]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/spi/spi.c
Merge tag 'for-linus-4.15-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / drivers / spi / spi.c
1 /*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/property.h>
35 #include <linux/export.h>
36 #include <linux/sched/rt.h>
37 #include <uapi/linux/sched/types.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/ioport.h>
41 #include <linux/acpi.h>
42 #include <linux/highmem.h>
43 #include <linux/idr.h>
44 #include <linux/platform_data/x86/apple.h>
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/spi.h>
48
49 static DEFINE_IDR(spi_master_idr);
50
51 static void spidev_release(struct device *dev)
52 {
53 struct spi_device *spi = to_spi_device(dev);
54
55 /* spi controllers may cleanup for released devices */
56 if (spi->controller->cleanup)
57 spi->controller->cleanup(spi);
58
59 spi_controller_put(spi->controller);
60 kfree(spi);
61 }
62
63 static ssize_t
64 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
65 {
66 const struct spi_device *spi = to_spi_device(dev);
67 int len;
68
69 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
70 if (len != -ENODEV)
71 return len;
72
73 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
74 }
75 static DEVICE_ATTR_RO(modalias);
76
77 #define SPI_STATISTICS_ATTRS(field, file) \
78 static ssize_t spi_controller_##field##_show(struct device *dev, \
79 struct device_attribute *attr, \
80 char *buf) \
81 { \
82 struct spi_controller *ctlr = container_of(dev, \
83 struct spi_controller, dev); \
84 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
85 } \
86 static struct device_attribute dev_attr_spi_controller_##field = { \
87 .attr = { .name = file, .mode = 0444 }, \
88 .show = spi_controller_##field##_show, \
89 }; \
90 static ssize_t spi_device_##field##_show(struct device *dev, \
91 struct device_attribute *attr, \
92 char *buf) \
93 { \
94 struct spi_device *spi = to_spi_device(dev); \
95 return spi_statistics_##field##_show(&spi->statistics, buf); \
96 } \
97 static struct device_attribute dev_attr_spi_device_##field = { \
98 .attr = { .name = file, .mode = 0444 }, \
99 .show = spi_device_##field##_show, \
100 }
101
102 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
103 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
104 char *buf) \
105 { \
106 unsigned long flags; \
107 ssize_t len; \
108 spin_lock_irqsave(&stat->lock, flags); \
109 len = sprintf(buf, format_string, stat->field); \
110 spin_unlock_irqrestore(&stat->lock, flags); \
111 return len; \
112 } \
113 SPI_STATISTICS_ATTRS(name, file)
114
115 #define SPI_STATISTICS_SHOW(field, format_string) \
116 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
117 field, format_string)
118
119 SPI_STATISTICS_SHOW(messages, "%lu");
120 SPI_STATISTICS_SHOW(transfers, "%lu");
121 SPI_STATISTICS_SHOW(errors, "%lu");
122 SPI_STATISTICS_SHOW(timedout, "%lu");
123
124 SPI_STATISTICS_SHOW(spi_sync, "%lu");
125 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
126 SPI_STATISTICS_SHOW(spi_async, "%lu");
127
128 SPI_STATISTICS_SHOW(bytes, "%llu");
129 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
130 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
131
132 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
133 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
134 "transfer_bytes_histo_" number, \
135 transfer_bytes_histo[index], "%lu")
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
147 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
148 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
149 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
150 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
151 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
152 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
153
154 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
155
156 static struct attribute *spi_dev_attrs[] = {
157 &dev_attr_modalias.attr,
158 NULL,
159 };
160
161 static const struct attribute_group spi_dev_group = {
162 .attrs = spi_dev_attrs,
163 };
164
165 static struct attribute *spi_device_statistics_attrs[] = {
166 &dev_attr_spi_device_messages.attr,
167 &dev_attr_spi_device_transfers.attr,
168 &dev_attr_spi_device_errors.attr,
169 &dev_attr_spi_device_timedout.attr,
170 &dev_attr_spi_device_spi_sync.attr,
171 &dev_attr_spi_device_spi_sync_immediate.attr,
172 &dev_attr_spi_device_spi_async.attr,
173 &dev_attr_spi_device_bytes.attr,
174 &dev_attr_spi_device_bytes_rx.attr,
175 &dev_attr_spi_device_bytes_tx.attr,
176 &dev_attr_spi_device_transfer_bytes_histo0.attr,
177 &dev_attr_spi_device_transfer_bytes_histo1.attr,
178 &dev_attr_spi_device_transfer_bytes_histo2.attr,
179 &dev_attr_spi_device_transfer_bytes_histo3.attr,
180 &dev_attr_spi_device_transfer_bytes_histo4.attr,
181 &dev_attr_spi_device_transfer_bytes_histo5.attr,
182 &dev_attr_spi_device_transfer_bytes_histo6.attr,
183 &dev_attr_spi_device_transfer_bytes_histo7.attr,
184 &dev_attr_spi_device_transfer_bytes_histo8.attr,
185 &dev_attr_spi_device_transfer_bytes_histo9.attr,
186 &dev_attr_spi_device_transfer_bytes_histo10.attr,
187 &dev_attr_spi_device_transfer_bytes_histo11.attr,
188 &dev_attr_spi_device_transfer_bytes_histo12.attr,
189 &dev_attr_spi_device_transfer_bytes_histo13.attr,
190 &dev_attr_spi_device_transfer_bytes_histo14.attr,
191 &dev_attr_spi_device_transfer_bytes_histo15.attr,
192 &dev_attr_spi_device_transfer_bytes_histo16.attr,
193 &dev_attr_spi_device_transfers_split_maxsize.attr,
194 NULL,
195 };
196
197 static const struct attribute_group spi_device_statistics_group = {
198 .name = "statistics",
199 .attrs = spi_device_statistics_attrs,
200 };
201
202 static const struct attribute_group *spi_dev_groups[] = {
203 &spi_dev_group,
204 &spi_device_statistics_group,
205 NULL,
206 };
207
208 static struct attribute *spi_controller_statistics_attrs[] = {
209 &dev_attr_spi_controller_messages.attr,
210 &dev_attr_spi_controller_transfers.attr,
211 &dev_attr_spi_controller_errors.attr,
212 &dev_attr_spi_controller_timedout.attr,
213 &dev_attr_spi_controller_spi_sync.attr,
214 &dev_attr_spi_controller_spi_sync_immediate.attr,
215 &dev_attr_spi_controller_spi_async.attr,
216 &dev_attr_spi_controller_bytes.attr,
217 &dev_attr_spi_controller_bytes_rx.attr,
218 &dev_attr_spi_controller_bytes_tx.attr,
219 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
220 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
221 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
222 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
223 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
224 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
225 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
226 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
227 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
228 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
229 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
230 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
231 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
232 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
233 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
234 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
235 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
236 &dev_attr_spi_controller_transfers_split_maxsize.attr,
237 NULL,
238 };
239
240 static const struct attribute_group spi_controller_statistics_group = {
241 .name = "statistics",
242 .attrs = spi_controller_statistics_attrs,
243 };
244
245 static const struct attribute_group *spi_master_groups[] = {
246 &spi_controller_statistics_group,
247 NULL,
248 };
249
250 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
251 struct spi_transfer *xfer,
252 struct spi_controller *ctlr)
253 {
254 unsigned long flags;
255 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
256
257 if (l2len < 0)
258 l2len = 0;
259
260 spin_lock_irqsave(&stats->lock, flags);
261
262 stats->transfers++;
263 stats->transfer_bytes_histo[l2len]++;
264
265 stats->bytes += xfer->len;
266 if ((xfer->tx_buf) &&
267 (xfer->tx_buf != ctlr->dummy_tx))
268 stats->bytes_tx += xfer->len;
269 if ((xfer->rx_buf) &&
270 (xfer->rx_buf != ctlr->dummy_rx))
271 stats->bytes_rx += xfer->len;
272
273 spin_unlock_irqrestore(&stats->lock, flags);
274 }
275 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
276
277 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
278 * and the sysfs version makes coldplug work too.
279 */
280
281 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
282 const struct spi_device *sdev)
283 {
284 while (id->name[0]) {
285 if (!strcmp(sdev->modalias, id->name))
286 return id;
287 id++;
288 }
289 return NULL;
290 }
291
292 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
293 {
294 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
295
296 return spi_match_id(sdrv->id_table, sdev);
297 }
298 EXPORT_SYMBOL_GPL(spi_get_device_id);
299
300 static int spi_match_device(struct device *dev, struct device_driver *drv)
301 {
302 const struct spi_device *spi = to_spi_device(dev);
303 const struct spi_driver *sdrv = to_spi_driver(drv);
304
305 /* Attempt an OF style match */
306 if (of_driver_match_device(dev, drv))
307 return 1;
308
309 /* Then try ACPI */
310 if (acpi_driver_match_device(dev, drv))
311 return 1;
312
313 if (sdrv->id_table)
314 return !!spi_match_id(sdrv->id_table, spi);
315
316 return strcmp(spi->modalias, drv->name) == 0;
317 }
318
319 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
320 {
321 const struct spi_device *spi = to_spi_device(dev);
322 int rc;
323
324 rc = acpi_device_uevent_modalias(dev, env);
325 if (rc != -ENODEV)
326 return rc;
327
328 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
329 }
330
331 struct bus_type spi_bus_type = {
332 .name = "spi",
333 .dev_groups = spi_dev_groups,
334 .match = spi_match_device,
335 .uevent = spi_uevent,
336 };
337 EXPORT_SYMBOL_GPL(spi_bus_type);
338
339
340 static int spi_drv_probe(struct device *dev)
341 {
342 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
343 struct spi_device *spi = to_spi_device(dev);
344 int ret;
345
346 ret = of_clk_set_defaults(dev->of_node, false);
347 if (ret)
348 return ret;
349
350 if (dev->of_node) {
351 spi->irq = of_irq_get(dev->of_node, 0);
352 if (spi->irq == -EPROBE_DEFER)
353 return -EPROBE_DEFER;
354 if (spi->irq < 0)
355 spi->irq = 0;
356 }
357
358 ret = dev_pm_domain_attach(dev, true);
359 if (ret != -EPROBE_DEFER) {
360 ret = sdrv->probe(spi);
361 if (ret)
362 dev_pm_domain_detach(dev, true);
363 }
364
365 return ret;
366 }
367
368 static int spi_drv_remove(struct device *dev)
369 {
370 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
371 int ret;
372
373 ret = sdrv->remove(to_spi_device(dev));
374 dev_pm_domain_detach(dev, true);
375
376 return ret;
377 }
378
379 static void spi_drv_shutdown(struct device *dev)
380 {
381 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
382
383 sdrv->shutdown(to_spi_device(dev));
384 }
385
386 /**
387 * __spi_register_driver - register a SPI driver
388 * @owner: owner module of the driver to register
389 * @sdrv: the driver to register
390 * Context: can sleep
391 *
392 * Return: zero on success, else a negative error code.
393 */
394 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
395 {
396 sdrv->driver.owner = owner;
397 sdrv->driver.bus = &spi_bus_type;
398 if (sdrv->probe)
399 sdrv->driver.probe = spi_drv_probe;
400 if (sdrv->remove)
401 sdrv->driver.remove = spi_drv_remove;
402 if (sdrv->shutdown)
403 sdrv->driver.shutdown = spi_drv_shutdown;
404 return driver_register(&sdrv->driver);
405 }
406 EXPORT_SYMBOL_GPL(__spi_register_driver);
407
408 /*-------------------------------------------------------------------------*/
409
410 /* SPI devices should normally not be created by SPI device drivers; that
411 * would make them board-specific. Similarly with SPI controller drivers.
412 * Device registration normally goes into like arch/.../mach.../board-YYY.c
413 * with other readonly (flashable) information about mainboard devices.
414 */
415
416 struct boardinfo {
417 struct list_head list;
418 struct spi_board_info board_info;
419 };
420
421 static LIST_HEAD(board_list);
422 static LIST_HEAD(spi_controller_list);
423
424 /*
425 * Used to protect add/del opertion for board_info list and
426 * spi_controller list, and their matching process
427 * also used to protect object of type struct idr
428 */
429 static DEFINE_MUTEX(board_lock);
430
431 /**
432 * spi_alloc_device - Allocate a new SPI device
433 * @ctlr: Controller to which device is connected
434 * Context: can sleep
435 *
436 * Allows a driver to allocate and initialize a spi_device without
437 * registering it immediately. This allows a driver to directly
438 * fill the spi_device with device parameters before calling
439 * spi_add_device() on it.
440 *
441 * Caller is responsible to call spi_add_device() on the returned
442 * spi_device structure to add it to the SPI controller. If the caller
443 * needs to discard the spi_device without adding it, then it should
444 * call spi_dev_put() on it.
445 *
446 * Return: a pointer to the new device, or NULL.
447 */
448 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
449 {
450 struct spi_device *spi;
451
452 if (!spi_controller_get(ctlr))
453 return NULL;
454
455 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
456 if (!spi) {
457 spi_controller_put(ctlr);
458 return NULL;
459 }
460
461 spi->master = spi->controller = ctlr;
462 spi->dev.parent = &ctlr->dev;
463 spi->dev.bus = &spi_bus_type;
464 spi->dev.release = spidev_release;
465 spi->cs_gpio = -ENOENT;
466
467 spin_lock_init(&spi->statistics.lock);
468
469 device_initialize(&spi->dev);
470 return spi;
471 }
472 EXPORT_SYMBOL_GPL(spi_alloc_device);
473
474 static void spi_dev_set_name(struct spi_device *spi)
475 {
476 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
477
478 if (adev) {
479 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
480 return;
481 }
482
483 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
484 spi->chip_select);
485 }
486
487 static int spi_dev_check(struct device *dev, void *data)
488 {
489 struct spi_device *spi = to_spi_device(dev);
490 struct spi_device *new_spi = data;
491
492 if (spi->controller == new_spi->controller &&
493 spi->chip_select == new_spi->chip_select)
494 return -EBUSY;
495 return 0;
496 }
497
498 /**
499 * spi_add_device - Add spi_device allocated with spi_alloc_device
500 * @spi: spi_device to register
501 *
502 * Companion function to spi_alloc_device. Devices allocated with
503 * spi_alloc_device can be added onto the spi bus with this function.
504 *
505 * Return: 0 on success; negative errno on failure
506 */
507 int spi_add_device(struct spi_device *spi)
508 {
509 static DEFINE_MUTEX(spi_add_lock);
510 struct spi_controller *ctlr = spi->controller;
511 struct device *dev = ctlr->dev.parent;
512 int status;
513
514 /* Chipselects are numbered 0..max; validate. */
515 if (spi->chip_select >= ctlr->num_chipselect) {
516 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
517 ctlr->num_chipselect);
518 return -EINVAL;
519 }
520
521 /* Set the bus ID string */
522 spi_dev_set_name(spi);
523
524 /* We need to make sure there's no other device with this
525 * chipselect **BEFORE** we call setup(), else we'll trash
526 * its configuration. Lock against concurrent add() calls.
527 */
528 mutex_lock(&spi_add_lock);
529
530 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
531 if (status) {
532 dev_err(dev, "chipselect %d already in use\n",
533 spi->chip_select);
534 goto done;
535 }
536
537 if (ctlr->cs_gpios)
538 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
539
540 /* Drivers may modify this initial i/o setup, but will
541 * normally rely on the device being setup. Devices
542 * using SPI_CS_HIGH can't coexist well otherwise...
543 */
544 status = spi_setup(spi);
545 if (status < 0) {
546 dev_err(dev, "can't setup %s, status %d\n",
547 dev_name(&spi->dev), status);
548 goto done;
549 }
550
551 /* Device may be bound to an active driver when this returns */
552 status = device_add(&spi->dev);
553 if (status < 0)
554 dev_err(dev, "can't add %s, status %d\n",
555 dev_name(&spi->dev), status);
556 else
557 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
558
559 done:
560 mutex_unlock(&spi_add_lock);
561 return status;
562 }
563 EXPORT_SYMBOL_GPL(spi_add_device);
564
565 /**
566 * spi_new_device - instantiate one new SPI device
567 * @ctlr: Controller to which device is connected
568 * @chip: Describes the SPI device
569 * Context: can sleep
570 *
571 * On typical mainboards, this is purely internal; and it's not needed
572 * after board init creates the hard-wired devices. Some development
573 * platforms may not be able to use spi_register_board_info though, and
574 * this is exported so that for example a USB or parport based adapter
575 * driver could add devices (which it would learn about out-of-band).
576 *
577 * Return: the new device, or NULL.
578 */
579 struct spi_device *spi_new_device(struct spi_controller *ctlr,
580 struct spi_board_info *chip)
581 {
582 struct spi_device *proxy;
583 int status;
584
585 /* NOTE: caller did any chip->bus_num checks necessary.
586 *
587 * Also, unless we change the return value convention to use
588 * error-or-pointer (not NULL-or-pointer), troubleshootability
589 * suggests syslogged diagnostics are best here (ugh).
590 */
591
592 proxy = spi_alloc_device(ctlr);
593 if (!proxy)
594 return NULL;
595
596 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
597
598 proxy->chip_select = chip->chip_select;
599 proxy->max_speed_hz = chip->max_speed_hz;
600 proxy->mode = chip->mode;
601 proxy->irq = chip->irq;
602 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
603 proxy->dev.platform_data = (void *) chip->platform_data;
604 proxy->controller_data = chip->controller_data;
605 proxy->controller_state = NULL;
606
607 if (chip->properties) {
608 status = device_add_properties(&proxy->dev, chip->properties);
609 if (status) {
610 dev_err(&ctlr->dev,
611 "failed to add properties to '%s': %d\n",
612 chip->modalias, status);
613 goto err_dev_put;
614 }
615 }
616
617 status = spi_add_device(proxy);
618 if (status < 0)
619 goto err_remove_props;
620
621 return proxy;
622
623 err_remove_props:
624 if (chip->properties)
625 device_remove_properties(&proxy->dev);
626 err_dev_put:
627 spi_dev_put(proxy);
628 return NULL;
629 }
630 EXPORT_SYMBOL_GPL(spi_new_device);
631
632 /**
633 * spi_unregister_device - unregister a single SPI device
634 * @spi: spi_device to unregister
635 *
636 * Start making the passed SPI device vanish. Normally this would be handled
637 * by spi_unregister_controller().
638 */
639 void spi_unregister_device(struct spi_device *spi)
640 {
641 if (!spi)
642 return;
643
644 if (spi->dev.of_node) {
645 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
646 of_node_put(spi->dev.of_node);
647 }
648 if (ACPI_COMPANION(&spi->dev))
649 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
650 device_unregister(&spi->dev);
651 }
652 EXPORT_SYMBOL_GPL(spi_unregister_device);
653
654 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
655 struct spi_board_info *bi)
656 {
657 struct spi_device *dev;
658
659 if (ctlr->bus_num != bi->bus_num)
660 return;
661
662 dev = spi_new_device(ctlr, bi);
663 if (!dev)
664 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
665 bi->modalias);
666 }
667
668 /**
669 * spi_register_board_info - register SPI devices for a given board
670 * @info: array of chip descriptors
671 * @n: how many descriptors are provided
672 * Context: can sleep
673 *
674 * Board-specific early init code calls this (probably during arch_initcall)
675 * with segments of the SPI device table. Any device nodes are created later,
676 * after the relevant parent SPI controller (bus_num) is defined. We keep
677 * this table of devices forever, so that reloading a controller driver will
678 * not make Linux forget about these hard-wired devices.
679 *
680 * Other code can also call this, e.g. a particular add-on board might provide
681 * SPI devices through its expansion connector, so code initializing that board
682 * would naturally declare its SPI devices.
683 *
684 * The board info passed can safely be __initdata ... but be careful of
685 * any embedded pointers (platform_data, etc), they're copied as-is.
686 * Device properties are deep-copied though.
687 *
688 * Return: zero on success, else a negative error code.
689 */
690 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
691 {
692 struct boardinfo *bi;
693 int i;
694
695 if (!n)
696 return 0;
697
698 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
699 if (!bi)
700 return -ENOMEM;
701
702 for (i = 0; i < n; i++, bi++, info++) {
703 struct spi_controller *ctlr;
704
705 memcpy(&bi->board_info, info, sizeof(*info));
706 if (info->properties) {
707 bi->board_info.properties =
708 property_entries_dup(info->properties);
709 if (IS_ERR(bi->board_info.properties))
710 return PTR_ERR(bi->board_info.properties);
711 }
712
713 mutex_lock(&board_lock);
714 list_add_tail(&bi->list, &board_list);
715 list_for_each_entry(ctlr, &spi_controller_list, list)
716 spi_match_controller_to_boardinfo(ctlr,
717 &bi->board_info);
718 mutex_unlock(&board_lock);
719 }
720
721 return 0;
722 }
723
724 /*-------------------------------------------------------------------------*/
725
726 static void spi_set_cs(struct spi_device *spi, bool enable)
727 {
728 if (spi->mode & SPI_CS_HIGH)
729 enable = !enable;
730
731 if (gpio_is_valid(spi->cs_gpio)) {
732 gpio_set_value(spi->cs_gpio, !enable);
733 /* Some SPI masters need both GPIO CS & slave_select */
734 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
735 spi->controller->set_cs)
736 spi->controller->set_cs(spi, !enable);
737 } else if (spi->controller->set_cs) {
738 spi->controller->set_cs(spi, !enable);
739 }
740 }
741
742 #ifdef CONFIG_HAS_DMA
743 static int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
744 struct sg_table *sgt, void *buf, size_t len,
745 enum dma_data_direction dir)
746 {
747 const bool vmalloced_buf = is_vmalloc_addr(buf);
748 unsigned int max_seg_size = dma_get_max_seg_size(dev);
749 #ifdef CONFIG_HIGHMEM
750 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
751 (unsigned long)buf < (PKMAP_BASE +
752 (LAST_PKMAP * PAGE_SIZE)));
753 #else
754 const bool kmap_buf = false;
755 #endif
756 int desc_len;
757 int sgs;
758 struct page *vm_page;
759 struct scatterlist *sg;
760 void *sg_buf;
761 size_t min;
762 int i, ret;
763
764 if (vmalloced_buf || kmap_buf) {
765 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
766 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
767 } else if (virt_addr_valid(buf)) {
768 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
769 sgs = DIV_ROUND_UP(len, desc_len);
770 } else {
771 return -EINVAL;
772 }
773
774 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
775 if (ret != 0)
776 return ret;
777
778 sg = &sgt->sgl[0];
779 for (i = 0; i < sgs; i++) {
780
781 if (vmalloced_buf || kmap_buf) {
782 min = min_t(size_t,
783 len, desc_len - offset_in_page(buf));
784 if (vmalloced_buf)
785 vm_page = vmalloc_to_page(buf);
786 else
787 vm_page = kmap_to_page(buf);
788 if (!vm_page) {
789 sg_free_table(sgt);
790 return -ENOMEM;
791 }
792 sg_set_page(sg, vm_page,
793 min, offset_in_page(buf));
794 } else {
795 min = min_t(size_t, len, desc_len);
796 sg_buf = buf;
797 sg_set_buf(sg, sg_buf, min);
798 }
799
800 buf += min;
801 len -= min;
802 sg = sg_next(sg);
803 }
804
805 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
806 if (!ret)
807 ret = -ENOMEM;
808 if (ret < 0) {
809 sg_free_table(sgt);
810 return ret;
811 }
812
813 sgt->nents = ret;
814
815 return 0;
816 }
817
818 static void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
819 struct sg_table *sgt, enum dma_data_direction dir)
820 {
821 if (sgt->orig_nents) {
822 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
823 sg_free_table(sgt);
824 }
825 }
826
827 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
828 {
829 struct device *tx_dev, *rx_dev;
830 struct spi_transfer *xfer;
831 int ret;
832
833 if (!ctlr->can_dma)
834 return 0;
835
836 if (ctlr->dma_tx)
837 tx_dev = ctlr->dma_tx->device->dev;
838 else
839 tx_dev = ctlr->dev.parent;
840
841 if (ctlr->dma_rx)
842 rx_dev = ctlr->dma_rx->device->dev;
843 else
844 rx_dev = ctlr->dev.parent;
845
846 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
847 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
848 continue;
849
850 if (xfer->tx_buf != NULL) {
851 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
852 (void *)xfer->tx_buf, xfer->len,
853 DMA_TO_DEVICE);
854 if (ret != 0)
855 return ret;
856 }
857
858 if (xfer->rx_buf != NULL) {
859 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
860 xfer->rx_buf, xfer->len,
861 DMA_FROM_DEVICE);
862 if (ret != 0) {
863 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
864 DMA_TO_DEVICE);
865 return ret;
866 }
867 }
868 }
869
870 ctlr->cur_msg_mapped = true;
871
872 return 0;
873 }
874
875 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
876 {
877 struct spi_transfer *xfer;
878 struct device *tx_dev, *rx_dev;
879
880 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
881 return 0;
882
883 if (ctlr->dma_tx)
884 tx_dev = ctlr->dma_tx->device->dev;
885 else
886 tx_dev = ctlr->dev.parent;
887
888 if (ctlr->dma_rx)
889 rx_dev = ctlr->dma_rx->device->dev;
890 else
891 rx_dev = ctlr->dev.parent;
892
893 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
894 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
895 continue;
896
897 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
898 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
899 }
900
901 return 0;
902 }
903 #else /* !CONFIG_HAS_DMA */
904 static inline int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
905 struct sg_table *sgt, void *buf, size_t len,
906 enum dma_data_direction dir)
907 {
908 return -EINVAL;
909 }
910
911 static inline void spi_unmap_buf(struct spi_controller *ctlr,
912 struct device *dev, struct sg_table *sgt,
913 enum dma_data_direction dir)
914 {
915 }
916
917 static inline int __spi_map_msg(struct spi_controller *ctlr,
918 struct spi_message *msg)
919 {
920 return 0;
921 }
922
923 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
924 struct spi_message *msg)
925 {
926 return 0;
927 }
928 #endif /* !CONFIG_HAS_DMA */
929
930 static inline int spi_unmap_msg(struct spi_controller *ctlr,
931 struct spi_message *msg)
932 {
933 struct spi_transfer *xfer;
934
935 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
936 /*
937 * Restore the original value of tx_buf or rx_buf if they are
938 * NULL.
939 */
940 if (xfer->tx_buf == ctlr->dummy_tx)
941 xfer->tx_buf = NULL;
942 if (xfer->rx_buf == ctlr->dummy_rx)
943 xfer->rx_buf = NULL;
944 }
945
946 return __spi_unmap_msg(ctlr, msg);
947 }
948
949 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
950 {
951 struct spi_transfer *xfer;
952 void *tmp;
953 unsigned int max_tx, max_rx;
954
955 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
956 max_tx = 0;
957 max_rx = 0;
958
959 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
960 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
961 !xfer->tx_buf)
962 max_tx = max(xfer->len, max_tx);
963 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
964 !xfer->rx_buf)
965 max_rx = max(xfer->len, max_rx);
966 }
967
968 if (max_tx) {
969 tmp = krealloc(ctlr->dummy_tx, max_tx,
970 GFP_KERNEL | GFP_DMA);
971 if (!tmp)
972 return -ENOMEM;
973 ctlr->dummy_tx = tmp;
974 memset(tmp, 0, max_tx);
975 }
976
977 if (max_rx) {
978 tmp = krealloc(ctlr->dummy_rx, max_rx,
979 GFP_KERNEL | GFP_DMA);
980 if (!tmp)
981 return -ENOMEM;
982 ctlr->dummy_rx = tmp;
983 }
984
985 if (max_tx || max_rx) {
986 list_for_each_entry(xfer, &msg->transfers,
987 transfer_list) {
988 if (!xfer->tx_buf)
989 xfer->tx_buf = ctlr->dummy_tx;
990 if (!xfer->rx_buf)
991 xfer->rx_buf = ctlr->dummy_rx;
992 }
993 }
994 }
995
996 return __spi_map_msg(ctlr, msg);
997 }
998
999 /*
1000 * spi_transfer_one_message - Default implementation of transfer_one_message()
1001 *
1002 * This is a standard implementation of transfer_one_message() for
1003 * drivers which implement a transfer_one() operation. It provides
1004 * standard handling of delays and chip select management.
1005 */
1006 static int spi_transfer_one_message(struct spi_controller *ctlr,
1007 struct spi_message *msg)
1008 {
1009 struct spi_transfer *xfer;
1010 bool keep_cs = false;
1011 int ret = 0;
1012 unsigned long long ms = 1;
1013 struct spi_statistics *statm = &ctlr->statistics;
1014 struct spi_statistics *stats = &msg->spi->statistics;
1015
1016 spi_set_cs(msg->spi, true);
1017
1018 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1019 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1020
1021 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1022 trace_spi_transfer_start(msg, xfer);
1023
1024 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1025 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1026
1027 if (xfer->tx_buf || xfer->rx_buf) {
1028 reinit_completion(&ctlr->xfer_completion);
1029
1030 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1031 if (ret < 0) {
1032 SPI_STATISTICS_INCREMENT_FIELD(statm,
1033 errors);
1034 SPI_STATISTICS_INCREMENT_FIELD(stats,
1035 errors);
1036 dev_err(&msg->spi->dev,
1037 "SPI transfer failed: %d\n", ret);
1038 goto out;
1039 }
1040
1041 if (ret > 0) {
1042 ret = 0;
1043 ms = 8LL * 1000LL * xfer->len;
1044 do_div(ms, xfer->speed_hz);
1045 ms += ms + 200; /* some tolerance */
1046
1047 if (ms > UINT_MAX)
1048 ms = UINT_MAX;
1049
1050 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1051 msecs_to_jiffies(ms));
1052 }
1053
1054 if (ms == 0) {
1055 SPI_STATISTICS_INCREMENT_FIELD(statm,
1056 timedout);
1057 SPI_STATISTICS_INCREMENT_FIELD(stats,
1058 timedout);
1059 dev_err(&msg->spi->dev,
1060 "SPI transfer timed out\n");
1061 msg->status = -ETIMEDOUT;
1062 }
1063 } else {
1064 if (xfer->len)
1065 dev_err(&msg->spi->dev,
1066 "Bufferless transfer has length %u\n",
1067 xfer->len);
1068 }
1069
1070 trace_spi_transfer_stop(msg, xfer);
1071
1072 if (msg->status != -EINPROGRESS)
1073 goto out;
1074
1075 if (xfer->delay_usecs) {
1076 u16 us = xfer->delay_usecs;
1077
1078 if (us <= 10)
1079 udelay(us);
1080 else
1081 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1082 }
1083
1084 if (xfer->cs_change) {
1085 if (list_is_last(&xfer->transfer_list,
1086 &msg->transfers)) {
1087 keep_cs = true;
1088 } else {
1089 spi_set_cs(msg->spi, false);
1090 udelay(10);
1091 spi_set_cs(msg->spi, true);
1092 }
1093 }
1094
1095 msg->actual_length += xfer->len;
1096 }
1097
1098 out:
1099 if (ret != 0 || !keep_cs)
1100 spi_set_cs(msg->spi, false);
1101
1102 if (msg->status == -EINPROGRESS)
1103 msg->status = ret;
1104
1105 if (msg->status && ctlr->handle_err)
1106 ctlr->handle_err(ctlr, msg);
1107
1108 spi_res_release(ctlr, msg);
1109
1110 spi_finalize_current_message(ctlr);
1111
1112 return ret;
1113 }
1114
1115 /**
1116 * spi_finalize_current_transfer - report completion of a transfer
1117 * @ctlr: the controller reporting completion
1118 *
1119 * Called by SPI drivers using the core transfer_one_message()
1120 * implementation to notify it that the current interrupt driven
1121 * transfer has finished and the next one may be scheduled.
1122 */
1123 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1124 {
1125 complete(&ctlr->xfer_completion);
1126 }
1127 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1128
1129 /**
1130 * __spi_pump_messages - function which processes spi message queue
1131 * @ctlr: controller to process queue for
1132 * @in_kthread: true if we are in the context of the message pump thread
1133 *
1134 * This function checks if there is any spi message in the queue that
1135 * needs processing and if so call out to the driver to initialize hardware
1136 * and transfer each message.
1137 *
1138 * Note that it is called both from the kthread itself and also from
1139 * inside spi_sync(); the queue extraction handling at the top of the
1140 * function should deal with this safely.
1141 */
1142 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1143 {
1144 unsigned long flags;
1145 bool was_busy = false;
1146 int ret;
1147
1148 /* Lock queue */
1149 spin_lock_irqsave(&ctlr->queue_lock, flags);
1150
1151 /* Make sure we are not already running a message */
1152 if (ctlr->cur_msg) {
1153 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1154 return;
1155 }
1156
1157 /* If another context is idling the device then defer */
1158 if (ctlr->idling) {
1159 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1160 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1161 return;
1162 }
1163
1164 /* Check if the queue is idle */
1165 if (list_empty(&ctlr->queue) || !ctlr->running) {
1166 if (!ctlr->busy) {
1167 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1168 return;
1169 }
1170
1171 /* Only do teardown in the thread */
1172 if (!in_kthread) {
1173 kthread_queue_work(&ctlr->kworker,
1174 &ctlr->pump_messages);
1175 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1176 return;
1177 }
1178
1179 ctlr->busy = false;
1180 ctlr->idling = true;
1181 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1182
1183 kfree(ctlr->dummy_rx);
1184 ctlr->dummy_rx = NULL;
1185 kfree(ctlr->dummy_tx);
1186 ctlr->dummy_tx = NULL;
1187 if (ctlr->unprepare_transfer_hardware &&
1188 ctlr->unprepare_transfer_hardware(ctlr))
1189 dev_err(&ctlr->dev,
1190 "failed to unprepare transfer hardware\n");
1191 if (ctlr->auto_runtime_pm) {
1192 pm_runtime_mark_last_busy(ctlr->dev.parent);
1193 pm_runtime_put_autosuspend(ctlr->dev.parent);
1194 }
1195 trace_spi_controller_idle(ctlr);
1196
1197 spin_lock_irqsave(&ctlr->queue_lock, flags);
1198 ctlr->idling = false;
1199 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1200 return;
1201 }
1202
1203 /* Extract head of queue */
1204 ctlr->cur_msg =
1205 list_first_entry(&ctlr->queue, struct spi_message, queue);
1206
1207 list_del_init(&ctlr->cur_msg->queue);
1208 if (ctlr->busy)
1209 was_busy = true;
1210 else
1211 ctlr->busy = true;
1212 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1213
1214 mutex_lock(&ctlr->io_mutex);
1215
1216 if (!was_busy && ctlr->auto_runtime_pm) {
1217 ret = pm_runtime_get_sync(ctlr->dev.parent);
1218 if (ret < 0) {
1219 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1220 ret);
1221 mutex_unlock(&ctlr->io_mutex);
1222 return;
1223 }
1224 }
1225
1226 if (!was_busy)
1227 trace_spi_controller_busy(ctlr);
1228
1229 if (!was_busy && ctlr->prepare_transfer_hardware) {
1230 ret = ctlr->prepare_transfer_hardware(ctlr);
1231 if (ret) {
1232 dev_err(&ctlr->dev,
1233 "failed to prepare transfer hardware\n");
1234
1235 if (ctlr->auto_runtime_pm)
1236 pm_runtime_put(ctlr->dev.parent);
1237 mutex_unlock(&ctlr->io_mutex);
1238 return;
1239 }
1240 }
1241
1242 trace_spi_message_start(ctlr->cur_msg);
1243
1244 if (ctlr->prepare_message) {
1245 ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1246 if (ret) {
1247 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1248 ret);
1249 ctlr->cur_msg->status = ret;
1250 spi_finalize_current_message(ctlr);
1251 goto out;
1252 }
1253 ctlr->cur_msg_prepared = true;
1254 }
1255
1256 ret = spi_map_msg(ctlr, ctlr->cur_msg);
1257 if (ret) {
1258 ctlr->cur_msg->status = ret;
1259 spi_finalize_current_message(ctlr);
1260 goto out;
1261 }
1262
1263 ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1264 if (ret) {
1265 dev_err(&ctlr->dev,
1266 "failed to transfer one message from queue\n");
1267 goto out;
1268 }
1269
1270 out:
1271 mutex_unlock(&ctlr->io_mutex);
1272
1273 /* Prod the scheduler in case transfer_one() was busy waiting */
1274 if (!ret)
1275 cond_resched();
1276 }
1277
1278 /**
1279 * spi_pump_messages - kthread work function which processes spi message queue
1280 * @work: pointer to kthread work struct contained in the controller struct
1281 */
1282 static void spi_pump_messages(struct kthread_work *work)
1283 {
1284 struct spi_controller *ctlr =
1285 container_of(work, struct spi_controller, pump_messages);
1286
1287 __spi_pump_messages(ctlr, true);
1288 }
1289
1290 static int spi_init_queue(struct spi_controller *ctlr)
1291 {
1292 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1293
1294 ctlr->running = false;
1295 ctlr->busy = false;
1296
1297 kthread_init_worker(&ctlr->kworker);
1298 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1299 "%s", dev_name(&ctlr->dev));
1300 if (IS_ERR(ctlr->kworker_task)) {
1301 dev_err(&ctlr->dev, "failed to create message pump task\n");
1302 return PTR_ERR(ctlr->kworker_task);
1303 }
1304 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1305
1306 /*
1307 * Controller config will indicate if this controller should run the
1308 * message pump with high (realtime) priority to reduce the transfer
1309 * latency on the bus by minimising the delay between a transfer
1310 * request and the scheduling of the message pump thread. Without this
1311 * setting the message pump thread will remain at default priority.
1312 */
1313 if (ctlr->rt) {
1314 dev_info(&ctlr->dev,
1315 "will run message pump with realtime priority\n");
1316 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1317 }
1318
1319 return 0;
1320 }
1321
1322 /**
1323 * spi_get_next_queued_message() - called by driver to check for queued
1324 * messages
1325 * @ctlr: the controller to check for queued messages
1326 *
1327 * If there are more messages in the queue, the next message is returned from
1328 * this call.
1329 *
1330 * Return: the next message in the queue, else NULL if the queue is empty.
1331 */
1332 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1333 {
1334 struct spi_message *next;
1335 unsigned long flags;
1336
1337 /* get a pointer to the next message, if any */
1338 spin_lock_irqsave(&ctlr->queue_lock, flags);
1339 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1340 queue);
1341 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1342
1343 return next;
1344 }
1345 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1346
1347 /**
1348 * spi_finalize_current_message() - the current message is complete
1349 * @ctlr: the controller to return the message to
1350 *
1351 * Called by the driver to notify the core that the message in the front of the
1352 * queue is complete and can be removed from the queue.
1353 */
1354 void spi_finalize_current_message(struct spi_controller *ctlr)
1355 {
1356 struct spi_message *mesg;
1357 unsigned long flags;
1358 int ret;
1359
1360 spin_lock_irqsave(&ctlr->queue_lock, flags);
1361 mesg = ctlr->cur_msg;
1362 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1363
1364 spi_unmap_msg(ctlr, mesg);
1365
1366 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1367 ret = ctlr->unprepare_message(ctlr, mesg);
1368 if (ret) {
1369 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1370 ret);
1371 }
1372 }
1373
1374 spin_lock_irqsave(&ctlr->queue_lock, flags);
1375 ctlr->cur_msg = NULL;
1376 ctlr->cur_msg_prepared = false;
1377 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1378 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1379
1380 trace_spi_message_done(mesg);
1381
1382 mesg->state = NULL;
1383 if (mesg->complete)
1384 mesg->complete(mesg->context);
1385 }
1386 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1387
1388 static int spi_start_queue(struct spi_controller *ctlr)
1389 {
1390 unsigned long flags;
1391
1392 spin_lock_irqsave(&ctlr->queue_lock, flags);
1393
1394 if (ctlr->running || ctlr->busy) {
1395 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1396 return -EBUSY;
1397 }
1398
1399 ctlr->running = true;
1400 ctlr->cur_msg = NULL;
1401 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1402
1403 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1404
1405 return 0;
1406 }
1407
1408 static int spi_stop_queue(struct spi_controller *ctlr)
1409 {
1410 unsigned long flags;
1411 unsigned limit = 500;
1412 int ret = 0;
1413
1414 spin_lock_irqsave(&ctlr->queue_lock, flags);
1415
1416 /*
1417 * This is a bit lame, but is optimized for the common execution path.
1418 * A wait_queue on the ctlr->busy could be used, but then the common
1419 * execution path (pump_messages) would be required to call wake_up or
1420 * friends on every SPI message. Do this instead.
1421 */
1422 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1423 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1424 usleep_range(10000, 11000);
1425 spin_lock_irqsave(&ctlr->queue_lock, flags);
1426 }
1427
1428 if (!list_empty(&ctlr->queue) || ctlr->busy)
1429 ret = -EBUSY;
1430 else
1431 ctlr->running = false;
1432
1433 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1434
1435 if (ret) {
1436 dev_warn(&ctlr->dev, "could not stop message queue\n");
1437 return ret;
1438 }
1439 return ret;
1440 }
1441
1442 static int spi_destroy_queue(struct spi_controller *ctlr)
1443 {
1444 int ret;
1445
1446 ret = spi_stop_queue(ctlr);
1447
1448 /*
1449 * kthread_flush_worker will block until all work is done.
1450 * If the reason that stop_queue timed out is that the work will never
1451 * finish, then it does no good to call flush/stop thread, so
1452 * return anyway.
1453 */
1454 if (ret) {
1455 dev_err(&ctlr->dev, "problem destroying queue\n");
1456 return ret;
1457 }
1458
1459 kthread_flush_worker(&ctlr->kworker);
1460 kthread_stop(ctlr->kworker_task);
1461
1462 return 0;
1463 }
1464
1465 static int __spi_queued_transfer(struct spi_device *spi,
1466 struct spi_message *msg,
1467 bool need_pump)
1468 {
1469 struct spi_controller *ctlr = spi->controller;
1470 unsigned long flags;
1471
1472 spin_lock_irqsave(&ctlr->queue_lock, flags);
1473
1474 if (!ctlr->running) {
1475 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1476 return -ESHUTDOWN;
1477 }
1478 msg->actual_length = 0;
1479 msg->status = -EINPROGRESS;
1480
1481 list_add_tail(&msg->queue, &ctlr->queue);
1482 if (!ctlr->busy && need_pump)
1483 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1484
1485 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1486 return 0;
1487 }
1488
1489 /**
1490 * spi_queued_transfer - transfer function for queued transfers
1491 * @spi: spi device which is requesting transfer
1492 * @msg: spi message which is to handled is queued to driver queue
1493 *
1494 * Return: zero on success, else a negative error code.
1495 */
1496 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1497 {
1498 return __spi_queued_transfer(spi, msg, true);
1499 }
1500
1501 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1502 {
1503 int ret;
1504
1505 ctlr->transfer = spi_queued_transfer;
1506 if (!ctlr->transfer_one_message)
1507 ctlr->transfer_one_message = spi_transfer_one_message;
1508
1509 /* Initialize and start queue */
1510 ret = spi_init_queue(ctlr);
1511 if (ret) {
1512 dev_err(&ctlr->dev, "problem initializing queue\n");
1513 goto err_init_queue;
1514 }
1515 ctlr->queued = true;
1516 ret = spi_start_queue(ctlr);
1517 if (ret) {
1518 dev_err(&ctlr->dev, "problem starting queue\n");
1519 goto err_start_queue;
1520 }
1521
1522 return 0;
1523
1524 err_start_queue:
1525 spi_destroy_queue(ctlr);
1526 err_init_queue:
1527 return ret;
1528 }
1529
1530 /*-------------------------------------------------------------------------*/
1531
1532 #if defined(CONFIG_OF)
1533 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1534 struct device_node *nc)
1535 {
1536 u32 value;
1537 int rc;
1538
1539 /* Mode (clock phase/polarity/etc.) */
1540 if (of_property_read_bool(nc, "spi-cpha"))
1541 spi->mode |= SPI_CPHA;
1542 if (of_property_read_bool(nc, "spi-cpol"))
1543 spi->mode |= SPI_CPOL;
1544 if (of_property_read_bool(nc, "spi-cs-high"))
1545 spi->mode |= SPI_CS_HIGH;
1546 if (of_property_read_bool(nc, "spi-3wire"))
1547 spi->mode |= SPI_3WIRE;
1548 if (of_property_read_bool(nc, "spi-lsb-first"))
1549 spi->mode |= SPI_LSB_FIRST;
1550
1551 /* Device DUAL/QUAD mode */
1552 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1553 switch (value) {
1554 case 1:
1555 break;
1556 case 2:
1557 spi->mode |= SPI_TX_DUAL;
1558 break;
1559 case 4:
1560 spi->mode |= SPI_TX_QUAD;
1561 break;
1562 default:
1563 dev_warn(&ctlr->dev,
1564 "spi-tx-bus-width %d not supported\n",
1565 value);
1566 break;
1567 }
1568 }
1569
1570 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1571 switch (value) {
1572 case 1:
1573 break;
1574 case 2:
1575 spi->mode |= SPI_RX_DUAL;
1576 break;
1577 case 4:
1578 spi->mode |= SPI_RX_QUAD;
1579 break;
1580 default:
1581 dev_warn(&ctlr->dev,
1582 "spi-rx-bus-width %d not supported\n",
1583 value);
1584 break;
1585 }
1586 }
1587
1588 if (spi_controller_is_slave(ctlr)) {
1589 if (strcmp(nc->name, "slave")) {
1590 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1591 nc);
1592 return -EINVAL;
1593 }
1594 return 0;
1595 }
1596
1597 /* Device address */
1598 rc = of_property_read_u32(nc, "reg", &value);
1599 if (rc) {
1600 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1601 nc, rc);
1602 return rc;
1603 }
1604 spi->chip_select = value;
1605
1606 /* Device speed */
1607 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1608 if (rc) {
1609 dev_err(&ctlr->dev,
1610 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1611 return rc;
1612 }
1613 spi->max_speed_hz = value;
1614
1615 return 0;
1616 }
1617
1618 static struct spi_device *
1619 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1620 {
1621 struct spi_device *spi;
1622 int rc;
1623
1624 /* Alloc an spi_device */
1625 spi = spi_alloc_device(ctlr);
1626 if (!spi) {
1627 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1628 rc = -ENOMEM;
1629 goto err_out;
1630 }
1631
1632 /* Select device driver */
1633 rc = of_modalias_node(nc, spi->modalias,
1634 sizeof(spi->modalias));
1635 if (rc < 0) {
1636 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1637 goto err_out;
1638 }
1639
1640 rc = of_spi_parse_dt(ctlr, spi, nc);
1641 if (rc)
1642 goto err_out;
1643
1644 /* Store a pointer to the node in the device structure */
1645 of_node_get(nc);
1646 spi->dev.of_node = nc;
1647
1648 /* Register the new device */
1649 rc = spi_add_device(spi);
1650 if (rc) {
1651 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1652 goto err_of_node_put;
1653 }
1654
1655 return spi;
1656
1657 err_of_node_put:
1658 of_node_put(nc);
1659 err_out:
1660 spi_dev_put(spi);
1661 return ERR_PTR(rc);
1662 }
1663
1664 /**
1665 * of_register_spi_devices() - Register child devices onto the SPI bus
1666 * @ctlr: Pointer to spi_controller device
1667 *
1668 * Registers an spi_device for each child node of controller node which
1669 * represents a valid SPI slave.
1670 */
1671 static void of_register_spi_devices(struct spi_controller *ctlr)
1672 {
1673 struct spi_device *spi;
1674 struct device_node *nc;
1675
1676 if (!ctlr->dev.of_node)
1677 return;
1678
1679 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1680 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1681 continue;
1682 spi = of_register_spi_device(ctlr, nc);
1683 if (IS_ERR(spi)) {
1684 dev_warn(&ctlr->dev,
1685 "Failed to create SPI device for %pOF\n", nc);
1686 of_node_clear_flag(nc, OF_POPULATED);
1687 }
1688 }
1689 }
1690 #else
1691 static void of_register_spi_devices(struct spi_controller *ctlr) { }
1692 #endif
1693
1694 #ifdef CONFIG_ACPI
1695 static void acpi_spi_parse_apple_properties(struct spi_device *spi)
1696 {
1697 struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
1698 const union acpi_object *obj;
1699
1700 if (!x86_apple_machine)
1701 return;
1702
1703 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1704 && obj->buffer.length >= 4)
1705 spi->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1706
1707 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1708 && obj->buffer.length == 8)
1709 spi->bits_per_word = *(u64 *)obj->buffer.pointer;
1710
1711 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1712 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1713 spi->mode |= SPI_LSB_FIRST;
1714
1715 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1716 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1717 spi->mode |= SPI_CPOL;
1718
1719 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1720 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1721 spi->mode |= SPI_CPHA;
1722 }
1723
1724 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1725 {
1726 struct spi_device *spi = data;
1727 struct spi_controller *ctlr = spi->controller;
1728
1729 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1730 struct acpi_resource_spi_serialbus *sb;
1731
1732 sb = &ares->data.spi_serial_bus;
1733 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1734 /*
1735 * ACPI DeviceSelection numbering is handled by the
1736 * host controller driver in Windows and can vary
1737 * from driver to driver. In Linux we always expect
1738 * 0 .. max - 1 so we need to ask the driver to
1739 * translate between the two schemes.
1740 */
1741 if (ctlr->fw_translate_cs) {
1742 int cs = ctlr->fw_translate_cs(ctlr,
1743 sb->device_selection);
1744 if (cs < 0)
1745 return cs;
1746 spi->chip_select = cs;
1747 } else {
1748 spi->chip_select = sb->device_selection;
1749 }
1750
1751 spi->max_speed_hz = sb->connection_speed;
1752
1753 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1754 spi->mode |= SPI_CPHA;
1755 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1756 spi->mode |= SPI_CPOL;
1757 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1758 spi->mode |= SPI_CS_HIGH;
1759 }
1760 } else if (spi->irq < 0) {
1761 struct resource r;
1762
1763 if (acpi_dev_resource_interrupt(ares, 0, &r))
1764 spi->irq = r.start;
1765 }
1766
1767 /* Always tell the ACPI core to skip this resource */
1768 return 1;
1769 }
1770
1771 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1772 struct acpi_device *adev)
1773 {
1774 struct list_head resource_list;
1775 struct spi_device *spi;
1776 int ret;
1777
1778 if (acpi_bus_get_status(adev) || !adev->status.present ||
1779 acpi_device_enumerated(adev))
1780 return AE_OK;
1781
1782 spi = spi_alloc_device(ctlr);
1783 if (!spi) {
1784 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1785 dev_name(&adev->dev));
1786 return AE_NO_MEMORY;
1787 }
1788
1789 ACPI_COMPANION_SET(&spi->dev, adev);
1790 spi->irq = -1;
1791
1792 INIT_LIST_HEAD(&resource_list);
1793 ret = acpi_dev_get_resources(adev, &resource_list,
1794 acpi_spi_add_resource, spi);
1795 acpi_dev_free_resource_list(&resource_list);
1796
1797 acpi_spi_parse_apple_properties(spi);
1798
1799 if (ret < 0 || !spi->max_speed_hz) {
1800 spi_dev_put(spi);
1801 return AE_OK;
1802 }
1803
1804 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1805 sizeof(spi->modalias));
1806
1807 if (spi->irq < 0)
1808 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1809
1810 acpi_device_set_enumerated(adev);
1811
1812 adev->power.flags.ignore_parent = true;
1813 if (spi_add_device(spi)) {
1814 adev->power.flags.ignore_parent = false;
1815 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1816 dev_name(&adev->dev));
1817 spi_dev_put(spi);
1818 }
1819
1820 return AE_OK;
1821 }
1822
1823 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1824 void *data, void **return_value)
1825 {
1826 struct spi_controller *ctlr = data;
1827 struct acpi_device *adev;
1828
1829 if (acpi_bus_get_device(handle, &adev))
1830 return AE_OK;
1831
1832 return acpi_register_spi_device(ctlr, adev);
1833 }
1834
1835 static void acpi_register_spi_devices(struct spi_controller *ctlr)
1836 {
1837 acpi_status status;
1838 acpi_handle handle;
1839
1840 handle = ACPI_HANDLE(ctlr->dev.parent);
1841 if (!handle)
1842 return;
1843
1844 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1845 acpi_spi_add_device, NULL, ctlr, NULL);
1846 if (ACPI_FAILURE(status))
1847 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1848 }
1849 #else
1850 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1851 #endif /* CONFIG_ACPI */
1852
1853 static void spi_controller_release(struct device *dev)
1854 {
1855 struct spi_controller *ctlr;
1856
1857 ctlr = container_of(dev, struct spi_controller, dev);
1858 kfree(ctlr);
1859 }
1860
1861 static struct class spi_master_class = {
1862 .name = "spi_master",
1863 .owner = THIS_MODULE,
1864 .dev_release = spi_controller_release,
1865 .dev_groups = spi_master_groups,
1866 };
1867
1868 #ifdef CONFIG_SPI_SLAVE
1869 /**
1870 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1871 * controller
1872 * @spi: device used for the current transfer
1873 */
1874 int spi_slave_abort(struct spi_device *spi)
1875 {
1876 struct spi_controller *ctlr = spi->controller;
1877
1878 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1879 return ctlr->slave_abort(ctlr);
1880
1881 return -ENOTSUPP;
1882 }
1883 EXPORT_SYMBOL_GPL(spi_slave_abort);
1884
1885 static int match_true(struct device *dev, void *data)
1886 {
1887 return 1;
1888 }
1889
1890 static ssize_t spi_slave_show(struct device *dev,
1891 struct device_attribute *attr, char *buf)
1892 {
1893 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1894 dev);
1895 struct device *child;
1896
1897 child = device_find_child(&ctlr->dev, NULL, match_true);
1898 return sprintf(buf, "%s\n",
1899 child ? to_spi_device(child)->modalias : NULL);
1900 }
1901
1902 static ssize_t spi_slave_store(struct device *dev,
1903 struct device_attribute *attr, const char *buf,
1904 size_t count)
1905 {
1906 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1907 dev);
1908 struct spi_device *spi;
1909 struct device *child;
1910 char name[32];
1911 int rc;
1912
1913 rc = sscanf(buf, "%31s", name);
1914 if (rc != 1 || !name[0])
1915 return -EINVAL;
1916
1917 child = device_find_child(&ctlr->dev, NULL, match_true);
1918 if (child) {
1919 /* Remove registered slave */
1920 device_unregister(child);
1921 put_device(child);
1922 }
1923
1924 if (strcmp(name, "(null)")) {
1925 /* Register new slave */
1926 spi = spi_alloc_device(ctlr);
1927 if (!spi)
1928 return -ENOMEM;
1929
1930 strlcpy(spi->modalias, name, sizeof(spi->modalias));
1931
1932 rc = spi_add_device(spi);
1933 if (rc) {
1934 spi_dev_put(spi);
1935 return rc;
1936 }
1937 }
1938
1939 return count;
1940 }
1941
1942 static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
1943
1944 static struct attribute *spi_slave_attrs[] = {
1945 &dev_attr_slave.attr,
1946 NULL,
1947 };
1948
1949 static const struct attribute_group spi_slave_group = {
1950 .attrs = spi_slave_attrs,
1951 };
1952
1953 static const struct attribute_group *spi_slave_groups[] = {
1954 &spi_controller_statistics_group,
1955 &spi_slave_group,
1956 NULL,
1957 };
1958
1959 static struct class spi_slave_class = {
1960 .name = "spi_slave",
1961 .owner = THIS_MODULE,
1962 .dev_release = spi_controller_release,
1963 .dev_groups = spi_slave_groups,
1964 };
1965 #else
1966 extern struct class spi_slave_class; /* dummy */
1967 #endif
1968
1969 /**
1970 * __spi_alloc_controller - allocate an SPI master or slave controller
1971 * @dev: the controller, possibly using the platform_bus
1972 * @size: how much zeroed driver-private data to allocate; the pointer to this
1973 * memory is in the driver_data field of the returned device,
1974 * accessible with spi_controller_get_devdata().
1975 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
1976 * slave (true) controller
1977 * Context: can sleep
1978 *
1979 * This call is used only by SPI controller drivers, which are the
1980 * only ones directly touching chip registers. It's how they allocate
1981 * an spi_controller structure, prior to calling spi_register_controller().
1982 *
1983 * This must be called from context that can sleep.
1984 *
1985 * The caller is responsible for assigning the bus number and initializing the
1986 * controller's methods before calling spi_register_controller(); and (after
1987 * errors adding the device) calling spi_controller_put() to prevent a memory
1988 * leak.
1989 *
1990 * Return: the SPI controller structure on success, else NULL.
1991 */
1992 struct spi_controller *__spi_alloc_controller(struct device *dev,
1993 unsigned int size, bool slave)
1994 {
1995 struct spi_controller *ctlr;
1996
1997 if (!dev)
1998 return NULL;
1999
2000 ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2001 if (!ctlr)
2002 return NULL;
2003
2004 device_initialize(&ctlr->dev);
2005 ctlr->bus_num = -1;
2006 ctlr->num_chipselect = 1;
2007 ctlr->slave = slave;
2008 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2009 ctlr->dev.class = &spi_slave_class;
2010 else
2011 ctlr->dev.class = &spi_master_class;
2012 ctlr->dev.parent = dev;
2013 pm_suspend_ignore_children(&ctlr->dev, true);
2014 spi_controller_set_devdata(ctlr, &ctlr[1]);
2015
2016 return ctlr;
2017 }
2018 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2019
2020 #ifdef CONFIG_OF
2021 static int of_spi_register_master(struct spi_controller *ctlr)
2022 {
2023 int nb, i, *cs;
2024 struct device_node *np = ctlr->dev.of_node;
2025
2026 if (!np)
2027 return 0;
2028
2029 nb = of_gpio_named_count(np, "cs-gpios");
2030 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2031
2032 /* Return error only for an incorrectly formed cs-gpios property */
2033 if (nb == 0 || nb == -ENOENT)
2034 return 0;
2035 else if (nb < 0)
2036 return nb;
2037
2038 cs = devm_kzalloc(&ctlr->dev, sizeof(int) * ctlr->num_chipselect,
2039 GFP_KERNEL);
2040 ctlr->cs_gpios = cs;
2041
2042 if (!ctlr->cs_gpios)
2043 return -ENOMEM;
2044
2045 for (i = 0; i < ctlr->num_chipselect; i++)
2046 cs[i] = -ENOENT;
2047
2048 for (i = 0; i < nb; i++)
2049 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2050
2051 return 0;
2052 }
2053 #else
2054 static int of_spi_register_master(struct spi_controller *ctlr)
2055 {
2056 return 0;
2057 }
2058 #endif
2059
2060 /**
2061 * spi_register_controller - register SPI master or slave controller
2062 * @ctlr: initialized master, originally from spi_alloc_master() or
2063 * spi_alloc_slave()
2064 * Context: can sleep
2065 *
2066 * SPI controllers connect to their drivers using some non-SPI bus,
2067 * such as the platform bus. The final stage of probe() in that code
2068 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2069 *
2070 * SPI controllers use board specific (often SOC specific) bus numbers,
2071 * and board-specific addressing for SPI devices combines those numbers
2072 * with chip select numbers. Since SPI does not directly support dynamic
2073 * device identification, boards need configuration tables telling which
2074 * chip is at which address.
2075 *
2076 * This must be called from context that can sleep. It returns zero on
2077 * success, else a negative error code (dropping the controller's refcount).
2078 * After a successful return, the caller is responsible for calling
2079 * spi_unregister_controller().
2080 *
2081 * Return: zero on success, else a negative error code.
2082 */
2083 int spi_register_controller(struct spi_controller *ctlr)
2084 {
2085 struct device *dev = ctlr->dev.parent;
2086 struct boardinfo *bi;
2087 int status = -ENODEV;
2088 int id, first_dynamic;
2089
2090 if (!dev)
2091 return -ENODEV;
2092
2093 if (!spi_controller_is_slave(ctlr)) {
2094 status = of_spi_register_master(ctlr);
2095 if (status)
2096 return status;
2097 }
2098
2099 /* even if it's just one always-selected device, there must
2100 * be at least one chipselect
2101 */
2102 if (ctlr->num_chipselect == 0)
2103 return -EINVAL;
2104 /* allocate dynamic bus number using Linux idr */
2105 if ((ctlr->bus_num < 0) && ctlr->dev.of_node) {
2106 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2107 if (id >= 0) {
2108 ctlr->bus_num = id;
2109 mutex_lock(&board_lock);
2110 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2111 ctlr->bus_num + 1, GFP_KERNEL);
2112 mutex_unlock(&board_lock);
2113 if (WARN(id < 0, "couldn't get idr"))
2114 return id == -ENOSPC ? -EBUSY : id;
2115 }
2116 }
2117 if (ctlr->bus_num < 0) {
2118 first_dynamic = of_alias_get_highest_id("spi");
2119 if (first_dynamic < 0)
2120 first_dynamic = 0;
2121 else
2122 first_dynamic++;
2123
2124 mutex_lock(&board_lock);
2125 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2126 0, GFP_KERNEL);
2127 mutex_unlock(&board_lock);
2128 if (WARN(id < 0, "couldn't get idr"))
2129 return id;
2130 ctlr->bus_num = id;
2131 }
2132 INIT_LIST_HEAD(&ctlr->queue);
2133 spin_lock_init(&ctlr->queue_lock);
2134 spin_lock_init(&ctlr->bus_lock_spinlock);
2135 mutex_init(&ctlr->bus_lock_mutex);
2136 mutex_init(&ctlr->io_mutex);
2137 ctlr->bus_lock_flag = 0;
2138 init_completion(&ctlr->xfer_completion);
2139 if (!ctlr->max_dma_len)
2140 ctlr->max_dma_len = INT_MAX;
2141
2142 /* register the device, then userspace will see it.
2143 * registration fails if the bus ID is in use.
2144 */
2145 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2146 status = device_add(&ctlr->dev);
2147 if (status < 0) {
2148 /* free bus id */
2149 mutex_lock(&board_lock);
2150 idr_remove(&spi_master_idr, ctlr->bus_num);
2151 mutex_unlock(&board_lock);
2152 goto done;
2153 }
2154 dev_dbg(dev, "registered %s %s\n",
2155 spi_controller_is_slave(ctlr) ? "slave" : "master",
2156 dev_name(&ctlr->dev));
2157
2158 /* If we're using a queued driver, start the queue */
2159 if (ctlr->transfer)
2160 dev_info(dev, "controller is unqueued, this is deprecated\n");
2161 else {
2162 status = spi_controller_initialize_queue(ctlr);
2163 if (status) {
2164 device_del(&ctlr->dev);
2165 /* free bus id */
2166 mutex_lock(&board_lock);
2167 idr_remove(&spi_master_idr, ctlr->bus_num);
2168 mutex_unlock(&board_lock);
2169 goto done;
2170 }
2171 }
2172 /* add statistics */
2173 spin_lock_init(&ctlr->statistics.lock);
2174
2175 mutex_lock(&board_lock);
2176 list_add_tail(&ctlr->list, &spi_controller_list);
2177 list_for_each_entry(bi, &board_list, list)
2178 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2179 mutex_unlock(&board_lock);
2180
2181 /* Register devices from the device tree and ACPI */
2182 of_register_spi_devices(ctlr);
2183 acpi_register_spi_devices(ctlr);
2184 done:
2185 return status;
2186 }
2187 EXPORT_SYMBOL_GPL(spi_register_controller);
2188
2189 static void devm_spi_unregister(struct device *dev, void *res)
2190 {
2191 spi_unregister_controller(*(struct spi_controller **)res);
2192 }
2193
2194 /**
2195 * devm_spi_register_controller - register managed SPI master or slave
2196 * controller
2197 * @dev: device managing SPI controller
2198 * @ctlr: initialized controller, originally from spi_alloc_master() or
2199 * spi_alloc_slave()
2200 * Context: can sleep
2201 *
2202 * Register a SPI device as with spi_register_controller() which will
2203 * automatically be unregistered and freed.
2204 *
2205 * Return: zero on success, else a negative error code.
2206 */
2207 int devm_spi_register_controller(struct device *dev,
2208 struct spi_controller *ctlr)
2209 {
2210 struct spi_controller **ptr;
2211 int ret;
2212
2213 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2214 if (!ptr)
2215 return -ENOMEM;
2216
2217 ret = spi_register_controller(ctlr);
2218 if (!ret) {
2219 *ptr = ctlr;
2220 devres_add(dev, ptr);
2221 } else {
2222 devres_free(ptr);
2223 }
2224
2225 return ret;
2226 }
2227 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2228
2229 static int __unregister(struct device *dev, void *null)
2230 {
2231 spi_unregister_device(to_spi_device(dev));
2232 return 0;
2233 }
2234
2235 /**
2236 * spi_unregister_controller - unregister SPI master or slave controller
2237 * @ctlr: the controller being unregistered
2238 * Context: can sleep
2239 *
2240 * This call is used only by SPI controller drivers, which are the
2241 * only ones directly touching chip registers.
2242 *
2243 * This must be called from context that can sleep.
2244 *
2245 * Note that this function also drops a reference to the controller.
2246 */
2247 void spi_unregister_controller(struct spi_controller *ctlr)
2248 {
2249 struct spi_controller *found;
2250 int id = ctlr->bus_num;
2251 int dummy;
2252
2253 /* First make sure that this controller was ever added */
2254 mutex_lock(&board_lock);
2255 found = idr_find(&spi_master_idr, id);
2256 mutex_unlock(&board_lock);
2257 if (found != ctlr) {
2258 dev_dbg(&ctlr->dev,
2259 "attempting to delete unregistered controller [%s]\n",
2260 dev_name(&ctlr->dev));
2261 return;
2262 }
2263 if (ctlr->queued) {
2264 if (spi_destroy_queue(ctlr))
2265 dev_err(&ctlr->dev, "queue remove failed\n");
2266 }
2267 mutex_lock(&board_lock);
2268 list_del(&ctlr->list);
2269 mutex_unlock(&board_lock);
2270
2271 dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
2272 device_unregister(&ctlr->dev);
2273 /* free bus id */
2274 mutex_lock(&board_lock);
2275 idr_remove(&spi_master_idr, id);
2276 mutex_unlock(&board_lock);
2277 }
2278 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2279
2280 int spi_controller_suspend(struct spi_controller *ctlr)
2281 {
2282 int ret;
2283
2284 /* Basically no-ops for non-queued controllers */
2285 if (!ctlr->queued)
2286 return 0;
2287
2288 ret = spi_stop_queue(ctlr);
2289 if (ret)
2290 dev_err(&ctlr->dev, "queue stop failed\n");
2291
2292 return ret;
2293 }
2294 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2295
2296 int spi_controller_resume(struct spi_controller *ctlr)
2297 {
2298 int ret;
2299
2300 if (!ctlr->queued)
2301 return 0;
2302
2303 ret = spi_start_queue(ctlr);
2304 if (ret)
2305 dev_err(&ctlr->dev, "queue restart failed\n");
2306
2307 return ret;
2308 }
2309 EXPORT_SYMBOL_GPL(spi_controller_resume);
2310
2311 static int __spi_controller_match(struct device *dev, const void *data)
2312 {
2313 struct spi_controller *ctlr;
2314 const u16 *bus_num = data;
2315
2316 ctlr = container_of(dev, struct spi_controller, dev);
2317 return ctlr->bus_num == *bus_num;
2318 }
2319
2320 /**
2321 * spi_busnum_to_master - look up master associated with bus_num
2322 * @bus_num: the master's bus number
2323 * Context: can sleep
2324 *
2325 * This call may be used with devices that are registered after
2326 * arch init time. It returns a refcounted pointer to the relevant
2327 * spi_controller (which the caller must release), or NULL if there is
2328 * no such master registered.
2329 *
2330 * Return: the SPI master structure on success, else NULL.
2331 */
2332 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2333 {
2334 struct device *dev;
2335 struct spi_controller *ctlr = NULL;
2336
2337 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2338 __spi_controller_match);
2339 if (dev)
2340 ctlr = container_of(dev, struct spi_controller, dev);
2341 /* reference got in class_find_device */
2342 return ctlr;
2343 }
2344 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2345
2346 /*-------------------------------------------------------------------------*/
2347
2348 /* Core methods for SPI resource management */
2349
2350 /**
2351 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2352 * during the processing of a spi_message while using
2353 * spi_transfer_one
2354 * @spi: the spi device for which we allocate memory
2355 * @release: the release code to execute for this resource
2356 * @size: size to alloc and return
2357 * @gfp: GFP allocation flags
2358 *
2359 * Return: the pointer to the allocated data
2360 *
2361 * This may get enhanced in the future to allocate from a memory pool
2362 * of the @spi_device or @spi_controller to avoid repeated allocations.
2363 */
2364 void *spi_res_alloc(struct spi_device *spi,
2365 spi_res_release_t release,
2366 size_t size, gfp_t gfp)
2367 {
2368 struct spi_res *sres;
2369
2370 sres = kzalloc(sizeof(*sres) + size, gfp);
2371 if (!sres)
2372 return NULL;
2373
2374 INIT_LIST_HEAD(&sres->entry);
2375 sres->release = release;
2376
2377 return sres->data;
2378 }
2379 EXPORT_SYMBOL_GPL(spi_res_alloc);
2380
2381 /**
2382 * spi_res_free - free an spi resource
2383 * @res: pointer to the custom data of a resource
2384 *
2385 */
2386 void spi_res_free(void *res)
2387 {
2388 struct spi_res *sres = container_of(res, struct spi_res, data);
2389
2390 if (!res)
2391 return;
2392
2393 WARN_ON(!list_empty(&sres->entry));
2394 kfree(sres);
2395 }
2396 EXPORT_SYMBOL_GPL(spi_res_free);
2397
2398 /**
2399 * spi_res_add - add a spi_res to the spi_message
2400 * @message: the spi message
2401 * @res: the spi_resource
2402 */
2403 void spi_res_add(struct spi_message *message, void *res)
2404 {
2405 struct spi_res *sres = container_of(res, struct spi_res, data);
2406
2407 WARN_ON(!list_empty(&sres->entry));
2408 list_add_tail(&sres->entry, &message->resources);
2409 }
2410 EXPORT_SYMBOL_GPL(spi_res_add);
2411
2412 /**
2413 * spi_res_release - release all spi resources for this message
2414 * @ctlr: the @spi_controller
2415 * @message: the @spi_message
2416 */
2417 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2418 {
2419 struct spi_res *res;
2420
2421 while (!list_empty(&message->resources)) {
2422 res = list_last_entry(&message->resources,
2423 struct spi_res, entry);
2424
2425 if (res->release)
2426 res->release(ctlr, message, res->data);
2427
2428 list_del(&res->entry);
2429
2430 kfree(res);
2431 }
2432 }
2433 EXPORT_SYMBOL_GPL(spi_res_release);
2434
2435 /*-------------------------------------------------------------------------*/
2436
2437 /* Core methods for spi_message alterations */
2438
2439 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2440 struct spi_message *msg,
2441 void *res)
2442 {
2443 struct spi_replaced_transfers *rxfer = res;
2444 size_t i;
2445
2446 /* call extra callback if requested */
2447 if (rxfer->release)
2448 rxfer->release(ctlr, msg, res);
2449
2450 /* insert replaced transfers back into the message */
2451 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2452
2453 /* remove the formerly inserted entries */
2454 for (i = 0; i < rxfer->inserted; i++)
2455 list_del(&rxfer->inserted_transfers[i].transfer_list);
2456 }
2457
2458 /**
2459 * spi_replace_transfers - replace transfers with several transfers
2460 * and register change with spi_message.resources
2461 * @msg: the spi_message we work upon
2462 * @xfer_first: the first spi_transfer we want to replace
2463 * @remove: number of transfers to remove
2464 * @insert: the number of transfers we want to insert instead
2465 * @release: extra release code necessary in some circumstances
2466 * @extradatasize: extra data to allocate (with alignment guarantees
2467 * of struct @spi_transfer)
2468 * @gfp: gfp flags
2469 *
2470 * Returns: pointer to @spi_replaced_transfers,
2471 * PTR_ERR(...) in case of errors.
2472 */
2473 struct spi_replaced_transfers *spi_replace_transfers(
2474 struct spi_message *msg,
2475 struct spi_transfer *xfer_first,
2476 size_t remove,
2477 size_t insert,
2478 spi_replaced_release_t release,
2479 size_t extradatasize,
2480 gfp_t gfp)
2481 {
2482 struct spi_replaced_transfers *rxfer;
2483 struct spi_transfer *xfer;
2484 size_t i;
2485
2486 /* allocate the structure using spi_res */
2487 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2488 insert * sizeof(struct spi_transfer)
2489 + sizeof(struct spi_replaced_transfers)
2490 + extradatasize,
2491 gfp);
2492 if (!rxfer)
2493 return ERR_PTR(-ENOMEM);
2494
2495 /* the release code to invoke before running the generic release */
2496 rxfer->release = release;
2497
2498 /* assign extradata */
2499 if (extradatasize)
2500 rxfer->extradata =
2501 &rxfer->inserted_transfers[insert];
2502
2503 /* init the replaced_transfers list */
2504 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2505
2506 /* assign the list_entry after which we should reinsert
2507 * the @replaced_transfers - it may be spi_message.messages!
2508 */
2509 rxfer->replaced_after = xfer_first->transfer_list.prev;
2510
2511 /* remove the requested number of transfers */
2512 for (i = 0; i < remove; i++) {
2513 /* if the entry after replaced_after it is msg->transfers
2514 * then we have been requested to remove more transfers
2515 * than are in the list
2516 */
2517 if (rxfer->replaced_after->next == &msg->transfers) {
2518 dev_err(&msg->spi->dev,
2519 "requested to remove more spi_transfers than are available\n");
2520 /* insert replaced transfers back into the message */
2521 list_splice(&rxfer->replaced_transfers,
2522 rxfer->replaced_after);
2523
2524 /* free the spi_replace_transfer structure */
2525 spi_res_free(rxfer);
2526
2527 /* and return with an error */
2528 return ERR_PTR(-EINVAL);
2529 }
2530
2531 /* remove the entry after replaced_after from list of
2532 * transfers and add it to list of replaced_transfers
2533 */
2534 list_move_tail(rxfer->replaced_after->next,
2535 &rxfer->replaced_transfers);
2536 }
2537
2538 /* create copy of the given xfer with identical settings
2539 * based on the first transfer to get removed
2540 */
2541 for (i = 0; i < insert; i++) {
2542 /* we need to run in reverse order */
2543 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2544
2545 /* copy all spi_transfer data */
2546 memcpy(xfer, xfer_first, sizeof(*xfer));
2547
2548 /* add to list */
2549 list_add(&xfer->transfer_list, rxfer->replaced_after);
2550
2551 /* clear cs_change and delay_usecs for all but the last */
2552 if (i) {
2553 xfer->cs_change = false;
2554 xfer->delay_usecs = 0;
2555 }
2556 }
2557
2558 /* set up inserted */
2559 rxfer->inserted = insert;
2560
2561 /* and register it with spi_res/spi_message */
2562 spi_res_add(msg, rxfer);
2563
2564 return rxfer;
2565 }
2566 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2567
2568 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2569 struct spi_message *msg,
2570 struct spi_transfer **xferp,
2571 size_t maxsize,
2572 gfp_t gfp)
2573 {
2574 struct spi_transfer *xfer = *xferp, *xfers;
2575 struct spi_replaced_transfers *srt;
2576 size_t offset;
2577 size_t count, i;
2578
2579 /* warn once about this fact that we are splitting a transfer */
2580 dev_warn_once(&msg->spi->dev,
2581 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2582 xfer->len, maxsize);
2583
2584 /* calculate how many we have to replace */
2585 count = DIV_ROUND_UP(xfer->len, maxsize);
2586
2587 /* create replacement */
2588 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2589 if (IS_ERR(srt))
2590 return PTR_ERR(srt);
2591 xfers = srt->inserted_transfers;
2592
2593 /* now handle each of those newly inserted spi_transfers
2594 * note that the replacements spi_transfers all are preset
2595 * to the same values as *xferp, so tx_buf, rx_buf and len
2596 * are all identical (as well as most others)
2597 * so we just have to fix up len and the pointers.
2598 *
2599 * this also includes support for the depreciated
2600 * spi_message.is_dma_mapped interface
2601 */
2602
2603 /* the first transfer just needs the length modified, so we
2604 * run it outside the loop
2605 */
2606 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2607
2608 /* all the others need rx_buf/tx_buf also set */
2609 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2610 /* update rx_buf, tx_buf and dma */
2611 if (xfers[i].rx_buf)
2612 xfers[i].rx_buf += offset;
2613 if (xfers[i].rx_dma)
2614 xfers[i].rx_dma += offset;
2615 if (xfers[i].tx_buf)
2616 xfers[i].tx_buf += offset;
2617 if (xfers[i].tx_dma)
2618 xfers[i].tx_dma += offset;
2619
2620 /* update length */
2621 xfers[i].len = min(maxsize, xfers[i].len - offset);
2622 }
2623
2624 /* we set up xferp to the last entry we have inserted,
2625 * so that we skip those already split transfers
2626 */
2627 *xferp = &xfers[count - 1];
2628
2629 /* increment statistics counters */
2630 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2631 transfers_split_maxsize);
2632 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2633 transfers_split_maxsize);
2634
2635 return 0;
2636 }
2637
2638 /**
2639 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2640 * when an individual transfer exceeds a
2641 * certain size
2642 * @ctlr: the @spi_controller for this transfer
2643 * @msg: the @spi_message to transform
2644 * @maxsize: the maximum when to apply this
2645 * @gfp: GFP allocation flags
2646 *
2647 * Return: status of transformation
2648 */
2649 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2650 struct spi_message *msg,
2651 size_t maxsize,
2652 gfp_t gfp)
2653 {
2654 struct spi_transfer *xfer;
2655 int ret;
2656
2657 /* iterate over the transfer_list,
2658 * but note that xfer is advanced to the last transfer inserted
2659 * to avoid checking sizes again unnecessarily (also xfer does
2660 * potentiall belong to a different list by the time the
2661 * replacement has happened
2662 */
2663 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2664 if (xfer->len > maxsize) {
2665 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2666 maxsize, gfp);
2667 if (ret)
2668 return ret;
2669 }
2670 }
2671
2672 return 0;
2673 }
2674 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2675
2676 /*-------------------------------------------------------------------------*/
2677
2678 /* Core methods for SPI controller protocol drivers. Some of the
2679 * other core methods are currently defined as inline functions.
2680 */
2681
2682 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2683 u8 bits_per_word)
2684 {
2685 if (ctlr->bits_per_word_mask) {
2686 /* Only 32 bits fit in the mask */
2687 if (bits_per_word > 32)
2688 return -EINVAL;
2689 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2690 return -EINVAL;
2691 }
2692
2693 return 0;
2694 }
2695
2696 /**
2697 * spi_setup - setup SPI mode and clock rate
2698 * @spi: the device whose settings are being modified
2699 * Context: can sleep, and no requests are queued to the device
2700 *
2701 * SPI protocol drivers may need to update the transfer mode if the
2702 * device doesn't work with its default. They may likewise need
2703 * to update clock rates or word sizes from initial values. This function
2704 * changes those settings, and must be called from a context that can sleep.
2705 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2706 * effect the next time the device is selected and data is transferred to
2707 * or from it. When this function returns, the spi device is deselected.
2708 *
2709 * Note that this call will fail if the protocol driver specifies an option
2710 * that the underlying controller or its driver does not support. For
2711 * example, not all hardware supports wire transfers using nine bit words,
2712 * LSB-first wire encoding, or active-high chipselects.
2713 *
2714 * Return: zero on success, else a negative error code.
2715 */
2716 int spi_setup(struct spi_device *spi)
2717 {
2718 unsigned bad_bits, ugly_bits;
2719 int status;
2720
2721 /* check mode to prevent that DUAL and QUAD set at the same time
2722 */
2723 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2724 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2725 dev_err(&spi->dev,
2726 "setup: can not select dual and quad at the same time\n");
2727 return -EINVAL;
2728 }
2729 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2730 */
2731 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2732 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2733 return -EINVAL;
2734 /* help drivers fail *cleanly* when they need options
2735 * that aren't supported with their current controller
2736 */
2737 bad_bits = spi->mode & ~spi->controller->mode_bits;
2738 ugly_bits = bad_bits &
2739 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2740 if (ugly_bits) {
2741 dev_warn(&spi->dev,
2742 "setup: ignoring unsupported mode bits %x\n",
2743 ugly_bits);
2744 spi->mode &= ~ugly_bits;
2745 bad_bits &= ~ugly_bits;
2746 }
2747 if (bad_bits) {
2748 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2749 bad_bits);
2750 return -EINVAL;
2751 }
2752
2753 if (!spi->bits_per_word)
2754 spi->bits_per_word = 8;
2755
2756 status = __spi_validate_bits_per_word(spi->controller,
2757 spi->bits_per_word);
2758 if (status)
2759 return status;
2760
2761 if (!spi->max_speed_hz)
2762 spi->max_speed_hz = spi->controller->max_speed_hz;
2763
2764 if (spi->controller->setup)
2765 status = spi->controller->setup(spi);
2766
2767 spi_set_cs(spi, false);
2768
2769 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2770 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2771 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2772 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2773 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2774 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2775 spi->bits_per_word, spi->max_speed_hz,
2776 status);
2777
2778 return status;
2779 }
2780 EXPORT_SYMBOL_GPL(spi_setup);
2781
2782 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2783 {
2784 struct spi_controller *ctlr = spi->controller;
2785 struct spi_transfer *xfer;
2786 int w_size;
2787
2788 if (list_empty(&message->transfers))
2789 return -EINVAL;
2790
2791 /* Half-duplex links include original MicroWire, and ones with
2792 * only one data pin like SPI_3WIRE (switches direction) or where
2793 * either MOSI or MISO is missing. They can also be caused by
2794 * software limitations.
2795 */
2796 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
2797 (spi->mode & SPI_3WIRE)) {
2798 unsigned flags = ctlr->flags;
2799
2800 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2801 if (xfer->rx_buf && xfer->tx_buf)
2802 return -EINVAL;
2803 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
2804 return -EINVAL;
2805 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
2806 return -EINVAL;
2807 }
2808 }
2809
2810 /**
2811 * Set transfer bits_per_word and max speed as spi device default if
2812 * it is not set for this transfer.
2813 * Set transfer tx_nbits and rx_nbits as single transfer default
2814 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2815 */
2816 message->frame_length = 0;
2817 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2818 message->frame_length += xfer->len;
2819 if (!xfer->bits_per_word)
2820 xfer->bits_per_word = spi->bits_per_word;
2821
2822 if (!xfer->speed_hz)
2823 xfer->speed_hz = spi->max_speed_hz;
2824 if (!xfer->speed_hz)
2825 xfer->speed_hz = ctlr->max_speed_hz;
2826
2827 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
2828 xfer->speed_hz = ctlr->max_speed_hz;
2829
2830 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
2831 return -EINVAL;
2832
2833 /*
2834 * SPI transfer length should be multiple of SPI word size
2835 * where SPI word size should be power-of-two multiple
2836 */
2837 if (xfer->bits_per_word <= 8)
2838 w_size = 1;
2839 else if (xfer->bits_per_word <= 16)
2840 w_size = 2;
2841 else
2842 w_size = 4;
2843
2844 /* No partial transfers accepted */
2845 if (xfer->len % w_size)
2846 return -EINVAL;
2847
2848 if (xfer->speed_hz && ctlr->min_speed_hz &&
2849 xfer->speed_hz < ctlr->min_speed_hz)
2850 return -EINVAL;
2851
2852 if (xfer->tx_buf && !xfer->tx_nbits)
2853 xfer->tx_nbits = SPI_NBITS_SINGLE;
2854 if (xfer->rx_buf && !xfer->rx_nbits)
2855 xfer->rx_nbits = SPI_NBITS_SINGLE;
2856 /* check transfer tx/rx_nbits:
2857 * 1. check the value matches one of single, dual and quad
2858 * 2. check tx/rx_nbits match the mode in spi_device
2859 */
2860 if (xfer->tx_buf) {
2861 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2862 xfer->tx_nbits != SPI_NBITS_DUAL &&
2863 xfer->tx_nbits != SPI_NBITS_QUAD)
2864 return -EINVAL;
2865 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2866 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2867 return -EINVAL;
2868 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2869 !(spi->mode & SPI_TX_QUAD))
2870 return -EINVAL;
2871 }
2872 /* check transfer rx_nbits */
2873 if (xfer->rx_buf) {
2874 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2875 xfer->rx_nbits != SPI_NBITS_DUAL &&
2876 xfer->rx_nbits != SPI_NBITS_QUAD)
2877 return -EINVAL;
2878 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2879 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2880 return -EINVAL;
2881 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2882 !(spi->mode & SPI_RX_QUAD))
2883 return -EINVAL;
2884 }
2885 }
2886
2887 message->status = -EINPROGRESS;
2888
2889 return 0;
2890 }
2891
2892 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2893 {
2894 struct spi_controller *ctlr = spi->controller;
2895
2896 message->spi = spi;
2897
2898 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
2899 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2900
2901 trace_spi_message_submit(message);
2902
2903 return ctlr->transfer(spi, message);
2904 }
2905
2906 /**
2907 * spi_async - asynchronous SPI transfer
2908 * @spi: device with which data will be exchanged
2909 * @message: describes the data transfers, including completion callback
2910 * Context: any (irqs may be blocked, etc)
2911 *
2912 * This call may be used in_irq and other contexts which can't sleep,
2913 * as well as from task contexts which can sleep.
2914 *
2915 * The completion callback is invoked in a context which can't sleep.
2916 * Before that invocation, the value of message->status is undefined.
2917 * When the callback is issued, message->status holds either zero (to
2918 * indicate complete success) or a negative error code. After that
2919 * callback returns, the driver which issued the transfer request may
2920 * deallocate the associated memory; it's no longer in use by any SPI
2921 * core or controller driver code.
2922 *
2923 * Note that although all messages to a spi_device are handled in
2924 * FIFO order, messages may go to different devices in other orders.
2925 * Some device might be higher priority, or have various "hard" access
2926 * time requirements, for example.
2927 *
2928 * On detection of any fault during the transfer, processing of
2929 * the entire message is aborted, and the device is deselected.
2930 * Until returning from the associated message completion callback,
2931 * no other spi_message queued to that device will be processed.
2932 * (This rule applies equally to all the synchronous transfer calls,
2933 * which are wrappers around this core asynchronous primitive.)
2934 *
2935 * Return: zero on success, else a negative error code.
2936 */
2937 int spi_async(struct spi_device *spi, struct spi_message *message)
2938 {
2939 struct spi_controller *ctlr = spi->controller;
2940 int ret;
2941 unsigned long flags;
2942
2943 ret = __spi_validate(spi, message);
2944 if (ret != 0)
2945 return ret;
2946
2947 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
2948
2949 if (ctlr->bus_lock_flag)
2950 ret = -EBUSY;
2951 else
2952 ret = __spi_async(spi, message);
2953
2954 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
2955
2956 return ret;
2957 }
2958 EXPORT_SYMBOL_GPL(spi_async);
2959
2960 /**
2961 * spi_async_locked - version of spi_async with exclusive bus usage
2962 * @spi: device with which data will be exchanged
2963 * @message: describes the data transfers, including completion callback
2964 * Context: any (irqs may be blocked, etc)
2965 *
2966 * This call may be used in_irq and other contexts which can't sleep,
2967 * as well as from task contexts which can sleep.
2968 *
2969 * The completion callback is invoked in a context which can't sleep.
2970 * Before that invocation, the value of message->status is undefined.
2971 * When the callback is issued, message->status holds either zero (to
2972 * indicate complete success) or a negative error code. After that
2973 * callback returns, the driver which issued the transfer request may
2974 * deallocate the associated memory; it's no longer in use by any SPI
2975 * core or controller driver code.
2976 *
2977 * Note that although all messages to a spi_device are handled in
2978 * FIFO order, messages may go to different devices in other orders.
2979 * Some device might be higher priority, or have various "hard" access
2980 * time requirements, for example.
2981 *
2982 * On detection of any fault during the transfer, processing of
2983 * the entire message is aborted, and the device is deselected.
2984 * Until returning from the associated message completion callback,
2985 * no other spi_message queued to that device will be processed.
2986 * (This rule applies equally to all the synchronous transfer calls,
2987 * which are wrappers around this core asynchronous primitive.)
2988 *
2989 * Return: zero on success, else a negative error code.
2990 */
2991 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2992 {
2993 struct spi_controller *ctlr = spi->controller;
2994 int ret;
2995 unsigned long flags;
2996
2997 ret = __spi_validate(spi, message);
2998 if (ret != 0)
2999 return ret;
3000
3001 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3002
3003 ret = __spi_async(spi, message);
3004
3005 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3006
3007 return ret;
3008
3009 }
3010 EXPORT_SYMBOL_GPL(spi_async_locked);
3011
3012
3013 int spi_flash_read(struct spi_device *spi,
3014 struct spi_flash_read_message *msg)
3015
3016 {
3017 struct spi_controller *master = spi->controller;
3018 struct device *rx_dev = NULL;
3019 int ret;
3020
3021 if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
3022 msg->addr_nbits == SPI_NBITS_DUAL) &&
3023 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3024 return -EINVAL;
3025 if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
3026 msg->addr_nbits == SPI_NBITS_QUAD) &&
3027 !(spi->mode & SPI_TX_QUAD))
3028 return -EINVAL;
3029 if (msg->data_nbits == SPI_NBITS_DUAL &&
3030 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3031 return -EINVAL;
3032 if (msg->data_nbits == SPI_NBITS_QUAD &&
3033 !(spi->mode & SPI_RX_QUAD))
3034 return -EINVAL;
3035
3036 if (master->auto_runtime_pm) {
3037 ret = pm_runtime_get_sync(master->dev.parent);
3038 if (ret < 0) {
3039 dev_err(&master->dev, "Failed to power device: %d\n",
3040 ret);
3041 return ret;
3042 }
3043 }
3044
3045 mutex_lock(&master->bus_lock_mutex);
3046 mutex_lock(&master->io_mutex);
3047 if (master->dma_rx && master->spi_flash_can_dma(spi, msg)) {
3048 rx_dev = master->dma_rx->device->dev;
3049 ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
3050 msg->buf, msg->len,
3051 DMA_FROM_DEVICE);
3052 if (!ret)
3053 msg->cur_msg_mapped = true;
3054 }
3055 ret = master->spi_flash_read(spi, msg);
3056 if (msg->cur_msg_mapped)
3057 spi_unmap_buf(master, rx_dev, &msg->rx_sg,
3058 DMA_FROM_DEVICE);
3059 mutex_unlock(&master->io_mutex);
3060 mutex_unlock(&master->bus_lock_mutex);
3061
3062 if (master->auto_runtime_pm)
3063 pm_runtime_put(master->dev.parent);
3064
3065 return ret;
3066 }
3067 EXPORT_SYMBOL_GPL(spi_flash_read);
3068
3069 /*-------------------------------------------------------------------------*/
3070
3071 /* Utility methods for SPI protocol drivers, layered on
3072 * top of the core. Some other utility methods are defined as
3073 * inline functions.
3074 */
3075
3076 static void spi_complete(void *arg)
3077 {
3078 complete(arg);
3079 }
3080
3081 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3082 {
3083 DECLARE_COMPLETION_ONSTACK(done);
3084 int status;
3085 struct spi_controller *ctlr = spi->controller;
3086 unsigned long flags;
3087
3088 status = __spi_validate(spi, message);
3089 if (status != 0)
3090 return status;
3091
3092 message->complete = spi_complete;
3093 message->context = &done;
3094 message->spi = spi;
3095
3096 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3097 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3098
3099 /* If we're not using the legacy transfer method then we will
3100 * try to transfer in the calling context so special case.
3101 * This code would be less tricky if we could remove the
3102 * support for driver implemented message queues.
3103 */
3104 if (ctlr->transfer == spi_queued_transfer) {
3105 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3106
3107 trace_spi_message_submit(message);
3108
3109 status = __spi_queued_transfer(spi, message, false);
3110
3111 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3112 } else {
3113 status = spi_async_locked(spi, message);
3114 }
3115
3116 if (status == 0) {
3117 /* Push out the messages in the calling context if we
3118 * can.
3119 */
3120 if (ctlr->transfer == spi_queued_transfer) {
3121 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3122 spi_sync_immediate);
3123 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3124 spi_sync_immediate);
3125 __spi_pump_messages(ctlr, false);
3126 }
3127
3128 wait_for_completion(&done);
3129 status = message->status;
3130 }
3131 message->context = NULL;
3132 return status;
3133 }
3134
3135 /**
3136 * spi_sync - blocking/synchronous SPI data transfers
3137 * @spi: device with which data will be exchanged
3138 * @message: describes the data transfers
3139 * Context: can sleep
3140 *
3141 * This call may only be used from a context that may sleep. The sleep
3142 * is non-interruptible, and has no timeout. Low-overhead controller
3143 * drivers may DMA directly into and out of the message buffers.
3144 *
3145 * Note that the SPI device's chip select is active during the message,
3146 * and then is normally disabled between messages. Drivers for some
3147 * frequently-used devices may want to minimize costs of selecting a chip,
3148 * by leaving it selected in anticipation that the next message will go
3149 * to the same chip. (That may increase power usage.)
3150 *
3151 * Also, the caller is guaranteeing that the memory associated with the
3152 * message will not be freed before this call returns.
3153 *
3154 * Return: zero on success, else a negative error code.
3155 */
3156 int spi_sync(struct spi_device *spi, struct spi_message *message)
3157 {
3158 int ret;
3159
3160 mutex_lock(&spi->controller->bus_lock_mutex);
3161 ret = __spi_sync(spi, message);
3162 mutex_unlock(&spi->controller->bus_lock_mutex);
3163
3164 return ret;
3165 }
3166 EXPORT_SYMBOL_GPL(spi_sync);
3167
3168 /**
3169 * spi_sync_locked - version of spi_sync with exclusive bus usage
3170 * @spi: device with which data will be exchanged
3171 * @message: describes the data transfers
3172 * Context: can sleep
3173 *
3174 * This call may only be used from a context that may sleep. The sleep
3175 * is non-interruptible, and has no timeout. Low-overhead controller
3176 * drivers may DMA directly into and out of the message buffers.
3177 *
3178 * This call should be used by drivers that require exclusive access to the
3179 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3180 * be released by a spi_bus_unlock call when the exclusive access is over.
3181 *
3182 * Return: zero on success, else a negative error code.
3183 */
3184 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3185 {
3186 return __spi_sync(spi, message);
3187 }
3188 EXPORT_SYMBOL_GPL(spi_sync_locked);
3189
3190 /**
3191 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3192 * @ctlr: SPI bus master that should be locked for exclusive bus access
3193 * Context: can sleep
3194 *
3195 * This call may only be used from a context that may sleep. The sleep
3196 * is non-interruptible, and has no timeout.
3197 *
3198 * This call should be used by drivers that require exclusive access to the
3199 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3200 * exclusive access is over. Data transfer must be done by spi_sync_locked
3201 * and spi_async_locked calls when the SPI bus lock is held.
3202 *
3203 * Return: always zero.
3204 */
3205 int spi_bus_lock(struct spi_controller *ctlr)
3206 {
3207 unsigned long flags;
3208
3209 mutex_lock(&ctlr->bus_lock_mutex);
3210
3211 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3212 ctlr->bus_lock_flag = 1;
3213 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3214
3215 /* mutex remains locked until spi_bus_unlock is called */
3216
3217 return 0;
3218 }
3219 EXPORT_SYMBOL_GPL(spi_bus_lock);
3220
3221 /**
3222 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3223 * @ctlr: SPI bus master that was locked for exclusive bus access
3224 * Context: can sleep
3225 *
3226 * This call may only be used from a context that may sleep. The sleep
3227 * is non-interruptible, and has no timeout.
3228 *
3229 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3230 * call.
3231 *
3232 * Return: always zero.
3233 */
3234 int spi_bus_unlock(struct spi_controller *ctlr)
3235 {
3236 ctlr->bus_lock_flag = 0;
3237
3238 mutex_unlock(&ctlr->bus_lock_mutex);
3239
3240 return 0;
3241 }
3242 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3243
3244 /* portable code must never pass more than 32 bytes */
3245 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3246
3247 static u8 *buf;
3248
3249 /**
3250 * spi_write_then_read - SPI synchronous write followed by read
3251 * @spi: device with which data will be exchanged
3252 * @txbuf: data to be written (need not be dma-safe)
3253 * @n_tx: size of txbuf, in bytes
3254 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3255 * @n_rx: size of rxbuf, in bytes
3256 * Context: can sleep
3257 *
3258 * This performs a half duplex MicroWire style transaction with the
3259 * device, sending txbuf and then reading rxbuf. The return value
3260 * is zero for success, else a negative errno status code.
3261 * This call may only be used from a context that may sleep.
3262 *
3263 * Parameters to this routine are always copied using a small buffer;
3264 * portable code should never use this for more than 32 bytes.
3265 * Performance-sensitive or bulk transfer code should instead use
3266 * spi_{async,sync}() calls with dma-safe buffers.
3267 *
3268 * Return: zero on success, else a negative error code.
3269 */
3270 int spi_write_then_read(struct spi_device *spi,
3271 const void *txbuf, unsigned n_tx,
3272 void *rxbuf, unsigned n_rx)
3273 {
3274 static DEFINE_MUTEX(lock);
3275
3276 int status;
3277 struct spi_message message;
3278 struct spi_transfer x[2];
3279 u8 *local_buf;
3280
3281 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3282 * copying here, (as a pure convenience thing), but we can
3283 * keep heap costs out of the hot path unless someone else is
3284 * using the pre-allocated buffer or the transfer is too large.
3285 */
3286 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3287 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3288 GFP_KERNEL | GFP_DMA);
3289 if (!local_buf)
3290 return -ENOMEM;
3291 } else {
3292 local_buf = buf;
3293 }
3294
3295 spi_message_init(&message);
3296 memset(x, 0, sizeof(x));
3297 if (n_tx) {
3298 x[0].len = n_tx;
3299 spi_message_add_tail(&x[0], &message);
3300 }
3301 if (n_rx) {
3302 x[1].len = n_rx;
3303 spi_message_add_tail(&x[1], &message);
3304 }
3305
3306 memcpy(local_buf, txbuf, n_tx);
3307 x[0].tx_buf = local_buf;
3308 x[1].rx_buf = local_buf + n_tx;
3309
3310 /* do the i/o */
3311 status = spi_sync(spi, &message);
3312 if (status == 0)
3313 memcpy(rxbuf, x[1].rx_buf, n_rx);
3314
3315 if (x[0].tx_buf == buf)
3316 mutex_unlock(&lock);
3317 else
3318 kfree(local_buf);
3319
3320 return status;
3321 }
3322 EXPORT_SYMBOL_GPL(spi_write_then_read);
3323
3324 /*-------------------------------------------------------------------------*/
3325
3326 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3327 static int __spi_of_device_match(struct device *dev, void *data)
3328 {
3329 return dev->of_node == data;
3330 }
3331
3332 /* must call put_device() when done with returned spi_device device */
3333 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3334 {
3335 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3336 __spi_of_device_match);
3337 return dev ? to_spi_device(dev) : NULL;
3338 }
3339
3340 static int __spi_of_controller_match(struct device *dev, const void *data)
3341 {
3342 return dev->of_node == data;
3343 }
3344
3345 /* the spi controllers are not using spi_bus, so we find it with another way */
3346 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3347 {
3348 struct device *dev;
3349
3350 dev = class_find_device(&spi_master_class, NULL, node,
3351 __spi_of_controller_match);
3352 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3353 dev = class_find_device(&spi_slave_class, NULL, node,
3354 __spi_of_controller_match);
3355 if (!dev)
3356 return NULL;
3357
3358 /* reference got in class_find_device */
3359 return container_of(dev, struct spi_controller, dev);
3360 }
3361
3362 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3363 void *arg)
3364 {
3365 struct of_reconfig_data *rd = arg;
3366 struct spi_controller *ctlr;
3367 struct spi_device *spi;
3368
3369 switch (of_reconfig_get_state_change(action, arg)) {
3370 case OF_RECONFIG_CHANGE_ADD:
3371 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3372 if (ctlr == NULL)
3373 return NOTIFY_OK; /* not for us */
3374
3375 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3376 put_device(&ctlr->dev);
3377 return NOTIFY_OK;
3378 }
3379
3380 spi = of_register_spi_device(ctlr, rd->dn);
3381 put_device(&ctlr->dev);
3382
3383 if (IS_ERR(spi)) {
3384 pr_err("%s: failed to create for '%pOF'\n",
3385 __func__, rd->dn);
3386 of_node_clear_flag(rd->dn, OF_POPULATED);
3387 return notifier_from_errno(PTR_ERR(spi));
3388 }
3389 break;
3390
3391 case OF_RECONFIG_CHANGE_REMOVE:
3392 /* already depopulated? */
3393 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3394 return NOTIFY_OK;
3395
3396 /* find our device by node */
3397 spi = of_find_spi_device_by_node(rd->dn);
3398 if (spi == NULL)
3399 return NOTIFY_OK; /* no? not meant for us */
3400
3401 /* unregister takes one ref away */
3402 spi_unregister_device(spi);
3403
3404 /* and put the reference of the find */
3405 put_device(&spi->dev);
3406 break;
3407 }
3408
3409 return NOTIFY_OK;
3410 }
3411
3412 static struct notifier_block spi_of_notifier = {
3413 .notifier_call = of_spi_notify,
3414 };
3415 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3416 extern struct notifier_block spi_of_notifier;
3417 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3418
3419 #if IS_ENABLED(CONFIG_ACPI)
3420 static int spi_acpi_controller_match(struct device *dev, const void *data)
3421 {
3422 return ACPI_COMPANION(dev->parent) == data;
3423 }
3424
3425 static int spi_acpi_device_match(struct device *dev, void *data)
3426 {
3427 return ACPI_COMPANION(dev) == data;
3428 }
3429
3430 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3431 {
3432 struct device *dev;
3433
3434 dev = class_find_device(&spi_master_class, NULL, adev,
3435 spi_acpi_controller_match);
3436 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3437 dev = class_find_device(&spi_slave_class, NULL, adev,
3438 spi_acpi_controller_match);
3439 if (!dev)
3440 return NULL;
3441
3442 return container_of(dev, struct spi_controller, dev);
3443 }
3444
3445 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3446 {
3447 struct device *dev;
3448
3449 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3450
3451 return dev ? to_spi_device(dev) : NULL;
3452 }
3453
3454 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3455 void *arg)
3456 {
3457 struct acpi_device *adev = arg;
3458 struct spi_controller *ctlr;
3459 struct spi_device *spi;
3460
3461 switch (value) {
3462 case ACPI_RECONFIG_DEVICE_ADD:
3463 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3464 if (!ctlr)
3465 break;
3466
3467 acpi_register_spi_device(ctlr, adev);
3468 put_device(&ctlr->dev);
3469 break;
3470 case ACPI_RECONFIG_DEVICE_REMOVE:
3471 if (!acpi_device_enumerated(adev))
3472 break;
3473
3474 spi = acpi_spi_find_device_by_adev(adev);
3475 if (!spi)
3476 break;
3477
3478 spi_unregister_device(spi);
3479 put_device(&spi->dev);
3480 break;
3481 }
3482
3483 return NOTIFY_OK;
3484 }
3485
3486 static struct notifier_block spi_acpi_notifier = {
3487 .notifier_call = acpi_spi_notify,
3488 };
3489 #else
3490 extern struct notifier_block spi_acpi_notifier;
3491 #endif
3492
3493 static int __init spi_init(void)
3494 {
3495 int status;
3496
3497 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3498 if (!buf) {
3499 status = -ENOMEM;
3500 goto err0;
3501 }
3502
3503 status = bus_register(&spi_bus_type);
3504 if (status < 0)
3505 goto err1;
3506
3507 status = class_register(&spi_master_class);
3508 if (status < 0)
3509 goto err2;
3510
3511 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3512 status = class_register(&spi_slave_class);
3513 if (status < 0)
3514 goto err3;
3515 }
3516
3517 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3518 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3519 if (IS_ENABLED(CONFIG_ACPI))
3520 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3521
3522 return 0;
3523
3524 err3:
3525 class_unregister(&spi_master_class);
3526 err2:
3527 bus_unregister(&spi_bus_type);
3528 err1:
3529 kfree(buf);
3530 buf = NULL;
3531 err0:
3532 return status;
3533 }
3534
3535 /* board_info is normally registered in arch_initcall(),
3536 * but even essential drivers wait till later
3537 *
3538 * REVISIT only boardinfo really needs static linking. the rest (device and
3539 * driver registration) _could_ be dynamically linked (modular) ... costs
3540 * include needing to have boardinfo data structures be much more public.
3541 */
3542 postcore_initcall(spi_init);
3543