]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/spi/spidev.c
Merge tag 'armsoc-dt' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[mirror_ubuntu-artful-kernel.git] / drivers / spi / spidev.c
1 /*
2 * Simple synchronous userspace interface to SPI devices
3 *
4 * Copyright (C) 2006 SWAPP
5 * Andrea Paterniani <a.paterniani@swapp-eng.it>
6 * Copyright (C) 2007 David Brownell (simplification, cleanup)
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 */
18
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/ioctl.h>
22 #include <linux/fs.h>
23 #include <linux/device.h>
24 #include <linux/err.h>
25 #include <linux/list.h>
26 #include <linux/errno.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/compat.h>
30 #include <linux/of.h>
31 #include <linux/of_device.h>
32 #include <linux/acpi.h>
33
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spidev.h>
36
37 #include <linux/uaccess.h>
38
39
40 /*
41 * This supports access to SPI devices using normal userspace I/O calls.
42 * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
43 * and often mask message boundaries, full SPI support requires full duplex
44 * transfers. There are several kinds of internal message boundaries to
45 * handle chipselect management and other protocol options.
46 *
47 * SPI has a character major number assigned. We allocate minor numbers
48 * dynamically using a bitmask. You must use hotplug tools, such as udev
49 * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
50 * nodes, since there is no fixed association of minor numbers with any
51 * particular SPI bus or device.
52 */
53 #define SPIDEV_MAJOR 153 /* assigned */
54 #define N_SPI_MINORS 32 /* ... up to 256 */
55
56 static DECLARE_BITMAP(minors, N_SPI_MINORS);
57
58
59 /* Bit masks for spi_device.mode management. Note that incorrect
60 * settings for some settings can cause *lots* of trouble for other
61 * devices on a shared bus:
62 *
63 * - CS_HIGH ... this device will be active when it shouldn't be
64 * - 3WIRE ... when active, it won't behave as it should
65 * - NO_CS ... there will be no explicit message boundaries; this
66 * is completely incompatible with the shared bus model
67 * - READY ... transfers may proceed when they shouldn't.
68 *
69 * REVISIT should changing those flags be privileged?
70 */
71 #define SPI_MODE_MASK (SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \
72 | SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP \
73 | SPI_NO_CS | SPI_READY | SPI_TX_DUAL \
74 | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)
75
76 struct spidev_data {
77 dev_t devt;
78 spinlock_t spi_lock;
79 struct spi_device *spi;
80 struct list_head device_entry;
81
82 /* TX/RX buffers are NULL unless this device is open (users > 0) */
83 struct mutex buf_lock;
84 unsigned users;
85 u8 *tx_buffer;
86 u8 *rx_buffer;
87 u32 speed_hz;
88 };
89
90 static LIST_HEAD(device_list);
91 static DEFINE_MUTEX(device_list_lock);
92
93 static unsigned bufsiz = 4096;
94 module_param(bufsiz, uint, S_IRUGO);
95 MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
96
97 /*-------------------------------------------------------------------------*/
98
99 static ssize_t
100 spidev_sync(struct spidev_data *spidev, struct spi_message *message)
101 {
102 int status;
103 struct spi_device *spi;
104
105 spin_lock_irq(&spidev->spi_lock);
106 spi = spidev->spi;
107 spin_unlock_irq(&spidev->spi_lock);
108
109 if (spi == NULL)
110 status = -ESHUTDOWN;
111 else
112 status = spi_sync(spi, message);
113
114 if (status == 0)
115 status = message->actual_length;
116
117 return status;
118 }
119
120 static inline ssize_t
121 spidev_sync_write(struct spidev_data *spidev, size_t len)
122 {
123 struct spi_transfer t = {
124 .tx_buf = spidev->tx_buffer,
125 .len = len,
126 .speed_hz = spidev->speed_hz,
127 };
128 struct spi_message m;
129
130 spi_message_init(&m);
131 spi_message_add_tail(&t, &m);
132 return spidev_sync(spidev, &m);
133 }
134
135 static inline ssize_t
136 spidev_sync_read(struct spidev_data *spidev, size_t len)
137 {
138 struct spi_transfer t = {
139 .rx_buf = spidev->rx_buffer,
140 .len = len,
141 .speed_hz = spidev->speed_hz,
142 };
143 struct spi_message m;
144
145 spi_message_init(&m);
146 spi_message_add_tail(&t, &m);
147 return spidev_sync(spidev, &m);
148 }
149
150 /*-------------------------------------------------------------------------*/
151
152 /* Read-only message with current device setup */
153 static ssize_t
154 spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
155 {
156 struct spidev_data *spidev;
157 ssize_t status = 0;
158
159 /* chipselect only toggles at start or end of operation */
160 if (count > bufsiz)
161 return -EMSGSIZE;
162
163 spidev = filp->private_data;
164
165 mutex_lock(&spidev->buf_lock);
166 status = spidev_sync_read(spidev, count);
167 if (status > 0) {
168 unsigned long missing;
169
170 missing = copy_to_user(buf, spidev->rx_buffer, status);
171 if (missing == status)
172 status = -EFAULT;
173 else
174 status = status - missing;
175 }
176 mutex_unlock(&spidev->buf_lock);
177
178 return status;
179 }
180
181 /* Write-only message with current device setup */
182 static ssize_t
183 spidev_write(struct file *filp, const char __user *buf,
184 size_t count, loff_t *f_pos)
185 {
186 struct spidev_data *spidev;
187 ssize_t status = 0;
188 unsigned long missing;
189
190 /* chipselect only toggles at start or end of operation */
191 if (count > bufsiz)
192 return -EMSGSIZE;
193
194 spidev = filp->private_data;
195
196 mutex_lock(&spidev->buf_lock);
197 missing = copy_from_user(spidev->tx_buffer, buf, count);
198 if (missing == 0)
199 status = spidev_sync_write(spidev, count);
200 else
201 status = -EFAULT;
202 mutex_unlock(&spidev->buf_lock);
203
204 return status;
205 }
206
207 static int spidev_message(struct spidev_data *spidev,
208 struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
209 {
210 struct spi_message msg;
211 struct spi_transfer *k_xfers;
212 struct spi_transfer *k_tmp;
213 struct spi_ioc_transfer *u_tmp;
214 unsigned n, total, tx_total, rx_total;
215 u8 *tx_buf, *rx_buf;
216 int status = -EFAULT;
217
218 spi_message_init(&msg);
219 k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
220 if (k_xfers == NULL)
221 return -ENOMEM;
222
223 /* Construct spi_message, copying any tx data to bounce buffer.
224 * We walk the array of user-provided transfers, using each one
225 * to initialize a kernel version of the same transfer.
226 */
227 tx_buf = spidev->tx_buffer;
228 rx_buf = spidev->rx_buffer;
229 total = 0;
230 tx_total = 0;
231 rx_total = 0;
232 for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
233 n;
234 n--, k_tmp++, u_tmp++) {
235 k_tmp->len = u_tmp->len;
236
237 total += k_tmp->len;
238 /* Since the function returns the total length of transfers
239 * on success, restrict the total to positive int values to
240 * avoid the return value looking like an error. Also check
241 * each transfer length to avoid arithmetic overflow.
242 */
243 if (total > INT_MAX || k_tmp->len > INT_MAX) {
244 status = -EMSGSIZE;
245 goto done;
246 }
247
248 if (u_tmp->rx_buf) {
249 /* this transfer needs space in RX bounce buffer */
250 rx_total += k_tmp->len;
251 if (rx_total > bufsiz) {
252 status = -EMSGSIZE;
253 goto done;
254 }
255 k_tmp->rx_buf = rx_buf;
256 if (!access_ok(VERIFY_WRITE, (u8 __user *)
257 (uintptr_t) u_tmp->rx_buf,
258 u_tmp->len))
259 goto done;
260 rx_buf += k_tmp->len;
261 }
262 if (u_tmp->tx_buf) {
263 /* this transfer needs space in TX bounce buffer */
264 tx_total += k_tmp->len;
265 if (tx_total > bufsiz) {
266 status = -EMSGSIZE;
267 goto done;
268 }
269 k_tmp->tx_buf = tx_buf;
270 if (copy_from_user(tx_buf, (const u8 __user *)
271 (uintptr_t) u_tmp->tx_buf,
272 u_tmp->len))
273 goto done;
274 tx_buf += k_tmp->len;
275 }
276
277 k_tmp->cs_change = !!u_tmp->cs_change;
278 k_tmp->tx_nbits = u_tmp->tx_nbits;
279 k_tmp->rx_nbits = u_tmp->rx_nbits;
280 k_tmp->bits_per_word = u_tmp->bits_per_word;
281 k_tmp->delay_usecs = u_tmp->delay_usecs;
282 k_tmp->speed_hz = u_tmp->speed_hz;
283 if (!k_tmp->speed_hz)
284 k_tmp->speed_hz = spidev->speed_hz;
285 #ifdef VERBOSE
286 dev_dbg(&spidev->spi->dev,
287 " xfer len %u %s%s%s%dbits %u usec %uHz\n",
288 u_tmp->len,
289 u_tmp->rx_buf ? "rx " : "",
290 u_tmp->tx_buf ? "tx " : "",
291 u_tmp->cs_change ? "cs " : "",
292 u_tmp->bits_per_word ? : spidev->spi->bits_per_word,
293 u_tmp->delay_usecs,
294 u_tmp->speed_hz ? : spidev->spi->max_speed_hz);
295 #endif
296 spi_message_add_tail(k_tmp, &msg);
297 }
298
299 status = spidev_sync(spidev, &msg);
300 if (status < 0)
301 goto done;
302
303 /* copy any rx data out of bounce buffer */
304 rx_buf = spidev->rx_buffer;
305 for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) {
306 if (u_tmp->rx_buf) {
307 if (__copy_to_user((u8 __user *)
308 (uintptr_t) u_tmp->rx_buf, rx_buf,
309 u_tmp->len)) {
310 status = -EFAULT;
311 goto done;
312 }
313 rx_buf += u_tmp->len;
314 }
315 }
316 status = total;
317
318 done:
319 kfree(k_xfers);
320 return status;
321 }
322
323 static struct spi_ioc_transfer *
324 spidev_get_ioc_message(unsigned int cmd, struct spi_ioc_transfer __user *u_ioc,
325 unsigned *n_ioc)
326 {
327 u32 tmp;
328
329 /* Check type, command number and direction */
330 if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC
331 || _IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
332 || _IOC_DIR(cmd) != _IOC_WRITE)
333 return ERR_PTR(-ENOTTY);
334
335 tmp = _IOC_SIZE(cmd);
336 if ((tmp % sizeof(struct spi_ioc_transfer)) != 0)
337 return ERR_PTR(-EINVAL);
338 *n_ioc = tmp / sizeof(struct spi_ioc_transfer);
339 if (*n_ioc == 0)
340 return NULL;
341
342 /* copy into scratch area */
343 return memdup_user(u_ioc, tmp);
344 }
345
346 static long
347 spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
348 {
349 int err = 0;
350 int retval = 0;
351 struct spidev_data *spidev;
352 struct spi_device *spi;
353 u32 tmp;
354 unsigned n_ioc;
355 struct spi_ioc_transfer *ioc;
356
357 /* Check type and command number */
358 if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
359 return -ENOTTY;
360
361 /* Check access direction once here; don't repeat below.
362 * IOC_DIR is from the user perspective, while access_ok is
363 * from the kernel perspective; so they look reversed.
364 */
365 if (_IOC_DIR(cmd) & _IOC_READ)
366 err = !access_ok(VERIFY_WRITE,
367 (void __user *)arg, _IOC_SIZE(cmd));
368 if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE)
369 err = !access_ok(VERIFY_READ,
370 (void __user *)arg, _IOC_SIZE(cmd));
371 if (err)
372 return -EFAULT;
373
374 /* guard against device removal before, or while,
375 * we issue this ioctl.
376 */
377 spidev = filp->private_data;
378 spin_lock_irq(&spidev->spi_lock);
379 spi = spi_dev_get(spidev->spi);
380 spin_unlock_irq(&spidev->spi_lock);
381
382 if (spi == NULL)
383 return -ESHUTDOWN;
384
385 /* use the buffer lock here for triple duty:
386 * - prevent I/O (from us) so calling spi_setup() is safe;
387 * - prevent concurrent SPI_IOC_WR_* from morphing
388 * data fields while SPI_IOC_RD_* reads them;
389 * - SPI_IOC_MESSAGE needs the buffer locked "normally".
390 */
391 mutex_lock(&spidev->buf_lock);
392
393 switch (cmd) {
394 /* read requests */
395 case SPI_IOC_RD_MODE:
396 retval = __put_user(spi->mode & SPI_MODE_MASK,
397 (__u8 __user *)arg);
398 break;
399 case SPI_IOC_RD_MODE32:
400 retval = __put_user(spi->mode & SPI_MODE_MASK,
401 (__u32 __user *)arg);
402 break;
403 case SPI_IOC_RD_LSB_FIRST:
404 retval = __put_user((spi->mode & SPI_LSB_FIRST) ? 1 : 0,
405 (__u8 __user *)arg);
406 break;
407 case SPI_IOC_RD_BITS_PER_WORD:
408 retval = __put_user(spi->bits_per_word, (__u8 __user *)arg);
409 break;
410 case SPI_IOC_RD_MAX_SPEED_HZ:
411 retval = __put_user(spidev->speed_hz, (__u32 __user *)arg);
412 break;
413
414 /* write requests */
415 case SPI_IOC_WR_MODE:
416 case SPI_IOC_WR_MODE32:
417 if (cmd == SPI_IOC_WR_MODE)
418 retval = __get_user(tmp, (u8 __user *)arg);
419 else
420 retval = __get_user(tmp, (u32 __user *)arg);
421 if (retval == 0) {
422 u32 save = spi->mode;
423
424 if (tmp & ~SPI_MODE_MASK) {
425 retval = -EINVAL;
426 break;
427 }
428
429 tmp |= spi->mode & ~SPI_MODE_MASK;
430 spi->mode = (u16)tmp;
431 retval = spi_setup(spi);
432 if (retval < 0)
433 spi->mode = save;
434 else
435 dev_dbg(&spi->dev, "spi mode %x\n", tmp);
436 }
437 break;
438 case SPI_IOC_WR_LSB_FIRST:
439 retval = __get_user(tmp, (__u8 __user *)arg);
440 if (retval == 0) {
441 u32 save = spi->mode;
442
443 if (tmp)
444 spi->mode |= SPI_LSB_FIRST;
445 else
446 spi->mode &= ~SPI_LSB_FIRST;
447 retval = spi_setup(spi);
448 if (retval < 0)
449 spi->mode = save;
450 else
451 dev_dbg(&spi->dev, "%csb first\n",
452 tmp ? 'l' : 'm');
453 }
454 break;
455 case SPI_IOC_WR_BITS_PER_WORD:
456 retval = __get_user(tmp, (__u8 __user *)arg);
457 if (retval == 0) {
458 u8 save = spi->bits_per_word;
459
460 spi->bits_per_word = tmp;
461 retval = spi_setup(spi);
462 if (retval < 0)
463 spi->bits_per_word = save;
464 else
465 dev_dbg(&spi->dev, "%d bits per word\n", tmp);
466 }
467 break;
468 case SPI_IOC_WR_MAX_SPEED_HZ:
469 retval = __get_user(tmp, (__u32 __user *)arg);
470 if (retval == 0) {
471 u32 save = spi->max_speed_hz;
472
473 spi->max_speed_hz = tmp;
474 retval = spi_setup(spi);
475 if (retval >= 0)
476 spidev->speed_hz = tmp;
477 else
478 dev_dbg(&spi->dev, "%d Hz (max)\n", tmp);
479 spi->max_speed_hz = save;
480 }
481 break;
482
483 default:
484 /* segmented and/or full-duplex I/O request */
485 /* Check message and copy into scratch area */
486 ioc = spidev_get_ioc_message(cmd,
487 (struct spi_ioc_transfer __user *)arg, &n_ioc);
488 if (IS_ERR(ioc)) {
489 retval = PTR_ERR(ioc);
490 break;
491 }
492 if (!ioc)
493 break; /* n_ioc is also 0 */
494
495 /* translate to spi_message, execute */
496 retval = spidev_message(spidev, ioc, n_ioc);
497 kfree(ioc);
498 break;
499 }
500
501 mutex_unlock(&spidev->buf_lock);
502 spi_dev_put(spi);
503 return retval;
504 }
505
506 #ifdef CONFIG_COMPAT
507 static long
508 spidev_compat_ioc_message(struct file *filp, unsigned int cmd,
509 unsigned long arg)
510 {
511 struct spi_ioc_transfer __user *u_ioc;
512 int retval = 0;
513 struct spidev_data *spidev;
514 struct spi_device *spi;
515 unsigned n_ioc, n;
516 struct spi_ioc_transfer *ioc;
517
518 u_ioc = (struct spi_ioc_transfer __user *) compat_ptr(arg);
519 if (!access_ok(VERIFY_READ, u_ioc, _IOC_SIZE(cmd)))
520 return -EFAULT;
521
522 /* guard against device removal before, or while,
523 * we issue this ioctl.
524 */
525 spidev = filp->private_data;
526 spin_lock_irq(&spidev->spi_lock);
527 spi = spi_dev_get(spidev->spi);
528 spin_unlock_irq(&spidev->spi_lock);
529
530 if (spi == NULL)
531 return -ESHUTDOWN;
532
533 /* SPI_IOC_MESSAGE needs the buffer locked "normally" */
534 mutex_lock(&spidev->buf_lock);
535
536 /* Check message and copy into scratch area */
537 ioc = spidev_get_ioc_message(cmd, u_ioc, &n_ioc);
538 if (IS_ERR(ioc)) {
539 retval = PTR_ERR(ioc);
540 goto done;
541 }
542 if (!ioc)
543 goto done; /* n_ioc is also 0 */
544
545 /* Convert buffer pointers */
546 for (n = 0; n < n_ioc; n++) {
547 ioc[n].rx_buf = (uintptr_t) compat_ptr(ioc[n].rx_buf);
548 ioc[n].tx_buf = (uintptr_t) compat_ptr(ioc[n].tx_buf);
549 }
550
551 /* translate to spi_message, execute */
552 retval = spidev_message(spidev, ioc, n_ioc);
553 kfree(ioc);
554
555 done:
556 mutex_unlock(&spidev->buf_lock);
557 spi_dev_put(spi);
558 return retval;
559 }
560
561 static long
562 spidev_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
563 {
564 if (_IOC_TYPE(cmd) == SPI_IOC_MAGIC
565 && _IOC_NR(cmd) == _IOC_NR(SPI_IOC_MESSAGE(0))
566 && _IOC_DIR(cmd) == _IOC_WRITE)
567 return spidev_compat_ioc_message(filp, cmd, arg);
568
569 return spidev_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
570 }
571 #else
572 #define spidev_compat_ioctl NULL
573 #endif /* CONFIG_COMPAT */
574
575 static int spidev_open(struct inode *inode, struct file *filp)
576 {
577 struct spidev_data *spidev;
578 int status = -ENXIO;
579
580 mutex_lock(&device_list_lock);
581
582 list_for_each_entry(spidev, &device_list, device_entry) {
583 if (spidev->devt == inode->i_rdev) {
584 status = 0;
585 break;
586 }
587 }
588
589 if (status) {
590 pr_debug("spidev: nothing for minor %d\n", iminor(inode));
591 goto err_find_dev;
592 }
593
594 if (!spidev->tx_buffer) {
595 spidev->tx_buffer = kmalloc(bufsiz, GFP_KERNEL);
596 if (!spidev->tx_buffer) {
597 dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
598 status = -ENOMEM;
599 goto err_find_dev;
600 }
601 }
602
603 if (!spidev->rx_buffer) {
604 spidev->rx_buffer = kmalloc(bufsiz, GFP_KERNEL);
605 if (!spidev->rx_buffer) {
606 dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
607 status = -ENOMEM;
608 goto err_alloc_rx_buf;
609 }
610 }
611
612 spidev->users++;
613 filp->private_data = spidev;
614 nonseekable_open(inode, filp);
615
616 mutex_unlock(&device_list_lock);
617 return 0;
618
619 err_alloc_rx_buf:
620 kfree(spidev->tx_buffer);
621 spidev->tx_buffer = NULL;
622 err_find_dev:
623 mutex_unlock(&device_list_lock);
624 return status;
625 }
626
627 static int spidev_release(struct inode *inode, struct file *filp)
628 {
629 struct spidev_data *spidev;
630
631 mutex_lock(&device_list_lock);
632 spidev = filp->private_data;
633 filp->private_data = NULL;
634
635 /* last close? */
636 spidev->users--;
637 if (!spidev->users) {
638 int dofree;
639
640 kfree(spidev->tx_buffer);
641 spidev->tx_buffer = NULL;
642
643 kfree(spidev->rx_buffer);
644 spidev->rx_buffer = NULL;
645
646 spin_lock_irq(&spidev->spi_lock);
647 if (spidev->spi)
648 spidev->speed_hz = spidev->spi->max_speed_hz;
649
650 /* ... after we unbound from the underlying device? */
651 dofree = (spidev->spi == NULL);
652 spin_unlock_irq(&spidev->spi_lock);
653
654 if (dofree)
655 kfree(spidev);
656 }
657 mutex_unlock(&device_list_lock);
658
659 return 0;
660 }
661
662 static const struct file_operations spidev_fops = {
663 .owner = THIS_MODULE,
664 /* REVISIT switch to aio primitives, so that userspace
665 * gets more complete API coverage. It'll simplify things
666 * too, except for the locking.
667 */
668 .write = spidev_write,
669 .read = spidev_read,
670 .unlocked_ioctl = spidev_ioctl,
671 .compat_ioctl = spidev_compat_ioctl,
672 .open = spidev_open,
673 .release = spidev_release,
674 .llseek = no_llseek,
675 };
676
677 /*-------------------------------------------------------------------------*/
678
679 /* The main reason to have this class is to make mdev/udev create the
680 * /dev/spidevB.C character device nodes exposing our userspace API.
681 * It also simplifies memory management.
682 */
683
684 static struct class *spidev_class;
685
686 #ifdef CONFIG_OF
687 static const struct of_device_id spidev_dt_ids[] = {
688 { .compatible = "rohm,dh2228fv" },
689 { .compatible = "lineartechnology,ltc2488" },
690 { .compatible = "ge,achc" },
691 { .compatible = "semtech,sx1301" },
692 {},
693 };
694 MODULE_DEVICE_TABLE(of, spidev_dt_ids);
695 #endif
696
697 #ifdef CONFIG_ACPI
698
699 /* Dummy SPI devices not to be used in production systems */
700 #define SPIDEV_ACPI_DUMMY 1
701
702 static const struct acpi_device_id spidev_acpi_ids[] = {
703 /*
704 * The ACPI SPT000* devices are only meant for development and
705 * testing. Systems used in production should have a proper ACPI
706 * description of the connected peripheral and they should also use
707 * a proper driver instead of poking directly to the SPI bus.
708 */
709 { "SPT0001", SPIDEV_ACPI_DUMMY },
710 { "SPT0002", SPIDEV_ACPI_DUMMY },
711 { "SPT0003", SPIDEV_ACPI_DUMMY },
712 {},
713 };
714 MODULE_DEVICE_TABLE(acpi, spidev_acpi_ids);
715
716 static void spidev_probe_acpi(struct spi_device *spi)
717 {
718 const struct acpi_device_id *id;
719
720 if (!has_acpi_companion(&spi->dev))
721 return;
722
723 id = acpi_match_device(spidev_acpi_ids, &spi->dev);
724 if (WARN_ON(!id))
725 return;
726
727 if (id->driver_data == SPIDEV_ACPI_DUMMY)
728 dev_warn(&spi->dev, "do not use this driver in production systems!\n");
729 }
730 #else
731 static inline void spidev_probe_acpi(struct spi_device *spi) {}
732 #endif
733
734 /*-------------------------------------------------------------------------*/
735
736 static int spidev_probe(struct spi_device *spi)
737 {
738 struct spidev_data *spidev;
739 int status;
740 unsigned long minor;
741
742 /*
743 * spidev should never be referenced in DT without a specific
744 * compatible string, it is a Linux implementation thing
745 * rather than a description of the hardware.
746 */
747 if (spi->dev.of_node && !of_match_device(spidev_dt_ids, &spi->dev)) {
748 dev_err(&spi->dev, "buggy DT: spidev listed directly in DT\n");
749 WARN_ON(spi->dev.of_node &&
750 !of_match_device(spidev_dt_ids, &spi->dev));
751 }
752
753 spidev_probe_acpi(spi);
754
755 /* Allocate driver data */
756 spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
757 if (!spidev)
758 return -ENOMEM;
759
760 /* Initialize the driver data */
761 spidev->spi = spi;
762 spin_lock_init(&spidev->spi_lock);
763 mutex_init(&spidev->buf_lock);
764
765 INIT_LIST_HEAD(&spidev->device_entry);
766
767 /* If we can allocate a minor number, hook up this device.
768 * Reusing minors is fine so long as udev or mdev is working.
769 */
770 mutex_lock(&device_list_lock);
771 minor = find_first_zero_bit(minors, N_SPI_MINORS);
772 if (minor < N_SPI_MINORS) {
773 struct device *dev;
774
775 spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
776 dev = device_create(spidev_class, &spi->dev, spidev->devt,
777 spidev, "spidev%d.%d",
778 spi->master->bus_num, spi->chip_select);
779 status = PTR_ERR_OR_ZERO(dev);
780 } else {
781 dev_dbg(&spi->dev, "no minor number available!\n");
782 status = -ENODEV;
783 }
784 if (status == 0) {
785 set_bit(minor, minors);
786 list_add(&spidev->device_entry, &device_list);
787 }
788 mutex_unlock(&device_list_lock);
789
790 spidev->speed_hz = spi->max_speed_hz;
791
792 if (status == 0)
793 spi_set_drvdata(spi, spidev);
794 else
795 kfree(spidev);
796
797 return status;
798 }
799
800 static int spidev_remove(struct spi_device *spi)
801 {
802 struct spidev_data *spidev = spi_get_drvdata(spi);
803
804 /* make sure ops on existing fds can abort cleanly */
805 spin_lock_irq(&spidev->spi_lock);
806 spidev->spi = NULL;
807 spin_unlock_irq(&spidev->spi_lock);
808
809 /* prevent new opens */
810 mutex_lock(&device_list_lock);
811 list_del(&spidev->device_entry);
812 device_destroy(spidev_class, spidev->devt);
813 clear_bit(MINOR(spidev->devt), minors);
814 if (spidev->users == 0)
815 kfree(spidev);
816 mutex_unlock(&device_list_lock);
817
818 return 0;
819 }
820
821 static struct spi_driver spidev_spi_driver = {
822 .driver = {
823 .name = "spidev",
824 .of_match_table = of_match_ptr(spidev_dt_ids),
825 .acpi_match_table = ACPI_PTR(spidev_acpi_ids),
826 },
827 .probe = spidev_probe,
828 .remove = spidev_remove,
829
830 /* NOTE: suspend/resume methods are not necessary here.
831 * We don't do anything except pass the requests to/from
832 * the underlying controller. The refrigerator handles
833 * most issues; the controller driver handles the rest.
834 */
835 };
836
837 /*-------------------------------------------------------------------------*/
838
839 static int __init spidev_init(void)
840 {
841 int status;
842
843 /* Claim our 256 reserved device numbers. Then register a class
844 * that will key udev/mdev to add/remove /dev nodes. Last, register
845 * the driver which manages those device numbers.
846 */
847 BUILD_BUG_ON(N_SPI_MINORS > 256);
848 status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
849 if (status < 0)
850 return status;
851
852 spidev_class = class_create(THIS_MODULE, "spidev");
853 if (IS_ERR(spidev_class)) {
854 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
855 return PTR_ERR(spidev_class);
856 }
857
858 status = spi_register_driver(&spidev_spi_driver);
859 if (status < 0) {
860 class_destroy(spidev_class);
861 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
862 }
863 return status;
864 }
865 module_init(spidev_init);
866
867 static void __exit spidev_exit(void)
868 {
869 spi_unregister_driver(&spidev_spi_driver);
870 class_destroy(spidev_class);
871 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
872 }
873 module_exit(spidev_exit);
874
875 MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
876 MODULE_DESCRIPTION("User mode SPI device interface");
877 MODULE_LICENSE("GPL");
878 MODULE_ALIAS("spi:spidev");