]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/spi/spi.c
Merge remote-tracking branch 'spi/topic/core' into spi-next
[mirror_ubuntu-bionic-kernel.git] / drivers / spi / spi.c
1 /*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40 #include <linux/highmem.h>
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/spi.h>
44
45 static void spidev_release(struct device *dev)
46 {
47 struct spi_device *spi = to_spi_device(dev);
48
49 /* spi masters may cleanup for released devices */
50 if (spi->master->cleanup)
51 spi->master->cleanup(spi);
52
53 spi_master_put(spi->master);
54 kfree(spi);
55 }
56
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60 const struct spi_device *spi = to_spi_device(dev);
61 int len;
62
63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 if (len != -ENODEV)
65 return len;
66
67 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70
71 #define SPI_STATISTICS_ATTRS(field, file) \
72 static ssize_t spi_master_##field##_show(struct device *dev, \
73 struct device_attribute *attr, \
74 char *buf) \
75 { \
76 struct spi_master *master = container_of(dev, \
77 struct spi_master, dev); \
78 return spi_statistics_##field##_show(&master->statistics, buf); \
79 } \
80 static struct device_attribute dev_attr_spi_master_##field = { \
81 .attr = { .name = file, .mode = S_IRUGO }, \
82 .show = spi_master_##field##_show, \
83 }; \
84 static ssize_t spi_device_##field##_show(struct device *dev, \
85 struct device_attribute *attr, \
86 char *buf) \
87 { \
88 struct spi_device *spi = to_spi_device(dev); \
89 return spi_statistics_##field##_show(&spi->statistics, buf); \
90 } \
91 static struct device_attribute dev_attr_spi_device_##field = { \
92 .attr = { .name = file, .mode = S_IRUGO }, \
93 .show = spi_device_##field##_show, \
94 }
95
96 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
97 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
98 char *buf) \
99 { \
100 unsigned long flags; \
101 ssize_t len; \
102 spin_lock_irqsave(&stat->lock, flags); \
103 len = sprintf(buf, format_string, stat->field); \
104 spin_unlock_irqrestore(&stat->lock, flags); \
105 return len; \
106 } \
107 SPI_STATISTICS_ATTRS(name, file)
108
109 #define SPI_STATISTICS_SHOW(field, format_string) \
110 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
111 field, format_string)
112
113 SPI_STATISTICS_SHOW(messages, "%lu");
114 SPI_STATISTICS_SHOW(transfers, "%lu");
115 SPI_STATISTICS_SHOW(errors, "%lu");
116 SPI_STATISTICS_SHOW(timedout, "%lu");
117
118 SPI_STATISTICS_SHOW(spi_sync, "%lu");
119 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
120 SPI_STATISTICS_SHOW(spi_async, "%lu");
121
122 SPI_STATISTICS_SHOW(bytes, "%llu");
123 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
124 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
125
126 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
127 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
128 "transfer_bytes_histo_" number, \
129 transfer_bytes_histo[index], "%lu")
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
147
148 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
149
150 static struct attribute *spi_dev_attrs[] = {
151 &dev_attr_modalias.attr,
152 NULL,
153 };
154
155 static const struct attribute_group spi_dev_group = {
156 .attrs = spi_dev_attrs,
157 };
158
159 static struct attribute *spi_device_statistics_attrs[] = {
160 &dev_attr_spi_device_messages.attr,
161 &dev_attr_spi_device_transfers.attr,
162 &dev_attr_spi_device_errors.attr,
163 &dev_attr_spi_device_timedout.attr,
164 &dev_attr_spi_device_spi_sync.attr,
165 &dev_attr_spi_device_spi_sync_immediate.attr,
166 &dev_attr_spi_device_spi_async.attr,
167 &dev_attr_spi_device_bytes.attr,
168 &dev_attr_spi_device_bytes_rx.attr,
169 &dev_attr_spi_device_bytes_tx.attr,
170 &dev_attr_spi_device_transfer_bytes_histo0.attr,
171 &dev_attr_spi_device_transfer_bytes_histo1.attr,
172 &dev_attr_spi_device_transfer_bytes_histo2.attr,
173 &dev_attr_spi_device_transfer_bytes_histo3.attr,
174 &dev_attr_spi_device_transfer_bytes_histo4.attr,
175 &dev_attr_spi_device_transfer_bytes_histo5.attr,
176 &dev_attr_spi_device_transfer_bytes_histo6.attr,
177 &dev_attr_spi_device_transfer_bytes_histo7.attr,
178 &dev_attr_spi_device_transfer_bytes_histo8.attr,
179 &dev_attr_spi_device_transfer_bytes_histo9.attr,
180 &dev_attr_spi_device_transfer_bytes_histo10.attr,
181 &dev_attr_spi_device_transfer_bytes_histo11.attr,
182 &dev_attr_spi_device_transfer_bytes_histo12.attr,
183 &dev_attr_spi_device_transfer_bytes_histo13.attr,
184 &dev_attr_spi_device_transfer_bytes_histo14.attr,
185 &dev_attr_spi_device_transfer_bytes_histo15.attr,
186 &dev_attr_spi_device_transfer_bytes_histo16.attr,
187 &dev_attr_spi_device_transfers_split_maxsize.attr,
188 NULL,
189 };
190
191 static const struct attribute_group spi_device_statistics_group = {
192 .name = "statistics",
193 .attrs = spi_device_statistics_attrs,
194 };
195
196 static const struct attribute_group *spi_dev_groups[] = {
197 &spi_dev_group,
198 &spi_device_statistics_group,
199 NULL,
200 };
201
202 static struct attribute *spi_master_statistics_attrs[] = {
203 &dev_attr_spi_master_messages.attr,
204 &dev_attr_spi_master_transfers.attr,
205 &dev_attr_spi_master_errors.attr,
206 &dev_attr_spi_master_timedout.attr,
207 &dev_attr_spi_master_spi_sync.attr,
208 &dev_attr_spi_master_spi_sync_immediate.attr,
209 &dev_attr_spi_master_spi_async.attr,
210 &dev_attr_spi_master_bytes.attr,
211 &dev_attr_spi_master_bytes_rx.attr,
212 &dev_attr_spi_master_bytes_tx.attr,
213 &dev_attr_spi_master_transfer_bytes_histo0.attr,
214 &dev_attr_spi_master_transfer_bytes_histo1.attr,
215 &dev_attr_spi_master_transfer_bytes_histo2.attr,
216 &dev_attr_spi_master_transfer_bytes_histo3.attr,
217 &dev_attr_spi_master_transfer_bytes_histo4.attr,
218 &dev_attr_spi_master_transfer_bytes_histo5.attr,
219 &dev_attr_spi_master_transfer_bytes_histo6.attr,
220 &dev_attr_spi_master_transfer_bytes_histo7.attr,
221 &dev_attr_spi_master_transfer_bytes_histo8.attr,
222 &dev_attr_spi_master_transfer_bytes_histo9.attr,
223 &dev_attr_spi_master_transfer_bytes_histo10.attr,
224 &dev_attr_spi_master_transfer_bytes_histo11.attr,
225 &dev_attr_spi_master_transfer_bytes_histo12.attr,
226 &dev_attr_spi_master_transfer_bytes_histo13.attr,
227 &dev_attr_spi_master_transfer_bytes_histo14.attr,
228 &dev_attr_spi_master_transfer_bytes_histo15.attr,
229 &dev_attr_spi_master_transfer_bytes_histo16.attr,
230 &dev_attr_spi_master_transfers_split_maxsize.attr,
231 NULL,
232 };
233
234 static const struct attribute_group spi_master_statistics_group = {
235 .name = "statistics",
236 .attrs = spi_master_statistics_attrs,
237 };
238
239 static const struct attribute_group *spi_master_groups[] = {
240 &spi_master_statistics_group,
241 NULL,
242 };
243
244 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
245 struct spi_transfer *xfer,
246 struct spi_master *master)
247 {
248 unsigned long flags;
249 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
250
251 if (l2len < 0)
252 l2len = 0;
253
254 spin_lock_irqsave(&stats->lock, flags);
255
256 stats->transfers++;
257 stats->transfer_bytes_histo[l2len]++;
258
259 stats->bytes += xfer->len;
260 if ((xfer->tx_buf) &&
261 (xfer->tx_buf != master->dummy_tx))
262 stats->bytes_tx += xfer->len;
263 if ((xfer->rx_buf) &&
264 (xfer->rx_buf != master->dummy_rx))
265 stats->bytes_rx += xfer->len;
266
267 spin_unlock_irqrestore(&stats->lock, flags);
268 }
269 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
270
271 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
272 * and the sysfs version makes coldplug work too.
273 */
274
275 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
276 const struct spi_device *sdev)
277 {
278 while (id->name[0]) {
279 if (!strcmp(sdev->modalias, id->name))
280 return id;
281 id++;
282 }
283 return NULL;
284 }
285
286 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
287 {
288 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
289
290 return spi_match_id(sdrv->id_table, sdev);
291 }
292 EXPORT_SYMBOL_GPL(spi_get_device_id);
293
294 static int spi_match_device(struct device *dev, struct device_driver *drv)
295 {
296 const struct spi_device *spi = to_spi_device(dev);
297 const struct spi_driver *sdrv = to_spi_driver(drv);
298
299 /* Attempt an OF style match */
300 if (of_driver_match_device(dev, drv))
301 return 1;
302
303 /* Then try ACPI */
304 if (acpi_driver_match_device(dev, drv))
305 return 1;
306
307 if (sdrv->id_table)
308 return !!spi_match_id(sdrv->id_table, spi);
309
310 return strcmp(spi->modalias, drv->name) == 0;
311 }
312
313 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
314 {
315 const struct spi_device *spi = to_spi_device(dev);
316 int rc;
317
318 rc = acpi_device_uevent_modalias(dev, env);
319 if (rc != -ENODEV)
320 return rc;
321
322 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
323 return 0;
324 }
325
326 struct bus_type spi_bus_type = {
327 .name = "spi",
328 .dev_groups = spi_dev_groups,
329 .match = spi_match_device,
330 .uevent = spi_uevent,
331 };
332 EXPORT_SYMBOL_GPL(spi_bus_type);
333
334
335 static int spi_drv_probe(struct device *dev)
336 {
337 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
338 struct spi_device *spi = to_spi_device(dev);
339 int ret;
340
341 ret = of_clk_set_defaults(dev->of_node, false);
342 if (ret)
343 return ret;
344
345 if (dev->of_node) {
346 spi->irq = of_irq_get(dev->of_node, 0);
347 if (spi->irq == -EPROBE_DEFER)
348 return -EPROBE_DEFER;
349 if (spi->irq < 0)
350 spi->irq = 0;
351 }
352
353 ret = dev_pm_domain_attach(dev, true);
354 if (ret != -EPROBE_DEFER) {
355 ret = sdrv->probe(spi);
356 if (ret)
357 dev_pm_domain_detach(dev, true);
358 }
359
360 return ret;
361 }
362
363 static int spi_drv_remove(struct device *dev)
364 {
365 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
366 int ret;
367
368 ret = sdrv->remove(to_spi_device(dev));
369 dev_pm_domain_detach(dev, true);
370
371 return ret;
372 }
373
374 static void spi_drv_shutdown(struct device *dev)
375 {
376 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
377
378 sdrv->shutdown(to_spi_device(dev));
379 }
380
381 /**
382 * __spi_register_driver - register a SPI driver
383 * @owner: owner module of the driver to register
384 * @sdrv: the driver to register
385 * Context: can sleep
386 *
387 * Return: zero on success, else a negative error code.
388 */
389 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
390 {
391 sdrv->driver.owner = owner;
392 sdrv->driver.bus = &spi_bus_type;
393 if (sdrv->probe)
394 sdrv->driver.probe = spi_drv_probe;
395 if (sdrv->remove)
396 sdrv->driver.remove = spi_drv_remove;
397 if (sdrv->shutdown)
398 sdrv->driver.shutdown = spi_drv_shutdown;
399 return driver_register(&sdrv->driver);
400 }
401 EXPORT_SYMBOL_GPL(__spi_register_driver);
402
403 /*-------------------------------------------------------------------------*/
404
405 /* SPI devices should normally not be created by SPI device drivers; that
406 * would make them board-specific. Similarly with SPI master drivers.
407 * Device registration normally goes into like arch/.../mach.../board-YYY.c
408 * with other readonly (flashable) information about mainboard devices.
409 */
410
411 struct boardinfo {
412 struct list_head list;
413 struct spi_board_info board_info;
414 };
415
416 static LIST_HEAD(board_list);
417 static LIST_HEAD(spi_master_list);
418
419 /*
420 * Used to protect add/del opertion for board_info list and
421 * spi_master list, and their matching process
422 */
423 static DEFINE_MUTEX(board_lock);
424
425 /**
426 * spi_alloc_device - Allocate a new SPI device
427 * @master: Controller to which device is connected
428 * Context: can sleep
429 *
430 * Allows a driver to allocate and initialize a spi_device without
431 * registering it immediately. This allows a driver to directly
432 * fill the spi_device with device parameters before calling
433 * spi_add_device() on it.
434 *
435 * Caller is responsible to call spi_add_device() on the returned
436 * spi_device structure to add it to the SPI master. If the caller
437 * needs to discard the spi_device without adding it, then it should
438 * call spi_dev_put() on it.
439 *
440 * Return: a pointer to the new device, or NULL.
441 */
442 struct spi_device *spi_alloc_device(struct spi_master *master)
443 {
444 struct spi_device *spi;
445
446 if (!spi_master_get(master))
447 return NULL;
448
449 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
450 if (!spi) {
451 spi_master_put(master);
452 return NULL;
453 }
454
455 spi->master = master;
456 spi->dev.parent = &master->dev;
457 spi->dev.bus = &spi_bus_type;
458 spi->dev.release = spidev_release;
459 spi->cs_gpio = -ENOENT;
460
461 spin_lock_init(&spi->statistics.lock);
462
463 device_initialize(&spi->dev);
464 return spi;
465 }
466 EXPORT_SYMBOL_GPL(spi_alloc_device);
467
468 static void spi_dev_set_name(struct spi_device *spi)
469 {
470 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
471
472 if (adev) {
473 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
474 return;
475 }
476
477 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
478 spi->chip_select);
479 }
480
481 static int spi_dev_check(struct device *dev, void *data)
482 {
483 struct spi_device *spi = to_spi_device(dev);
484 struct spi_device *new_spi = data;
485
486 if (spi->master == new_spi->master &&
487 spi->chip_select == new_spi->chip_select)
488 return -EBUSY;
489 return 0;
490 }
491
492 /**
493 * spi_add_device - Add spi_device allocated with spi_alloc_device
494 * @spi: spi_device to register
495 *
496 * Companion function to spi_alloc_device. Devices allocated with
497 * spi_alloc_device can be added onto the spi bus with this function.
498 *
499 * Return: 0 on success; negative errno on failure
500 */
501 int spi_add_device(struct spi_device *spi)
502 {
503 static DEFINE_MUTEX(spi_add_lock);
504 struct spi_master *master = spi->master;
505 struct device *dev = master->dev.parent;
506 int status;
507
508 /* Chipselects are numbered 0..max; validate. */
509 if (spi->chip_select >= master->num_chipselect) {
510 dev_err(dev, "cs%d >= max %d\n",
511 spi->chip_select,
512 master->num_chipselect);
513 return -EINVAL;
514 }
515
516 /* Set the bus ID string */
517 spi_dev_set_name(spi);
518
519 /* We need to make sure there's no other device with this
520 * chipselect **BEFORE** we call setup(), else we'll trash
521 * its configuration. Lock against concurrent add() calls.
522 */
523 mutex_lock(&spi_add_lock);
524
525 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
526 if (status) {
527 dev_err(dev, "chipselect %d already in use\n",
528 spi->chip_select);
529 goto done;
530 }
531
532 if (master->cs_gpios)
533 spi->cs_gpio = master->cs_gpios[spi->chip_select];
534
535 /* Drivers may modify this initial i/o setup, but will
536 * normally rely on the device being setup. Devices
537 * using SPI_CS_HIGH can't coexist well otherwise...
538 */
539 status = spi_setup(spi);
540 if (status < 0) {
541 dev_err(dev, "can't setup %s, status %d\n",
542 dev_name(&spi->dev), status);
543 goto done;
544 }
545
546 /* Device may be bound to an active driver when this returns */
547 status = device_add(&spi->dev);
548 if (status < 0)
549 dev_err(dev, "can't add %s, status %d\n",
550 dev_name(&spi->dev), status);
551 else
552 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
553
554 done:
555 mutex_unlock(&spi_add_lock);
556 return status;
557 }
558 EXPORT_SYMBOL_GPL(spi_add_device);
559
560 /**
561 * spi_new_device - instantiate one new SPI device
562 * @master: Controller to which device is connected
563 * @chip: Describes the SPI device
564 * Context: can sleep
565 *
566 * On typical mainboards, this is purely internal; and it's not needed
567 * after board init creates the hard-wired devices. Some development
568 * platforms may not be able to use spi_register_board_info though, and
569 * this is exported so that for example a USB or parport based adapter
570 * driver could add devices (which it would learn about out-of-band).
571 *
572 * Return: the new device, or NULL.
573 */
574 struct spi_device *spi_new_device(struct spi_master *master,
575 struct spi_board_info *chip)
576 {
577 struct spi_device *proxy;
578 int status;
579
580 /* NOTE: caller did any chip->bus_num checks necessary.
581 *
582 * Also, unless we change the return value convention to use
583 * error-or-pointer (not NULL-or-pointer), troubleshootability
584 * suggests syslogged diagnostics are best here (ugh).
585 */
586
587 proxy = spi_alloc_device(master);
588 if (!proxy)
589 return NULL;
590
591 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
592
593 proxy->chip_select = chip->chip_select;
594 proxy->max_speed_hz = chip->max_speed_hz;
595 proxy->mode = chip->mode;
596 proxy->irq = chip->irq;
597 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
598 proxy->dev.platform_data = (void *) chip->platform_data;
599 proxy->controller_data = chip->controller_data;
600 proxy->controller_state = NULL;
601
602 status = spi_add_device(proxy);
603 if (status < 0) {
604 spi_dev_put(proxy);
605 return NULL;
606 }
607
608 return proxy;
609 }
610 EXPORT_SYMBOL_GPL(spi_new_device);
611
612 /**
613 * spi_unregister_device - unregister a single SPI device
614 * @spi: spi_device to unregister
615 *
616 * Start making the passed SPI device vanish. Normally this would be handled
617 * by spi_unregister_master().
618 */
619 void spi_unregister_device(struct spi_device *spi)
620 {
621 if (!spi)
622 return;
623
624 if (spi->dev.of_node)
625 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
626 if (ACPI_COMPANION(&spi->dev))
627 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
628 device_unregister(&spi->dev);
629 }
630 EXPORT_SYMBOL_GPL(spi_unregister_device);
631
632 static void spi_match_master_to_boardinfo(struct spi_master *master,
633 struct spi_board_info *bi)
634 {
635 struct spi_device *dev;
636
637 if (master->bus_num != bi->bus_num)
638 return;
639
640 dev = spi_new_device(master, bi);
641 if (!dev)
642 dev_err(master->dev.parent, "can't create new device for %s\n",
643 bi->modalias);
644 }
645
646 /**
647 * spi_register_board_info - register SPI devices for a given board
648 * @info: array of chip descriptors
649 * @n: how many descriptors are provided
650 * Context: can sleep
651 *
652 * Board-specific early init code calls this (probably during arch_initcall)
653 * with segments of the SPI device table. Any device nodes are created later,
654 * after the relevant parent SPI controller (bus_num) is defined. We keep
655 * this table of devices forever, so that reloading a controller driver will
656 * not make Linux forget about these hard-wired devices.
657 *
658 * Other code can also call this, e.g. a particular add-on board might provide
659 * SPI devices through its expansion connector, so code initializing that board
660 * would naturally declare its SPI devices.
661 *
662 * The board info passed can safely be __initdata ... but be careful of
663 * any embedded pointers (platform_data, etc), they're copied as-is.
664 *
665 * Return: zero on success, else a negative error code.
666 */
667 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
668 {
669 struct boardinfo *bi;
670 int i;
671
672 if (!n)
673 return -EINVAL;
674
675 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
676 if (!bi)
677 return -ENOMEM;
678
679 for (i = 0; i < n; i++, bi++, info++) {
680 struct spi_master *master;
681
682 memcpy(&bi->board_info, info, sizeof(*info));
683 mutex_lock(&board_lock);
684 list_add_tail(&bi->list, &board_list);
685 list_for_each_entry(master, &spi_master_list, list)
686 spi_match_master_to_boardinfo(master, &bi->board_info);
687 mutex_unlock(&board_lock);
688 }
689
690 return 0;
691 }
692
693 /*-------------------------------------------------------------------------*/
694
695 static void spi_set_cs(struct spi_device *spi, bool enable)
696 {
697 if (spi->mode & SPI_CS_HIGH)
698 enable = !enable;
699
700 if (gpio_is_valid(spi->cs_gpio)) {
701 gpio_set_value(spi->cs_gpio, !enable);
702 /* Some SPI masters need both GPIO CS & slave_select */
703 if ((spi->master->flags & SPI_MASTER_GPIO_SS) &&
704 spi->master->set_cs)
705 spi->master->set_cs(spi, !enable);
706 } else if (spi->master->set_cs) {
707 spi->master->set_cs(spi, !enable);
708 }
709 }
710
711 #ifdef CONFIG_HAS_DMA
712 static int spi_map_buf(struct spi_master *master, struct device *dev,
713 struct sg_table *sgt, void *buf, size_t len,
714 enum dma_data_direction dir)
715 {
716 const bool vmalloced_buf = is_vmalloc_addr(buf);
717 unsigned int max_seg_size = dma_get_max_seg_size(dev);
718 #ifdef CONFIG_HIGHMEM
719 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
720 (unsigned long)buf < (PKMAP_BASE +
721 (LAST_PKMAP * PAGE_SIZE)));
722 #else
723 const bool kmap_buf = false;
724 #endif
725 int desc_len;
726 int sgs;
727 struct page *vm_page;
728 void *sg_buf;
729 size_t min;
730 int i, ret;
731
732 if (vmalloced_buf || kmap_buf) {
733 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
734 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
735 } else if (virt_addr_valid(buf)) {
736 desc_len = min_t(int, max_seg_size, master->max_dma_len);
737 sgs = DIV_ROUND_UP(len, desc_len);
738 } else {
739 return -EINVAL;
740 }
741
742 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
743 if (ret != 0)
744 return ret;
745
746 for (i = 0; i < sgs; i++) {
747
748 if (vmalloced_buf || kmap_buf) {
749 min = min_t(size_t,
750 len, desc_len - offset_in_page(buf));
751 if (vmalloced_buf)
752 vm_page = vmalloc_to_page(buf);
753 else
754 vm_page = kmap_to_page(buf);
755 if (!vm_page) {
756 sg_free_table(sgt);
757 return -ENOMEM;
758 }
759 sg_set_page(&sgt->sgl[i], vm_page,
760 min, offset_in_page(buf));
761 } else {
762 min = min_t(size_t, len, desc_len);
763 sg_buf = buf;
764 sg_set_buf(&sgt->sgl[i], sg_buf, min);
765 }
766
767 buf += min;
768 len -= min;
769 }
770
771 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
772 if (!ret)
773 ret = -ENOMEM;
774 if (ret < 0) {
775 sg_free_table(sgt);
776 return ret;
777 }
778
779 sgt->nents = ret;
780
781 return 0;
782 }
783
784 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
785 struct sg_table *sgt, enum dma_data_direction dir)
786 {
787 if (sgt->orig_nents) {
788 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
789 sg_free_table(sgt);
790 }
791 }
792
793 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
794 {
795 struct device *tx_dev, *rx_dev;
796 struct spi_transfer *xfer;
797 int ret;
798
799 if (!master->can_dma)
800 return 0;
801
802 if (master->dma_tx)
803 tx_dev = master->dma_tx->device->dev;
804 else
805 tx_dev = &master->dev;
806
807 if (master->dma_rx)
808 rx_dev = master->dma_rx->device->dev;
809 else
810 rx_dev = &master->dev;
811
812 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
813 if (!master->can_dma(master, msg->spi, xfer))
814 continue;
815
816 if (xfer->tx_buf != NULL) {
817 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
818 (void *)xfer->tx_buf, xfer->len,
819 DMA_TO_DEVICE);
820 if (ret != 0)
821 return ret;
822 }
823
824 if (xfer->rx_buf != NULL) {
825 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
826 xfer->rx_buf, xfer->len,
827 DMA_FROM_DEVICE);
828 if (ret != 0) {
829 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
830 DMA_TO_DEVICE);
831 return ret;
832 }
833 }
834 }
835
836 master->cur_msg_mapped = true;
837
838 return 0;
839 }
840
841 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
842 {
843 struct spi_transfer *xfer;
844 struct device *tx_dev, *rx_dev;
845
846 if (!master->cur_msg_mapped || !master->can_dma)
847 return 0;
848
849 if (master->dma_tx)
850 tx_dev = master->dma_tx->device->dev;
851 else
852 tx_dev = &master->dev;
853
854 if (master->dma_rx)
855 rx_dev = master->dma_rx->device->dev;
856 else
857 rx_dev = &master->dev;
858
859 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
860 if (!master->can_dma(master, msg->spi, xfer))
861 continue;
862
863 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
864 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
865 }
866
867 return 0;
868 }
869 #else /* !CONFIG_HAS_DMA */
870 static inline int spi_map_buf(struct spi_master *master,
871 struct device *dev, struct sg_table *sgt,
872 void *buf, size_t len,
873 enum dma_data_direction dir)
874 {
875 return -EINVAL;
876 }
877
878 static inline void spi_unmap_buf(struct spi_master *master,
879 struct device *dev, struct sg_table *sgt,
880 enum dma_data_direction dir)
881 {
882 }
883
884 static inline int __spi_map_msg(struct spi_master *master,
885 struct spi_message *msg)
886 {
887 return 0;
888 }
889
890 static inline int __spi_unmap_msg(struct spi_master *master,
891 struct spi_message *msg)
892 {
893 return 0;
894 }
895 #endif /* !CONFIG_HAS_DMA */
896
897 static inline int spi_unmap_msg(struct spi_master *master,
898 struct spi_message *msg)
899 {
900 struct spi_transfer *xfer;
901
902 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
903 /*
904 * Restore the original value of tx_buf or rx_buf if they are
905 * NULL.
906 */
907 if (xfer->tx_buf == master->dummy_tx)
908 xfer->tx_buf = NULL;
909 if (xfer->rx_buf == master->dummy_rx)
910 xfer->rx_buf = NULL;
911 }
912
913 return __spi_unmap_msg(master, msg);
914 }
915
916 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
917 {
918 struct spi_transfer *xfer;
919 void *tmp;
920 unsigned int max_tx, max_rx;
921
922 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
923 max_tx = 0;
924 max_rx = 0;
925
926 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
927 if ((master->flags & SPI_MASTER_MUST_TX) &&
928 !xfer->tx_buf)
929 max_tx = max(xfer->len, max_tx);
930 if ((master->flags & SPI_MASTER_MUST_RX) &&
931 !xfer->rx_buf)
932 max_rx = max(xfer->len, max_rx);
933 }
934
935 if (max_tx) {
936 tmp = krealloc(master->dummy_tx, max_tx,
937 GFP_KERNEL | GFP_DMA);
938 if (!tmp)
939 return -ENOMEM;
940 master->dummy_tx = tmp;
941 memset(tmp, 0, max_tx);
942 }
943
944 if (max_rx) {
945 tmp = krealloc(master->dummy_rx, max_rx,
946 GFP_KERNEL | GFP_DMA);
947 if (!tmp)
948 return -ENOMEM;
949 master->dummy_rx = tmp;
950 }
951
952 if (max_tx || max_rx) {
953 list_for_each_entry(xfer, &msg->transfers,
954 transfer_list) {
955 if (!xfer->tx_buf)
956 xfer->tx_buf = master->dummy_tx;
957 if (!xfer->rx_buf)
958 xfer->rx_buf = master->dummy_rx;
959 }
960 }
961 }
962
963 return __spi_map_msg(master, msg);
964 }
965
966 /*
967 * spi_transfer_one_message - Default implementation of transfer_one_message()
968 *
969 * This is a standard implementation of transfer_one_message() for
970 * drivers which implement a transfer_one() operation. It provides
971 * standard handling of delays and chip select management.
972 */
973 static int spi_transfer_one_message(struct spi_master *master,
974 struct spi_message *msg)
975 {
976 struct spi_transfer *xfer;
977 bool keep_cs = false;
978 int ret = 0;
979 unsigned long long ms = 1;
980 struct spi_statistics *statm = &master->statistics;
981 struct spi_statistics *stats = &msg->spi->statistics;
982
983 spi_set_cs(msg->spi, true);
984
985 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
986 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
987
988 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
989 trace_spi_transfer_start(msg, xfer);
990
991 spi_statistics_add_transfer_stats(statm, xfer, master);
992 spi_statistics_add_transfer_stats(stats, xfer, master);
993
994 if (xfer->tx_buf || xfer->rx_buf) {
995 reinit_completion(&master->xfer_completion);
996
997 ret = master->transfer_one(master, msg->spi, xfer);
998 if (ret < 0) {
999 SPI_STATISTICS_INCREMENT_FIELD(statm,
1000 errors);
1001 SPI_STATISTICS_INCREMENT_FIELD(stats,
1002 errors);
1003 dev_err(&msg->spi->dev,
1004 "SPI transfer failed: %d\n", ret);
1005 goto out;
1006 }
1007
1008 if (ret > 0) {
1009 ret = 0;
1010 ms = 8LL * 1000LL * xfer->len;
1011 do_div(ms, xfer->speed_hz);
1012 ms += ms + 100; /* some tolerance */
1013
1014 if (ms > UINT_MAX)
1015 ms = UINT_MAX;
1016
1017 ms = wait_for_completion_timeout(&master->xfer_completion,
1018 msecs_to_jiffies(ms));
1019 }
1020
1021 if (ms == 0) {
1022 SPI_STATISTICS_INCREMENT_FIELD(statm,
1023 timedout);
1024 SPI_STATISTICS_INCREMENT_FIELD(stats,
1025 timedout);
1026 dev_err(&msg->spi->dev,
1027 "SPI transfer timed out\n");
1028 msg->status = -ETIMEDOUT;
1029 }
1030 } else {
1031 if (xfer->len)
1032 dev_err(&msg->spi->dev,
1033 "Bufferless transfer has length %u\n",
1034 xfer->len);
1035 }
1036
1037 trace_spi_transfer_stop(msg, xfer);
1038
1039 if (msg->status != -EINPROGRESS)
1040 goto out;
1041
1042 if (xfer->delay_usecs)
1043 udelay(xfer->delay_usecs);
1044
1045 if (xfer->cs_change) {
1046 if (list_is_last(&xfer->transfer_list,
1047 &msg->transfers)) {
1048 keep_cs = true;
1049 } else {
1050 spi_set_cs(msg->spi, false);
1051 udelay(10);
1052 spi_set_cs(msg->spi, true);
1053 }
1054 }
1055
1056 msg->actual_length += xfer->len;
1057 }
1058
1059 out:
1060 if (ret != 0 || !keep_cs)
1061 spi_set_cs(msg->spi, false);
1062
1063 if (msg->status == -EINPROGRESS)
1064 msg->status = ret;
1065
1066 if (msg->status && master->handle_err)
1067 master->handle_err(master, msg);
1068
1069 spi_res_release(master, msg);
1070
1071 spi_finalize_current_message(master);
1072
1073 return ret;
1074 }
1075
1076 /**
1077 * spi_finalize_current_transfer - report completion of a transfer
1078 * @master: the master reporting completion
1079 *
1080 * Called by SPI drivers using the core transfer_one_message()
1081 * implementation to notify it that the current interrupt driven
1082 * transfer has finished and the next one may be scheduled.
1083 */
1084 void spi_finalize_current_transfer(struct spi_master *master)
1085 {
1086 complete(&master->xfer_completion);
1087 }
1088 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1089
1090 /**
1091 * __spi_pump_messages - function which processes spi message queue
1092 * @master: master to process queue for
1093 * @in_kthread: true if we are in the context of the message pump thread
1094 *
1095 * This function checks if there is any spi message in the queue that
1096 * needs processing and if so call out to the driver to initialize hardware
1097 * and transfer each message.
1098 *
1099 * Note that it is called both from the kthread itself and also from
1100 * inside spi_sync(); the queue extraction handling at the top of the
1101 * function should deal with this safely.
1102 */
1103 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1104 {
1105 unsigned long flags;
1106 bool was_busy = false;
1107 int ret;
1108
1109 /* Lock queue */
1110 spin_lock_irqsave(&master->queue_lock, flags);
1111
1112 /* Make sure we are not already running a message */
1113 if (master->cur_msg) {
1114 spin_unlock_irqrestore(&master->queue_lock, flags);
1115 return;
1116 }
1117
1118 /* If another context is idling the device then defer */
1119 if (master->idling) {
1120 kthread_queue_work(&master->kworker, &master->pump_messages);
1121 spin_unlock_irqrestore(&master->queue_lock, flags);
1122 return;
1123 }
1124
1125 /* Check if the queue is idle */
1126 if (list_empty(&master->queue) || !master->running) {
1127 if (!master->busy) {
1128 spin_unlock_irqrestore(&master->queue_lock, flags);
1129 return;
1130 }
1131
1132 /* Only do teardown in the thread */
1133 if (!in_kthread) {
1134 kthread_queue_work(&master->kworker,
1135 &master->pump_messages);
1136 spin_unlock_irqrestore(&master->queue_lock, flags);
1137 return;
1138 }
1139
1140 master->busy = false;
1141 master->idling = true;
1142 spin_unlock_irqrestore(&master->queue_lock, flags);
1143
1144 kfree(master->dummy_rx);
1145 master->dummy_rx = NULL;
1146 kfree(master->dummy_tx);
1147 master->dummy_tx = NULL;
1148 if (master->unprepare_transfer_hardware &&
1149 master->unprepare_transfer_hardware(master))
1150 dev_err(&master->dev,
1151 "failed to unprepare transfer hardware\n");
1152 if (master->auto_runtime_pm) {
1153 pm_runtime_mark_last_busy(master->dev.parent);
1154 pm_runtime_put_autosuspend(master->dev.parent);
1155 }
1156 trace_spi_master_idle(master);
1157
1158 spin_lock_irqsave(&master->queue_lock, flags);
1159 master->idling = false;
1160 spin_unlock_irqrestore(&master->queue_lock, flags);
1161 return;
1162 }
1163
1164 /* Extract head of queue */
1165 master->cur_msg =
1166 list_first_entry(&master->queue, struct spi_message, queue);
1167
1168 list_del_init(&master->cur_msg->queue);
1169 if (master->busy)
1170 was_busy = true;
1171 else
1172 master->busy = true;
1173 spin_unlock_irqrestore(&master->queue_lock, flags);
1174
1175 mutex_lock(&master->io_mutex);
1176
1177 if (!was_busy && master->auto_runtime_pm) {
1178 ret = pm_runtime_get_sync(master->dev.parent);
1179 if (ret < 0) {
1180 dev_err(&master->dev, "Failed to power device: %d\n",
1181 ret);
1182 mutex_unlock(&master->io_mutex);
1183 return;
1184 }
1185 }
1186
1187 if (!was_busy)
1188 trace_spi_master_busy(master);
1189
1190 if (!was_busy && master->prepare_transfer_hardware) {
1191 ret = master->prepare_transfer_hardware(master);
1192 if (ret) {
1193 dev_err(&master->dev,
1194 "failed to prepare transfer hardware\n");
1195
1196 if (master->auto_runtime_pm)
1197 pm_runtime_put(master->dev.parent);
1198 mutex_unlock(&master->io_mutex);
1199 return;
1200 }
1201 }
1202
1203 trace_spi_message_start(master->cur_msg);
1204
1205 if (master->prepare_message) {
1206 ret = master->prepare_message(master, master->cur_msg);
1207 if (ret) {
1208 dev_err(&master->dev,
1209 "failed to prepare message: %d\n", ret);
1210 master->cur_msg->status = ret;
1211 spi_finalize_current_message(master);
1212 goto out;
1213 }
1214 master->cur_msg_prepared = true;
1215 }
1216
1217 ret = spi_map_msg(master, master->cur_msg);
1218 if (ret) {
1219 master->cur_msg->status = ret;
1220 spi_finalize_current_message(master);
1221 goto out;
1222 }
1223
1224 ret = master->transfer_one_message(master, master->cur_msg);
1225 if (ret) {
1226 dev_err(&master->dev,
1227 "failed to transfer one message from queue\n");
1228 goto out;
1229 }
1230
1231 out:
1232 mutex_unlock(&master->io_mutex);
1233
1234 /* Prod the scheduler in case transfer_one() was busy waiting */
1235 if (!ret)
1236 cond_resched();
1237 }
1238
1239 /**
1240 * spi_pump_messages - kthread work function which processes spi message queue
1241 * @work: pointer to kthread work struct contained in the master struct
1242 */
1243 static void spi_pump_messages(struct kthread_work *work)
1244 {
1245 struct spi_master *master =
1246 container_of(work, struct spi_master, pump_messages);
1247
1248 __spi_pump_messages(master, true);
1249 }
1250
1251 static int spi_init_queue(struct spi_master *master)
1252 {
1253 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1254
1255 master->running = false;
1256 master->busy = false;
1257
1258 kthread_init_worker(&master->kworker);
1259 master->kworker_task = kthread_run(kthread_worker_fn,
1260 &master->kworker, "%s",
1261 dev_name(&master->dev));
1262 if (IS_ERR(master->kworker_task)) {
1263 dev_err(&master->dev, "failed to create message pump task\n");
1264 return PTR_ERR(master->kworker_task);
1265 }
1266 kthread_init_work(&master->pump_messages, spi_pump_messages);
1267
1268 /*
1269 * Master config will indicate if this controller should run the
1270 * message pump with high (realtime) priority to reduce the transfer
1271 * latency on the bus by minimising the delay between a transfer
1272 * request and the scheduling of the message pump thread. Without this
1273 * setting the message pump thread will remain at default priority.
1274 */
1275 if (master->rt) {
1276 dev_info(&master->dev,
1277 "will run message pump with realtime priority\n");
1278 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1279 }
1280
1281 return 0;
1282 }
1283
1284 /**
1285 * spi_get_next_queued_message() - called by driver to check for queued
1286 * messages
1287 * @master: the master to check for queued messages
1288 *
1289 * If there are more messages in the queue, the next message is returned from
1290 * this call.
1291 *
1292 * Return: the next message in the queue, else NULL if the queue is empty.
1293 */
1294 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1295 {
1296 struct spi_message *next;
1297 unsigned long flags;
1298
1299 /* get a pointer to the next message, if any */
1300 spin_lock_irqsave(&master->queue_lock, flags);
1301 next = list_first_entry_or_null(&master->queue, struct spi_message,
1302 queue);
1303 spin_unlock_irqrestore(&master->queue_lock, flags);
1304
1305 return next;
1306 }
1307 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1308
1309 /**
1310 * spi_finalize_current_message() - the current message is complete
1311 * @master: the master to return the message to
1312 *
1313 * Called by the driver to notify the core that the message in the front of the
1314 * queue is complete and can be removed from the queue.
1315 */
1316 void spi_finalize_current_message(struct spi_master *master)
1317 {
1318 struct spi_message *mesg;
1319 unsigned long flags;
1320 int ret;
1321
1322 spin_lock_irqsave(&master->queue_lock, flags);
1323 mesg = master->cur_msg;
1324 spin_unlock_irqrestore(&master->queue_lock, flags);
1325
1326 spi_unmap_msg(master, mesg);
1327
1328 if (master->cur_msg_prepared && master->unprepare_message) {
1329 ret = master->unprepare_message(master, mesg);
1330 if (ret) {
1331 dev_err(&master->dev,
1332 "failed to unprepare message: %d\n", ret);
1333 }
1334 }
1335
1336 spin_lock_irqsave(&master->queue_lock, flags);
1337 master->cur_msg = NULL;
1338 master->cur_msg_prepared = false;
1339 kthread_queue_work(&master->kworker, &master->pump_messages);
1340 spin_unlock_irqrestore(&master->queue_lock, flags);
1341
1342 trace_spi_message_done(mesg);
1343
1344 mesg->state = NULL;
1345 if (mesg->complete)
1346 mesg->complete(mesg->context);
1347 }
1348 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1349
1350 static int spi_start_queue(struct spi_master *master)
1351 {
1352 unsigned long flags;
1353
1354 spin_lock_irqsave(&master->queue_lock, flags);
1355
1356 if (master->running || master->busy) {
1357 spin_unlock_irqrestore(&master->queue_lock, flags);
1358 return -EBUSY;
1359 }
1360
1361 master->running = true;
1362 master->cur_msg = NULL;
1363 spin_unlock_irqrestore(&master->queue_lock, flags);
1364
1365 kthread_queue_work(&master->kworker, &master->pump_messages);
1366
1367 return 0;
1368 }
1369
1370 static int spi_stop_queue(struct spi_master *master)
1371 {
1372 unsigned long flags;
1373 unsigned limit = 500;
1374 int ret = 0;
1375
1376 spin_lock_irqsave(&master->queue_lock, flags);
1377
1378 /*
1379 * This is a bit lame, but is optimized for the common execution path.
1380 * A wait_queue on the master->busy could be used, but then the common
1381 * execution path (pump_messages) would be required to call wake_up or
1382 * friends on every SPI message. Do this instead.
1383 */
1384 while ((!list_empty(&master->queue) || master->busy) && limit--) {
1385 spin_unlock_irqrestore(&master->queue_lock, flags);
1386 usleep_range(10000, 11000);
1387 spin_lock_irqsave(&master->queue_lock, flags);
1388 }
1389
1390 if (!list_empty(&master->queue) || master->busy)
1391 ret = -EBUSY;
1392 else
1393 master->running = false;
1394
1395 spin_unlock_irqrestore(&master->queue_lock, flags);
1396
1397 if (ret) {
1398 dev_warn(&master->dev,
1399 "could not stop message queue\n");
1400 return ret;
1401 }
1402 return ret;
1403 }
1404
1405 static int spi_destroy_queue(struct spi_master *master)
1406 {
1407 int ret;
1408
1409 ret = spi_stop_queue(master);
1410
1411 /*
1412 * kthread_flush_worker will block until all work is done.
1413 * If the reason that stop_queue timed out is that the work will never
1414 * finish, then it does no good to call flush/stop thread, so
1415 * return anyway.
1416 */
1417 if (ret) {
1418 dev_err(&master->dev, "problem destroying queue\n");
1419 return ret;
1420 }
1421
1422 kthread_flush_worker(&master->kworker);
1423 kthread_stop(master->kworker_task);
1424
1425 return 0;
1426 }
1427
1428 static int __spi_queued_transfer(struct spi_device *spi,
1429 struct spi_message *msg,
1430 bool need_pump)
1431 {
1432 struct spi_master *master = spi->master;
1433 unsigned long flags;
1434
1435 spin_lock_irqsave(&master->queue_lock, flags);
1436
1437 if (!master->running) {
1438 spin_unlock_irqrestore(&master->queue_lock, flags);
1439 return -ESHUTDOWN;
1440 }
1441 msg->actual_length = 0;
1442 msg->status = -EINPROGRESS;
1443
1444 list_add_tail(&msg->queue, &master->queue);
1445 if (!master->busy && need_pump)
1446 kthread_queue_work(&master->kworker, &master->pump_messages);
1447
1448 spin_unlock_irqrestore(&master->queue_lock, flags);
1449 return 0;
1450 }
1451
1452 /**
1453 * spi_queued_transfer - transfer function for queued transfers
1454 * @spi: spi device which is requesting transfer
1455 * @msg: spi message which is to handled is queued to driver queue
1456 *
1457 * Return: zero on success, else a negative error code.
1458 */
1459 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1460 {
1461 return __spi_queued_transfer(spi, msg, true);
1462 }
1463
1464 static int spi_master_initialize_queue(struct spi_master *master)
1465 {
1466 int ret;
1467
1468 master->transfer = spi_queued_transfer;
1469 if (!master->transfer_one_message)
1470 master->transfer_one_message = spi_transfer_one_message;
1471
1472 /* Initialize and start queue */
1473 ret = spi_init_queue(master);
1474 if (ret) {
1475 dev_err(&master->dev, "problem initializing queue\n");
1476 goto err_init_queue;
1477 }
1478 master->queued = true;
1479 ret = spi_start_queue(master);
1480 if (ret) {
1481 dev_err(&master->dev, "problem starting queue\n");
1482 goto err_start_queue;
1483 }
1484
1485 return 0;
1486
1487 err_start_queue:
1488 spi_destroy_queue(master);
1489 err_init_queue:
1490 return ret;
1491 }
1492
1493 /*-------------------------------------------------------------------------*/
1494
1495 #if defined(CONFIG_OF)
1496 static struct spi_device *
1497 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1498 {
1499 struct spi_device *spi;
1500 int rc;
1501 u32 value;
1502
1503 /* Alloc an spi_device */
1504 spi = spi_alloc_device(master);
1505 if (!spi) {
1506 dev_err(&master->dev, "spi_device alloc error for %s\n",
1507 nc->full_name);
1508 rc = -ENOMEM;
1509 goto err_out;
1510 }
1511
1512 /* Select device driver */
1513 rc = of_modalias_node(nc, spi->modalias,
1514 sizeof(spi->modalias));
1515 if (rc < 0) {
1516 dev_err(&master->dev, "cannot find modalias for %s\n",
1517 nc->full_name);
1518 goto err_out;
1519 }
1520
1521 /* Device address */
1522 rc = of_property_read_u32(nc, "reg", &value);
1523 if (rc) {
1524 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1525 nc->full_name, rc);
1526 goto err_out;
1527 }
1528 spi->chip_select = value;
1529
1530 /* Mode (clock phase/polarity/etc.) */
1531 if (of_find_property(nc, "spi-cpha", NULL))
1532 spi->mode |= SPI_CPHA;
1533 if (of_find_property(nc, "spi-cpol", NULL))
1534 spi->mode |= SPI_CPOL;
1535 if (of_find_property(nc, "spi-cs-high", NULL))
1536 spi->mode |= SPI_CS_HIGH;
1537 if (of_find_property(nc, "spi-3wire", NULL))
1538 spi->mode |= SPI_3WIRE;
1539 if (of_find_property(nc, "spi-lsb-first", NULL))
1540 spi->mode |= SPI_LSB_FIRST;
1541
1542 /* Device DUAL/QUAD mode */
1543 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1544 switch (value) {
1545 case 1:
1546 break;
1547 case 2:
1548 spi->mode |= SPI_TX_DUAL;
1549 break;
1550 case 4:
1551 spi->mode |= SPI_TX_QUAD;
1552 break;
1553 default:
1554 dev_warn(&master->dev,
1555 "spi-tx-bus-width %d not supported\n",
1556 value);
1557 break;
1558 }
1559 }
1560
1561 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1562 switch (value) {
1563 case 1:
1564 break;
1565 case 2:
1566 spi->mode |= SPI_RX_DUAL;
1567 break;
1568 case 4:
1569 spi->mode |= SPI_RX_QUAD;
1570 break;
1571 default:
1572 dev_warn(&master->dev,
1573 "spi-rx-bus-width %d not supported\n",
1574 value);
1575 break;
1576 }
1577 }
1578
1579 /* Device speed */
1580 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1581 if (rc) {
1582 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1583 nc->full_name, rc);
1584 goto err_out;
1585 }
1586 spi->max_speed_hz = value;
1587
1588 /* Store a pointer to the node in the device structure */
1589 of_node_get(nc);
1590 spi->dev.of_node = nc;
1591
1592 /* Register the new device */
1593 rc = spi_add_device(spi);
1594 if (rc) {
1595 dev_err(&master->dev, "spi_device register error %s\n",
1596 nc->full_name);
1597 goto err_out;
1598 }
1599
1600 return spi;
1601
1602 err_out:
1603 spi_dev_put(spi);
1604 return ERR_PTR(rc);
1605 }
1606
1607 /**
1608 * of_register_spi_devices() - Register child devices onto the SPI bus
1609 * @master: Pointer to spi_master device
1610 *
1611 * Registers an spi_device for each child node of master node which has a 'reg'
1612 * property.
1613 */
1614 static void of_register_spi_devices(struct spi_master *master)
1615 {
1616 struct spi_device *spi;
1617 struct device_node *nc;
1618
1619 if (!master->dev.of_node)
1620 return;
1621
1622 for_each_available_child_of_node(master->dev.of_node, nc) {
1623 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1624 continue;
1625 spi = of_register_spi_device(master, nc);
1626 if (IS_ERR(spi)) {
1627 dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1628 nc->full_name);
1629 of_node_clear_flag(nc, OF_POPULATED);
1630 }
1631 }
1632 }
1633 #else
1634 static void of_register_spi_devices(struct spi_master *master) { }
1635 #endif
1636
1637 #ifdef CONFIG_ACPI
1638 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1639 {
1640 struct spi_device *spi = data;
1641 struct spi_master *master = spi->master;
1642
1643 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1644 struct acpi_resource_spi_serialbus *sb;
1645
1646 sb = &ares->data.spi_serial_bus;
1647 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1648 /*
1649 * ACPI DeviceSelection numbering is handled by the
1650 * host controller driver in Windows and can vary
1651 * from driver to driver. In Linux we always expect
1652 * 0 .. max - 1 so we need to ask the driver to
1653 * translate between the two schemes.
1654 */
1655 if (master->fw_translate_cs) {
1656 int cs = master->fw_translate_cs(master,
1657 sb->device_selection);
1658 if (cs < 0)
1659 return cs;
1660 spi->chip_select = cs;
1661 } else {
1662 spi->chip_select = sb->device_selection;
1663 }
1664
1665 spi->max_speed_hz = sb->connection_speed;
1666
1667 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1668 spi->mode |= SPI_CPHA;
1669 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1670 spi->mode |= SPI_CPOL;
1671 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1672 spi->mode |= SPI_CS_HIGH;
1673 }
1674 } else if (spi->irq < 0) {
1675 struct resource r;
1676
1677 if (acpi_dev_resource_interrupt(ares, 0, &r))
1678 spi->irq = r.start;
1679 }
1680
1681 /* Always tell the ACPI core to skip this resource */
1682 return 1;
1683 }
1684
1685 static acpi_status acpi_register_spi_device(struct spi_master *master,
1686 struct acpi_device *adev)
1687 {
1688 struct list_head resource_list;
1689 struct spi_device *spi;
1690 int ret;
1691
1692 if (acpi_bus_get_status(adev) || !adev->status.present ||
1693 acpi_device_enumerated(adev))
1694 return AE_OK;
1695
1696 spi = spi_alloc_device(master);
1697 if (!spi) {
1698 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1699 dev_name(&adev->dev));
1700 return AE_NO_MEMORY;
1701 }
1702
1703 ACPI_COMPANION_SET(&spi->dev, adev);
1704 spi->irq = -1;
1705
1706 INIT_LIST_HEAD(&resource_list);
1707 ret = acpi_dev_get_resources(adev, &resource_list,
1708 acpi_spi_add_resource, spi);
1709 acpi_dev_free_resource_list(&resource_list);
1710
1711 if (ret < 0 || !spi->max_speed_hz) {
1712 spi_dev_put(spi);
1713 return AE_OK;
1714 }
1715
1716 if (spi->irq < 0)
1717 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1718
1719 acpi_device_set_enumerated(adev);
1720
1721 adev->power.flags.ignore_parent = true;
1722 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1723 if (spi_add_device(spi)) {
1724 adev->power.flags.ignore_parent = false;
1725 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1726 dev_name(&adev->dev));
1727 spi_dev_put(spi);
1728 }
1729
1730 return AE_OK;
1731 }
1732
1733 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1734 void *data, void **return_value)
1735 {
1736 struct spi_master *master = data;
1737 struct acpi_device *adev;
1738
1739 if (acpi_bus_get_device(handle, &adev))
1740 return AE_OK;
1741
1742 return acpi_register_spi_device(master, adev);
1743 }
1744
1745 static void acpi_register_spi_devices(struct spi_master *master)
1746 {
1747 acpi_status status;
1748 acpi_handle handle;
1749
1750 handle = ACPI_HANDLE(master->dev.parent);
1751 if (!handle)
1752 return;
1753
1754 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1755 acpi_spi_add_device, NULL,
1756 master, NULL);
1757 if (ACPI_FAILURE(status))
1758 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1759 }
1760 #else
1761 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1762 #endif /* CONFIG_ACPI */
1763
1764 static void spi_master_release(struct device *dev)
1765 {
1766 struct spi_master *master;
1767
1768 master = container_of(dev, struct spi_master, dev);
1769 kfree(master);
1770 }
1771
1772 static struct class spi_master_class = {
1773 .name = "spi_master",
1774 .owner = THIS_MODULE,
1775 .dev_release = spi_master_release,
1776 .dev_groups = spi_master_groups,
1777 };
1778
1779
1780 /**
1781 * spi_alloc_master - allocate SPI master controller
1782 * @dev: the controller, possibly using the platform_bus
1783 * @size: how much zeroed driver-private data to allocate; the pointer to this
1784 * memory is in the driver_data field of the returned device,
1785 * accessible with spi_master_get_devdata().
1786 * Context: can sleep
1787 *
1788 * This call is used only by SPI master controller drivers, which are the
1789 * only ones directly touching chip registers. It's how they allocate
1790 * an spi_master structure, prior to calling spi_register_master().
1791 *
1792 * This must be called from context that can sleep.
1793 *
1794 * The caller is responsible for assigning the bus number and initializing
1795 * the master's methods before calling spi_register_master(); and (after errors
1796 * adding the device) calling spi_master_put() to prevent a memory leak.
1797 *
1798 * Return: the SPI master structure on success, else NULL.
1799 */
1800 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1801 {
1802 struct spi_master *master;
1803
1804 if (!dev)
1805 return NULL;
1806
1807 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1808 if (!master)
1809 return NULL;
1810
1811 device_initialize(&master->dev);
1812 master->bus_num = -1;
1813 master->num_chipselect = 1;
1814 master->dev.class = &spi_master_class;
1815 master->dev.parent = dev;
1816 pm_suspend_ignore_children(&master->dev, true);
1817 spi_master_set_devdata(master, &master[1]);
1818
1819 return master;
1820 }
1821 EXPORT_SYMBOL_GPL(spi_alloc_master);
1822
1823 #ifdef CONFIG_OF
1824 static int of_spi_register_master(struct spi_master *master)
1825 {
1826 int nb, i, *cs;
1827 struct device_node *np = master->dev.of_node;
1828
1829 if (!np)
1830 return 0;
1831
1832 nb = of_gpio_named_count(np, "cs-gpios");
1833 master->num_chipselect = max_t(int, nb, master->num_chipselect);
1834
1835 /* Return error only for an incorrectly formed cs-gpios property */
1836 if (nb == 0 || nb == -ENOENT)
1837 return 0;
1838 else if (nb < 0)
1839 return nb;
1840
1841 cs = devm_kzalloc(&master->dev,
1842 sizeof(int) * master->num_chipselect,
1843 GFP_KERNEL);
1844 master->cs_gpios = cs;
1845
1846 if (!master->cs_gpios)
1847 return -ENOMEM;
1848
1849 for (i = 0; i < master->num_chipselect; i++)
1850 cs[i] = -ENOENT;
1851
1852 for (i = 0; i < nb; i++)
1853 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1854
1855 return 0;
1856 }
1857 #else
1858 static int of_spi_register_master(struct spi_master *master)
1859 {
1860 return 0;
1861 }
1862 #endif
1863
1864 /**
1865 * spi_register_master - register SPI master controller
1866 * @master: initialized master, originally from spi_alloc_master()
1867 * Context: can sleep
1868 *
1869 * SPI master controllers connect to their drivers using some non-SPI bus,
1870 * such as the platform bus. The final stage of probe() in that code
1871 * includes calling spi_register_master() to hook up to this SPI bus glue.
1872 *
1873 * SPI controllers use board specific (often SOC specific) bus numbers,
1874 * and board-specific addressing for SPI devices combines those numbers
1875 * with chip select numbers. Since SPI does not directly support dynamic
1876 * device identification, boards need configuration tables telling which
1877 * chip is at which address.
1878 *
1879 * This must be called from context that can sleep. It returns zero on
1880 * success, else a negative error code (dropping the master's refcount).
1881 * After a successful return, the caller is responsible for calling
1882 * spi_unregister_master().
1883 *
1884 * Return: zero on success, else a negative error code.
1885 */
1886 int spi_register_master(struct spi_master *master)
1887 {
1888 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1889 struct device *dev = master->dev.parent;
1890 struct boardinfo *bi;
1891 int status = -ENODEV;
1892 int dynamic = 0;
1893
1894 if (!dev)
1895 return -ENODEV;
1896
1897 status = of_spi_register_master(master);
1898 if (status)
1899 return status;
1900
1901 /* even if it's just one always-selected device, there must
1902 * be at least one chipselect
1903 */
1904 if (master->num_chipselect == 0)
1905 return -EINVAL;
1906
1907 if ((master->bus_num < 0) && master->dev.of_node)
1908 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1909
1910 /* convention: dynamically assigned bus IDs count down from the max */
1911 if (master->bus_num < 0) {
1912 /* FIXME switch to an IDR based scheme, something like
1913 * I2C now uses, so we can't run out of "dynamic" IDs
1914 */
1915 master->bus_num = atomic_dec_return(&dyn_bus_id);
1916 dynamic = 1;
1917 }
1918
1919 INIT_LIST_HEAD(&master->queue);
1920 spin_lock_init(&master->queue_lock);
1921 spin_lock_init(&master->bus_lock_spinlock);
1922 mutex_init(&master->bus_lock_mutex);
1923 mutex_init(&master->io_mutex);
1924 master->bus_lock_flag = 0;
1925 init_completion(&master->xfer_completion);
1926 if (!master->max_dma_len)
1927 master->max_dma_len = INT_MAX;
1928
1929 /* register the device, then userspace will see it.
1930 * registration fails if the bus ID is in use.
1931 */
1932 dev_set_name(&master->dev, "spi%u", master->bus_num);
1933 status = device_add(&master->dev);
1934 if (status < 0)
1935 goto done;
1936 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1937 dynamic ? " (dynamic)" : "");
1938
1939 /* If we're using a queued driver, start the queue */
1940 if (master->transfer)
1941 dev_info(dev, "master is unqueued, this is deprecated\n");
1942 else {
1943 status = spi_master_initialize_queue(master);
1944 if (status) {
1945 device_del(&master->dev);
1946 goto done;
1947 }
1948 }
1949 /* add statistics */
1950 spin_lock_init(&master->statistics.lock);
1951
1952 mutex_lock(&board_lock);
1953 list_add_tail(&master->list, &spi_master_list);
1954 list_for_each_entry(bi, &board_list, list)
1955 spi_match_master_to_boardinfo(master, &bi->board_info);
1956 mutex_unlock(&board_lock);
1957
1958 /* Register devices from the device tree and ACPI */
1959 of_register_spi_devices(master);
1960 acpi_register_spi_devices(master);
1961 done:
1962 return status;
1963 }
1964 EXPORT_SYMBOL_GPL(spi_register_master);
1965
1966 static void devm_spi_unregister(struct device *dev, void *res)
1967 {
1968 spi_unregister_master(*(struct spi_master **)res);
1969 }
1970
1971 /**
1972 * dev_spi_register_master - register managed SPI master controller
1973 * @dev: device managing SPI master
1974 * @master: initialized master, originally from spi_alloc_master()
1975 * Context: can sleep
1976 *
1977 * Register a SPI device as with spi_register_master() which will
1978 * automatically be unregister
1979 *
1980 * Return: zero on success, else a negative error code.
1981 */
1982 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1983 {
1984 struct spi_master **ptr;
1985 int ret;
1986
1987 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1988 if (!ptr)
1989 return -ENOMEM;
1990
1991 ret = spi_register_master(master);
1992 if (!ret) {
1993 *ptr = master;
1994 devres_add(dev, ptr);
1995 } else {
1996 devres_free(ptr);
1997 }
1998
1999 return ret;
2000 }
2001 EXPORT_SYMBOL_GPL(devm_spi_register_master);
2002
2003 static int __unregister(struct device *dev, void *null)
2004 {
2005 spi_unregister_device(to_spi_device(dev));
2006 return 0;
2007 }
2008
2009 /**
2010 * spi_unregister_master - unregister SPI master controller
2011 * @master: the master being unregistered
2012 * Context: can sleep
2013 *
2014 * This call is used only by SPI master controller drivers, which are the
2015 * only ones directly touching chip registers.
2016 *
2017 * This must be called from context that can sleep.
2018 */
2019 void spi_unregister_master(struct spi_master *master)
2020 {
2021 int dummy;
2022
2023 if (master->queued) {
2024 if (spi_destroy_queue(master))
2025 dev_err(&master->dev, "queue remove failed\n");
2026 }
2027
2028 mutex_lock(&board_lock);
2029 list_del(&master->list);
2030 mutex_unlock(&board_lock);
2031
2032 dummy = device_for_each_child(&master->dev, NULL, __unregister);
2033 device_unregister(&master->dev);
2034 }
2035 EXPORT_SYMBOL_GPL(spi_unregister_master);
2036
2037 int spi_master_suspend(struct spi_master *master)
2038 {
2039 int ret;
2040
2041 /* Basically no-ops for non-queued masters */
2042 if (!master->queued)
2043 return 0;
2044
2045 ret = spi_stop_queue(master);
2046 if (ret)
2047 dev_err(&master->dev, "queue stop failed\n");
2048
2049 return ret;
2050 }
2051 EXPORT_SYMBOL_GPL(spi_master_suspend);
2052
2053 int spi_master_resume(struct spi_master *master)
2054 {
2055 int ret;
2056
2057 if (!master->queued)
2058 return 0;
2059
2060 ret = spi_start_queue(master);
2061 if (ret)
2062 dev_err(&master->dev, "queue restart failed\n");
2063
2064 return ret;
2065 }
2066 EXPORT_SYMBOL_GPL(spi_master_resume);
2067
2068 static int __spi_master_match(struct device *dev, const void *data)
2069 {
2070 struct spi_master *m;
2071 const u16 *bus_num = data;
2072
2073 m = container_of(dev, struct spi_master, dev);
2074 return m->bus_num == *bus_num;
2075 }
2076
2077 /**
2078 * spi_busnum_to_master - look up master associated with bus_num
2079 * @bus_num: the master's bus number
2080 * Context: can sleep
2081 *
2082 * This call may be used with devices that are registered after
2083 * arch init time. It returns a refcounted pointer to the relevant
2084 * spi_master (which the caller must release), or NULL if there is
2085 * no such master registered.
2086 *
2087 * Return: the SPI master structure on success, else NULL.
2088 */
2089 struct spi_master *spi_busnum_to_master(u16 bus_num)
2090 {
2091 struct device *dev;
2092 struct spi_master *master = NULL;
2093
2094 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2095 __spi_master_match);
2096 if (dev)
2097 master = container_of(dev, struct spi_master, dev);
2098 /* reference got in class_find_device */
2099 return master;
2100 }
2101 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2102
2103 /*-------------------------------------------------------------------------*/
2104
2105 /* Core methods for SPI resource management */
2106
2107 /**
2108 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2109 * during the processing of a spi_message while using
2110 * spi_transfer_one
2111 * @spi: the spi device for which we allocate memory
2112 * @release: the release code to execute for this resource
2113 * @size: size to alloc and return
2114 * @gfp: GFP allocation flags
2115 *
2116 * Return: the pointer to the allocated data
2117 *
2118 * This may get enhanced in the future to allocate from a memory pool
2119 * of the @spi_device or @spi_master to avoid repeated allocations.
2120 */
2121 void *spi_res_alloc(struct spi_device *spi,
2122 spi_res_release_t release,
2123 size_t size, gfp_t gfp)
2124 {
2125 struct spi_res *sres;
2126
2127 sres = kzalloc(sizeof(*sres) + size, gfp);
2128 if (!sres)
2129 return NULL;
2130
2131 INIT_LIST_HEAD(&sres->entry);
2132 sres->release = release;
2133
2134 return sres->data;
2135 }
2136 EXPORT_SYMBOL_GPL(spi_res_alloc);
2137
2138 /**
2139 * spi_res_free - free an spi resource
2140 * @res: pointer to the custom data of a resource
2141 *
2142 */
2143 void spi_res_free(void *res)
2144 {
2145 struct spi_res *sres = container_of(res, struct spi_res, data);
2146
2147 if (!res)
2148 return;
2149
2150 WARN_ON(!list_empty(&sres->entry));
2151 kfree(sres);
2152 }
2153 EXPORT_SYMBOL_GPL(spi_res_free);
2154
2155 /**
2156 * spi_res_add - add a spi_res to the spi_message
2157 * @message: the spi message
2158 * @res: the spi_resource
2159 */
2160 void spi_res_add(struct spi_message *message, void *res)
2161 {
2162 struct spi_res *sres = container_of(res, struct spi_res, data);
2163
2164 WARN_ON(!list_empty(&sres->entry));
2165 list_add_tail(&sres->entry, &message->resources);
2166 }
2167 EXPORT_SYMBOL_GPL(spi_res_add);
2168
2169 /**
2170 * spi_res_release - release all spi resources for this message
2171 * @master: the @spi_master
2172 * @message: the @spi_message
2173 */
2174 void spi_res_release(struct spi_master *master,
2175 struct spi_message *message)
2176 {
2177 struct spi_res *res;
2178
2179 while (!list_empty(&message->resources)) {
2180 res = list_last_entry(&message->resources,
2181 struct spi_res, entry);
2182
2183 if (res->release)
2184 res->release(master, message, res->data);
2185
2186 list_del(&res->entry);
2187
2188 kfree(res);
2189 }
2190 }
2191 EXPORT_SYMBOL_GPL(spi_res_release);
2192
2193 /*-------------------------------------------------------------------------*/
2194
2195 /* Core methods for spi_message alterations */
2196
2197 static void __spi_replace_transfers_release(struct spi_master *master,
2198 struct spi_message *msg,
2199 void *res)
2200 {
2201 struct spi_replaced_transfers *rxfer = res;
2202 size_t i;
2203
2204 /* call extra callback if requested */
2205 if (rxfer->release)
2206 rxfer->release(master, msg, res);
2207
2208 /* insert replaced transfers back into the message */
2209 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2210
2211 /* remove the formerly inserted entries */
2212 for (i = 0; i < rxfer->inserted; i++)
2213 list_del(&rxfer->inserted_transfers[i].transfer_list);
2214 }
2215
2216 /**
2217 * spi_replace_transfers - replace transfers with several transfers
2218 * and register change with spi_message.resources
2219 * @msg: the spi_message we work upon
2220 * @xfer_first: the first spi_transfer we want to replace
2221 * @remove: number of transfers to remove
2222 * @insert: the number of transfers we want to insert instead
2223 * @release: extra release code necessary in some circumstances
2224 * @extradatasize: extra data to allocate (with alignment guarantees
2225 * of struct @spi_transfer)
2226 * @gfp: gfp flags
2227 *
2228 * Returns: pointer to @spi_replaced_transfers,
2229 * PTR_ERR(...) in case of errors.
2230 */
2231 struct spi_replaced_transfers *spi_replace_transfers(
2232 struct spi_message *msg,
2233 struct spi_transfer *xfer_first,
2234 size_t remove,
2235 size_t insert,
2236 spi_replaced_release_t release,
2237 size_t extradatasize,
2238 gfp_t gfp)
2239 {
2240 struct spi_replaced_transfers *rxfer;
2241 struct spi_transfer *xfer;
2242 size_t i;
2243
2244 /* allocate the structure using spi_res */
2245 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2246 insert * sizeof(struct spi_transfer)
2247 + sizeof(struct spi_replaced_transfers)
2248 + extradatasize,
2249 gfp);
2250 if (!rxfer)
2251 return ERR_PTR(-ENOMEM);
2252
2253 /* the release code to invoke before running the generic release */
2254 rxfer->release = release;
2255
2256 /* assign extradata */
2257 if (extradatasize)
2258 rxfer->extradata =
2259 &rxfer->inserted_transfers[insert];
2260
2261 /* init the replaced_transfers list */
2262 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2263
2264 /* assign the list_entry after which we should reinsert
2265 * the @replaced_transfers - it may be spi_message.messages!
2266 */
2267 rxfer->replaced_after = xfer_first->transfer_list.prev;
2268
2269 /* remove the requested number of transfers */
2270 for (i = 0; i < remove; i++) {
2271 /* if the entry after replaced_after it is msg->transfers
2272 * then we have been requested to remove more transfers
2273 * than are in the list
2274 */
2275 if (rxfer->replaced_after->next == &msg->transfers) {
2276 dev_err(&msg->spi->dev,
2277 "requested to remove more spi_transfers than are available\n");
2278 /* insert replaced transfers back into the message */
2279 list_splice(&rxfer->replaced_transfers,
2280 rxfer->replaced_after);
2281
2282 /* free the spi_replace_transfer structure */
2283 spi_res_free(rxfer);
2284
2285 /* and return with an error */
2286 return ERR_PTR(-EINVAL);
2287 }
2288
2289 /* remove the entry after replaced_after from list of
2290 * transfers and add it to list of replaced_transfers
2291 */
2292 list_move_tail(rxfer->replaced_after->next,
2293 &rxfer->replaced_transfers);
2294 }
2295
2296 /* create copy of the given xfer with identical settings
2297 * based on the first transfer to get removed
2298 */
2299 for (i = 0; i < insert; i++) {
2300 /* we need to run in reverse order */
2301 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2302
2303 /* copy all spi_transfer data */
2304 memcpy(xfer, xfer_first, sizeof(*xfer));
2305
2306 /* add to list */
2307 list_add(&xfer->transfer_list, rxfer->replaced_after);
2308
2309 /* clear cs_change and delay_usecs for all but the last */
2310 if (i) {
2311 xfer->cs_change = false;
2312 xfer->delay_usecs = 0;
2313 }
2314 }
2315
2316 /* set up inserted */
2317 rxfer->inserted = insert;
2318
2319 /* and register it with spi_res/spi_message */
2320 spi_res_add(msg, rxfer);
2321
2322 return rxfer;
2323 }
2324 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2325
2326 static int __spi_split_transfer_maxsize(struct spi_master *master,
2327 struct spi_message *msg,
2328 struct spi_transfer **xferp,
2329 size_t maxsize,
2330 gfp_t gfp)
2331 {
2332 struct spi_transfer *xfer = *xferp, *xfers;
2333 struct spi_replaced_transfers *srt;
2334 size_t offset;
2335 size_t count, i;
2336
2337 /* warn once about this fact that we are splitting a transfer */
2338 dev_warn_once(&msg->spi->dev,
2339 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2340 xfer->len, maxsize);
2341
2342 /* calculate how many we have to replace */
2343 count = DIV_ROUND_UP(xfer->len, maxsize);
2344
2345 /* create replacement */
2346 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2347 if (IS_ERR(srt))
2348 return PTR_ERR(srt);
2349 xfers = srt->inserted_transfers;
2350
2351 /* now handle each of those newly inserted spi_transfers
2352 * note that the replacements spi_transfers all are preset
2353 * to the same values as *xferp, so tx_buf, rx_buf and len
2354 * are all identical (as well as most others)
2355 * so we just have to fix up len and the pointers.
2356 *
2357 * this also includes support for the depreciated
2358 * spi_message.is_dma_mapped interface
2359 */
2360
2361 /* the first transfer just needs the length modified, so we
2362 * run it outside the loop
2363 */
2364 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2365
2366 /* all the others need rx_buf/tx_buf also set */
2367 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2368 /* update rx_buf, tx_buf and dma */
2369 if (xfers[i].rx_buf)
2370 xfers[i].rx_buf += offset;
2371 if (xfers[i].rx_dma)
2372 xfers[i].rx_dma += offset;
2373 if (xfers[i].tx_buf)
2374 xfers[i].tx_buf += offset;
2375 if (xfers[i].tx_dma)
2376 xfers[i].tx_dma += offset;
2377
2378 /* update length */
2379 xfers[i].len = min(maxsize, xfers[i].len - offset);
2380 }
2381
2382 /* we set up xferp to the last entry we have inserted,
2383 * so that we skip those already split transfers
2384 */
2385 *xferp = &xfers[count - 1];
2386
2387 /* increment statistics counters */
2388 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2389 transfers_split_maxsize);
2390 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2391 transfers_split_maxsize);
2392
2393 return 0;
2394 }
2395
2396 /**
2397 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2398 * when an individual transfer exceeds a
2399 * certain size
2400 * @master: the @spi_master for this transfer
2401 * @msg: the @spi_message to transform
2402 * @maxsize: the maximum when to apply this
2403 * @gfp: GFP allocation flags
2404 *
2405 * Return: status of transformation
2406 */
2407 int spi_split_transfers_maxsize(struct spi_master *master,
2408 struct spi_message *msg,
2409 size_t maxsize,
2410 gfp_t gfp)
2411 {
2412 struct spi_transfer *xfer;
2413 int ret;
2414
2415 /* iterate over the transfer_list,
2416 * but note that xfer is advanced to the last transfer inserted
2417 * to avoid checking sizes again unnecessarily (also xfer does
2418 * potentiall belong to a different list by the time the
2419 * replacement has happened
2420 */
2421 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2422 if (xfer->len > maxsize) {
2423 ret = __spi_split_transfer_maxsize(
2424 master, msg, &xfer, maxsize, gfp);
2425 if (ret)
2426 return ret;
2427 }
2428 }
2429
2430 return 0;
2431 }
2432 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2433
2434 /*-------------------------------------------------------------------------*/
2435
2436 /* Core methods for SPI master protocol drivers. Some of the
2437 * other core methods are currently defined as inline functions.
2438 */
2439
2440 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2441 {
2442 if (master->bits_per_word_mask) {
2443 /* Only 32 bits fit in the mask */
2444 if (bits_per_word > 32)
2445 return -EINVAL;
2446 if (!(master->bits_per_word_mask &
2447 SPI_BPW_MASK(bits_per_word)))
2448 return -EINVAL;
2449 }
2450
2451 return 0;
2452 }
2453
2454 /**
2455 * spi_setup - setup SPI mode and clock rate
2456 * @spi: the device whose settings are being modified
2457 * Context: can sleep, and no requests are queued to the device
2458 *
2459 * SPI protocol drivers may need to update the transfer mode if the
2460 * device doesn't work with its default. They may likewise need
2461 * to update clock rates or word sizes from initial values. This function
2462 * changes those settings, and must be called from a context that can sleep.
2463 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2464 * effect the next time the device is selected and data is transferred to
2465 * or from it. When this function returns, the spi device is deselected.
2466 *
2467 * Note that this call will fail if the protocol driver specifies an option
2468 * that the underlying controller or its driver does not support. For
2469 * example, not all hardware supports wire transfers using nine bit words,
2470 * LSB-first wire encoding, or active-high chipselects.
2471 *
2472 * Return: zero on success, else a negative error code.
2473 */
2474 int spi_setup(struct spi_device *spi)
2475 {
2476 unsigned bad_bits, ugly_bits;
2477 int status;
2478
2479 /* check mode to prevent that DUAL and QUAD set at the same time
2480 */
2481 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2482 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2483 dev_err(&spi->dev,
2484 "setup: can not select dual and quad at the same time\n");
2485 return -EINVAL;
2486 }
2487 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2488 */
2489 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2490 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2491 return -EINVAL;
2492 /* help drivers fail *cleanly* when they need options
2493 * that aren't supported with their current master
2494 */
2495 bad_bits = spi->mode & ~spi->master->mode_bits;
2496 ugly_bits = bad_bits &
2497 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2498 if (ugly_bits) {
2499 dev_warn(&spi->dev,
2500 "setup: ignoring unsupported mode bits %x\n",
2501 ugly_bits);
2502 spi->mode &= ~ugly_bits;
2503 bad_bits &= ~ugly_bits;
2504 }
2505 if (bad_bits) {
2506 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2507 bad_bits);
2508 return -EINVAL;
2509 }
2510
2511 if (!spi->bits_per_word)
2512 spi->bits_per_word = 8;
2513
2514 status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2515 if (status)
2516 return status;
2517
2518 if (!spi->max_speed_hz)
2519 spi->max_speed_hz = spi->master->max_speed_hz;
2520
2521 if (spi->master->setup)
2522 status = spi->master->setup(spi);
2523
2524 spi_set_cs(spi, false);
2525
2526 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2527 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2528 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2529 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2530 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2531 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2532 spi->bits_per_word, spi->max_speed_hz,
2533 status);
2534
2535 return status;
2536 }
2537 EXPORT_SYMBOL_GPL(spi_setup);
2538
2539 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2540 {
2541 struct spi_master *master = spi->master;
2542 struct spi_transfer *xfer;
2543 int w_size;
2544
2545 if (list_empty(&message->transfers))
2546 return -EINVAL;
2547
2548 /* Half-duplex links include original MicroWire, and ones with
2549 * only one data pin like SPI_3WIRE (switches direction) or where
2550 * either MOSI or MISO is missing. They can also be caused by
2551 * software limitations.
2552 */
2553 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2554 || (spi->mode & SPI_3WIRE)) {
2555 unsigned flags = master->flags;
2556
2557 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2558 if (xfer->rx_buf && xfer->tx_buf)
2559 return -EINVAL;
2560 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2561 return -EINVAL;
2562 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2563 return -EINVAL;
2564 }
2565 }
2566
2567 /**
2568 * Set transfer bits_per_word and max speed as spi device default if
2569 * it is not set for this transfer.
2570 * Set transfer tx_nbits and rx_nbits as single transfer default
2571 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2572 */
2573 message->frame_length = 0;
2574 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2575 message->frame_length += xfer->len;
2576 if (!xfer->bits_per_word)
2577 xfer->bits_per_word = spi->bits_per_word;
2578
2579 if (!xfer->speed_hz)
2580 xfer->speed_hz = spi->max_speed_hz;
2581 if (!xfer->speed_hz)
2582 xfer->speed_hz = master->max_speed_hz;
2583
2584 if (master->max_speed_hz &&
2585 xfer->speed_hz > master->max_speed_hz)
2586 xfer->speed_hz = master->max_speed_hz;
2587
2588 if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2589 return -EINVAL;
2590
2591 /*
2592 * SPI transfer length should be multiple of SPI word size
2593 * where SPI word size should be power-of-two multiple
2594 */
2595 if (xfer->bits_per_word <= 8)
2596 w_size = 1;
2597 else if (xfer->bits_per_word <= 16)
2598 w_size = 2;
2599 else
2600 w_size = 4;
2601
2602 /* No partial transfers accepted */
2603 if (xfer->len % w_size)
2604 return -EINVAL;
2605
2606 if (xfer->speed_hz && master->min_speed_hz &&
2607 xfer->speed_hz < master->min_speed_hz)
2608 return -EINVAL;
2609
2610 if (xfer->tx_buf && !xfer->tx_nbits)
2611 xfer->tx_nbits = SPI_NBITS_SINGLE;
2612 if (xfer->rx_buf && !xfer->rx_nbits)
2613 xfer->rx_nbits = SPI_NBITS_SINGLE;
2614 /* check transfer tx/rx_nbits:
2615 * 1. check the value matches one of single, dual and quad
2616 * 2. check tx/rx_nbits match the mode in spi_device
2617 */
2618 if (xfer->tx_buf) {
2619 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2620 xfer->tx_nbits != SPI_NBITS_DUAL &&
2621 xfer->tx_nbits != SPI_NBITS_QUAD)
2622 return -EINVAL;
2623 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2624 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2625 return -EINVAL;
2626 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2627 !(spi->mode & SPI_TX_QUAD))
2628 return -EINVAL;
2629 }
2630 /* check transfer rx_nbits */
2631 if (xfer->rx_buf) {
2632 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2633 xfer->rx_nbits != SPI_NBITS_DUAL &&
2634 xfer->rx_nbits != SPI_NBITS_QUAD)
2635 return -EINVAL;
2636 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2637 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2638 return -EINVAL;
2639 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2640 !(spi->mode & SPI_RX_QUAD))
2641 return -EINVAL;
2642 }
2643 }
2644
2645 message->status = -EINPROGRESS;
2646
2647 return 0;
2648 }
2649
2650 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2651 {
2652 struct spi_master *master = spi->master;
2653
2654 message->spi = spi;
2655
2656 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2657 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2658
2659 trace_spi_message_submit(message);
2660
2661 return master->transfer(spi, message);
2662 }
2663
2664 /**
2665 * spi_async - asynchronous SPI transfer
2666 * @spi: device with which data will be exchanged
2667 * @message: describes the data transfers, including completion callback
2668 * Context: any (irqs may be blocked, etc)
2669 *
2670 * This call may be used in_irq and other contexts which can't sleep,
2671 * as well as from task contexts which can sleep.
2672 *
2673 * The completion callback is invoked in a context which can't sleep.
2674 * Before that invocation, the value of message->status is undefined.
2675 * When the callback is issued, message->status holds either zero (to
2676 * indicate complete success) or a negative error code. After that
2677 * callback returns, the driver which issued the transfer request may
2678 * deallocate the associated memory; it's no longer in use by any SPI
2679 * core or controller driver code.
2680 *
2681 * Note that although all messages to a spi_device are handled in
2682 * FIFO order, messages may go to different devices in other orders.
2683 * Some device might be higher priority, or have various "hard" access
2684 * time requirements, for example.
2685 *
2686 * On detection of any fault during the transfer, processing of
2687 * the entire message is aborted, and the device is deselected.
2688 * Until returning from the associated message completion callback,
2689 * no other spi_message queued to that device will be processed.
2690 * (This rule applies equally to all the synchronous transfer calls,
2691 * which are wrappers around this core asynchronous primitive.)
2692 *
2693 * Return: zero on success, else a negative error code.
2694 */
2695 int spi_async(struct spi_device *spi, struct spi_message *message)
2696 {
2697 struct spi_master *master = spi->master;
2698 int ret;
2699 unsigned long flags;
2700
2701 ret = __spi_validate(spi, message);
2702 if (ret != 0)
2703 return ret;
2704
2705 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2706
2707 if (master->bus_lock_flag)
2708 ret = -EBUSY;
2709 else
2710 ret = __spi_async(spi, message);
2711
2712 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2713
2714 return ret;
2715 }
2716 EXPORT_SYMBOL_GPL(spi_async);
2717
2718 /**
2719 * spi_async_locked - version of spi_async with exclusive bus usage
2720 * @spi: device with which data will be exchanged
2721 * @message: describes the data transfers, including completion callback
2722 * Context: any (irqs may be blocked, etc)
2723 *
2724 * This call may be used in_irq and other contexts which can't sleep,
2725 * as well as from task contexts which can sleep.
2726 *
2727 * The completion callback is invoked in a context which can't sleep.
2728 * Before that invocation, the value of message->status is undefined.
2729 * When the callback is issued, message->status holds either zero (to
2730 * indicate complete success) or a negative error code. After that
2731 * callback returns, the driver which issued the transfer request may
2732 * deallocate the associated memory; it's no longer in use by any SPI
2733 * core or controller driver code.
2734 *
2735 * Note that although all messages to a spi_device are handled in
2736 * FIFO order, messages may go to different devices in other orders.
2737 * Some device might be higher priority, or have various "hard" access
2738 * time requirements, for example.
2739 *
2740 * On detection of any fault during the transfer, processing of
2741 * the entire message is aborted, and the device is deselected.
2742 * Until returning from the associated message completion callback,
2743 * no other spi_message queued to that device will be processed.
2744 * (This rule applies equally to all the synchronous transfer calls,
2745 * which are wrappers around this core asynchronous primitive.)
2746 *
2747 * Return: zero on success, else a negative error code.
2748 */
2749 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2750 {
2751 struct spi_master *master = spi->master;
2752 int ret;
2753 unsigned long flags;
2754
2755 ret = __spi_validate(spi, message);
2756 if (ret != 0)
2757 return ret;
2758
2759 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2760
2761 ret = __spi_async(spi, message);
2762
2763 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2764
2765 return ret;
2766
2767 }
2768 EXPORT_SYMBOL_GPL(spi_async_locked);
2769
2770
2771 int spi_flash_read(struct spi_device *spi,
2772 struct spi_flash_read_message *msg)
2773
2774 {
2775 struct spi_master *master = spi->master;
2776 struct device *rx_dev = NULL;
2777 int ret;
2778
2779 if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2780 msg->addr_nbits == SPI_NBITS_DUAL) &&
2781 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2782 return -EINVAL;
2783 if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2784 msg->addr_nbits == SPI_NBITS_QUAD) &&
2785 !(spi->mode & SPI_TX_QUAD))
2786 return -EINVAL;
2787 if (msg->data_nbits == SPI_NBITS_DUAL &&
2788 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2789 return -EINVAL;
2790 if (msg->data_nbits == SPI_NBITS_QUAD &&
2791 !(spi->mode & SPI_RX_QUAD))
2792 return -EINVAL;
2793
2794 if (master->auto_runtime_pm) {
2795 ret = pm_runtime_get_sync(master->dev.parent);
2796 if (ret < 0) {
2797 dev_err(&master->dev, "Failed to power device: %d\n",
2798 ret);
2799 return ret;
2800 }
2801 }
2802
2803 mutex_lock(&master->bus_lock_mutex);
2804 mutex_lock(&master->io_mutex);
2805 if (master->dma_rx) {
2806 rx_dev = master->dma_rx->device->dev;
2807 ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
2808 msg->buf, msg->len,
2809 DMA_FROM_DEVICE);
2810 if (!ret)
2811 msg->cur_msg_mapped = true;
2812 }
2813 ret = master->spi_flash_read(spi, msg);
2814 if (msg->cur_msg_mapped)
2815 spi_unmap_buf(master, rx_dev, &msg->rx_sg,
2816 DMA_FROM_DEVICE);
2817 mutex_unlock(&master->io_mutex);
2818 mutex_unlock(&master->bus_lock_mutex);
2819
2820 if (master->auto_runtime_pm)
2821 pm_runtime_put(master->dev.parent);
2822
2823 return ret;
2824 }
2825 EXPORT_SYMBOL_GPL(spi_flash_read);
2826
2827 /*-------------------------------------------------------------------------*/
2828
2829 /* Utility methods for SPI master protocol drivers, layered on
2830 * top of the core. Some other utility methods are defined as
2831 * inline functions.
2832 */
2833
2834 static void spi_complete(void *arg)
2835 {
2836 complete(arg);
2837 }
2838
2839 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
2840 {
2841 DECLARE_COMPLETION_ONSTACK(done);
2842 int status;
2843 struct spi_master *master = spi->master;
2844 unsigned long flags;
2845
2846 status = __spi_validate(spi, message);
2847 if (status != 0)
2848 return status;
2849
2850 message->complete = spi_complete;
2851 message->context = &done;
2852 message->spi = spi;
2853
2854 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2855 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2856
2857 /* If we're not using the legacy transfer method then we will
2858 * try to transfer in the calling context so special case.
2859 * This code would be less tricky if we could remove the
2860 * support for driver implemented message queues.
2861 */
2862 if (master->transfer == spi_queued_transfer) {
2863 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2864
2865 trace_spi_message_submit(message);
2866
2867 status = __spi_queued_transfer(spi, message, false);
2868
2869 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2870 } else {
2871 status = spi_async_locked(spi, message);
2872 }
2873
2874 if (status == 0) {
2875 /* Push out the messages in the calling context if we
2876 * can.
2877 */
2878 if (master->transfer == spi_queued_transfer) {
2879 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2880 spi_sync_immediate);
2881 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2882 spi_sync_immediate);
2883 __spi_pump_messages(master, false);
2884 }
2885
2886 wait_for_completion(&done);
2887 status = message->status;
2888 }
2889 message->context = NULL;
2890 return status;
2891 }
2892
2893 /**
2894 * spi_sync - blocking/synchronous SPI data transfers
2895 * @spi: device with which data will be exchanged
2896 * @message: describes the data transfers
2897 * Context: can sleep
2898 *
2899 * This call may only be used from a context that may sleep. The sleep
2900 * is non-interruptible, and has no timeout. Low-overhead controller
2901 * drivers may DMA directly into and out of the message buffers.
2902 *
2903 * Note that the SPI device's chip select is active during the message,
2904 * and then is normally disabled between messages. Drivers for some
2905 * frequently-used devices may want to minimize costs of selecting a chip,
2906 * by leaving it selected in anticipation that the next message will go
2907 * to the same chip. (That may increase power usage.)
2908 *
2909 * Also, the caller is guaranteeing that the memory associated with the
2910 * message will not be freed before this call returns.
2911 *
2912 * Return: zero on success, else a negative error code.
2913 */
2914 int spi_sync(struct spi_device *spi, struct spi_message *message)
2915 {
2916 int ret;
2917
2918 mutex_lock(&spi->master->bus_lock_mutex);
2919 ret = __spi_sync(spi, message);
2920 mutex_unlock(&spi->master->bus_lock_mutex);
2921
2922 return ret;
2923 }
2924 EXPORT_SYMBOL_GPL(spi_sync);
2925
2926 /**
2927 * spi_sync_locked - version of spi_sync with exclusive bus usage
2928 * @spi: device with which data will be exchanged
2929 * @message: describes the data transfers
2930 * Context: can sleep
2931 *
2932 * This call may only be used from a context that may sleep. The sleep
2933 * is non-interruptible, and has no timeout. Low-overhead controller
2934 * drivers may DMA directly into and out of the message buffers.
2935 *
2936 * This call should be used by drivers that require exclusive access to the
2937 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2938 * be released by a spi_bus_unlock call when the exclusive access is over.
2939 *
2940 * Return: zero on success, else a negative error code.
2941 */
2942 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2943 {
2944 return __spi_sync(spi, message);
2945 }
2946 EXPORT_SYMBOL_GPL(spi_sync_locked);
2947
2948 /**
2949 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2950 * @master: SPI bus master that should be locked for exclusive bus access
2951 * Context: can sleep
2952 *
2953 * This call may only be used from a context that may sleep. The sleep
2954 * is non-interruptible, and has no timeout.
2955 *
2956 * This call should be used by drivers that require exclusive access to the
2957 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2958 * exclusive access is over. Data transfer must be done by spi_sync_locked
2959 * and spi_async_locked calls when the SPI bus lock is held.
2960 *
2961 * Return: always zero.
2962 */
2963 int spi_bus_lock(struct spi_master *master)
2964 {
2965 unsigned long flags;
2966
2967 mutex_lock(&master->bus_lock_mutex);
2968
2969 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2970 master->bus_lock_flag = 1;
2971 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2972
2973 /* mutex remains locked until spi_bus_unlock is called */
2974
2975 return 0;
2976 }
2977 EXPORT_SYMBOL_GPL(spi_bus_lock);
2978
2979 /**
2980 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2981 * @master: SPI bus master that was locked for exclusive bus access
2982 * Context: can sleep
2983 *
2984 * This call may only be used from a context that may sleep. The sleep
2985 * is non-interruptible, and has no timeout.
2986 *
2987 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2988 * call.
2989 *
2990 * Return: always zero.
2991 */
2992 int spi_bus_unlock(struct spi_master *master)
2993 {
2994 master->bus_lock_flag = 0;
2995
2996 mutex_unlock(&master->bus_lock_mutex);
2997
2998 return 0;
2999 }
3000 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3001
3002 /* portable code must never pass more than 32 bytes */
3003 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3004
3005 static u8 *buf;
3006
3007 /**
3008 * spi_write_then_read - SPI synchronous write followed by read
3009 * @spi: device with which data will be exchanged
3010 * @txbuf: data to be written (need not be dma-safe)
3011 * @n_tx: size of txbuf, in bytes
3012 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3013 * @n_rx: size of rxbuf, in bytes
3014 * Context: can sleep
3015 *
3016 * This performs a half duplex MicroWire style transaction with the
3017 * device, sending txbuf and then reading rxbuf. The return value
3018 * is zero for success, else a negative errno status code.
3019 * This call may only be used from a context that may sleep.
3020 *
3021 * Parameters to this routine are always copied using a small buffer;
3022 * portable code should never use this for more than 32 bytes.
3023 * Performance-sensitive or bulk transfer code should instead use
3024 * spi_{async,sync}() calls with dma-safe buffers.
3025 *
3026 * Return: zero on success, else a negative error code.
3027 */
3028 int spi_write_then_read(struct spi_device *spi,
3029 const void *txbuf, unsigned n_tx,
3030 void *rxbuf, unsigned n_rx)
3031 {
3032 static DEFINE_MUTEX(lock);
3033
3034 int status;
3035 struct spi_message message;
3036 struct spi_transfer x[2];
3037 u8 *local_buf;
3038
3039 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3040 * copying here, (as a pure convenience thing), but we can
3041 * keep heap costs out of the hot path unless someone else is
3042 * using the pre-allocated buffer or the transfer is too large.
3043 */
3044 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3045 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3046 GFP_KERNEL | GFP_DMA);
3047 if (!local_buf)
3048 return -ENOMEM;
3049 } else {
3050 local_buf = buf;
3051 }
3052
3053 spi_message_init(&message);
3054 memset(x, 0, sizeof(x));
3055 if (n_tx) {
3056 x[0].len = n_tx;
3057 spi_message_add_tail(&x[0], &message);
3058 }
3059 if (n_rx) {
3060 x[1].len = n_rx;
3061 spi_message_add_tail(&x[1], &message);
3062 }
3063
3064 memcpy(local_buf, txbuf, n_tx);
3065 x[0].tx_buf = local_buf;
3066 x[1].rx_buf = local_buf + n_tx;
3067
3068 /* do the i/o */
3069 status = spi_sync(spi, &message);
3070 if (status == 0)
3071 memcpy(rxbuf, x[1].rx_buf, n_rx);
3072
3073 if (x[0].tx_buf == buf)
3074 mutex_unlock(&lock);
3075 else
3076 kfree(local_buf);
3077
3078 return status;
3079 }
3080 EXPORT_SYMBOL_GPL(spi_write_then_read);
3081
3082 /*-------------------------------------------------------------------------*/
3083
3084 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3085 static int __spi_of_device_match(struct device *dev, void *data)
3086 {
3087 return dev->of_node == data;
3088 }
3089
3090 /* must call put_device() when done with returned spi_device device */
3091 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3092 {
3093 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3094 __spi_of_device_match);
3095 return dev ? to_spi_device(dev) : NULL;
3096 }
3097
3098 static int __spi_of_master_match(struct device *dev, const void *data)
3099 {
3100 return dev->of_node == data;
3101 }
3102
3103 /* the spi masters are not using spi_bus, so we find it with another way */
3104 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
3105 {
3106 struct device *dev;
3107
3108 dev = class_find_device(&spi_master_class, NULL, node,
3109 __spi_of_master_match);
3110 if (!dev)
3111 return NULL;
3112
3113 /* reference got in class_find_device */
3114 return container_of(dev, struct spi_master, dev);
3115 }
3116
3117 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3118 void *arg)
3119 {
3120 struct of_reconfig_data *rd = arg;
3121 struct spi_master *master;
3122 struct spi_device *spi;
3123
3124 switch (of_reconfig_get_state_change(action, arg)) {
3125 case OF_RECONFIG_CHANGE_ADD:
3126 master = of_find_spi_master_by_node(rd->dn->parent);
3127 if (master == NULL)
3128 return NOTIFY_OK; /* not for us */
3129
3130 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3131 put_device(&master->dev);
3132 return NOTIFY_OK;
3133 }
3134
3135 spi = of_register_spi_device(master, rd->dn);
3136 put_device(&master->dev);
3137
3138 if (IS_ERR(spi)) {
3139 pr_err("%s: failed to create for '%s'\n",
3140 __func__, rd->dn->full_name);
3141 of_node_clear_flag(rd->dn, OF_POPULATED);
3142 return notifier_from_errno(PTR_ERR(spi));
3143 }
3144 break;
3145
3146 case OF_RECONFIG_CHANGE_REMOVE:
3147 /* already depopulated? */
3148 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3149 return NOTIFY_OK;
3150
3151 /* find our device by node */
3152 spi = of_find_spi_device_by_node(rd->dn);
3153 if (spi == NULL)
3154 return NOTIFY_OK; /* no? not meant for us */
3155
3156 /* unregister takes one ref away */
3157 spi_unregister_device(spi);
3158
3159 /* and put the reference of the find */
3160 put_device(&spi->dev);
3161 break;
3162 }
3163
3164 return NOTIFY_OK;
3165 }
3166
3167 static struct notifier_block spi_of_notifier = {
3168 .notifier_call = of_spi_notify,
3169 };
3170 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3171 extern struct notifier_block spi_of_notifier;
3172 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3173
3174 #if IS_ENABLED(CONFIG_ACPI)
3175 static int spi_acpi_master_match(struct device *dev, const void *data)
3176 {
3177 return ACPI_COMPANION(dev->parent) == data;
3178 }
3179
3180 static int spi_acpi_device_match(struct device *dev, void *data)
3181 {
3182 return ACPI_COMPANION(dev) == data;
3183 }
3184
3185 static struct spi_master *acpi_spi_find_master_by_adev(struct acpi_device *adev)
3186 {
3187 struct device *dev;
3188
3189 dev = class_find_device(&spi_master_class, NULL, adev,
3190 spi_acpi_master_match);
3191 if (!dev)
3192 return NULL;
3193
3194 return container_of(dev, struct spi_master, dev);
3195 }
3196
3197 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3198 {
3199 struct device *dev;
3200
3201 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3202
3203 return dev ? to_spi_device(dev) : NULL;
3204 }
3205
3206 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3207 void *arg)
3208 {
3209 struct acpi_device *adev = arg;
3210 struct spi_master *master;
3211 struct spi_device *spi;
3212
3213 switch (value) {
3214 case ACPI_RECONFIG_DEVICE_ADD:
3215 master = acpi_spi_find_master_by_adev(adev->parent);
3216 if (!master)
3217 break;
3218
3219 acpi_register_spi_device(master, adev);
3220 put_device(&master->dev);
3221 break;
3222 case ACPI_RECONFIG_DEVICE_REMOVE:
3223 if (!acpi_device_enumerated(adev))
3224 break;
3225
3226 spi = acpi_spi_find_device_by_adev(adev);
3227 if (!spi)
3228 break;
3229
3230 spi_unregister_device(spi);
3231 put_device(&spi->dev);
3232 break;
3233 }
3234
3235 return NOTIFY_OK;
3236 }
3237
3238 static struct notifier_block spi_acpi_notifier = {
3239 .notifier_call = acpi_spi_notify,
3240 };
3241 #else
3242 extern struct notifier_block spi_acpi_notifier;
3243 #endif
3244
3245 static int __init spi_init(void)
3246 {
3247 int status;
3248
3249 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3250 if (!buf) {
3251 status = -ENOMEM;
3252 goto err0;
3253 }
3254
3255 status = bus_register(&spi_bus_type);
3256 if (status < 0)
3257 goto err1;
3258
3259 status = class_register(&spi_master_class);
3260 if (status < 0)
3261 goto err2;
3262
3263 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3264 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3265 if (IS_ENABLED(CONFIG_ACPI))
3266 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3267
3268 return 0;
3269
3270 err2:
3271 bus_unregister(&spi_bus_type);
3272 err1:
3273 kfree(buf);
3274 buf = NULL;
3275 err0:
3276 return status;
3277 }
3278
3279 /* board_info is normally registered in arch_initcall(),
3280 * but even essential drivers wait till later
3281 *
3282 * REVISIT only boardinfo really needs static linking. the rest (device and
3283 * driver registration) _could_ be dynamically linked (modular) ... costs
3284 * include needing to have boardinfo data structures be much more public.
3285 */
3286 postcore_initcall(spi_init);
3287