]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/spi/spi.c
UBUNTU: Ubuntu-5.4.0-117.132
[mirror_ubuntu-focal-kernel.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41
42 #include "internals.h"
43
44 static DEFINE_IDR(spi_master_idr);
45
46 static void spidev_release(struct device *dev)
47 {
48 struct spi_device *spi = to_spi_device(dev);
49
50 spi_controller_put(spi->controller);
51 kfree(spi->driver_override);
52 kfree(spi);
53 }
54
55 static ssize_t
56 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
57 {
58 const struct spi_device *spi = to_spi_device(dev);
59 int len;
60
61 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
62 if (len != -ENODEV)
63 return len;
64
65 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
66 }
67 static DEVICE_ATTR_RO(modalias);
68
69 static ssize_t driver_override_store(struct device *dev,
70 struct device_attribute *a,
71 const char *buf, size_t count)
72 {
73 struct spi_device *spi = to_spi_device(dev);
74 const char *end = memchr(buf, '\n', count);
75 const size_t len = end ? end - buf : count;
76 const char *driver_override, *old;
77
78 /* We need to keep extra room for a newline when displaying value */
79 if (len >= (PAGE_SIZE - 1))
80 return -EINVAL;
81
82 driver_override = kstrndup(buf, len, GFP_KERNEL);
83 if (!driver_override)
84 return -ENOMEM;
85
86 device_lock(dev);
87 old = spi->driver_override;
88 if (len) {
89 spi->driver_override = driver_override;
90 } else {
91 /* Emptry string, disable driver override */
92 spi->driver_override = NULL;
93 kfree(driver_override);
94 }
95 device_unlock(dev);
96 kfree(old);
97
98 return count;
99 }
100
101 static ssize_t driver_override_show(struct device *dev,
102 struct device_attribute *a, char *buf)
103 {
104 const struct spi_device *spi = to_spi_device(dev);
105 ssize_t len;
106
107 device_lock(dev);
108 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
109 device_unlock(dev);
110 return len;
111 }
112 static DEVICE_ATTR_RW(driver_override);
113
114 #define SPI_STATISTICS_ATTRS(field, file) \
115 static ssize_t spi_controller_##field##_show(struct device *dev, \
116 struct device_attribute *attr, \
117 char *buf) \
118 { \
119 struct spi_controller *ctlr = container_of(dev, \
120 struct spi_controller, dev); \
121 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
122 } \
123 static struct device_attribute dev_attr_spi_controller_##field = { \
124 .attr = { .name = file, .mode = 0444 }, \
125 .show = spi_controller_##field##_show, \
126 }; \
127 static ssize_t spi_device_##field##_show(struct device *dev, \
128 struct device_attribute *attr, \
129 char *buf) \
130 { \
131 struct spi_device *spi = to_spi_device(dev); \
132 return spi_statistics_##field##_show(&spi->statistics, buf); \
133 } \
134 static struct device_attribute dev_attr_spi_device_##field = { \
135 .attr = { .name = file, .mode = 0444 }, \
136 .show = spi_device_##field##_show, \
137 }
138
139 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
140 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
141 char *buf) \
142 { \
143 unsigned long flags; \
144 ssize_t len; \
145 spin_lock_irqsave(&stat->lock, flags); \
146 len = sprintf(buf, format_string, stat->field); \
147 spin_unlock_irqrestore(&stat->lock, flags); \
148 return len; \
149 } \
150 SPI_STATISTICS_ATTRS(name, file)
151
152 #define SPI_STATISTICS_SHOW(field, format_string) \
153 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
154 field, format_string)
155
156 SPI_STATISTICS_SHOW(messages, "%lu");
157 SPI_STATISTICS_SHOW(transfers, "%lu");
158 SPI_STATISTICS_SHOW(errors, "%lu");
159 SPI_STATISTICS_SHOW(timedout, "%lu");
160
161 SPI_STATISTICS_SHOW(spi_sync, "%lu");
162 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
163 SPI_STATISTICS_SHOW(spi_async, "%lu");
164
165 SPI_STATISTICS_SHOW(bytes, "%llu");
166 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
167 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
168
169 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
170 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
171 "transfer_bytes_histo_" number, \
172 transfer_bytes_histo[index], "%lu")
173 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
174 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
175 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
176 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
190
191 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
192
193 static struct attribute *spi_dev_attrs[] = {
194 &dev_attr_modalias.attr,
195 &dev_attr_driver_override.attr,
196 NULL,
197 };
198
199 static const struct attribute_group spi_dev_group = {
200 .attrs = spi_dev_attrs,
201 };
202
203 static struct attribute *spi_device_statistics_attrs[] = {
204 &dev_attr_spi_device_messages.attr,
205 &dev_attr_spi_device_transfers.attr,
206 &dev_attr_spi_device_errors.attr,
207 &dev_attr_spi_device_timedout.attr,
208 &dev_attr_spi_device_spi_sync.attr,
209 &dev_attr_spi_device_spi_sync_immediate.attr,
210 &dev_attr_spi_device_spi_async.attr,
211 &dev_attr_spi_device_bytes.attr,
212 &dev_attr_spi_device_bytes_rx.attr,
213 &dev_attr_spi_device_bytes_tx.attr,
214 &dev_attr_spi_device_transfer_bytes_histo0.attr,
215 &dev_attr_spi_device_transfer_bytes_histo1.attr,
216 &dev_attr_spi_device_transfer_bytes_histo2.attr,
217 &dev_attr_spi_device_transfer_bytes_histo3.attr,
218 &dev_attr_spi_device_transfer_bytes_histo4.attr,
219 &dev_attr_spi_device_transfer_bytes_histo5.attr,
220 &dev_attr_spi_device_transfer_bytes_histo6.attr,
221 &dev_attr_spi_device_transfer_bytes_histo7.attr,
222 &dev_attr_spi_device_transfer_bytes_histo8.attr,
223 &dev_attr_spi_device_transfer_bytes_histo9.attr,
224 &dev_attr_spi_device_transfer_bytes_histo10.attr,
225 &dev_attr_spi_device_transfer_bytes_histo11.attr,
226 &dev_attr_spi_device_transfer_bytes_histo12.attr,
227 &dev_attr_spi_device_transfer_bytes_histo13.attr,
228 &dev_attr_spi_device_transfer_bytes_histo14.attr,
229 &dev_attr_spi_device_transfer_bytes_histo15.attr,
230 &dev_attr_spi_device_transfer_bytes_histo16.attr,
231 &dev_attr_spi_device_transfers_split_maxsize.attr,
232 NULL,
233 };
234
235 static const struct attribute_group spi_device_statistics_group = {
236 .name = "statistics",
237 .attrs = spi_device_statistics_attrs,
238 };
239
240 static const struct attribute_group *spi_dev_groups[] = {
241 &spi_dev_group,
242 &spi_device_statistics_group,
243 NULL,
244 };
245
246 static struct attribute *spi_controller_statistics_attrs[] = {
247 &dev_attr_spi_controller_messages.attr,
248 &dev_attr_spi_controller_transfers.attr,
249 &dev_attr_spi_controller_errors.attr,
250 &dev_attr_spi_controller_timedout.attr,
251 &dev_attr_spi_controller_spi_sync.attr,
252 &dev_attr_spi_controller_spi_sync_immediate.attr,
253 &dev_attr_spi_controller_spi_async.attr,
254 &dev_attr_spi_controller_bytes.attr,
255 &dev_attr_spi_controller_bytes_rx.attr,
256 &dev_attr_spi_controller_bytes_tx.attr,
257 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
258 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
259 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
260 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
261 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
262 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
263 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
264 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
265 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
266 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
267 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
268 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
269 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
270 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
271 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
272 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
273 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
274 &dev_attr_spi_controller_transfers_split_maxsize.attr,
275 NULL,
276 };
277
278 static const struct attribute_group spi_controller_statistics_group = {
279 .name = "statistics",
280 .attrs = spi_controller_statistics_attrs,
281 };
282
283 static const struct attribute_group *spi_master_groups[] = {
284 &spi_controller_statistics_group,
285 NULL,
286 };
287
288 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
289 struct spi_transfer *xfer,
290 struct spi_controller *ctlr)
291 {
292 unsigned long flags;
293 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
294
295 if (l2len < 0)
296 l2len = 0;
297
298 spin_lock_irqsave(&stats->lock, flags);
299
300 stats->transfers++;
301 stats->transfer_bytes_histo[l2len]++;
302
303 stats->bytes += xfer->len;
304 if ((xfer->tx_buf) &&
305 (xfer->tx_buf != ctlr->dummy_tx))
306 stats->bytes_tx += xfer->len;
307 if ((xfer->rx_buf) &&
308 (xfer->rx_buf != ctlr->dummy_rx))
309 stats->bytes_rx += xfer->len;
310
311 spin_unlock_irqrestore(&stats->lock, flags);
312 }
313 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
314
315 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
316 * and the sysfs version makes coldplug work too.
317 */
318
319 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
320 const struct spi_device *sdev)
321 {
322 while (id->name[0]) {
323 if (!strcmp(sdev->modalias, id->name))
324 return id;
325 id++;
326 }
327 return NULL;
328 }
329
330 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
331 {
332 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
333
334 return spi_match_id(sdrv->id_table, sdev);
335 }
336 EXPORT_SYMBOL_GPL(spi_get_device_id);
337
338 static int spi_match_device(struct device *dev, struct device_driver *drv)
339 {
340 const struct spi_device *spi = to_spi_device(dev);
341 const struct spi_driver *sdrv = to_spi_driver(drv);
342
343 /* Check override first, and if set, only use the named driver */
344 if (spi->driver_override)
345 return strcmp(spi->driver_override, drv->name) == 0;
346
347 /* Attempt an OF style match */
348 if (of_driver_match_device(dev, drv))
349 return 1;
350
351 /* Then try ACPI */
352 if (acpi_driver_match_device(dev, drv))
353 return 1;
354
355 if (sdrv->id_table)
356 return !!spi_match_id(sdrv->id_table, spi);
357
358 return strcmp(spi->modalias, drv->name) == 0;
359 }
360
361 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
362 {
363 const struct spi_device *spi = to_spi_device(dev);
364 int rc;
365
366 rc = acpi_device_uevent_modalias(dev, env);
367 if (rc != -ENODEV)
368 return rc;
369
370 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
371 }
372
373 struct bus_type spi_bus_type = {
374 .name = "spi",
375 .dev_groups = spi_dev_groups,
376 .match = spi_match_device,
377 .uevent = spi_uevent,
378 };
379 EXPORT_SYMBOL_GPL(spi_bus_type);
380
381
382 static int spi_drv_probe(struct device *dev)
383 {
384 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
385 struct spi_device *spi = to_spi_device(dev);
386 int ret;
387
388 ret = of_clk_set_defaults(dev->of_node, false);
389 if (ret)
390 return ret;
391
392 if (dev->of_node) {
393 spi->irq = of_irq_get(dev->of_node, 0);
394 if (spi->irq == -EPROBE_DEFER)
395 return -EPROBE_DEFER;
396 if (spi->irq < 0)
397 spi->irq = 0;
398 }
399
400 ret = dev_pm_domain_attach(dev, true);
401 if (ret)
402 return ret;
403
404 if (sdrv->probe) {
405 ret = sdrv->probe(spi);
406 if (ret)
407 dev_pm_domain_detach(dev, true);
408 }
409
410 return ret;
411 }
412
413 static int spi_drv_remove(struct device *dev)
414 {
415 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
416 int ret = 0;
417
418 if (sdrv->remove)
419 ret = sdrv->remove(to_spi_device(dev));
420 dev_pm_domain_detach(dev, true);
421
422 return ret;
423 }
424
425 static void spi_drv_shutdown(struct device *dev)
426 {
427 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
428
429 sdrv->shutdown(to_spi_device(dev));
430 }
431
432 /**
433 * __spi_register_driver - register a SPI driver
434 * @owner: owner module of the driver to register
435 * @sdrv: the driver to register
436 * Context: can sleep
437 *
438 * Return: zero on success, else a negative error code.
439 */
440 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
441 {
442 sdrv->driver.owner = owner;
443 sdrv->driver.bus = &spi_bus_type;
444 sdrv->driver.probe = spi_drv_probe;
445 sdrv->driver.remove = spi_drv_remove;
446 if (sdrv->shutdown)
447 sdrv->driver.shutdown = spi_drv_shutdown;
448 return driver_register(&sdrv->driver);
449 }
450 EXPORT_SYMBOL_GPL(__spi_register_driver);
451
452 /*-------------------------------------------------------------------------*/
453
454 /* SPI devices should normally not be created by SPI device drivers; that
455 * would make them board-specific. Similarly with SPI controller drivers.
456 * Device registration normally goes into like arch/.../mach.../board-YYY.c
457 * with other readonly (flashable) information about mainboard devices.
458 */
459
460 struct boardinfo {
461 struct list_head list;
462 struct spi_board_info board_info;
463 };
464
465 static LIST_HEAD(board_list);
466 static LIST_HEAD(spi_controller_list);
467
468 /*
469 * Used to protect add/del opertion for board_info list and
470 * spi_controller list, and their matching process
471 * also used to protect object of type struct idr
472 */
473 static DEFINE_MUTEX(board_lock);
474
475 /*
476 * Prevents addition of devices with same chip select and
477 * addition of devices below an unregistering controller.
478 */
479 static DEFINE_MUTEX(spi_add_lock);
480
481 /**
482 * spi_alloc_device - Allocate a new SPI device
483 * @ctlr: Controller to which device is connected
484 * Context: can sleep
485 *
486 * Allows a driver to allocate and initialize a spi_device without
487 * registering it immediately. This allows a driver to directly
488 * fill the spi_device with device parameters before calling
489 * spi_add_device() on it.
490 *
491 * Caller is responsible to call spi_add_device() on the returned
492 * spi_device structure to add it to the SPI controller. If the caller
493 * needs to discard the spi_device without adding it, then it should
494 * call spi_dev_put() on it.
495 *
496 * Return: a pointer to the new device, or NULL.
497 */
498 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
499 {
500 struct spi_device *spi;
501
502 if (!spi_controller_get(ctlr))
503 return NULL;
504
505 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
506 if (!spi) {
507 spi_controller_put(ctlr);
508 return NULL;
509 }
510
511 spi->master = spi->controller = ctlr;
512 spi->dev.parent = &ctlr->dev;
513 spi->dev.bus = &spi_bus_type;
514 spi->dev.release = spidev_release;
515 spi->cs_gpio = -ENOENT;
516 spi->mode = ctlr->buswidth_override_bits;
517
518 spin_lock_init(&spi->statistics.lock);
519
520 device_initialize(&spi->dev);
521 return spi;
522 }
523 EXPORT_SYMBOL_GPL(spi_alloc_device);
524
525 static void spi_dev_set_name(struct spi_device *spi)
526 {
527 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
528
529 if (adev) {
530 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
531 return;
532 }
533
534 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
535 spi->chip_select);
536 }
537
538 static int spi_dev_check(struct device *dev, void *data)
539 {
540 struct spi_device *spi = to_spi_device(dev);
541 struct spi_device *new_spi = data;
542
543 if (spi->controller == new_spi->controller &&
544 spi->chip_select == new_spi->chip_select)
545 return -EBUSY;
546 return 0;
547 }
548
549 static void spi_cleanup(struct spi_device *spi)
550 {
551 if (spi->controller->cleanup)
552 spi->controller->cleanup(spi);
553 }
554
555 /**
556 * spi_add_device - Add spi_device allocated with spi_alloc_device
557 * @spi: spi_device to register
558 *
559 * Companion function to spi_alloc_device. Devices allocated with
560 * spi_alloc_device can be added onto the spi bus with this function.
561 *
562 * Return: 0 on success; negative errno on failure
563 */
564 int spi_add_device(struct spi_device *spi)
565 {
566 struct spi_controller *ctlr = spi->controller;
567 struct device *dev = ctlr->dev.parent;
568 int status;
569
570 /* Chipselects are numbered 0..max; validate. */
571 if (spi->chip_select >= ctlr->num_chipselect) {
572 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
573 ctlr->num_chipselect);
574 return -EINVAL;
575 }
576
577 /* Set the bus ID string */
578 spi_dev_set_name(spi);
579
580 /* We need to make sure there's no other device with this
581 * chipselect **BEFORE** we call setup(), else we'll trash
582 * its configuration. Lock against concurrent add() calls.
583 */
584 mutex_lock(&spi_add_lock);
585
586 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
587 if (status) {
588 dev_err(dev, "chipselect %d already in use\n",
589 spi->chip_select);
590 goto done;
591 }
592
593 /* Controller may unregister concurrently */
594 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
595 !device_is_registered(&ctlr->dev)) {
596 status = -ENODEV;
597 goto done;
598 }
599
600 /* Descriptors take precedence */
601 if (ctlr->cs_gpiods)
602 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
603 else if (ctlr->cs_gpios)
604 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
605
606 /* Drivers may modify this initial i/o setup, but will
607 * normally rely on the device being setup. Devices
608 * using SPI_CS_HIGH can't coexist well otherwise...
609 */
610 status = spi_setup(spi);
611 if (status < 0) {
612 dev_err(dev, "can't setup %s, status %d\n",
613 dev_name(&spi->dev), status);
614 goto done;
615 }
616
617 /* Device may be bound to an active driver when this returns */
618 status = device_add(&spi->dev);
619 if (status < 0) {
620 dev_err(dev, "can't add %s, status %d\n",
621 dev_name(&spi->dev), status);
622 spi_cleanup(spi);
623 } else {
624 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
625 }
626
627 done:
628 mutex_unlock(&spi_add_lock);
629 return status;
630 }
631 EXPORT_SYMBOL_GPL(spi_add_device);
632
633 /**
634 * spi_new_device - instantiate one new SPI device
635 * @ctlr: Controller to which device is connected
636 * @chip: Describes the SPI device
637 * Context: can sleep
638 *
639 * On typical mainboards, this is purely internal; and it's not needed
640 * after board init creates the hard-wired devices. Some development
641 * platforms may not be able to use spi_register_board_info though, and
642 * this is exported so that for example a USB or parport based adapter
643 * driver could add devices (which it would learn about out-of-band).
644 *
645 * Return: the new device, or NULL.
646 */
647 struct spi_device *spi_new_device(struct spi_controller *ctlr,
648 struct spi_board_info *chip)
649 {
650 struct spi_device *proxy;
651 int status;
652
653 /* NOTE: caller did any chip->bus_num checks necessary.
654 *
655 * Also, unless we change the return value convention to use
656 * error-or-pointer (not NULL-or-pointer), troubleshootability
657 * suggests syslogged diagnostics are best here (ugh).
658 */
659
660 proxy = spi_alloc_device(ctlr);
661 if (!proxy)
662 return NULL;
663
664 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
665
666 proxy->chip_select = chip->chip_select;
667 proxy->max_speed_hz = chip->max_speed_hz;
668 proxy->mode = chip->mode;
669 proxy->irq = chip->irq;
670 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
671 proxy->dev.platform_data = (void *) chip->platform_data;
672 proxy->controller_data = chip->controller_data;
673 proxy->controller_state = NULL;
674
675 if (chip->properties) {
676 status = device_add_properties(&proxy->dev, chip->properties);
677 if (status) {
678 dev_err(&ctlr->dev,
679 "failed to add properties to '%s': %d\n",
680 chip->modalias, status);
681 goto err_dev_put;
682 }
683 }
684
685 status = spi_add_device(proxy);
686 if (status < 0)
687 goto err_remove_props;
688
689 return proxy;
690
691 err_remove_props:
692 if (chip->properties)
693 device_remove_properties(&proxy->dev);
694 err_dev_put:
695 spi_dev_put(proxy);
696 return NULL;
697 }
698 EXPORT_SYMBOL_GPL(spi_new_device);
699
700 /**
701 * spi_unregister_device - unregister a single SPI device
702 * @spi: spi_device to unregister
703 *
704 * Start making the passed SPI device vanish. Normally this would be handled
705 * by spi_unregister_controller().
706 */
707 void spi_unregister_device(struct spi_device *spi)
708 {
709 if (!spi)
710 return;
711
712 if (spi->dev.of_node) {
713 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
714 of_node_put(spi->dev.of_node);
715 }
716 if (ACPI_COMPANION(&spi->dev))
717 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
718 device_del(&spi->dev);
719 spi_cleanup(spi);
720 put_device(&spi->dev);
721 }
722 EXPORT_SYMBOL_GPL(spi_unregister_device);
723
724 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
725 struct spi_board_info *bi)
726 {
727 struct spi_device *dev;
728
729 if (ctlr->bus_num != bi->bus_num)
730 return;
731
732 dev = spi_new_device(ctlr, bi);
733 if (!dev)
734 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
735 bi->modalias);
736 }
737
738 /**
739 * spi_register_board_info - register SPI devices for a given board
740 * @info: array of chip descriptors
741 * @n: how many descriptors are provided
742 * Context: can sleep
743 *
744 * Board-specific early init code calls this (probably during arch_initcall)
745 * with segments of the SPI device table. Any device nodes are created later,
746 * after the relevant parent SPI controller (bus_num) is defined. We keep
747 * this table of devices forever, so that reloading a controller driver will
748 * not make Linux forget about these hard-wired devices.
749 *
750 * Other code can also call this, e.g. a particular add-on board might provide
751 * SPI devices through its expansion connector, so code initializing that board
752 * would naturally declare its SPI devices.
753 *
754 * The board info passed can safely be __initdata ... but be careful of
755 * any embedded pointers (platform_data, etc), they're copied as-is.
756 * Device properties are deep-copied though.
757 *
758 * Return: zero on success, else a negative error code.
759 */
760 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
761 {
762 struct boardinfo *bi;
763 int i;
764
765 if (!n)
766 return 0;
767
768 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
769 if (!bi)
770 return -ENOMEM;
771
772 for (i = 0; i < n; i++, bi++, info++) {
773 struct spi_controller *ctlr;
774
775 memcpy(&bi->board_info, info, sizeof(*info));
776 if (info->properties) {
777 bi->board_info.properties =
778 property_entries_dup(info->properties);
779 if (IS_ERR(bi->board_info.properties))
780 return PTR_ERR(bi->board_info.properties);
781 }
782
783 mutex_lock(&board_lock);
784 list_add_tail(&bi->list, &board_list);
785 list_for_each_entry(ctlr, &spi_controller_list, list)
786 spi_match_controller_to_boardinfo(ctlr,
787 &bi->board_info);
788 mutex_unlock(&board_lock);
789 }
790
791 return 0;
792 }
793
794 /*-------------------------------------------------------------------------*/
795
796 static void spi_set_cs(struct spi_device *spi, bool enable)
797 {
798 if (spi->mode & SPI_CS_HIGH)
799 enable = !enable;
800
801 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
802 /*
803 * Honour the SPI_NO_CS flag and invert the enable line, as
804 * active low is default for SPI. Execution paths that handle
805 * polarity inversion in gpiolib (such as device tree) will
806 * enforce active high using the SPI_CS_HIGH resulting in a
807 * double inversion through the code above.
808 */
809 if (!(spi->mode & SPI_NO_CS)) {
810 if (spi->cs_gpiod)
811 gpiod_set_value_cansleep(spi->cs_gpiod,
812 !enable);
813 else
814 gpio_set_value_cansleep(spi->cs_gpio, !enable);
815 }
816 /* Some SPI masters need both GPIO CS & slave_select */
817 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
818 spi->controller->set_cs)
819 spi->controller->set_cs(spi, !enable);
820 } else if (spi->controller->set_cs) {
821 spi->controller->set_cs(spi, !enable);
822 }
823 }
824
825 #ifdef CONFIG_HAS_DMA
826 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
827 struct sg_table *sgt, void *buf, size_t len,
828 enum dma_data_direction dir)
829 {
830 const bool vmalloced_buf = is_vmalloc_addr(buf);
831 unsigned int max_seg_size = dma_get_max_seg_size(dev);
832 #ifdef CONFIG_HIGHMEM
833 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
834 (unsigned long)buf < (PKMAP_BASE +
835 (LAST_PKMAP * PAGE_SIZE)));
836 #else
837 const bool kmap_buf = false;
838 #endif
839 int desc_len;
840 int sgs;
841 struct page *vm_page;
842 struct scatterlist *sg;
843 void *sg_buf;
844 size_t min;
845 int i, ret;
846
847 if (vmalloced_buf || kmap_buf) {
848 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
849 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
850 } else if (virt_addr_valid(buf)) {
851 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
852 sgs = DIV_ROUND_UP(len, desc_len);
853 } else {
854 return -EINVAL;
855 }
856
857 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
858 if (ret != 0)
859 return ret;
860
861 sg = &sgt->sgl[0];
862 for (i = 0; i < sgs; i++) {
863
864 if (vmalloced_buf || kmap_buf) {
865 /*
866 * Next scatterlist entry size is the minimum between
867 * the desc_len and the remaining buffer length that
868 * fits in a page.
869 */
870 min = min_t(size_t, desc_len,
871 min_t(size_t, len,
872 PAGE_SIZE - offset_in_page(buf)));
873 if (vmalloced_buf)
874 vm_page = vmalloc_to_page(buf);
875 else
876 vm_page = kmap_to_page(buf);
877 if (!vm_page) {
878 sg_free_table(sgt);
879 return -ENOMEM;
880 }
881 sg_set_page(sg, vm_page,
882 min, offset_in_page(buf));
883 } else {
884 min = min_t(size_t, len, desc_len);
885 sg_buf = buf;
886 sg_set_buf(sg, sg_buf, min);
887 }
888
889 buf += min;
890 len -= min;
891 sg = sg_next(sg);
892 }
893
894 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
895 if (!ret)
896 ret = -ENOMEM;
897 if (ret < 0) {
898 sg_free_table(sgt);
899 return ret;
900 }
901
902 sgt->nents = ret;
903
904 return 0;
905 }
906
907 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
908 struct sg_table *sgt, enum dma_data_direction dir)
909 {
910 if (sgt->orig_nents) {
911 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
912 sg_free_table(sgt);
913 }
914 }
915
916 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
917 {
918 struct device *tx_dev, *rx_dev;
919 struct spi_transfer *xfer;
920 int ret;
921
922 if (!ctlr->can_dma)
923 return 0;
924
925 if (ctlr->dma_tx)
926 tx_dev = ctlr->dma_tx->device->dev;
927 else
928 tx_dev = ctlr->dev.parent;
929
930 if (ctlr->dma_rx)
931 rx_dev = ctlr->dma_rx->device->dev;
932 else
933 rx_dev = ctlr->dev.parent;
934
935 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
936 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
937 continue;
938
939 if (xfer->tx_buf != NULL) {
940 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
941 (void *)xfer->tx_buf, xfer->len,
942 DMA_TO_DEVICE);
943 if (ret != 0)
944 return ret;
945 }
946
947 if (xfer->rx_buf != NULL) {
948 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
949 xfer->rx_buf, xfer->len,
950 DMA_FROM_DEVICE);
951 if (ret != 0) {
952 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
953 DMA_TO_DEVICE);
954 return ret;
955 }
956 }
957 }
958
959 ctlr->cur_msg_mapped = true;
960
961 return 0;
962 }
963
964 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
965 {
966 struct spi_transfer *xfer;
967 struct device *tx_dev, *rx_dev;
968
969 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
970 return 0;
971
972 if (ctlr->dma_tx)
973 tx_dev = ctlr->dma_tx->device->dev;
974 else
975 tx_dev = ctlr->dev.parent;
976
977 if (ctlr->dma_rx)
978 rx_dev = ctlr->dma_rx->device->dev;
979 else
980 rx_dev = ctlr->dev.parent;
981
982 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
983 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
984 continue;
985
986 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
987 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
988 }
989
990 return 0;
991 }
992 #else /* !CONFIG_HAS_DMA */
993 static inline int __spi_map_msg(struct spi_controller *ctlr,
994 struct spi_message *msg)
995 {
996 return 0;
997 }
998
999 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1000 struct spi_message *msg)
1001 {
1002 return 0;
1003 }
1004 #endif /* !CONFIG_HAS_DMA */
1005
1006 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1007 struct spi_message *msg)
1008 {
1009 struct spi_transfer *xfer;
1010
1011 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1012 /*
1013 * Restore the original value of tx_buf or rx_buf if they are
1014 * NULL.
1015 */
1016 if (xfer->tx_buf == ctlr->dummy_tx)
1017 xfer->tx_buf = NULL;
1018 if (xfer->rx_buf == ctlr->dummy_rx)
1019 xfer->rx_buf = NULL;
1020 }
1021
1022 return __spi_unmap_msg(ctlr, msg);
1023 }
1024
1025 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1026 {
1027 struct spi_transfer *xfer;
1028 void *tmp;
1029 unsigned int max_tx, max_rx;
1030
1031 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
1032 max_tx = 0;
1033 max_rx = 0;
1034
1035 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1036 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1037 !xfer->tx_buf)
1038 max_tx = max(xfer->len, max_tx);
1039 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1040 !xfer->rx_buf)
1041 max_rx = max(xfer->len, max_rx);
1042 }
1043
1044 if (max_tx) {
1045 tmp = krealloc(ctlr->dummy_tx, max_tx,
1046 GFP_KERNEL | GFP_DMA);
1047 if (!tmp)
1048 return -ENOMEM;
1049 ctlr->dummy_tx = tmp;
1050 memset(tmp, 0, max_tx);
1051 }
1052
1053 if (max_rx) {
1054 tmp = krealloc(ctlr->dummy_rx, max_rx,
1055 GFP_KERNEL | GFP_DMA);
1056 if (!tmp)
1057 return -ENOMEM;
1058 ctlr->dummy_rx = tmp;
1059 }
1060
1061 if (max_tx || max_rx) {
1062 list_for_each_entry(xfer, &msg->transfers,
1063 transfer_list) {
1064 if (!xfer->len)
1065 continue;
1066 if (!xfer->tx_buf)
1067 xfer->tx_buf = ctlr->dummy_tx;
1068 if (!xfer->rx_buf)
1069 xfer->rx_buf = ctlr->dummy_rx;
1070 }
1071 }
1072 }
1073
1074 return __spi_map_msg(ctlr, msg);
1075 }
1076
1077 static int spi_transfer_wait(struct spi_controller *ctlr,
1078 struct spi_message *msg,
1079 struct spi_transfer *xfer)
1080 {
1081 struct spi_statistics *statm = &ctlr->statistics;
1082 struct spi_statistics *stats = &msg->spi->statistics;
1083 unsigned long long ms = 1;
1084
1085 if (spi_controller_is_slave(ctlr)) {
1086 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1087 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1088 return -EINTR;
1089 }
1090 } else {
1091 ms = 8LL * 1000LL * xfer->len;
1092 do_div(ms, xfer->speed_hz);
1093 ms += ms + 200; /* some tolerance */
1094
1095 if (ms > UINT_MAX)
1096 ms = UINT_MAX;
1097
1098 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1099 msecs_to_jiffies(ms));
1100
1101 if (ms == 0) {
1102 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1103 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1104 dev_err(&msg->spi->dev,
1105 "SPI transfer timed out\n");
1106 return -ETIMEDOUT;
1107 }
1108 }
1109
1110 return 0;
1111 }
1112
1113 static void _spi_transfer_delay_ns(u32 ns)
1114 {
1115 if (!ns)
1116 return;
1117 if (ns <= 1000) {
1118 ndelay(ns);
1119 } else {
1120 u32 us = DIV_ROUND_UP(ns, 1000);
1121
1122 if (us <= 10)
1123 udelay(us);
1124 else
1125 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1126 }
1127 }
1128
1129 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1130 struct spi_transfer *xfer)
1131 {
1132 u32 delay = xfer->cs_change_delay;
1133 u32 unit = xfer->cs_change_delay_unit;
1134 u32 hz;
1135
1136 /* return early on "fast" mode - for everything but USECS */
1137 if (!delay && unit != SPI_DELAY_UNIT_USECS)
1138 return;
1139
1140 switch (unit) {
1141 case SPI_DELAY_UNIT_USECS:
1142 /* for compatibility use default of 10us */
1143 if (!delay)
1144 delay = 10000;
1145 else
1146 delay *= 1000;
1147 break;
1148 case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1149 break;
1150 case SPI_DELAY_UNIT_SCK:
1151 /* if there is no effective speed know, then approximate
1152 * by underestimating with half the requested hz
1153 */
1154 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1155 delay *= DIV_ROUND_UP(1000000000, hz);
1156 break;
1157 default:
1158 dev_err_once(&msg->spi->dev,
1159 "Use of unsupported delay unit %i, using default of 10us\n",
1160 xfer->cs_change_delay_unit);
1161 delay = 10000;
1162 }
1163 /* now sleep for the requested amount of time */
1164 _spi_transfer_delay_ns(delay);
1165 }
1166
1167 /*
1168 * spi_transfer_one_message - Default implementation of transfer_one_message()
1169 *
1170 * This is a standard implementation of transfer_one_message() for
1171 * drivers which implement a transfer_one() operation. It provides
1172 * standard handling of delays and chip select management.
1173 */
1174 static int spi_transfer_one_message(struct spi_controller *ctlr,
1175 struct spi_message *msg)
1176 {
1177 struct spi_transfer *xfer;
1178 bool keep_cs = false;
1179 int ret = 0;
1180 struct spi_statistics *statm = &ctlr->statistics;
1181 struct spi_statistics *stats = &msg->spi->statistics;
1182
1183 spi_set_cs(msg->spi, true);
1184
1185 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1186 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1187
1188 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1189 trace_spi_transfer_start(msg, xfer);
1190
1191 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1192 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1193
1194 if (xfer->tx_buf || xfer->rx_buf) {
1195 reinit_completion(&ctlr->xfer_completion);
1196
1197 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1198 if (ret < 0) {
1199 SPI_STATISTICS_INCREMENT_FIELD(statm,
1200 errors);
1201 SPI_STATISTICS_INCREMENT_FIELD(stats,
1202 errors);
1203 dev_err(&msg->spi->dev,
1204 "SPI transfer failed: %d\n", ret);
1205 goto out;
1206 }
1207
1208 if (ret > 0) {
1209 ret = spi_transfer_wait(ctlr, msg, xfer);
1210 if (ret < 0)
1211 msg->status = ret;
1212 }
1213 } else {
1214 if (xfer->len)
1215 dev_err(&msg->spi->dev,
1216 "Bufferless transfer has length %u\n",
1217 xfer->len);
1218 }
1219
1220 trace_spi_transfer_stop(msg, xfer);
1221
1222 if (msg->status != -EINPROGRESS)
1223 goto out;
1224
1225 if (xfer->delay_usecs)
1226 _spi_transfer_delay_ns(xfer->delay_usecs * 1000);
1227
1228 if (xfer->cs_change) {
1229 if (list_is_last(&xfer->transfer_list,
1230 &msg->transfers)) {
1231 keep_cs = true;
1232 } else {
1233 spi_set_cs(msg->spi, false);
1234 _spi_transfer_cs_change_delay(msg, xfer);
1235 spi_set_cs(msg->spi, true);
1236 }
1237 }
1238
1239 msg->actual_length += xfer->len;
1240 }
1241
1242 out:
1243 if (ret != 0 || !keep_cs)
1244 spi_set_cs(msg->spi, false);
1245
1246 if (msg->status == -EINPROGRESS)
1247 msg->status = ret;
1248
1249 if (msg->status && ctlr->handle_err)
1250 ctlr->handle_err(ctlr, msg);
1251
1252 spi_finalize_current_message(ctlr);
1253
1254 return ret;
1255 }
1256
1257 /**
1258 * spi_finalize_current_transfer - report completion of a transfer
1259 * @ctlr: the controller reporting completion
1260 *
1261 * Called by SPI drivers using the core transfer_one_message()
1262 * implementation to notify it that the current interrupt driven
1263 * transfer has finished and the next one may be scheduled.
1264 */
1265 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1266 {
1267 complete(&ctlr->xfer_completion);
1268 }
1269 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1270
1271 /**
1272 * __spi_pump_messages - function which processes spi message queue
1273 * @ctlr: controller to process queue for
1274 * @in_kthread: true if we are in the context of the message pump thread
1275 *
1276 * This function checks if there is any spi message in the queue that
1277 * needs processing and if so call out to the driver to initialize hardware
1278 * and transfer each message.
1279 *
1280 * Note that it is called both from the kthread itself and also from
1281 * inside spi_sync(); the queue extraction handling at the top of the
1282 * function should deal with this safely.
1283 */
1284 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1285 {
1286 struct spi_message *msg;
1287 bool was_busy = false;
1288 unsigned long flags;
1289 int ret;
1290
1291 /* Lock queue */
1292 spin_lock_irqsave(&ctlr->queue_lock, flags);
1293
1294 /* Make sure we are not already running a message */
1295 if (ctlr->cur_msg) {
1296 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1297 return;
1298 }
1299
1300 /* If another context is idling the device then defer */
1301 if (ctlr->idling) {
1302 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1303 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1304 return;
1305 }
1306
1307 /* Check if the queue is idle */
1308 if (list_empty(&ctlr->queue) || !ctlr->running) {
1309 if (!ctlr->busy) {
1310 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1311 return;
1312 }
1313
1314 /* Only do teardown in the thread */
1315 if (!in_kthread) {
1316 kthread_queue_work(&ctlr->kworker,
1317 &ctlr->pump_messages);
1318 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1319 return;
1320 }
1321
1322 ctlr->busy = false;
1323 ctlr->idling = true;
1324 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1325
1326 kfree(ctlr->dummy_rx);
1327 ctlr->dummy_rx = NULL;
1328 kfree(ctlr->dummy_tx);
1329 ctlr->dummy_tx = NULL;
1330 if (ctlr->unprepare_transfer_hardware &&
1331 ctlr->unprepare_transfer_hardware(ctlr))
1332 dev_err(&ctlr->dev,
1333 "failed to unprepare transfer hardware\n");
1334 if (ctlr->auto_runtime_pm) {
1335 pm_runtime_mark_last_busy(ctlr->dev.parent);
1336 pm_runtime_put_autosuspend(ctlr->dev.parent);
1337 }
1338 trace_spi_controller_idle(ctlr);
1339
1340 spin_lock_irqsave(&ctlr->queue_lock, flags);
1341 ctlr->idling = false;
1342 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1343 return;
1344 }
1345
1346 /* Extract head of queue */
1347 msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1348 ctlr->cur_msg = msg;
1349
1350 list_del_init(&msg->queue);
1351 if (ctlr->busy)
1352 was_busy = true;
1353 else
1354 ctlr->busy = true;
1355 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1356
1357 mutex_lock(&ctlr->io_mutex);
1358
1359 if (!was_busy && ctlr->auto_runtime_pm) {
1360 ret = pm_runtime_get_sync(ctlr->dev.parent);
1361 if (ret < 0) {
1362 pm_runtime_put_noidle(ctlr->dev.parent);
1363 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1364 ret);
1365 mutex_unlock(&ctlr->io_mutex);
1366 return;
1367 }
1368 }
1369
1370 if (!was_busy)
1371 trace_spi_controller_busy(ctlr);
1372
1373 if (!was_busy && ctlr->prepare_transfer_hardware) {
1374 ret = ctlr->prepare_transfer_hardware(ctlr);
1375 if (ret) {
1376 dev_err(&ctlr->dev,
1377 "failed to prepare transfer hardware: %d\n",
1378 ret);
1379
1380 if (ctlr->auto_runtime_pm)
1381 pm_runtime_put(ctlr->dev.parent);
1382
1383 msg->status = ret;
1384 spi_finalize_current_message(ctlr);
1385
1386 mutex_unlock(&ctlr->io_mutex);
1387 return;
1388 }
1389 }
1390
1391 trace_spi_message_start(msg);
1392
1393 if (ctlr->prepare_message) {
1394 ret = ctlr->prepare_message(ctlr, msg);
1395 if (ret) {
1396 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1397 ret);
1398 msg->status = ret;
1399 spi_finalize_current_message(ctlr);
1400 goto out;
1401 }
1402 ctlr->cur_msg_prepared = true;
1403 }
1404
1405 ret = spi_map_msg(ctlr, msg);
1406 if (ret) {
1407 msg->status = ret;
1408 spi_finalize_current_message(ctlr);
1409 goto out;
1410 }
1411
1412 ret = ctlr->transfer_one_message(ctlr, msg);
1413 if (ret) {
1414 dev_err(&ctlr->dev,
1415 "failed to transfer one message from queue\n");
1416 goto out;
1417 }
1418
1419 out:
1420 mutex_unlock(&ctlr->io_mutex);
1421
1422 /* Prod the scheduler in case transfer_one() was busy waiting */
1423 if (!ret)
1424 cond_resched();
1425 }
1426
1427 /**
1428 * spi_pump_messages - kthread work function which processes spi message queue
1429 * @work: pointer to kthread work struct contained in the controller struct
1430 */
1431 static void spi_pump_messages(struct kthread_work *work)
1432 {
1433 struct spi_controller *ctlr =
1434 container_of(work, struct spi_controller, pump_messages);
1435
1436 __spi_pump_messages(ctlr, true);
1437 }
1438
1439 /**
1440 * spi_set_thread_rt - set the controller to pump at realtime priority
1441 * @ctlr: controller to boost priority of
1442 *
1443 * This can be called because the controller requested realtime priority
1444 * (by setting the ->rt value before calling spi_register_controller()) or
1445 * because a device on the bus said that its transfers needed realtime
1446 * priority.
1447 *
1448 * NOTE: at the moment if any device on a bus says it needs realtime then
1449 * the thread will be at realtime priority for all transfers on that
1450 * controller. If this eventually becomes a problem we may see if we can
1451 * find a way to boost the priority only temporarily during relevant
1452 * transfers.
1453 */
1454 static void spi_set_thread_rt(struct spi_controller *ctlr)
1455 {
1456 struct sched_param param = { .sched_priority = MAX_RT_PRIO / 2 };
1457
1458 dev_info(&ctlr->dev,
1459 "will run message pump with realtime priority\n");
1460 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1461 }
1462
1463 static int spi_init_queue(struct spi_controller *ctlr)
1464 {
1465 ctlr->running = false;
1466 ctlr->busy = false;
1467
1468 kthread_init_worker(&ctlr->kworker);
1469 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1470 "%s", dev_name(&ctlr->dev));
1471 if (IS_ERR(ctlr->kworker_task)) {
1472 dev_err(&ctlr->dev, "failed to create message pump task\n");
1473 return PTR_ERR(ctlr->kworker_task);
1474 }
1475 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1476
1477 /*
1478 * Controller config will indicate if this controller should run the
1479 * message pump with high (realtime) priority to reduce the transfer
1480 * latency on the bus by minimising the delay between a transfer
1481 * request and the scheduling of the message pump thread. Without this
1482 * setting the message pump thread will remain at default priority.
1483 */
1484 if (ctlr->rt)
1485 spi_set_thread_rt(ctlr);
1486
1487 return 0;
1488 }
1489
1490 /**
1491 * spi_get_next_queued_message() - called by driver to check for queued
1492 * messages
1493 * @ctlr: the controller to check for queued messages
1494 *
1495 * If there are more messages in the queue, the next message is returned from
1496 * this call.
1497 *
1498 * Return: the next message in the queue, else NULL if the queue is empty.
1499 */
1500 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1501 {
1502 struct spi_message *next;
1503 unsigned long flags;
1504
1505 /* get a pointer to the next message, if any */
1506 spin_lock_irqsave(&ctlr->queue_lock, flags);
1507 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1508 queue);
1509 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1510
1511 return next;
1512 }
1513 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1514
1515 /**
1516 * spi_finalize_current_message() - the current message is complete
1517 * @ctlr: the controller to return the message to
1518 *
1519 * Called by the driver to notify the core that the message in the front of the
1520 * queue is complete and can be removed from the queue.
1521 */
1522 void spi_finalize_current_message(struct spi_controller *ctlr)
1523 {
1524 struct spi_message *mesg;
1525 unsigned long flags;
1526 int ret;
1527
1528 spin_lock_irqsave(&ctlr->queue_lock, flags);
1529 mesg = ctlr->cur_msg;
1530 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1531
1532 spi_unmap_msg(ctlr, mesg);
1533
1534 /* In the prepare_messages callback the spi bus has the opportunity to
1535 * split a transfer to smaller chunks.
1536 * Release splited transfers here since spi_map_msg is done on the
1537 * splited transfers.
1538 */
1539 spi_res_release(ctlr, mesg);
1540
1541 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1542 ret = ctlr->unprepare_message(ctlr, mesg);
1543 if (ret) {
1544 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1545 ret);
1546 }
1547 }
1548
1549 spin_lock_irqsave(&ctlr->queue_lock, flags);
1550 ctlr->cur_msg = NULL;
1551 ctlr->cur_msg_prepared = false;
1552 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1553 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1554
1555 trace_spi_message_done(mesg);
1556
1557 mesg->state = NULL;
1558 if (mesg->complete)
1559 mesg->complete(mesg->context);
1560 }
1561 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1562
1563 static int spi_start_queue(struct spi_controller *ctlr)
1564 {
1565 unsigned long flags;
1566
1567 spin_lock_irqsave(&ctlr->queue_lock, flags);
1568
1569 if (ctlr->running || ctlr->busy) {
1570 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1571 return -EBUSY;
1572 }
1573
1574 ctlr->running = true;
1575 ctlr->cur_msg = NULL;
1576 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1577
1578 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1579
1580 return 0;
1581 }
1582
1583 static int spi_stop_queue(struct spi_controller *ctlr)
1584 {
1585 unsigned long flags;
1586 unsigned limit = 500;
1587 int ret = 0;
1588
1589 spin_lock_irqsave(&ctlr->queue_lock, flags);
1590
1591 /*
1592 * This is a bit lame, but is optimized for the common execution path.
1593 * A wait_queue on the ctlr->busy could be used, but then the common
1594 * execution path (pump_messages) would be required to call wake_up or
1595 * friends on every SPI message. Do this instead.
1596 */
1597 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1598 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1599 usleep_range(10000, 11000);
1600 spin_lock_irqsave(&ctlr->queue_lock, flags);
1601 }
1602
1603 if (!list_empty(&ctlr->queue) || ctlr->busy)
1604 ret = -EBUSY;
1605 else
1606 ctlr->running = false;
1607
1608 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1609
1610 if (ret) {
1611 dev_warn(&ctlr->dev, "could not stop message queue\n");
1612 return ret;
1613 }
1614 return ret;
1615 }
1616
1617 static int spi_destroy_queue(struct spi_controller *ctlr)
1618 {
1619 int ret;
1620
1621 ret = spi_stop_queue(ctlr);
1622
1623 /*
1624 * kthread_flush_worker will block until all work is done.
1625 * If the reason that stop_queue timed out is that the work will never
1626 * finish, then it does no good to call flush/stop thread, so
1627 * return anyway.
1628 */
1629 if (ret) {
1630 dev_err(&ctlr->dev, "problem destroying queue\n");
1631 return ret;
1632 }
1633
1634 kthread_flush_worker(&ctlr->kworker);
1635 kthread_stop(ctlr->kworker_task);
1636
1637 return 0;
1638 }
1639
1640 static int __spi_queued_transfer(struct spi_device *spi,
1641 struct spi_message *msg,
1642 bool need_pump)
1643 {
1644 struct spi_controller *ctlr = spi->controller;
1645 unsigned long flags;
1646
1647 spin_lock_irqsave(&ctlr->queue_lock, flags);
1648
1649 if (!ctlr->running) {
1650 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1651 return -ESHUTDOWN;
1652 }
1653 msg->actual_length = 0;
1654 msg->status = -EINPROGRESS;
1655
1656 list_add_tail(&msg->queue, &ctlr->queue);
1657 if (!ctlr->busy && need_pump)
1658 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1659
1660 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1661 return 0;
1662 }
1663
1664 /**
1665 * spi_queued_transfer - transfer function for queued transfers
1666 * @spi: spi device which is requesting transfer
1667 * @msg: spi message which is to handled is queued to driver queue
1668 *
1669 * Return: zero on success, else a negative error code.
1670 */
1671 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1672 {
1673 return __spi_queued_transfer(spi, msg, true);
1674 }
1675
1676 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1677 {
1678 int ret;
1679
1680 ctlr->transfer = spi_queued_transfer;
1681 if (!ctlr->transfer_one_message)
1682 ctlr->transfer_one_message = spi_transfer_one_message;
1683
1684 /* Initialize and start queue */
1685 ret = spi_init_queue(ctlr);
1686 if (ret) {
1687 dev_err(&ctlr->dev, "problem initializing queue\n");
1688 goto err_init_queue;
1689 }
1690 ctlr->queued = true;
1691 ret = spi_start_queue(ctlr);
1692 if (ret) {
1693 dev_err(&ctlr->dev, "problem starting queue\n");
1694 goto err_start_queue;
1695 }
1696
1697 return 0;
1698
1699 err_start_queue:
1700 spi_destroy_queue(ctlr);
1701 err_init_queue:
1702 return ret;
1703 }
1704
1705 /**
1706 * spi_flush_queue - Send all pending messages in the queue from the callers'
1707 * context
1708 * @ctlr: controller to process queue for
1709 *
1710 * This should be used when one wants to ensure all pending messages have been
1711 * sent before doing something. Is used by the spi-mem code to make sure SPI
1712 * memory operations do not preempt regular SPI transfers that have been queued
1713 * before the spi-mem operation.
1714 */
1715 void spi_flush_queue(struct spi_controller *ctlr)
1716 {
1717 if (ctlr->transfer == spi_queued_transfer)
1718 __spi_pump_messages(ctlr, false);
1719 }
1720
1721 /*-------------------------------------------------------------------------*/
1722
1723 #if defined(CONFIG_OF)
1724 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1725 struct device_node *nc)
1726 {
1727 u32 value;
1728 int rc;
1729
1730 /* Mode (clock phase/polarity/etc.) */
1731 if (of_property_read_bool(nc, "spi-cpha"))
1732 spi->mode |= SPI_CPHA;
1733 if (of_property_read_bool(nc, "spi-cpol"))
1734 spi->mode |= SPI_CPOL;
1735 if (of_property_read_bool(nc, "spi-3wire"))
1736 spi->mode |= SPI_3WIRE;
1737 if (of_property_read_bool(nc, "spi-lsb-first"))
1738 spi->mode |= SPI_LSB_FIRST;
1739 if (of_property_read_bool(nc, "spi-cs-high"))
1740 spi->mode |= SPI_CS_HIGH;
1741
1742 /* Device DUAL/QUAD mode */
1743 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1744 switch (value) {
1745 case 1:
1746 break;
1747 case 2:
1748 spi->mode |= SPI_TX_DUAL;
1749 break;
1750 case 4:
1751 spi->mode |= SPI_TX_QUAD;
1752 break;
1753 case 8:
1754 spi->mode |= SPI_TX_OCTAL;
1755 break;
1756 default:
1757 dev_warn(&ctlr->dev,
1758 "spi-tx-bus-width %d not supported\n",
1759 value);
1760 break;
1761 }
1762 }
1763
1764 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1765 switch (value) {
1766 case 1:
1767 break;
1768 case 2:
1769 spi->mode |= SPI_RX_DUAL;
1770 break;
1771 case 4:
1772 spi->mode |= SPI_RX_QUAD;
1773 break;
1774 case 8:
1775 spi->mode |= SPI_RX_OCTAL;
1776 break;
1777 default:
1778 dev_warn(&ctlr->dev,
1779 "spi-rx-bus-width %d not supported\n",
1780 value);
1781 break;
1782 }
1783 }
1784
1785 if (spi_controller_is_slave(ctlr)) {
1786 if (!of_node_name_eq(nc, "slave")) {
1787 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1788 nc);
1789 return -EINVAL;
1790 }
1791 return 0;
1792 }
1793
1794 /* Device address */
1795 rc = of_property_read_u32(nc, "reg", &value);
1796 if (rc) {
1797 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1798 nc, rc);
1799 return rc;
1800 }
1801 spi->chip_select = value;
1802
1803 /*
1804 * For descriptors associated with the device, polarity inversion is
1805 * handled in the gpiolib, so all gpio chip selects are "active high"
1806 * in the logical sense, the gpiolib will invert the line if need be.
1807 */
1808 if ((ctlr->use_gpio_descriptors) && ctlr->cs_gpiods &&
1809 ctlr->cs_gpiods[spi->chip_select])
1810 spi->mode |= SPI_CS_HIGH;
1811
1812 /* Device speed */
1813 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1814 if (rc) {
1815 dev_err(&ctlr->dev,
1816 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1817 return rc;
1818 }
1819 spi->max_speed_hz = value;
1820
1821 return 0;
1822 }
1823
1824 static struct spi_device *
1825 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1826 {
1827 struct spi_device *spi;
1828 int rc;
1829
1830 /* Alloc an spi_device */
1831 spi = spi_alloc_device(ctlr);
1832 if (!spi) {
1833 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1834 rc = -ENOMEM;
1835 goto err_out;
1836 }
1837
1838 /* Select device driver */
1839 rc = of_modalias_node(nc, spi->modalias,
1840 sizeof(spi->modalias));
1841 if (rc < 0) {
1842 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1843 goto err_out;
1844 }
1845
1846 rc = of_spi_parse_dt(ctlr, spi, nc);
1847 if (rc)
1848 goto err_out;
1849
1850 /* Store a pointer to the node in the device structure */
1851 of_node_get(nc);
1852 spi->dev.of_node = nc;
1853 spi->dev.fwnode = of_fwnode_handle(nc);
1854
1855 /* Register the new device */
1856 rc = spi_add_device(spi);
1857 if (rc) {
1858 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1859 goto err_of_node_put;
1860 }
1861
1862 return spi;
1863
1864 err_of_node_put:
1865 of_node_put(nc);
1866 err_out:
1867 spi_dev_put(spi);
1868 return ERR_PTR(rc);
1869 }
1870
1871 /**
1872 * of_register_spi_devices() - Register child devices onto the SPI bus
1873 * @ctlr: Pointer to spi_controller device
1874 *
1875 * Registers an spi_device for each child node of controller node which
1876 * represents a valid SPI slave.
1877 */
1878 static void of_register_spi_devices(struct spi_controller *ctlr)
1879 {
1880 struct spi_device *spi;
1881 struct device_node *nc;
1882
1883 if (!ctlr->dev.of_node)
1884 return;
1885
1886 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1887 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1888 continue;
1889 spi = of_register_spi_device(ctlr, nc);
1890 if (IS_ERR(spi)) {
1891 dev_warn(&ctlr->dev,
1892 "Failed to create SPI device for %pOF\n", nc);
1893 of_node_clear_flag(nc, OF_POPULATED);
1894 }
1895 }
1896 }
1897 #else
1898 static void of_register_spi_devices(struct spi_controller *ctlr) { }
1899 #endif
1900
1901 #ifdef CONFIG_ACPI
1902 struct acpi_spi_lookup {
1903 struct spi_controller *ctlr;
1904 u32 max_speed_hz;
1905 u32 mode;
1906 int irq;
1907 u8 bits_per_word;
1908 u8 chip_select;
1909 };
1910
1911 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
1912 struct acpi_spi_lookup *lookup)
1913 {
1914 const union acpi_object *obj;
1915
1916 if (!x86_apple_machine)
1917 return;
1918
1919 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1920 && obj->buffer.length >= 4)
1921 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1922
1923 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1924 && obj->buffer.length == 8)
1925 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
1926
1927 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1928 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1929 lookup->mode |= SPI_LSB_FIRST;
1930
1931 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1932 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1933 lookup->mode |= SPI_CPOL;
1934
1935 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1936 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1937 lookup->mode |= SPI_CPHA;
1938 }
1939
1940 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1941 {
1942 struct acpi_spi_lookup *lookup = data;
1943 struct spi_controller *ctlr = lookup->ctlr;
1944
1945 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1946 struct acpi_resource_spi_serialbus *sb;
1947 acpi_handle parent_handle;
1948 acpi_status status;
1949
1950 sb = &ares->data.spi_serial_bus;
1951 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1952
1953 status = acpi_get_handle(NULL,
1954 sb->resource_source.string_ptr,
1955 &parent_handle);
1956
1957 if (ACPI_FAILURE(status) ||
1958 ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
1959 return -ENODEV;
1960
1961 /*
1962 * ACPI DeviceSelection numbering is handled by the
1963 * host controller driver in Windows and can vary
1964 * from driver to driver. In Linux we always expect
1965 * 0 .. max - 1 so we need to ask the driver to
1966 * translate between the two schemes.
1967 */
1968 if (ctlr->fw_translate_cs) {
1969 int cs = ctlr->fw_translate_cs(ctlr,
1970 sb->device_selection);
1971 if (cs < 0)
1972 return cs;
1973 lookup->chip_select = cs;
1974 } else {
1975 lookup->chip_select = sb->device_selection;
1976 }
1977
1978 lookup->max_speed_hz = sb->connection_speed;
1979 lookup->bits_per_word = sb->data_bit_length;
1980
1981 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1982 lookup->mode |= SPI_CPHA;
1983 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1984 lookup->mode |= SPI_CPOL;
1985 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1986 lookup->mode |= SPI_CS_HIGH;
1987 }
1988 } else if (lookup->irq < 0) {
1989 struct resource r;
1990
1991 if (acpi_dev_resource_interrupt(ares, 0, &r))
1992 lookup->irq = r.start;
1993 }
1994
1995 /* Always tell the ACPI core to skip this resource */
1996 return 1;
1997 }
1998
1999 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2000 struct acpi_device *adev)
2001 {
2002 acpi_handle parent_handle = NULL;
2003 struct list_head resource_list;
2004 struct acpi_spi_lookup lookup = {};
2005 struct spi_device *spi;
2006 int ret;
2007
2008 if (acpi_bus_get_status(adev) || !adev->status.present ||
2009 acpi_device_enumerated(adev))
2010 return AE_OK;
2011
2012 lookup.ctlr = ctlr;
2013 lookup.irq = -1;
2014
2015 INIT_LIST_HEAD(&resource_list);
2016 ret = acpi_dev_get_resources(adev, &resource_list,
2017 acpi_spi_add_resource, &lookup);
2018 acpi_dev_free_resource_list(&resource_list);
2019
2020 if (ret < 0)
2021 /* found SPI in _CRS but it points to another controller */
2022 return AE_OK;
2023
2024 if (!lookup.max_speed_hz &&
2025 !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
2026 ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2027 /* Apple does not use _CRS but nested devices for SPI slaves */
2028 acpi_spi_parse_apple_properties(adev, &lookup);
2029 }
2030
2031 if (!lookup.max_speed_hz)
2032 return AE_OK;
2033
2034 spi = spi_alloc_device(ctlr);
2035 if (!spi) {
2036 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2037 dev_name(&adev->dev));
2038 return AE_NO_MEMORY;
2039 }
2040
2041
2042 ACPI_COMPANION_SET(&spi->dev, adev);
2043 spi->max_speed_hz = lookup.max_speed_hz;
2044 spi->mode |= lookup.mode;
2045 spi->irq = lookup.irq;
2046 spi->bits_per_word = lookup.bits_per_word;
2047 spi->chip_select = lookup.chip_select;
2048
2049 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2050 sizeof(spi->modalias));
2051
2052 if (spi->irq < 0)
2053 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2054
2055 acpi_device_set_enumerated(adev);
2056
2057 adev->power.flags.ignore_parent = true;
2058 if (spi_add_device(spi)) {
2059 adev->power.flags.ignore_parent = false;
2060 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2061 dev_name(&adev->dev));
2062 spi_dev_put(spi);
2063 }
2064
2065 return AE_OK;
2066 }
2067
2068 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2069 void *data, void **return_value)
2070 {
2071 struct spi_controller *ctlr = data;
2072 struct acpi_device *adev;
2073
2074 if (acpi_bus_get_device(handle, &adev))
2075 return AE_OK;
2076
2077 return acpi_register_spi_device(ctlr, adev);
2078 }
2079
2080 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32
2081
2082 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2083 {
2084 acpi_status status;
2085 acpi_handle handle;
2086
2087 handle = ACPI_HANDLE(ctlr->dev.parent);
2088 if (!handle)
2089 return;
2090
2091 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2092 SPI_ACPI_ENUMERATE_MAX_DEPTH,
2093 acpi_spi_add_device, NULL, ctlr, NULL);
2094 if (ACPI_FAILURE(status))
2095 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2096 }
2097 #else
2098 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2099 #endif /* CONFIG_ACPI */
2100
2101 static void spi_controller_release(struct device *dev)
2102 {
2103 struct spi_controller *ctlr;
2104
2105 ctlr = container_of(dev, struct spi_controller, dev);
2106 kfree(ctlr);
2107 }
2108
2109 static struct class spi_master_class = {
2110 .name = "spi_master",
2111 .owner = THIS_MODULE,
2112 .dev_release = spi_controller_release,
2113 .dev_groups = spi_master_groups,
2114 };
2115
2116 #ifdef CONFIG_SPI_SLAVE
2117 /**
2118 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2119 * controller
2120 * @spi: device used for the current transfer
2121 */
2122 int spi_slave_abort(struct spi_device *spi)
2123 {
2124 struct spi_controller *ctlr = spi->controller;
2125
2126 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2127 return ctlr->slave_abort(ctlr);
2128
2129 return -ENOTSUPP;
2130 }
2131 EXPORT_SYMBOL_GPL(spi_slave_abort);
2132
2133 static int match_true(struct device *dev, void *data)
2134 {
2135 return 1;
2136 }
2137
2138 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2139 char *buf)
2140 {
2141 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2142 dev);
2143 struct device *child;
2144
2145 child = device_find_child(&ctlr->dev, NULL, match_true);
2146 return sprintf(buf, "%s\n",
2147 child ? to_spi_device(child)->modalias : NULL);
2148 }
2149
2150 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2151 const char *buf, size_t count)
2152 {
2153 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2154 dev);
2155 struct spi_device *spi;
2156 struct device *child;
2157 char name[32];
2158 int rc;
2159
2160 rc = sscanf(buf, "%31s", name);
2161 if (rc != 1 || !name[0])
2162 return -EINVAL;
2163
2164 child = device_find_child(&ctlr->dev, NULL, match_true);
2165 if (child) {
2166 /* Remove registered slave */
2167 device_unregister(child);
2168 put_device(child);
2169 }
2170
2171 if (strcmp(name, "(null)")) {
2172 /* Register new slave */
2173 spi = spi_alloc_device(ctlr);
2174 if (!spi)
2175 return -ENOMEM;
2176
2177 strlcpy(spi->modalias, name, sizeof(spi->modalias));
2178
2179 rc = spi_add_device(spi);
2180 if (rc) {
2181 spi_dev_put(spi);
2182 return rc;
2183 }
2184 }
2185
2186 return count;
2187 }
2188
2189 static DEVICE_ATTR_RW(slave);
2190
2191 static struct attribute *spi_slave_attrs[] = {
2192 &dev_attr_slave.attr,
2193 NULL,
2194 };
2195
2196 static const struct attribute_group spi_slave_group = {
2197 .attrs = spi_slave_attrs,
2198 };
2199
2200 static const struct attribute_group *spi_slave_groups[] = {
2201 &spi_controller_statistics_group,
2202 &spi_slave_group,
2203 NULL,
2204 };
2205
2206 static struct class spi_slave_class = {
2207 .name = "spi_slave",
2208 .owner = THIS_MODULE,
2209 .dev_release = spi_controller_release,
2210 .dev_groups = spi_slave_groups,
2211 };
2212 #else
2213 extern struct class spi_slave_class; /* dummy */
2214 #endif
2215
2216 /**
2217 * __spi_alloc_controller - allocate an SPI master or slave controller
2218 * @dev: the controller, possibly using the platform_bus
2219 * @size: how much zeroed driver-private data to allocate; the pointer to this
2220 * memory is in the driver_data field of the returned device, accessible
2221 * with spi_controller_get_devdata(); the memory is cacheline aligned;
2222 * drivers granting DMA access to portions of their private data need to
2223 * round up @size using ALIGN(size, dma_get_cache_alignment()).
2224 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2225 * slave (true) controller
2226 * Context: can sleep
2227 *
2228 * This call is used only by SPI controller drivers, which are the
2229 * only ones directly touching chip registers. It's how they allocate
2230 * an spi_controller structure, prior to calling spi_register_controller().
2231 *
2232 * This must be called from context that can sleep.
2233 *
2234 * The caller is responsible for assigning the bus number and initializing the
2235 * controller's methods before calling spi_register_controller(); and (after
2236 * errors adding the device) calling spi_controller_put() to prevent a memory
2237 * leak.
2238 *
2239 * Return: the SPI controller structure on success, else NULL.
2240 */
2241 struct spi_controller *__spi_alloc_controller(struct device *dev,
2242 unsigned int size, bool slave)
2243 {
2244 struct spi_controller *ctlr;
2245 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2246
2247 if (!dev)
2248 return NULL;
2249
2250 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2251 if (!ctlr)
2252 return NULL;
2253
2254 device_initialize(&ctlr->dev);
2255 ctlr->bus_num = -1;
2256 ctlr->num_chipselect = 1;
2257 ctlr->slave = slave;
2258 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2259 ctlr->dev.class = &spi_slave_class;
2260 else
2261 ctlr->dev.class = &spi_master_class;
2262 ctlr->dev.parent = dev;
2263 pm_suspend_ignore_children(&ctlr->dev, true);
2264 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2265
2266 return ctlr;
2267 }
2268 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2269
2270 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2271 {
2272 spi_controller_put(*(struct spi_controller **)ctlr);
2273 }
2274
2275 /**
2276 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2277 * @dev: physical device of SPI controller
2278 * @size: how much zeroed driver-private data to allocate
2279 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2280 * Context: can sleep
2281 *
2282 * Allocate an SPI controller and automatically release a reference on it
2283 * when @dev is unbound from its driver. Drivers are thus relieved from
2284 * having to call spi_controller_put().
2285 *
2286 * The arguments to this function are identical to __spi_alloc_controller().
2287 *
2288 * Return: the SPI controller structure on success, else NULL.
2289 */
2290 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2291 unsigned int size,
2292 bool slave)
2293 {
2294 struct spi_controller **ptr, *ctlr;
2295
2296 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2297 GFP_KERNEL);
2298 if (!ptr)
2299 return NULL;
2300
2301 ctlr = __spi_alloc_controller(dev, size, slave);
2302 if (ctlr) {
2303 ctlr->devm_allocated = true;
2304 *ptr = ctlr;
2305 devres_add(dev, ptr);
2306 } else {
2307 devres_free(ptr);
2308 }
2309
2310 return ctlr;
2311 }
2312 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2313
2314 #ifdef CONFIG_OF
2315 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2316 {
2317 int nb, i, *cs;
2318 struct device_node *np = ctlr->dev.of_node;
2319
2320 if (!np)
2321 return 0;
2322
2323 nb = of_gpio_named_count(np, "cs-gpios");
2324 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2325
2326 /* Return error only for an incorrectly formed cs-gpios property */
2327 if (nb == 0 || nb == -ENOENT)
2328 return 0;
2329 else if (nb < 0)
2330 return nb;
2331
2332 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2333 GFP_KERNEL);
2334 ctlr->cs_gpios = cs;
2335
2336 if (!ctlr->cs_gpios)
2337 return -ENOMEM;
2338
2339 for (i = 0; i < ctlr->num_chipselect; i++)
2340 cs[i] = -ENOENT;
2341
2342 for (i = 0; i < nb; i++)
2343 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2344
2345 return 0;
2346 }
2347 #else
2348 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2349 {
2350 return 0;
2351 }
2352 #endif
2353
2354 /**
2355 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2356 * @ctlr: The SPI master to grab GPIO descriptors for
2357 */
2358 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2359 {
2360 int nb, i;
2361 struct gpio_desc **cs;
2362 struct device *dev = &ctlr->dev;
2363
2364 nb = gpiod_count(dev, "cs");
2365 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2366
2367 /* No GPIOs at all is fine, else return the error */
2368 if (nb == 0 || nb == -ENOENT)
2369 return 0;
2370 else if (nb < 0)
2371 return nb;
2372
2373 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2374 GFP_KERNEL);
2375 if (!cs)
2376 return -ENOMEM;
2377 ctlr->cs_gpiods = cs;
2378
2379 for (i = 0; i < nb; i++) {
2380 /*
2381 * Most chipselects are active low, the inverted
2382 * semantics are handled by special quirks in gpiolib,
2383 * so initializing them GPIOD_OUT_LOW here means
2384 * "unasserted", in most cases this will drive the physical
2385 * line high.
2386 */
2387 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2388 GPIOD_OUT_LOW);
2389 if (IS_ERR(cs[i]))
2390 return PTR_ERR(cs[i]);
2391
2392 if (cs[i]) {
2393 /*
2394 * If we find a CS GPIO, name it after the device and
2395 * chip select line.
2396 */
2397 char *gpioname;
2398
2399 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2400 dev_name(dev), i);
2401 if (!gpioname)
2402 return -ENOMEM;
2403 gpiod_set_consumer_name(cs[i], gpioname);
2404 }
2405 }
2406
2407 return 0;
2408 }
2409
2410 static int spi_controller_check_ops(struct spi_controller *ctlr)
2411 {
2412 /*
2413 * The controller may implement only the high-level SPI-memory like
2414 * operations if it does not support regular SPI transfers, and this is
2415 * valid use case.
2416 * If ->mem_ops is NULL, we request that at least one of the
2417 * ->transfer_xxx() method be implemented.
2418 */
2419 if (ctlr->mem_ops) {
2420 if (!ctlr->mem_ops->exec_op)
2421 return -EINVAL;
2422 } else if (!ctlr->transfer && !ctlr->transfer_one &&
2423 !ctlr->transfer_one_message) {
2424 return -EINVAL;
2425 }
2426
2427 return 0;
2428 }
2429
2430 /**
2431 * spi_register_controller - register SPI master or slave controller
2432 * @ctlr: initialized master, originally from spi_alloc_master() or
2433 * spi_alloc_slave()
2434 * Context: can sleep
2435 *
2436 * SPI controllers connect to their drivers using some non-SPI bus,
2437 * such as the platform bus. The final stage of probe() in that code
2438 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2439 *
2440 * SPI controllers use board specific (often SOC specific) bus numbers,
2441 * and board-specific addressing for SPI devices combines those numbers
2442 * with chip select numbers. Since SPI does not directly support dynamic
2443 * device identification, boards need configuration tables telling which
2444 * chip is at which address.
2445 *
2446 * This must be called from context that can sleep. It returns zero on
2447 * success, else a negative error code (dropping the controller's refcount).
2448 * After a successful return, the caller is responsible for calling
2449 * spi_unregister_controller().
2450 *
2451 * Return: zero on success, else a negative error code.
2452 */
2453 int spi_register_controller(struct spi_controller *ctlr)
2454 {
2455 struct device *dev = ctlr->dev.parent;
2456 struct boardinfo *bi;
2457 int status;
2458 int id, first_dynamic;
2459
2460 if (!dev)
2461 return -ENODEV;
2462
2463 /*
2464 * Make sure all necessary hooks are implemented before registering
2465 * the SPI controller.
2466 */
2467 status = spi_controller_check_ops(ctlr);
2468 if (status)
2469 return status;
2470
2471 if (ctlr->bus_num >= 0) {
2472 /* devices with a fixed bus num must check-in with the num */
2473 mutex_lock(&board_lock);
2474 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2475 ctlr->bus_num + 1, GFP_KERNEL);
2476 mutex_unlock(&board_lock);
2477 if (WARN(id < 0, "couldn't get idr"))
2478 return id == -ENOSPC ? -EBUSY : id;
2479 ctlr->bus_num = id;
2480 } else if (ctlr->dev.of_node) {
2481 /* allocate dynamic bus number using Linux idr */
2482 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2483 if (id >= 0) {
2484 ctlr->bus_num = id;
2485 mutex_lock(&board_lock);
2486 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2487 ctlr->bus_num + 1, GFP_KERNEL);
2488 mutex_unlock(&board_lock);
2489 if (WARN(id < 0, "couldn't get idr"))
2490 return id == -ENOSPC ? -EBUSY : id;
2491 }
2492 }
2493 if (ctlr->bus_num < 0) {
2494 first_dynamic = of_alias_get_highest_id("spi");
2495 if (first_dynamic < 0)
2496 first_dynamic = 0;
2497 else
2498 first_dynamic++;
2499
2500 mutex_lock(&board_lock);
2501 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2502 0, GFP_KERNEL);
2503 mutex_unlock(&board_lock);
2504 if (WARN(id < 0, "couldn't get idr"))
2505 return id;
2506 ctlr->bus_num = id;
2507 }
2508 INIT_LIST_HEAD(&ctlr->queue);
2509 spin_lock_init(&ctlr->queue_lock);
2510 spin_lock_init(&ctlr->bus_lock_spinlock);
2511 mutex_init(&ctlr->bus_lock_mutex);
2512 mutex_init(&ctlr->io_mutex);
2513 ctlr->bus_lock_flag = 0;
2514 init_completion(&ctlr->xfer_completion);
2515 if (!ctlr->max_dma_len)
2516 ctlr->max_dma_len = INT_MAX;
2517
2518 /* register the device, then userspace will see it.
2519 * registration fails if the bus ID is in use.
2520 */
2521 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2522
2523 if (!spi_controller_is_slave(ctlr)) {
2524 if (ctlr->use_gpio_descriptors) {
2525 status = spi_get_gpio_descs(ctlr);
2526 if (status)
2527 goto free_bus_id;
2528 /*
2529 * A controller using GPIO descriptors always
2530 * supports SPI_CS_HIGH if need be.
2531 */
2532 ctlr->mode_bits |= SPI_CS_HIGH;
2533 } else {
2534 /* Legacy code path for GPIOs from DT */
2535 status = of_spi_get_gpio_numbers(ctlr);
2536 if (status)
2537 goto free_bus_id;
2538 }
2539 }
2540
2541 /*
2542 * Even if it's just one always-selected device, there must
2543 * be at least one chipselect.
2544 */
2545 if (!ctlr->num_chipselect) {
2546 status = -EINVAL;
2547 goto free_bus_id;
2548 }
2549
2550 status = device_add(&ctlr->dev);
2551 if (status < 0)
2552 goto free_bus_id;
2553 dev_dbg(dev, "registered %s %s\n",
2554 spi_controller_is_slave(ctlr) ? "slave" : "master",
2555 dev_name(&ctlr->dev));
2556
2557 /*
2558 * If we're using a queued driver, start the queue. Note that we don't
2559 * need the queueing logic if the driver is only supporting high-level
2560 * memory operations.
2561 */
2562 if (ctlr->transfer) {
2563 dev_info(dev, "controller is unqueued, this is deprecated\n");
2564 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2565 status = spi_controller_initialize_queue(ctlr);
2566 if (status) {
2567 device_del(&ctlr->dev);
2568 goto free_bus_id;
2569 }
2570 }
2571 /* add statistics */
2572 spin_lock_init(&ctlr->statistics.lock);
2573
2574 mutex_lock(&board_lock);
2575 list_add_tail(&ctlr->list, &spi_controller_list);
2576 list_for_each_entry(bi, &board_list, list)
2577 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2578 mutex_unlock(&board_lock);
2579
2580 /* Register devices from the device tree and ACPI */
2581 of_register_spi_devices(ctlr);
2582 acpi_register_spi_devices(ctlr);
2583 return status;
2584
2585 free_bus_id:
2586 mutex_lock(&board_lock);
2587 idr_remove(&spi_master_idr, ctlr->bus_num);
2588 mutex_unlock(&board_lock);
2589 return status;
2590 }
2591 EXPORT_SYMBOL_GPL(spi_register_controller);
2592
2593 static void devm_spi_unregister(struct device *dev, void *res)
2594 {
2595 spi_unregister_controller(*(struct spi_controller **)res);
2596 }
2597
2598 /**
2599 * devm_spi_register_controller - register managed SPI master or slave
2600 * controller
2601 * @dev: device managing SPI controller
2602 * @ctlr: initialized controller, originally from spi_alloc_master() or
2603 * spi_alloc_slave()
2604 * Context: can sleep
2605 *
2606 * Register a SPI device as with spi_register_controller() which will
2607 * automatically be unregistered and freed.
2608 *
2609 * Return: zero on success, else a negative error code.
2610 */
2611 int devm_spi_register_controller(struct device *dev,
2612 struct spi_controller *ctlr)
2613 {
2614 struct spi_controller **ptr;
2615 int ret;
2616
2617 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2618 if (!ptr)
2619 return -ENOMEM;
2620
2621 ret = spi_register_controller(ctlr);
2622 if (!ret) {
2623 *ptr = ctlr;
2624 devres_add(dev, ptr);
2625 } else {
2626 devres_free(ptr);
2627 }
2628
2629 return ret;
2630 }
2631 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2632
2633 static int __unregister(struct device *dev, void *null)
2634 {
2635 spi_unregister_device(to_spi_device(dev));
2636 return 0;
2637 }
2638
2639 /**
2640 * spi_unregister_controller - unregister SPI master or slave controller
2641 * @ctlr: the controller being unregistered
2642 * Context: can sleep
2643 *
2644 * This call is used only by SPI controller drivers, which are the
2645 * only ones directly touching chip registers.
2646 *
2647 * This must be called from context that can sleep.
2648 *
2649 * Note that this function also drops a reference to the controller.
2650 */
2651 void spi_unregister_controller(struct spi_controller *ctlr)
2652 {
2653 struct spi_controller *found;
2654 int id = ctlr->bus_num;
2655
2656 /* Prevent addition of new devices, unregister existing ones */
2657 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2658 mutex_lock(&spi_add_lock);
2659
2660 device_for_each_child(&ctlr->dev, NULL, __unregister);
2661
2662 /* First make sure that this controller was ever added */
2663 mutex_lock(&board_lock);
2664 found = idr_find(&spi_master_idr, id);
2665 mutex_unlock(&board_lock);
2666 if (ctlr->queued) {
2667 if (spi_destroy_queue(ctlr))
2668 dev_err(&ctlr->dev, "queue remove failed\n");
2669 }
2670 mutex_lock(&board_lock);
2671 list_del(&ctlr->list);
2672 mutex_unlock(&board_lock);
2673
2674 device_del(&ctlr->dev);
2675
2676 /* Release the last reference on the controller if its driver
2677 * has not yet been converted to devm_spi_alloc_master/slave().
2678 */
2679 if (!ctlr->devm_allocated)
2680 put_device(&ctlr->dev);
2681
2682 /* free bus id */
2683 mutex_lock(&board_lock);
2684 if (found == ctlr)
2685 idr_remove(&spi_master_idr, id);
2686 mutex_unlock(&board_lock);
2687
2688 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2689 mutex_unlock(&spi_add_lock);
2690 }
2691 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2692
2693 int spi_controller_suspend(struct spi_controller *ctlr)
2694 {
2695 int ret;
2696
2697 /* Basically no-ops for non-queued controllers */
2698 if (!ctlr->queued)
2699 return 0;
2700
2701 ret = spi_stop_queue(ctlr);
2702 if (ret)
2703 dev_err(&ctlr->dev, "queue stop failed\n");
2704
2705 return ret;
2706 }
2707 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2708
2709 int spi_controller_resume(struct spi_controller *ctlr)
2710 {
2711 int ret;
2712
2713 if (!ctlr->queued)
2714 return 0;
2715
2716 ret = spi_start_queue(ctlr);
2717 if (ret)
2718 dev_err(&ctlr->dev, "queue restart failed\n");
2719
2720 return ret;
2721 }
2722 EXPORT_SYMBOL_GPL(spi_controller_resume);
2723
2724 static int __spi_controller_match(struct device *dev, const void *data)
2725 {
2726 struct spi_controller *ctlr;
2727 const u16 *bus_num = data;
2728
2729 ctlr = container_of(dev, struct spi_controller, dev);
2730 return ctlr->bus_num == *bus_num;
2731 }
2732
2733 /**
2734 * spi_busnum_to_master - look up master associated with bus_num
2735 * @bus_num: the master's bus number
2736 * Context: can sleep
2737 *
2738 * This call may be used with devices that are registered after
2739 * arch init time. It returns a refcounted pointer to the relevant
2740 * spi_controller (which the caller must release), or NULL if there is
2741 * no such master registered.
2742 *
2743 * Return: the SPI master structure on success, else NULL.
2744 */
2745 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2746 {
2747 struct device *dev;
2748 struct spi_controller *ctlr = NULL;
2749
2750 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2751 __spi_controller_match);
2752 if (dev)
2753 ctlr = container_of(dev, struct spi_controller, dev);
2754 /* reference got in class_find_device */
2755 return ctlr;
2756 }
2757 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2758
2759 /*-------------------------------------------------------------------------*/
2760
2761 /* Core methods for SPI resource management */
2762
2763 /**
2764 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2765 * during the processing of a spi_message while using
2766 * spi_transfer_one
2767 * @spi: the spi device for which we allocate memory
2768 * @release: the release code to execute for this resource
2769 * @size: size to alloc and return
2770 * @gfp: GFP allocation flags
2771 *
2772 * Return: the pointer to the allocated data
2773 *
2774 * This may get enhanced in the future to allocate from a memory pool
2775 * of the @spi_device or @spi_controller to avoid repeated allocations.
2776 */
2777 void *spi_res_alloc(struct spi_device *spi,
2778 spi_res_release_t release,
2779 size_t size, gfp_t gfp)
2780 {
2781 struct spi_res *sres;
2782
2783 sres = kzalloc(sizeof(*sres) + size, gfp);
2784 if (!sres)
2785 return NULL;
2786
2787 INIT_LIST_HEAD(&sres->entry);
2788 sres->release = release;
2789
2790 return sres->data;
2791 }
2792 EXPORT_SYMBOL_GPL(spi_res_alloc);
2793
2794 /**
2795 * spi_res_free - free an spi resource
2796 * @res: pointer to the custom data of a resource
2797 *
2798 */
2799 void spi_res_free(void *res)
2800 {
2801 struct spi_res *sres = container_of(res, struct spi_res, data);
2802
2803 if (!res)
2804 return;
2805
2806 WARN_ON(!list_empty(&sres->entry));
2807 kfree(sres);
2808 }
2809 EXPORT_SYMBOL_GPL(spi_res_free);
2810
2811 /**
2812 * spi_res_add - add a spi_res to the spi_message
2813 * @message: the spi message
2814 * @res: the spi_resource
2815 */
2816 void spi_res_add(struct spi_message *message, void *res)
2817 {
2818 struct spi_res *sres = container_of(res, struct spi_res, data);
2819
2820 WARN_ON(!list_empty(&sres->entry));
2821 list_add_tail(&sres->entry, &message->resources);
2822 }
2823 EXPORT_SYMBOL_GPL(spi_res_add);
2824
2825 /**
2826 * spi_res_release - release all spi resources for this message
2827 * @ctlr: the @spi_controller
2828 * @message: the @spi_message
2829 */
2830 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2831 {
2832 struct spi_res *res, *tmp;
2833
2834 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
2835 if (res->release)
2836 res->release(ctlr, message, res->data);
2837
2838 list_del(&res->entry);
2839
2840 kfree(res);
2841 }
2842 }
2843 EXPORT_SYMBOL_GPL(spi_res_release);
2844
2845 /*-------------------------------------------------------------------------*/
2846
2847 /* Core methods for spi_message alterations */
2848
2849 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2850 struct spi_message *msg,
2851 void *res)
2852 {
2853 struct spi_replaced_transfers *rxfer = res;
2854 size_t i;
2855
2856 /* call extra callback if requested */
2857 if (rxfer->release)
2858 rxfer->release(ctlr, msg, res);
2859
2860 /* insert replaced transfers back into the message */
2861 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2862
2863 /* remove the formerly inserted entries */
2864 for (i = 0; i < rxfer->inserted; i++)
2865 list_del(&rxfer->inserted_transfers[i].transfer_list);
2866 }
2867
2868 /**
2869 * spi_replace_transfers - replace transfers with several transfers
2870 * and register change with spi_message.resources
2871 * @msg: the spi_message we work upon
2872 * @xfer_first: the first spi_transfer we want to replace
2873 * @remove: number of transfers to remove
2874 * @insert: the number of transfers we want to insert instead
2875 * @release: extra release code necessary in some circumstances
2876 * @extradatasize: extra data to allocate (with alignment guarantees
2877 * of struct @spi_transfer)
2878 * @gfp: gfp flags
2879 *
2880 * Returns: pointer to @spi_replaced_transfers,
2881 * PTR_ERR(...) in case of errors.
2882 */
2883 struct spi_replaced_transfers *spi_replace_transfers(
2884 struct spi_message *msg,
2885 struct spi_transfer *xfer_first,
2886 size_t remove,
2887 size_t insert,
2888 spi_replaced_release_t release,
2889 size_t extradatasize,
2890 gfp_t gfp)
2891 {
2892 struct spi_replaced_transfers *rxfer;
2893 struct spi_transfer *xfer;
2894 size_t i;
2895
2896 /* allocate the structure using spi_res */
2897 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2898 struct_size(rxfer, inserted_transfers, insert)
2899 + extradatasize,
2900 gfp);
2901 if (!rxfer)
2902 return ERR_PTR(-ENOMEM);
2903
2904 /* the release code to invoke before running the generic release */
2905 rxfer->release = release;
2906
2907 /* assign extradata */
2908 if (extradatasize)
2909 rxfer->extradata =
2910 &rxfer->inserted_transfers[insert];
2911
2912 /* init the replaced_transfers list */
2913 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2914
2915 /* assign the list_entry after which we should reinsert
2916 * the @replaced_transfers - it may be spi_message.messages!
2917 */
2918 rxfer->replaced_after = xfer_first->transfer_list.prev;
2919
2920 /* remove the requested number of transfers */
2921 for (i = 0; i < remove; i++) {
2922 /* if the entry after replaced_after it is msg->transfers
2923 * then we have been requested to remove more transfers
2924 * than are in the list
2925 */
2926 if (rxfer->replaced_after->next == &msg->transfers) {
2927 dev_err(&msg->spi->dev,
2928 "requested to remove more spi_transfers than are available\n");
2929 /* insert replaced transfers back into the message */
2930 list_splice(&rxfer->replaced_transfers,
2931 rxfer->replaced_after);
2932
2933 /* free the spi_replace_transfer structure */
2934 spi_res_free(rxfer);
2935
2936 /* and return with an error */
2937 return ERR_PTR(-EINVAL);
2938 }
2939
2940 /* remove the entry after replaced_after from list of
2941 * transfers and add it to list of replaced_transfers
2942 */
2943 list_move_tail(rxfer->replaced_after->next,
2944 &rxfer->replaced_transfers);
2945 }
2946
2947 /* create copy of the given xfer with identical settings
2948 * based on the first transfer to get removed
2949 */
2950 for (i = 0; i < insert; i++) {
2951 /* we need to run in reverse order */
2952 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2953
2954 /* copy all spi_transfer data */
2955 memcpy(xfer, xfer_first, sizeof(*xfer));
2956
2957 /* add to list */
2958 list_add(&xfer->transfer_list, rxfer->replaced_after);
2959
2960 /* clear cs_change and delay_usecs for all but the last */
2961 if (i) {
2962 xfer->cs_change = false;
2963 xfer->delay_usecs = 0;
2964 }
2965 }
2966
2967 /* set up inserted */
2968 rxfer->inserted = insert;
2969
2970 /* and register it with spi_res/spi_message */
2971 spi_res_add(msg, rxfer);
2972
2973 return rxfer;
2974 }
2975 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2976
2977 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2978 struct spi_message *msg,
2979 struct spi_transfer **xferp,
2980 size_t maxsize,
2981 gfp_t gfp)
2982 {
2983 struct spi_transfer *xfer = *xferp, *xfers;
2984 struct spi_replaced_transfers *srt;
2985 size_t offset;
2986 size_t count, i;
2987
2988 /* calculate how many we have to replace */
2989 count = DIV_ROUND_UP(xfer->len, maxsize);
2990
2991 /* create replacement */
2992 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2993 if (IS_ERR(srt))
2994 return PTR_ERR(srt);
2995 xfers = srt->inserted_transfers;
2996
2997 /* now handle each of those newly inserted spi_transfers
2998 * note that the replacements spi_transfers all are preset
2999 * to the same values as *xferp, so tx_buf, rx_buf and len
3000 * are all identical (as well as most others)
3001 * so we just have to fix up len and the pointers.
3002 *
3003 * this also includes support for the depreciated
3004 * spi_message.is_dma_mapped interface
3005 */
3006
3007 /* the first transfer just needs the length modified, so we
3008 * run it outside the loop
3009 */
3010 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3011
3012 /* all the others need rx_buf/tx_buf also set */
3013 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3014 /* update rx_buf, tx_buf and dma */
3015 if (xfers[i].rx_buf)
3016 xfers[i].rx_buf += offset;
3017 if (xfers[i].rx_dma)
3018 xfers[i].rx_dma += offset;
3019 if (xfers[i].tx_buf)
3020 xfers[i].tx_buf += offset;
3021 if (xfers[i].tx_dma)
3022 xfers[i].tx_dma += offset;
3023
3024 /* update length */
3025 xfers[i].len = min(maxsize, xfers[i].len - offset);
3026 }
3027
3028 /* we set up xferp to the last entry we have inserted,
3029 * so that we skip those already split transfers
3030 */
3031 *xferp = &xfers[count - 1];
3032
3033 /* increment statistics counters */
3034 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3035 transfers_split_maxsize);
3036 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3037 transfers_split_maxsize);
3038
3039 return 0;
3040 }
3041
3042 /**
3043 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
3044 * when an individual transfer exceeds a
3045 * certain size
3046 * @ctlr: the @spi_controller for this transfer
3047 * @msg: the @spi_message to transform
3048 * @maxsize: the maximum when to apply this
3049 * @gfp: GFP allocation flags
3050 *
3051 * Return: status of transformation
3052 */
3053 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3054 struct spi_message *msg,
3055 size_t maxsize,
3056 gfp_t gfp)
3057 {
3058 struct spi_transfer *xfer;
3059 int ret;
3060
3061 /* iterate over the transfer_list,
3062 * but note that xfer is advanced to the last transfer inserted
3063 * to avoid checking sizes again unnecessarily (also xfer does
3064 * potentiall belong to a different list by the time the
3065 * replacement has happened
3066 */
3067 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3068 if (xfer->len > maxsize) {
3069 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3070 maxsize, gfp);
3071 if (ret)
3072 return ret;
3073 }
3074 }
3075
3076 return 0;
3077 }
3078 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3079
3080 /*-------------------------------------------------------------------------*/
3081
3082 /* Core methods for SPI controller protocol drivers. Some of the
3083 * other core methods are currently defined as inline functions.
3084 */
3085
3086 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3087 u8 bits_per_word)
3088 {
3089 if (ctlr->bits_per_word_mask) {
3090 /* Only 32 bits fit in the mask */
3091 if (bits_per_word > 32)
3092 return -EINVAL;
3093 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3094 return -EINVAL;
3095 }
3096
3097 return 0;
3098 }
3099
3100 /**
3101 * spi_setup - setup SPI mode and clock rate
3102 * @spi: the device whose settings are being modified
3103 * Context: can sleep, and no requests are queued to the device
3104 *
3105 * SPI protocol drivers may need to update the transfer mode if the
3106 * device doesn't work with its default. They may likewise need
3107 * to update clock rates or word sizes from initial values. This function
3108 * changes those settings, and must be called from a context that can sleep.
3109 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3110 * effect the next time the device is selected and data is transferred to
3111 * or from it. When this function returns, the spi device is deselected.
3112 *
3113 * Note that this call will fail if the protocol driver specifies an option
3114 * that the underlying controller or its driver does not support. For
3115 * example, not all hardware supports wire transfers using nine bit words,
3116 * LSB-first wire encoding, or active-high chipselects.
3117 *
3118 * Return: zero on success, else a negative error code.
3119 */
3120 int spi_setup(struct spi_device *spi)
3121 {
3122 unsigned bad_bits, ugly_bits;
3123 int status;
3124
3125 /* check mode to prevent that DUAL and QUAD set at the same time
3126 */
3127 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3128 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
3129 dev_err(&spi->dev,
3130 "setup: can not select dual and quad at the same time\n");
3131 return -EINVAL;
3132 }
3133 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3134 */
3135 if ((spi->mode & SPI_3WIRE) && (spi->mode &
3136 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3137 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3138 return -EINVAL;
3139 /* help drivers fail *cleanly* when they need options
3140 * that aren't supported with their current controller
3141 * SPI_CS_WORD has a fallback software implementation,
3142 * so it is ignored here.
3143 */
3144 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
3145 /* nothing prevents from working with active-high CS in case if it
3146 * is driven by GPIO.
3147 */
3148 if (gpio_is_valid(spi->cs_gpio))
3149 bad_bits &= ~SPI_CS_HIGH;
3150 ugly_bits = bad_bits &
3151 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3152 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3153 if (ugly_bits) {
3154 dev_warn(&spi->dev,
3155 "setup: ignoring unsupported mode bits %x\n",
3156 ugly_bits);
3157 spi->mode &= ~ugly_bits;
3158 bad_bits &= ~ugly_bits;
3159 }
3160 if (bad_bits) {
3161 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3162 bad_bits);
3163 return -EINVAL;
3164 }
3165
3166 if (!spi->bits_per_word)
3167 spi->bits_per_word = 8;
3168
3169 status = __spi_validate_bits_per_word(spi->controller,
3170 spi->bits_per_word);
3171 if (status)
3172 return status;
3173
3174 if (!spi->max_speed_hz)
3175 spi->max_speed_hz = spi->controller->max_speed_hz;
3176
3177 if (spi->controller->setup)
3178 status = spi->controller->setup(spi);
3179
3180 spi_set_cs(spi, false);
3181
3182 if (spi->rt && !spi->controller->rt) {
3183 spi->controller->rt = true;
3184 spi_set_thread_rt(spi->controller);
3185 }
3186
3187 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3188 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3189 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3190 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3191 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3192 (spi->mode & SPI_LOOP) ? "loopback, " : "",
3193 spi->bits_per_word, spi->max_speed_hz,
3194 status);
3195
3196 return status;
3197 }
3198 EXPORT_SYMBOL_GPL(spi_setup);
3199
3200 /**
3201 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3202 * @spi: the device that requires specific CS timing configuration
3203 * @setup: CS setup time in terms of clock count
3204 * @hold: CS hold time in terms of clock count
3205 * @inactive_dly: CS inactive delay between transfers in terms of clock count
3206 */
3207 void spi_set_cs_timing(struct spi_device *spi, u8 setup, u8 hold,
3208 u8 inactive_dly)
3209 {
3210 if (spi->controller->set_cs_timing)
3211 spi->controller->set_cs_timing(spi, setup, hold, inactive_dly);
3212 }
3213 EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3214
3215 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3216 {
3217 struct spi_controller *ctlr = spi->controller;
3218 struct spi_transfer *xfer;
3219 int w_size;
3220
3221 if (list_empty(&message->transfers))
3222 return -EINVAL;
3223
3224 /* If an SPI controller does not support toggling the CS line on each
3225 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3226 * for the CS line, we can emulate the CS-per-word hardware function by
3227 * splitting transfers into one-word transfers and ensuring that
3228 * cs_change is set for each transfer.
3229 */
3230 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3231 spi->cs_gpiod ||
3232 gpio_is_valid(spi->cs_gpio))) {
3233 size_t maxsize;
3234 int ret;
3235
3236 maxsize = (spi->bits_per_word + 7) / 8;
3237
3238 /* spi_split_transfers_maxsize() requires message->spi */
3239 message->spi = spi;
3240
3241 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3242 GFP_KERNEL);
3243 if (ret)
3244 return ret;
3245
3246 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3247 /* don't change cs_change on the last entry in the list */
3248 if (list_is_last(&xfer->transfer_list, &message->transfers))
3249 break;
3250 xfer->cs_change = 1;
3251 }
3252 }
3253
3254 /* Half-duplex links include original MicroWire, and ones with
3255 * only one data pin like SPI_3WIRE (switches direction) or where
3256 * either MOSI or MISO is missing. They can also be caused by
3257 * software limitations.
3258 */
3259 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3260 (spi->mode & SPI_3WIRE)) {
3261 unsigned flags = ctlr->flags;
3262
3263 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3264 if (xfer->rx_buf && xfer->tx_buf)
3265 return -EINVAL;
3266 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3267 return -EINVAL;
3268 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3269 return -EINVAL;
3270 }
3271 }
3272
3273 /**
3274 * Set transfer bits_per_word and max speed as spi device default if
3275 * it is not set for this transfer.
3276 * Set transfer tx_nbits and rx_nbits as single transfer default
3277 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3278 * Ensure transfer word_delay is at least as long as that required by
3279 * device itself.
3280 */
3281 message->frame_length = 0;
3282 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3283 xfer->effective_speed_hz = 0;
3284 message->frame_length += xfer->len;
3285 if (!xfer->bits_per_word)
3286 xfer->bits_per_word = spi->bits_per_word;
3287
3288 if (!xfer->speed_hz)
3289 xfer->speed_hz = spi->max_speed_hz;
3290
3291 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3292 xfer->speed_hz = ctlr->max_speed_hz;
3293
3294 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3295 return -EINVAL;
3296
3297 /*
3298 * SPI transfer length should be multiple of SPI word size
3299 * where SPI word size should be power-of-two multiple
3300 */
3301 if (xfer->bits_per_word <= 8)
3302 w_size = 1;
3303 else if (xfer->bits_per_word <= 16)
3304 w_size = 2;
3305 else
3306 w_size = 4;
3307
3308 /* No partial transfers accepted */
3309 if (xfer->len % w_size)
3310 return -EINVAL;
3311
3312 if (xfer->speed_hz && ctlr->min_speed_hz &&
3313 xfer->speed_hz < ctlr->min_speed_hz)
3314 return -EINVAL;
3315
3316 if (xfer->tx_buf && !xfer->tx_nbits)
3317 xfer->tx_nbits = SPI_NBITS_SINGLE;
3318 if (xfer->rx_buf && !xfer->rx_nbits)
3319 xfer->rx_nbits = SPI_NBITS_SINGLE;
3320 /* check transfer tx/rx_nbits:
3321 * 1. check the value matches one of single, dual and quad
3322 * 2. check tx/rx_nbits match the mode in spi_device
3323 */
3324 if (xfer->tx_buf) {
3325 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3326 xfer->tx_nbits != SPI_NBITS_DUAL &&
3327 xfer->tx_nbits != SPI_NBITS_QUAD)
3328 return -EINVAL;
3329 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3330 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3331 return -EINVAL;
3332 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3333 !(spi->mode & SPI_TX_QUAD))
3334 return -EINVAL;
3335 }
3336 /* check transfer rx_nbits */
3337 if (xfer->rx_buf) {
3338 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3339 xfer->rx_nbits != SPI_NBITS_DUAL &&
3340 xfer->rx_nbits != SPI_NBITS_QUAD)
3341 return -EINVAL;
3342 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3343 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3344 return -EINVAL;
3345 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3346 !(spi->mode & SPI_RX_QUAD))
3347 return -EINVAL;
3348 }
3349
3350 if (xfer->word_delay_usecs < spi->word_delay_usecs)
3351 xfer->word_delay_usecs = spi->word_delay_usecs;
3352 }
3353
3354 message->status = -EINPROGRESS;
3355
3356 return 0;
3357 }
3358
3359 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3360 {
3361 struct spi_controller *ctlr = spi->controller;
3362
3363 /*
3364 * Some controllers do not support doing regular SPI transfers. Return
3365 * ENOTSUPP when this is the case.
3366 */
3367 if (!ctlr->transfer)
3368 return -ENOTSUPP;
3369
3370 message->spi = spi;
3371
3372 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3373 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3374
3375 trace_spi_message_submit(message);
3376
3377 return ctlr->transfer(spi, message);
3378 }
3379
3380 /**
3381 * spi_async - asynchronous SPI transfer
3382 * @spi: device with which data will be exchanged
3383 * @message: describes the data transfers, including completion callback
3384 * Context: any (irqs may be blocked, etc)
3385 *
3386 * This call may be used in_irq and other contexts which can't sleep,
3387 * as well as from task contexts which can sleep.
3388 *
3389 * The completion callback is invoked in a context which can't sleep.
3390 * Before that invocation, the value of message->status is undefined.
3391 * When the callback is issued, message->status holds either zero (to
3392 * indicate complete success) or a negative error code. After that
3393 * callback returns, the driver which issued the transfer request may
3394 * deallocate the associated memory; it's no longer in use by any SPI
3395 * core or controller driver code.
3396 *
3397 * Note that although all messages to a spi_device are handled in
3398 * FIFO order, messages may go to different devices in other orders.
3399 * Some device might be higher priority, or have various "hard" access
3400 * time requirements, for example.
3401 *
3402 * On detection of any fault during the transfer, processing of
3403 * the entire message is aborted, and the device is deselected.
3404 * Until returning from the associated message completion callback,
3405 * no other spi_message queued to that device will be processed.
3406 * (This rule applies equally to all the synchronous transfer calls,
3407 * which are wrappers around this core asynchronous primitive.)
3408 *
3409 * Return: zero on success, else a negative error code.
3410 */
3411 int spi_async(struct spi_device *spi, struct spi_message *message)
3412 {
3413 struct spi_controller *ctlr = spi->controller;
3414 int ret;
3415 unsigned long flags;
3416
3417 ret = __spi_validate(spi, message);
3418 if (ret != 0)
3419 return ret;
3420
3421 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3422
3423 if (ctlr->bus_lock_flag)
3424 ret = -EBUSY;
3425 else
3426 ret = __spi_async(spi, message);
3427
3428 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3429
3430 return ret;
3431 }
3432 EXPORT_SYMBOL_GPL(spi_async);
3433
3434 /**
3435 * spi_async_locked - version of spi_async with exclusive bus usage
3436 * @spi: device with which data will be exchanged
3437 * @message: describes the data transfers, including completion callback
3438 * Context: any (irqs may be blocked, etc)
3439 *
3440 * This call may be used in_irq and other contexts which can't sleep,
3441 * as well as from task contexts which can sleep.
3442 *
3443 * The completion callback is invoked in a context which can't sleep.
3444 * Before that invocation, the value of message->status is undefined.
3445 * When the callback is issued, message->status holds either zero (to
3446 * indicate complete success) or a negative error code. After that
3447 * callback returns, the driver which issued the transfer request may
3448 * deallocate the associated memory; it's no longer in use by any SPI
3449 * core or controller driver code.
3450 *
3451 * Note that although all messages to a spi_device are handled in
3452 * FIFO order, messages may go to different devices in other orders.
3453 * Some device might be higher priority, or have various "hard" access
3454 * time requirements, for example.
3455 *
3456 * On detection of any fault during the transfer, processing of
3457 * the entire message is aborted, and the device is deselected.
3458 * Until returning from the associated message completion callback,
3459 * no other spi_message queued to that device will be processed.
3460 * (This rule applies equally to all the synchronous transfer calls,
3461 * which are wrappers around this core asynchronous primitive.)
3462 *
3463 * Return: zero on success, else a negative error code.
3464 */
3465 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3466 {
3467 struct spi_controller *ctlr = spi->controller;
3468 int ret;
3469 unsigned long flags;
3470
3471 ret = __spi_validate(spi, message);
3472 if (ret != 0)
3473 return ret;
3474
3475 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3476
3477 ret = __spi_async(spi, message);
3478
3479 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3480
3481 return ret;
3482
3483 }
3484 EXPORT_SYMBOL_GPL(spi_async_locked);
3485
3486 /*-------------------------------------------------------------------------*/
3487
3488 /* Utility methods for SPI protocol drivers, layered on
3489 * top of the core. Some other utility methods are defined as
3490 * inline functions.
3491 */
3492
3493 static void spi_complete(void *arg)
3494 {
3495 complete(arg);
3496 }
3497
3498 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3499 {
3500 DECLARE_COMPLETION_ONSTACK(done);
3501 int status;
3502 struct spi_controller *ctlr = spi->controller;
3503 unsigned long flags;
3504
3505 status = __spi_validate(spi, message);
3506 if (status != 0)
3507 return status;
3508
3509 message->complete = spi_complete;
3510 message->context = &done;
3511 message->spi = spi;
3512
3513 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3514 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3515
3516 /* If we're not using the legacy transfer method then we will
3517 * try to transfer in the calling context so special case.
3518 * This code would be less tricky if we could remove the
3519 * support for driver implemented message queues.
3520 */
3521 if (ctlr->transfer == spi_queued_transfer) {
3522 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3523
3524 trace_spi_message_submit(message);
3525
3526 status = __spi_queued_transfer(spi, message, false);
3527
3528 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3529 } else {
3530 status = spi_async_locked(spi, message);
3531 }
3532
3533 if (status == 0) {
3534 /* Push out the messages in the calling context if we
3535 * can.
3536 */
3537 if (ctlr->transfer == spi_queued_transfer) {
3538 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3539 spi_sync_immediate);
3540 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3541 spi_sync_immediate);
3542 __spi_pump_messages(ctlr, false);
3543 }
3544
3545 wait_for_completion(&done);
3546 status = message->status;
3547 }
3548 message->context = NULL;
3549 return status;
3550 }
3551
3552 /**
3553 * spi_sync - blocking/synchronous SPI data transfers
3554 * @spi: device with which data will be exchanged
3555 * @message: describes the data transfers
3556 * Context: can sleep
3557 *
3558 * This call may only be used from a context that may sleep. The sleep
3559 * is non-interruptible, and has no timeout. Low-overhead controller
3560 * drivers may DMA directly into and out of the message buffers.
3561 *
3562 * Note that the SPI device's chip select is active during the message,
3563 * and then is normally disabled between messages. Drivers for some
3564 * frequently-used devices may want to minimize costs of selecting a chip,
3565 * by leaving it selected in anticipation that the next message will go
3566 * to the same chip. (That may increase power usage.)
3567 *
3568 * Also, the caller is guaranteeing that the memory associated with the
3569 * message will not be freed before this call returns.
3570 *
3571 * Return: zero on success, else a negative error code.
3572 */
3573 int spi_sync(struct spi_device *spi, struct spi_message *message)
3574 {
3575 int ret;
3576
3577 mutex_lock(&spi->controller->bus_lock_mutex);
3578 ret = __spi_sync(spi, message);
3579 mutex_unlock(&spi->controller->bus_lock_mutex);
3580
3581 return ret;
3582 }
3583 EXPORT_SYMBOL_GPL(spi_sync);
3584
3585 /**
3586 * spi_sync_locked - version of spi_sync with exclusive bus usage
3587 * @spi: device with which data will be exchanged
3588 * @message: describes the data transfers
3589 * Context: can sleep
3590 *
3591 * This call may only be used from a context that may sleep. The sleep
3592 * is non-interruptible, and has no timeout. Low-overhead controller
3593 * drivers may DMA directly into and out of the message buffers.
3594 *
3595 * This call should be used by drivers that require exclusive access to the
3596 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3597 * be released by a spi_bus_unlock call when the exclusive access is over.
3598 *
3599 * Return: zero on success, else a negative error code.
3600 */
3601 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3602 {
3603 return __spi_sync(spi, message);
3604 }
3605 EXPORT_SYMBOL_GPL(spi_sync_locked);
3606
3607 /**
3608 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3609 * @ctlr: SPI bus master that should be locked for exclusive bus access
3610 * Context: can sleep
3611 *
3612 * This call may only be used from a context that may sleep. The sleep
3613 * is non-interruptible, and has no timeout.
3614 *
3615 * This call should be used by drivers that require exclusive access to the
3616 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3617 * exclusive access is over. Data transfer must be done by spi_sync_locked
3618 * and spi_async_locked calls when the SPI bus lock is held.
3619 *
3620 * Return: always zero.
3621 */
3622 int spi_bus_lock(struct spi_controller *ctlr)
3623 {
3624 unsigned long flags;
3625
3626 mutex_lock(&ctlr->bus_lock_mutex);
3627
3628 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3629 ctlr->bus_lock_flag = 1;
3630 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3631
3632 /* mutex remains locked until spi_bus_unlock is called */
3633
3634 return 0;
3635 }
3636 EXPORT_SYMBOL_GPL(spi_bus_lock);
3637
3638 /**
3639 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3640 * @ctlr: SPI bus master that was locked for exclusive bus access
3641 * Context: can sleep
3642 *
3643 * This call may only be used from a context that may sleep. The sleep
3644 * is non-interruptible, and has no timeout.
3645 *
3646 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3647 * call.
3648 *
3649 * Return: always zero.
3650 */
3651 int spi_bus_unlock(struct spi_controller *ctlr)
3652 {
3653 ctlr->bus_lock_flag = 0;
3654
3655 mutex_unlock(&ctlr->bus_lock_mutex);
3656
3657 return 0;
3658 }
3659 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3660
3661 /* portable code must never pass more than 32 bytes */
3662 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3663
3664 static u8 *buf;
3665
3666 /**
3667 * spi_write_then_read - SPI synchronous write followed by read
3668 * @spi: device with which data will be exchanged
3669 * @txbuf: data to be written (need not be dma-safe)
3670 * @n_tx: size of txbuf, in bytes
3671 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3672 * @n_rx: size of rxbuf, in bytes
3673 * Context: can sleep
3674 *
3675 * This performs a half duplex MicroWire style transaction with the
3676 * device, sending txbuf and then reading rxbuf. The return value
3677 * is zero for success, else a negative errno status code.
3678 * This call may only be used from a context that may sleep.
3679 *
3680 * Parameters to this routine are always copied using a small buffer;
3681 * portable code should never use this for more than 32 bytes.
3682 * Performance-sensitive or bulk transfer code should instead use
3683 * spi_{async,sync}() calls with dma-safe buffers.
3684 *
3685 * Return: zero on success, else a negative error code.
3686 */
3687 int spi_write_then_read(struct spi_device *spi,
3688 const void *txbuf, unsigned n_tx,
3689 void *rxbuf, unsigned n_rx)
3690 {
3691 static DEFINE_MUTEX(lock);
3692
3693 int status;
3694 struct spi_message message;
3695 struct spi_transfer x[2];
3696 u8 *local_buf;
3697
3698 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3699 * copying here, (as a pure convenience thing), but we can
3700 * keep heap costs out of the hot path unless someone else is
3701 * using the pre-allocated buffer or the transfer is too large.
3702 */
3703 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3704 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3705 GFP_KERNEL | GFP_DMA);
3706 if (!local_buf)
3707 return -ENOMEM;
3708 } else {
3709 local_buf = buf;
3710 }
3711
3712 spi_message_init(&message);
3713 memset(x, 0, sizeof(x));
3714 if (n_tx) {
3715 x[0].len = n_tx;
3716 spi_message_add_tail(&x[0], &message);
3717 }
3718 if (n_rx) {
3719 x[1].len = n_rx;
3720 spi_message_add_tail(&x[1], &message);
3721 }
3722
3723 memcpy(local_buf, txbuf, n_tx);
3724 x[0].tx_buf = local_buf;
3725 x[1].rx_buf = local_buf + n_tx;
3726
3727 /* do the i/o */
3728 status = spi_sync(spi, &message);
3729 if (status == 0)
3730 memcpy(rxbuf, x[1].rx_buf, n_rx);
3731
3732 if (x[0].tx_buf == buf)
3733 mutex_unlock(&lock);
3734 else
3735 kfree(local_buf);
3736
3737 return status;
3738 }
3739 EXPORT_SYMBOL_GPL(spi_write_then_read);
3740
3741 /*-------------------------------------------------------------------------*/
3742
3743 #if IS_ENABLED(CONFIG_OF)
3744 /* must call put_device() when done with returned spi_device device */
3745 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3746 {
3747 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
3748
3749 return dev ? to_spi_device(dev) : NULL;
3750 }
3751 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3752 #endif /* IS_ENABLED(CONFIG_OF) */
3753
3754 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3755 /* the spi controllers are not using spi_bus, so we find it with another way */
3756 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3757 {
3758 struct device *dev;
3759
3760 dev = class_find_device_by_of_node(&spi_master_class, node);
3761 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3762 dev = class_find_device_by_of_node(&spi_slave_class, node);
3763 if (!dev)
3764 return NULL;
3765
3766 /* reference got in class_find_device */
3767 return container_of(dev, struct spi_controller, dev);
3768 }
3769
3770 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3771 void *arg)
3772 {
3773 struct of_reconfig_data *rd = arg;
3774 struct spi_controller *ctlr;
3775 struct spi_device *spi;
3776
3777 switch (of_reconfig_get_state_change(action, arg)) {
3778 case OF_RECONFIG_CHANGE_ADD:
3779 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3780 if (ctlr == NULL)
3781 return NOTIFY_OK; /* not for us */
3782
3783 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3784 put_device(&ctlr->dev);
3785 return NOTIFY_OK;
3786 }
3787
3788 spi = of_register_spi_device(ctlr, rd->dn);
3789 put_device(&ctlr->dev);
3790
3791 if (IS_ERR(spi)) {
3792 pr_err("%s: failed to create for '%pOF'\n",
3793 __func__, rd->dn);
3794 of_node_clear_flag(rd->dn, OF_POPULATED);
3795 return notifier_from_errno(PTR_ERR(spi));
3796 }
3797 break;
3798
3799 case OF_RECONFIG_CHANGE_REMOVE:
3800 /* already depopulated? */
3801 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3802 return NOTIFY_OK;
3803
3804 /* find our device by node */
3805 spi = of_find_spi_device_by_node(rd->dn);
3806 if (spi == NULL)
3807 return NOTIFY_OK; /* no? not meant for us */
3808
3809 /* unregister takes one ref away */
3810 spi_unregister_device(spi);
3811
3812 /* and put the reference of the find */
3813 put_device(&spi->dev);
3814 break;
3815 }
3816
3817 return NOTIFY_OK;
3818 }
3819
3820 static struct notifier_block spi_of_notifier = {
3821 .notifier_call = of_spi_notify,
3822 };
3823 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3824 extern struct notifier_block spi_of_notifier;
3825 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3826
3827 #if IS_ENABLED(CONFIG_ACPI)
3828 static int spi_acpi_controller_match(struct device *dev, const void *data)
3829 {
3830 return ACPI_COMPANION(dev->parent) == data;
3831 }
3832
3833 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3834 {
3835 struct device *dev;
3836
3837 dev = class_find_device(&spi_master_class, NULL, adev,
3838 spi_acpi_controller_match);
3839 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3840 dev = class_find_device(&spi_slave_class, NULL, adev,
3841 spi_acpi_controller_match);
3842 if (!dev)
3843 return NULL;
3844
3845 return container_of(dev, struct spi_controller, dev);
3846 }
3847
3848 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3849 {
3850 struct device *dev;
3851
3852 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
3853 return dev ? to_spi_device(dev) : NULL;
3854 }
3855
3856 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3857 void *arg)
3858 {
3859 struct acpi_device *adev = arg;
3860 struct spi_controller *ctlr;
3861 struct spi_device *spi;
3862
3863 switch (value) {
3864 case ACPI_RECONFIG_DEVICE_ADD:
3865 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3866 if (!ctlr)
3867 break;
3868
3869 acpi_register_spi_device(ctlr, adev);
3870 put_device(&ctlr->dev);
3871 break;
3872 case ACPI_RECONFIG_DEVICE_REMOVE:
3873 if (!acpi_device_enumerated(adev))
3874 break;
3875
3876 spi = acpi_spi_find_device_by_adev(adev);
3877 if (!spi)
3878 break;
3879
3880 spi_unregister_device(spi);
3881 put_device(&spi->dev);
3882 break;
3883 }
3884
3885 return NOTIFY_OK;
3886 }
3887
3888 static struct notifier_block spi_acpi_notifier = {
3889 .notifier_call = acpi_spi_notify,
3890 };
3891 #else
3892 extern struct notifier_block spi_acpi_notifier;
3893 #endif
3894
3895 static int __init spi_init(void)
3896 {
3897 int status;
3898
3899 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3900 if (!buf) {
3901 status = -ENOMEM;
3902 goto err0;
3903 }
3904
3905 status = bus_register(&spi_bus_type);
3906 if (status < 0)
3907 goto err1;
3908
3909 status = class_register(&spi_master_class);
3910 if (status < 0)
3911 goto err2;
3912
3913 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3914 status = class_register(&spi_slave_class);
3915 if (status < 0)
3916 goto err3;
3917 }
3918
3919 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3920 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3921 if (IS_ENABLED(CONFIG_ACPI))
3922 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3923
3924 return 0;
3925
3926 err3:
3927 class_unregister(&spi_master_class);
3928 err2:
3929 bus_unregister(&spi_bus_type);
3930 err1:
3931 kfree(buf);
3932 buf = NULL;
3933 err0:
3934 return status;
3935 }
3936
3937 /* board_info is normally registered in arch_initcall(),
3938 * but even essential drivers wait till later
3939 *
3940 * REVISIT only boardinfo really needs static linking. the rest (device and
3941 * driver registration) _could_ be dynamically linked (modular) ... costs
3942 * include needing to have boardinfo data structures be much more public.
3943 */
3944 postcore_initcall(spi_init);