue stop failed\n");
1491
1492 return ret;
1493 }
1494 EXPORT_SYMBOL_GPL(spi_master_suspend);
1495
1496 int spi_master_resume(struct spi_master *master)
1497 {
1498 int ret;
1499
1500 if (!master->queued)
1501 return 0;
1502
1503 ret = spi_start_queue(master);
1504 if (ret)
1505 dev_err(&master->dev, "queue restart failed\n");
1506
1507 return ret;
1508 }
1509 EXPORT_SYMBOL_GPL(spi_master_resume);
1510
1511 static int __spi_master_match(struct device *dev, const void *data)
1512 {
1513 struct spi_master *m;
1514 const u16 *bus_num = data;
1515
1516 m = container_of(dev, struct spi_master, dev);
1517 return m->bus_num == *bus_num;
1518 }
1519
1520 /**
1521 * spi_busnum_to_master - look up master associated with bus_num
1522 * @bus_num: the master's bus number
1523 * Context: can sleep
1524 *
1525 * This call may be used with devices that are registered after
1526 * arch init time. It returns a refcounted pointer to the relevant
1527 * spi_master (which the caller must release), or NULL if there is
1528 * no such master registered.
1529 */
1530 struct spi_master *spi_busnum_to_master(u16 bus_num)
1531 {
1532 struct device *dev;
1533 struct spi_master *master = NULL;
1534
1535 dev = class_find_device(&spi_master_class, NULL, &bus_num,
1536 __spi_master_match);
1537 if (dev)
1538 master = container_of(dev, struct spi_master, dev);
1539 /* reference got in class_find_device */
1540 return master;
1541 }
1542 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1543
1544
1545 /*-------------------------------------------------------------------------*/
1546
1547 /* Core methods for SPI master protocol drivers. Some of the
1548 * other core methods are currently defined as inline functions.
1549 */
1550
1551 /**
1552 * spi_setup - setup SPI mode and clock rate
1553 * @spi: the device whose settings are being modified
1554 * Context: can sleep, and no requests are queued to the device
1555 *
1556 * SPI protocol drivers may need to update the transfer mode if the
1557 * device doesn't work with its default. They may likewise need
1558 * to update clock rates or word sizes from initial values. This function
1559 * changes those settings, and must be called from a context that can sleep.
1560 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1561 * effect the next time the device is selected and data is transferred to
1562 * or from it. When this function returns, the spi device is deselected.
1563 *
1564 * Note that this call will fail if the protocol driver specifies an option
1565 * that the underlying controller or its driver does not support. For
1566 * example, not all hardware supports wire transfers using nine bit words,
1567 * LSB-first wire encoding, or active-high chipselects.
1568 */
1569 int spi_setup(struct spi_device *spi)
1570 {
1571 unsigned bad_bits;
1572 int status = 0;
1573
1574 /* check mode to prevent that DUAL and QUAD set at the same time
1575 */
1576 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1577 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1578 dev_err(&spi->dev,
1579 "setup: can not select dual and quad at the same time\n");
1580 return -EINVAL;
1581 }
1582 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1583 */
1584 if ((spi->mode & SPI_3WIRE) && (spi->mode &
1585 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1586 return -EINVAL;
1587 /* help drivers fail *cleanly* when they need options
1588 * that aren't supported with their current master
1589 */
1590 bad_bits = spi->mode & ~spi->master->mode_bits;
1591 if (bad_bits) {
1592 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1593 bad_bits);
1594 return -EINVAL;
1595 }
1596
1597 if (!spi->bits_per_word)
1598 spi->bits_per_word = 8;
1599
1600 if (spi->master->setup)
1601 status = spi->master->setup(spi);
1602
1603 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1604 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1605 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1606 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1607 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1608 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1609 spi->bits_per_word, spi->max_speed_hz,
1610 status);
1611
1612 return status;
1613 }
1614 EXPORT_SYMBOL_GPL(spi_setup);
1615
1616 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
1617 {
1618 struct spi_master *master = spi->master;
1619 struct spi_transfer *xfer;
1620
1621 if (list_empty(&message->transfers))
1622 return -EINVAL;
1623 if (!message->complete)
1624 return -EINVAL;
1625
1626 /* Half-duplex links include original MicroWire, and ones with
1627 * only one data pin like SPI_3WIRE (switches direction) or where
1628 * either MOSI or MISO is missing. They can also be caused by
1629 * software limitations.
1630 */
1631 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1632 || (spi->mode & SPI_3WIRE)) {
1633 unsigned flags = master->flags;
1634
1635 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1636 if (xfer->rx_buf && xfer->tx_buf)
1637 return -EINVAL;
1638 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1639 return -EINVAL;
1640 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1641 return -EINVAL;
1642 }
1643 }
1644
1645 /**
1646 * Set transfer bits_per_word and max speed as spi device default if
1647 * it is not set for this transfer.
1648 * Set transfer tx_nbits and rx_nbits as single transfer default
1649 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1650 */
1651 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1652 message->frame_length += xfer->len;
1653 if (!xfer->bits_per_word)
1654 xfer->bits_per_word = spi->bits_per_word;
1655 if (!xfer->speed_hz) {
1656 xfer->speed_hz = spi->max_speed_hz;
1657 if (master->max_speed_hz &&
1658 xfer->speed_hz > master->max_speed_hz)
1659 xfer->speed_hz = master->max_speed_hz;
1660 }
1661
1662 if (master->bits_per_word_mask) {
1663 /* Only 32 bits fit in the mask */
1664 if (xfer->bits_per_word > 32)
1665 return -EINVAL;
1666 if (!(master->bits_per_word_mask &
1667 BIT(xfer->bits_per_word - 1)))
1668 return -EINVAL;
1669 }
1670
1671 if (xfer->speed_hz && master->min_speed_hz &&
1672 xfer->speed_hz < master->min_speed_hz)
1673 return -EINVAL;
1674 if (xfer->speed_hz && master->max_speed_hz &&
1675 xfer->speed_hz > master->max_speed_hz)
1676 return -EINVAL;
1677
1678 if (xfer->tx_buf && !xfer->tx_nbits)
1679 xfer->tx_nbits = SPI_NBITS_SINGLE;
1680 if (xfer->rx_buf && !xfer->rx_nbits)
1681 xfer->rx_nbits = SPI_NBITS_SINGLE;
1682 /* check transfer tx/rx_nbits:
1683 * 1. check the value matches one of single, dual and quad
1684 * 2. check tx/rx_nbits match the mode in spi_device
1685 */
1686 if (xfer->tx_buf) {
1687 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1688 xfer->tx_nbits != SPI_NBITS_DUAL &&
1689 xfer->tx_nbits != SPI_NBITS_QUAD)
1690 return -EINVAL;
1691 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1692 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1693 return -EINVAL;
1694 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1695 !(spi->mode & SPI_TX_QUAD))
1696 return -EINVAL;
1697 }
1698 /* check transfer rx_nbits */
1699 if (xfer->rx_buf) {
1700 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1701 xfer->rx_nbits != SPI_NBITS_DUAL &&
1702 xfer->rx_nbits != SPI_NBITS_QUAD)
1703 return -EINVAL;
1704 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1705 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1706 return -EINVAL;
1707 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1708 !(spi->mode & SPI_RX_QUAD))
1709 return -EINVAL;
1710 }
1711 }
1712
1713 message->status = -EINPROGRESS;
1714
1715 return 0;
1716 }
1717
1718 static int __spi_async(struct spi_device *spi, struct spi_message *message)
1719 {
1720 struct spi_master *master = spi->master;
1721
1722 message->spi = spi;
1723
1724 trace_spi_message_submit(message);
1725
1726 return master->transfer(spi, message);
1727 }
1728
1729 /**
1730 * spi_async - asynchronous SPI transfer
1731 * @spi: device with which data will be exchanged
1732 * @message: describes the data transfers, including completion callback
1733 * Context: any (irqs may be blocked, etc)
1734 *
1735 * This call may be used in_irq and other contexts which can't sleep,
1736 * as well as from task contexts which can sleep.
1737 *
1738 * The completion callback is invoked in a context which can't sleep.
1739 * Before that invocation, the value of message->status is undefined.
1740 * When the callback is issued, message->status holds either zero (to
1741 * indicate complete success) or a negative error code. After that
1742 * callback returns, the driver which issued the transfer request may
1743 * deallocate the associated memory; it's no longer in use by any SPI
1744 * core or controller driver code.
1745 *
1746 * Note that although all messages to a spi_device are handled in
1747 * FIFO order, messages may go to different devices in other orders.
1748 * Some device might be higher priority, or have various "hard" access
1749 * time requirements, for example.
1750 *
1751 * On detection of any fault during the transfer, processing of
1752 * the entire message is aborted, and the device is deselected.
1753 * Until returning from the associated message completion callback,
1754 * no other spi_message queued to that device will be processed.
1755 * (This rule applies equally to all the synchronous transfer calls,
1756 * which are wrappers around this core asynchronous primitive.)
1757 */
1758 int spi_async(struct spi_device *spi, struct spi_message *message)
1759 {
1760 struct spi_master *master = spi->master;
1761 int ret;
1762 unsigned long flags;
1763
1764 ret = __spi_validate(spi, message);
1765 if (ret != 0)
1766 return ret;
1767
1768 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1769
1770 if (master->bus_lock_flag)
1771 ret = -EBUSY;
1772 else
1773 ret = __spi_async(spi, message);
1774
1775 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1776
1777 return ret;
1778 }
1779 EXPORT_SYMBOL_GPL(spi_async);
1780
1781 /**
1782 * spi_async_locked - version of spi_async with exclusive bus usage
1783 * @spi: device with which data will be exchanged
1784 * @message: describes the data transfers, including completion callback
1785 * Context: any (irqs may be blocked, etc)
1786 *
1787 * This call may be used in_irq and other contexts which can't sleep,
1788 * as well as from task contexts which can sleep.
1789 *
1790 * The completion callback is invoked in a context which can't sleep.
1791 * Before that invocation, the value of message->status is undefined.
1792 * When the callback is issued, message->status holds either zero (to
1793 * indicate complete success) or a negative error code. After that
1794 * callback returns, the driver which issued the transfer request may
1795 * deallocate the associated memory; it's no longer in use by any SPI
1796 * core or controller driver code.
1797 *
1798 * Note that although all messages to a spi_device are handled in
1799 * FIFO order, messages may go to different devices in other orders.
1800 * Some device might be higher priority, or have various "hard" access
1801 * time requirements, for example.
1802 *
1803 * On detection of any fault during the transfer, processing of
1804 * the entire message is aborted, and the device is deselected.
1805 * Until returning from the associated message completion callback,
1806 * no other spi_message queued to that device will be processed.
1807 * (This rule applies equally to all the synchronous transfer calls,
1808 * which are wrappers around this core asynchronous primitive.)
1809 */
1810 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
1811 {
1812 struct spi_master *master = spi->master;
1813 int ret;
1814 unsigned long flags;
1815
1816 ret = __spi_validate(spi, message);
1817 if (ret != 0)
1818 return ret;
1819
1820 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1821
1822 ret = __spi_async(spi, message);
1823
1824 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1825
1826 return ret;
1827
1828 }
1829 EXPORT_SYMBOL_GPL(spi_async_locked);
1830
1831
1832 /*-------------------------------------------------------------------------*/
1833
1834 /* Utility methods for SPI master protocol drivers, layered on
1835 * top of the core. Some other utility methods are defined as
1836 * inline functions.
1837 */
1838
1839 static void spi_complete(void *arg)
1840 {
1841 complete(arg);
1842 }
1843
1844 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
1845 int bus_locked)
1846 {
1847 DECLARE_COMPLETION_ONSTACK(done);
1848 int status;
1849 struct spi_master *master = spi->master;
1850
1851 message->complete = spi_complete;
1852 message->context = &done;
1853
1854 if (!bus_locked)
1855 mutex_lock(&master->bus_lock_mutex);
1856
1857 status = spi_async_locked(spi, message);
1858
1859 if (!bus_locked)
1860 mutex_unlock(&master->bus_lock_mutex);
1861
1862 if (status == 0) {
1863 wait_for_completion(&done);
1864 status = message->status;
1865 }
1866 message->context = NULL;
1867 return status;
1868 }
1869
1870 /**
1871 * spi_sync - blocking/synchronous SPI data transfers
1872 * @spi: device with which data will be exchanged
1873 * @message: describes the data transfers
1874 * Context: can sleep
1875 *
1876 * This call may only be used from a context that may sleep. The sleep
1877 * is non-interruptible, and has no timeout. Low-overhead controller
1878 * drivers may DMA directly into and out of the message buffers.
1879 *
1880 * Note that the SPI device's chip select is active during the message,
1881 * and then is normally disabled between messages. Drivers for some
1882 * frequently-used devices may want to minimize costs of selecting a chip,
1883 * by leaving it selected in anticipation that the next message will go
1884 * to the same chip. (That may increase power usage.)
1885 *
1886 * Also, the caller is guaranteeing that the memory associated with the
1887 * message will not be freed before this call returns.
1888 *
1889 * It returns zero on success, else a negative error code.
1890 */
1891 int spi_sync(struct spi_device *spi, struct spi_message *message)
1892 {
1893 return __spi_sync(spi, message, 0);
1894 }
1895 EXPORT_SYMBOL_GPL(spi_sync);
1896
1897 /**
1898 * spi_sync_locked - version of spi_sync with exclusive bus usage
1899 * @spi: device with which data will be exchanged
1900 * @message: describes the data transfers
1901 * Context: can sleep
1902 *
1903 * This call may only be used from a context that may sleep. The sleep
1904 * is non-interruptible, and has no timeout. Low-overhead controller
1905 * drivers may DMA directly into and out of the message buffers.
1906 *
1907 * This call should be used by drivers that require exclusive access to the
1908 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
1909 * be released by a spi_bus_unlock call when the exclusive access is over.
1910 *
1911 * It returns zero on success, else a negative error code.
1912 */
1913 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
1914 {
1915 return __spi_sync(spi, message, 1);
1916 }
1917 EXPORT_SYMBOL_GPL(spi_sync_locked);
1918
1919 /**
1920 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
1921 * @master: SPI bus master that should be locked for exclusive bus access
1922 * Context: can sleep
1923 *
1924 * This call may only be used from a context that may sleep. The sleep
1925 * is non-interruptible, and has no timeout.
1926 *
1927 * This call should be used by drivers that require exclusive access to the
1928 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
1929 * exclusive access is over. Data transfer must be done by spi_sync_locked
1930 * and spi_async_locked calls when the SPI bus lock is held.
1931 *
1932 * It returns zero on success, else a negative error code.
1933 */
1934 int spi_bus_lock(struct spi_master *master)
1935 {
1936 unsigned long flags;
1937
1938 mutex_lock(&master->bus_lock_mutex);
1939
1940 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1941 master->bus_lock_flag = 1;
1942 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1943
1944 /* mutex remains locked until spi_bus_unlock is called */
1945
1946 return 0;
1947 }
1948 EXPORT_SYMBOL_GPL(spi_bus_lock);
1949
1950 /**
1951 * spi_bus_unlock - release the lock for exclusive SPI bus usage
1952 * @master: SPI bus master that was locked for exclusive bus access
1953 * Context: can sleep
1954 *
1955 * This call may only be used from a context that may sleep. The sleep
1956 * is non-interruptible, and has no timeout.
1957 *
1958 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1959 * call.
1960 *
1961 * It returns zero on success, else a negative error code.
1962 */
1963 int spi_bus_unlock(struct spi_master *master)
1964 {
1965 master->bus_lock_flag = 0;
1966
1967 mutex_unlock(&master->bus_lock_mutex);
1968
1969 return 0;
1970 }
1971 EXPORT_SYMBOL_GPL(spi_bus_unlock);
1972
1973 /* portable code must never pass more than 32 bytes */
1974 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
1975
1976 static u8 *buf;
1977
1978 /**
1979 * spi_write_then_read - SPI synchronous write followed by read
1980 * @spi: device with which data will be exchanged
1981 * @txbuf: data to be written (need not be dma-safe)
1982 * @n_tx: size of txbuf, in bytes
1983 * @rxbuf: buffer into which data will be read (need not be dma-safe)
1984 * @n_rx: size of rxbuf, in bytes
1985 * Context: can sleep
1986 *
1987 * This performs a half duplex MicroWire style transaction with the
1988 * device, sending txbuf and then reading rxbuf. The return value
1989 * is zero for success, else a negative errno status code.
1990 * This call may only be used from a context that may sleep.
1991 *
1992 * Parameters to this routine are always copied using a small buffer;
1993 * portable code should never use this for more than 32 bytes.
1994 * Performance-sensitive or bulk transfer code should instead use
1995 * spi_{async,sync}() calls with dma-safe buffers.
1996 */
1997 int spi_write_then_read(struct spi_device *spi,
1998 const void *txbuf, unsigned n_tx,
1999 void *rxbuf, unsigned n_rx)
2000 {
2001 static DEFINE_MUTEX(lock);
2002
2003 int status;
2004 struct spi_message message;
2005 struct spi_transfer x[2];
2006 u8 *local_buf;
2007
2008 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2009 * copying here, (as a pure convenience thing), but we can
2010 * keep heap costs out of the hot path unless someone else is
2011 * using the pre-allocated buffer or the transfer is too large.
2012 */
2013 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2014 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2015 GFP_KERNEL | GFP_DMA);
2016 if (!local_buf)
2017 return -ENOMEM;
2018 } else {
2019 local_buf = buf;
2020 }
2021
2022 spi_message_init(&message);
2023 memset(x, 0, sizeof(x));
2024 if (n_tx) {
2025 x[0].len = n_tx;
2026 spi_message_add_tail(&x[0], &message);
2027 }
2028 if (n_rx) {
2029 x[1].len = n_rx;
2030 spi_message_add_tail(&x[1], &message);
2031 }
2032
2033 memcpy(local_buf, txbuf, n_tx);
2034 x[0].tx_buf = local_buf;
2035 x[1].rx_buf = local_buf + n_tx;
2036
2037 /* do the i/o */
2038 status = spi_sync(spi, &message);
2039 if (status == 0)
2040 memcpy(rxbuf, x[1].rx_buf, n_rx);
2041
2042 if (x[0].tx_buf == buf)
2043 mutex_unlock(&lock);
2044 else
2045 kfree(local_buf);
2046
2047 return status;
2048 }
2049 EXPORT_SYMBOL_GPL(spi_write_then_read);
2050
2051 /*-------------------------------------------------------------------------*/
2052
2053 static int __init spi_init(void)
2054 {
2055 int status;
2056
2057 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2058 if (!buf) {
2059 status = -ENOMEM;
2060 goto err0;
2061 }
2062
2063 status = bus_register(&spi_bus_type);
2064 if (status < 0)
2065 goto err1;
2066
2067 status = class_register(&spi_master_class);
2068 if (status < 0)
2069 goto err2;
2070 return 0;
2071
2072 err2:
2073 bus_unregister(&spi_bus_type);
2074 err1:
2075 kfree(buf);
2076 buf = NULL;
2077 err0:
2078 return status;
2079 }
2080
2081 /* board_info is normally registered in arch_initcall(),
2082 * but even essential drivers wait till later
2083 *
2084 * REVISIT only boardinfo really needs static linking. the rest (device and
2085 * driver registration) _could_ be dynamically linked (modular) ... costs
2086 * include needing to have boardinfo data structures be much more public.
2087 */
2088 postcore_initcall(spi_init);
2089