]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/spi/spi.c
Merge tag 'pstore-v4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees...
[mirror_ubuntu-bionic-kernel.git] / drivers / spi / spi.c
1 /*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40 #include <linux/highmem.h>
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/spi.h>
44
45 static void spidev_release(struct device *dev)
46 {
47 struct spi_device *spi = to_spi_device(dev);
48
49 /* spi masters may cleanup for released devices */
50 if (spi->master->cleanup)
51 spi->master->cleanup(spi);
52
53 spi_master_put(spi->master);
54 kfree(spi);
55 }
56
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60 const struct spi_device *spi = to_spi_device(dev);
61 int len;
62
63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 if (len != -ENODEV)
65 return len;
66
67 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70
71 #define SPI_STATISTICS_ATTRS(field, file) \
72 static ssize_t spi_master_##field##_show(struct device *dev, \
73 struct device_attribute *attr, \
74 char *buf) \
75 { \
76 struct spi_master *master = container_of(dev, \
77 struct spi_master, dev); \
78 return spi_statistics_##field##_show(&master->statistics, buf); \
79 } \
80 static struct device_attribute dev_attr_spi_master_##field = { \
81 .attr = { .name = file, .mode = S_IRUGO }, \
82 .show = spi_master_##field##_show, \
83 }; \
84 static ssize_t spi_device_##field##_show(struct device *dev, \
85 struct device_attribute *attr, \
86 char *buf) \
87 { \
88 struct spi_device *spi = to_spi_device(dev); \
89 return spi_statistics_##field##_show(&spi->statistics, buf); \
90 } \
91 static struct device_attribute dev_attr_spi_device_##field = { \
92 .attr = { .name = file, .mode = S_IRUGO }, \
93 .show = spi_device_##field##_show, \
94 }
95
96 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
97 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
98 char *buf) \
99 { \
100 unsigned long flags; \
101 ssize_t len; \
102 spin_lock_irqsave(&stat->lock, flags); \
103 len = sprintf(buf, format_string, stat->field); \
104 spin_unlock_irqrestore(&stat->lock, flags); \
105 return len; \
106 } \
107 SPI_STATISTICS_ATTRS(name, file)
108
109 #define SPI_STATISTICS_SHOW(field, format_string) \
110 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
111 field, format_string)
112
113 SPI_STATISTICS_SHOW(messages, "%lu");
114 SPI_STATISTICS_SHOW(transfers, "%lu");
115 SPI_STATISTICS_SHOW(errors, "%lu");
116 SPI_STATISTICS_SHOW(timedout, "%lu");
117
118 SPI_STATISTICS_SHOW(spi_sync, "%lu");
119 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
120 SPI_STATISTICS_SHOW(spi_async, "%lu");
121
122 SPI_STATISTICS_SHOW(bytes, "%llu");
123 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
124 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
125
126 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
127 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
128 "transfer_bytes_histo_" number, \
129 transfer_bytes_histo[index], "%lu")
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
147
148 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
149
150 static struct attribute *spi_dev_attrs[] = {
151 &dev_attr_modalias.attr,
152 NULL,
153 };
154
155 static const struct attribute_group spi_dev_group = {
156 .attrs = spi_dev_attrs,
157 };
158
159 static struct attribute *spi_device_statistics_attrs[] = {
160 &dev_attr_spi_device_messages.attr,
161 &dev_attr_spi_device_transfers.attr,
162 &dev_attr_spi_device_errors.attr,
163 &dev_attr_spi_device_timedout.attr,
164 &dev_attr_spi_device_spi_sync.attr,
165 &dev_attr_spi_device_spi_sync_immediate.attr,
166 &dev_attr_spi_device_spi_async.attr,
167 &dev_attr_spi_device_bytes.attr,
168 &dev_attr_spi_device_bytes_rx.attr,
169 &dev_attr_spi_device_bytes_tx.attr,
170 &dev_attr_spi_device_transfer_bytes_histo0.attr,
171 &dev_attr_spi_device_transfer_bytes_histo1.attr,
172 &dev_attr_spi_device_transfer_bytes_histo2.attr,
173 &dev_attr_spi_device_transfer_bytes_histo3.attr,
174 &dev_attr_spi_device_transfer_bytes_histo4.attr,
175 &dev_attr_spi_device_transfer_bytes_histo5.attr,
176 &dev_attr_spi_device_transfer_bytes_histo6.attr,
177 &dev_attr_spi_device_transfer_bytes_histo7.attr,
178 &dev_attr_spi_device_transfer_bytes_histo8.attr,
179 &dev_attr_spi_device_transfer_bytes_histo9.attr,
180 &dev_attr_spi_device_transfer_bytes_histo10.attr,
181 &dev_attr_spi_device_transfer_bytes_histo11.attr,
182 &dev_attr_spi_device_transfer_bytes_histo12.attr,
183 &dev_attr_spi_device_transfer_bytes_histo13.attr,
184 &dev_attr_spi_device_transfer_bytes_histo14.attr,
185 &dev_attr_spi_device_transfer_bytes_histo15.attr,
186 &dev_attr_spi_device_transfer_bytes_histo16.attr,
187 &dev_attr_spi_device_transfers_split_maxsize.attr,
188 NULL,
189 };
190
191 static const struct attribute_group spi_device_statistics_group = {
192 .name = "statistics",
193 .attrs = spi_device_statistics_attrs,
194 };
195
196 static const struct attribute_group *spi_dev_groups[] = {
197 &spi_dev_group,
198 &spi_device_statistics_group,
199 NULL,
200 };
201
202 static struct attribute *spi_master_statistics_attrs[] = {
203 &dev_attr_spi_master_messages.attr,
204 &dev_attr_spi_master_transfers.attr,
205 &dev_attr_spi_master_errors.attr,
206 &dev_attr_spi_master_timedout.attr,
207 &dev_attr_spi_master_spi_sync.attr,
208 &dev_attr_spi_master_spi_sync_immediate.attr,
209 &dev_attr_spi_master_spi_async.attr,
210 &dev_attr_spi_master_bytes.attr,
211 &dev_attr_spi_master_bytes_rx.attr,
212 &dev_attr_spi_master_bytes_tx.attr,
213 &dev_attr_spi_master_transfer_bytes_histo0.attr,
214 &dev_attr_spi_master_transfer_bytes_histo1.attr,
215 &dev_attr_spi_master_transfer_bytes_histo2.attr,
216 &dev_attr_spi_master_transfer_bytes_histo3.attr,
217 &dev_attr_spi_master_transfer_bytes_histo4.attr,
218 &dev_attr_spi_master_transfer_bytes_histo5.attr,
219 &dev_attr_spi_master_transfer_bytes_histo6.attr,
220 &dev_attr_spi_master_transfer_bytes_histo7.attr,
221 &dev_attr_spi_master_transfer_bytes_histo8.attr,
222 &dev_attr_spi_master_transfer_bytes_histo9.attr,
223 &dev_attr_spi_master_transfer_bytes_histo10.attr,
224 &dev_attr_spi_master_transfer_bytes_histo11.attr,
225 &dev_attr_spi_master_transfer_bytes_histo12.attr,
226 &dev_attr_spi_master_transfer_bytes_histo13.attr,
227 &dev_attr_spi_master_transfer_bytes_histo14.attr,
228 &dev_attr_spi_master_transfer_bytes_histo15.attr,
229 &dev_attr_spi_master_transfer_bytes_histo16.attr,
230 &dev_attr_spi_master_transfers_split_maxsize.attr,
231 NULL,
232 };
233
234 static const struct attribute_group spi_master_statistics_group = {
235 .name = "statistics",
236 .attrs = spi_master_statistics_attrs,
237 };
238
239 static const struct attribute_group *spi_master_groups[] = {
240 &spi_master_statistics_group,
241 NULL,
242 };
243
244 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
245 struct spi_transfer *xfer,
246 struct spi_master *master)
247 {
248 unsigned long flags;
249 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
250
251 if (l2len < 0)
252 l2len = 0;
253
254 spin_lock_irqsave(&stats->lock, flags);
255
256 stats->transfers++;
257 stats->transfer_bytes_histo[l2len]++;
258
259 stats->bytes += xfer->len;
260 if ((xfer->tx_buf) &&
261 (xfer->tx_buf != master->dummy_tx))
262 stats->bytes_tx += xfer->len;
263 if ((xfer->rx_buf) &&
264 (xfer->rx_buf != master->dummy_rx))
265 stats->bytes_rx += xfer->len;
266
267 spin_unlock_irqrestore(&stats->lock, flags);
268 }
269 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
270
271 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
272 * and the sysfs version makes coldplug work too.
273 */
274
275 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
276 const struct spi_device *sdev)
277 {
278 while (id->name[0]) {
279 if (!strcmp(sdev->modalias, id->name))
280 return id;
281 id++;
282 }
283 return NULL;
284 }
285
286 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
287 {
288 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
289
290 return spi_match_id(sdrv->id_table, sdev);
291 }
292 EXPORT_SYMBOL_GPL(spi_get_device_id);
293
294 static int spi_match_device(struct device *dev, struct device_driver *drv)
295 {
296 const struct spi_device *spi = to_spi_device(dev);
297 const struct spi_driver *sdrv = to_spi_driver(drv);
298
299 /* Attempt an OF style match */
300 if (of_driver_match_device(dev, drv))
301 return 1;
302
303 /* Then try ACPI */
304 if (acpi_driver_match_device(dev, drv))
305 return 1;
306
307 if (sdrv->id_table)
308 return !!spi_match_id(sdrv->id_table, spi);
309
310 return strcmp(spi->modalias, drv->name) == 0;
311 }
312
313 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
314 {
315 const struct spi_device *spi = to_spi_device(dev);
316 int rc;
317
318 rc = acpi_device_uevent_modalias(dev, env);
319 if (rc != -ENODEV)
320 return rc;
321
322 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
323 return 0;
324 }
325
326 struct bus_type spi_bus_type = {
327 .name = "spi",
328 .dev_groups = spi_dev_groups,
329 .match = spi_match_device,
330 .uevent = spi_uevent,
331 };
332 EXPORT_SYMBOL_GPL(spi_bus_type);
333
334
335 static int spi_drv_probe(struct device *dev)
336 {
337 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
338 struct spi_device *spi = to_spi_device(dev);
339 int ret;
340
341 ret = of_clk_set_defaults(dev->of_node, false);
342 if (ret)
343 return ret;
344
345 if (dev->of_node) {
346 spi->irq = of_irq_get(dev->of_node, 0);
347 if (spi->irq == -EPROBE_DEFER)
348 return -EPROBE_DEFER;
349 if (spi->irq < 0)
350 spi->irq = 0;
351 }
352
353 ret = dev_pm_domain_attach(dev, true);
354 if (ret != -EPROBE_DEFER) {
355 ret = sdrv->probe(spi);
356 if (ret)
357 dev_pm_domain_detach(dev, true);
358 }
359
360 return ret;
361 }
362
363 static int spi_drv_remove(struct device *dev)
364 {
365 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
366 int ret;
367
368 ret = sdrv->remove(to_spi_device(dev));
369 dev_pm_domain_detach(dev, true);
370
371 return ret;
372 }
373
374 static void spi_drv_shutdown(struct device *dev)
375 {
376 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
377
378 sdrv->shutdown(to_spi_device(dev));
379 }
380
381 /**
382 * __spi_register_driver - register a SPI driver
383 * @owner: owner module of the driver to register
384 * @sdrv: the driver to register
385 * Context: can sleep
386 *
387 * Return: zero on success, else a negative error code.
388 */
389 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
390 {
391 sdrv->driver.owner = owner;
392 sdrv->driver.bus = &spi_bus_type;
393 if (sdrv->probe)
394 sdrv->driver.probe = spi_drv_probe;
395 if (sdrv->remove)
396 sdrv->driver.remove = spi_drv_remove;
397 if (sdrv->shutdown)
398 sdrv->driver.shutdown = spi_drv_shutdown;
399 return driver_register(&sdrv->driver);
400 }
401 EXPORT_SYMBOL_GPL(__spi_register_driver);
402
403 /*-------------------------------------------------------------------------*/
404
405 /* SPI devices should normally not be created by SPI device drivers; that
406 * would make them board-specific. Similarly with SPI master drivers.
407 * Device registration normally goes into like arch/.../mach.../board-YYY.c
408 * with other readonly (flashable) information about mainboard devices.
409 */
410
411 struct boardinfo {
412 struct list_head list;
413 struct spi_board_info board_info;
414 };
415
416 static LIST_HEAD(board_list);
417 static LIST_HEAD(spi_master_list);
418
419 /*
420 * Used to protect add/del opertion for board_info list and
421 * spi_master list, and their matching process
422 */
423 static DEFINE_MUTEX(board_lock);
424
425 /**
426 * spi_alloc_device - Allocate a new SPI device
427 * @master: Controller to which device is connected
428 * Context: can sleep
429 *
430 * Allows a driver to allocate and initialize a spi_device without
431 * registering it immediately. This allows a driver to directly
432 * fill the spi_device with device parameters before calling
433 * spi_add_device() on it.
434 *
435 * Caller is responsible to call spi_add_device() on the returned
436 * spi_device structure to add it to the SPI master. If the caller
437 * needs to discard the spi_device without adding it, then it should
438 * call spi_dev_put() on it.
439 *
440 * Return: a pointer to the new device, or NULL.
441 */
442 struct spi_device *spi_alloc_device(struct spi_master *master)
443 {
444 struct spi_device *spi;
445
446 if (!spi_master_get(master))
447 return NULL;
448
449 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
450 if (!spi) {
451 spi_master_put(master);
452 return NULL;
453 }
454
455 spi->master = master;
456 spi->dev.parent = &master->dev;
457 spi->dev.bus = &spi_bus_type;
458 spi->dev.release = spidev_release;
459 spi->cs_gpio = -ENOENT;
460
461 spin_lock_init(&spi->statistics.lock);
462
463 device_initialize(&spi->dev);
464 return spi;
465 }
466 EXPORT_SYMBOL_GPL(spi_alloc_device);
467
468 static void spi_dev_set_name(struct spi_device *spi)
469 {
470 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
471
472 if (adev) {
473 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
474 return;
475 }
476
477 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
478 spi->chip_select);
479 }
480
481 static int spi_dev_check(struct device *dev, void *data)
482 {
483 struct spi_device *spi = to_spi_device(dev);
484 struct spi_device *new_spi = data;
485
486 if (spi->master == new_spi->master &&
487 spi->chip_select == new_spi->chip_select)
488 return -EBUSY;
489 return 0;
490 }
491
492 /**
493 * spi_add_device - Add spi_device allocated with spi_alloc_device
494 * @spi: spi_device to register
495 *
496 * Companion function to spi_alloc_device. Devices allocated with
497 * spi_alloc_device can be added onto the spi bus with this function.
498 *
499 * Return: 0 on success; negative errno on failure
500 */
501 int spi_add_device(struct spi_device *spi)
502 {
503 static DEFINE_MUTEX(spi_add_lock);
504 struct spi_master *master = spi->master;
505 struct device *dev = master->dev.parent;
506 int status;
507
508 /* Chipselects are numbered 0..max; validate. */
509 if (spi->chip_select >= master->num_chipselect) {
510 dev_err(dev, "cs%d >= max %d\n",
511 spi->chip_select,
512 master->num_chipselect);
513 return -EINVAL;
514 }
515
516 /* Set the bus ID string */
517 spi_dev_set_name(spi);
518
519 /* We need to make sure there's no other device with this
520 * chipselect **BEFORE** we call setup(), else we'll trash
521 * its configuration. Lock against concurrent add() calls.
522 */
523 mutex_lock(&spi_add_lock);
524
525 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
526 if (status) {
527 dev_err(dev, "chipselect %d already in use\n",
528 spi->chip_select);
529 goto done;
530 }
531
532 if (master->cs_gpios)
533 spi->cs_gpio = master->cs_gpios[spi->chip_select];
534
535 /* Drivers may modify this initial i/o setup, but will
536 * normally rely on the device being setup. Devices
537 * using SPI_CS_HIGH can't coexist well otherwise...
538 */
539 status = spi_setup(spi);
540 if (status < 0) {
541 dev_err(dev, "can't setup %s, status %d\n",
542 dev_name(&spi->dev), status);
543 goto done;
544 }
545
546 /* Device may be bound to an active driver when this returns */
547 status = device_add(&spi->dev);
548 if (status < 0)
549 dev_err(dev, "can't add %s, status %d\n",
550 dev_name(&spi->dev), status);
551 else
552 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
553
554 done:
555 mutex_unlock(&spi_add_lock);
556 return status;
557 }
558 EXPORT_SYMBOL_GPL(spi_add_device);
559
560 /**
561 * spi_new_device - instantiate one new SPI device
562 * @master: Controller to which device is connected
563 * @chip: Describes the SPI device
564 * Context: can sleep
565 *
566 * On typical mainboards, this is purely internal; and it's not needed
567 * after board init creates the hard-wired devices. Some development
568 * platforms may not be able to use spi_register_board_info though, and
569 * this is exported so that for example a USB or parport based adapter
570 * driver could add devices (which it would learn about out-of-band).
571 *
572 * Return: the new device, or NULL.
573 */
574 struct spi_device *spi_new_device(struct spi_master *master,
575 struct spi_board_info *chip)
576 {
577 struct spi_device *proxy;
578 int status;
579
580 /* NOTE: caller did any chip->bus_num checks necessary.
581 *
582 * Also, unless we change the return value convention to use
583 * error-or-pointer (not NULL-or-pointer), troubleshootability
584 * suggests syslogged diagnostics are best here (ugh).
585 */
586
587 proxy = spi_alloc_device(master);
588 if (!proxy)
589 return NULL;
590
591 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
592
593 proxy->chip_select = chip->chip_select;
594 proxy->max_speed_hz = chip->max_speed_hz;
595 proxy->mode = chip->mode;
596 proxy->irq = chip->irq;
597 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
598 proxy->dev.platform_data = (void *) chip->platform_data;
599 proxy->controller_data = chip->controller_data;
600 proxy->controller_state = NULL;
601
602 status = spi_add_device(proxy);
603 if (status < 0) {
604 spi_dev_put(proxy);
605 return NULL;
606 }
607
608 return proxy;
609 }
610 EXPORT_SYMBOL_GPL(spi_new_device);
611
612 /**
613 * spi_unregister_device - unregister a single SPI device
614 * @spi: spi_device to unregister
615 *
616 * Start making the passed SPI device vanish. Normally this would be handled
617 * by spi_unregister_master().
618 */
619 void spi_unregister_device(struct spi_device *spi)
620 {
621 if (!spi)
622 return;
623
624 if (spi->dev.of_node)
625 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
626 if (ACPI_COMPANION(&spi->dev))
627 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
628 device_unregister(&spi->dev);
629 }
630 EXPORT_SYMBOL_GPL(spi_unregister_device);
631
632 static void spi_match_master_to_boardinfo(struct spi_master *master,
633 struct spi_board_info *bi)
634 {
635 struct spi_device *dev;
636
637 if (master->bus_num != bi->bus_num)
638 return;
639
640 dev = spi_new_device(master, bi);
641 if (!dev)
642 dev_err(master->dev.parent, "can't create new device for %s\n",
643 bi->modalias);
644 }
645
646 /**
647 * spi_register_board_info - register SPI devices for a given board
648 * @info: array of chip descriptors
649 * @n: how many descriptors are provided
650 * Context: can sleep
651 *
652 * Board-specific early init code calls this (probably during arch_initcall)
653 * with segments of the SPI device table. Any device nodes are created later,
654 * after the relevant parent SPI controller (bus_num) is defined. We keep
655 * this table of devices forever, so that reloading a controller driver will
656 * not make Linux forget about these hard-wired devices.
657 *
658 * Other code can also call this, e.g. a particular add-on board might provide
659 * SPI devices through its expansion connector, so code initializing that board
660 * would naturally declare its SPI devices.
661 *
662 * The board info passed can safely be __initdata ... but be careful of
663 * any embedded pointers (platform_data, etc), they're copied as-is.
664 *
665 * Return: zero on success, else a negative error code.
666 */
667 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
668 {
669 struct boardinfo *bi;
670 int i;
671
672 if (!n)
673 return -EINVAL;
674
675 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
676 if (!bi)
677 return -ENOMEM;
678
679 for (i = 0; i < n; i++, bi++, info++) {
680 struct spi_master *master;
681
682 memcpy(&bi->board_info, info, sizeof(*info));
683 mutex_lock(&board_lock);
684 list_add_tail(&bi->list, &board_list);
685 list_for_each_entry(master, &spi_master_list, list)
686 spi_match_master_to_boardinfo(master, &bi->board_info);
687 mutex_unlock(&board_lock);
688 }
689
690 return 0;
691 }
692
693 /*-------------------------------------------------------------------------*/
694
695 static void spi_set_cs(struct spi_device *spi, bool enable)
696 {
697 if (spi->mode & SPI_CS_HIGH)
698 enable = !enable;
699
700 if (gpio_is_valid(spi->cs_gpio))
701 gpio_set_value(spi->cs_gpio, !enable);
702 else if (spi->master->set_cs)
703 spi->master->set_cs(spi, !enable);
704 }
705
706 #ifdef CONFIG_HAS_DMA
707 static int spi_map_buf(struct spi_master *master, struct device *dev,
708 struct sg_table *sgt, void *buf, size_t len,
709 enum dma_data_direction dir)
710 {
711 const bool vmalloced_buf = is_vmalloc_addr(buf);
712 unsigned int max_seg_size = dma_get_max_seg_size(dev);
713 #ifdef CONFIG_HIGHMEM
714 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
715 (unsigned long)buf < (PKMAP_BASE +
716 (LAST_PKMAP * PAGE_SIZE)));
717 #else
718 const bool kmap_buf = false;
719 #endif
720 int desc_len;
721 int sgs;
722 struct page *vm_page;
723 void *sg_buf;
724 size_t min;
725 int i, ret;
726
727 if (vmalloced_buf || kmap_buf) {
728 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
729 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
730 } else if (virt_addr_valid(buf)) {
731 desc_len = min_t(int, max_seg_size, master->max_dma_len);
732 sgs = DIV_ROUND_UP(len, desc_len);
733 } else {
734 return -EINVAL;
735 }
736
737 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
738 if (ret != 0)
739 return ret;
740
741 for (i = 0; i < sgs; i++) {
742
743 if (vmalloced_buf || kmap_buf) {
744 min = min_t(size_t,
745 len, desc_len - offset_in_page(buf));
746 if (vmalloced_buf)
747 vm_page = vmalloc_to_page(buf);
748 else
749 vm_page = kmap_to_page(buf);
750 if (!vm_page) {
751 sg_free_table(sgt);
752 return -ENOMEM;
753 }
754 sg_set_page(&sgt->sgl[i], vm_page,
755 min, offset_in_page(buf));
756 } else {
757 min = min_t(size_t, len, desc_len);
758 sg_buf = buf;
759 sg_set_buf(&sgt->sgl[i], sg_buf, min);
760 }
761
762 buf += min;
763 len -= min;
764 }
765
766 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
767 if (!ret)
768 ret = -ENOMEM;
769 if (ret < 0) {
770 sg_free_table(sgt);
771 return ret;
772 }
773
774 sgt->nents = ret;
775
776 return 0;
777 }
778
779 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
780 struct sg_table *sgt, enum dma_data_direction dir)
781 {
782 if (sgt->orig_nents) {
783 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
784 sg_free_table(sgt);
785 }
786 }
787
788 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
789 {
790 struct device *tx_dev, *rx_dev;
791 struct spi_transfer *xfer;
792 int ret;
793
794 if (!master->can_dma)
795 return 0;
796
797 if (master->dma_tx)
798 tx_dev = master->dma_tx->device->dev;
799 else
800 tx_dev = &master->dev;
801
802 if (master->dma_rx)
803 rx_dev = master->dma_rx->device->dev;
804 else
805 rx_dev = &master->dev;
806
807 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
808 if (!master->can_dma(master, msg->spi, xfer))
809 continue;
810
811 if (xfer->tx_buf != NULL) {
812 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
813 (void *)xfer->tx_buf, xfer->len,
814 DMA_TO_DEVICE);
815 if (ret != 0)
816 return ret;
817 }
818
819 if (xfer->rx_buf != NULL) {
820 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
821 xfer->rx_buf, xfer->len,
822 DMA_FROM_DEVICE);
823 if (ret != 0) {
824 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
825 DMA_TO_DEVICE);
826 return ret;
827 }
828 }
829 }
830
831 master->cur_msg_mapped = true;
832
833 return 0;
834 }
835
836 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
837 {
838 struct spi_transfer *xfer;
839 struct device *tx_dev, *rx_dev;
840
841 if (!master->cur_msg_mapped || !master->can_dma)
842 return 0;
843
844 if (master->dma_tx)
845 tx_dev = master->dma_tx->device->dev;
846 else
847 tx_dev = &master->dev;
848
849 if (master->dma_rx)
850 rx_dev = master->dma_rx->device->dev;
851 else
852 rx_dev = &master->dev;
853
854 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
855 if (!master->can_dma(master, msg->spi, xfer))
856 continue;
857
858 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
859 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
860 }
861
862 return 0;
863 }
864 #else /* !CONFIG_HAS_DMA */
865 static inline int spi_map_buf(struct spi_master *master,
866 struct device *dev, struct sg_table *sgt,
867 void *buf, size_t len,
868 enum dma_data_direction dir)
869 {
870 return -EINVAL;
871 }
872
873 static inline void spi_unmap_buf(struct spi_master *master,
874 struct device *dev, struct sg_table *sgt,
875 enum dma_data_direction dir)
876 {
877 }
878
879 static inline int __spi_map_msg(struct spi_master *master,
880 struct spi_message *msg)
881 {
882 return 0;
883 }
884
885 static inline int __spi_unmap_msg(struct spi_master *master,
886 struct spi_message *msg)
887 {
888 return 0;
889 }
890 #endif /* !CONFIG_HAS_DMA */
891
892 static inline int spi_unmap_msg(struct spi_master *master,
893 struct spi_message *msg)
894 {
895 struct spi_transfer *xfer;
896
897 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
898 /*
899 * Restore the original value of tx_buf or rx_buf if they are
900 * NULL.
901 */
902 if (xfer->tx_buf == master->dummy_tx)
903 xfer->tx_buf = NULL;
904 if (xfer->rx_buf == master->dummy_rx)
905 xfer->rx_buf = NULL;
906 }
907
908 return __spi_unmap_msg(master, msg);
909 }
910
911 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
912 {
913 struct spi_transfer *xfer;
914 void *tmp;
915 unsigned int max_tx, max_rx;
916
917 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
918 max_tx = 0;
919 max_rx = 0;
920
921 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
922 if ((master->flags & SPI_MASTER_MUST_TX) &&
923 !xfer->tx_buf)
924 max_tx = max(xfer->len, max_tx);
925 if ((master->flags & SPI_MASTER_MUST_RX) &&
926 !xfer->rx_buf)
927 max_rx = max(xfer->len, max_rx);
928 }
929
930 if (max_tx) {
931 tmp = krealloc(master->dummy_tx, max_tx,
932 GFP_KERNEL | GFP_DMA);
933 if (!tmp)
934 return -ENOMEM;
935 master->dummy_tx = tmp;
936 memset(tmp, 0, max_tx);
937 }
938
939 if (max_rx) {
940 tmp = krealloc(master->dummy_rx, max_rx,
941 GFP_KERNEL | GFP_DMA);
942 if (!tmp)
943 return -ENOMEM;
944 master->dummy_rx = tmp;
945 }
946
947 if (max_tx || max_rx) {
948 list_for_each_entry(xfer, &msg->transfers,
949 transfer_list) {
950 if (!xfer->tx_buf)
951 xfer->tx_buf = master->dummy_tx;
952 if (!xfer->rx_buf)
953 xfer->rx_buf = master->dummy_rx;
954 }
955 }
956 }
957
958 return __spi_map_msg(master, msg);
959 }
960
961 /*
962 * spi_transfer_one_message - Default implementation of transfer_one_message()
963 *
964 * This is a standard implementation of transfer_one_message() for
965 * drivers which implement a transfer_one() operation. It provides
966 * standard handling of delays and chip select management.
967 */
968 static int spi_transfer_one_message(struct spi_master *master,
969 struct spi_message *msg)
970 {
971 struct spi_transfer *xfer;
972 bool keep_cs = false;
973 int ret = 0;
974 unsigned long long ms = 1;
975 struct spi_statistics *statm = &master->statistics;
976 struct spi_statistics *stats = &msg->spi->statistics;
977
978 spi_set_cs(msg->spi, true);
979
980 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
981 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
982
983 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
984 trace_spi_transfer_start(msg, xfer);
985
986 spi_statistics_add_transfer_stats(statm, xfer, master);
987 spi_statistics_add_transfer_stats(stats, xfer, master);
988
989 if (xfer->tx_buf || xfer->rx_buf) {
990 reinit_completion(&master->xfer_completion);
991
992 ret = master->transfer_one(master, msg->spi, xfer);
993 if (ret < 0) {
994 SPI_STATISTICS_INCREMENT_FIELD(statm,
995 errors);
996 SPI_STATISTICS_INCREMENT_FIELD(stats,
997 errors);
998 dev_err(&msg->spi->dev,
999 "SPI transfer failed: %d\n", ret);
1000 goto out;
1001 }
1002
1003 if (ret > 0) {
1004 ret = 0;
1005 ms = 8LL * 1000LL * xfer->len;
1006 do_div(ms, xfer->speed_hz);
1007 ms += ms + 100; /* some tolerance */
1008
1009 if (ms > UINT_MAX)
1010 ms = UINT_MAX;
1011
1012 ms = wait_for_completion_timeout(&master->xfer_completion,
1013 msecs_to_jiffies(ms));
1014 }
1015
1016 if (ms == 0) {
1017 SPI_STATISTICS_INCREMENT_FIELD(statm,
1018 timedout);
1019 SPI_STATISTICS_INCREMENT_FIELD(stats,
1020 timedout);
1021 dev_err(&msg->spi->dev,
1022 "SPI transfer timed out\n");
1023 msg->status = -ETIMEDOUT;
1024 }
1025 } else {
1026 if (xfer->len)
1027 dev_err(&msg->spi->dev,
1028 "Bufferless transfer has length %u\n",
1029 xfer->len);
1030 }
1031
1032 trace_spi_transfer_stop(msg, xfer);
1033
1034 if (msg->status != -EINPROGRESS)
1035 goto out;
1036
1037 if (xfer->delay_usecs)
1038 udelay(xfer->delay_usecs);
1039
1040 if (xfer->cs_change) {
1041 if (list_is_last(&xfer->transfer_list,
1042 &msg->transfers)) {
1043 keep_cs = true;
1044 } else {
1045 spi_set_cs(msg->spi, false);
1046 udelay(10);
1047 spi_set_cs(msg->spi, true);
1048 }
1049 }
1050
1051 msg->actual_length += xfer->len;
1052 }
1053
1054 out:
1055 if (ret != 0 || !keep_cs)
1056 spi_set_cs(msg->spi, false);
1057
1058 if (msg->status == -EINPROGRESS)
1059 msg->status = ret;
1060
1061 if (msg->status && master->handle_err)
1062 master->handle_err(master, msg);
1063
1064 spi_res_release(master, msg);
1065
1066 spi_finalize_current_message(master);
1067
1068 return ret;
1069 }
1070
1071 /**
1072 * spi_finalize_current_transfer - report completion of a transfer
1073 * @master: the master reporting completion
1074 *
1075 * Called by SPI drivers using the core transfer_one_message()
1076 * implementation to notify it that the current interrupt driven
1077 * transfer has finished and the next one may be scheduled.
1078 */
1079 void spi_finalize_current_transfer(struct spi_master *master)
1080 {
1081 complete(&master->xfer_completion);
1082 }
1083 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1084
1085 /**
1086 * __spi_pump_messages - function which processes spi message queue
1087 * @master: master to process queue for
1088 * @in_kthread: true if we are in the context of the message pump thread
1089 *
1090 * This function checks if there is any spi message in the queue that
1091 * needs processing and if so call out to the driver to initialize hardware
1092 * and transfer each message.
1093 *
1094 * Note that it is called both from the kthread itself and also from
1095 * inside spi_sync(); the queue extraction handling at the top of the
1096 * function should deal with this safely.
1097 */
1098 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1099 {
1100 unsigned long flags;
1101 bool was_busy = false;
1102 int ret;
1103
1104 /* Lock queue */
1105 spin_lock_irqsave(&master->queue_lock, flags);
1106
1107 /* Make sure we are not already running a message */
1108 if (master->cur_msg) {
1109 spin_unlock_irqrestore(&master->queue_lock, flags);
1110 return;
1111 }
1112
1113 /* If another context is idling the device then defer */
1114 if (master->idling) {
1115 kthread_queue_work(&master->kworker, &master->pump_messages);
1116 spin_unlock_irqrestore(&master->queue_lock, flags);
1117 return;
1118 }
1119
1120 /* Check if the queue is idle */
1121 if (list_empty(&master->queue) || !master->running) {
1122 if (!master->busy) {
1123 spin_unlock_irqrestore(&master->queue_lock, flags);
1124 return;
1125 }
1126
1127 /* Only do teardown in the thread */
1128 if (!in_kthread) {
1129 kthread_queue_work(&master->kworker,
1130 &master->pump_messages);
1131 spin_unlock_irqrestore(&master->queue_lock, flags);
1132 return;
1133 }
1134
1135 master->busy = false;
1136 master->idling = true;
1137 spin_unlock_irqrestore(&master->queue_lock, flags);
1138
1139 kfree(master->dummy_rx);
1140 master->dummy_rx = NULL;
1141 kfree(master->dummy_tx);
1142 master->dummy_tx = NULL;
1143 if (master->unprepare_transfer_hardware &&
1144 master->unprepare_transfer_hardware(master))
1145 dev_err(&master->dev,
1146 "failed to unprepare transfer hardware\n");
1147 if (master->auto_runtime_pm) {
1148 pm_runtime_mark_last_busy(master->dev.parent);
1149 pm_runtime_put_autosuspend(master->dev.parent);
1150 }
1151 trace_spi_master_idle(master);
1152
1153 spin_lock_irqsave(&master->queue_lock, flags);
1154 master->idling = false;
1155 spin_unlock_irqrestore(&master->queue_lock, flags);
1156 return;
1157 }
1158
1159 /* Extract head of queue */
1160 master->cur_msg =
1161 list_first_entry(&master->queue, struct spi_message, queue);
1162
1163 list_del_init(&master->cur_msg->queue);
1164 if (master->busy)
1165 was_busy = true;
1166 else
1167 master->busy = true;
1168 spin_unlock_irqrestore(&master->queue_lock, flags);
1169
1170 mutex_lock(&master->io_mutex);
1171
1172 if (!was_busy && master->auto_runtime_pm) {
1173 ret = pm_runtime_get_sync(master->dev.parent);
1174 if (ret < 0) {
1175 dev_err(&master->dev, "Failed to power device: %d\n",
1176 ret);
1177 mutex_unlock(&master->io_mutex);
1178 return;
1179 }
1180 }
1181
1182 if (!was_busy)
1183 trace_spi_master_busy(master);
1184
1185 if (!was_busy && master->prepare_transfer_hardware) {
1186 ret = master->prepare_transfer_hardware(master);
1187 if (ret) {
1188 dev_err(&master->dev,
1189 "failed to prepare transfer hardware\n");
1190
1191 if (master->auto_runtime_pm)
1192 pm_runtime_put(master->dev.parent);
1193 mutex_unlock(&master->io_mutex);
1194 return;
1195 }
1196 }
1197
1198 trace_spi_message_start(master->cur_msg);
1199
1200 if (master->prepare_message) {
1201 ret = master->prepare_message(master, master->cur_msg);
1202 if (ret) {
1203 dev_err(&master->dev,
1204 "failed to prepare message: %d\n", ret);
1205 master->cur_msg->status = ret;
1206 spi_finalize_current_message(master);
1207 goto out;
1208 }
1209 master->cur_msg_prepared = true;
1210 }
1211
1212 ret = spi_map_msg(master, master->cur_msg);
1213 if (ret) {
1214 master->cur_msg->status = ret;
1215 spi_finalize_current_message(master);
1216 goto out;
1217 }
1218
1219 ret = master->transfer_one_message(master, master->cur_msg);
1220 if (ret) {
1221 dev_err(&master->dev,
1222 "failed to transfer one message from queue\n");
1223 goto out;
1224 }
1225
1226 out:
1227 mutex_unlock(&master->io_mutex);
1228
1229 /* Prod the scheduler in case transfer_one() was busy waiting */
1230 if (!ret)
1231 cond_resched();
1232 }
1233
1234 /**
1235 * spi_pump_messages - kthread work function which processes spi message queue
1236 * @work: pointer to kthread work struct contained in the master struct
1237 */
1238 static void spi_pump_messages(struct kthread_work *work)
1239 {
1240 struct spi_master *master =
1241 container_of(work, struct spi_master, pump_messages);
1242
1243 __spi_pump_messages(master, true);
1244 }
1245
1246 static int spi_init_queue(struct spi_master *master)
1247 {
1248 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1249
1250 master->running = false;
1251 master->busy = false;
1252
1253 kthread_init_worker(&master->kworker);
1254 master->kworker_task = kthread_run(kthread_worker_fn,
1255 &master->kworker, "%s",
1256 dev_name(&master->dev));
1257 if (IS_ERR(master->kworker_task)) {
1258 dev_err(&master->dev, "failed to create message pump task\n");
1259 return PTR_ERR(master->kworker_task);
1260 }
1261 kthread_init_work(&master->pump_messages, spi_pump_messages);
1262
1263 /*
1264 * Master config will indicate if this controller should run the
1265 * message pump with high (realtime) priority to reduce the transfer
1266 * latency on the bus by minimising the delay between a transfer
1267 * request and the scheduling of the message pump thread. Without this
1268 * setting the message pump thread will remain at default priority.
1269 */
1270 if (master->rt) {
1271 dev_info(&master->dev,
1272 "will run message pump with realtime priority\n");
1273 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1274 }
1275
1276 return 0;
1277 }
1278
1279 /**
1280 * spi_get_next_queued_message() - called by driver to check for queued
1281 * messages
1282 * @master: the master to check for queued messages
1283 *
1284 * If there are more messages in the queue, the next message is returned from
1285 * this call.
1286 *
1287 * Return: the next message in the queue, else NULL if the queue is empty.
1288 */
1289 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1290 {
1291 struct spi_message *next;
1292 unsigned long flags;
1293
1294 /* get a pointer to the next message, if any */
1295 spin_lock_irqsave(&master->queue_lock, flags);
1296 next = list_first_entry_or_null(&master->queue, struct spi_message,
1297 queue);
1298 spin_unlock_irqrestore(&master->queue_lock, flags);
1299
1300 return next;
1301 }
1302 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1303
1304 /**
1305 * spi_finalize_current_message() - the current message is complete
1306 * @master: the master to return the message to
1307 *
1308 * Called by the driver to notify the core that the message in the front of the
1309 * queue is complete and can be removed from the queue.
1310 */
1311 void spi_finalize_current_message(struct spi_master *master)
1312 {
1313 struct spi_message *mesg;
1314 unsigned long flags;
1315 int ret;
1316
1317 spin_lock_irqsave(&master->queue_lock, flags);
1318 mesg = master->cur_msg;
1319 spin_unlock_irqrestore(&master->queue_lock, flags);
1320
1321 spi_unmap_msg(master, mesg);
1322
1323 if (master->cur_msg_prepared && master->unprepare_message) {
1324 ret = master->unprepare_message(master, mesg);
1325 if (ret) {
1326 dev_err(&master->dev,
1327 "failed to unprepare message: %d\n", ret);
1328 }
1329 }
1330
1331 spin_lock_irqsave(&master->queue_lock, flags);
1332 master->cur_msg = NULL;
1333 master->cur_msg_prepared = false;
1334 kthread_queue_work(&master->kworker, &master->pump_messages);
1335 spin_unlock_irqrestore(&master->queue_lock, flags);
1336
1337 trace_spi_message_done(mesg);
1338
1339 mesg->state = NULL;
1340 if (mesg->complete)
1341 mesg->complete(mesg->context);
1342 }
1343 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1344
1345 static int spi_start_queue(struct spi_master *master)
1346 {
1347 unsigned long flags;
1348
1349 spin_lock_irqsave(&master->queue_lock, flags);
1350
1351 if (master->running || master->busy) {
1352 spin_unlock_irqrestore(&master->queue_lock, flags);
1353 return -EBUSY;
1354 }
1355
1356 master->running = true;
1357 master->cur_msg = NULL;
1358 spin_unlock_irqrestore(&master->queue_lock, flags);
1359
1360 kthread_queue_work(&master->kworker, &master->pump_messages);
1361
1362 return 0;
1363 }
1364
1365 static int spi_stop_queue(struct spi_master *master)
1366 {
1367 unsigned long flags;
1368 unsigned limit = 500;
1369 int ret = 0;
1370
1371 spin_lock_irqsave(&master->queue_lock, flags);
1372
1373 /*
1374 * This is a bit lame, but is optimized for the common execution path.
1375 * A wait_queue on the master->busy could be used, but then the common
1376 * execution path (pump_messages) would be required to call wake_up or
1377 * friends on every SPI message. Do this instead.
1378 */
1379 while ((!list_empty(&master->queue) || master->busy) && limit--) {
1380 spin_unlock_irqrestore(&master->queue_lock, flags);
1381 usleep_range(10000, 11000);
1382 spin_lock_irqsave(&master->queue_lock, flags);
1383 }
1384
1385 if (!list_empty(&master->queue) || master->busy)
1386 ret = -EBUSY;
1387 else
1388 master->running = false;
1389
1390 spin_unlock_irqrestore(&master->queue_lock, flags);
1391
1392 if (ret) {
1393 dev_warn(&master->dev,
1394 "could not stop message queue\n");
1395 return ret;
1396 }
1397 return ret;
1398 }
1399
1400 static int spi_destroy_queue(struct spi_master *master)
1401 {
1402 int ret;
1403
1404 ret = spi_stop_queue(master);
1405
1406 /*
1407 * kthread_flush_worker will block until all work is done.
1408 * If the reason that stop_queue timed out is that the work will never
1409 * finish, then it does no good to call flush/stop thread, so
1410 * return anyway.
1411 */
1412 if (ret) {
1413 dev_err(&master->dev, "problem destroying queue\n");
1414 return ret;
1415 }
1416
1417 kthread_flush_worker(&master->kworker);
1418 kthread_stop(master->kworker_task);
1419
1420 return 0;
1421 }
1422
1423 static int __spi_queued_transfer(struct spi_device *spi,
1424 struct spi_message *msg,
1425 bool need_pump)
1426 {
1427 struct spi_master *master = spi->master;
1428 unsigned long flags;
1429
1430 spin_lock_irqsave(&master->queue_lock, flags);
1431
1432 if (!master->running) {
1433 spin_unlock_irqrestore(&master->queue_lock, flags);
1434 return -ESHUTDOWN;
1435 }
1436 msg->actual_length = 0;
1437 msg->status = -EINPROGRESS;
1438
1439 list_add_tail(&msg->queue, &master->queue);
1440 if (!master->busy && need_pump)
1441 kthread_queue_work(&master->kworker, &master->pump_messages);
1442
1443 spin_unlock_irqrestore(&master->queue_lock, flags);
1444 return 0;
1445 }
1446
1447 /**
1448 * spi_queued_transfer - transfer function for queued transfers
1449 * @spi: spi device which is requesting transfer
1450 * @msg: spi message which is to handled is queued to driver queue
1451 *
1452 * Return: zero on success, else a negative error code.
1453 */
1454 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1455 {
1456 return __spi_queued_transfer(spi, msg, true);
1457 }
1458
1459 static int spi_master_initialize_queue(struct spi_master *master)
1460 {
1461 int ret;
1462
1463 master->transfer = spi_queued_transfer;
1464 if (!master->transfer_one_message)
1465 master->transfer_one_message = spi_transfer_one_message;
1466
1467 /* Initialize and start queue */
1468 ret = spi_init_queue(master);
1469 if (ret) {
1470 dev_err(&master->dev, "problem initializing queue\n");
1471 goto err_init_queue;
1472 }
1473 master->queued = true;
1474 ret = spi_start_queue(master);
1475 if (ret) {
1476 dev_err(&master->dev, "problem starting queue\n");
1477 goto err_start_queue;
1478 }
1479
1480 return 0;
1481
1482 err_start_queue:
1483 spi_destroy_queue(master);
1484 err_init_queue:
1485 return ret;
1486 }
1487
1488 /*-------------------------------------------------------------------------*/
1489
1490 #if defined(CONFIG_OF)
1491 static struct spi_device *
1492 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1493 {
1494 struct spi_device *spi;
1495 int rc;
1496 u32 value;
1497
1498 /* Alloc an spi_device */
1499 spi = spi_alloc_device(master);
1500 if (!spi) {
1501 dev_err(&master->dev, "spi_device alloc error for %s\n",
1502 nc->full_name);
1503 rc = -ENOMEM;
1504 goto err_out;
1505 }
1506
1507 /* Select device driver */
1508 rc = of_modalias_node(nc, spi->modalias,
1509 sizeof(spi->modalias));
1510 if (rc < 0) {
1511 dev_err(&master->dev, "cannot find modalias for %s\n",
1512 nc->full_name);
1513 goto err_out;
1514 }
1515
1516 /* Device address */
1517 rc = of_property_read_u32(nc, "reg", &value);
1518 if (rc) {
1519 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1520 nc->full_name, rc);
1521 goto err_out;
1522 }
1523 spi->chip_select = value;
1524
1525 /* Mode (clock phase/polarity/etc.) */
1526 if (of_find_property(nc, "spi-cpha", NULL))
1527 spi->mode |= SPI_CPHA;
1528 if (of_find_property(nc, "spi-cpol", NULL))
1529 spi->mode |= SPI_CPOL;
1530 if (of_find_property(nc, "spi-cs-high", NULL))
1531 spi->mode |= SPI_CS_HIGH;
1532 if (of_find_property(nc, "spi-3wire", NULL))
1533 spi->mode |= SPI_3WIRE;
1534 if (of_find_property(nc, "spi-lsb-first", NULL))
1535 spi->mode |= SPI_LSB_FIRST;
1536
1537 /* Device DUAL/QUAD mode */
1538 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1539 switch (value) {
1540 case 1:
1541 break;
1542 case 2:
1543 spi->mode |= SPI_TX_DUAL;
1544 break;
1545 case 4:
1546 spi->mode |= SPI_TX_QUAD;
1547 break;
1548 default:
1549 dev_warn(&master->dev,
1550 "spi-tx-bus-width %d not supported\n",
1551 value);
1552 break;
1553 }
1554 }
1555
1556 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1557 switch (value) {
1558 case 1:
1559 break;
1560 case 2:
1561 spi->mode |= SPI_RX_DUAL;
1562 break;
1563 case 4:
1564 spi->mode |= SPI_RX_QUAD;
1565 break;
1566 default:
1567 dev_warn(&master->dev,
1568 "spi-rx-bus-width %d not supported\n",
1569 value);
1570 break;
1571 }
1572 }
1573
1574 /* Device speed */
1575 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1576 if (rc) {
1577 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1578 nc->full_name, rc);
1579 goto err_out;
1580 }
1581 spi->max_speed_hz = value;
1582
1583 /* Store a pointer to the node in the device structure */
1584 of_node_get(nc);
1585 spi->dev.of_node = nc;
1586
1587 /* Register the new device */
1588 rc = spi_add_device(spi);
1589 if (rc) {
1590 dev_err(&master->dev, "spi_device register error %s\n",
1591 nc->full_name);
1592 goto err_out;
1593 }
1594
1595 return spi;
1596
1597 err_out:
1598 spi_dev_put(spi);
1599 return ERR_PTR(rc);
1600 }
1601
1602 /**
1603 * of_register_spi_devices() - Register child devices onto the SPI bus
1604 * @master: Pointer to spi_master device
1605 *
1606 * Registers an spi_device for each child node of master node which has a 'reg'
1607 * property.
1608 */
1609 static void of_register_spi_devices(struct spi_master *master)
1610 {
1611 struct spi_device *spi;
1612 struct device_node *nc;
1613
1614 if (!master->dev.of_node)
1615 return;
1616
1617 for_each_available_child_of_node(master->dev.of_node, nc) {
1618 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1619 continue;
1620 spi = of_register_spi_device(master, nc);
1621 if (IS_ERR(spi)) {
1622 dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1623 nc->full_name);
1624 of_node_clear_flag(nc, OF_POPULATED);
1625 }
1626 }
1627 }
1628 #else
1629 static void of_register_spi_devices(struct spi_master *master) { }
1630 #endif
1631
1632 #ifdef CONFIG_ACPI
1633 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1634 {
1635 struct spi_device *spi = data;
1636 struct spi_master *master = spi->master;
1637
1638 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1639 struct acpi_resource_spi_serialbus *sb;
1640
1641 sb = &ares->data.spi_serial_bus;
1642 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1643 /*
1644 * ACPI DeviceSelection numbering is handled by the
1645 * host controller driver in Windows and can vary
1646 * from driver to driver. In Linux we always expect
1647 * 0 .. max - 1 so we need to ask the driver to
1648 * translate between the two schemes.
1649 */
1650 if (master->fw_translate_cs) {
1651 int cs = master->fw_translate_cs(master,
1652 sb->device_selection);
1653 if (cs < 0)
1654 return cs;
1655 spi->chip_select = cs;
1656 } else {
1657 spi->chip_select = sb->device_selection;
1658 }
1659
1660 spi->max_speed_hz = sb->connection_speed;
1661
1662 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1663 spi->mode |= SPI_CPHA;
1664 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1665 spi->mode |= SPI_CPOL;
1666 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1667 spi->mode |= SPI_CS_HIGH;
1668 }
1669 } else if (spi->irq < 0) {
1670 struct resource r;
1671
1672 if (acpi_dev_resource_interrupt(ares, 0, &r))
1673 spi->irq = r.start;
1674 }
1675
1676 /* Always tell the ACPI core to skip this resource */
1677 return 1;
1678 }
1679
1680 static acpi_status acpi_register_spi_device(struct spi_master *master,
1681 struct acpi_device *adev)
1682 {
1683 struct list_head resource_list;
1684 struct spi_device *spi;
1685 int ret;
1686
1687 if (acpi_bus_get_status(adev) || !adev->status.present ||
1688 acpi_device_enumerated(adev))
1689 return AE_OK;
1690
1691 spi = spi_alloc_device(master);
1692 if (!spi) {
1693 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1694 dev_name(&adev->dev));
1695 return AE_NO_MEMORY;
1696 }
1697
1698 ACPI_COMPANION_SET(&spi->dev, adev);
1699 spi->irq = -1;
1700
1701 INIT_LIST_HEAD(&resource_list);
1702 ret = acpi_dev_get_resources(adev, &resource_list,
1703 acpi_spi_add_resource, spi);
1704 acpi_dev_free_resource_list(&resource_list);
1705
1706 if (ret < 0 || !spi->max_speed_hz) {
1707 spi_dev_put(spi);
1708 return AE_OK;
1709 }
1710
1711 if (spi->irq < 0)
1712 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1713
1714 acpi_device_set_enumerated(adev);
1715
1716 adev->power.flags.ignore_parent = true;
1717 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1718 if (spi_add_device(spi)) {
1719 adev->power.flags.ignore_parent = false;
1720 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1721 dev_name(&adev->dev));
1722 spi_dev_put(spi);
1723 }
1724
1725 return AE_OK;
1726 }
1727
1728 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1729 void *data, void **return_value)
1730 {
1731 struct spi_master *master = data;
1732 struct acpi_device *adev;
1733
1734 if (acpi_bus_get_device(handle, &adev))
1735 return AE_OK;
1736
1737 return acpi_register_spi_device(master, adev);
1738 }
1739
1740 static void acpi_register_spi_devices(struct spi_master *master)
1741 {
1742 acpi_status status;
1743 acpi_handle handle;
1744
1745 handle = ACPI_HANDLE(master->dev.parent);
1746 if (!handle)
1747 return;
1748
1749 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1750 acpi_spi_add_device, NULL,
1751 master, NULL);
1752 if (ACPI_FAILURE(status))
1753 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1754 }
1755 #else
1756 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1757 #endif /* CONFIG_ACPI */
1758
1759 static void spi_master_release(struct device *dev)
1760 {
1761 struct spi_master *master;
1762
1763 master = container_of(dev, struct spi_master, dev);
1764 kfree(master);
1765 }
1766
1767 static struct class spi_master_class = {
1768 .name = "spi_master",
1769 .owner = THIS_MODULE,
1770 .dev_release = spi_master_release,
1771 .dev_groups = spi_master_groups,
1772 };
1773
1774
1775 /**
1776 * spi_alloc_master - allocate SPI master controller
1777 * @dev: the controller, possibly using the platform_bus
1778 * @size: how much zeroed driver-private data to allocate; the pointer to this
1779 * memory is in the driver_data field of the returned device,
1780 * accessible with spi_master_get_devdata().
1781 * Context: can sleep
1782 *
1783 * This call is used only by SPI master controller drivers, which are the
1784 * only ones directly touching chip registers. It's how they allocate
1785 * an spi_master structure, prior to calling spi_register_master().
1786 *
1787 * This must be called from context that can sleep.
1788 *
1789 * The caller is responsible for assigning the bus number and initializing
1790 * the master's methods before calling spi_register_master(); and (after errors
1791 * adding the device) calling spi_master_put() to prevent a memory leak.
1792 *
1793 * Return: the SPI master structure on success, else NULL.
1794 */
1795 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1796 {
1797 struct spi_master *master;
1798
1799 if (!dev)
1800 return NULL;
1801
1802 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1803 if (!master)
1804 return NULL;
1805
1806 device_initialize(&master->dev);
1807 master->bus_num = -1;
1808 master->num_chipselect = 1;
1809 master->dev.class = &spi_master_class;
1810 master->dev.parent = dev;
1811 pm_suspend_ignore_children(&master->dev, true);
1812 spi_master_set_devdata(master, &master[1]);
1813
1814 return master;
1815 }
1816 EXPORT_SYMBOL_GPL(spi_alloc_master);
1817
1818 #ifdef CONFIG_OF
1819 static int of_spi_register_master(struct spi_master *master)
1820 {
1821 int nb, i, *cs;
1822 struct device_node *np = master->dev.of_node;
1823
1824 if (!np)
1825 return 0;
1826
1827 nb = of_gpio_named_count(np, "cs-gpios");
1828 master->num_chipselect = max_t(int, nb, master->num_chipselect);
1829
1830 /* Return error only for an incorrectly formed cs-gpios property */
1831 if (nb == 0 || nb == -ENOENT)
1832 return 0;
1833 else if (nb < 0)
1834 return nb;
1835
1836 cs = devm_kzalloc(&master->dev,
1837 sizeof(int) * master->num_chipselect,
1838 GFP_KERNEL);
1839 master->cs_gpios = cs;
1840
1841 if (!master->cs_gpios)
1842 return -ENOMEM;
1843
1844 for (i = 0; i < master->num_chipselect; i++)
1845 cs[i] = -ENOENT;
1846
1847 for (i = 0; i < nb; i++)
1848 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1849
1850 return 0;
1851 }
1852 #else
1853 static int of_spi_register_master(struct spi_master *master)
1854 {
1855 return 0;
1856 }
1857 #endif
1858
1859 /**
1860 * spi_register_master - register SPI master controller
1861 * @master: initialized master, originally from spi_alloc_master()
1862 * Context: can sleep
1863 *
1864 * SPI master controllers connect to their drivers using some non-SPI bus,
1865 * such as the platform bus. The final stage of probe() in that code
1866 * includes calling spi_register_master() to hook up to this SPI bus glue.
1867 *
1868 * SPI controllers use board specific (often SOC specific) bus numbers,
1869 * and board-specific addressing for SPI devices combines those numbers
1870 * with chip select numbers. Since SPI does not directly support dynamic
1871 * device identification, boards need configuration tables telling which
1872 * chip is at which address.
1873 *
1874 * This must be called from context that can sleep. It returns zero on
1875 * success, else a negative error code (dropping the master's refcount).
1876 * After a successful return, the caller is responsible for calling
1877 * spi_unregister_master().
1878 *
1879 * Return: zero on success, else a negative error code.
1880 */
1881 int spi_register_master(struct spi_master *master)
1882 {
1883 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1884 struct device *dev = master->dev.parent;
1885 struct boardinfo *bi;
1886 int status = -ENODEV;
1887 int dynamic = 0;
1888
1889 if (!dev)
1890 return -ENODEV;
1891
1892 status = of_spi_register_master(master);
1893 if (status)
1894 return status;
1895
1896 /* even if it's just one always-selected device, there must
1897 * be at least one chipselect
1898 */
1899 if (master->num_chipselect == 0)
1900 return -EINVAL;
1901
1902 if ((master->bus_num < 0) && master->dev.of_node)
1903 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1904
1905 /* convention: dynamically assigned bus IDs count down from the max */
1906 if (master->bus_num < 0) {
1907 /* FIXME switch to an IDR based scheme, something like
1908 * I2C now uses, so we can't run out of "dynamic" IDs
1909 */
1910 master->bus_num = atomic_dec_return(&dyn_bus_id);
1911 dynamic = 1;
1912 }
1913
1914 INIT_LIST_HEAD(&master->queue);
1915 spin_lock_init(&master->queue_lock);
1916 spin_lock_init(&master->bus_lock_spinlock);
1917 mutex_init(&master->bus_lock_mutex);
1918 mutex_init(&master->io_mutex);
1919 master->bus_lock_flag = 0;
1920 init_completion(&master->xfer_completion);
1921 if (!master->max_dma_len)
1922 master->max_dma_len = INT_MAX;
1923
1924 /* register the device, then userspace will see it.
1925 * registration fails if the bus ID is in use.
1926 */
1927 dev_set_name(&master->dev, "spi%u", master->bus_num);
1928 status = device_add(&master->dev);
1929 if (status < 0)
1930 goto done;
1931 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1932 dynamic ? " (dynamic)" : "");
1933
1934 /* If we're using a queued driver, start the queue */
1935 if (master->transfer)
1936 dev_info(dev, "master is unqueued, this is deprecated\n");
1937 else {
1938 status = spi_master_initialize_queue(master);
1939 if (status) {
1940 device_del(&master->dev);
1941 goto done;
1942 }
1943 }
1944 /* add statistics */
1945 spin_lock_init(&master->statistics.lock);
1946
1947 mutex_lock(&board_lock);
1948 list_add_tail(&master->list, &spi_master_list);
1949 list_for_each_entry(bi, &board_list, list)
1950 spi_match_master_to_boardinfo(master, &bi->board_info);
1951 mutex_unlock(&board_lock);
1952
1953 /* Register devices from the device tree and ACPI */
1954 of_register_spi_devices(master);
1955 acpi_register_spi_devices(master);
1956 done:
1957 return status;
1958 }
1959 EXPORT_SYMBOL_GPL(spi_register_master);
1960
1961 static void devm_spi_unregister(struct device *dev, void *res)
1962 {
1963 spi_unregister_master(*(struct spi_master **)res);
1964 }
1965
1966 /**
1967 * dev_spi_register_master - register managed SPI master controller
1968 * @dev: device managing SPI master
1969 * @master: initialized master, originally from spi_alloc_master()
1970 * Context: can sleep
1971 *
1972 * Register a SPI device as with spi_register_master() which will
1973 * automatically be unregister
1974 *
1975 * Return: zero on success, else a negative error code.
1976 */
1977 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1978 {
1979 struct spi_master **ptr;
1980 int ret;
1981
1982 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1983 if (!ptr)
1984 return -ENOMEM;
1985
1986 ret = spi_register_master(master);
1987 if (!ret) {
1988 *ptr = master;
1989 devres_add(dev, ptr);
1990 } else {
1991 devres_free(ptr);
1992 }
1993
1994 return ret;
1995 }
1996 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1997
1998 static int __unregister(struct device *dev, void *null)
1999 {
2000 spi_unregister_device(to_spi_device(dev));
2001 return 0;
2002 }
2003
2004 /**
2005 * spi_unregister_master - unregister SPI master controller
2006 * @master: the master being unregistered
2007 * Context: can sleep
2008 *
2009 * This call is used only by SPI master controller drivers, which are the
2010 * only ones directly touching chip registers.
2011 *
2012 * This must be called from context that can sleep.
2013 */
2014 void spi_unregister_master(struct spi_master *master)
2015 {
2016 int dummy;
2017
2018 if (master->queued) {
2019 if (spi_destroy_queue(master))
2020 dev_err(&master->dev, "queue remove failed\n");
2021 }
2022
2023 mutex_lock(&board_lock);
2024 list_del(&master->list);
2025 mutex_unlock(&board_lock);
2026
2027 dummy = device_for_each_child(&master->dev, NULL, __unregister);
2028 device_unregister(&master->dev);
2029 }
2030 EXPORT_SYMBOL_GPL(spi_unregister_master);
2031
2032 int spi_master_suspend(struct spi_master *master)
2033 {
2034 int ret;
2035
2036 /* Basically no-ops for non-queued masters */
2037 if (!master->queued)
2038 return 0;
2039
2040 ret = spi_stop_queue(master);
2041 if (ret)
2042 dev_err(&master->dev, "queue stop failed\n");
2043
2044 return ret;
2045 }
2046 EXPORT_SYMBOL_GPL(spi_master_suspend);
2047
2048 int spi_master_resume(struct spi_master *master)
2049 {
2050 int ret;
2051
2052 if (!master->queued)
2053 return 0;
2054
2055 ret = spi_start_queue(master);
2056 if (ret)
2057 dev_err(&master->dev, "queue restart failed\n");
2058
2059 return ret;
2060 }
2061 EXPORT_SYMBOL_GPL(spi_master_resume);
2062
2063 static int __spi_master_match(struct device *dev, const void *data)
2064 {
2065 struct spi_master *m;
2066 const u16 *bus_num = data;
2067
2068 m = container_of(dev, struct spi_master, dev);
2069 return m->bus_num == *bus_num;
2070 }
2071
2072 /**
2073 * spi_busnum_to_master - look up master associated with bus_num
2074 * @bus_num: the master's bus number
2075 * Context: can sleep
2076 *
2077 * This call may be used with devices that are registered after
2078 * arch init time. It returns a refcounted pointer to the relevant
2079 * spi_master (which the caller must release), or NULL if there is
2080 * no such master registered.
2081 *
2082 * Return: the SPI master structure on success, else NULL.
2083 */
2084 struct spi_master *spi_busnum_to_master(u16 bus_num)
2085 {
2086 struct device *dev;
2087 struct spi_master *master = NULL;
2088
2089 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2090 __spi_master_match);
2091 if (dev)
2092 master = container_of(dev, struct spi_master, dev);
2093 /* reference got in class_find_device */
2094 return master;
2095 }
2096 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2097
2098 /*-------------------------------------------------------------------------*/
2099
2100 /* Core methods for SPI resource management */
2101
2102 /**
2103 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2104 * during the processing of a spi_message while using
2105 * spi_transfer_one
2106 * @spi: the spi device for which we allocate memory
2107 * @release: the release code to execute for this resource
2108 * @size: size to alloc and return
2109 * @gfp: GFP allocation flags
2110 *
2111 * Return: the pointer to the allocated data
2112 *
2113 * This may get enhanced in the future to allocate from a memory pool
2114 * of the @spi_device or @spi_master to avoid repeated allocations.
2115 */
2116 void *spi_res_alloc(struct spi_device *spi,
2117 spi_res_release_t release,
2118 size_t size, gfp_t gfp)
2119 {
2120 struct spi_res *sres;
2121
2122 sres = kzalloc(sizeof(*sres) + size, gfp);
2123 if (!sres)
2124 return NULL;
2125
2126 INIT_LIST_HEAD(&sres->entry);
2127 sres->release = release;
2128
2129 return sres->data;
2130 }
2131 EXPORT_SYMBOL_GPL(spi_res_alloc);
2132
2133 /**
2134 * spi_res_free - free an spi resource
2135 * @res: pointer to the custom data of a resource
2136 *
2137 */
2138 void spi_res_free(void *res)
2139 {
2140 struct spi_res *sres = container_of(res, struct spi_res, data);
2141
2142 if (!res)
2143 return;
2144
2145 WARN_ON(!list_empty(&sres->entry));
2146 kfree(sres);
2147 }
2148 EXPORT_SYMBOL_GPL(spi_res_free);
2149
2150 /**
2151 * spi_res_add - add a spi_res to the spi_message
2152 * @message: the spi message
2153 * @res: the spi_resource
2154 */
2155 void spi_res_add(struct spi_message *message, void *res)
2156 {
2157 struct spi_res *sres = container_of(res, struct spi_res, data);
2158
2159 WARN_ON(!list_empty(&sres->entry));
2160 list_add_tail(&sres->entry, &message->resources);
2161 }
2162 EXPORT_SYMBOL_GPL(spi_res_add);
2163
2164 /**
2165 * spi_res_release - release all spi resources for this message
2166 * @master: the @spi_master
2167 * @message: the @spi_message
2168 */
2169 void spi_res_release(struct spi_master *master,
2170 struct spi_message *message)
2171 {
2172 struct spi_res *res;
2173
2174 while (!list_empty(&message->resources)) {
2175 res = list_last_entry(&message->resources,
2176 struct spi_res, entry);
2177
2178 if (res->release)
2179 res->release(master, message, res->data);
2180
2181 list_del(&res->entry);
2182
2183 kfree(res);
2184 }
2185 }
2186 EXPORT_SYMBOL_GPL(spi_res_release);
2187
2188 /*-------------------------------------------------------------------------*/
2189
2190 /* Core methods for spi_message alterations */
2191
2192 static void __spi_replace_transfers_release(struct spi_master *master,
2193 struct spi_message *msg,
2194 void *res)
2195 {
2196 struct spi_replaced_transfers *rxfer = res;
2197 size_t i;
2198
2199 /* call extra callback if requested */
2200 if (rxfer->release)
2201 rxfer->release(master, msg, res);
2202
2203 /* insert replaced transfers back into the message */
2204 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2205
2206 /* remove the formerly inserted entries */
2207 for (i = 0; i < rxfer->inserted; i++)
2208 list_del(&rxfer->inserted_transfers[i].transfer_list);
2209 }
2210
2211 /**
2212 * spi_replace_transfers - replace transfers with several transfers
2213 * and register change with spi_message.resources
2214 * @msg: the spi_message we work upon
2215 * @xfer_first: the first spi_transfer we want to replace
2216 * @remove: number of transfers to remove
2217 * @insert: the number of transfers we want to insert instead
2218 * @release: extra release code necessary in some circumstances
2219 * @extradatasize: extra data to allocate (with alignment guarantees
2220 * of struct @spi_transfer)
2221 * @gfp: gfp flags
2222 *
2223 * Returns: pointer to @spi_replaced_transfers,
2224 * PTR_ERR(...) in case of errors.
2225 */
2226 struct spi_replaced_transfers *spi_replace_transfers(
2227 struct spi_message *msg,
2228 struct spi_transfer *xfer_first,
2229 size_t remove,
2230 size_t insert,
2231 spi_replaced_release_t release,
2232 size_t extradatasize,
2233 gfp_t gfp)
2234 {
2235 struct spi_replaced_transfers *rxfer;
2236 struct spi_transfer *xfer;
2237 size_t i;
2238
2239 /* allocate the structure using spi_res */
2240 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2241 insert * sizeof(struct spi_transfer)
2242 + sizeof(struct spi_replaced_transfers)
2243 + extradatasize,
2244 gfp);
2245 if (!rxfer)
2246 return ERR_PTR(-ENOMEM);
2247
2248 /* the release code to invoke before running the generic release */
2249 rxfer->release = release;
2250
2251 /* assign extradata */
2252 if (extradatasize)
2253 rxfer->extradata =
2254 &rxfer->inserted_transfers[insert];
2255
2256 /* init the replaced_transfers list */
2257 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2258
2259 /* assign the list_entry after which we should reinsert
2260 * the @replaced_transfers - it may be spi_message.messages!
2261 */
2262 rxfer->replaced_after = xfer_first->transfer_list.prev;
2263
2264 /* remove the requested number of transfers */
2265 for (i = 0; i < remove; i++) {
2266 /* if the entry after replaced_after it is msg->transfers
2267 * then we have been requested to remove more transfers
2268 * than are in the list
2269 */
2270 if (rxfer->replaced_after->next == &msg->transfers) {
2271 dev_err(&msg->spi->dev,
2272 "requested to remove more spi_transfers than are available\n");
2273 /* insert replaced transfers back into the message */
2274 list_splice(&rxfer->replaced_transfers,
2275 rxfer->replaced_after);
2276
2277 /* free the spi_replace_transfer structure */
2278 spi_res_free(rxfer);
2279
2280 /* and return with an error */
2281 return ERR_PTR(-EINVAL);
2282 }
2283
2284 /* remove the entry after replaced_after from list of
2285 * transfers and add it to list of replaced_transfers
2286 */
2287 list_move_tail(rxfer->replaced_after->next,
2288 &rxfer->replaced_transfers);
2289 }
2290
2291 /* create copy of the given xfer with identical settings
2292 * based on the first transfer to get removed
2293 */
2294 for (i = 0; i < insert; i++) {
2295 /* we need to run in reverse order */
2296 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2297
2298 /* copy all spi_transfer data */
2299 memcpy(xfer, xfer_first, sizeof(*xfer));
2300
2301 /* add to list */
2302 list_add(&xfer->transfer_list, rxfer->replaced_after);
2303
2304 /* clear cs_change and delay_usecs for all but the last */
2305 if (i) {
2306 xfer->cs_change = false;
2307 xfer->delay_usecs = 0;
2308 }
2309 }
2310
2311 /* set up inserted */
2312 rxfer->inserted = insert;
2313
2314 /* and register it with spi_res/spi_message */
2315 spi_res_add(msg, rxfer);
2316
2317 return rxfer;
2318 }
2319 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2320
2321 static int __spi_split_transfer_maxsize(struct spi_master *master,
2322 struct spi_message *msg,
2323 struct spi_transfer **xferp,
2324 size_t maxsize,
2325 gfp_t gfp)
2326 {
2327 struct spi_transfer *xfer = *xferp, *xfers;
2328 struct spi_replaced_transfers *srt;
2329 size_t offset;
2330 size_t count, i;
2331
2332 /* warn once about this fact that we are splitting a transfer */
2333 dev_warn_once(&msg->spi->dev,
2334 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2335 xfer->len, maxsize);
2336
2337 /* calculate how many we have to replace */
2338 count = DIV_ROUND_UP(xfer->len, maxsize);
2339
2340 /* create replacement */
2341 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2342 if (IS_ERR(srt))
2343 return PTR_ERR(srt);
2344 xfers = srt->inserted_transfers;
2345
2346 /* now handle each of those newly inserted spi_transfers
2347 * note that the replacements spi_transfers all are preset
2348 * to the same values as *xferp, so tx_buf, rx_buf and len
2349 * are all identical (as well as most others)
2350 * so we just have to fix up len and the pointers.
2351 *
2352 * this also includes support for the depreciated
2353 * spi_message.is_dma_mapped interface
2354 */
2355
2356 /* the first transfer just needs the length modified, so we
2357 * run it outside the loop
2358 */
2359 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2360
2361 /* all the others need rx_buf/tx_buf also set */
2362 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2363 /* update rx_buf, tx_buf and dma */
2364 if (xfers[i].rx_buf)
2365 xfers[i].rx_buf += offset;
2366 if (xfers[i].rx_dma)
2367 xfers[i].rx_dma += offset;
2368 if (xfers[i].tx_buf)
2369 xfers[i].tx_buf += offset;
2370 if (xfers[i].tx_dma)
2371 xfers[i].tx_dma += offset;
2372
2373 /* update length */
2374 xfers[i].len = min(maxsize, xfers[i].len - offset);
2375 }
2376
2377 /* we set up xferp to the last entry we have inserted,
2378 * so that we skip those already split transfers
2379 */
2380 *xferp = &xfers[count - 1];
2381
2382 /* increment statistics counters */
2383 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2384 transfers_split_maxsize);
2385 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2386 transfers_split_maxsize);
2387
2388 return 0;
2389 }
2390
2391 /**
2392 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2393 * when an individual transfer exceeds a
2394 * certain size
2395 * @master: the @spi_master for this transfer
2396 * @msg: the @spi_message to transform
2397 * @maxsize: the maximum when to apply this
2398 * @gfp: GFP allocation flags
2399 *
2400 * Return: status of transformation
2401 */
2402 int spi_split_transfers_maxsize(struct spi_master *master,
2403 struct spi_message *msg,
2404 size_t maxsize,
2405 gfp_t gfp)
2406 {
2407 struct spi_transfer *xfer;
2408 int ret;
2409
2410 /* iterate over the transfer_list,
2411 * but note that xfer is advanced to the last transfer inserted
2412 * to avoid checking sizes again unnecessarily (also xfer does
2413 * potentiall belong to a different list by the time the
2414 * replacement has happened
2415 */
2416 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2417 if (xfer->len > maxsize) {
2418 ret = __spi_split_transfer_maxsize(
2419 master, msg, &xfer, maxsize, gfp);
2420 if (ret)
2421 return ret;
2422 }
2423 }
2424
2425 return 0;
2426 }
2427 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2428
2429 /*-------------------------------------------------------------------------*/
2430
2431 /* Core methods for SPI master protocol drivers. Some of the
2432 * other core methods are currently defined as inline functions.
2433 */
2434
2435 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2436 {
2437 if (master->bits_per_word_mask) {
2438 /* Only 32 bits fit in the mask */
2439 if (bits_per_word > 32)
2440 return -EINVAL;
2441 if (!(master->bits_per_word_mask &
2442 SPI_BPW_MASK(bits_per_word)))
2443 return -EINVAL;
2444 }
2445
2446 return 0;
2447 }
2448
2449 /**
2450 * spi_setup - setup SPI mode and clock rate
2451 * @spi: the device whose settings are being modified
2452 * Context: can sleep, and no requests are queued to the device
2453 *
2454 * SPI protocol drivers may need to update the transfer mode if the
2455 * device doesn't work with its default. They may likewise need
2456 * to update clock rates or word sizes from initial values. This function
2457 * changes those settings, and must be called from a context that can sleep.
2458 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2459 * effect the next time the device is selected and data is transferred to
2460 * or from it. When this function returns, the spi device is deselected.
2461 *
2462 * Note that this call will fail if the protocol driver specifies an option
2463 * that the underlying controller or its driver does not support. For
2464 * example, not all hardware supports wire transfers using nine bit words,
2465 * LSB-first wire encoding, or active-high chipselects.
2466 *
2467 * Return: zero on success, else a negative error code.
2468 */
2469 int spi_setup(struct spi_device *spi)
2470 {
2471 unsigned bad_bits, ugly_bits;
2472 int status;
2473
2474 /* check mode to prevent that DUAL and QUAD set at the same time
2475 */
2476 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2477 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2478 dev_err(&spi->dev,
2479 "setup: can not select dual and quad at the same time\n");
2480 return -EINVAL;
2481 }
2482 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2483 */
2484 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2485 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2486 return -EINVAL;
2487 /* help drivers fail *cleanly* when they need options
2488 * that aren't supported with their current master
2489 */
2490 bad_bits = spi->mode & ~spi->master->mode_bits;
2491 ugly_bits = bad_bits &
2492 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2493 if (ugly_bits) {
2494 dev_warn(&spi->dev,
2495 "setup: ignoring unsupported mode bits %x\n",
2496 ugly_bits);
2497 spi->mode &= ~ugly_bits;
2498 bad_bits &= ~ugly_bits;
2499 }
2500 if (bad_bits) {
2501 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2502 bad_bits);
2503 return -EINVAL;
2504 }
2505
2506 if (!spi->bits_per_word)
2507 spi->bits_per_word = 8;
2508
2509 status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2510 if (status)
2511 return status;
2512
2513 if (!spi->max_speed_hz)
2514 spi->max_speed_hz = spi->master->max_speed_hz;
2515
2516 if (spi->master->setup)
2517 status = spi->master->setup(spi);
2518
2519 spi_set_cs(spi, false);
2520
2521 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2522 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2523 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2524 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2525 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2526 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2527 spi->bits_per_word, spi->max_speed_hz,
2528 status);
2529
2530 return status;
2531 }
2532 EXPORT_SYMBOL_GPL(spi_setup);
2533
2534 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2535 {
2536 struct spi_master *master = spi->master;
2537 struct spi_transfer *xfer;
2538 int w_size;
2539
2540 if (list_empty(&message->transfers))
2541 return -EINVAL;
2542
2543 /* Half-duplex links include original MicroWire, and ones with
2544 * only one data pin like SPI_3WIRE (switches direction) or where
2545 * either MOSI or MISO is missing. They can also be caused by
2546 * software limitations.
2547 */
2548 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2549 || (spi->mode & SPI_3WIRE)) {
2550 unsigned flags = master->flags;
2551
2552 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2553 if (xfer->rx_buf && xfer->tx_buf)
2554 return -EINVAL;
2555 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2556 return -EINVAL;
2557 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2558 return -EINVAL;
2559 }
2560 }
2561
2562 /**
2563 * Set transfer bits_per_word and max speed as spi device default if
2564 * it is not set for this transfer.
2565 * Set transfer tx_nbits and rx_nbits as single transfer default
2566 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2567 */
2568 message->frame_length = 0;
2569 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2570 message->frame_length += xfer->len;
2571 if (!xfer->bits_per_word)
2572 xfer->bits_per_word = spi->bits_per_word;
2573
2574 if (!xfer->speed_hz)
2575 xfer->speed_hz = spi->max_speed_hz;
2576 if (!xfer->speed_hz)
2577 xfer->speed_hz = master->max_speed_hz;
2578
2579 if (master->max_speed_hz &&
2580 xfer->speed_hz > master->max_speed_hz)
2581 xfer->speed_hz = master->max_speed_hz;
2582
2583 if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2584 return -EINVAL;
2585
2586 /*
2587 * SPI transfer length should be multiple of SPI word size
2588 * where SPI word size should be power-of-two multiple
2589 */
2590 if (xfer->bits_per_word <= 8)
2591 w_size = 1;
2592 else if (xfer->bits_per_word <= 16)
2593 w_size = 2;
2594 else
2595 w_size = 4;
2596
2597 /* No partial transfers accepted */
2598 if (xfer->len % w_size)
2599 return -EINVAL;
2600
2601 if (xfer->speed_hz && master->min_speed_hz &&
2602 xfer->speed_hz < master->min_speed_hz)
2603 return -EINVAL;
2604
2605 if (xfer->tx_buf && !xfer->tx_nbits)
2606 xfer->tx_nbits = SPI_NBITS_SINGLE;
2607 if (xfer->rx_buf && !xfer->rx_nbits)
2608 xfer->rx_nbits = SPI_NBITS_SINGLE;
2609 /* check transfer tx/rx_nbits:
2610 * 1. check the value matches one of single, dual and quad
2611 * 2. check tx/rx_nbits match the mode in spi_device
2612 */
2613 if (xfer->tx_buf) {
2614 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2615 xfer->tx_nbits != SPI_NBITS_DUAL &&
2616 xfer->tx_nbits != SPI_NBITS_QUAD)
2617 return -EINVAL;
2618 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2619 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2620 return -EINVAL;
2621 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2622 !(spi->mode & SPI_TX_QUAD))
2623 return -EINVAL;
2624 }
2625 /* check transfer rx_nbits */
2626 if (xfer->rx_buf) {
2627 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2628 xfer->rx_nbits != SPI_NBITS_DUAL &&
2629 xfer->rx_nbits != SPI_NBITS_QUAD)
2630 return -EINVAL;
2631 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2632 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2633 return -EINVAL;
2634 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2635 !(spi->mode & SPI_RX_QUAD))
2636 return -EINVAL;
2637 }
2638 }
2639
2640 message->status = -EINPROGRESS;
2641
2642 return 0;
2643 }
2644
2645 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2646 {
2647 struct spi_master *master = spi->master;
2648
2649 message->spi = spi;
2650
2651 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2652 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2653
2654 trace_spi_message_submit(message);
2655
2656 return master->transfer(spi, message);
2657 }
2658
2659 /**
2660 * spi_async - asynchronous SPI transfer
2661 * @spi: device with which data will be exchanged
2662 * @message: describes the data transfers, including completion callback
2663 * Context: any (irqs may be blocked, etc)
2664 *
2665 * This call may be used in_irq and other contexts which can't sleep,
2666 * as well as from task contexts which can sleep.
2667 *
2668 * The completion callback is invoked in a context which can't sleep.
2669 * Before that invocation, the value of message->status is undefined.
2670 * When the callback is issued, message->status holds either zero (to
2671 * indicate complete success) or a negative error code. After that
2672 * callback returns, the driver which issued the transfer request may
2673 * deallocate the associated memory; it's no longer in use by any SPI
2674 * core or controller driver code.
2675 *
2676 * Note that although all messages to a spi_device are handled in
2677 * FIFO order, messages may go to different devices in other orders.
2678 * Some device might be higher priority, or have various "hard" access
2679 * time requirements, for example.
2680 *
2681 * On detection of any fault during the transfer, processing of
2682 * the entire message is aborted, and the device is deselected.
2683 * Until returning from the associated message completion callback,
2684 * no other spi_message queued to that device will be processed.
2685 * (This rule applies equally to all the synchronous transfer calls,
2686 * which are wrappers around this core asynchronous primitive.)
2687 *
2688 * Return: zero on success, else a negative error code.
2689 */
2690 int spi_async(struct spi_device *spi, struct spi_message *message)
2691 {
2692 struct spi_master *master = spi->master;
2693 int ret;
2694 unsigned long flags;
2695
2696 ret = __spi_validate(spi, message);
2697 if (ret != 0)
2698 return ret;
2699
2700 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2701
2702 if (master->bus_lock_flag)
2703 ret = -EBUSY;
2704 else
2705 ret = __spi_async(spi, message);
2706
2707 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2708
2709 return ret;
2710 }
2711 EXPORT_SYMBOL_GPL(spi_async);
2712
2713 /**
2714 * spi_async_locked - version of spi_async with exclusive bus usage
2715 * @spi: device with which data will be exchanged
2716 * @message: describes the data transfers, including completion callback
2717 * Context: any (irqs may be blocked, etc)
2718 *
2719 * This call may be used in_irq and other contexts which can't sleep,
2720 * as well as from task contexts which can sleep.
2721 *
2722 * The completion callback is invoked in a context which can't sleep.
2723 * Before that invocation, the value of message->status is undefined.
2724 * When the callback is issued, message->status holds either zero (to
2725 * indicate complete success) or a negative error code. After that
2726 * callback returns, the driver which issued the transfer request may
2727 * deallocate the associated memory; it's no longer in use by any SPI
2728 * core or controller driver code.
2729 *
2730 * Note that although all messages to a spi_device are handled in
2731 * FIFO order, messages may go to different devices in other orders.
2732 * Some device might be higher priority, or have various "hard" access
2733 * time requirements, for example.
2734 *
2735 * On detection of any fault during the transfer, processing of
2736 * the entire message is aborted, and the device is deselected.
2737 * Until returning from the associated message completion callback,
2738 * no other spi_message queued to that device will be processed.
2739 * (This rule applies equally to all the synchronous transfer calls,
2740 * which are wrappers around this core asynchronous primitive.)
2741 *
2742 * Return: zero on success, else a negative error code.
2743 */
2744 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2745 {
2746 struct spi_master *master = spi->master;
2747 int ret;
2748 unsigned long flags;
2749
2750 ret = __spi_validate(spi, message);
2751 if (ret != 0)
2752 return ret;
2753
2754 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2755
2756 ret = __spi_async(spi, message);
2757
2758 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2759
2760 return ret;
2761
2762 }
2763 EXPORT_SYMBOL_GPL(spi_async_locked);
2764
2765
2766 int spi_flash_read(struct spi_device *spi,
2767 struct spi_flash_read_message *msg)
2768
2769 {
2770 struct spi_master *master = spi->master;
2771 struct device *rx_dev = NULL;
2772 int ret;
2773
2774 if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2775 msg->addr_nbits == SPI_NBITS_DUAL) &&
2776 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2777 return -EINVAL;
2778 if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2779 msg->addr_nbits == SPI_NBITS_QUAD) &&
2780 !(spi->mode & SPI_TX_QUAD))
2781 return -EINVAL;
2782 if (msg->data_nbits == SPI_NBITS_DUAL &&
2783 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2784 return -EINVAL;
2785 if (msg->data_nbits == SPI_NBITS_QUAD &&
2786 !(spi->mode & SPI_RX_QUAD))
2787 return -EINVAL;
2788
2789 if (master->auto_runtime_pm) {
2790 ret = pm_runtime_get_sync(master->dev.parent);
2791 if (ret < 0) {
2792 dev_err(&master->dev, "Failed to power device: %d\n",
2793 ret);
2794 return ret;
2795 }
2796 }
2797
2798 mutex_lock(&master->bus_lock_mutex);
2799 mutex_lock(&master->io_mutex);
2800 if (master->dma_rx) {
2801 rx_dev = master->dma_rx->device->dev;
2802 ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
2803 msg->buf, msg->len,
2804 DMA_FROM_DEVICE);
2805 if (!ret)
2806 msg->cur_msg_mapped = true;
2807 }
2808 ret = master->spi_flash_read(spi, msg);
2809 if (msg->cur_msg_mapped)
2810 spi_unmap_buf(master, rx_dev, &msg->rx_sg,
2811 DMA_FROM_DEVICE);
2812 mutex_unlock(&master->io_mutex);
2813 mutex_unlock(&master->bus_lock_mutex);
2814
2815 if (master->auto_runtime_pm)
2816 pm_runtime_put(master->dev.parent);
2817
2818 return ret;
2819 }
2820 EXPORT_SYMBOL_GPL(spi_flash_read);
2821
2822 /*-------------------------------------------------------------------------*/
2823
2824 /* Utility methods for SPI master protocol drivers, layered on
2825 * top of the core. Some other utility methods are defined as
2826 * inline functions.
2827 */
2828
2829 static void spi_complete(void *arg)
2830 {
2831 complete(arg);
2832 }
2833
2834 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
2835 {
2836 DECLARE_COMPLETION_ONSTACK(done);
2837 int status;
2838 struct spi_master *master = spi->master;
2839 unsigned long flags;
2840
2841 status = __spi_validate(spi, message);
2842 if (status != 0)
2843 return status;
2844
2845 message->complete = spi_complete;
2846 message->context = &done;
2847 message->spi = spi;
2848
2849 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2850 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2851
2852 /* If we're not using the legacy transfer method then we will
2853 * try to transfer in the calling context so special case.
2854 * This code would be less tricky if we could remove the
2855 * support for driver implemented message queues.
2856 */
2857 if (master->transfer == spi_queued_transfer) {
2858 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2859
2860 trace_spi_message_submit(message);
2861
2862 status = __spi_queued_transfer(spi, message, false);
2863
2864 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2865 } else {
2866 status = spi_async_locked(spi, message);
2867 }
2868
2869 if (status == 0) {
2870 /* Push out the messages in the calling context if we
2871 * can.
2872 */
2873 if (master->transfer == spi_queued_transfer) {
2874 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2875 spi_sync_immediate);
2876 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2877 spi_sync_immediate);
2878 __spi_pump_messages(master, false);
2879 }
2880
2881 wait_for_completion(&done);
2882 status = message->status;
2883 }
2884 message->context = NULL;
2885 return status;
2886 }
2887
2888 /**
2889 * spi_sync - blocking/synchronous SPI data transfers
2890 * @spi: device with which data will be exchanged
2891 * @message: describes the data transfers
2892 * Context: can sleep
2893 *
2894 * This call may only be used from a context that may sleep. The sleep
2895 * is non-interruptible, and has no timeout. Low-overhead controller
2896 * drivers may DMA directly into and out of the message buffers.
2897 *
2898 * Note that the SPI device's chip select is active during the message,
2899 * and then is normally disabled between messages. Drivers for some
2900 * frequently-used devices may want to minimize costs of selecting a chip,
2901 * by leaving it selected in anticipation that the next message will go
2902 * to the same chip. (That may increase power usage.)
2903 *
2904 * Also, the caller is guaranteeing that the memory associated with the
2905 * message will not be freed before this call returns.
2906 *
2907 * Return: zero on success, else a negative error code.
2908 */
2909 int spi_sync(struct spi_device *spi, struct spi_message *message)
2910 {
2911 int ret;
2912
2913 mutex_lock(&spi->master->bus_lock_mutex);
2914 ret = __spi_sync(spi, message);
2915 mutex_unlock(&spi->master->bus_lock_mutex);
2916
2917 return ret;
2918 }
2919 EXPORT_SYMBOL_GPL(spi_sync);
2920
2921 /**
2922 * spi_sync_locked - version of spi_sync with exclusive bus usage
2923 * @spi: device with which data will be exchanged
2924 * @message: describes the data transfers
2925 * Context: can sleep
2926 *
2927 * This call may only be used from a context that may sleep. The sleep
2928 * is non-interruptible, and has no timeout. Low-overhead controller
2929 * drivers may DMA directly into and out of the message buffers.
2930 *
2931 * This call should be used by drivers that require exclusive access to the
2932 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2933 * be released by a spi_bus_unlock call when the exclusive access is over.
2934 *
2935 * Return: zero on success, else a negative error code.
2936 */
2937 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2938 {
2939 return __spi_sync(spi, message);
2940 }
2941 EXPORT_SYMBOL_GPL(spi_sync_locked);
2942
2943 /**
2944 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2945 * @master: SPI bus master that should be locked for exclusive bus access
2946 * Context: can sleep
2947 *
2948 * This call may only be used from a context that may sleep. The sleep
2949 * is non-interruptible, and has no timeout.
2950 *
2951 * This call should be used by drivers that require exclusive access to the
2952 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2953 * exclusive access is over. Data transfer must be done by spi_sync_locked
2954 * and spi_async_locked calls when the SPI bus lock is held.
2955 *
2956 * Return: always zero.
2957 */
2958 int spi_bus_lock(struct spi_master *master)
2959 {
2960 unsigned long flags;
2961
2962 mutex_lock(&master->bus_lock_mutex);
2963
2964 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2965 master->bus_lock_flag = 1;
2966 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2967
2968 /* mutex remains locked until spi_bus_unlock is called */
2969
2970 return 0;
2971 }
2972 EXPORT_SYMBOL_GPL(spi_bus_lock);
2973
2974 /**
2975 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2976 * @master: SPI bus master that was locked for exclusive bus access
2977 * Context: can sleep
2978 *
2979 * This call may only be used from a context that may sleep. The sleep
2980 * is non-interruptible, and has no timeout.
2981 *
2982 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2983 * call.
2984 *
2985 * Return: always zero.
2986 */
2987 int spi_bus_unlock(struct spi_master *master)
2988 {
2989 master->bus_lock_flag = 0;
2990
2991 mutex_unlock(&master->bus_lock_mutex);
2992
2993 return 0;
2994 }
2995 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2996
2997 /* portable code must never pass more than 32 bytes */
2998 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
2999
3000 static u8 *buf;
3001
3002 /**
3003 * spi_write_then_read - SPI synchronous write followed by read
3004 * @spi: device with which data will be exchanged
3005 * @txbuf: data to be written (need not be dma-safe)
3006 * @n_tx: size of txbuf, in bytes
3007 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3008 * @n_rx: size of rxbuf, in bytes
3009 * Context: can sleep
3010 *
3011 * This performs a half duplex MicroWire style transaction with the
3012 * device, sending txbuf and then reading rxbuf. The return value
3013 * is zero for success, else a negative errno status code.
3014 * This call may only be used from a context that may sleep.
3015 *
3016 * Parameters to this routine are always copied using a small buffer;
3017 * portable code should never use this for more than 32 bytes.
3018 * Performance-sensitive or bulk transfer code should instead use
3019 * spi_{async,sync}() calls with dma-safe buffers.
3020 *
3021 * Return: zero on success, else a negative error code.
3022 */
3023 int spi_write_then_read(struct spi_device *spi,
3024 const void *txbuf, unsigned n_tx,
3025 void *rxbuf, unsigned n_rx)
3026 {
3027 static DEFINE_MUTEX(lock);
3028
3029 int status;
3030 struct spi_message message;
3031 struct spi_transfer x[2];
3032 u8 *local_buf;
3033
3034 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3035 * copying here, (as a pure convenience thing), but we can
3036 * keep heap costs out of the hot path unless someone else is
3037 * using the pre-allocated buffer or the transfer is too large.
3038 */
3039 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3040 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3041 GFP_KERNEL | GFP_DMA);
3042 if (!local_buf)
3043 return -ENOMEM;
3044 } else {
3045 local_buf = buf;
3046 }
3047
3048 spi_message_init(&message);
3049 memset(x, 0, sizeof(x));
3050 if (n_tx) {
3051 x[0].len = n_tx;
3052 spi_message_add_tail(&x[0], &message);
3053 }
3054 if (n_rx) {
3055 x[1].len = n_rx;
3056 spi_message_add_tail(&x[1], &message);
3057 }
3058
3059 memcpy(local_buf, txbuf, n_tx);
3060 x[0].tx_buf = local_buf;
3061 x[1].rx_buf = local_buf + n_tx;
3062
3063 /* do the i/o */
3064 status = spi_sync(spi, &message);
3065 if (status == 0)
3066 memcpy(rxbuf, x[1].rx_buf, n_rx);
3067
3068 if (x[0].tx_buf == buf)
3069 mutex_unlock(&lock);
3070 else
3071 kfree(local_buf);
3072
3073 return status;
3074 }
3075 EXPORT_SYMBOL_GPL(spi_write_then_read);
3076
3077 /*-------------------------------------------------------------------------*/
3078
3079 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3080 static int __spi_of_device_match(struct device *dev, void *data)
3081 {
3082 return dev->of_node == data;
3083 }
3084
3085 /* must call put_device() when done with returned spi_device device */
3086 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3087 {
3088 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3089 __spi_of_device_match);
3090 return dev ? to_spi_device(dev) : NULL;
3091 }
3092
3093 static int __spi_of_master_match(struct device *dev, const void *data)
3094 {
3095 return dev->of_node == data;
3096 }
3097
3098 /* the spi masters are not using spi_bus, so we find it with another way */
3099 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
3100 {
3101 struct device *dev;
3102
3103 dev = class_find_device(&spi_master_class, NULL, node,
3104 __spi_of_master_match);
3105 if (!dev)
3106 return NULL;
3107
3108 /* reference got in class_find_device */
3109 return container_of(dev, struct spi_master, dev);
3110 }
3111
3112 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3113 void *arg)
3114 {
3115 struct of_reconfig_data *rd = arg;
3116 struct spi_master *master;
3117 struct spi_device *spi;
3118
3119 switch (of_reconfig_get_state_change(action, arg)) {
3120 case OF_RECONFIG_CHANGE_ADD:
3121 master = of_find_spi_master_by_node(rd->dn->parent);
3122 if (master == NULL)
3123 return NOTIFY_OK; /* not for us */
3124
3125 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3126 put_device(&master->dev);
3127 return NOTIFY_OK;
3128 }
3129
3130 spi = of_register_spi_device(master, rd->dn);
3131 put_device(&master->dev);
3132
3133 if (IS_ERR(spi)) {
3134 pr_err("%s: failed to create for '%s'\n",
3135 __func__, rd->dn->full_name);
3136 of_node_clear_flag(rd->dn, OF_POPULATED);
3137 return notifier_from_errno(PTR_ERR(spi));
3138 }
3139 break;
3140
3141 case OF_RECONFIG_CHANGE_REMOVE:
3142 /* already depopulated? */
3143 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3144 return NOTIFY_OK;
3145
3146 /* find our device by node */
3147 spi = of_find_spi_device_by_node(rd->dn);
3148 if (spi == NULL)
3149 return NOTIFY_OK; /* no? not meant for us */
3150
3151 /* unregister takes one ref away */
3152 spi_unregister_device(spi);
3153
3154 /* and put the reference of the find */
3155 put_device(&spi->dev);
3156 break;
3157 }
3158
3159 return NOTIFY_OK;
3160 }
3161
3162 static struct notifier_block spi_of_notifier = {
3163 .notifier_call = of_spi_notify,
3164 };
3165 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3166 extern struct notifier_block spi_of_notifier;
3167 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3168
3169 #if IS_ENABLED(CONFIG_ACPI)
3170 static int spi_acpi_master_match(struct device *dev, const void *data)
3171 {
3172 return ACPI_COMPANION(dev->parent) == data;
3173 }
3174
3175 static int spi_acpi_device_match(struct device *dev, void *data)
3176 {
3177 return ACPI_COMPANION(dev) == data;
3178 }
3179
3180 static struct spi_master *acpi_spi_find_master_by_adev(struct acpi_device *adev)
3181 {
3182 struct device *dev;
3183
3184 dev = class_find_device(&spi_master_class, NULL, adev,
3185 spi_acpi_master_match);
3186 if (!dev)
3187 return NULL;
3188
3189 return container_of(dev, struct spi_master, dev);
3190 }
3191
3192 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3193 {
3194 struct device *dev;
3195
3196 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3197
3198 return dev ? to_spi_device(dev) : NULL;
3199 }
3200
3201 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3202 void *arg)
3203 {
3204 struct acpi_device *adev = arg;
3205 struct spi_master *master;
3206 struct spi_device *spi;
3207
3208 switch (value) {
3209 case ACPI_RECONFIG_DEVICE_ADD:
3210 master = acpi_spi_find_master_by_adev(adev->parent);
3211 if (!master)
3212 break;
3213
3214 acpi_register_spi_device(master, adev);
3215 put_device(&master->dev);
3216 break;
3217 case ACPI_RECONFIG_DEVICE_REMOVE:
3218 if (!acpi_device_enumerated(adev))
3219 break;
3220
3221 spi = acpi_spi_find_device_by_adev(adev);
3222 if (!spi)
3223 break;
3224
3225 spi_unregister_device(spi);
3226 put_device(&spi->dev);
3227 break;
3228 }
3229
3230 return NOTIFY_OK;
3231 }
3232
3233 static struct notifier_block spi_acpi_notifier = {
3234 .notifier_call = acpi_spi_notify,
3235 };
3236 #else
3237 extern struct notifier_block spi_acpi_notifier;
3238 #endif
3239
3240 static int __init spi_init(void)
3241 {
3242 int status;
3243
3244 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3245 if (!buf) {
3246 status = -ENOMEM;
3247 goto err0;
3248 }
3249
3250 status = bus_register(&spi_bus_type);
3251 if (status < 0)
3252 goto err1;
3253
3254 status = class_register(&spi_master_class);
3255 if (status < 0)
3256 goto err2;
3257
3258 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3259 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3260 if (IS_ENABLED(CONFIG_ACPI))
3261 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3262
3263 return 0;
3264
3265 err2:
3266 bus_unregister(&spi_bus_type);
3267 err1:
3268 kfree(buf);
3269 buf = NULL;
3270 err0:
3271 return status;
3272 }
3273
3274 /* board_info is normally registered in arch_initcall(),
3275 * but even essential drivers wait till later
3276 *
3277 * REVISIT only boardinfo really needs static linking. the rest (device and
3278 * driver registration) _could_ be dynamically linked (modular) ... costs
3279 * include needing to have boardinfo data structures be much more public.
3280 */
3281 postcore_initcall(spi_init);
3282