]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/spi/spi.c
Merge remote-tracking branches 'spi/topic/rockchip', 'spi/topic/rspi', 'spi/topic...
[mirror_ubuntu-hirsute-kernel.git] / drivers / spi / spi.c
1 /*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40 #include <linux/highmem.h>
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/spi.h>
44
45 static void spidev_release(struct device *dev)
46 {
47 struct spi_device *spi = to_spi_device(dev);
48
49 /* spi masters may cleanup for released devices */
50 if (spi->master->cleanup)
51 spi->master->cleanup(spi);
52
53 spi_master_put(spi->master);
54 kfree(spi);
55 }
56
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60 const struct spi_device *spi = to_spi_device(dev);
61 int len;
62
63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 if (len != -ENODEV)
65 return len;
66
67 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70
71 #define SPI_STATISTICS_ATTRS(field, file) \
72 static ssize_t spi_master_##field##_show(struct device *dev, \
73 struct device_attribute *attr, \
74 char *buf) \
75 { \
76 struct spi_master *master = container_of(dev, \
77 struct spi_master, dev); \
78 return spi_statistics_##field##_show(&master->statistics, buf); \
79 } \
80 static struct device_attribute dev_attr_spi_master_##field = { \
81 .attr = { .name = file, .mode = S_IRUGO }, \
82 .show = spi_master_##field##_show, \
83 }; \
84 static ssize_t spi_device_##field##_show(struct device *dev, \
85 struct device_attribute *attr, \
86 char *buf) \
87 { \
88 struct spi_device *spi = to_spi_device(dev); \
89 return spi_statistics_##field##_show(&spi->statistics, buf); \
90 } \
91 static struct device_attribute dev_attr_spi_device_##field = { \
92 .attr = { .name = file, .mode = S_IRUGO }, \
93 .show = spi_device_##field##_show, \
94 }
95
96 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
97 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
98 char *buf) \
99 { \
100 unsigned long flags; \
101 ssize_t len; \
102 spin_lock_irqsave(&stat->lock, flags); \
103 len = sprintf(buf, format_string, stat->field); \
104 spin_unlock_irqrestore(&stat->lock, flags); \
105 return len; \
106 } \
107 SPI_STATISTICS_ATTRS(name, file)
108
109 #define SPI_STATISTICS_SHOW(field, format_string) \
110 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
111 field, format_string)
112
113 SPI_STATISTICS_SHOW(messages, "%lu");
114 SPI_STATISTICS_SHOW(transfers, "%lu");
115 SPI_STATISTICS_SHOW(errors, "%lu");
116 SPI_STATISTICS_SHOW(timedout, "%lu");
117
118 SPI_STATISTICS_SHOW(spi_sync, "%lu");
119 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
120 SPI_STATISTICS_SHOW(spi_async, "%lu");
121
122 SPI_STATISTICS_SHOW(bytes, "%llu");
123 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
124 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
125
126 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
127 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
128 "transfer_bytes_histo_" number, \
129 transfer_bytes_histo[index], "%lu")
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
147
148 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
149
150 static struct attribute *spi_dev_attrs[] = {
151 &dev_attr_modalias.attr,
152 NULL,
153 };
154
155 static const struct attribute_group spi_dev_group = {
156 .attrs = spi_dev_attrs,
157 };
158
159 static struct attribute *spi_device_statistics_attrs[] = {
160 &dev_attr_spi_device_messages.attr,
161 &dev_attr_spi_device_transfers.attr,
162 &dev_attr_spi_device_errors.attr,
163 &dev_attr_spi_device_timedout.attr,
164 &dev_attr_spi_device_spi_sync.attr,
165 &dev_attr_spi_device_spi_sync_immediate.attr,
166 &dev_attr_spi_device_spi_async.attr,
167 &dev_attr_spi_device_bytes.attr,
168 &dev_attr_spi_device_bytes_rx.attr,
169 &dev_attr_spi_device_bytes_tx.attr,
170 &dev_attr_spi_device_transfer_bytes_histo0.attr,
171 &dev_attr_spi_device_transfer_bytes_histo1.attr,
172 &dev_attr_spi_device_transfer_bytes_histo2.attr,
173 &dev_attr_spi_device_transfer_bytes_histo3.attr,
174 &dev_attr_spi_device_transfer_bytes_histo4.attr,
175 &dev_attr_spi_device_transfer_bytes_histo5.attr,
176 &dev_attr_spi_device_transfer_bytes_histo6.attr,
177 &dev_attr_spi_device_transfer_bytes_histo7.attr,
178 &dev_attr_spi_device_transfer_bytes_histo8.attr,
179 &dev_attr_spi_device_transfer_bytes_histo9.attr,
180 &dev_attr_spi_device_transfer_bytes_histo10.attr,
181 &dev_attr_spi_device_transfer_bytes_histo11.attr,
182 &dev_attr_spi_device_transfer_bytes_histo12.attr,
183 &dev_attr_spi_device_transfer_bytes_histo13.attr,
184 &dev_attr_spi_device_transfer_bytes_histo14.attr,
185 &dev_attr_spi_device_transfer_bytes_histo15.attr,
186 &dev_attr_spi_device_transfer_bytes_histo16.attr,
187 &dev_attr_spi_device_transfers_split_maxsize.attr,
188 NULL,
189 };
190
191 static const struct attribute_group spi_device_statistics_group = {
192 .name = "statistics",
193 .attrs = spi_device_statistics_attrs,
194 };
195
196 static const struct attribute_group *spi_dev_groups[] = {
197 &spi_dev_group,
198 &spi_device_statistics_group,
199 NULL,
200 };
201
202 static struct attribute *spi_master_statistics_attrs[] = {
203 &dev_attr_spi_master_messages.attr,
204 &dev_attr_spi_master_transfers.attr,
205 &dev_attr_spi_master_errors.attr,
206 &dev_attr_spi_master_timedout.attr,
207 &dev_attr_spi_master_spi_sync.attr,
208 &dev_attr_spi_master_spi_sync_immediate.attr,
209 &dev_attr_spi_master_spi_async.attr,
210 &dev_attr_spi_master_bytes.attr,
211 &dev_attr_spi_master_bytes_rx.attr,
212 &dev_attr_spi_master_bytes_tx.attr,
213 &dev_attr_spi_master_transfer_bytes_histo0.attr,
214 &dev_attr_spi_master_transfer_bytes_histo1.attr,
215 &dev_attr_spi_master_transfer_bytes_histo2.attr,
216 &dev_attr_spi_master_transfer_bytes_histo3.attr,
217 &dev_attr_spi_master_transfer_bytes_histo4.attr,
218 &dev_attr_spi_master_transfer_bytes_histo5.attr,
219 &dev_attr_spi_master_transfer_bytes_histo6.attr,
220 &dev_attr_spi_master_transfer_bytes_histo7.attr,
221 &dev_attr_spi_master_transfer_bytes_histo8.attr,
222 &dev_attr_spi_master_transfer_bytes_histo9.attr,
223 &dev_attr_spi_master_transfer_bytes_histo10.attr,
224 &dev_attr_spi_master_transfer_bytes_histo11.attr,
225 &dev_attr_spi_master_transfer_bytes_histo12.attr,
226 &dev_attr_spi_master_transfer_bytes_histo13.attr,
227 &dev_attr_spi_master_transfer_bytes_histo14.attr,
228 &dev_attr_spi_master_transfer_bytes_histo15.attr,
229 &dev_attr_spi_master_transfer_bytes_histo16.attr,
230 &dev_attr_spi_master_transfers_split_maxsize.attr,
231 NULL,
232 };
233
234 static const struct attribute_group spi_master_statistics_group = {
235 .name = "statistics",
236 .attrs = spi_master_statistics_attrs,
237 };
238
239 static const struct attribute_group *spi_master_groups[] = {
240 &spi_master_statistics_group,
241 NULL,
242 };
243
244 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
245 struct spi_transfer *xfer,
246 struct spi_master *master)
247 {
248 unsigned long flags;
249 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
250
251 if (l2len < 0)
252 l2len = 0;
253
254 spin_lock_irqsave(&stats->lock, flags);
255
256 stats->transfers++;
257 stats->transfer_bytes_histo[l2len]++;
258
259 stats->bytes += xfer->len;
260 if ((xfer->tx_buf) &&
261 (xfer->tx_buf != master->dummy_tx))
262 stats->bytes_tx += xfer->len;
263 if ((xfer->rx_buf) &&
264 (xfer->rx_buf != master->dummy_rx))
265 stats->bytes_rx += xfer->len;
266
267 spin_unlock_irqrestore(&stats->lock, flags);
268 }
269 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
270
271 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
272 * and the sysfs version makes coldplug work too.
273 */
274
275 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
276 const struct spi_device *sdev)
277 {
278 while (id->name[0]) {
279 if (!strcmp(sdev->modalias, id->name))
280 return id;
281 id++;
282 }
283 return NULL;
284 }
285
286 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
287 {
288 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
289
290 return spi_match_id(sdrv->id_table, sdev);
291 }
292 EXPORT_SYMBOL_GPL(spi_get_device_id);
293
294 static int spi_match_device(struct device *dev, struct device_driver *drv)
295 {
296 const struct spi_device *spi = to_spi_device(dev);
297 const struct spi_driver *sdrv = to_spi_driver(drv);
298
299 /* Attempt an OF style match */
300 if (of_driver_match_device(dev, drv))
301 return 1;
302
303 /* Then try ACPI */
304 if (acpi_driver_match_device(dev, drv))
305 return 1;
306
307 if (sdrv->id_table)
308 return !!spi_match_id(sdrv->id_table, spi);
309
310 return strcmp(spi->modalias, drv->name) == 0;
311 }
312
313 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
314 {
315 const struct spi_device *spi = to_spi_device(dev);
316 int rc;
317
318 rc = acpi_device_uevent_modalias(dev, env);
319 if (rc != -ENODEV)
320 return rc;
321
322 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
323 return 0;
324 }
325
326 struct bus_type spi_bus_type = {
327 .name = "spi",
328 .dev_groups = spi_dev_groups,
329 .match = spi_match_device,
330 .uevent = spi_uevent,
331 };
332 EXPORT_SYMBOL_GPL(spi_bus_type);
333
334
335 static int spi_drv_probe(struct device *dev)
336 {
337 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
338 struct spi_device *spi = to_spi_device(dev);
339 int ret;
340
341 ret = of_clk_set_defaults(dev->of_node, false);
342 if (ret)
343 return ret;
344
345 if (dev->of_node) {
346 spi->irq = of_irq_get(dev->of_node, 0);
347 if (spi->irq == -EPROBE_DEFER)
348 return -EPROBE_DEFER;
349 if (spi->irq < 0)
350 spi->irq = 0;
351 }
352
353 ret = dev_pm_domain_attach(dev, true);
354 if (ret != -EPROBE_DEFER) {
355 ret = sdrv->probe(spi);
356 if (ret)
357 dev_pm_domain_detach(dev, true);
358 }
359
360 return ret;
361 }
362
363 static int spi_drv_remove(struct device *dev)
364 {
365 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
366 int ret;
367
368 ret = sdrv->remove(to_spi_device(dev));
369 dev_pm_domain_detach(dev, true);
370
371 return ret;
372 }
373
374 static void spi_drv_shutdown(struct device *dev)
375 {
376 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
377
378 sdrv->shutdown(to_spi_device(dev));
379 }
380
381 /**
382 * __spi_register_driver - register a SPI driver
383 * @owner: owner module of the driver to register
384 * @sdrv: the driver to register
385 * Context: can sleep
386 *
387 * Return: zero on success, else a negative error code.
388 */
389 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
390 {
391 sdrv->driver.owner = owner;
392 sdrv->driver.bus = &spi_bus_type;
393 if (sdrv->probe)
394 sdrv->driver.probe = spi_drv_probe;
395 if (sdrv->remove)
396 sdrv->driver.remove = spi_drv_remove;
397 if (sdrv->shutdown)
398 sdrv->driver.shutdown = spi_drv_shutdown;
399 return driver_register(&sdrv->driver);
400 }
401 EXPORT_SYMBOL_GPL(__spi_register_driver);
402
403 /*-------------------------------------------------------------------------*/
404
405 /* SPI devices should normally not be created by SPI device drivers; that
406 * would make them board-specific. Similarly with SPI master drivers.
407 * Device registration normally goes into like arch/.../mach.../board-YYY.c
408 * with other readonly (flashable) information about mainboard devices.
409 */
410
411 struct boardinfo {
412 struct list_head list;
413 struct spi_board_info board_info;
414 };
415
416 static LIST_HEAD(board_list);
417 static LIST_HEAD(spi_master_list);
418
419 /*
420 * Used to protect add/del opertion for board_info list and
421 * spi_master list, and their matching process
422 */
423 static DEFINE_MUTEX(board_lock);
424
425 /**
426 * spi_alloc_device - Allocate a new SPI device
427 * @master: Controller to which device is connected
428 * Context: can sleep
429 *
430 * Allows a driver to allocate and initialize a spi_device without
431 * registering it immediately. This allows a driver to directly
432 * fill the spi_device with device parameters before calling
433 * spi_add_device() on it.
434 *
435 * Caller is responsible to call spi_add_device() on the returned
436 * spi_device structure to add it to the SPI master. If the caller
437 * needs to discard the spi_device without adding it, then it should
438 * call spi_dev_put() on it.
439 *
440 * Return: a pointer to the new device, or NULL.
441 */
442 struct spi_device *spi_alloc_device(struct spi_master *master)
443 {
444 struct spi_device *spi;
445
446 if (!spi_master_get(master))
447 return NULL;
448
449 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
450 if (!spi) {
451 spi_master_put(master);
452 return NULL;
453 }
454
455 spi->master = master;
456 spi->dev.parent = &master->dev;
457 spi->dev.bus = &spi_bus_type;
458 spi->dev.release = spidev_release;
459 spi->cs_gpio = -ENOENT;
460
461 spin_lock_init(&spi->statistics.lock);
462
463 device_initialize(&spi->dev);
464 return spi;
465 }
466 EXPORT_SYMBOL_GPL(spi_alloc_device);
467
468 static void spi_dev_set_name(struct spi_device *spi)
469 {
470 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
471
472 if (adev) {
473 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
474 return;
475 }
476
477 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
478 spi->chip_select);
479 }
480
481 static int spi_dev_check(struct device *dev, void *data)
482 {
483 struct spi_device *spi = to_spi_device(dev);
484 struct spi_device *new_spi = data;
485
486 if (spi->master == new_spi->master &&
487 spi->chip_select == new_spi->chip_select)
488 return -EBUSY;
489 return 0;
490 }
491
492 /**
493 * spi_add_device - Add spi_device allocated with spi_alloc_device
494 * @spi: spi_device to register
495 *
496 * Companion function to spi_alloc_device. Devices allocated with
497 * spi_alloc_device can be added onto the spi bus with this function.
498 *
499 * Return: 0 on success; negative errno on failure
500 */
501 int spi_add_device(struct spi_device *spi)
502 {
503 static DEFINE_MUTEX(spi_add_lock);
504 struct spi_master *master = spi->master;
505 struct device *dev = master->dev.parent;
506 int status;
507
508 /* Chipselects are numbered 0..max; validate. */
509 if (spi->chip_select >= master->num_chipselect) {
510 dev_err(dev, "cs%d >= max %d\n",
511 spi->chip_select,
512 master->num_chipselect);
513 return -EINVAL;
514 }
515
516 /* Set the bus ID string */
517 spi_dev_set_name(spi);
518
519 /* We need to make sure there's no other device with this
520 * chipselect **BEFORE** we call setup(), else we'll trash
521 * its configuration. Lock against concurrent add() calls.
522 */
523 mutex_lock(&spi_add_lock);
524
525 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
526 if (status) {
527 dev_err(dev, "chipselect %d already in use\n",
528 spi->chip_select);
529 goto done;
530 }
531
532 if (master->cs_gpios)
533 spi->cs_gpio = master->cs_gpios[spi->chip_select];
534
535 /* Drivers may modify this initial i/o setup, but will
536 * normally rely on the device being setup. Devices
537 * using SPI_CS_HIGH can't coexist well otherwise...
538 */
539 status = spi_setup(spi);
540 if (status < 0) {
541 dev_err(dev, "can't setup %s, status %d\n",
542 dev_name(&spi->dev), status);
543 goto done;
544 }
545
546 /* Device may be bound to an active driver when this returns */
547 status = device_add(&spi->dev);
548 if (status < 0)
549 dev_err(dev, "can't add %s, status %d\n",
550 dev_name(&spi->dev), status);
551 else
552 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
553
554 done:
555 mutex_unlock(&spi_add_lock);
556 return status;
557 }
558 EXPORT_SYMBOL_GPL(spi_add_device);
559
560 /**
561 * spi_new_device - instantiate one new SPI device
562 * @master: Controller to which device is connected
563 * @chip: Describes the SPI device
564 * Context: can sleep
565 *
566 * On typical mainboards, this is purely internal; and it's not needed
567 * after board init creates the hard-wired devices. Some development
568 * platforms may not be able to use spi_register_board_info though, and
569 * this is exported so that for example a USB or parport based adapter
570 * driver could add devices (which it would learn about out-of-band).
571 *
572 * Return: the new device, or NULL.
573 */
574 struct spi_device *spi_new_device(struct spi_master *master,
575 struct spi_board_info *chip)
576 {
577 struct spi_device *proxy;
578 int status;
579
580 /* NOTE: caller did any chip->bus_num checks necessary.
581 *
582 * Also, unless we change the return value convention to use
583 * error-or-pointer (not NULL-or-pointer), troubleshootability
584 * suggests syslogged diagnostics are best here (ugh).
585 */
586
587 proxy = spi_alloc_device(master);
588 if (!proxy)
589 return NULL;
590
591 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
592
593 proxy->chip_select = chip->chip_select;
594 proxy->max_speed_hz = chip->max_speed_hz;
595 proxy->mode = chip->mode;
596 proxy->irq = chip->irq;
597 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
598 proxy->dev.platform_data = (void *) chip->platform_data;
599 proxy->controller_data = chip->controller_data;
600 proxy->controller_state = NULL;
601
602 status = spi_add_device(proxy);
603 if (status < 0) {
604 spi_dev_put(proxy);
605 return NULL;
606 }
607
608 return proxy;
609 }
610 EXPORT_SYMBOL_GPL(spi_new_device);
611
612 /**
613 * spi_unregister_device - unregister a single SPI device
614 * @spi: spi_device to unregister
615 *
616 * Start making the passed SPI device vanish. Normally this would be handled
617 * by spi_unregister_master().
618 */
619 void spi_unregister_device(struct spi_device *spi)
620 {
621 if (!spi)
622 return;
623
624 if (spi->dev.of_node) {
625 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
626 of_node_put(spi->dev.of_node);
627 }
628 if (ACPI_COMPANION(&spi->dev))
629 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
630 device_unregister(&spi->dev);
631 }
632 EXPORT_SYMBOL_GPL(spi_unregister_device);
633
634 static void spi_match_master_to_boardinfo(struct spi_master *master,
635 struct spi_board_info *bi)
636 {
637 struct spi_device *dev;
638
639 if (master->bus_num != bi->bus_num)
640 return;
641
642 dev = spi_new_device(master, bi);
643 if (!dev)
644 dev_err(master->dev.parent, "can't create new device for %s\n",
645 bi->modalias);
646 }
647
648 /**
649 * spi_register_board_info - register SPI devices for a given board
650 * @info: array of chip descriptors
651 * @n: how many descriptors are provided
652 * Context: can sleep
653 *
654 * Board-specific early init code calls this (probably during arch_initcall)
655 * with segments of the SPI device table. Any device nodes are created later,
656 * after the relevant parent SPI controller (bus_num) is defined. We keep
657 * this table of devices forever, so that reloading a controller driver will
658 * not make Linux forget about these hard-wired devices.
659 *
660 * Other code can also call this, e.g. a particular add-on board might provide
661 * SPI devices through its expansion connector, so code initializing that board
662 * would naturally declare its SPI devices.
663 *
664 * The board info passed can safely be __initdata ... but be careful of
665 * any embedded pointers (platform_data, etc), they're copied as-is.
666 *
667 * Return: zero on success, else a negative error code.
668 */
669 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
670 {
671 struct boardinfo *bi;
672 int i;
673
674 if (!n)
675 return -EINVAL;
676
677 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
678 if (!bi)
679 return -ENOMEM;
680
681 for (i = 0; i < n; i++, bi++, info++) {
682 struct spi_master *master;
683
684 memcpy(&bi->board_info, info, sizeof(*info));
685 mutex_lock(&board_lock);
686 list_add_tail(&bi->list, &board_list);
687 list_for_each_entry(master, &spi_master_list, list)
688 spi_match_master_to_boardinfo(master, &bi->board_info);
689 mutex_unlock(&board_lock);
690 }
691
692 return 0;
693 }
694
695 /*-------------------------------------------------------------------------*/
696
697 static void spi_set_cs(struct spi_device *spi, bool enable)
698 {
699 if (spi->mode & SPI_CS_HIGH)
700 enable = !enable;
701
702 if (gpio_is_valid(spi->cs_gpio)) {
703 gpio_set_value(spi->cs_gpio, !enable);
704 /* Some SPI masters need both GPIO CS & slave_select */
705 if ((spi->master->flags & SPI_MASTER_GPIO_SS) &&
706 spi->master->set_cs)
707 spi->master->set_cs(spi, !enable);
708 } else if (spi->master->set_cs) {
709 spi->master->set_cs(spi, !enable);
710 }
711 }
712
713 #ifdef CONFIG_HAS_DMA
714 static int spi_map_buf(struct spi_master *master, struct device *dev,
715 struct sg_table *sgt, void *buf, size_t len,
716 enum dma_data_direction dir)
717 {
718 const bool vmalloced_buf = is_vmalloc_addr(buf);
719 unsigned int max_seg_size = dma_get_max_seg_size(dev);
720 #ifdef CONFIG_HIGHMEM
721 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
722 (unsigned long)buf < (PKMAP_BASE +
723 (LAST_PKMAP * PAGE_SIZE)));
724 #else
725 const bool kmap_buf = false;
726 #endif
727 int desc_len;
728 int sgs;
729 struct page *vm_page;
730 struct scatterlist *sg;
731 void *sg_buf;
732 size_t min;
733 int i, ret;
734
735 if (vmalloced_buf || kmap_buf) {
736 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
737 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
738 } else if (virt_addr_valid(buf)) {
739 desc_len = min_t(int, max_seg_size, master->max_dma_len);
740 sgs = DIV_ROUND_UP(len, desc_len);
741 } else {
742 return -EINVAL;
743 }
744
745 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
746 if (ret != 0)
747 return ret;
748
749 sg = &sgt->sgl[0];
750 for (i = 0; i < sgs; i++) {
751
752 if (vmalloced_buf || kmap_buf) {
753 min = min_t(size_t,
754 len, desc_len - offset_in_page(buf));
755 if (vmalloced_buf)
756 vm_page = vmalloc_to_page(buf);
757 else
758 vm_page = kmap_to_page(buf);
759 if (!vm_page) {
760 sg_free_table(sgt);
761 return -ENOMEM;
762 }
763 sg_set_page(sg, vm_page,
764 min, offset_in_page(buf));
765 } else {
766 min = min_t(size_t, len, desc_len);
767 sg_buf = buf;
768 sg_set_buf(sg, sg_buf, min);
769 }
770
771 buf += min;
772 len -= min;
773 sg = sg_next(sg);
774 }
775
776 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
777 if (!ret)
778 ret = -ENOMEM;
779 if (ret < 0) {
780 sg_free_table(sgt);
781 return ret;
782 }
783
784 sgt->nents = ret;
785
786 return 0;
787 }
788
789 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
790 struct sg_table *sgt, enum dma_data_direction dir)
791 {
792 if (sgt->orig_nents) {
793 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
794 sg_free_table(sgt);
795 }
796 }
797
798 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
799 {
800 struct device *tx_dev, *rx_dev;
801 struct spi_transfer *xfer;
802 int ret;
803
804 if (!master->can_dma)
805 return 0;
806
807 if (master->dma_tx)
808 tx_dev = master->dma_tx->device->dev;
809 else
810 tx_dev = master->dev.parent;
811
812 if (master->dma_rx)
813 rx_dev = master->dma_rx->device->dev;
814 else
815 rx_dev = master->dev.parent;
816
817 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
818 if (!master->can_dma(master, msg->spi, xfer))
819 continue;
820
821 if (xfer->tx_buf != NULL) {
822 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
823 (void *)xfer->tx_buf, xfer->len,
824 DMA_TO_DEVICE);
825 if (ret != 0)
826 return ret;
827 }
828
829 if (xfer->rx_buf != NULL) {
830 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
831 xfer->rx_buf, xfer->len,
832 DMA_FROM_DEVICE);
833 if (ret != 0) {
834 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
835 DMA_TO_DEVICE);
836 return ret;
837 }
838 }
839 }
840
841 master->cur_msg_mapped = true;
842
843 return 0;
844 }
845
846 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
847 {
848 struct spi_transfer *xfer;
849 struct device *tx_dev, *rx_dev;
850
851 if (!master->cur_msg_mapped || !master->can_dma)
852 return 0;
853
854 if (master->dma_tx)
855 tx_dev = master->dma_tx->device->dev;
856 else
857 tx_dev = master->dev.parent;
858
859 if (master->dma_rx)
860 rx_dev = master->dma_rx->device->dev;
861 else
862 rx_dev = master->dev.parent;
863
864 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
865 if (!master->can_dma(master, msg->spi, xfer))
866 continue;
867
868 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
869 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
870 }
871
872 return 0;
873 }
874 #else /* !CONFIG_HAS_DMA */
875 static inline int spi_map_buf(struct spi_master *master,
876 struct device *dev, struct sg_table *sgt,
877 void *buf, size_t len,
878 enum dma_data_direction dir)
879 {
880 return -EINVAL;
881 }
882
883 static inline void spi_unmap_buf(struct spi_master *master,
884 struct device *dev, struct sg_table *sgt,
885 enum dma_data_direction dir)
886 {
887 }
888
889 static inline int __spi_map_msg(struct spi_master *master,
890 struct spi_message *msg)
891 {
892 return 0;
893 }
894
895 static inline int __spi_unmap_msg(struct spi_master *master,
896 struct spi_message *msg)
897 {
898 return 0;
899 }
900 #endif /* !CONFIG_HAS_DMA */
901
902 static inline int spi_unmap_msg(struct spi_master *master,
903 struct spi_message *msg)
904 {
905 struct spi_transfer *xfer;
906
907 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
908 /*
909 * Restore the original value of tx_buf or rx_buf if they are
910 * NULL.
911 */
912 if (xfer->tx_buf == master->dummy_tx)
913 xfer->tx_buf = NULL;
914 if (xfer->rx_buf == master->dummy_rx)
915 xfer->rx_buf = NULL;
916 }
917
918 return __spi_unmap_msg(master, msg);
919 }
920
921 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
922 {
923 struct spi_transfer *xfer;
924 void *tmp;
925 unsigned int max_tx, max_rx;
926
927 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
928 max_tx = 0;
929 max_rx = 0;
930
931 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
932 if ((master->flags & SPI_MASTER_MUST_TX) &&
933 !xfer->tx_buf)
934 max_tx = max(xfer->len, max_tx);
935 if ((master->flags & SPI_MASTER_MUST_RX) &&
936 !xfer->rx_buf)
937 max_rx = max(xfer->len, max_rx);
938 }
939
940 if (max_tx) {
941 tmp = krealloc(master->dummy_tx, max_tx,
942 GFP_KERNEL | GFP_DMA);
943 if (!tmp)
944 return -ENOMEM;
945 master->dummy_tx = tmp;
946 memset(tmp, 0, max_tx);
947 }
948
949 if (max_rx) {
950 tmp = krealloc(master->dummy_rx, max_rx,
951 GFP_KERNEL | GFP_DMA);
952 if (!tmp)
953 return -ENOMEM;
954 master->dummy_rx = tmp;
955 }
956
957 if (max_tx || max_rx) {
958 list_for_each_entry(xfer, &msg->transfers,
959 transfer_list) {
960 if (!xfer->tx_buf)
961 xfer->tx_buf = master->dummy_tx;
962 if (!xfer->rx_buf)
963 xfer->rx_buf = master->dummy_rx;
964 }
965 }
966 }
967
968 return __spi_map_msg(master, msg);
969 }
970
971 /*
972 * spi_transfer_one_message - Default implementation of transfer_one_message()
973 *
974 * This is a standard implementation of transfer_one_message() for
975 * drivers which implement a transfer_one() operation. It provides
976 * standard handling of delays and chip select management.
977 */
978 static int spi_transfer_one_message(struct spi_master *master,
979 struct spi_message *msg)
980 {
981 struct spi_transfer *xfer;
982 bool keep_cs = false;
983 int ret = 0;
984 unsigned long long ms = 1;
985 struct spi_statistics *statm = &master->statistics;
986 struct spi_statistics *stats = &msg->spi->statistics;
987
988 spi_set_cs(msg->spi, true);
989
990 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
991 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
992
993 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
994 trace_spi_transfer_start(msg, xfer);
995
996 spi_statistics_add_transfer_stats(statm, xfer, master);
997 spi_statistics_add_transfer_stats(stats, xfer, master);
998
999 if (xfer->tx_buf || xfer->rx_buf) {
1000 reinit_completion(&master->xfer_completion);
1001
1002 ret = master->transfer_one(master, msg->spi, xfer);
1003 if (ret < 0) {
1004 SPI_STATISTICS_INCREMENT_FIELD(statm,
1005 errors);
1006 SPI_STATISTICS_INCREMENT_FIELD(stats,
1007 errors);
1008 dev_err(&msg->spi->dev,
1009 "SPI transfer failed: %d\n", ret);
1010 goto out;
1011 }
1012
1013 if (ret > 0) {
1014 ret = 0;
1015 ms = 8LL * 1000LL * xfer->len;
1016 do_div(ms, xfer->speed_hz);
1017 ms += ms + 100; /* some tolerance */
1018
1019 if (ms > UINT_MAX)
1020 ms = UINT_MAX;
1021
1022 ms = wait_for_completion_timeout(&master->xfer_completion,
1023 msecs_to_jiffies(ms));
1024 }
1025
1026 if (ms == 0) {
1027 SPI_STATISTICS_INCREMENT_FIELD(statm,
1028 timedout);
1029 SPI_STATISTICS_INCREMENT_FIELD(stats,
1030 timedout);
1031 dev_err(&msg->spi->dev,
1032 "SPI transfer timed out\n");
1033 msg->status = -ETIMEDOUT;
1034 }
1035 } else {
1036 if (xfer->len)
1037 dev_err(&msg->spi->dev,
1038 "Bufferless transfer has length %u\n",
1039 xfer->len);
1040 }
1041
1042 trace_spi_transfer_stop(msg, xfer);
1043
1044 if (msg->status != -EINPROGRESS)
1045 goto out;
1046
1047 if (xfer->delay_usecs) {
1048 u16 us = xfer->delay_usecs;
1049
1050 if (us <= 10)
1051 udelay(us);
1052 else
1053 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1054 }
1055
1056 if (xfer->cs_change) {
1057 if (list_is_last(&xfer->transfer_list,
1058 &msg->transfers)) {
1059 keep_cs = true;
1060 } else {
1061 spi_set_cs(msg->spi, false);
1062 udelay(10);
1063 spi_set_cs(msg->spi, true);
1064 }
1065 }
1066
1067 msg->actual_length += xfer->len;
1068 }
1069
1070 out:
1071 if (ret != 0 || !keep_cs)
1072 spi_set_cs(msg->spi, false);
1073
1074 if (msg->status == -EINPROGRESS)
1075 msg->status = ret;
1076
1077 if (msg->status && master->handle_err)
1078 master->handle_err(master, msg);
1079
1080 spi_res_release(master, msg);
1081
1082 spi_finalize_current_message(master);
1083
1084 return ret;
1085 }
1086
1087 /**
1088 * spi_finalize_current_transfer - report completion of a transfer
1089 * @master: the master reporting completion
1090 *
1091 * Called by SPI drivers using the core transfer_one_message()
1092 * implementation to notify it that the current interrupt driven
1093 * transfer has finished and the next one may be scheduled.
1094 */
1095 void spi_finalize_current_transfer(struct spi_master *master)
1096 {
1097 complete(&master->xfer_completion);
1098 }
1099 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1100
1101 /**
1102 * __spi_pump_messages - function which processes spi message queue
1103 * @master: master to process queue for
1104 * @in_kthread: true if we are in the context of the message pump thread
1105 *
1106 * This function checks if there is any spi message in the queue that
1107 * needs processing and if so call out to the driver to initialize hardware
1108 * and transfer each message.
1109 *
1110 * Note that it is called both from the kthread itself and also from
1111 * inside spi_sync(); the queue extraction handling at the top of the
1112 * function should deal with this safely.
1113 */
1114 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1115 {
1116 unsigned long flags;
1117 bool was_busy = false;
1118 int ret;
1119
1120 /* Lock queue */
1121 spin_lock_irqsave(&master->queue_lock, flags);
1122
1123 /* Make sure we are not already running a message */
1124 if (master->cur_msg) {
1125 spin_unlock_irqrestore(&master->queue_lock, flags);
1126 return;
1127 }
1128
1129 /* If another context is idling the device then defer */
1130 if (master->idling) {
1131 kthread_queue_work(&master->kworker, &master->pump_messages);
1132 spin_unlock_irqrestore(&master->queue_lock, flags);
1133 return;
1134 }
1135
1136 /* Check if the queue is idle */
1137 if (list_empty(&master->queue) || !master->running) {
1138 if (!master->busy) {
1139 spin_unlock_irqrestore(&master->queue_lock, flags);
1140 return;
1141 }
1142
1143 /* Only do teardown in the thread */
1144 if (!in_kthread) {
1145 kthread_queue_work(&master->kworker,
1146 &master->pump_messages);
1147 spin_unlock_irqrestore(&master->queue_lock, flags);
1148 return;
1149 }
1150
1151 master->busy = false;
1152 master->idling = true;
1153 spin_unlock_irqrestore(&master->queue_lock, flags);
1154
1155 kfree(master->dummy_rx);
1156 master->dummy_rx = NULL;
1157 kfree(master->dummy_tx);
1158 master->dummy_tx = NULL;
1159 if (master->unprepare_transfer_hardware &&
1160 master->unprepare_transfer_hardware(master))
1161 dev_err(&master->dev,
1162 "failed to unprepare transfer hardware\n");
1163 if (master->auto_runtime_pm) {
1164 pm_runtime_mark_last_busy(master->dev.parent);
1165 pm_runtime_put_autosuspend(master->dev.parent);
1166 }
1167 trace_spi_master_idle(master);
1168
1169 spin_lock_irqsave(&master->queue_lock, flags);
1170 master->idling = false;
1171 spin_unlock_irqrestore(&master->queue_lock, flags);
1172 return;
1173 }
1174
1175 /* Extract head of queue */
1176 master->cur_msg =
1177 list_first_entry(&master->queue, struct spi_message, queue);
1178
1179 list_del_init(&master->cur_msg->queue);
1180 if (master->busy)
1181 was_busy = true;
1182 else
1183 master->busy = true;
1184 spin_unlock_irqrestore(&master->queue_lock, flags);
1185
1186 mutex_lock(&master->io_mutex);
1187
1188 if (!was_busy && master->auto_runtime_pm) {
1189 ret = pm_runtime_get_sync(master->dev.parent);
1190 if (ret < 0) {
1191 dev_err(&master->dev, "Failed to power device: %d\n",
1192 ret);
1193 mutex_unlock(&master->io_mutex);
1194 return;
1195 }
1196 }
1197
1198 if (!was_busy)
1199 trace_spi_master_busy(master);
1200
1201 if (!was_busy && master->prepare_transfer_hardware) {
1202 ret = master->prepare_transfer_hardware(master);
1203 if (ret) {
1204 dev_err(&master->dev,
1205 "failed to prepare transfer hardware\n");
1206
1207 if (master->auto_runtime_pm)
1208 pm_runtime_put(master->dev.parent);
1209 mutex_unlock(&master->io_mutex);
1210 return;
1211 }
1212 }
1213
1214 trace_spi_message_start(master->cur_msg);
1215
1216 if (master->prepare_message) {
1217 ret = master->prepare_message(master, master->cur_msg);
1218 if (ret) {
1219 dev_err(&master->dev,
1220 "failed to prepare message: %d\n", ret);
1221 master->cur_msg->status = ret;
1222 spi_finalize_current_message(master);
1223 goto out;
1224 }
1225 master->cur_msg_prepared = true;
1226 }
1227
1228 ret = spi_map_msg(master, master->cur_msg);
1229 if (ret) {
1230 master->cur_msg->status = ret;
1231 spi_finalize_current_message(master);
1232 goto out;
1233 }
1234
1235 ret = master->transfer_one_message(master, master->cur_msg);
1236 if (ret) {
1237 dev_err(&master->dev,
1238 "failed to transfer one message from queue\n");
1239 goto out;
1240 }
1241
1242 out:
1243 mutex_unlock(&master->io_mutex);
1244
1245 /* Prod the scheduler in case transfer_one() was busy waiting */
1246 if (!ret)
1247 cond_resched();
1248 }
1249
1250 /**
1251 * spi_pump_messages - kthread work function which processes spi message queue
1252 * @work: pointer to kthread work struct contained in the master struct
1253 */
1254 static void spi_pump_messages(struct kthread_work *work)
1255 {
1256 struct spi_master *master =
1257 container_of(work, struct spi_master, pump_messages);
1258
1259 __spi_pump_messages(master, true);
1260 }
1261
1262 static int spi_init_queue(struct spi_master *master)
1263 {
1264 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1265
1266 master->running = false;
1267 master->busy = false;
1268
1269 kthread_init_worker(&master->kworker);
1270 master->kworker_task = kthread_run(kthread_worker_fn,
1271 &master->kworker, "%s",
1272 dev_name(&master->dev));
1273 if (IS_ERR(master->kworker_task)) {
1274 dev_err(&master->dev, "failed to create message pump task\n");
1275 return PTR_ERR(master->kworker_task);
1276 }
1277 kthread_init_work(&master->pump_messages, spi_pump_messages);
1278
1279 /*
1280 * Master config will indicate if this controller should run the
1281 * message pump with high (realtime) priority to reduce the transfer
1282 * latency on the bus by minimising the delay between a transfer
1283 * request and the scheduling of the message pump thread. Without this
1284 * setting the message pump thread will remain at default priority.
1285 */
1286 if (master->rt) {
1287 dev_info(&master->dev,
1288 "will run message pump with realtime priority\n");
1289 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1290 }
1291
1292 return 0;
1293 }
1294
1295 /**
1296 * spi_get_next_queued_message() - called by driver to check for queued
1297 * messages
1298 * @master: the master to check for queued messages
1299 *
1300 * If there are more messages in the queue, the next message is returned from
1301 * this call.
1302 *
1303 * Return: the next message in the queue, else NULL if the queue is empty.
1304 */
1305 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1306 {
1307 struct spi_message *next;
1308 unsigned long flags;
1309
1310 /* get a pointer to the next message, if any */
1311 spin_lock_irqsave(&master->queue_lock, flags);
1312 next = list_first_entry_or_null(&master->queue, struct spi_message,
1313 queue);
1314 spin_unlock_irqrestore(&master->queue_lock, flags);
1315
1316 return next;
1317 }
1318 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1319
1320 /**
1321 * spi_finalize_current_message() - the current message is complete
1322 * @master: the master to return the message to
1323 *
1324 * Called by the driver to notify the core that the message in the front of the
1325 * queue is complete and can be removed from the queue.
1326 */
1327 void spi_finalize_current_message(struct spi_master *master)
1328 {
1329 struct spi_message *mesg;
1330 unsigned long flags;
1331 int ret;
1332
1333 spin_lock_irqsave(&master->queue_lock, flags);
1334 mesg = master->cur_msg;
1335 spin_unlock_irqrestore(&master->queue_lock, flags);
1336
1337 spi_unmap_msg(master, mesg);
1338
1339 if (master->cur_msg_prepared && master->unprepare_message) {
1340 ret = master->unprepare_message(master, mesg);
1341 if (ret) {
1342 dev_err(&master->dev,
1343 "failed to unprepare message: %d\n", ret);
1344 }
1345 }
1346
1347 spin_lock_irqsave(&master->queue_lock, flags);
1348 master->cur_msg = NULL;
1349 master->cur_msg_prepared = false;
1350 kthread_queue_work(&master->kworker, &master->pump_messages);
1351 spin_unlock_irqrestore(&master->queue_lock, flags);
1352
1353 trace_spi_message_done(mesg);
1354
1355 mesg->state = NULL;
1356 if (mesg->complete)
1357 mesg->complete(mesg->context);
1358 }
1359 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1360
1361 static int spi_start_queue(struct spi_master *master)
1362 {
1363 unsigned long flags;
1364
1365 spin_lock_irqsave(&master->queue_lock, flags);
1366
1367 if (master->running || master->busy) {
1368 spin_unlock_irqrestore(&master->queue_lock, flags);
1369 return -EBUSY;
1370 }
1371
1372 master->running = true;
1373 master->cur_msg = NULL;
1374 spin_unlock_irqrestore(&master->queue_lock, flags);
1375
1376 kthread_queue_work(&master->kworker, &master->pump_messages);
1377
1378 return 0;
1379 }
1380
1381 static int spi_stop_queue(struct spi_master *master)
1382 {
1383 unsigned long flags;
1384 unsigned limit = 500;
1385 int ret = 0;
1386
1387 spin_lock_irqsave(&master->queue_lock, flags);
1388
1389 /*
1390 * This is a bit lame, but is optimized for the common execution path.
1391 * A wait_queue on the master->busy could be used, but then the common
1392 * execution path (pump_messages) would be required to call wake_up or
1393 * friends on every SPI message. Do this instead.
1394 */
1395 while ((!list_empty(&master->queue) || master->busy) && limit--) {
1396 spin_unlock_irqrestore(&master->queue_lock, flags);
1397 usleep_range(10000, 11000);
1398 spin_lock_irqsave(&master->queue_lock, flags);
1399 }
1400
1401 if (!list_empty(&master->queue) || master->busy)
1402 ret = -EBUSY;
1403 else
1404 master->running = false;
1405
1406 spin_unlock_irqrestore(&master->queue_lock, flags);
1407
1408 if (ret) {
1409 dev_warn(&master->dev,
1410 "could not stop message queue\n");
1411 return ret;
1412 }
1413 return ret;
1414 }
1415
1416 static int spi_destroy_queue(struct spi_master *master)
1417 {
1418 int ret;
1419
1420 ret = spi_stop_queue(master);
1421
1422 /*
1423 * kthread_flush_worker will block until all work is done.
1424 * If the reason that stop_queue timed out is that the work will never
1425 * finish, then it does no good to call flush/stop thread, so
1426 * return anyway.
1427 */
1428 if (ret) {
1429 dev_err(&master->dev, "problem destroying queue\n");
1430 return ret;
1431 }
1432
1433 kthread_flush_worker(&master->kworker);
1434 kthread_stop(master->kworker_task);
1435
1436 return 0;
1437 }
1438
1439 static int __spi_queued_transfer(struct spi_device *spi,
1440 struct spi_message *msg,
1441 bool need_pump)
1442 {
1443 struct spi_master *master = spi->master;
1444 unsigned long flags;
1445
1446 spin_lock_irqsave(&master->queue_lock, flags);
1447
1448 if (!master->running) {
1449 spin_unlock_irqrestore(&master->queue_lock, flags);
1450 return -ESHUTDOWN;
1451 }
1452 msg->actual_length = 0;
1453 msg->status = -EINPROGRESS;
1454
1455 list_add_tail(&msg->queue, &master->queue);
1456 if (!master->busy && need_pump)
1457 kthread_queue_work(&master->kworker, &master->pump_messages);
1458
1459 spin_unlock_irqrestore(&master->queue_lock, flags);
1460 return 0;
1461 }
1462
1463 /**
1464 * spi_queued_transfer - transfer function for queued transfers
1465 * @spi: spi device which is requesting transfer
1466 * @msg: spi message which is to handled is queued to driver queue
1467 *
1468 * Return: zero on success, else a negative error code.
1469 */
1470 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1471 {
1472 return __spi_queued_transfer(spi, msg, true);
1473 }
1474
1475 static int spi_master_initialize_queue(struct spi_master *master)
1476 {
1477 int ret;
1478
1479 master->transfer = spi_queued_transfer;
1480 if (!master->transfer_one_message)
1481 master->transfer_one_message = spi_transfer_one_message;
1482
1483 /* Initialize and start queue */
1484 ret = spi_init_queue(master);
1485 if (ret) {
1486 dev_err(&master->dev, "problem initializing queue\n");
1487 goto err_init_queue;
1488 }
1489 master->queued = true;
1490 ret = spi_start_queue(master);
1491 if (ret) {
1492 dev_err(&master->dev, "problem starting queue\n");
1493 goto err_start_queue;
1494 }
1495
1496 return 0;
1497
1498 err_start_queue:
1499 spi_destroy_queue(master);
1500 err_init_queue:
1501 return ret;
1502 }
1503
1504 /*-------------------------------------------------------------------------*/
1505
1506 #if defined(CONFIG_OF)
1507 static int of_spi_parse_dt(struct spi_master *master, struct spi_device *spi,
1508 struct device_node *nc)
1509 {
1510 u32 value;
1511 int rc;
1512
1513 /* Device address */
1514 rc = of_property_read_u32(nc, "reg", &value);
1515 if (rc) {
1516 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1517 nc->full_name, rc);
1518 return rc;
1519 }
1520 spi->chip_select = value;
1521
1522 /* Mode (clock phase/polarity/etc.) */
1523 if (of_find_property(nc, "spi-cpha", NULL))
1524 spi->mode |= SPI_CPHA;
1525 if (of_find_property(nc, "spi-cpol", NULL))
1526 spi->mode |= SPI_CPOL;
1527 if (of_find_property(nc, "spi-cs-high", NULL))
1528 spi->mode |= SPI_CS_HIGH;
1529 if (of_find_property(nc, "spi-3wire", NULL))
1530 spi->mode |= SPI_3WIRE;
1531 if (of_find_property(nc, "spi-lsb-first", NULL))
1532 spi->mode |= SPI_LSB_FIRST;
1533
1534 /* Device DUAL/QUAD mode */
1535 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1536 switch (value) {
1537 case 1:
1538 break;
1539 case 2:
1540 spi->mode |= SPI_TX_DUAL;
1541 break;
1542 case 4:
1543 spi->mode |= SPI_TX_QUAD;
1544 break;
1545 default:
1546 dev_warn(&master->dev,
1547 "spi-tx-bus-width %d not supported\n",
1548 value);
1549 break;
1550 }
1551 }
1552
1553 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1554 switch (value) {
1555 case 1:
1556 break;
1557 case 2:
1558 spi->mode |= SPI_RX_DUAL;
1559 break;
1560 case 4:
1561 spi->mode |= SPI_RX_QUAD;
1562 break;
1563 default:
1564 dev_warn(&master->dev,
1565 "spi-rx-bus-width %d not supported\n",
1566 value);
1567 break;
1568 }
1569 }
1570
1571 /* Device speed */
1572 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1573 if (rc) {
1574 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1575 nc->full_name, rc);
1576 return rc;
1577 }
1578 spi->max_speed_hz = value;
1579
1580 return 0;
1581 }
1582
1583 static struct spi_device *
1584 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1585 {
1586 struct spi_device *spi;
1587 int rc;
1588
1589 /* Alloc an spi_device */
1590 spi = spi_alloc_device(master);
1591 if (!spi) {
1592 dev_err(&master->dev, "spi_device alloc error for %s\n",
1593 nc->full_name);
1594 rc = -ENOMEM;
1595 goto err_out;
1596 }
1597
1598 /* Select device driver */
1599 rc = of_modalias_node(nc, spi->modalias,
1600 sizeof(spi->modalias));
1601 if (rc < 0) {
1602 dev_err(&master->dev, "cannot find modalias for %s\n",
1603 nc->full_name);
1604 goto err_out;
1605 }
1606
1607 rc = of_spi_parse_dt(master, spi, nc);
1608 if (rc)
1609 goto err_out;
1610
1611 /* Store a pointer to the node in the device structure */
1612 of_node_get(nc);
1613 spi->dev.of_node = nc;
1614
1615 /* Register the new device */
1616 rc = spi_add_device(spi);
1617 if (rc) {
1618 dev_err(&master->dev, "spi_device register error %s\n",
1619 nc->full_name);
1620 goto err_of_node_put;
1621 }
1622
1623 return spi;
1624
1625 err_of_node_put:
1626 of_node_put(nc);
1627 err_out:
1628 spi_dev_put(spi);
1629 return ERR_PTR(rc);
1630 }
1631
1632 /**
1633 * of_register_spi_devices() - Register child devices onto the SPI bus
1634 * @master: Pointer to spi_master device
1635 *
1636 * Registers an spi_device for each child node of master node which has a 'reg'
1637 * property.
1638 */
1639 static void of_register_spi_devices(struct spi_master *master)
1640 {
1641 struct spi_device *spi;
1642 struct device_node *nc;
1643
1644 if (!master->dev.of_node)
1645 return;
1646
1647 for_each_available_child_of_node(master->dev.of_node, nc) {
1648 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1649 continue;
1650 spi = of_register_spi_device(master, nc);
1651 if (IS_ERR(spi)) {
1652 dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1653 nc->full_name);
1654 of_node_clear_flag(nc, OF_POPULATED);
1655 }
1656 }
1657 }
1658 #else
1659 static void of_register_spi_devices(struct spi_master *master) { }
1660 #endif
1661
1662 #ifdef CONFIG_ACPI
1663 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1664 {
1665 struct spi_device *spi = data;
1666 struct spi_master *master = spi->master;
1667
1668 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1669 struct acpi_resource_spi_serialbus *sb;
1670
1671 sb = &ares->data.spi_serial_bus;
1672 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1673 /*
1674 * ACPI DeviceSelection numbering is handled by the
1675 * host controller driver in Windows and can vary
1676 * from driver to driver. In Linux we always expect
1677 * 0 .. max - 1 so we need to ask the driver to
1678 * translate between the two schemes.
1679 */
1680 if (master->fw_translate_cs) {
1681 int cs = master->fw_translate_cs(master,
1682 sb->device_selection);
1683 if (cs < 0)
1684 return cs;
1685 spi->chip_select = cs;
1686 } else {
1687 spi->chip_select = sb->device_selection;
1688 }
1689
1690 spi->max_speed_hz = sb->connection_speed;
1691
1692 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1693 spi->mode |= SPI_CPHA;
1694 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1695 spi->mode |= SPI_CPOL;
1696 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1697 spi->mode |= SPI_CS_HIGH;
1698 }
1699 } else if (spi->irq < 0) {
1700 struct resource r;
1701
1702 if (acpi_dev_resource_interrupt(ares, 0, &r))
1703 spi->irq = r.start;
1704 }
1705
1706 /* Always tell the ACPI core to skip this resource */
1707 return 1;
1708 }
1709
1710 static acpi_status acpi_register_spi_device(struct spi_master *master,
1711 struct acpi_device *adev)
1712 {
1713 struct list_head resource_list;
1714 struct spi_device *spi;
1715 int ret;
1716
1717 if (acpi_bus_get_status(adev) || !adev->status.present ||
1718 acpi_device_enumerated(adev))
1719 return AE_OK;
1720
1721 spi = spi_alloc_device(master);
1722 if (!spi) {
1723 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1724 dev_name(&adev->dev));
1725 return AE_NO_MEMORY;
1726 }
1727
1728 ACPI_COMPANION_SET(&spi->dev, adev);
1729 spi->irq = -1;
1730
1731 INIT_LIST_HEAD(&resource_list);
1732 ret = acpi_dev_get_resources(adev, &resource_list,
1733 acpi_spi_add_resource, spi);
1734 acpi_dev_free_resource_list(&resource_list);
1735
1736 if (ret < 0 || !spi->max_speed_hz) {
1737 spi_dev_put(spi);
1738 return AE_OK;
1739 }
1740
1741 if (spi->irq < 0)
1742 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1743
1744 acpi_device_set_enumerated(adev);
1745
1746 adev->power.flags.ignore_parent = true;
1747 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1748 if (spi_add_device(spi)) {
1749 adev->power.flags.ignore_parent = false;
1750 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1751 dev_name(&adev->dev));
1752 spi_dev_put(spi);
1753 }
1754
1755 return AE_OK;
1756 }
1757
1758 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1759 void *data, void **return_value)
1760 {
1761 struct spi_master *master = data;
1762 struct acpi_device *adev;
1763
1764 if (acpi_bus_get_device(handle, &adev))
1765 return AE_OK;
1766
1767 return acpi_register_spi_device(master, adev);
1768 }
1769
1770 static void acpi_register_spi_devices(struct spi_master *master)
1771 {
1772 acpi_status status;
1773 acpi_handle handle;
1774
1775 handle = ACPI_HANDLE(master->dev.parent);
1776 if (!handle)
1777 return;
1778
1779 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1780 acpi_spi_add_device, NULL,
1781 master, NULL);
1782 if (ACPI_FAILURE(status))
1783 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1784 }
1785 #else
1786 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1787 #endif /* CONFIG_ACPI */
1788
1789 static void spi_master_release(struct device *dev)
1790 {
1791 struct spi_master *master;
1792
1793 master = container_of(dev, struct spi_master, dev);
1794 kfree(master);
1795 }
1796
1797 static struct class spi_master_class = {
1798 .name = "spi_master",
1799 .owner = THIS_MODULE,
1800 .dev_release = spi_master_release,
1801 .dev_groups = spi_master_groups,
1802 };
1803
1804
1805 /**
1806 * spi_alloc_master - allocate SPI master controller
1807 * @dev: the controller, possibly using the platform_bus
1808 * @size: how much zeroed driver-private data to allocate; the pointer to this
1809 * memory is in the driver_data field of the returned device,
1810 * accessible with spi_master_get_devdata().
1811 * Context: can sleep
1812 *
1813 * This call is used only by SPI master controller drivers, which are the
1814 * only ones directly touching chip registers. It's how they allocate
1815 * an spi_master structure, prior to calling spi_register_master().
1816 *
1817 * This must be called from context that can sleep.
1818 *
1819 * The caller is responsible for assigning the bus number and initializing
1820 * the master's methods before calling spi_register_master(); and (after errors
1821 * adding the device) calling spi_master_put() to prevent a memory leak.
1822 *
1823 * Return: the SPI master structure on success, else NULL.
1824 */
1825 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1826 {
1827 struct spi_master *master;
1828
1829 if (!dev)
1830 return NULL;
1831
1832 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1833 if (!master)
1834 return NULL;
1835
1836 device_initialize(&master->dev);
1837 master->bus_num = -1;
1838 master->num_chipselect = 1;
1839 master->dev.class = &spi_master_class;
1840 master->dev.parent = dev;
1841 pm_suspend_ignore_children(&master->dev, true);
1842 spi_master_set_devdata(master, &master[1]);
1843
1844 return master;
1845 }
1846 EXPORT_SYMBOL_GPL(spi_alloc_master);
1847
1848 #ifdef CONFIG_OF
1849 static int of_spi_register_master(struct spi_master *master)
1850 {
1851 int nb, i, *cs;
1852 struct device_node *np = master->dev.of_node;
1853
1854 if (!np)
1855 return 0;
1856
1857 nb = of_gpio_named_count(np, "cs-gpios");
1858 master->num_chipselect = max_t(int, nb, master->num_chipselect);
1859
1860 /* Return error only for an incorrectly formed cs-gpios property */
1861 if (nb == 0 || nb == -ENOENT)
1862 return 0;
1863 else if (nb < 0)
1864 return nb;
1865
1866 cs = devm_kzalloc(&master->dev,
1867 sizeof(int) * master->num_chipselect,
1868 GFP_KERNEL);
1869 master->cs_gpios = cs;
1870
1871 if (!master->cs_gpios)
1872 return -ENOMEM;
1873
1874 for (i = 0; i < master->num_chipselect; i++)
1875 cs[i] = -ENOENT;
1876
1877 for (i = 0; i < nb; i++)
1878 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1879
1880 return 0;
1881 }
1882 #else
1883 static int of_spi_register_master(struct spi_master *master)
1884 {
1885 return 0;
1886 }
1887 #endif
1888
1889 /**
1890 * spi_register_master - register SPI master controller
1891 * @master: initialized master, originally from spi_alloc_master()
1892 * Context: can sleep
1893 *
1894 * SPI master controllers connect to their drivers using some non-SPI bus,
1895 * such as the platform bus. The final stage of probe() in that code
1896 * includes calling spi_register_master() to hook up to this SPI bus glue.
1897 *
1898 * SPI controllers use board specific (often SOC specific) bus numbers,
1899 * and board-specific addressing for SPI devices combines those numbers
1900 * with chip select numbers. Since SPI does not directly support dynamic
1901 * device identification, boards need configuration tables telling which
1902 * chip is at which address.
1903 *
1904 * This must be called from context that can sleep. It returns zero on
1905 * success, else a negative error code (dropping the master's refcount).
1906 * After a successful return, the caller is responsible for calling
1907 * spi_unregister_master().
1908 *
1909 * Return: zero on success, else a negative error code.
1910 */
1911 int spi_register_master(struct spi_master *master)
1912 {
1913 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1914 struct device *dev = master->dev.parent;
1915 struct boardinfo *bi;
1916 int status = -ENODEV;
1917 int dynamic = 0;
1918
1919 if (!dev)
1920 return -ENODEV;
1921
1922 status = of_spi_register_master(master);
1923 if (status)
1924 return status;
1925
1926 /* even if it's just one always-selected device, there must
1927 * be at least one chipselect
1928 */
1929 if (master->num_chipselect == 0)
1930 return -EINVAL;
1931
1932 if ((master->bus_num < 0) && master->dev.of_node)
1933 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1934
1935 /* convention: dynamically assigned bus IDs count down from the max */
1936 if (master->bus_num < 0) {
1937 /* FIXME switch to an IDR based scheme, something like
1938 * I2C now uses, so we can't run out of "dynamic" IDs
1939 */
1940 master->bus_num = atomic_dec_return(&dyn_bus_id);
1941 dynamic = 1;
1942 }
1943
1944 INIT_LIST_HEAD(&master->queue);
1945 spin_lock_init(&master->queue_lock);
1946 spin_lock_init(&master->bus_lock_spinlock);
1947 mutex_init(&master->bus_lock_mutex);
1948 mutex_init(&master->io_mutex);
1949 master->bus_lock_flag = 0;
1950 init_completion(&master->xfer_completion);
1951 if (!master->max_dma_len)
1952 master->max_dma_len = INT_MAX;
1953
1954 /* register the device, then userspace will see it.
1955 * registration fails if the bus ID is in use.
1956 */
1957 dev_set_name(&master->dev, "spi%u", master->bus_num);
1958 status = device_add(&master->dev);
1959 if (status < 0)
1960 goto done;
1961 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1962 dynamic ? " (dynamic)" : "");
1963
1964 /* If we're using a queued driver, start the queue */
1965 if (master->transfer)
1966 dev_info(dev, "master is unqueued, this is deprecated\n");
1967 else {
1968 status = spi_master_initialize_queue(master);
1969 if (status) {
1970 device_del(&master->dev);
1971 goto done;
1972 }
1973 }
1974 /* add statistics */
1975 spin_lock_init(&master->statistics.lock);
1976
1977 mutex_lock(&board_lock);
1978 list_add_tail(&master->list, &spi_master_list);
1979 list_for_each_entry(bi, &board_list, list)
1980 spi_match_master_to_boardinfo(master, &bi->board_info);
1981 mutex_unlock(&board_lock);
1982
1983 /* Register devices from the device tree and ACPI */
1984 of_register_spi_devices(master);
1985 acpi_register_spi_devices(master);
1986 done:
1987 return status;
1988 }
1989 EXPORT_SYMBOL_GPL(spi_register_master);
1990
1991 static void devm_spi_unregister(struct device *dev, void *res)
1992 {
1993 spi_unregister_master(*(struct spi_master **)res);
1994 }
1995
1996 /**
1997 * dev_spi_register_master - register managed SPI master controller
1998 * @dev: device managing SPI master
1999 * @master: initialized master, originally from spi_alloc_master()
2000 * Context: can sleep
2001 *
2002 * Register a SPI device as with spi_register_master() which will
2003 * automatically be unregister
2004 *
2005 * Return: zero on success, else a negative error code.
2006 */
2007 int devm_spi_register_master(struct device *dev, struct spi_master *master)
2008 {
2009 struct spi_master **ptr;
2010 int ret;
2011
2012 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2013 if (!ptr)
2014 return -ENOMEM;
2015
2016 ret = spi_register_master(master);
2017 if (!ret) {
2018 *ptr = master;
2019 devres_add(dev, ptr);
2020 } else {
2021 devres_free(ptr);
2022 }
2023
2024 return ret;
2025 }
2026 EXPORT_SYMBOL_GPL(devm_spi_register_master);
2027
2028 static int __unregister(struct device *dev, void *null)
2029 {
2030 spi_unregister_device(to_spi_device(dev));
2031 return 0;
2032 }
2033
2034 /**
2035 * spi_unregister_master - unregister SPI master controller
2036 * @master: the master being unregistered
2037 * Context: can sleep
2038 *
2039 * This call is used only by SPI master controller drivers, which are the
2040 * only ones directly touching chip registers.
2041 *
2042 * This must be called from context that can sleep.
2043 */
2044 void spi_unregister_master(struct spi_master *master)
2045 {
2046 int dummy;
2047
2048 if (master->queued) {
2049 if (spi_destroy_queue(master))
2050 dev_err(&master->dev, "queue remove failed\n");
2051 }
2052
2053 mutex_lock(&board_lock);
2054 list_del(&master->list);
2055 mutex_unlock(&board_lock);
2056
2057 dummy = device_for_each_child(&master->dev, NULL, __unregister);
2058 device_unregister(&master->dev);
2059 }
2060 EXPORT_SYMBOL_GPL(spi_unregister_master);
2061
2062 int spi_master_suspend(struct spi_master *master)
2063 {
2064 int ret;
2065
2066 /* Basically no-ops for non-queued masters */
2067 if (!master->queued)
2068 return 0;
2069
2070 ret = spi_stop_queue(master);
2071 if (ret)
2072 dev_err(&master->dev, "queue stop failed\n");
2073
2074 return ret;
2075 }
2076 EXPORT_SYMBOL_GPL(spi_master_suspend);
2077
2078 int spi_master_resume(struct spi_master *master)
2079 {
2080 int ret;
2081
2082 if (!master->queued)
2083 return 0;
2084
2085 ret = spi_start_queue(master);
2086 if (ret)
2087 dev_err(&master->dev, "queue restart failed\n");
2088
2089 return ret;
2090 }
2091 EXPORT_SYMBOL_GPL(spi_master_resume);
2092
2093 static int __spi_master_match(struct device *dev, const void *data)
2094 {
2095 struct spi_master *m;
2096 const u16 *bus_num = data;
2097
2098 m = container_of(dev, struct spi_master, dev);
2099 return m->bus_num == *bus_num;
2100 }
2101
2102 /**
2103 * spi_busnum_to_master - look up master associated with bus_num
2104 * @bus_num: the master's bus number
2105 * Context: can sleep
2106 *
2107 * This call may be used with devices that are registered after
2108 * arch init time. It returns a refcounted pointer to the relevant
2109 * spi_master (which the caller must release), or NULL if there is
2110 * no such master registered.
2111 *
2112 * Return: the SPI master structure on success, else NULL.
2113 */
2114 struct spi_master *spi_busnum_to_master(u16 bus_num)
2115 {
2116 struct device *dev;
2117 struct spi_master *master = NULL;
2118
2119 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2120 __spi_master_match);
2121 if (dev)
2122 master = container_of(dev, struct spi_master, dev);
2123 /* reference got in class_find_device */
2124 return master;
2125 }
2126 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2127
2128 /*-------------------------------------------------------------------------*/
2129
2130 /* Core methods for SPI resource management */
2131
2132 /**
2133 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2134 * during the processing of a spi_message while using
2135 * spi_transfer_one
2136 * @spi: the spi device for which we allocate memory
2137 * @release: the release code to execute for this resource
2138 * @size: size to alloc and return
2139 * @gfp: GFP allocation flags
2140 *
2141 * Return: the pointer to the allocated data
2142 *
2143 * This may get enhanced in the future to allocate from a memory pool
2144 * of the @spi_device or @spi_master to avoid repeated allocations.
2145 */
2146 void *spi_res_alloc(struct spi_device *spi,
2147 spi_res_release_t release,
2148 size_t size, gfp_t gfp)
2149 {
2150 struct spi_res *sres;
2151
2152 sres = kzalloc(sizeof(*sres) + size, gfp);
2153 if (!sres)
2154 return NULL;
2155
2156 INIT_LIST_HEAD(&sres->entry);
2157 sres->release = release;
2158
2159 return sres->data;
2160 }
2161 EXPORT_SYMBOL_GPL(spi_res_alloc);
2162
2163 /**
2164 * spi_res_free - free an spi resource
2165 * @res: pointer to the custom data of a resource
2166 *
2167 */
2168 void spi_res_free(void *res)
2169 {
2170 struct spi_res *sres = container_of(res, struct spi_res, data);
2171
2172 if (!res)
2173 return;
2174
2175 WARN_ON(!list_empty(&sres->entry));
2176 kfree(sres);
2177 }
2178 EXPORT_SYMBOL_GPL(spi_res_free);
2179
2180 /**
2181 * spi_res_add - add a spi_res to the spi_message
2182 * @message: the spi message
2183 * @res: the spi_resource
2184 */
2185 void spi_res_add(struct spi_message *message, void *res)
2186 {
2187 struct spi_res *sres = container_of(res, struct spi_res, data);
2188
2189 WARN_ON(!list_empty(&sres->entry));
2190 list_add_tail(&sres->entry, &message->resources);
2191 }
2192 EXPORT_SYMBOL_GPL(spi_res_add);
2193
2194 /**
2195 * spi_res_release - release all spi resources for this message
2196 * @master: the @spi_master
2197 * @message: the @spi_message
2198 */
2199 void spi_res_release(struct spi_master *master,
2200 struct spi_message *message)
2201 {
2202 struct spi_res *res;
2203
2204 while (!list_empty(&message->resources)) {
2205 res = list_last_entry(&message->resources,
2206 struct spi_res, entry);
2207
2208 if (res->release)
2209 res->release(master, message, res->data);
2210
2211 list_del(&res->entry);
2212
2213 kfree(res);
2214 }
2215 }
2216 EXPORT_SYMBOL_GPL(spi_res_release);
2217
2218 /*-------------------------------------------------------------------------*/
2219
2220 /* Core methods for spi_message alterations */
2221
2222 static void __spi_replace_transfers_release(struct spi_master *master,
2223 struct spi_message *msg,
2224 void *res)
2225 {
2226 struct spi_replaced_transfers *rxfer = res;
2227 size_t i;
2228
2229 /* call extra callback if requested */
2230 if (rxfer->release)
2231 rxfer->release(master, msg, res);
2232
2233 /* insert replaced transfers back into the message */
2234 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2235
2236 /* remove the formerly inserted entries */
2237 for (i = 0; i < rxfer->inserted; i++)
2238 list_del(&rxfer->inserted_transfers[i].transfer_list);
2239 }
2240
2241 /**
2242 * spi_replace_transfers - replace transfers with several transfers
2243 * and register change with spi_message.resources
2244 * @msg: the spi_message we work upon
2245 * @xfer_first: the first spi_transfer we want to replace
2246 * @remove: number of transfers to remove
2247 * @insert: the number of transfers we want to insert instead
2248 * @release: extra release code necessary in some circumstances
2249 * @extradatasize: extra data to allocate (with alignment guarantees
2250 * of struct @spi_transfer)
2251 * @gfp: gfp flags
2252 *
2253 * Returns: pointer to @spi_replaced_transfers,
2254 * PTR_ERR(...) in case of errors.
2255 */
2256 struct spi_replaced_transfers *spi_replace_transfers(
2257 struct spi_message *msg,
2258 struct spi_transfer *xfer_first,
2259 size_t remove,
2260 size_t insert,
2261 spi_replaced_release_t release,
2262 size_t extradatasize,
2263 gfp_t gfp)
2264 {
2265 struct spi_replaced_transfers *rxfer;
2266 struct spi_transfer *xfer;
2267 size_t i;
2268
2269 /* allocate the structure using spi_res */
2270 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2271 insert * sizeof(struct spi_transfer)
2272 + sizeof(struct spi_replaced_transfers)
2273 + extradatasize,
2274 gfp);
2275 if (!rxfer)
2276 return ERR_PTR(-ENOMEM);
2277
2278 /* the release code to invoke before running the generic release */
2279 rxfer->release = release;
2280
2281 /* assign extradata */
2282 if (extradatasize)
2283 rxfer->extradata =
2284 &rxfer->inserted_transfers[insert];
2285
2286 /* init the replaced_transfers list */
2287 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2288
2289 /* assign the list_entry after which we should reinsert
2290 * the @replaced_transfers - it may be spi_message.messages!
2291 */
2292 rxfer->replaced_after = xfer_first->transfer_list.prev;
2293
2294 /* remove the requested number of transfers */
2295 for (i = 0; i < remove; i++) {
2296 /* if the entry after replaced_after it is msg->transfers
2297 * then we have been requested to remove more transfers
2298 * than are in the list
2299 */
2300 if (rxfer->replaced_after->next == &msg->transfers) {
2301 dev_err(&msg->spi->dev,
2302 "requested to remove more spi_transfers than are available\n");
2303 /* insert replaced transfers back into the message */
2304 list_splice(&rxfer->replaced_transfers,
2305 rxfer->replaced_after);
2306
2307 /* free the spi_replace_transfer structure */
2308 spi_res_free(rxfer);
2309
2310 /* and return with an error */
2311 return ERR_PTR(-EINVAL);
2312 }
2313
2314 /* remove the entry after replaced_after from list of
2315 * transfers and add it to list of replaced_transfers
2316 */
2317 list_move_tail(rxfer->replaced_after->next,
2318 &rxfer->replaced_transfers);
2319 }
2320
2321 /* create copy of the given xfer with identical settings
2322 * based on the first transfer to get removed
2323 */
2324 for (i = 0; i < insert; i++) {
2325 /* we need to run in reverse order */
2326 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2327
2328 /* copy all spi_transfer data */
2329 memcpy(xfer, xfer_first, sizeof(*xfer));
2330
2331 /* add to list */
2332 list_add(&xfer->transfer_list, rxfer->replaced_after);
2333
2334 /* clear cs_change and delay_usecs for all but the last */
2335 if (i) {
2336 xfer->cs_change = false;
2337 xfer->delay_usecs = 0;
2338 }
2339 }
2340
2341 /* set up inserted */
2342 rxfer->inserted = insert;
2343
2344 /* and register it with spi_res/spi_message */
2345 spi_res_add(msg, rxfer);
2346
2347 return rxfer;
2348 }
2349 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2350
2351 static int __spi_split_transfer_maxsize(struct spi_master *master,
2352 struct spi_message *msg,
2353 struct spi_transfer **xferp,
2354 size_t maxsize,
2355 gfp_t gfp)
2356 {
2357 struct spi_transfer *xfer = *xferp, *xfers;
2358 struct spi_replaced_transfers *srt;
2359 size_t offset;
2360 size_t count, i;
2361
2362 /* warn once about this fact that we are splitting a transfer */
2363 dev_warn_once(&msg->spi->dev,
2364 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2365 xfer->len, maxsize);
2366
2367 /* calculate how many we have to replace */
2368 count = DIV_ROUND_UP(xfer->len, maxsize);
2369
2370 /* create replacement */
2371 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2372 if (IS_ERR(srt))
2373 return PTR_ERR(srt);
2374 xfers = srt->inserted_transfers;
2375
2376 /* now handle each of those newly inserted spi_transfers
2377 * note that the replacements spi_transfers all are preset
2378 * to the same values as *xferp, so tx_buf, rx_buf and len
2379 * are all identical (as well as most others)
2380 * so we just have to fix up len and the pointers.
2381 *
2382 * this also includes support for the depreciated
2383 * spi_message.is_dma_mapped interface
2384 */
2385
2386 /* the first transfer just needs the length modified, so we
2387 * run it outside the loop
2388 */
2389 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2390
2391 /* all the others need rx_buf/tx_buf also set */
2392 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2393 /* update rx_buf, tx_buf and dma */
2394 if (xfers[i].rx_buf)
2395 xfers[i].rx_buf += offset;
2396 if (xfers[i].rx_dma)
2397 xfers[i].rx_dma += offset;
2398 if (xfers[i].tx_buf)
2399 xfers[i].tx_buf += offset;
2400 if (xfers[i].tx_dma)
2401 xfers[i].tx_dma += offset;
2402
2403 /* update length */
2404 xfers[i].len = min(maxsize, xfers[i].len - offset);
2405 }
2406
2407 /* we set up xferp to the last entry we have inserted,
2408 * so that we skip those already split transfers
2409 */
2410 *xferp = &xfers[count - 1];
2411
2412 /* increment statistics counters */
2413 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2414 transfers_split_maxsize);
2415 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2416 transfers_split_maxsize);
2417
2418 return 0;
2419 }
2420
2421 /**
2422 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2423 * when an individual transfer exceeds a
2424 * certain size
2425 * @master: the @spi_master for this transfer
2426 * @msg: the @spi_message to transform
2427 * @maxsize: the maximum when to apply this
2428 * @gfp: GFP allocation flags
2429 *
2430 * Return: status of transformation
2431 */
2432 int spi_split_transfers_maxsize(struct spi_master *master,
2433 struct spi_message *msg,
2434 size_t maxsize,
2435 gfp_t gfp)
2436 {
2437 struct spi_transfer *xfer;
2438 int ret;
2439
2440 /* iterate over the transfer_list,
2441 * but note that xfer is advanced to the last transfer inserted
2442 * to avoid checking sizes again unnecessarily (also xfer does
2443 * potentiall belong to a different list by the time the
2444 * replacement has happened
2445 */
2446 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2447 if (xfer->len > maxsize) {
2448 ret = __spi_split_transfer_maxsize(
2449 master, msg, &xfer, maxsize, gfp);
2450 if (ret)
2451 return ret;
2452 }
2453 }
2454
2455 return 0;
2456 }
2457 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2458
2459 /*-------------------------------------------------------------------------*/
2460
2461 /* Core methods for SPI master protocol drivers. Some of the
2462 * other core methods are currently defined as inline functions.
2463 */
2464
2465 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2466 {
2467 if (master->bits_per_word_mask) {
2468 /* Only 32 bits fit in the mask */
2469 if (bits_per_word > 32)
2470 return -EINVAL;
2471 if (!(master->bits_per_word_mask &
2472 SPI_BPW_MASK(bits_per_word)))
2473 return -EINVAL;
2474 }
2475
2476 return 0;
2477 }
2478
2479 /**
2480 * spi_setup - setup SPI mode and clock rate
2481 * @spi: the device whose settings are being modified
2482 * Context: can sleep, and no requests are queued to the device
2483 *
2484 * SPI protocol drivers may need to update the transfer mode if the
2485 * device doesn't work with its default. They may likewise need
2486 * to update clock rates or word sizes from initial values. This function
2487 * changes those settings, and must be called from a context that can sleep.
2488 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2489 * effect the next time the device is selected and data is transferred to
2490 * or from it. When this function returns, the spi device is deselected.
2491 *
2492 * Note that this call will fail if the protocol driver specifies an option
2493 * that the underlying controller or its driver does not support. For
2494 * example, not all hardware supports wire transfers using nine bit words,
2495 * LSB-first wire encoding, or active-high chipselects.
2496 *
2497 * Return: zero on success, else a negative error code.
2498 */
2499 int spi_setup(struct spi_device *spi)
2500 {
2501 unsigned bad_bits, ugly_bits;
2502 int status;
2503
2504 /* check mode to prevent that DUAL and QUAD set at the same time
2505 */
2506 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2507 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2508 dev_err(&spi->dev,
2509 "setup: can not select dual and quad at the same time\n");
2510 return -EINVAL;
2511 }
2512 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2513 */
2514 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2515 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2516 return -EINVAL;
2517 /* help drivers fail *cleanly* when they need options
2518 * that aren't supported with their current master
2519 */
2520 bad_bits = spi->mode & ~spi->master->mode_bits;
2521 ugly_bits = bad_bits &
2522 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2523 if (ugly_bits) {
2524 dev_warn(&spi->dev,
2525 "setup: ignoring unsupported mode bits %x\n",
2526 ugly_bits);
2527 spi->mode &= ~ugly_bits;
2528 bad_bits &= ~ugly_bits;
2529 }
2530 if (bad_bits) {
2531 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2532 bad_bits);
2533 return -EINVAL;
2534 }
2535
2536 if (!spi->bits_per_word)
2537 spi->bits_per_word = 8;
2538
2539 status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2540 if (status)
2541 return status;
2542
2543 if (!spi->max_speed_hz)
2544 spi->max_speed_hz = spi->master->max_speed_hz;
2545
2546 if (spi->master->setup)
2547 status = spi->master->setup(spi);
2548
2549 spi_set_cs(spi, false);
2550
2551 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2552 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2553 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2554 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2555 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2556 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2557 spi->bits_per_word, spi->max_speed_hz,
2558 status);
2559
2560 return status;
2561 }
2562 EXPORT_SYMBOL_GPL(spi_setup);
2563
2564 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2565 {
2566 struct spi_master *master = spi->master;
2567 struct spi_transfer *xfer;
2568 int w_size;
2569
2570 if (list_empty(&message->transfers))
2571 return -EINVAL;
2572
2573 /* Half-duplex links include original MicroWire, and ones with
2574 * only one data pin like SPI_3WIRE (switches direction) or where
2575 * either MOSI or MISO is missing. They can also be caused by
2576 * software limitations.
2577 */
2578 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2579 || (spi->mode & SPI_3WIRE)) {
2580 unsigned flags = master->flags;
2581
2582 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2583 if (xfer->rx_buf && xfer->tx_buf)
2584 return -EINVAL;
2585 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2586 return -EINVAL;
2587 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2588 return -EINVAL;
2589 }
2590 }
2591
2592 /**
2593 * Set transfer bits_per_word and max speed as spi device default if
2594 * it is not set for this transfer.
2595 * Set transfer tx_nbits and rx_nbits as single transfer default
2596 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2597 */
2598 message->frame_length = 0;
2599 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2600 message->frame_length += xfer->len;
2601 if (!xfer->bits_per_word)
2602 xfer->bits_per_word = spi->bits_per_word;
2603
2604 if (!xfer->speed_hz)
2605 xfer->speed_hz = spi->max_speed_hz;
2606 if (!xfer->speed_hz)
2607 xfer->speed_hz = master->max_speed_hz;
2608
2609 if (master->max_speed_hz &&
2610 xfer->speed_hz > master->max_speed_hz)
2611 xfer->speed_hz = master->max_speed_hz;
2612
2613 if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2614 return -EINVAL;
2615
2616 /*
2617 * SPI transfer length should be multiple of SPI word size
2618 * where SPI word size should be power-of-two multiple
2619 */
2620 if (xfer->bits_per_word <= 8)
2621 w_size = 1;
2622 else if (xfer->bits_per_word <= 16)
2623 w_size = 2;
2624 else
2625 w_size = 4;
2626
2627 /* No partial transfers accepted */
2628 if (xfer->len % w_size)
2629 return -EINVAL;
2630
2631 if (xfer->speed_hz && master->min_speed_hz &&
2632 xfer->speed_hz < master->min_speed_hz)
2633 return -EINVAL;
2634
2635 if (xfer->tx_buf && !xfer->tx_nbits)
2636 xfer->tx_nbits = SPI_NBITS_SINGLE;
2637 if (xfer->rx_buf && !xfer->rx_nbits)
2638 xfer->rx_nbits = SPI_NBITS_SINGLE;
2639 /* check transfer tx/rx_nbits:
2640 * 1. check the value matches one of single, dual and quad
2641 * 2. check tx/rx_nbits match the mode in spi_device
2642 */
2643 if (xfer->tx_buf) {
2644 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2645 xfer->tx_nbits != SPI_NBITS_DUAL &&
2646 xfer->tx_nbits != SPI_NBITS_QUAD)
2647 return -EINVAL;
2648 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2649 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2650 return -EINVAL;
2651 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2652 !(spi->mode & SPI_TX_QUAD))
2653 return -EINVAL;
2654 }
2655 /* check transfer rx_nbits */
2656 if (xfer->rx_buf) {
2657 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2658 xfer->rx_nbits != SPI_NBITS_DUAL &&
2659 xfer->rx_nbits != SPI_NBITS_QUAD)
2660 return -EINVAL;
2661 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2662 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2663 return -EINVAL;
2664 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2665 !(spi->mode & SPI_RX_QUAD))
2666 return -EINVAL;
2667 }
2668 }
2669
2670 message->status = -EINPROGRESS;
2671
2672 return 0;
2673 }
2674
2675 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2676 {
2677 struct spi_master *master = spi->master;
2678
2679 message->spi = spi;
2680
2681 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2682 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2683
2684 trace_spi_message_submit(message);
2685
2686 return master->transfer(spi, message);
2687 }
2688
2689 /**
2690 * spi_async - asynchronous SPI transfer
2691 * @spi: device with which data will be exchanged
2692 * @message: describes the data transfers, including completion callback
2693 * Context: any (irqs may be blocked, etc)
2694 *
2695 * This call may be used in_irq and other contexts which can't sleep,
2696 * as well as from task contexts which can sleep.
2697 *
2698 * The completion callback is invoked in a context which can't sleep.
2699 * Before that invocation, the value of message->status is undefined.
2700 * When the callback is issued, message->status holds either zero (to
2701 * indicate complete success) or a negative error code. After that
2702 * callback returns, the driver which issued the transfer request may
2703 * deallocate the associated memory; it's no longer in use by any SPI
2704 * core or controller driver code.
2705 *
2706 * Note that although all messages to a spi_device are handled in
2707 * FIFO order, messages may go to different devices in other orders.
2708 * Some device might be higher priority, or have various "hard" access
2709 * time requirements, for example.
2710 *
2711 * On detection of any fault during the transfer, processing of
2712 * the entire message is aborted, and the device is deselected.
2713 * Until returning from the associated message completion callback,
2714 * no other spi_message queued to that device will be processed.
2715 * (This rule applies equally to all the synchronous transfer calls,
2716 * which are wrappers around this core asynchronous primitive.)
2717 *
2718 * Return: zero on success, else a negative error code.
2719 */
2720 int spi_async(struct spi_device *spi, struct spi_message *message)
2721 {
2722 struct spi_master *master = spi->master;
2723 int ret;
2724 unsigned long flags;
2725
2726 ret = __spi_validate(spi, message);
2727 if (ret != 0)
2728 return ret;
2729
2730 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2731
2732 if (master->bus_lock_flag)
2733 ret = -EBUSY;
2734 else
2735 ret = __spi_async(spi, message);
2736
2737 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2738
2739 return ret;
2740 }
2741 EXPORT_SYMBOL_GPL(spi_async);
2742
2743 /**
2744 * spi_async_locked - version of spi_async with exclusive bus usage
2745 * @spi: device with which data will be exchanged
2746 * @message: describes the data transfers, including completion callback
2747 * Context: any (irqs may be blocked, etc)
2748 *
2749 * This call may be used in_irq and other contexts which can't sleep,
2750 * as well as from task contexts which can sleep.
2751 *
2752 * The completion callback is invoked in a context which can't sleep.
2753 * Before that invocation, the value of message->status is undefined.
2754 * When the callback is issued, message->status holds either zero (to
2755 * indicate complete success) or a negative error code. After that
2756 * callback returns, the driver which issued the transfer request may
2757 * deallocate the associated memory; it's no longer in use by any SPI
2758 * core or controller driver code.
2759 *
2760 * Note that although all messages to a spi_device are handled in
2761 * FIFO order, messages may go to different devices in other orders.
2762 * Some device might be higher priority, or have various "hard" access
2763 * time requirements, for example.
2764 *
2765 * On detection of any fault during the transfer, processing of
2766 * the entire message is aborted, and the device is deselected.
2767 * Until returning from the associated message completion callback,
2768 * no other spi_message queued to that device will be processed.
2769 * (This rule applies equally to all the synchronous transfer calls,
2770 * which are wrappers around this core asynchronous primitive.)
2771 *
2772 * Return: zero on success, else a negative error code.
2773 */
2774 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2775 {
2776 struct spi_master *master = spi->master;
2777 int ret;
2778 unsigned long flags;
2779
2780 ret = __spi_validate(spi, message);
2781 if (ret != 0)
2782 return ret;
2783
2784 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2785
2786 ret = __spi_async(spi, message);
2787
2788 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2789
2790 return ret;
2791
2792 }
2793 EXPORT_SYMBOL_GPL(spi_async_locked);
2794
2795
2796 int spi_flash_read(struct spi_device *spi,
2797 struct spi_flash_read_message *msg)
2798
2799 {
2800 struct spi_master *master = spi->master;
2801 struct device *rx_dev = NULL;
2802 int ret;
2803
2804 if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2805 msg->addr_nbits == SPI_NBITS_DUAL) &&
2806 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2807 return -EINVAL;
2808 if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2809 msg->addr_nbits == SPI_NBITS_QUAD) &&
2810 !(spi->mode & SPI_TX_QUAD))
2811 return -EINVAL;
2812 if (msg->data_nbits == SPI_NBITS_DUAL &&
2813 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2814 return -EINVAL;
2815 if (msg->data_nbits == SPI_NBITS_QUAD &&
2816 !(spi->mode & SPI_RX_QUAD))
2817 return -EINVAL;
2818
2819 if (master->auto_runtime_pm) {
2820 ret = pm_runtime_get_sync(master->dev.parent);
2821 if (ret < 0) {
2822 dev_err(&master->dev, "Failed to power device: %d\n",
2823 ret);
2824 return ret;
2825 }
2826 }
2827
2828 mutex_lock(&master->bus_lock_mutex);
2829 mutex_lock(&master->io_mutex);
2830 if (master->dma_rx) {
2831 rx_dev = master->dma_rx->device->dev;
2832 ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
2833 msg->buf, msg->len,
2834 DMA_FROM_DEVICE);
2835 if (!ret)
2836 msg->cur_msg_mapped = true;
2837 }
2838 ret = master->spi_flash_read(spi, msg);
2839 if (msg->cur_msg_mapped)
2840 spi_unmap_buf(master, rx_dev, &msg->rx_sg,
2841 DMA_FROM_DEVICE);
2842 mutex_unlock(&master->io_mutex);
2843 mutex_unlock(&master->bus_lock_mutex);
2844
2845 if (master->auto_runtime_pm)
2846 pm_runtime_put(master->dev.parent);
2847
2848 return ret;
2849 }
2850 EXPORT_SYMBOL_GPL(spi_flash_read);
2851
2852 /*-------------------------------------------------------------------------*/
2853
2854 /* Utility methods for SPI master protocol drivers, layered on
2855 * top of the core. Some other utility methods are defined as
2856 * inline functions.
2857 */
2858
2859 static void spi_complete(void *arg)
2860 {
2861 complete(arg);
2862 }
2863
2864 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
2865 {
2866 DECLARE_COMPLETION_ONSTACK(done);
2867 int status;
2868 struct spi_master *master = spi->master;
2869 unsigned long flags;
2870
2871 status = __spi_validate(spi, message);
2872 if (status != 0)
2873 return status;
2874
2875 message->complete = spi_complete;
2876 message->context = &done;
2877 message->spi = spi;
2878
2879 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2880 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2881
2882 /* If we're not using the legacy transfer method then we will
2883 * try to transfer in the calling context so special case.
2884 * This code would be less tricky if we could remove the
2885 * support for driver implemented message queues.
2886 */
2887 if (master->transfer == spi_queued_transfer) {
2888 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2889
2890 trace_spi_message_submit(message);
2891
2892 status = __spi_queued_transfer(spi, message, false);
2893
2894 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2895 } else {
2896 status = spi_async_locked(spi, message);
2897 }
2898
2899 if (status == 0) {
2900 /* Push out the messages in the calling context if we
2901 * can.
2902 */
2903 if (master->transfer == spi_queued_transfer) {
2904 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2905 spi_sync_immediate);
2906 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2907 spi_sync_immediate);
2908 __spi_pump_messages(master, false);
2909 }
2910
2911 wait_for_completion(&done);
2912 status = message->status;
2913 }
2914 message->context = NULL;
2915 return status;
2916 }
2917
2918 /**
2919 * spi_sync - blocking/synchronous SPI data transfers
2920 * @spi: device with which data will be exchanged
2921 * @message: describes the data transfers
2922 * Context: can sleep
2923 *
2924 * This call may only be used from a context that may sleep. The sleep
2925 * is non-interruptible, and has no timeout. Low-overhead controller
2926 * drivers may DMA directly into and out of the message buffers.
2927 *
2928 * Note that the SPI device's chip select is active during the message,
2929 * and then is normally disabled between messages. Drivers for some
2930 * frequently-used devices may want to minimize costs of selecting a chip,
2931 * by leaving it selected in anticipation that the next message will go
2932 * to the same chip. (That may increase power usage.)
2933 *
2934 * Also, the caller is guaranteeing that the memory associated with the
2935 * message will not be freed before this call returns.
2936 *
2937 * Return: zero on success, else a negative error code.
2938 */
2939 int spi_sync(struct spi_device *spi, struct spi_message *message)
2940 {
2941 int ret;
2942
2943 mutex_lock(&spi->master->bus_lock_mutex);
2944 ret = __spi_sync(spi, message);
2945 mutex_unlock(&spi->master->bus_lock_mutex);
2946
2947 return ret;
2948 }
2949 EXPORT_SYMBOL_GPL(spi_sync);
2950
2951 /**
2952 * spi_sync_locked - version of spi_sync with exclusive bus usage
2953 * @spi: device with which data will be exchanged
2954 * @message: describes the data transfers
2955 * Context: can sleep
2956 *
2957 * This call may only be used from a context that may sleep. The sleep
2958 * is non-interruptible, and has no timeout. Low-overhead controller
2959 * drivers may DMA directly into and out of the message buffers.
2960 *
2961 * This call should be used by drivers that require exclusive access to the
2962 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2963 * be released by a spi_bus_unlock call when the exclusive access is over.
2964 *
2965 * Return: zero on success, else a negative error code.
2966 */
2967 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2968 {
2969 return __spi_sync(spi, message);
2970 }
2971 EXPORT_SYMBOL_GPL(spi_sync_locked);
2972
2973 /**
2974 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2975 * @master: SPI bus master that should be locked for exclusive bus access
2976 * Context: can sleep
2977 *
2978 * This call may only be used from a context that may sleep. The sleep
2979 * is non-interruptible, and has no timeout.
2980 *
2981 * This call should be used by drivers that require exclusive access to the
2982 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2983 * exclusive access is over. Data transfer must be done by spi_sync_locked
2984 * and spi_async_locked calls when the SPI bus lock is held.
2985 *
2986 * Return: always zero.
2987 */
2988 int spi_bus_lock(struct spi_master *master)
2989 {
2990 unsigned long flags;
2991
2992 mutex_lock(&master->bus_lock_mutex);
2993
2994 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2995 master->bus_lock_flag = 1;
2996 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2997
2998 /* mutex remains locked until spi_bus_unlock is called */
2999
3000 return 0;
3001 }
3002 EXPORT_SYMBOL_GPL(spi_bus_lock);
3003
3004 /**
3005 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3006 * @master: SPI bus master that was locked for exclusive bus access
3007 * Context: can sleep
3008 *
3009 * This call may only be used from a context that may sleep. The sleep
3010 * is non-interruptible, and has no timeout.
3011 *
3012 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3013 * call.
3014 *
3015 * Return: always zero.
3016 */
3017 int spi_bus_unlock(struct spi_master *master)
3018 {
3019 master->bus_lock_flag = 0;
3020
3021 mutex_unlock(&master->bus_lock_mutex);
3022
3023 return 0;
3024 }
3025 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3026
3027 /* portable code must never pass more than 32 bytes */
3028 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3029
3030 static u8 *buf;
3031
3032 /**
3033 * spi_write_then_read - SPI synchronous write followed by read
3034 * @spi: device with which data will be exchanged
3035 * @txbuf: data to be written (need not be dma-safe)
3036 * @n_tx: size of txbuf, in bytes
3037 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3038 * @n_rx: size of rxbuf, in bytes
3039 * Context: can sleep
3040 *
3041 * This performs a half duplex MicroWire style transaction with the
3042 * device, sending txbuf and then reading rxbuf. The return value
3043 * is zero for success, else a negative errno status code.
3044 * This call may only be used from a context that may sleep.
3045 *
3046 * Parameters to this routine are always copied using a small buffer;
3047 * portable code should never use this for more than 32 bytes.
3048 * Performance-sensitive or bulk transfer code should instead use
3049 * spi_{async,sync}() calls with dma-safe buffers.
3050 *
3051 * Return: zero on success, else a negative error code.
3052 */
3053 int spi_write_then_read(struct spi_device *spi,
3054 const void *txbuf, unsigned n_tx,
3055 void *rxbuf, unsigned n_rx)
3056 {
3057 static DEFINE_MUTEX(lock);
3058
3059 int status;
3060 struct spi_message message;
3061 struct spi_transfer x[2];
3062 u8 *local_buf;
3063
3064 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3065 * copying here, (as a pure convenience thing), but we can
3066 * keep heap costs out of the hot path unless someone else is
3067 * using the pre-allocated buffer or the transfer is too large.
3068 */
3069 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3070 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3071 GFP_KERNEL | GFP_DMA);
3072 if (!local_buf)
3073 return -ENOMEM;
3074 } else {
3075 local_buf = buf;
3076 }
3077
3078 spi_message_init(&message);
3079 memset(x, 0, sizeof(x));
3080 if (n_tx) {
3081 x[0].len = n_tx;
3082 spi_message_add_tail(&x[0], &message);
3083 }
3084 if (n_rx) {
3085 x[1].len = n_rx;
3086 spi_message_add_tail(&x[1], &message);
3087 }
3088
3089 memcpy(local_buf, txbuf, n_tx);
3090 x[0].tx_buf = local_buf;
3091 x[1].rx_buf = local_buf + n_tx;
3092
3093 /* do the i/o */
3094 status = spi_sync(spi, &message);
3095 if (status == 0)
3096 memcpy(rxbuf, x[1].rx_buf, n_rx);
3097
3098 if (x[0].tx_buf == buf)
3099 mutex_unlock(&lock);
3100 else
3101 kfree(local_buf);
3102
3103 return status;
3104 }
3105 EXPORT_SYMBOL_GPL(spi_write_then_read);
3106
3107 /*-------------------------------------------------------------------------*/
3108
3109 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3110 static int __spi_of_device_match(struct device *dev, void *data)
3111 {
3112 return dev->of_node == data;
3113 }
3114
3115 /* must call put_device() when done with returned spi_device device */
3116 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3117 {
3118 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3119 __spi_of_device_match);
3120 return dev ? to_spi_device(dev) : NULL;
3121 }
3122
3123 static int __spi_of_master_match(struct device *dev, const void *data)
3124 {
3125 return dev->of_node == data;
3126 }
3127
3128 /* the spi masters are not using spi_bus, so we find it with another way */
3129 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
3130 {
3131 struct device *dev;
3132
3133 dev = class_find_device(&spi_master_class, NULL, node,
3134 __spi_of_master_match);
3135 if (!dev)
3136 return NULL;
3137
3138 /* reference got in class_find_device */
3139 return container_of(dev, struct spi_master, dev);
3140 }
3141
3142 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3143 void *arg)
3144 {
3145 struct of_reconfig_data *rd = arg;
3146 struct spi_master *master;
3147 struct spi_device *spi;
3148
3149 switch (of_reconfig_get_state_change(action, arg)) {
3150 case OF_RECONFIG_CHANGE_ADD:
3151 master = of_find_spi_master_by_node(rd->dn->parent);
3152 if (master == NULL)
3153 return NOTIFY_OK; /* not for us */
3154
3155 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3156 put_device(&master->dev);
3157 return NOTIFY_OK;
3158 }
3159
3160 spi = of_register_spi_device(master, rd->dn);
3161 put_device(&master->dev);
3162
3163 if (IS_ERR(spi)) {
3164 pr_err("%s: failed to create for '%s'\n",
3165 __func__, rd->dn->full_name);
3166 of_node_clear_flag(rd->dn, OF_POPULATED);
3167 return notifier_from_errno(PTR_ERR(spi));
3168 }
3169 break;
3170
3171 case OF_RECONFIG_CHANGE_REMOVE:
3172 /* already depopulated? */
3173 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3174 return NOTIFY_OK;
3175
3176 /* find our device by node */
3177 spi = of_find_spi_device_by_node(rd->dn);
3178 if (spi == NULL)
3179 return NOTIFY_OK; /* no? not meant for us */
3180
3181 /* unregister takes one ref away */
3182 spi_unregister_device(spi);
3183
3184 /* and put the reference of the find */
3185 put_device(&spi->dev);
3186 break;
3187 }
3188
3189 return NOTIFY_OK;
3190 }
3191
3192 static struct notifier_block spi_of_notifier = {
3193 .notifier_call = of_spi_notify,
3194 };
3195 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3196 extern struct notifier_block spi_of_notifier;
3197 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3198
3199 #if IS_ENABLED(CONFIG_ACPI)
3200 static int spi_acpi_master_match(struct device *dev, const void *data)
3201 {
3202 return ACPI_COMPANION(dev->parent) == data;
3203 }
3204
3205 static int spi_acpi_device_match(struct device *dev, void *data)
3206 {
3207 return ACPI_COMPANION(dev) == data;
3208 }
3209
3210 static struct spi_master *acpi_spi_find_master_by_adev(struct acpi_device *adev)
3211 {
3212 struct device *dev;
3213
3214 dev = class_find_device(&spi_master_class, NULL, adev,
3215 spi_acpi_master_match);
3216 if (!dev)
3217 return NULL;
3218
3219 return container_of(dev, struct spi_master, dev);
3220 }
3221
3222 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3223 {
3224 struct device *dev;
3225
3226 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3227
3228 return dev ? to_spi_device(dev) : NULL;
3229 }
3230
3231 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3232 void *arg)
3233 {
3234 struct acpi_device *adev = arg;
3235 struct spi_master *master;
3236 struct spi_device *spi;
3237
3238 switch (value) {
3239 case ACPI_RECONFIG_DEVICE_ADD:
3240 master = acpi_spi_find_master_by_adev(adev->parent);
3241 if (!master)
3242 break;
3243
3244 acpi_register_spi_device(master, adev);
3245 put_device(&master->dev);
3246 break;
3247 case ACPI_RECONFIG_DEVICE_REMOVE:
3248 if (!acpi_device_enumerated(adev))
3249 break;
3250
3251 spi = acpi_spi_find_device_by_adev(adev);
3252 if (!spi)
3253 break;
3254
3255 spi_unregister_device(spi);
3256 put_device(&spi->dev);
3257 break;
3258 }
3259
3260 return NOTIFY_OK;
3261 }
3262
3263 static struct notifier_block spi_acpi_notifier = {
3264 .notifier_call = acpi_spi_notify,
3265 };
3266 #else
3267 extern struct notifier_block spi_acpi_notifier;
3268 #endif
3269
3270 static int __init spi_init(void)
3271 {
3272 int status;
3273
3274 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3275 if (!buf) {
3276 status = -ENOMEM;
3277 goto err0;
3278 }
3279
3280 status = bus_register(&spi_bus_type);
3281 if (status < 0)
3282 goto err1;
3283
3284 status = class_register(&spi_master_class);
3285 if (status < 0)
3286 goto err2;
3287
3288 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3289 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3290 if (IS_ENABLED(CONFIG_ACPI))
3291 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3292
3293 return 0;
3294
3295 err2:
3296 bus_unregister(&spi_bus_type);
3297 err1:
3298 kfree(buf);
3299 buf = NULL;
3300 err0:
3301 return status;
3302 }
3303
3304 /* board_info is normally registered in arch_initcall(),
3305 * but even essential drivers wait till later
3306 *
3307 * REVISIT only boardinfo really needs static linking. the rest (device and
3308 * driver registration) _could_ be dynamically linked (modular) ... costs
3309 * include needing to have boardinfo data structures be much more public.
3310 */
3311 postcore_initcall(spi_init);
3312