]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/staging/ath6kl/os/linux/ar6000_drv.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[mirror_ubuntu-zesty-kernel.git] / drivers / staging / ath6kl / os / linux / ar6000_drv.c
1 //------------------------------------------------------------------------------
2 // Copyright (c) 2004-2010 Atheros Communications Inc.
3 // All rights reserved.
4 //
5 //
6 //
7 // Permission to use, copy, modify, and/or distribute this software for any
8 // purpose with or without fee is hereby granted, provided that the above
9 // copyright notice and this permission notice appear in all copies.
10 //
11 // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 // ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 // ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 // OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 //
19 //
20 //
21 // Author(s): ="Atheros"
22 //------------------------------------------------------------------------------
23
24 /*
25 * This driver is a pseudo ethernet driver to access the Atheros AR6000
26 * WLAN Device
27 */
28
29 #include "ar6000_drv.h"
30 #include "cfg80211.h"
31 #include "htc.h"
32 #include "wmi_filter_linux.h"
33 #include "epping_test.h"
34 #include "wlan_config.h"
35 #include "ar3kconfig.h"
36 #include "ar6k_pal.h"
37 #include "AR6002/addrs.h"
38
39
40 /* LINUX_HACK_FUDGE_FACTOR -- this is used to provide a workaround for linux behavior. When
41 * the meta data was added to the header it was found that linux did not correctly provide
42 * enough headroom. However when more headroom was requested beyond what was truly needed
43 * Linux gave the requested headroom. Therefore to get the necessary headroom from Linux
44 * the driver requests more than is needed by the amount = LINUX_HACK_FUDGE_FACTOR */
45 #define LINUX_HACK_FUDGE_FACTOR 16
46 #define BDATA_BDADDR_OFFSET 28
47
48 u8 bcast_mac[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
49 u8 null_mac[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0};
50
51 #ifdef DEBUG
52
53 #define ATH_DEBUG_DBG_LOG ATH_DEBUG_MAKE_MODULE_MASK(0)
54 #define ATH_DEBUG_WLAN_CONNECT ATH_DEBUG_MAKE_MODULE_MASK(1)
55 #define ATH_DEBUG_WLAN_SCAN ATH_DEBUG_MAKE_MODULE_MASK(2)
56 #define ATH_DEBUG_WLAN_TX ATH_DEBUG_MAKE_MODULE_MASK(3)
57 #define ATH_DEBUG_WLAN_RX ATH_DEBUG_MAKE_MODULE_MASK(4)
58 #define ATH_DEBUG_HTC_RAW ATH_DEBUG_MAKE_MODULE_MASK(5)
59 #define ATH_DEBUG_HCI_BRIDGE ATH_DEBUG_MAKE_MODULE_MASK(6)
60
61 static struct ath_debug_mask_description driver_debug_desc[] = {
62 { ATH_DEBUG_DBG_LOG , "Target Debug Logs"},
63 { ATH_DEBUG_WLAN_CONNECT , "WLAN connect"},
64 { ATH_DEBUG_WLAN_SCAN , "WLAN scan"},
65 { ATH_DEBUG_WLAN_TX , "WLAN Tx"},
66 { ATH_DEBUG_WLAN_RX , "WLAN Rx"},
67 { ATH_DEBUG_HTC_RAW , "HTC Raw IF tracing"},
68 { ATH_DEBUG_HCI_BRIDGE , "HCI Bridge Setup"},
69 { ATH_DEBUG_HCI_RECV , "HCI Recv tracing"},
70 { ATH_DEBUG_HCI_DUMP , "HCI Packet dumps"},
71 };
72
73 ATH_DEBUG_INSTANTIATE_MODULE_VAR(driver,
74 "driver",
75 "Linux Driver Interface",
76 ATH_DEBUG_MASK_DEFAULTS | ATH_DEBUG_WLAN_SCAN |
77 ATH_DEBUG_HCI_BRIDGE,
78 ATH_DEBUG_DESCRIPTION_COUNT(driver_debug_desc),
79 driver_debug_desc);
80
81 #endif
82
83
84 #define IS_MAC_NULL(mac) (mac[0]==0 && mac[1]==0 && mac[2]==0 && mac[3]==0 && mac[4]==0 && mac[5]==0)
85 #define IS_MAC_BCAST(mac) (*mac==0xff)
86
87 #define DESCRIPTION "Driver to access the Atheros AR600x Device, version " __stringify(__VER_MAJOR_) "." __stringify(__VER_MINOR_) "." __stringify(__VER_PATCH_) "." __stringify(__BUILD_NUMBER_)
88
89 MODULE_AUTHOR("Atheros Communications, Inc.");
90 MODULE_DESCRIPTION(DESCRIPTION);
91 MODULE_LICENSE("Dual BSD/GPL");
92
93 #ifndef REORG_APTC_HEURISTICS
94 #undef ADAPTIVE_POWER_THROUGHPUT_CONTROL
95 #endif /* REORG_APTC_HEURISTICS */
96
97 #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
98 #define APTC_TRAFFIC_SAMPLING_INTERVAL 100 /* msec */
99 #define APTC_UPPER_THROUGHPUT_THRESHOLD 3000 /* Kbps */
100 #define APTC_LOWER_THROUGHPUT_THRESHOLD 2000 /* Kbps */
101
102 typedef struct aptc_traffic_record {
103 bool timerScheduled;
104 struct timeval samplingTS;
105 unsigned long bytesReceived;
106 unsigned long bytesTransmitted;
107 } APTC_TRAFFIC_RECORD;
108
109 A_TIMER aptcTimer;
110 APTC_TRAFFIC_RECORD aptcTR;
111 #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
112
113 #ifdef EXPORT_HCI_BRIDGE_INTERFACE
114 // callbacks registered by HCI transport driver
115 struct hci_transport_callbacks ar6kHciTransCallbacks = { NULL };
116 #endif
117
118 unsigned int processDot11Hdr = 0;
119
120 char ifname[IFNAMSIZ] = {0,};
121
122 int wlaninitmode = WLAN_INIT_MODE_DEFAULT;
123 static bool bypasswmi;
124 unsigned int debuglevel = 0;
125 int tspecCompliance = ATHEROS_COMPLIANCE;
126 unsigned int busspeedlow = 0;
127 unsigned int onebitmode = 0;
128 unsigned int skipflash = 0;
129 unsigned int wmitimeout = 2;
130 unsigned int wlanNodeCaching = 1;
131 unsigned int enableuartprint = ENABLEUARTPRINT_DEFAULT;
132 unsigned int logWmiRawMsgs = 0;
133 unsigned int enabletimerwar = 0;
134 unsigned int num_device = 1;
135 unsigned int regscanmode;
136 unsigned int fwmode = 1;
137 unsigned int mbox_yield_limit = 99;
138 unsigned int enablerssicompensation = 0;
139 int reduce_credit_dribble = 1 + HTC_CONNECT_FLAGS_THRESHOLD_LEVEL_ONE_HALF;
140 int allow_trace_signal = 0;
141 #ifdef CONFIG_HOST_TCMD_SUPPORT
142 unsigned int testmode =0;
143 #endif
144
145 unsigned int irqprocmode = HIF_DEVICE_IRQ_SYNC_ONLY;//HIF_DEVICE_IRQ_ASYNC_SYNC;
146 unsigned int panic_on_assert = 1;
147 unsigned int nohifscattersupport = NOHIFSCATTERSUPPORT_DEFAULT;
148
149 unsigned int setuphci = SETUPHCI_DEFAULT;
150 unsigned int loghci = 0;
151 unsigned int setupbtdev = SETUPBTDEV_DEFAULT;
152 #ifndef EXPORT_HCI_BRIDGE_INTERFACE
153 unsigned int ar3khcibaud = AR3KHCIBAUD_DEFAULT;
154 unsigned int hciuartscale = HCIUARTSCALE_DEFAULT;
155 unsigned int hciuartstep = HCIUARTSTEP_DEFAULT;
156 #endif
157 unsigned int csumOffload=0;
158 unsigned int csumOffloadTest=0;
159 unsigned int eppingtest=0;
160 unsigned int mac_addr_method;
161 unsigned int firmware_bridge;
162
163 module_param_string(ifname, ifname, sizeof(ifname), 0644);
164 module_param(wlaninitmode, int, 0644);
165 module_param(bypasswmi, bool, 0644);
166 module_param(debuglevel, uint, 0644);
167 module_param(tspecCompliance, int, 0644);
168 module_param(onebitmode, uint, 0644);
169 module_param(busspeedlow, uint, 0644);
170 module_param(skipflash, uint, 0644);
171 module_param(wmitimeout, uint, 0644);
172 module_param(wlanNodeCaching, uint, 0644);
173 module_param(logWmiRawMsgs, uint, 0644);
174 module_param(enableuartprint, uint, 0644);
175 module_param(enabletimerwar, uint, 0644);
176 module_param(fwmode, uint, 0644);
177 module_param(mbox_yield_limit, uint, 0644);
178 module_param(reduce_credit_dribble, int, 0644);
179 module_param(allow_trace_signal, int, 0644);
180 module_param(enablerssicompensation, uint, 0644);
181 module_param(processDot11Hdr, uint, 0644);
182 module_param(csumOffload, uint, 0644);
183 #ifdef CONFIG_HOST_TCMD_SUPPORT
184 module_param(testmode, uint, 0644);
185 #endif
186 module_param(irqprocmode, uint, 0644);
187 module_param(nohifscattersupport, uint, 0644);
188 module_param(panic_on_assert, uint, 0644);
189 module_param(setuphci, uint, 0644);
190 module_param(loghci, uint, 0644);
191 module_param(setupbtdev, uint, 0644);
192 #ifndef EXPORT_HCI_BRIDGE_INTERFACE
193 module_param(ar3khcibaud, uint, 0644);
194 module_param(hciuartscale, uint, 0644);
195 module_param(hciuartstep, uint, 0644);
196 #endif
197 module_param(eppingtest, uint, 0644);
198
199 /* in 2.6.10 and later this is now a pointer to a uint */
200 unsigned int _mboxnum = HTC_MAILBOX_NUM_MAX;
201 #define mboxnum &_mboxnum
202
203 #ifdef DEBUG
204 u32 g_dbg_flags = DBG_DEFAULTS;
205 unsigned int debugflags = 0;
206 int debugdriver = 0;
207 unsigned int debughtc = 0;
208 unsigned int debugbmi = 0;
209 unsigned int debughif = 0;
210 unsigned int txcreditsavailable[HTC_MAILBOX_NUM_MAX] = {0};
211 unsigned int txcreditsconsumed[HTC_MAILBOX_NUM_MAX] = {0};
212 unsigned int txcreditintrenable[HTC_MAILBOX_NUM_MAX] = {0};
213 unsigned int txcreditintrenableaggregate[HTC_MAILBOX_NUM_MAX] = {0};
214 module_param(debugflags, uint, 0644);
215 module_param(debugdriver, int, 0644);
216 module_param(debughtc, uint, 0644);
217 module_param(debugbmi, uint, 0644);
218 module_param(debughif, uint, 0644);
219 module_param_array(txcreditsavailable, uint, mboxnum, 0644);
220 module_param_array(txcreditsconsumed, uint, mboxnum, 0644);
221 module_param_array(txcreditintrenable, uint, mboxnum, 0644);
222 module_param_array(txcreditintrenableaggregate, uint, mboxnum, 0644);
223
224 #endif /* DEBUG */
225
226 unsigned int resetok = 1;
227 unsigned int tx_attempt[HTC_MAILBOX_NUM_MAX] = {0};
228 unsigned int tx_post[HTC_MAILBOX_NUM_MAX] = {0};
229 unsigned int tx_complete[HTC_MAILBOX_NUM_MAX] = {0};
230 unsigned int hifBusRequestNumMax = 40;
231 unsigned int war23838_disabled = 0;
232 #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
233 unsigned int enableAPTCHeuristics = 1;
234 #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
235 module_param_array(tx_attempt, uint, mboxnum, 0644);
236 module_param_array(tx_post, uint, mboxnum, 0644);
237 module_param_array(tx_complete, uint, mboxnum, 0644);
238 module_param(hifBusRequestNumMax, uint, 0644);
239 module_param(war23838_disabled, uint, 0644);
240 module_param(resetok, uint, 0644);
241 #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
242 module_param(enableAPTCHeuristics, uint, 0644);
243 #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
244
245 #ifdef BLOCK_TX_PATH_FLAG
246 int blocktx = 0;
247 module_param(blocktx, int, 0644);
248 #endif /* BLOCK_TX_PATH_FLAG */
249
250 typedef struct user_rssi_compensation_t {
251 u16 customerID;
252 union {
253 u16 a_enable;
254 u16 bg_enable;
255 u16 enable;
256 };
257 s16 bg_param_a;
258 s16 bg_param_b;
259 s16 a_param_a;
260 s16 a_param_b;
261 u32 reserved;
262 } USER_RSSI_CPENSATION;
263
264 static USER_RSSI_CPENSATION rssi_compensation_param;
265
266 static s16 rssi_compensation_table[96];
267
268 int reconnect_flag = 0;
269 static ar6k_pal_config_t ar6k_pal_config_g;
270
271 /* Function declarations */
272 static int ar6000_init_module(void);
273 static void ar6000_cleanup_module(void);
274
275 int ar6000_init(struct net_device *dev);
276 static int ar6000_open(struct net_device *dev);
277 static int ar6000_close(struct net_device *dev);
278 static void ar6000_init_control_info(struct ar6_softc *ar);
279 static int ar6000_data_tx(struct sk_buff *skb, struct net_device *dev);
280
281 void ar6000_destroy(struct net_device *dev, unsigned int unregister);
282 static void ar6000_detect_error(unsigned long ptr);
283 static void ar6000_set_multicast_list(struct net_device *dev);
284 static struct net_device_stats *ar6000_get_stats(struct net_device *dev);
285
286 static void disconnect_timer_handler(unsigned long ptr);
287
288 void read_rssi_compensation_param(struct ar6_softc *ar);
289
290 /*
291 * HTC service connection handlers
292 */
293 static int ar6000_avail_ev(void *context, void *hif_handle);
294
295 static int ar6000_unavail_ev(void *context, void *hif_handle);
296
297 int ar6000_configure_target(struct ar6_softc *ar);
298
299 static void ar6000_target_failure(void *Instance, int Status);
300
301 static void ar6000_rx(void *Context, struct htc_packet *pPacket);
302
303 static void ar6000_rx_refill(void *Context,HTC_ENDPOINT_ID Endpoint);
304
305 static void ar6000_tx_complete(void *Context, struct htc_packet_queue *pPackets);
306
307 static HTC_SEND_FULL_ACTION ar6000_tx_queue_full(void *Context, struct htc_packet *pPacket);
308
309 static void ar6000_alloc_netbufs(A_NETBUF_QUEUE_T *q, u16 num);
310 static void ar6000_deliver_frames_to_nw_stack(void * dev, void *osbuf);
311 //static void ar6000_deliver_frames_to_bt_stack(void * dev, void *osbuf);
312
313 static struct htc_packet *ar6000_alloc_amsdu_rxbuf(void *Context, HTC_ENDPOINT_ID Endpoint, int Length);
314
315 static void ar6000_refill_amsdu_rxbufs(struct ar6_softc *ar, int Count);
316
317 static void ar6000_cleanup_amsdu_rxbufs(struct ar6_softc *ar);
318
319 static ssize_t
320 ar6000_sysfs_bmi_read(struct file *fp, struct kobject *kobj,
321 struct bin_attribute *bin_attr,
322 char *buf, loff_t pos, size_t count);
323
324 static ssize_t
325 ar6000_sysfs_bmi_write(struct file *fp, struct kobject *kobj,
326 struct bin_attribute *bin_attr,
327 char *buf, loff_t pos, size_t count);
328
329 static int
330 ar6000_sysfs_bmi_init(struct ar6_softc *ar);
331
332 void ar6k_cleanup_hci_pal(struct ar6_softc *ar);
333
334 static void
335 ar6000_sysfs_bmi_deinit(struct ar6_softc *ar);
336
337 int
338 ar6000_sysfs_bmi_get_config(struct ar6_softc *ar, u32 mode);
339
340 /*
341 * Static variables
342 */
343
344 struct net_device *ar6000_devices[MAX_AR6000];
345 static int is_netdev_registered;
346 DECLARE_WAIT_QUEUE_HEAD(arEvent);
347 static void ar6000_cookie_init(struct ar6_softc *ar);
348 static void ar6000_cookie_cleanup(struct ar6_softc *ar);
349 static void ar6000_free_cookie(struct ar6_softc *ar, struct ar_cookie * cookie);
350 static struct ar_cookie *ar6000_alloc_cookie(struct ar6_softc *ar);
351
352 static int ar6000_reinstall_keys(struct ar6_softc *ar,u8 key_op_ctrl);
353
354 #ifdef CONFIG_AP_VIRTUAL_ADAPTER_SUPPORT
355 struct net_device *arApNetDev;
356 #endif /* CONFIG_AP_VIRTUAL_ADAPTER_SUPPORT */
357
358 static struct ar_cookie s_ar_cookie_mem[MAX_COOKIE_NUM];
359
360 #define HOST_INTEREST_ITEM_ADDRESS(ar, item) \
361 (((ar)->arTargetType == TARGET_TYPE_AR6002) ? AR6002_HOST_INTEREST_ITEM_ADDRESS(item) : \
362 (((ar)->arTargetType == TARGET_TYPE_AR6003) ? AR6003_HOST_INTEREST_ITEM_ADDRESS(item) : 0))
363
364
365 static struct net_device_ops ar6000_netdev_ops = {
366 .ndo_init = NULL,
367 .ndo_open = ar6000_open,
368 .ndo_stop = ar6000_close,
369 .ndo_get_stats = ar6000_get_stats,
370 .ndo_start_xmit = ar6000_data_tx,
371 .ndo_set_multicast_list = ar6000_set_multicast_list,
372 };
373
374 /* Debug log support */
375
376 /*
377 * Flag to govern whether the debug logs should be parsed in the kernel
378 * or reported to the application.
379 */
380 #define REPORT_DEBUG_LOGS_TO_APP
381
382 int
383 ar6000_set_host_app_area(struct ar6_softc *ar)
384 {
385 u32 address, data;
386 struct host_app_area_s host_app_area;
387
388 /* Fetch the address of the host_app_area_s instance in the host interest area */
389 address = TARG_VTOP(ar->arTargetType, HOST_INTEREST_ITEM_ADDRESS(ar, hi_app_host_interest));
390 if (ar6000_ReadRegDiag(ar->arHifDevice, &address, &data) != 0) {
391 return A_ERROR;
392 }
393 address = TARG_VTOP(ar->arTargetType, data);
394 host_app_area.wmi_protocol_ver = WMI_PROTOCOL_VERSION;
395 if (ar6000_WriteDataDiag(ar->arHifDevice, address,
396 (u8 *)&host_app_area,
397 sizeof(struct host_app_area_s)) != 0)
398 {
399 return A_ERROR;
400 }
401
402 return 0;
403 }
404
405 u32 dbglog_get_debug_hdr_ptr(struct ar6_softc *ar)
406 {
407 u32 param;
408 u32 address;
409 int status;
410
411 address = TARG_VTOP(ar->arTargetType, HOST_INTEREST_ITEM_ADDRESS(ar, hi_dbglog_hdr));
412 if ((status = ar6000_ReadDataDiag(ar->arHifDevice, address,
413 (u8 *)&param, 4)) != 0)
414 {
415 param = 0;
416 }
417
418 return param;
419 }
420
421 /*
422 * The dbglog module has been initialized. Its ok to access the relevant
423 * data stuctures over the diagnostic window.
424 */
425 void
426 ar6000_dbglog_init_done(struct ar6_softc *ar)
427 {
428 ar->dbglog_init_done = true;
429 }
430
431 u32 dbglog_get_debug_fragment(s8 *datap, u32 len, u32 limit)
432 {
433 s32 *buffer;
434 u32 count;
435 u32 numargs;
436 u32 length;
437 u32 fraglen;
438
439 count = fraglen = 0;
440 buffer = (s32 *)datap;
441 length = (limit >> 2);
442
443 if (len <= limit) {
444 fraglen = len;
445 } else {
446 while (count < length) {
447 numargs = DBGLOG_GET_NUMARGS(buffer[count]);
448 fraglen = (count << 2);
449 count += numargs + 1;
450 }
451 }
452
453 return fraglen;
454 }
455
456 void
457 dbglog_parse_debug_logs(s8 *datap, u32 len)
458 {
459 s32 *buffer;
460 u32 count;
461 u32 timestamp;
462 u32 debugid;
463 u32 moduleid;
464 u32 numargs;
465 u32 length;
466
467 count = 0;
468 buffer = (s32 *)datap;
469 length = (len >> 2);
470 while (count < length) {
471 debugid = DBGLOG_GET_DBGID(buffer[count]);
472 moduleid = DBGLOG_GET_MODULEID(buffer[count]);
473 numargs = DBGLOG_GET_NUMARGS(buffer[count]);
474 timestamp = DBGLOG_GET_TIMESTAMP(buffer[count]);
475 switch (numargs) {
476 case 0:
477 AR_DEBUG_PRINTF(ATH_DEBUG_DBG_LOG,("%d %d (%d)\n", moduleid, debugid, timestamp));
478 break;
479
480 case 1:
481 AR_DEBUG_PRINTF(ATH_DEBUG_DBG_LOG,("%d %d (%d): 0x%x\n", moduleid, debugid,
482 timestamp, buffer[count+1]));
483 break;
484
485 case 2:
486 AR_DEBUG_PRINTF(ATH_DEBUG_DBG_LOG,("%d %d (%d): 0x%x, 0x%x\n", moduleid, debugid,
487 timestamp, buffer[count+1], buffer[count+2]));
488 break;
489
490 default:
491 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Invalid args: %d\n", numargs));
492 }
493 count += numargs + 1;
494 }
495 }
496
497 int
498 ar6000_dbglog_get_debug_logs(struct ar6_softc *ar)
499 {
500 u32 data[8]; /* Should be able to accommodate struct dbglog_buf_s */
501 u32 address;
502 u32 length;
503 u32 dropped;
504 u32 firstbuf;
505 u32 debug_hdr_ptr;
506
507 if (!ar->dbglog_init_done) return A_ERROR;
508
509
510 AR6000_SPIN_LOCK(&ar->arLock, 0);
511
512 if (ar->dbgLogFetchInProgress) {
513 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
514 return A_EBUSY;
515 }
516
517 /* block out others */
518 ar->dbgLogFetchInProgress = true;
519
520 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
521
522 debug_hdr_ptr = dbglog_get_debug_hdr_ptr(ar);
523 printk("debug_hdr_ptr: 0x%x\n", debug_hdr_ptr);
524
525 /* Get the contents of the ring buffer */
526 if (debug_hdr_ptr) {
527 address = TARG_VTOP(ar->arTargetType, debug_hdr_ptr);
528 length = 4 /* sizeof(dbuf) */ + 4 /* sizeof(dropped) */;
529 A_MEMZERO(data, sizeof(data));
530 ar6000_ReadDataDiag(ar->arHifDevice, address, (u8 *)data, length);
531 address = TARG_VTOP(ar->arTargetType, data[0] /* dbuf */);
532 firstbuf = address;
533 dropped = data[1]; /* dropped */
534 length = 4 /* sizeof(next) */ + 4 /* sizeof(buffer) */ + 4 /* sizeof(bufsize) */ + 4 /* sizeof(length) */ + 4 /* sizeof(count) */ + 4 /* sizeof(free) */;
535 A_MEMZERO(data, sizeof(data));
536 ar6000_ReadDataDiag(ar->arHifDevice, address, (u8 *)&data, length);
537
538 do {
539 address = TARG_VTOP(ar->arTargetType, data[1] /* buffer*/);
540 length = data[3]; /* length */
541 if ((length) && (length <= data[2] /* bufsize*/)) {
542 /* Rewind the index if it is about to overrun the buffer */
543 if (ar->log_cnt > (DBGLOG_HOST_LOG_BUFFER_SIZE - length)) {
544 ar->log_cnt = 0;
545 }
546 if(0 != ar6000_ReadDataDiag(ar->arHifDevice, address,
547 (u8 *)&ar->log_buffer[ar->log_cnt], length))
548 {
549 break;
550 }
551 ar6000_dbglog_event(ar, dropped, (s8 *)&ar->log_buffer[ar->log_cnt], length);
552 ar->log_cnt += length;
553 } else {
554 AR_DEBUG_PRINTF(ATH_DEBUG_DBG_LOG,("Length: %d (Total size: %d)\n",
555 data[3], data[2]));
556 }
557
558 address = TARG_VTOP(ar->arTargetType, data[0] /* next */);
559 length = 4 /* sizeof(next) */ + 4 /* sizeof(buffer) */ + 4 /* sizeof(bufsize) */ + 4 /* sizeof(length) */ + 4 /* sizeof(count) */ + 4 /* sizeof(free) */;
560 A_MEMZERO(data, sizeof(data));
561 if(0 != ar6000_ReadDataDiag(ar->arHifDevice, address,
562 (u8 *)&data, length))
563 {
564 break;
565 }
566
567 } while (address != firstbuf);
568 }
569
570 ar->dbgLogFetchInProgress = false;
571
572 return 0;
573 }
574
575 void
576 ar6000_dbglog_event(struct ar6_softc *ar, u32 dropped,
577 s8 *buffer, u32 length)
578 {
579 #ifdef REPORT_DEBUG_LOGS_TO_APP
580 #define MAX_WIRELESS_EVENT_SIZE 252
581 /*
582 * Break it up into chunks of MAX_WIRELESS_EVENT_SIZE bytes of messages.
583 * There seems to be a limitation on the length of message that could be
584 * transmitted to the user app via this mechanism.
585 */
586 u32 send, sent;
587
588 sent = 0;
589 send = dbglog_get_debug_fragment(&buffer[sent], length - sent,
590 MAX_WIRELESS_EVENT_SIZE);
591 while (send) {
592 sent += send;
593 send = dbglog_get_debug_fragment(&buffer[sent], length - sent,
594 MAX_WIRELESS_EVENT_SIZE);
595 }
596 #else
597 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Dropped logs: 0x%x\nDebug info length: %d\n",
598 dropped, length));
599
600 /* Interpret the debug logs */
601 dbglog_parse_debug_logs((s8 *)buffer, length);
602 #endif /* REPORT_DEBUG_LOGS_TO_APP */
603 }
604
605
606 static int __init
607 ar6000_init_module(void)
608 {
609 static int probed = 0;
610 int r;
611 OSDRV_CALLBACKS osdrvCallbacks;
612
613 a_module_debug_support_init();
614
615 #ifdef DEBUG
616 /* check for debug mask overrides */
617 if (debughtc != 0) {
618 ATH_DEBUG_SET_DEBUG_MASK(htc,debughtc);
619 }
620 if (debugbmi != 0) {
621 ATH_DEBUG_SET_DEBUG_MASK(bmi,debugbmi);
622 }
623 if (debughif != 0) {
624 ATH_DEBUG_SET_DEBUG_MASK(hif,debughif);
625 }
626 if (debugdriver != 0) {
627 ATH_DEBUG_SET_DEBUG_MASK(driver,debugdriver);
628 }
629
630 #endif
631
632 A_REGISTER_MODULE_DEBUG_INFO(driver);
633
634 A_MEMZERO(&osdrvCallbacks,sizeof(osdrvCallbacks));
635 osdrvCallbacks.deviceInsertedHandler = ar6000_avail_ev;
636 osdrvCallbacks.deviceRemovedHandler = ar6000_unavail_ev;
637 #ifdef CONFIG_PM
638 osdrvCallbacks.deviceSuspendHandler = ar6000_suspend_ev;
639 osdrvCallbacks.deviceResumeHandler = ar6000_resume_ev;
640 osdrvCallbacks.devicePowerChangeHandler = ar6000_power_change_ev;
641 #endif
642
643 #ifdef DEBUG
644 /* Set the debug flags if specified at load time */
645 if(debugflags != 0)
646 {
647 g_dbg_flags = debugflags;
648 }
649 #endif
650
651 if (probed) {
652 return -ENODEV;
653 }
654 probed++;
655
656 #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
657 memset(&aptcTR, 0, sizeof(APTC_TRAFFIC_RECORD));
658 #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
659
660 r = HIFInit(&osdrvCallbacks);
661 if (r)
662 return r;
663
664 return 0;
665 }
666
667 static void __exit
668 ar6000_cleanup_module(void)
669 {
670 int i = 0;
671 struct net_device *ar6000_netdev;
672
673 #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
674 /* Delete the Adaptive Power Control timer */
675 if (timer_pending(&aptcTimer)) {
676 del_timer_sync(&aptcTimer);
677 }
678 #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
679
680 for (i=0; i < MAX_AR6000; i++) {
681 if (ar6000_devices[i] != NULL) {
682 ar6000_netdev = ar6000_devices[i];
683 ar6000_devices[i] = NULL;
684 ar6000_destroy(ar6000_netdev, 1);
685 }
686 }
687
688 HIFShutDownDevice(NULL);
689
690 a_module_debug_support_cleanup();
691
692 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("ar6000_cleanup: success\n"));
693 }
694
695 #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
696 void
697 aptcTimerHandler(unsigned long arg)
698 {
699 u32 numbytes;
700 u32 throughput;
701 struct ar6_softc *ar;
702 int status;
703
704 ar = (struct ar6_softc *)arg;
705 A_ASSERT(ar != NULL);
706 A_ASSERT(!timer_pending(&aptcTimer));
707
708 AR6000_SPIN_LOCK(&ar->arLock, 0);
709
710 /* Get the number of bytes transferred */
711 numbytes = aptcTR.bytesTransmitted + aptcTR.bytesReceived;
712 aptcTR.bytesTransmitted = aptcTR.bytesReceived = 0;
713
714 /* Calculate and decide based on throughput thresholds */
715 throughput = ((numbytes * 8)/APTC_TRAFFIC_SAMPLING_INTERVAL); /* Kbps */
716 if (throughput < APTC_LOWER_THROUGHPUT_THRESHOLD) {
717 /* Enable Sleep and delete the timer */
718 A_ASSERT(ar->arWmiReady == true);
719 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
720 status = wmi_powermode_cmd(ar->arWmi, REC_POWER);
721 AR6000_SPIN_LOCK(&ar->arLock, 0);
722 A_ASSERT(status == 0);
723 aptcTR.timerScheduled = false;
724 } else {
725 A_TIMEOUT_MS(&aptcTimer, APTC_TRAFFIC_SAMPLING_INTERVAL, 0);
726 }
727
728 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
729 }
730 #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
731
732 static void
733 ar6000_alloc_netbufs(A_NETBUF_QUEUE_T *q, u16 num)
734 {
735 void * osbuf;
736
737 while(num) {
738 if((osbuf = A_NETBUF_ALLOC(AR6000_BUFFER_SIZE))) {
739 A_NETBUF_ENQUEUE(q, osbuf);
740 } else {
741 break;
742 }
743 num--;
744 }
745
746 if(num) {
747 A_PRINTF("%s(), allocation of netbuf failed", __func__);
748 }
749 }
750
751 static struct bin_attribute bmi_attr = {
752 .attr = {.name = "bmi", .mode = 0600},
753 .read = ar6000_sysfs_bmi_read,
754 .write = ar6000_sysfs_bmi_write,
755 };
756
757 static ssize_t
758 ar6000_sysfs_bmi_read(struct file *fp, struct kobject *kobj,
759 struct bin_attribute *bin_attr,
760 char *buf, loff_t pos, size_t count)
761 {
762 int index;
763 struct ar6_softc *ar;
764 struct hif_device_os_device_info *osDevInfo;
765
766 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("BMI: Read %d bytes\n", (u32)count));
767 for (index=0; index < MAX_AR6000; index++) {
768 ar = (struct ar6_softc *)ar6k_priv(ar6000_devices[index]);
769 osDevInfo = &ar->osDevInfo;
770 if (kobj == (&(((struct device *)osDevInfo->pOSDevice)->kobj))) {
771 break;
772 }
773 }
774
775 if (index == MAX_AR6000) return 0;
776
777 if ((BMIRawRead(ar->arHifDevice, (u8*)buf, count, true)) != 0) {
778 return 0;
779 }
780
781 return count;
782 }
783
784 static ssize_t
785 ar6000_sysfs_bmi_write(struct file *fp, struct kobject *kobj,
786 struct bin_attribute *bin_attr,
787 char *buf, loff_t pos, size_t count)
788 {
789 int index;
790 struct ar6_softc *ar;
791 struct hif_device_os_device_info *osDevInfo;
792
793 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("BMI: Write %d bytes\n", (u32)count));
794 for (index=0; index < MAX_AR6000; index++) {
795 ar = (struct ar6_softc *)ar6k_priv(ar6000_devices[index]);
796 osDevInfo = &ar->osDevInfo;
797 if (kobj == (&(((struct device *)osDevInfo->pOSDevice)->kobj))) {
798 break;
799 }
800 }
801
802 if (index == MAX_AR6000) return 0;
803
804 if ((BMIRawWrite(ar->arHifDevice, (u8*)buf, count)) != 0) {
805 return 0;
806 }
807
808 return count;
809 }
810
811 static int
812 ar6000_sysfs_bmi_init(struct ar6_softc *ar)
813 {
814 int status;
815
816 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("BMI: Creating sysfs entry\n"));
817 A_MEMZERO(&ar->osDevInfo, sizeof(struct hif_device_os_device_info));
818
819 /* Get the underlying OS device */
820 status = HIFConfigureDevice(ar->arHifDevice,
821 HIF_DEVICE_GET_OS_DEVICE,
822 &ar->osDevInfo,
823 sizeof(struct hif_device_os_device_info));
824
825 if (status) {
826 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("BMI: Failed to get OS device info from HIF\n"));
827 return A_ERROR;
828 }
829
830 /* Create a bmi entry in the sysfs filesystem */
831 if ((sysfs_create_bin_file(&(((struct device *)ar->osDevInfo.pOSDevice)->kobj), &bmi_attr)) < 0)
832 {
833 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMI: Failed to create entry for bmi in sysfs filesystem\n"));
834 return A_ERROR;
835 }
836
837 return 0;
838 }
839
840 static void
841 ar6000_sysfs_bmi_deinit(struct ar6_softc *ar)
842 {
843 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("BMI: Deleting sysfs entry\n"));
844
845 sysfs_remove_bin_file(&(((struct device *)ar->osDevInfo.pOSDevice)->kobj), &bmi_attr);
846 }
847
848 #define bmifn(fn) do { \
849 if ((fn) < 0) { \
850 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("BMI operation failed: %d\n", __LINE__)); \
851 return A_ERROR; \
852 } \
853 } while(0)
854
855 #ifdef SOFTMAC_FILE_USED
856 #define AR6002_MAC_ADDRESS_OFFSET 0x0A
857 #define AR6003_MAC_ADDRESS_OFFSET 0x16
858 static
859 void calculate_crc(u32 TargetType, u8 *eeprom_data)
860 {
861 u16 *ptr_crc;
862 u16 *ptr16_eeprom;
863 u16 checksum;
864 u32 i;
865 u32 eeprom_size;
866
867 if (TargetType == TARGET_TYPE_AR6001)
868 {
869 eeprom_size = 512;
870 ptr_crc = (u16 *)eeprom_data;
871 }
872 else if (TargetType == TARGET_TYPE_AR6003)
873 {
874 eeprom_size = 1024;
875 ptr_crc = (u16 *)((u8 *)eeprom_data + 0x04);
876 }
877 else
878 {
879 eeprom_size = 768;
880 ptr_crc = (u16 *)((u8 *)eeprom_data + 0x04);
881 }
882
883
884 // Clear the crc
885 *ptr_crc = 0;
886
887 // Recalculate new CRC
888 checksum = 0;
889 ptr16_eeprom = (u16 *)eeprom_data;
890 for (i = 0;i < eeprom_size; i += 2)
891 {
892 checksum = checksum ^ (*ptr16_eeprom);
893 ptr16_eeprom++;
894 }
895 checksum = 0xFFFF ^ checksum;
896 *ptr_crc = checksum;
897 }
898
899 static void
900 ar6000_softmac_update(struct ar6_softc *ar, u8 *eeprom_data, size_t size)
901 {
902 const char *source = "random generated";
903 const struct firmware *softmac_entry;
904 u8 *ptr_mac;
905 switch (ar->arTargetType) {
906 case TARGET_TYPE_AR6002:
907 ptr_mac = (u8 *)((u8 *)eeprom_data + AR6002_MAC_ADDRESS_OFFSET);
908 break;
909 case TARGET_TYPE_AR6003:
910 ptr_mac = (u8 *)((u8 *)eeprom_data + AR6003_MAC_ADDRESS_OFFSET);
911 break;
912 default:
913 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Invalid Target Type\n"));
914 return;
915 }
916 printk(KERN_DEBUG "MAC from EEPROM %pM\n", ptr_mac);
917
918 /* create a random MAC in case we cannot read file from system */
919 ptr_mac[0] = 0;
920 ptr_mac[1] = 0x03;
921 ptr_mac[2] = 0x7F;
922 ptr_mac[3] = random32() & 0xff;
923 ptr_mac[4] = random32() & 0xff;
924 ptr_mac[5] = random32() & 0xff;
925 if ((A_REQUEST_FIRMWARE(&softmac_entry, "softmac", ((struct device *)ar->osDevInfo.pOSDevice))) == 0)
926 {
927 char *macbuf = A_MALLOC_NOWAIT(softmac_entry->size+1);
928 if (macbuf) {
929 unsigned int softmac[6];
930 memcpy(macbuf, softmac_entry->data, softmac_entry->size);
931 macbuf[softmac_entry->size] = '\0';
932 if (sscanf(macbuf, "%02x:%02x:%02x:%02x:%02x:%02x",
933 &softmac[0], &softmac[1], &softmac[2],
934 &softmac[3], &softmac[4], &softmac[5])==6) {
935 int i;
936 for (i=0; i<6; ++i) {
937 ptr_mac[i] = softmac[i] & 0xff;
938 }
939 source = "softmac file";
940 }
941 kfree(macbuf);
942 }
943 A_RELEASE_FIRMWARE(softmac_entry);
944 }
945 printk(KERN_DEBUG "MAC from %s %pM\n", source, ptr_mac);
946 calculate_crc(ar->arTargetType, eeprom_data);
947 }
948 #endif /* SOFTMAC_FILE_USED */
949
950 static int
951 ar6000_transfer_bin_file(struct ar6_softc *ar, AR6K_BIN_FILE file, u32 address, bool compressed)
952 {
953 int status;
954 const char *filename;
955 const struct firmware *fw_entry;
956 u32 fw_entry_size;
957
958 switch (file) {
959 case AR6K_OTP_FILE:
960 if (ar->arVersion.target_ver == AR6003_REV1_VERSION) {
961 filename = AR6003_REV1_OTP_FILE;
962 } else if (ar->arVersion.target_ver == AR6003_REV2_VERSION) {
963 filename = AR6003_REV2_OTP_FILE;
964 } else if (ar->arVersion.target_ver == AR6003_REV3_VERSION) {
965 filename = AR6003_REV3_OTP_FILE;
966 } else {
967 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Unknown firmware revision: %d\n", ar->arVersion.target_ver));
968 return A_ERROR;
969 }
970 break;
971
972 case AR6K_FIRMWARE_FILE:
973 if (ar->arVersion.target_ver == AR6003_REV1_VERSION) {
974 filename = AR6003_REV1_FIRMWARE_FILE;
975 } else if (ar->arVersion.target_ver == AR6003_REV2_VERSION) {
976 filename = AR6003_REV2_FIRMWARE_FILE;
977 } else if (ar->arVersion.target_ver == AR6003_REV3_VERSION) {
978 filename = AR6003_REV3_FIRMWARE_FILE;
979 } else {
980 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Unknown firmware revision: %d\n", ar->arVersion.target_ver));
981 return A_ERROR;
982 }
983
984 if (eppingtest) {
985 bypasswmi = true;
986 if (ar->arVersion.target_ver == AR6003_REV1_VERSION) {
987 filename = AR6003_REV1_EPPING_FIRMWARE_FILE;
988 } else if (ar->arVersion.target_ver == AR6003_REV2_VERSION) {
989 filename = AR6003_REV2_EPPING_FIRMWARE_FILE;
990 } else if (ar->arVersion.target_ver == AR6003_REV3_VERSION) {
991 filename = AR6003_REV3_EPPING_FIRMWARE_FILE;
992 } else {
993 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("eppingtest : unsupported firmware revision: %d\n",
994 ar->arVersion.target_ver));
995 return A_ERROR;
996 }
997 compressed = false;
998 }
999
1000 #ifdef CONFIG_HOST_TCMD_SUPPORT
1001 if(testmode) {
1002 if (ar->arVersion.target_ver == AR6003_REV1_VERSION) {
1003 filename = AR6003_REV1_TCMD_FIRMWARE_FILE;
1004 } else if (ar->arVersion.target_ver == AR6003_REV2_VERSION) {
1005 filename = AR6003_REV2_TCMD_FIRMWARE_FILE;
1006 } else if (ar->arVersion.target_ver == AR6003_REV3_VERSION) {
1007 filename = AR6003_REV3_TCMD_FIRMWARE_FILE;
1008 } else {
1009 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Unknown firmware revision: %d\n", ar->arVersion.target_ver));
1010 return A_ERROR;
1011 }
1012 compressed = false;
1013 }
1014 #endif
1015 #ifdef HTC_RAW_INTERFACE
1016 if (!eppingtest && bypasswmi) {
1017 if (ar->arVersion.target_ver == AR6003_REV1_VERSION) {
1018 filename = AR6003_REV1_ART_FIRMWARE_FILE;
1019 } else if (ar->arVersion.target_ver == AR6003_REV2_VERSION) {
1020 filename = AR6003_REV2_ART_FIRMWARE_FILE;
1021 } else {
1022 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Unknown firmware revision: %d\n", ar->arVersion.target_ver));
1023 return A_ERROR;
1024 }
1025 compressed = false;
1026 }
1027 #endif
1028 break;
1029
1030 case AR6K_PATCH_FILE:
1031 if (ar->arVersion.target_ver == AR6003_REV1_VERSION) {
1032 filename = AR6003_REV1_PATCH_FILE;
1033 } else if (ar->arVersion.target_ver == AR6003_REV2_VERSION) {
1034 filename = AR6003_REV2_PATCH_FILE;
1035 } else if (ar->arVersion.target_ver == AR6003_REV3_VERSION) {
1036 filename = AR6003_REV3_PATCH_FILE;
1037 } else {
1038 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Unknown firmware revision: %d\n", ar->arVersion.target_ver));
1039 return A_ERROR;
1040 }
1041 break;
1042
1043 case AR6K_BOARD_DATA_FILE:
1044 if (ar->arVersion.target_ver == AR6003_REV1_VERSION) {
1045 filename = AR6003_REV1_BOARD_DATA_FILE;
1046 } else if (ar->arVersion.target_ver == AR6003_REV2_VERSION) {
1047 filename = AR6003_REV2_BOARD_DATA_FILE;
1048 } else if (ar->arVersion.target_ver == AR6003_REV3_VERSION) {
1049 filename = AR6003_REV3_BOARD_DATA_FILE;
1050 } else {
1051 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Unknown firmware revision: %d\n", ar->arVersion.target_ver));
1052 return A_ERROR;
1053 }
1054 break;
1055
1056 default:
1057 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Unknown file type: %d\n", file));
1058 return A_ERROR;
1059 }
1060 if ((A_REQUEST_FIRMWARE(&fw_entry, filename, ((struct device *)ar->osDevInfo.pOSDevice))) != 0)
1061 {
1062 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Failed to get %s\n", filename));
1063 return A_ENOENT;
1064 }
1065
1066 #ifdef SOFTMAC_FILE_USED
1067 if (file==AR6K_BOARD_DATA_FILE && fw_entry->data) {
1068 ar6000_softmac_update(ar, (u8 *)fw_entry->data, fw_entry->size);
1069 }
1070 #endif
1071
1072
1073 fw_entry_size = fw_entry->size;
1074
1075 /* Load extended board data for AR6003 */
1076 if ((file==AR6K_BOARD_DATA_FILE) && (fw_entry->data)) {
1077 u32 board_ext_address;
1078 u32 board_ext_data_size;
1079 u32 board_data_size;
1080
1081 board_ext_data_size = (((ar)->arTargetType == TARGET_TYPE_AR6002) ? AR6002_BOARD_EXT_DATA_SZ : \
1082 (((ar)->arTargetType == TARGET_TYPE_AR6003) ? AR6003_BOARD_EXT_DATA_SZ : 0));
1083
1084 board_data_size = (((ar)->arTargetType == TARGET_TYPE_AR6002) ? AR6002_BOARD_DATA_SZ : \
1085 (((ar)->arTargetType == TARGET_TYPE_AR6003) ? AR6003_BOARD_DATA_SZ : 0));
1086
1087 /* Determine where in Target RAM to write Board Data */
1088 bmifn(BMIReadMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_board_ext_data), (u8 *)&board_ext_address, 4));
1089 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("Board extended Data download address: 0x%x\n", board_ext_address));
1090
1091 /* check whether the target has allocated memory for extended board data and file contains extended board data */
1092 if ((board_ext_address) && (fw_entry->size == (board_data_size + board_ext_data_size))) {
1093 u32 param;
1094
1095 status = BMIWriteMemory(ar->arHifDevice, board_ext_address, (u8 *)(fw_entry->data + board_data_size), board_ext_data_size);
1096
1097 if (status) {
1098 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("BMI operation failed: %d\n", __LINE__));
1099 A_RELEASE_FIRMWARE(fw_entry);
1100 return A_ERROR;
1101 }
1102
1103 /* Record the fact that extended board Data IS initialized */
1104 param = (board_ext_data_size << 16) | 1;
1105 bmifn(BMIWriteMemory(ar->arHifDevice,
1106 HOST_INTEREST_ITEM_ADDRESS(ar, hi_board_ext_data_config),
1107 (unsigned char *)&param, 4));
1108 }
1109 fw_entry_size = board_data_size;
1110 }
1111
1112 if (compressed) {
1113 status = BMIFastDownload(ar->arHifDevice, address, (u8 *)fw_entry->data, fw_entry_size);
1114 } else {
1115 status = BMIWriteMemory(ar->arHifDevice, address, (u8 *)fw_entry->data, fw_entry_size);
1116 }
1117
1118 if (status) {
1119 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("BMI operation failed: %d\n", __LINE__));
1120 A_RELEASE_FIRMWARE(fw_entry);
1121 return A_ERROR;
1122 }
1123 A_RELEASE_FIRMWARE(fw_entry);
1124 return 0;
1125 }
1126
1127 int
1128 ar6000_update_bdaddr(struct ar6_softc *ar)
1129 {
1130
1131 if (setupbtdev != 0) {
1132 u32 address;
1133
1134 if (BMIReadMemory(ar->arHifDevice,
1135 HOST_INTEREST_ITEM_ADDRESS(ar, hi_board_data), (u8 *)&address, 4) != 0)
1136 {
1137 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIReadMemory for hi_board_data failed\n"));
1138 return A_ERROR;
1139 }
1140
1141 if (BMIReadMemory(ar->arHifDevice, address + BDATA_BDADDR_OFFSET, (u8 *)ar->bdaddr, 6) != 0)
1142 {
1143 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIReadMemory for BD address failed\n"));
1144 return A_ERROR;
1145 }
1146 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BDADDR 0x%x:0x%x:0x%x:0x%x:0x%x:0x%x\n", ar->bdaddr[0],
1147 ar->bdaddr[1], ar->bdaddr[2], ar->bdaddr[3],
1148 ar->bdaddr[4], ar->bdaddr[5]));
1149 }
1150
1151 return 0;
1152 }
1153
1154 int
1155 ar6000_sysfs_bmi_get_config(struct ar6_softc *ar, u32 mode)
1156 {
1157 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("BMI: Requesting device specific configuration\n"));
1158
1159 if (mode == WLAN_INIT_MODE_UDEV) {
1160 char version[16];
1161 const struct firmware *fw_entry;
1162
1163 /* Get config using udev through a script in user space */
1164 sprintf(version, "%2.2x", ar->arVersion.target_ver);
1165 if ((A_REQUEST_FIRMWARE(&fw_entry, version, ((struct device *)ar->osDevInfo.pOSDevice))) != 0)
1166 {
1167 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("BMI: Failure to get configuration for target version: %s\n", version));
1168 return A_ERROR;
1169 }
1170
1171 A_RELEASE_FIRMWARE(fw_entry);
1172 } else {
1173 /* The config is contained within the driver itself */
1174 int status;
1175 u32 param, options, sleep, address;
1176
1177 /* Temporarily disable system sleep */
1178 address = MBOX_BASE_ADDRESS + LOCAL_SCRATCH_ADDRESS;
1179 bmifn(BMIReadSOCRegister(ar->arHifDevice, address, &param));
1180 options = param;
1181 param |= AR6K_OPTION_SLEEP_DISABLE;
1182 bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
1183
1184 address = RTC_BASE_ADDRESS + SYSTEM_SLEEP_ADDRESS;
1185 bmifn(BMIReadSOCRegister(ar->arHifDevice, address, &param));
1186 sleep = param;
1187 param |= WLAN_SYSTEM_SLEEP_DISABLE_SET(1);
1188 bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
1189 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("old options: %d, old sleep: %d\n", options, sleep));
1190
1191 if (ar->arTargetType == TARGET_TYPE_AR6003) {
1192 /* Program analog PLL register */
1193 bmifn(BMIWriteSOCRegister(ar->arHifDevice, ANALOG_INTF_BASE_ADDRESS + 0x284, 0xF9104001));
1194 /* Run at 80/88MHz by default */
1195 param = CPU_CLOCK_STANDARD_SET(1);
1196 } else {
1197 /* Run at 40/44MHz by default */
1198 param = CPU_CLOCK_STANDARD_SET(0);
1199 }
1200 address = RTC_BASE_ADDRESS + CPU_CLOCK_ADDRESS;
1201 bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
1202
1203 param = 0;
1204 if (ar->arTargetType == TARGET_TYPE_AR6002) {
1205 bmifn(BMIReadMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_ext_clk_detected), (u8 *)&param, 4));
1206 }
1207
1208 /* LPO_CAL.ENABLE = 1 if no external clk is detected */
1209 if (param != 1) {
1210 address = RTC_BASE_ADDRESS + LPO_CAL_ADDRESS;
1211 param = LPO_CAL_ENABLE_SET(1);
1212 bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
1213 }
1214
1215 /* Venus2.0: Lower SDIO pad drive strength,
1216 * temporary WAR to avoid SDIO CRC error */
1217 if (ar->arVersion.target_ver == AR6003_REV2_VERSION) {
1218 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("AR6K: Temporary WAR to avoid SDIO CRC error\n"));
1219 param = 0x20;
1220 address = GPIO_BASE_ADDRESS + GPIO_PIN10_ADDRESS;
1221 bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
1222
1223 address = GPIO_BASE_ADDRESS + GPIO_PIN11_ADDRESS;
1224 bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
1225
1226 address = GPIO_BASE_ADDRESS + GPIO_PIN12_ADDRESS;
1227 bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
1228
1229 address = GPIO_BASE_ADDRESS + GPIO_PIN13_ADDRESS;
1230 bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
1231 }
1232
1233 #ifdef FORCE_INTERNAL_CLOCK
1234 /* Ignore external clock, if any, and force use of internal clock */
1235 if (ar->arTargetType == TARGET_TYPE_AR6003) {
1236 /* hi_ext_clk_detected = 0 */
1237 param = 0;
1238 bmifn(BMIWriteMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_ext_clk_detected), (u8 *)&param, 4));
1239
1240 /* CLOCK_CONTROL &= ~LF_CLK32 */
1241 address = RTC_BASE_ADDRESS + CLOCK_CONTROL_ADDRESS;
1242 bmifn(BMIReadSOCRegister(ar->arHifDevice, address, &param));
1243 param &= (~CLOCK_CONTROL_LF_CLK32_SET(1));
1244 bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
1245 }
1246 #endif /* FORCE_INTERNAL_CLOCK */
1247
1248 /* Transfer Board Data from Target EEPROM to Target RAM */
1249 if (ar->arTargetType == TARGET_TYPE_AR6003) {
1250 /* Determine where in Target RAM to write Board Data */
1251 bmifn(BMIReadMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_board_data), (u8 *)&address, 4));
1252 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("Board Data download address: 0x%x\n", address));
1253
1254 /* Write EEPROM data to Target RAM */
1255 if ((ar6000_transfer_bin_file(ar, AR6K_BOARD_DATA_FILE, address, false)) != 0) {
1256 return A_ERROR;
1257 }
1258
1259 /* Record the fact that Board Data IS initialized */
1260 param = 1;
1261 bmifn(BMIWriteMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_board_data_initialized), (u8 *)&param, 4));
1262
1263 /* Transfer One time Programmable data */
1264 AR6K_APP_LOAD_ADDRESS(address, ar->arVersion.target_ver);
1265 if (ar->arVersion.target_ver == AR6003_REV3_VERSION)
1266 address = 0x1234;
1267 status = ar6000_transfer_bin_file(ar, AR6K_OTP_FILE, address, true);
1268 if (status == 0) {
1269 /* Execute the OTP code */
1270 param = 0;
1271 AR6K_APP_START_OVERRIDE_ADDRESS(address, ar->arVersion.target_ver);
1272 bmifn(BMIExecute(ar->arHifDevice, address, &param));
1273 } else if (status != A_ENOENT) {
1274 return A_ERROR;
1275 }
1276 } else {
1277 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Programming of board data for chip %d not supported\n", ar->arTargetType));
1278 return A_ERROR;
1279 }
1280
1281 /* Download Target firmware */
1282 AR6K_APP_LOAD_ADDRESS(address, ar->arVersion.target_ver);
1283 if (ar->arVersion.target_ver == AR6003_REV3_VERSION)
1284 address = 0x1234;
1285 if ((ar6000_transfer_bin_file(ar, AR6K_FIRMWARE_FILE, address, true)) != 0) {
1286 return A_ERROR;
1287 }
1288
1289 /* Set starting address for firmware */
1290 AR6K_APP_START_OVERRIDE_ADDRESS(address, ar->arVersion.target_ver);
1291 bmifn(BMISetAppStart(ar->arHifDevice, address));
1292
1293 if(ar->arTargetType == TARGET_TYPE_AR6003) {
1294 AR6K_DATASET_PATCH_ADDRESS(address, ar->arVersion.target_ver);
1295 if ((ar6000_transfer_bin_file(ar, AR6K_PATCH_FILE,
1296 address, false)) != 0)
1297 return A_ERROR;
1298 param = address;
1299 bmifn(BMIWriteMemory(ar->arHifDevice,
1300 HOST_INTEREST_ITEM_ADDRESS(ar, hi_dset_list_head),
1301 (unsigned char *)&param, 4));
1302 }
1303
1304 /* Restore system sleep */
1305 address = RTC_BASE_ADDRESS + SYSTEM_SLEEP_ADDRESS;
1306 bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, sleep));
1307
1308 address = MBOX_BASE_ADDRESS + LOCAL_SCRATCH_ADDRESS;
1309 param = options | 0x20;
1310 bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
1311
1312 if (ar->arTargetType == TARGET_TYPE_AR6003) {
1313 /* Configure GPIO AR6003 UART */
1314 #ifndef CONFIG_AR600x_DEBUG_UART_TX_PIN
1315 #define CONFIG_AR600x_DEBUG_UART_TX_PIN 8
1316 #endif
1317 param = CONFIG_AR600x_DEBUG_UART_TX_PIN;
1318 bmifn(BMIWriteMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_dbg_uart_txpin), (u8 *)&param, 4));
1319
1320 #if (CONFIG_AR600x_DEBUG_UART_TX_PIN == 23)
1321 {
1322 address = GPIO_BASE_ADDRESS + CLOCK_GPIO_ADDRESS;
1323 bmifn(BMIReadSOCRegister(ar->arHifDevice, address, &param));
1324 param |= CLOCK_GPIO_BT_CLK_OUT_EN_SET(1);
1325 bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
1326 }
1327 #endif
1328
1329 /* Configure GPIO for BT Reset */
1330 #ifdef ATH6KL_CONFIG_GPIO_BT_RESET
1331 #define CONFIG_AR600x_BT_RESET_PIN 0x16
1332 param = CONFIG_AR600x_BT_RESET_PIN;
1333 bmifn(BMIWriteMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_hci_uart_support_pins), (u8 *)&param, 4));
1334 #endif /* ATH6KL_CONFIG_GPIO_BT_RESET */
1335
1336 /* Configure UART flow control polarity */
1337 #ifndef CONFIG_ATH6KL_BT_UART_FC_POLARITY
1338 #define CONFIG_ATH6KL_BT_UART_FC_POLARITY 0
1339 #endif
1340
1341 #if (CONFIG_ATH6KL_BT_UART_FC_POLARITY == 1)
1342 if (ar->arVersion.target_ver == AR6003_REV2_VERSION) {
1343 param = ((CONFIG_ATH6KL_BT_UART_FC_POLARITY << 1) & 0x2);
1344 bmifn(BMIWriteMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_hci_uart_pwr_mgmt_params), (u8 *)&param, 4));
1345 }
1346 #endif /* CONFIG_ATH6KL_BT_UART_FC_POLARITY */
1347 }
1348
1349 #ifdef HTC_RAW_INTERFACE
1350 if (!eppingtest && bypasswmi) {
1351 /* Don't run BMIDone for ART mode and force resetok=0 */
1352 resetok = 0;
1353 msleep(1000);
1354 }
1355 #endif /* HTC_RAW_INTERFACE */
1356 }
1357
1358 return 0;
1359 }
1360
1361 int
1362 ar6000_configure_target(struct ar6_softc *ar)
1363 {
1364 u32 param;
1365 if (enableuartprint) {
1366 param = 1;
1367 if (BMIWriteMemory(ar->arHifDevice,
1368 HOST_INTEREST_ITEM_ADDRESS(ar, hi_serial_enable),
1369 (u8 *)&param,
1370 4)!= 0)
1371 {
1372 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIWriteMemory for enableuartprint failed \n"));
1373 return A_ERROR;
1374 }
1375 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("Serial console prints enabled\n"));
1376 }
1377
1378 /* Tell target which HTC version it is used*/
1379 param = HTC_PROTOCOL_VERSION;
1380 if (BMIWriteMemory(ar->arHifDevice,
1381 HOST_INTEREST_ITEM_ADDRESS(ar, hi_app_host_interest),
1382 (u8 *)&param,
1383 4)!= 0)
1384 {
1385 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIWriteMemory for htc version failed \n"));
1386 return A_ERROR;
1387 }
1388
1389 #ifdef CONFIG_HOST_TCMD_SUPPORT
1390 if(testmode) {
1391 ar->arTargetMode = AR6000_TCMD_MODE;
1392 }else {
1393 ar->arTargetMode = AR6000_WLAN_MODE;
1394 }
1395 #endif
1396 if (enabletimerwar) {
1397 u32 param;
1398
1399 if (BMIReadMemory(ar->arHifDevice,
1400 HOST_INTEREST_ITEM_ADDRESS(ar, hi_option_flag),
1401 (u8 *)&param,
1402 4)!= 0)
1403 {
1404 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIReadMemory for enabletimerwar failed \n"));
1405 return A_ERROR;
1406 }
1407
1408 param |= HI_OPTION_TIMER_WAR;
1409
1410 if (BMIWriteMemory(ar->arHifDevice,
1411 HOST_INTEREST_ITEM_ADDRESS(ar, hi_option_flag),
1412 (u8 *)&param,
1413 4) != 0)
1414 {
1415 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIWriteMemory for enabletimerwar failed \n"));
1416 return A_ERROR;
1417 }
1418 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("Timer WAR enabled\n"));
1419 }
1420
1421 /* set the firmware mode to STA/IBSS/AP */
1422 {
1423 u32 param;
1424
1425 if (BMIReadMemory(ar->arHifDevice,
1426 HOST_INTEREST_ITEM_ADDRESS(ar, hi_option_flag),
1427 (u8 *)&param,
1428 4)!= 0)
1429 {
1430 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIReadMemory for setting fwmode failed \n"));
1431 return A_ERROR;
1432 }
1433
1434 param |= (num_device << HI_OPTION_NUM_DEV_SHIFT);
1435 param |= (fwmode << HI_OPTION_FW_MODE_SHIFT);
1436 param |= (mac_addr_method << HI_OPTION_MAC_ADDR_METHOD_SHIFT);
1437 param |= (firmware_bridge << HI_OPTION_FW_BRIDGE_SHIFT);
1438
1439
1440 if (BMIWriteMemory(ar->arHifDevice,
1441 HOST_INTEREST_ITEM_ADDRESS(ar, hi_option_flag),
1442 (u8 *)&param,
1443 4) != 0)
1444 {
1445 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIWriteMemory for setting fwmode failed \n"));
1446 return A_ERROR;
1447 }
1448 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("Firmware mode set\n"));
1449 }
1450
1451 #ifdef ATH6KL_DISABLE_TARGET_DBGLOGS
1452 {
1453 u32 param;
1454
1455 if (BMIReadMemory(ar->arHifDevice,
1456 HOST_INTEREST_ITEM_ADDRESS(ar, hi_option_flag),
1457 (u8 *)&param,
1458 4)!= 0)
1459 {
1460 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIReadMemory for disabling debug logs failed\n"));
1461 return A_ERROR;
1462 }
1463
1464 param |= HI_OPTION_DISABLE_DBGLOG;
1465
1466 if (BMIWriteMemory(ar->arHifDevice,
1467 HOST_INTEREST_ITEM_ADDRESS(ar, hi_option_flag),
1468 (u8 *)&param,
1469 4) != 0)
1470 {
1471 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIWriteMemory for HI_OPTION_DISABLE_DBGLOG\n"));
1472 return A_ERROR;
1473 }
1474 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("Firmware mode set\n"));
1475 }
1476 #endif /* ATH6KL_DISABLE_TARGET_DBGLOGS */
1477
1478 /*
1479 * Hardcode the address use for the extended board data
1480 * Ideally this should be pre-allocate by the OS at boot time
1481 * But since it is a new feature and board data is loaded
1482 * at init time, we have to workaround this from host.
1483 * It is difficult to patch the firmware boot code,
1484 * but possible in theory.
1485 */
1486
1487 if (ar->arTargetType == TARGET_TYPE_AR6003) {
1488 u32 ramReservedSz;
1489 if (ar->arVersion.target_ver == AR6003_REV2_VERSION) {
1490 param = AR6003_REV2_BOARD_EXT_DATA_ADDRESS;
1491 ramReservedSz = AR6003_REV2_RAM_RESERVE_SIZE;
1492 } else {
1493 param = AR6003_REV3_BOARD_EXT_DATA_ADDRESS;
1494 ramReservedSz = AR6003_REV3_RAM_RESERVE_SIZE;
1495 }
1496 if (BMIWriteMemory(ar->arHifDevice,
1497 HOST_INTEREST_ITEM_ADDRESS(ar, hi_board_ext_data),
1498 (u8 *)&param, 4) != 0) {
1499 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,
1500 ("BMIWriteMemory for "
1501 "hi_board_ext_data failed\n"));
1502 return A_ERROR;
1503 }
1504 if (BMIWriteMemory(ar->arHifDevice,
1505 HOST_INTEREST_ITEM_ADDRESS(ar,
1506 hi_end_RAM_reserve_sz),
1507 (u8 *)&ramReservedSz, 4) != 0) {
1508 AR_DEBUG_PRINTF(ATH_DEBUG_ERR ,
1509 ("BMIWriteMemory for "
1510 "hi_end_RAM_reserve_sz failed\n"));
1511 return A_ERROR;
1512 }
1513 }
1514
1515 /* since BMIInit is called in the driver layer, we have to set the block
1516 * size here for the target */
1517
1518 if (ar6000_set_htc_params(ar->arHifDevice, ar->arTargetType,
1519 mbox_yield_limit, 0)) {
1520 /* use default number of control buffers */
1521 return A_ERROR;
1522 }
1523
1524 if (setupbtdev != 0) {
1525 if (ar6000_set_hci_bridge_flags(ar->arHifDevice,
1526 ar->arTargetType,
1527 setupbtdev)) {
1528 return A_ERROR;
1529 }
1530 }
1531 return 0;
1532 }
1533
1534 static void
1535 init_netdev(struct net_device *dev, char *name)
1536 {
1537 dev->netdev_ops = &ar6000_netdev_ops;
1538 dev->watchdog_timeo = AR6000_TX_TIMEOUT;
1539
1540 /*
1541 * We need the OS to provide us with more headroom in order to
1542 * perform dix to 802.3, WMI header encap, and the HTC header
1543 */
1544 if (processDot11Hdr) {
1545 dev->hard_header_len = sizeof(struct ieee80211_qosframe) + sizeof(ATH_LLC_SNAP_HDR) + sizeof(WMI_DATA_HDR) + HTC_HEADER_LEN + WMI_MAX_TX_META_SZ + LINUX_HACK_FUDGE_FACTOR;
1546 } else {
1547 dev->hard_header_len = ETH_HLEN + sizeof(ATH_LLC_SNAP_HDR) +
1548 sizeof(WMI_DATA_HDR) + HTC_HEADER_LEN + WMI_MAX_TX_META_SZ + LINUX_HACK_FUDGE_FACTOR;
1549 }
1550
1551 if (name[0])
1552 {
1553 strcpy(dev->name, name);
1554 }
1555
1556 #ifdef CONFIG_CHECKSUM_OFFLOAD
1557 if(csumOffload){
1558 dev->features |= NETIF_F_IP_CSUM; /*advertise kernel capability to do TCP/UDP CSUM offload for IPV4*/
1559 }
1560 #endif
1561
1562 return;
1563 }
1564
1565 static int __ath6kl_init_netdev(struct net_device *dev)
1566 {
1567 int r;
1568
1569 rtnl_lock();
1570 r = ar6000_init(dev);
1571 rtnl_unlock();
1572
1573 if (r) {
1574 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_avail: ar6000_init\n"));
1575 return r;
1576 }
1577
1578 return 0;
1579 }
1580
1581 #ifdef HTC_RAW_INTERFACE
1582 static int ath6kl_init_netdev_wmi(struct net_device *dev)
1583 {
1584 if (!eppingtest && bypasswmi)
1585 return 0;
1586
1587 return __ath6kl_init_netdev(dev);
1588 }
1589 #else
1590 static int ath6kl_init_netdev_wmi(struct net_device *dev)
1591 {
1592 return __ath6kl_init_netdev(dev);
1593 }
1594 #endif
1595
1596 static int ath6kl_init_netdev(struct ar6_softc *ar)
1597 {
1598 int r;
1599
1600 r = ar6000_sysfs_bmi_get_config(ar, wlaninitmode);
1601 if (r) {
1602 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,
1603 ("ar6000_avail: "
1604 "ar6000_sysfs_bmi_get_config failed\n"));
1605 return r;
1606 }
1607
1608 return ath6kl_init_netdev_wmi(ar->arNetDev);
1609 }
1610
1611 /*
1612 * HTC Event handlers
1613 */
1614 static int
1615 ar6000_avail_ev(void *context, void *hif_handle)
1616 {
1617 int i;
1618 struct net_device *dev;
1619 void *ar_netif;
1620 struct ar6_softc *ar;
1621 int device_index = 0;
1622 struct htc_init_info htcInfo;
1623 struct wireless_dev *wdev;
1624 int r = 0;
1625 struct hif_device_os_device_info osDevInfo;
1626
1627 memset(&osDevInfo, 0, sizeof(osDevInfo));
1628 if (HIFConfigureDevice(hif_handle, HIF_DEVICE_GET_OS_DEVICE,
1629 &osDevInfo, sizeof(osDevInfo))) {
1630 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s: Failed to get OS device instance\n", __func__));
1631 return A_ERROR;
1632 }
1633
1634 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("ar6000_available\n"));
1635
1636 for (i=0; i < MAX_AR6000; i++) {
1637 if (ar6000_devices[i] == NULL) {
1638 break;
1639 }
1640 }
1641
1642 if (i == MAX_AR6000) {
1643 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_available: max devices reached\n"));
1644 return A_ERROR;
1645 }
1646
1647 /* Save this. It gives a bit better readability especially since */
1648 /* we use another local "i" variable below. */
1649 device_index = i;
1650
1651 wdev = ar6k_cfg80211_init(osDevInfo.pOSDevice);
1652 if (IS_ERR(wdev)) {
1653 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("%s: ar6k_cfg80211_init failed\n", __func__));
1654 return A_ERROR;
1655 }
1656 ar_netif = wdev_priv(wdev);
1657
1658 if (ar_netif == NULL) {
1659 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("%s: Can't allocate ar6k priv memory\n", __func__));
1660 return A_ERROR;
1661 }
1662
1663 A_MEMZERO(ar_netif, sizeof(struct ar6_softc));
1664 ar = (struct ar6_softc *)ar_netif;
1665
1666 ar->wdev = wdev;
1667 wdev->iftype = NL80211_IFTYPE_STATION;
1668
1669 dev = alloc_netdev_mq(0, "wlan%d", ether_setup, 1);
1670 if (!dev) {
1671 printk(KERN_CRIT "AR6K: no memory for network device instance\n");
1672 ar6k_cfg80211_deinit(ar);
1673 return A_ERROR;
1674 }
1675
1676 dev->ieee80211_ptr = wdev;
1677 SET_NETDEV_DEV(dev, wiphy_dev(wdev->wiphy));
1678 wdev->netdev = dev;
1679 ar->arNetworkType = INFRA_NETWORK;
1680 ar->smeState = SME_DISCONNECTED;
1681 ar->arAutoAuthStage = AUTH_IDLE;
1682
1683 init_netdev(dev, ifname);
1684
1685
1686 ar->arNetDev = dev;
1687 ar->arHifDevice = hif_handle;
1688 ar->arWlanState = WLAN_ENABLED;
1689 ar->arDeviceIndex = device_index;
1690
1691 ar->arWlanPowerState = WLAN_POWER_STATE_ON;
1692 ar->arWlanOff = false; /* We are in ON state */
1693 #ifdef CONFIG_PM
1694 ar->arWowState = WLAN_WOW_STATE_NONE;
1695 ar->arBTOff = true; /* BT chip assumed to be OFF */
1696 ar->arBTSharing = WLAN_CONFIG_BT_SHARING;
1697 ar->arWlanOffConfig = WLAN_CONFIG_WLAN_OFF;
1698 ar->arSuspendConfig = WLAN_CONFIG_PM_SUSPEND;
1699 ar->arWow2Config = WLAN_CONFIG_PM_WOW2;
1700 #endif /* CONFIG_PM */
1701
1702 A_INIT_TIMER(&ar->arHBChallengeResp.timer, ar6000_detect_error, dev);
1703 ar->arHBChallengeResp.seqNum = 0;
1704 ar->arHBChallengeResp.outstanding = false;
1705 ar->arHBChallengeResp.missCnt = 0;
1706 ar->arHBChallengeResp.frequency = AR6000_HB_CHALLENGE_RESP_FREQ_DEFAULT;
1707 ar->arHBChallengeResp.missThres = AR6000_HB_CHALLENGE_RESP_MISS_THRES_DEFAULT;
1708
1709 ar6000_init_control_info(ar);
1710 init_waitqueue_head(&arEvent);
1711 sema_init(&ar->arSem, 1);
1712 ar->bIsDestroyProgress = false;
1713
1714 INIT_HTC_PACKET_QUEUE(&ar->amsdu_rx_buffer_queue);
1715
1716 #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
1717 A_INIT_TIMER(&aptcTimer, aptcTimerHandler, ar);
1718 #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
1719
1720 A_INIT_TIMER(&ar->disconnect_timer, disconnect_timer_handler, dev);
1721
1722 BMIInit();
1723
1724 ar6000_sysfs_bmi_init(ar);
1725
1726 {
1727 struct bmi_target_info targ_info;
1728
1729 r = BMIGetTargetInfo(ar->arHifDevice, &targ_info);
1730 if (r)
1731 goto avail_ev_failed;
1732
1733 ar->arVersion.target_ver = targ_info.target_ver;
1734 ar->arTargetType = targ_info.target_type;
1735 wdev->wiphy->hw_version = targ_info.target_ver;
1736 }
1737
1738 r = ar6000_configure_target(ar);
1739 if (r)
1740 goto avail_ev_failed;
1741
1742 A_MEMZERO(&htcInfo,sizeof(htcInfo));
1743 htcInfo.pContext = ar;
1744 htcInfo.TargetFailure = ar6000_target_failure;
1745
1746 ar->arHtcTarget = HTCCreate(ar->arHifDevice,&htcInfo);
1747
1748 if (!ar->arHtcTarget) {
1749 r = -ENOMEM;
1750 goto avail_ev_failed;
1751 }
1752
1753 spin_lock_init(&ar->arLock);
1754
1755 #ifdef WAPI_ENABLE
1756 ar->arWapiEnable = 0;
1757 #endif
1758
1759
1760 if(csumOffload){
1761 /*if external frame work is also needed, change and use an extended rxMetaVerion*/
1762 ar->rxMetaVersion=WMI_META_VERSION_2;
1763 }
1764
1765 ar->aggr_cntxt = aggr_init(ar6000_alloc_netbufs);
1766 if (!ar->aggr_cntxt) {
1767 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s() Failed to initialize aggr.\n", __func__));
1768 r = -ENOMEM;
1769 goto avail_ev_failed;
1770 }
1771
1772 aggr_register_rx_dispatcher(ar->aggr_cntxt, (void *)dev, ar6000_deliver_frames_to_nw_stack);
1773
1774 HIFClaimDevice(ar->arHifDevice, ar);
1775
1776 /* We only register the device in the global list if we succeed. */
1777 /* If the device is in the global list, it will be destroyed */
1778 /* when the module is unloaded. */
1779 ar6000_devices[device_index] = dev;
1780
1781 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("BMI enabled: %d\n", wlaninitmode));
1782 if ((wlaninitmode == WLAN_INIT_MODE_UDEV) ||
1783 (wlaninitmode == WLAN_INIT_MODE_DRV)) {
1784 r = ath6kl_init_netdev(ar);
1785 if (r)
1786 goto avail_ev_failed;
1787 }
1788
1789 /* This runs the init function if registered */
1790 r = register_netdev(dev);
1791 if (r) {
1792 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_avail: register_netdev failed\n"));
1793 ar6000_destroy(dev, 0);
1794 return r;
1795 }
1796
1797 is_netdev_registered = 1;
1798
1799 #ifdef CONFIG_AP_VIRTUAL_ADAPTER_SUPPORT
1800 arApNetDev = NULL;
1801 #endif /* CONFIG_AP_VIRTUAL_ADAPTER_SUPPORT */
1802 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("ar6000_avail: name=%s hifdevice=0x%lx, dev=0x%lx (%d), ar=0x%lx\n",
1803 dev->name, (unsigned long)ar->arHifDevice, (unsigned long)dev, device_index,
1804 (unsigned long)ar));
1805
1806 avail_ev_failed :
1807 if (r)
1808 ar6000_sysfs_bmi_deinit(ar);
1809
1810 return r;
1811 }
1812
1813 static void ar6000_target_failure(void *Instance, int Status)
1814 {
1815 struct ar6_softc *ar = (struct ar6_softc *)Instance;
1816 WMI_TARGET_ERROR_REPORT_EVENT errEvent;
1817 static bool sip = false;
1818
1819 if (Status != 0) {
1820
1821 printk(KERN_ERR "ar6000_target_failure: target asserted \n");
1822
1823 if (timer_pending(&ar->arHBChallengeResp.timer)) {
1824 A_UNTIMEOUT(&ar->arHBChallengeResp.timer);
1825 }
1826
1827 /* try dumping target assertion information (if any) */
1828 ar6000_dump_target_assert_info(ar->arHifDevice,ar->arTargetType);
1829
1830 /*
1831 * Fetch the logs from the target via the diagnostic
1832 * window.
1833 */
1834 ar6000_dbglog_get_debug_logs(ar);
1835
1836 /* Report the error only once */
1837 if (!sip) {
1838 sip = true;
1839 errEvent.errorVal = WMI_TARGET_COM_ERR |
1840 WMI_TARGET_FATAL_ERR;
1841 }
1842 }
1843 }
1844
1845 static int
1846 ar6000_unavail_ev(void *context, void *hif_handle)
1847 {
1848 struct ar6_softc *ar = (struct ar6_softc *)context;
1849 /* NULL out it's entry in the global list */
1850 ar6000_devices[ar->arDeviceIndex] = NULL;
1851 ar6000_destroy(ar->arNetDev, 1);
1852
1853 return 0;
1854 }
1855
1856 void
1857 ar6000_restart_endpoint(struct net_device *dev)
1858 {
1859 int status = 0;
1860 struct ar6_softc *ar = (struct ar6_softc *)ar6k_priv(dev);
1861
1862 BMIInit();
1863 do {
1864 if ( (status=ar6000_configure_target(ar))!= 0)
1865 break;
1866 if ( (status=ar6000_sysfs_bmi_get_config(ar, wlaninitmode)) != 0)
1867 {
1868 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_avail: ar6000_sysfs_bmi_get_config failed\n"));
1869 break;
1870 }
1871 rtnl_lock();
1872 status = (ar6000_init(dev)==0) ? 0 : A_ERROR;
1873 rtnl_unlock();
1874
1875 if (status) {
1876 break;
1877 }
1878 if (ar->arSsidLen && ar->arWlanState == WLAN_ENABLED) {
1879 ar6000_connect_to_ap(ar);
1880 }
1881 } while (0);
1882
1883 if (status== 0) {
1884 return;
1885 }
1886
1887 ar6000_devices[ar->arDeviceIndex] = NULL;
1888 ar6000_destroy(ar->arNetDev, 1);
1889 }
1890
1891 void
1892 ar6000_stop_endpoint(struct net_device *dev, bool keepprofile, bool getdbglogs)
1893 {
1894 struct ar6_softc *ar = (struct ar6_softc *)ar6k_priv(dev);
1895
1896 /* Stop the transmit queues */
1897 netif_stop_queue(dev);
1898
1899 /* Disable the target and the interrupts associated with it */
1900 if (ar->arWmiReady == true)
1901 {
1902 if (!bypasswmi)
1903 {
1904 bool disconnectIssued;
1905
1906 disconnectIssued = (ar->arConnected) || (ar->arConnectPending);
1907 ar6000_disconnect(ar);
1908 if (!keepprofile) {
1909 ar6000_init_profile_info(ar);
1910 }
1911
1912 A_UNTIMEOUT(&ar->disconnect_timer);
1913
1914 if (getdbglogs) {
1915 ar6000_dbglog_get_debug_logs(ar);
1916 }
1917
1918 ar->arWmiReady = false;
1919 wmi_shutdown(ar->arWmi);
1920 ar->arWmiEnabled = false;
1921 ar->arWmi = NULL;
1922 /*
1923 * After wmi_shudown all WMI events will be dropped.
1924 * We need to cleanup the buffers allocated in AP mode
1925 * and give disconnect notification to stack, which usually
1926 * happens in the disconnect_event.
1927 * Simulate the disconnect_event by calling the function directly.
1928 * Sometimes disconnect_event will be received when the debug logs
1929 * are collected.
1930 */
1931 if (disconnectIssued) {
1932 if(ar->arNetworkType & AP_NETWORK) {
1933 ar6000_disconnect_event(ar, DISCONNECT_CMD, bcast_mac, 0, NULL, 0);
1934 } else {
1935 ar6000_disconnect_event(ar, DISCONNECT_CMD, ar->arBssid, 0, NULL, 0);
1936 }
1937 }
1938 ar->user_savedkeys_stat = USER_SAVEDKEYS_STAT_INIT;
1939 ar->user_key_ctrl = 0;
1940 }
1941
1942 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("%s(): WMI stopped\n", __func__));
1943 }
1944 else
1945 {
1946 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("%s(): WMI not ready 0x%lx 0x%lx\n",
1947 __func__, (unsigned long) ar, (unsigned long) ar->arWmi));
1948
1949 /* Shut down WMI if we have started it */
1950 if(ar->arWmiEnabled == true)
1951 {
1952 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("%s(): Shut down WMI\n", __func__));
1953 wmi_shutdown(ar->arWmi);
1954 ar->arWmiEnabled = false;
1955 ar->arWmi = NULL;
1956 }
1957 }
1958
1959 if (ar->arHtcTarget != NULL) {
1960 #ifdef EXPORT_HCI_BRIDGE_INTERFACE
1961 if (NULL != ar6kHciTransCallbacks.cleanupTransport) {
1962 ar6kHciTransCallbacks.cleanupTransport(NULL);
1963 }
1964 #else
1965 // FIXME: workaround to reset BT's UART baud rate to default
1966 if (NULL != ar->exitCallback) {
1967 struct ar3k_config_info ar3kconfig;
1968 int status;
1969
1970 A_MEMZERO(&ar3kconfig,sizeof(ar3kconfig));
1971 ar6000_set_default_ar3kconfig(ar, (void *)&ar3kconfig);
1972 status = ar->exitCallback(&ar3kconfig);
1973 if (0 != status) {
1974 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Failed to reset AR3K baud rate! \n"));
1975 }
1976 }
1977 // END workaround
1978 if (setuphci)
1979 ar6000_cleanup_hci(ar);
1980 #endif
1981 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,(" Shutting down HTC .... \n"));
1982 /* stop HTC */
1983 HTCStop(ar->arHtcTarget);
1984 }
1985
1986 if (resetok) {
1987 /* try to reset the device if we can
1988 * The driver may have been configure NOT to reset the target during
1989 * a debug session */
1990 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,(" Attempting to reset target on instance destroy.... \n"));
1991 if (ar->arHifDevice != NULL) {
1992 bool coldReset = (ar->arTargetType == TARGET_TYPE_AR6003) ? true: false;
1993 ar6000_reset_device(ar->arHifDevice, ar->arTargetType, true, coldReset);
1994 }
1995 } else {
1996 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,(" Host does not want target reset. \n"));
1997 }
1998 /* Done with cookies */
1999 ar6000_cookie_cleanup(ar);
2000
2001 /* cleanup any allocated AMSDU buffers */
2002 ar6000_cleanup_amsdu_rxbufs(ar);
2003 }
2004 /*
2005 * We need to differentiate between the surprise and planned removal of the
2006 * device because of the following consideration:
2007 * - In case of surprise removal, the hcd already frees up the pending
2008 * for the device and hence there is no need to unregister the function
2009 * driver inorder to get these requests. For planned removal, the function
2010 * driver has to explicitly unregister itself to have the hcd return all the
2011 * pending requests before the data structures for the devices are freed up.
2012 * Note that as per the current implementation, the function driver will
2013 * end up releasing all the devices since there is no API to selectively
2014 * release a particular device.
2015 * - Certain commands issued to the target can be skipped for surprise
2016 * removal since they will anyway not go through.
2017 */
2018 void
2019 ar6000_destroy(struct net_device *dev, unsigned int unregister)
2020 {
2021 struct ar6_softc *ar;
2022
2023 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("+ar6000_destroy \n"));
2024
2025 if((dev == NULL) || ((ar = ar6k_priv(dev)) == NULL))
2026 {
2027 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s(): Failed to get device structure.\n", __func__));
2028 return;
2029 }
2030
2031 ar->bIsDestroyProgress = true;
2032
2033 if (down_interruptible(&ar->arSem)) {
2034 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s(): down_interruptible failed \n", __func__));
2035 return;
2036 }
2037
2038 if (ar->arWlanPowerState != WLAN_POWER_STATE_CUT_PWR) {
2039 /* only stop endpoint if we are not stop it in suspend_ev */
2040 ar6000_stop_endpoint(dev, false, true);
2041 }
2042
2043 ar->arWlanState = WLAN_DISABLED;
2044 if (ar->arHtcTarget != NULL) {
2045 /* destroy HTC */
2046 HTCDestroy(ar->arHtcTarget);
2047 }
2048 if (ar->arHifDevice != NULL) {
2049 /*release the device so we do not get called back on remove incase we
2050 * we're explicity destroyed by module unload */
2051 HIFReleaseDevice(ar->arHifDevice);
2052 HIFShutDownDevice(ar->arHifDevice);
2053 }
2054 aggr_module_destroy(ar->aggr_cntxt);
2055
2056 /* Done with cookies */
2057 ar6000_cookie_cleanup(ar);
2058
2059 /* cleanup any allocated AMSDU buffers */
2060 ar6000_cleanup_amsdu_rxbufs(ar);
2061
2062 ar6000_sysfs_bmi_deinit(ar);
2063
2064 /* Cleanup BMI */
2065 BMICleanup();
2066
2067 /* Clear the tx counters */
2068 memset(tx_attempt, 0, sizeof(tx_attempt));
2069 memset(tx_post, 0, sizeof(tx_post));
2070 memset(tx_complete, 0, sizeof(tx_complete));
2071
2072 #ifdef HTC_RAW_INTERFACE
2073 if (ar->arRawHtc) {
2074 kfree(ar->arRawHtc);
2075 ar->arRawHtc = NULL;
2076 }
2077 #endif
2078 /* Free up the device data structure */
2079 if (unregister && is_netdev_registered) {
2080 unregister_netdev(dev);
2081 is_netdev_registered = 0;
2082 }
2083 free_netdev(dev);
2084
2085 ar6k_cfg80211_deinit(ar);
2086
2087 #ifdef CONFIG_AP_VIRTUL_ADAPTER_SUPPORT
2088 ar6000_remove_ap_interface();
2089 #endif /*CONFIG_AP_VIRTUAL_ADAPTER_SUPPORT */
2090
2091 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("-ar6000_destroy \n"));
2092 }
2093
2094 static void disconnect_timer_handler(unsigned long ptr)
2095 {
2096 struct net_device *dev = (struct net_device *)ptr;
2097 struct ar6_softc *ar = (struct ar6_softc *)ar6k_priv(dev);
2098
2099 A_UNTIMEOUT(&ar->disconnect_timer);
2100
2101 ar6000_init_profile_info(ar);
2102 ar6000_disconnect(ar);
2103 }
2104
2105 static void ar6000_detect_error(unsigned long ptr)
2106 {
2107 struct net_device *dev = (struct net_device *)ptr;
2108 struct ar6_softc *ar = (struct ar6_softc *)ar6k_priv(dev);
2109 WMI_TARGET_ERROR_REPORT_EVENT errEvent;
2110
2111 AR6000_SPIN_LOCK(&ar->arLock, 0);
2112
2113 if (ar->arHBChallengeResp.outstanding) {
2114 ar->arHBChallengeResp.missCnt++;
2115 } else {
2116 ar->arHBChallengeResp.missCnt = 0;
2117 }
2118
2119 if (ar->arHBChallengeResp.missCnt > ar->arHBChallengeResp.missThres) {
2120 /* Send Error Detect event to the application layer and do not reschedule the error detection module timer */
2121 ar->arHBChallengeResp.missCnt = 0;
2122 ar->arHBChallengeResp.seqNum = 0;
2123 errEvent.errorVal = WMI_TARGET_COM_ERR | WMI_TARGET_FATAL_ERR;
2124 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
2125 return;
2126 }
2127
2128 /* Generate the sequence number for the next challenge */
2129 ar->arHBChallengeResp.seqNum++;
2130 ar->arHBChallengeResp.outstanding = true;
2131
2132 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
2133
2134 /* Send the challenge on the control channel */
2135 if (wmi_get_challenge_resp_cmd(ar->arWmi, ar->arHBChallengeResp.seqNum, DRV_HB_CHALLENGE) != 0) {
2136 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Unable to send heart beat challenge\n"));
2137 }
2138
2139
2140 /* Reschedule the timer for the next challenge */
2141 A_TIMEOUT_MS(&ar->arHBChallengeResp.timer, ar->arHBChallengeResp.frequency * 1000, 0);
2142 }
2143
2144 void ar6000_init_profile_info(struct ar6_softc *ar)
2145 {
2146 ar->arSsidLen = 0;
2147 A_MEMZERO(ar->arSsid, sizeof(ar->arSsid));
2148
2149 switch(fwmode) {
2150 case HI_OPTION_FW_MODE_IBSS:
2151 ar->arNetworkType = ar->arNextMode = ADHOC_NETWORK;
2152 break;
2153 case HI_OPTION_FW_MODE_BSS_STA:
2154 ar->arNetworkType = ar->arNextMode = INFRA_NETWORK;
2155 break;
2156 case HI_OPTION_FW_MODE_AP:
2157 ar->arNetworkType = ar->arNextMode = AP_NETWORK;
2158 break;
2159 }
2160
2161 ar->arDot11AuthMode = OPEN_AUTH;
2162 ar->arAuthMode = NONE_AUTH;
2163 ar->arPairwiseCrypto = NONE_CRYPT;
2164 ar->arPairwiseCryptoLen = 0;
2165 ar->arGroupCrypto = NONE_CRYPT;
2166 ar->arGroupCryptoLen = 0;
2167 A_MEMZERO(ar->arWepKeyList, sizeof(ar->arWepKeyList));
2168 A_MEMZERO(ar->arReqBssid, sizeof(ar->arReqBssid));
2169 A_MEMZERO(ar->arBssid, sizeof(ar->arBssid));
2170 ar->arBssChannel = 0;
2171 }
2172
2173 static void
2174 ar6000_init_control_info(struct ar6_softc *ar)
2175 {
2176 ar->arWmiEnabled = false;
2177 ar6000_init_profile_info(ar);
2178 ar->arDefTxKeyIndex = 0;
2179 A_MEMZERO(ar->arWepKeyList, sizeof(ar->arWepKeyList));
2180 ar->arChannelHint = 0;
2181 ar->arListenIntervalT = A_DEFAULT_LISTEN_INTERVAL;
2182 ar->arListenIntervalB = 0;
2183 ar->arVersion.host_ver = AR6K_SW_VERSION;
2184 ar->arRssi = 0;
2185 ar->arTxPwr = 0;
2186 ar->arTxPwrSet = false;
2187 ar->arSkipScan = 0;
2188 ar->arBeaconInterval = 0;
2189 ar->arBitRate = 0;
2190 ar->arMaxRetries = 0;
2191 ar->arWmmEnabled = true;
2192 ar->intra_bss = 1;
2193 ar->scan_triggered = 0;
2194 A_MEMZERO(&ar->scParams, sizeof(ar->scParams));
2195 ar->scParams.shortScanRatio = WMI_SHORTSCANRATIO_DEFAULT;
2196 ar->scParams.scanCtrlFlags = DEFAULT_SCAN_CTRL_FLAGS;
2197
2198 /* Initialize the AP mode state info */
2199 {
2200 u8 ctr;
2201 A_MEMZERO((u8 *)ar->sta_list, AP_MAX_NUM_STA * sizeof(sta_t));
2202
2203 /* init the Mutexes */
2204 A_MUTEX_INIT(&ar->mcastpsqLock);
2205
2206 /* Init the PS queues */
2207 for (ctr=0; ctr < AP_MAX_NUM_STA ; ctr++) {
2208 A_MUTEX_INIT(&ar->sta_list[ctr].psqLock);
2209 A_NETBUF_QUEUE_INIT(&ar->sta_list[ctr].psq);
2210 }
2211
2212 ar->ap_profile_flag = 0;
2213 A_NETBUF_QUEUE_INIT(&ar->mcastpsq);
2214
2215 memcpy(ar->ap_country_code, DEF_AP_COUNTRY_CODE, 3);
2216 ar->ap_wmode = DEF_AP_WMODE_G;
2217 ar->ap_dtim_period = DEF_AP_DTIM;
2218 ar->ap_beacon_interval = DEF_BEACON_INTERVAL;
2219 }
2220 }
2221
2222 static int
2223 ar6000_open(struct net_device *dev)
2224 {
2225 unsigned long flags;
2226 struct ar6_softc *ar = (struct ar6_softc *)ar6k_priv(dev);
2227
2228 spin_lock_irqsave(&ar->arLock, flags);
2229
2230 if(ar->arWlanState == WLAN_DISABLED) {
2231 ar->arWlanState = WLAN_ENABLED;
2232 }
2233
2234 if( ar->arConnected || bypasswmi) {
2235 netif_carrier_on(dev);
2236 /* Wake up the queues */
2237 netif_wake_queue(dev);
2238 }
2239 else
2240 netif_carrier_off(dev);
2241
2242 spin_unlock_irqrestore(&ar->arLock, flags);
2243 return 0;
2244 }
2245
2246 static int
2247 ar6000_close(struct net_device *dev)
2248 {
2249 struct ar6_softc *ar = (struct ar6_softc *)ar6k_priv(dev);
2250 netif_stop_queue(dev);
2251
2252 ar6000_disconnect(ar);
2253
2254 if(ar->arWmiReady == true) {
2255 if (wmi_scanparams_cmd(ar->arWmi, 0xFFFF, 0,
2256 0, 0, 0, 0, 0, 0, 0, 0) != 0) {
2257 return -EIO;
2258 }
2259 ar->arWlanState = WLAN_DISABLED;
2260 }
2261 ar6k_cfg80211_scanComplete_event(ar, A_ECANCELED);
2262
2263 return 0;
2264 }
2265
2266 /* connect to a service */
2267 static int ar6000_connectservice(struct ar6_softc *ar,
2268 struct htc_service_connect_req *pConnect,
2269 char *pDesc)
2270 {
2271 int status;
2272 struct htc_service_connect_resp response;
2273
2274 do {
2275
2276 A_MEMZERO(&response,sizeof(response));
2277
2278 status = HTCConnectService(ar->arHtcTarget,
2279 pConnect,
2280 &response);
2281
2282 if (status) {
2283 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,(" Failed to connect to %s service status:%d \n",
2284 pDesc, status));
2285 break;
2286 }
2287 switch (pConnect->ServiceID) {
2288 case WMI_CONTROL_SVC :
2289 if (ar->arWmiEnabled) {
2290 /* set control endpoint for WMI use */
2291 wmi_set_control_ep(ar->arWmi, response.Endpoint);
2292 }
2293 /* save EP for fast lookup */
2294 ar->arControlEp = response.Endpoint;
2295 break;
2296 case WMI_DATA_BE_SVC :
2297 arSetAc2EndpointIDMap(ar, WMM_AC_BE, response.Endpoint);
2298 break;
2299 case WMI_DATA_BK_SVC :
2300 arSetAc2EndpointIDMap(ar, WMM_AC_BK, response.Endpoint);
2301 break;
2302 case WMI_DATA_VI_SVC :
2303 arSetAc2EndpointIDMap(ar, WMM_AC_VI, response.Endpoint);
2304 break;
2305 case WMI_DATA_VO_SVC :
2306 arSetAc2EndpointIDMap(ar, WMM_AC_VO, response.Endpoint);
2307 break;
2308 default:
2309 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ServiceID not mapped %d\n", pConnect->ServiceID));
2310 status = A_EINVAL;
2311 break;
2312 }
2313
2314 } while (false);
2315
2316 return status;
2317 }
2318
2319 void ar6000_TxDataCleanup(struct ar6_softc *ar)
2320 {
2321 /* flush all the data (non-control) streams
2322 * we only flush packets that are tagged as data, we leave any control packets that
2323 * were in the TX queues alone */
2324 HTCFlushEndpoint(ar->arHtcTarget,
2325 arAc2EndpointID(ar, WMM_AC_BE),
2326 AR6K_DATA_PKT_TAG);
2327 HTCFlushEndpoint(ar->arHtcTarget,
2328 arAc2EndpointID(ar, WMM_AC_BK),
2329 AR6K_DATA_PKT_TAG);
2330 HTCFlushEndpoint(ar->arHtcTarget,
2331 arAc2EndpointID(ar, WMM_AC_VI),
2332 AR6K_DATA_PKT_TAG);
2333 HTCFlushEndpoint(ar->arHtcTarget,
2334 arAc2EndpointID(ar, WMM_AC_VO),
2335 AR6K_DATA_PKT_TAG);
2336 }
2337
2338 HTC_ENDPOINT_ID
2339 ar6000_ac2_endpoint_id ( void * devt, u8 ac)
2340 {
2341 struct ar6_softc *ar = (struct ar6_softc *) devt;
2342 return(arAc2EndpointID(ar, ac));
2343 }
2344
2345 u8 ar6000_endpoint_id2_ac(void * devt, HTC_ENDPOINT_ID ep )
2346 {
2347 struct ar6_softc *ar = (struct ar6_softc *) devt;
2348 return(arEndpoint2Ac(ar, ep ));
2349 }
2350
2351 #if defined(CONFIG_ATH6KL_ENABLE_COEXISTENCE)
2352 static int ath6kl_config_btcoex_params(struct ar6_softc *ar)
2353 {
2354 int r;
2355 WMI_SET_BTCOEX_COLOCATED_BT_DEV_CMD sbcb_cmd;
2356 WMI_SET_BTCOEX_FE_ANT_CMD sbfa_cmd;
2357
2358 /* Configure the type of BT collocated with WLAN */
2359 memset(&sbcb_cmd, 0, sizeof(WMI_SET_BTCOEX_COLOCATED_BT_DEV_CMD));
2360 sbcb_cmd.btcoexCoLocatedBTdev = ATH6KL_BT_DEV;
2361
2362 r = wmi_set_btcoex_colocated_bt_dev_cmd(ar->arWmi, &sbcb_cmd);
2363
2364 if (r) {
2365 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,
2366 ("Unable to set collocated BT type\n"));
2367 return r;
2368 }
2369
2370 /* Configure the type of BT collocated with WLAN */
2371 memset(&sbfa_cmd, 0, sizeof(WMI_SET_BTCOEX_FE_ANT_CMD));
2372
2373 sbfa_cmd.btcoexFeAntType = ATH6KL_BT_ANTENNA;
2374
2375 r = wmi_set_btcoex_fe_ant_cmd(ar->arWmi, &sbfa_cmd);
2376 if (r) {
2377 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,
2378 ("Unable to set fornt end antenna configuration\n"));
2379 return r;
2380 }
2381
2382 return 0;
2383 }
2384 #else
2385 static int ath6kl_config_btcoex_params(struct ar6_softc *ar)
2386 {
2387 return 0;
2388 }
2389 #endif /* CONFIG_ATH6KL_ENABLE_COEXISTENCE */
2390
2391 /*
2392 * This function applies WLAN specific configuration defined in wlan_config.h
2393 */
2394 int ar6000_target_config_wlan_params(struct ar6_softc *ar)
2395 {
2396 int status = 0;
2397
2398 #ifdef CONFIG_HOST_TCMD_SUPPORT
2399 if (ar->arTargetMode != AR6000_WLAN_MODE) {
2400 return 0;
2401 }
2402 #endif /* CONFIG_HOST_TCMD_SUPPORT */
2403
2404 /*
2405 * configure the device for rx dot11 header rules 0,0 are the default values
2406 * therefore this command can be skipped if the inputs are 0,FALSE,FALSE.Required
2407 * if checksum offload is needed. Set RxMetaVersion to 2
2408 */
2409 if ((wmi_set_rx_frame_format_cmd(ar->arWmi,ar->rxMetaVersion, processDot11Hdr, processDot11Hdr)) != 0) {
2410 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Unable to set the rx frame format.\n"));
2411 status = A_ERROR;
2412 }
2413
2414 status = ath6kl_config_btcoex_params(ar);
2415 if (status)
2416 return status;
2417
2418 #if WLAN_CONFIG_IGNORE_POWER_SAVE_FAIL_EVENT_DURING_SCAN
2419 if ((wmi_pmparams_cmd(ar->arWmi, 0, 1, 0, 0, 1, IGNORE_POWER_SAVE_FAIL_EVENT_DURING_SCAN)) != 0) {
2420 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Unable to set power save fail event policy\n"));
2421 status = A_ERROR;
2422 }
2423 #endif
2424
2425 #if WLAN_CONFIG_DONOT_IGNORE_BARKER_IN_ERP
2426 if ((wmi_set_lpreamble_cmd(ar->arWmi, 0, WMI_DONOT_IGNORE_BARKER_IN_ERP)) != 0) {
2427 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Unable to set barker preamble policy\n"));
2428 status = A_ERROR;
2429 }
2430 #endif
2431
2432 if ((wmi_set_keepalive_cmd(ar->arWmi, WLAN_CONFIG_KEEP_ALIVE_INTERVAL)) != 0) {
2433 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Unable to set keep alive interval\n"));
2434 status = A_ERROR;
2435 }
2436
2437 #if WLAN_CONFIG_DISABLE_11N
2438 {
2439 WMI_SET_HT_CAP_CMD htCap;
2440
2441 memset(&htCap, 0, sizeof(WMI_SET_HT_CAP_CMD));
2442 htCap.band = 0;
2443 if ((wmi_set_ht_cap_cmd(ar->arWmi, &htCap)) != 0) {
2444 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Unable to set ht capabilities \n"));
2445 status = A_ERROR;
2446 }
2447
2448 htCap.band = 1;
2449 if ((wmi_set_ht_cap_cmd(ar->arWmi, &htCap)) != 0) {
2450 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Unable to set ht capabilities \n"));
2451 status = A_ERROR;
2452 }
2453 }
2454 #endif /* WLAN_CONFIG_DISABLE_11N */
2455
2456 #ifdef ATH6K_CONFIG_OTA_MODE
2457 if ((wmi_powermode_cmd(ar->arWmi, MAX_PERF_POWER)) != 0) {
2458 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Unable to set power mode \n"));
2459 status = A_ERROR;
2460 }
2461 #endif
2462
2463 if ((wmi_disctimeout_cmd(ar->arWmi, WLAN_CONFIG_DISCONNECT_TIMEOUT)) != 0) {
2464 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Unable to set disconnect timeout \n"));
2465 status = A_ERROR;
2466 }
2467
2468 #if WLAN_CONFIG_DISABLE_TX_BURSTING
2469 if ((wmi_set_wmm_txop(ar->arWmi, WMI_TXOP_DISABLED)) != 0) {
2470 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Unable to set txop bursting \n"));
2471 status = A_ERROR;
2472 }
2473 #endif
2474
2475 return status;
2476 }
2477
2478 /* This function does one time initialization for the lifetime of the device */
2479 int ar6000_init(struct net_device *dev)
2480 {
2481 struct ar6_softc *ar;
2482 int status;
2483 s32 timeleft;
2484 s16 i;
2485 int ret = 0;
2486
2487 if((ar = ar6k_priv(dev)) == NULL)
2488 {
2489 return -EIO;
2490 }
2491
2492 if (wlaninitmode == WLAN_INIT_MODE_USR || wlaninitmode == WLAN_INIT_MODE_DRV) {
2493
2494 ar6000_update_bdaddr(ar);
2495
2496 if (enablerssicompensation) {
2497 ar6000_copy_cust_data_from_target(ar->arHifDevice, ar->arTargetType);
2498 read_rssi_compensation_param(ar);
2499 for (i=-95; i<=0; i++) {
2500 rssi_compensation_table[0-i] = rssi_compensation_calc(ar,i);
2501 }
2502 }
2503 }
2504
2505 dev_hold(dev);
2506 rtnl_unlock();
2507
2508 /* Do we need to finish the BMI phase */
2509 if ((wlaninitmode == WLAN_INIT_MODE_USR || wlaninitmode == WLAN_INIT_MODE_DRV) &&
2510 (BMIDone(ar->arHifDevice) != 0))
2511 {
2512 ret = -EIO;
2513 goto ar6000_init_done;
2514 }
2515
2516 if (!bypasswmi)
2517 {
2518 #if 0 /* TBDXXX */
2519 if (ar->arVersion.host_ver != ar->arVersion.target_ver) {
2520 A_PRINTF("WARNING: Host version 0x%x does not match Target "
2521 " version 0x%x!\n",
2522 ar->arVersion.host_ver, ar->arVersion.target_ver);
2523 }
2524 #endif
2525
2526 /* Indicate that WMI is enabled (although not ready yet) */
2527 ar->arWmiEnabled = true;
2528 if ((ar->arWmi = wmi_init((void *) ar)) == NULL)
2529 {
2530 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s() Failed to initialize WMI.\n", __func__));
2531 ret = -EIO;
2532 goto ar6000_init_done;
2533 }
2534
2535 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s() Got WMI @ 0x%lx.\n", __func__,
2536 (unsigned long) ar->arWmi));
2537 }
2538
2539 do {
2540 struct htc_service_connect_req connect;
2541
2542 /* the reason we have to wait for the target here is that the driver layer
2543 * has to init BMI in order to set the host block size,
2544 */
2545 status = HTCWaitTarget(ar->arHtcTarget);
2546
2547 if (status) {
2548 break;
2549 }
2550
2551 A_MEMZERO(&connect,sizeof(connect));
2552 /* meta data is unused for now */
2553 connect.pMetaData = NULL;
2554 connect.MetaDataLength = 0;
2555 /* these fields are the same for all service endpoints */
2556 connect.EpCallbacks.pContext = ar;
2557 connect.EpCallbacks.EpTxCompleteMultiple = ar6000_tx_complete;
2558 connect.EpCallbacks.EpRecv = ar6000_rx;
2559 connect.EpCallbacks.EpRecvRefill = ar6000_rx_refill;
2560 connect.EpCallbacks.EpSendFull = ar6000_tx_queue_full;
2561 /* set the max queue depth so that our ar6000_tx_queue_full handler gets called.
2562 * Linux has the peculiarity of not providing flow control between the
2563 * NIC and the network stack. There is no API to indicate that a TX packet
2564 * was sent which could provide some back pressure to the network stack.
2565 * Under linux you would have to wait till the network stack consumed all sk_buffs
2566 * before any back-flow kicked in. Which isn't very friendly.
2567 * So we have to manage this ourselves */
2568 connect.MaxSendQueueDepth = MAX_DEFAULT_SEND_QUEUE_DEPTH;
2569 connect.EpCallbacks.RecvRefillWaterMark = AR6000_MAX_RX_BUFFERS / 4; /* set to 25 % */
2570 if (0 == connect.EpCallbacks.RecvRefillWaterMark) {
2571 connect.EpCallbacks.RecvRefillWaterMark++;
2572 }
2573 /* connect to control service */
2574 connect.ServiceID = WMI_CONTROL_SVC;
2575 status = ar6000_connectservice(ar,
2576 &connect,
2577 "WMI CONTROL");
2578 if (status) {
2579 break;
2580 }
2581
2582 connect.LocalConnectionFlags |= HTC_LOCAL_CONN_FLAGS_ENABLE_SEND_BUNDLE_PADDING;
2583 /* limit the HTC message size on the send path, although we can receive A-MSDU frames of
2584 * 4K, we will only send ethernet-sized (802.3) frames on the send path. */
2585 connect.MaxSendMsgSize = WMI_MAX_TX_DATA_FRAME_LENGTH;
2586
2587 /* to reduce the amount of committed memory for larger A_MSDU frames, use the recv-alloc threshold
2588 * mechanism for larger packets */
2589 connect.EpCallbacks.RecvAllocThreshold = AR6000_BUFFER_SIZE;
2590 connect.EpCallbacks.EpRecvAllocThresh = ar6000_alloc_amsdu_rxbuf;
2591
2592 /* for the remaining data services set the connection flag to reduce dribbling,
2593 * if configured to do so */
2594 if (reduce_credit_dribble) {
2595 connect.ConnectionFlags |= HTC_CONNECT_FLAGS_REDUCE_CREDIT_DRIBBLE;
2596 /* the credit dribble trigger threshold is (reduce_credit_dribble - 1) for a value
2597 * of 0-3 */
2598 connect.ConnectionFlags &= ~HTC_CONNECT_FLAGS_THRESHOLD_LEVEL_MASK;
2599 connect.ConnectionFlags |=
2600 ((u16)reduce_credit_dribble - 1) & HTC_CONNECT_FLAGS_THRESHOLD_LEVEL_MASK;
2601 }
2602 /* connect to best-effort service */
2603 connect.ServiceID = WMI_DATA_BE_SVC;
2604
2605 status = ar6000_connectservice(ar,
2606 &connect,
2607 "WMI DATA BE");
2608 if (status) {
2609 break;
2610 }
2611
2612 /* connect to back-ground
2613 * map this to WMI LOW_PRI */
2614 connect.ServiceID = WMI_DATA_BK_SVC;
2615 status = ar6000_connectservice(ar,
2616 &connect,
2617 "WMI DATA BK");
2618 if (status) {
2619 break;
2620 }
2621
2622 /* connect to Video service, map this to
2623 * to HI PRI */
2624 connect.ServiceID = WMI_DATA_VI_SVC;
2625 status = ar6000_connectservice(ar,
2626 &connect,
2627 "WMI DATA VI");
2628 if (status) {
2629 break;
2630 }
2631
2632 /* connect to VO service, this is currently not
2633 * mapped to a WMI priority stream due to historical reasons.
2634 * WMI originally defined 3 priorities over 3 mailboxes
2635 * We can change this when WMI is reworked so that priorities are not
2636 * dependent on mailboxes */
2637 connect.ServiceID = WMI_DATA_VO_SVC;
2638 status = ar6000_connectservice(ar,
2639 &connect,
2640 "WMI DATA VO");
2641 if (status) {
2642 break;
2643 }
2644
2645 A_ASSERT(arAc2EndpointID(ar,WMM_AC_BE) != 0);
2646 A_ASSERT(arAc2EndpointID(ar,WMM_AC_BK) != 0);
2647 A_ASSERT(arAc2EndpointID(ar,WMM_AC_VI) != 0);
2648 A_ASSERT(arAc2EndpointID(ar,WMM_AC_VO) != 0);
2649
2650 /* setup access class priority mappings */
2651 ar->arAcStreamPriMap[WMM_AC_BK] = 0; /* lowest */
2652 ar->arAcStreamPriMap[WMM_AC_BE] = 1; /* */
2653 ar->arAcStreamPriMap[WMM_AC_VI] = 2; /* */
2654 ar->arAcStreamPriMap[WMM_AC_VO] = 3; /* highest */
2655
2656 #ifdef EXPORT_HCI_BRIDGE_INTERFACE
2657 if (setuphci && (NULL != ar6kHciTransCallbacks.setupTransport)) {
2658 struct hci_transport_misc_handles hciHandles;
2659
2660 hciHandles.netDevice = ar->arNetDev;
2661 hciHandles.hifDevice = ar->arHifDevice;
2662 hciHandles.htcHandle = ar->arHtcTarget;
2663 status = (int)(ar6kHciTransCallbacks.setupTransport(&hciHandles));
2664 }
2665 #else
2666 if (setuphci) {
2667 /* setup HCI */
2668 status = ar6000_setup_hci(ar);
2669 }
2670 #endif
2671
2672 } while (false);
2673
2674 if (status) {
2675 ret = -EIO;
2676 goto ar6000_init_done;
2677 }
2678
2679 if (regscanmode) {
2680 u32 param;
2681
2682 if (BMIReadMemory(ar->arHifDevice,
2683 HOST_INTEREST_ITEM_ADDRESS(ar,
2684 hi_option_flag),
2685 (u8 *)&param,
2686 4) != 0) {
2687 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,
2688 ("BMIReadMemory forsetting "
2689 "regscanmode failed\n"));
2690 return A_ERROR;
2691 }
2692
2693 if (regscanmode == 1)
2694 param |= HI_OPTION_SKIP_REG_SCAN;
2695 else if (regscanmode == 2)
2696 param |= HI_OPTION_INIT_REG_SCAN;
2697
2698 if (BMIWriteMemory(ar->arHifDevice,
2699 HOST_INTEREST_ITEM_ADDRESS(ar,
2700 hi_option_flag),
2701 (u8 *)&param,
2702 4) != 0) {
2703 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,
2704 ("BMIWriteMemory forsetting "
2705 "regscanmode failed\n"));
2706 return A_ERROR;
2707 }
2708 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("Regulatory scan mode set\n"));
2709 }
2710
2711 /*
2712 * give our connected endpoints some buffers
2713 */
2714
2715 ar6000_rx_refill(ar, ar->arControlEp);
2716 ar6000_rx_refill(ar, arAc2EndpointID(ar,WMM_AC_BE));
2717
2718 /*
2719 * We will post the receive buffers only for SPE or endpoint ping testing so we are
2720 * making it conditional on the 'bypasswmi' flag.
2721 */
2722 if (bypasswmi) {
2723 ar6000_rx_refill(ar,arAc2EndpointID(ar,WMM_AC_BK));
2724 ar6000_rx_refill(ar,arAc2EndpointID(ar,WMM_AC_VI));
2725 ar6000_rx_refill(ar,arAc2EndpointID(ar,WMM_AC_VO));
2726 }
2727
2728 /* allocate some buffers that handle larger AMSDU frames */
2729 ar6000_refill_amsdu_rxbufs(ar,AR6000_MAX_AMSDU_RX_BUFFERS);
2730
2731 /* setup credit distribution */
2732 ar6000_setup_credit_dist(ar->arHtcTarget, &ar->arCreditStateInfo);
2733
2734 /* Since cookies are used for HTC transports, they should be */
2735 /* initialized prior to enabling HTC. */
2736 ar6000_cookie_init(ar);
2737
2738 /* start HTC */
2739 status = HTCStart(ar->arHtcTarget);
2740
2741 if (status) {
2742 if (ar->arWmiEnabled == true) {
2743 wmi_shutdown(ar->arWmi);
2744 ar->arWmiEnabled = false;
2745 ar->arWmi = NULL;
2746 }
2747 ar6000_cookie_cleanup(ar);
2748 ret = -EIO;
2749 goto ar6000_init_done;
2750 }
2751
2752 if (!bypasswmi) {
2753 /* Wait for Wmi event to be ready */
2754 timeleft = wait_event_interruptible_timeout(arEvent,
2755 (ar->arWmiReady == true), wmitimeout * HZ);
2756
2757 if (ar->arVersion.abi_ver != AR6K_ABI_VERSION) {
2758 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ABI Version mismatch: Host(0x%x), Target(0x%x)\n", AR6K_ABI_VERSION, ar->arVersion.abi_ver));
2759 #ifndef ATH6K_SKIP_ABI_VERSION_CHECK
2760 ret = -EIO;
2761 goto ar6000_init_done;
2762 #endif /* ATH6K_SKIP_ABI_VERSION_CHECK */
2763 }
2764
2765 if(!timeleft || signal_pending(current))
2766 {
2767 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("WMI is not ready or wait was interrupted\n"));
2768 ret = -EIO;
2769 goto ar6000_init_done;
2770 }
2771
2772 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s() WMI is ready\n", __func__));
2773
2774 /* Communicate the wmi protocol verision to the target */
2775 if ((ar6000_set_host_app_area(ar)) != 0) {
2776 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Unable to set the host app area\n"));
2777 }
2778 ar6000_target_config_wlan_params(ar);
2779 }
2780
2781 ar->arNumDataEndPts = 1;
2782
2783 if (bypasswmi) {
2784 /* for tests like endpoint ping, the MAC address needs to be non-zero otherwise
2785 * the data path through a raw socket is disabled */
2786 dev->dev_addr[0] = 0x00;
2787 dev->dev_addr[1] = 0x01;
2788 dev->dev_addr[2] = 0x02;
2789 dev->dev_addr[3] = 0xAA;
2790 dev->dev_addr[4] = 0xBB;
2791 dev->dev_addr[5] = 0xCC;
2792 }
2793
2794 ar6000_init_done:
2795 rtnl_lock();
2796 dev_put(dev);
2797
2798 return ret;
2799 }
2800
2801
2802 void
2803 ar6000_bitrate_rx(void *devt, s32 rateKbps)
2804 {
2805 struct ar6_softc *ar = (struct ar6_softc *)devt;
2806
2807 ar->arBitRate = rateKbps;
2808 wake_up(&arEvent);
2809 }
2810
2811 void
2812 ar6000_ratemask_rx(void *devt, u32 ratemask)
2813 {
2814 struct ar6_softc *ar = (struct ar6_softc *)devt;
2815
2816 ar->arRateMask = ratemask;
2817 wake_up(&arEvent);
2818 }
2819
2820 void
2821 ar6000_txPwr_rx(void *devt, u8 txPwr)
2822 {
2823 struct ar6_softc *ar = (struct ar6_softc *)devt;
2824
2825 ar->arTxPwr = txPwr;
2826 wake_up(&arEvent);
2827 }
2828
2829
2830 void
2831 ar6000_channelList_rx(void *devt, s8 numChan, u16 *chanList)
2832 {
2833 struct ar6_softc *ar = (struct ar6_softc *)devt;
2834
2835 memcpy(ar->arChannelList, chanList, numChan * sizeof (u16));
2836 ar->arNumChannels = numChan;
2837
2838 wake_up(&arEvent);
2839 }
2840
2841 u8 ar6000_ibss_map_epid(struct sk_buff *skb, struct net_device *dev, u32 *mapNo)
2842 {
2843 struct ar6_softc *ar = (struct ar6_softc *)ar6k_priv(dev);
2844 u8 *datap;
2845 ATH_MAC_HDR *macHdr;
2846 u32 i, eptMap;
2847
2848 (*mapNo) = 0;
2849 datap = A_NETBUF_DATA(skb);
2850 macHdr = (ATH_MAC_HDR *)(datap + sizeof(WMI_DATA_HDR));
2851 if (IEEE80211_IS_MULTICAST(macHdr->dstMac)) {
2852 return ENDPOINT_2;
2853 }
2854
2855 eptMap = -1;
2856 for (i = 0; i < ar->arNodeNum; i ++) {
2857 if (IEEE80211_ADDR_EQ(macHdr->dstMac, ar->arNodeMap[i].macAddress)) {
2858 (*mapNo) = i + 1;
2859 ar->arNodeMap[i].txPending ++;
2860 return ar->arNodeMap[i].epId;
2861 }
2862
2863 if ((eptMap == -1) && !ar->arNodeMap[i].txPending) {
2864 eptMap = i;
2865 }
2866 }
2867
2868 if (eptMap == -1) {
2869 eptMap = ar->arNodeNum;
2870 ar->arNodeNum ++;
2871 A_ASSERT(ar->arNodeNum <= MAX_NODE_NUM);
2872 }
2873
2874 memcpy(ar->arNodeMap[eptMap].macAddress, macHdr->dstMac, IEEE80211_ADDR_LEN);
2875
2876 for (i = ENDPOINT_2; i <= ENDPOINT_5; i ++) {
2877 if (!ar->arTxPending[i]) {
2878 ar->arNodeMap[eptMap].epId = i;
2879 break;
2880 }
2881 // No free endpoint is available, start redistribution on the inuse endpoints.
2882 if (i == ENDPOINT_5) {
2883 ar->arNodeMap[eptMap].epId = ar->arNexEpId;
2884 ar->arNexEpId ++;
2885 if (ar->arNexEpId > ENDPOINT_5) {
2886 ar->arNexEpId = ENDPOINT_2;
2887 }
2888 }
2889 }
2890
2891 (*mapNo) = eptMap + 1;
2892 ar->arNodeMap[eptMap].txPending ++;
2893
2894 return ar->arNodeMap[eptMap].epId;
2895 }
2896
2897 #ifdef DEBUG
2898 static void ar6000_dump_skb(struct sk_buff *skb)
2899 {
2900 u_char *ch;
2901 for (ch = A_NETBUF_DATA(skb);
2902 (unsigned long)ch < ((unsigned long)A_NETBUF_DATA(skb) +
2903 A_NETBUF_LEN(skb)); ch++)
2904 {
2905 AR_DEBUG_PRINTF(ATH_DEBUG_WARN,("%2.2x ", *ch));
2906 }
2907 AR_DEBUG_PRINTF(ATH_DEBUG_WARN,("\n"));
2908 }
2909 #endif
2910
2911 #ifdef HTC_TEST_SEND_PKTS
2912 static void DoHTCSendPktsTest(struct ar6_softc *ar, int MapNo, HTC_ENDPOINT_ID eid, struct sk_buff *skb);
2913 #endif
2914
2915 static int
2916 ar6000_data_tx(struct sk_buff *skb, struct net_device *dev)
2917 {
2918 #define AC_NOT_MAPPED 99
2919 struct ar6_softc *ar = (struct ar6_softc *)ar6k_priv(dev);
2920 u8 ac = AC_NOT_MAPPED;
2921 HTC_ENDPOINT_ID eid = ENDPOINT_UNUSED;
2922 u32 mapNo = 0;
2923 int len;
2924 struct ar_cookie *cookie;
2925 bool checkAdHocPsMapping = false,bMoreData = false;
2926 HTC_TX_TAG htc_tag = AR6K_DATA_PKT_TAG;
2927 u8 dot11Hdr = processDot11Hdr;
2928 #ifdef CONFIG_PM
2929 if (ar->arWowState != WLAN_WOW_STATE_NONE) {
2930 A_NETBUF_FREE(skb);
2931 return 0;
2932 }
2933 #endif /* CONFIG_PM */
2934
2935 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_TX,("ar6000_data_tx start - skb=0x%lx, data=0x%lx, len=0x%x\n",
2936 (unsigned long)skb, (unsigned long)A_NETBUF_DATA(skb),
2937 A_NETBUF_LEN(skb)));
2938
2939 /* If target is not associated */
2940 if( (!ar->arConnected && !bypasswmi)
2941 #ifdef CONFIG_HOST_TCMD_SUPPORT
2942 /* TCMD doesn't support any data, free the buf and return */
2943 || (ar->arTargetMode == AR6000_TCMD_MODE)
2944 #endif
2945 ) {
2946 A_NETBUF_FREE(skb);
2947 return 0;
2948 }
2949
2950 do {
2951
2952 if (ar->arWmiReady == false && bypasswmi == 0) {
2953 break;
2954 }
2955
2956 #ifdef BLOCK_TX_PATH_FLAG
2957 if (blocktx) {
2958 break;
2959 }
2960 #endif /* BLOCK_TX_PATH_FLAG */
2961
2962 /* AP mode Power save processing */
2963 /* If the dst STA is in sleep state, queue the pkt in its PS queue */
2964
2965 if (ar->arNetworkType == AP_NETWORK) {
2966 ATH_MAC_HDR *datap = (ATH_MAC_HDR *)A_NETBUF_DATA(skb);
2967 sta_t *conn = NULL;
2968
2969 /* If the dstMac is a Multicast address & atleast one of the
2970 * associated STA is in PS mode, then queue the pkt to the
2971 * mcastq
2972 */
2973 if (IEEE80211_IS_MULTICAST(datap->dstMac)) {
2974 u8 ctr=0;
2975 bool qMcast=false;
2976
2977
2978 for (ctr=0; ctr<AP_MAX_NUM_STA; ctr++) {
2979 if (STA_IS_PWR_SLEEP((&ar->sta_list[ctr]))) {
2980 qMcast = true;
2981 }
2982 }
2983 if(qMcast) {
2984
2985 /* If this transmit is not because of a Dtim Expiry q it */
2986 if (ar->DTIMExpired == false) {
2987 bool isMcastqEmpty = false;
2988
2989 A_MUTEX_LOCK(&ar->mcastpsqLock);
2990 isMcastqEmpty = A_NETBUF_QUEUE_EMPTY(&ar->mcastpsq);
2991 A_NETBUF_ENQUEUE(&ar->mcastpsq, skb);
2992 A_MUTEX_UNLOCK(&ar->mcastpsqLock);
2993
2994 /* If this is the first Mcast pkt getting queued
2995 * indicate to the target to set the BitmapControl LSB
2996 * of the TIM IE.
2997 */
2998 if (isMcastqEmpty) {
2999 wmi_set_pvb_cmd(ar->arWmi, MCAST_AID, 1);
3000 }
3001 return 0;
3002 } else {
3003 /* This transmit is because of Dtim expiry. Determine if
3004 * MoreData bit has to be set.
3005 */
3006 A_MUTEX_LOCK(&ar->mcastpsqLock);
3007 if(!A_NETBUF_QUEUE_EMPTY(&ar->mcastpsq)) {
3008 bMoreData = true;
3009 }
3010 A_MUTEX_UNLOCK(&ar->mcastpsqLock);
3011 }
3012 }
3013 } else {
3014 conn = ieee80211_find_conn(ar, datap->dstMac);
3015 if (conn) {
3016 if (STA_IS_PWR_SLEEP(conn)) {
3017 /* If this transmit is not because of a PsPoll q it*/
3018 if (!STA_IS_PS_POLLED(conn)) {
3019 bool isPsqEmpty = false;
3020 /* Queue the frames if the STA is sleeping */
3021 A_MUTEX_LOCK(&conn->psqLock);
3022 isPsqEmpty = A_NETBUF_QUEUE_EMPTY(&conn->psq);
3023 A_NETBUF_ENQUEUE(&conn->psq, skb);
3024 A_MUTEX_UNLOCK(&conn->psqLock);
3025
3026 /* If this is the first pkt getting queued
3027 * for this STA, update the PVB for this STA
3028 */
3029 if (isPsqEmpty) {
3030 wmi_set_pvb_cmd(ar->arWmi, conn->aid, 1);
3031 }
3032
3033 return 0;
3034 } else {
3035 /* This tx is because of a PsPoll. Determine if
3036 * MoreData bit has to be set
3037 */
3038 A_MUTEX_LOCK(&conn->psqLock);
3039 if (!A_NETBUF_QUEUE_EMPTY(&conn->psq)) {
3040 bMoreData = true;
3041 }
3042 A_MUTEX_UNLOCK(&conn->psqLock);
3043 }
3044 }
3045 } else {
3046
3047 /* non existent STA. drop the frame */
3048 A_NETBUF_FREE(skb);
3049 return 0;
3050 }
3051 }
3052 }
3053
3054 if (ar->arWmiEnabled) {
3055 u8 csumStart=0;
3056 u8 csumDest=0;
3057 u8 csum=skb->ip_summed;
3058 if(csumOffload && (csum==CHECKSUM_PARTIAL)){
3059 csumStart = (skb->head + skb->csum_start - skb_network_header(skb) +
3060 sizeof(ATH_LLC_SNAP_HDR));
3061 csumDest=skb->csum_offset+csumStart;
3062 }
3063 if (A_NETBUF_HEADROOM(skb) < dev->hard_header_len - LINUX_HACK_FUDGE_FACTOR) {
3064 struct sk_buff *newbuf;
3065
3066 /*
3067 * We really should have gotten enough headroom but sometimes
3068 * we still get packets with not enough headroom. Copy the packet.
3069 */
3070 len = A_NETBUF_LEN(skb);
3071 newbuf = A_NETBUF_ALLOC(len);
3072 if (newbuf == NULL) {
3073 break;
3074 }
3075 A_NETBUF_PUT(newbuf, len);
3076 memcpy(A_NETBUF_DATA(newbuf), A_NETBUF_DATA(skb), len);
3077 A_NETBUF_FREE(skb);
3078 skb = newbuf;
3079 /* fall through and assemble header */
3080 }
3081
3082 if (dot11Hdr) {
3083 if (wmi_dot11_hdr_add(ar->arWmi,skb,ar->arNetworkType) != 0) {
3084 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_data_tx-wmi_dot11_hdr_add failed\n"));
3085 break;
3086 }
3087 } else {
3088 if (wmi_dix_2_dot3(ar->arWmi, skb) != 0) {
3089 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_data_tx - wmi_dix_2_dot3 failed\n"));
3090 break;
3091 }
3092 }
3093 if(csumOffload && (csum ==CHECKSUM_PARTIAL)){
3094 WMI_TX_META_V2 metaV2;
3095 metaV2.csumStart =csumStart;
3096 metaV2.csumDest = csumDest;
3097 metaV2.csumFlags = 0x1;/*instruct target to calculate checksum*/
3098 if (wmi_data_hdr_add(ar->arWmi, skb, DATA_MSGTYPE, bMoreData, dot11Hdr,
3099 WMI_META_VERSION_2,&metaV2) != 0) {
3100 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_data_tx - wmi_data_hdr_add failed\n"));
3101 break;
3102 }
3103
3104 }
3105 else
3106 {
3107 if (wmi_data_hdr_add(ar->arWmi, skb, DATA_MSGTYPE, bMoreData, dot11Hdr,0,NULL) != 0) {
3108 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_data_tx - wmi_data_hdr_add failed\n"));
3109 break;
3110 }
3111 }
3112
3113
3114 if ((ar->arNetworkType == ADHOC_NETWORK) &&
3115 ar->arIbssPsEnable && ar->arConnected) {
3116 /* flag to check adhoc mapping once we take the lock below: */
3117 checkAdHocPsMapping = true;
3118
3119 } else {
3120 /* get the stream mapping */
3121 ac = wmi_implicit_create_pstream(ar->arWmi, skb, 0, ar->arWmmEnabled);
3122 }
3123
3124 } else {
3125 EPPING_HEADER *eppingHdr;
3126
3127 eppingHdr = A_NETBUF_DATA(skb);
3128
3129 if (IS_EPPING_PACKET(eppingHdr)) {
3130 /* the stream ID is mapped to an access class */
3131 ac = eppingHdr->StreamNo_h;
3132 /* some EPPING packets cannot be dropped no matter what access class it was
3133 * sent on. We can change the packet tag to guarantee it will not get dropped */
3134 if (IS_EPING_PACKET_NO_DROP(eppingHdr)) {
3135 htc_tag = AR6K_CONTROL_PKT_TAG;
3136 }
3137
3138 if (ac == HCI_TRANSPORT_STREAM_NUM) {
3139 /* pass this to HCI */
3140 #ifndef EXPORT_HCI_BRIDGE_INTERFACE
3141 if (!hci_test_send(ar,skb)) {
3142 return 0;
3143 }
3144 #endif
3145 /* set AC to discard this skb */
3146 ac = AC_NOT_MAPPED;
3147 } else {
3148 /* a quirk of linux, the payload of the frame is 32-bit aligned and thus the addition
3149 * of the HTC header will mis-align the start of the HTC frame, so we add some
3150 * padding which will be stripped off in the target */
3151 if (EPPING_ALIGNMENT_PAD > 0) {
3152 A_NETBUF_PUSH(skb, EPPING_ALIGNMENT_PAD);
3153 }
3154 }
3155
3156 } else {
3157 /* not a ping packet, drop it */
3158 ac = AC_NOT_MAPPED;
3159 }
3160 }
3161
3162 } while (false);
3163
3164 /* did we succeed ? */
3165 if ((ac == AC_NOT_MAPPED) && !checkAdHocPsMapping) {
3166 /* cleanup and exit */
3167 A_NETBUF_FREE(skb);
3168 AR6000_STAT_INC(ar, tx_dropped);
3169 AR6000_STAT_INC(ar, tx_aborted_errors);
3170 return 0;
3171 }
3172
3173 cookie = NULL;
3174
3175 /* take the lock to protect driver data */
3176 AR6000_SPIN_LOCK(&ar->arLock, 0);
3177
3178 do {
3179
3180 if (checkAdHocPsMapping) {
3181 eid = ar6000_ibss_map_epid(skb, dev, &mapNo);
3182 }else {
3183 eid = arAc2EndpointID (ar, ac);
3184 }
3185 /* validate that the endpoint is connected */
3186 if (eid == 0 || eid == ENDPOINT_UNUSED ) {
3187 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,(" eid %d is NOT mapped!\n", eid));
3188 break;
3189 }
3190 /* allocate resource for this packet */
3191 cookie = ar6000_alloc_cookie(ar);
3192
3193 if (cookie != NULL) {
3194 /* update counts while the lock is held */
3195 ar->arTxPending[eid]++;
3196 ar->arTotalTxDataPending++;
3197 }
3198
3199 } while (false);
3200
3201 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
3202
3203 if (cookie != NULL) {
3204 cookie->arc_bp[0] = (unsigned long)skb;
3205 cookie->arc_bp[1] = mapNo;
3206 SET_HTC_PACKET_INFO_TX(&cookie->HtcPkt,
3207 cookie,
3208 A_NETBUF_DATA(skb),
3209 A_NETBUF_LEN(skb),
3210 eid,
3211 htc_tag);
3212
3213 #ifdef DEBUG
3214 if (debugdriver >= 3) {
3215 ar6000_dump_skb(skb);
3216 }
3217 #endif
3218 #ifdef HTC_TEST_SEND_PKTS
3219 DoHTCSendPktsTest(ar,mapNo,eid,skb);
3220 #endif
3221 /* HTC interface is asynchronous, if this fails, cleanup will happen in
3222 * the ar6000_tx_complete callback */
3223 HTCSendPkt(ar->arHtcTarget, &cookie->HtcPkt);
3224 } else {
3225 /* no packet to send, cleanup */
3226 A_NETBUF_FREE(skb);
3227 AR6000_STAT_INC(ar, tx_dropped);
3228 AR6000_STAT_INC(ar, tx_aborted_errors);
3229 }
3230
3231 return 0;
3232 }
3233
3234 int
3235 ar6000_acl_data_tx(struct sk_buff *skb, struct net_device *dev)
3236 {
3237 struct ar6_softc *ar = (struct ar6_softc *)ar6k_priv(dev);
3238 struct ar_cookie *cookie;
3239 HTC_ENDPOINT_ID eid = ENDPOINT_UNUSED;
3240
3241 cookie = NULL;
3242 AR6000_SPIN_LOCK(&ar->arLock, 0);
3243
3244 /* For now we send ACL on BE endpoint: We can also have a dedicated EP */
3245 eid = arAc2EndpointID (ar, 0);
3246 /* allocate resource for this packet */
3247 cookie = ar6000_alloc_cookie(ar);
3248
3249 if (cookie != NULL) {
3250 /* update counts while the lock is held */
3251 ar->arTxPending[eid]++;
3252 ar->arTotalTxDataPending++;
3253 }
3254
3255
3256 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
3257
3258 if (cookie != NULL) {
3259 cookie->arc_bp[0] = (unsigned long)skb;
3260 cookie->arc_bp[1] = 0;
3261 SET_HTC_PACKET_INFO_TX(&cookie->HtcPkt,
3262 cookie,
3263 A_NETBUF_DATA(skb),
3264 A_NETBUF_LEN(skb),
3265 eid,
3266 AR6K_DATA_PKT_TAG);
3267
3268 /* HTC interface is asynchronous, if this fails, cleanup will happen in
3269 * the ar6000_tx_complete callback */
3270 HTCSendPkt(ar->arHtcTarget, &cookie->HtcPkt);
3271 } else {
3272 /* no packet to send, cleanup */
3273 A_NETBUF_FREE(skb);
3274 AR6000_STAT_INC(ar, tx_dropped);
3275 AR6000_STAT_INC(ar, tx_aborted_errors);
3276 }
3277 return 0;
3278 }
3279
3280
3281 #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
3282 static void
3283 tvsub(register struct timeval *out, register struct timeval *in)
3284 {
3285 if((out->tv_usec -= in->tv_usec) < 0) {
3286 out->tv_sec--;
3287 out->tv_usec += 1000000;
3288 }
3289 out->tv_sec -= in->tv_sec;
3290 }
3291
3292 void
3293 applyAPTCHeuristics(struct ar6_softc *ar)
3294 {
3295 u32 duration;
3296 u32 numbytes;
3297 u32 throughput;
3298 struct timeval ts;
3299 int status;
3300
3301 AR6000_SPIN_LOCK(&ar->arLock, 0);
3302
3303 if ((enableAPTCHeuristics) && (!aptcTR.timerScheduled)) {
3304 do_gettimeofday(&ts);
3305 tvsub(&ts, &aptcTR.samplingTS);
3306 duration = ts.tv_sec * 1000 + ts.tv_usec / 1000; /* ms */
3307 numbytes = aptcTR.bytesTransmitted + aptcTR.bytesReceived;
3308
3309 if (duration > APTC_TRAFFIC_SAMPLING_INTERVAL) {
3310 /* Initialize the time stamp and byte count */
3311 aptcTR.bytesTransmitted = aptcTR.bytesReceived = 0;
3312 do_gettimeofday(&aptcTR.samplingTS);
3313
3314 /* Calculate and decide based on throughput thresholds */
3315 throughput = ((numbytes * 8) / duration);
3316 if (throughput > APTC_UPPER_THROUGHPUT_THRESHOLD) {
3317 /* Disable Sleep and schedule a timer */
3318 A_ASSERT(ar->arWmiReady == true);
3319 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
3320 status = wmi_powermode_cmd(ar->arWmi, MAX_PERF_POWER);
3321 AR6000_SPIN_LOCK(&ar->arLock, 0);
3322 A_TIMEOUT_MS(&aptcTimer, APTC_TRAFFIC_SAMPLING_INTERVAL, 0);
3323 aptcTR.timerScheduled = true;
3324 }
3325 }
3326 }
3327
3328 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
3329 }
3330 #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
3331
3332 static HTC_SEND_FULL_ACTION ar6000_tx_queue_full(void *Context, struct htc_packet *pPacket)
3333 {
3334 struct ar6_softc *ar = (struct ar6_softc *)Context;
3335 HTC_SEND_FULL_ACTION action = HTC_SEND_FULL_KEEP;
3336 bool stopNet = false;
3337 HTC_ENDPOINT_ID Endpoint = HTC_GET_ENDPOINT_FROM_PKT(pPacket);
3338
3339 do {
3340
3341 if (bypasswmi) {
3342 int accessClass;
3343
3344 if (HTC_GET_TAG_FROM_PKT(pPacket) == AR6K_CONTROL_PKT_TAG) {
3345 /* don't drop special control packets */
3346 break;
3347 }
3348
3349 accessClass = arEndpoint2Ac(ar,Endpoint);
3350 /* for endpoint ping testing drop Best Effort and Background */
3351 if ((accessClass == WMM_AC_BE) || (accessClass == WMM_AC_BK)) {
3352 action = HTC_SEND_FULL_DROP;
3353 stopNet = false;
3354 } else {
3355 /* keep but stop the netqueues */
3356 stopNet = true;
3357 }
3358 break;
3359 }
3360
3361 if (Endpoint == ar->arControlEp) {
3362 /* under normal WMI if this is getting full, then something is running rampant
3363 * the host should not be exhausting the WMI queue with too many commands
3364 * the only exception to this is during testing using endpointping */
3365 AR6000_SPIN_LOCK(&ar->arLock, 0);
3366 /* set flag to handle subsequent messages */
3367 ar->arWMIControlEpFull = true;
3368 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
3369 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("WMI Control Endpoint is FULL!!! \n"));
3370 /* no need to stop the network */
3371 stopNet = false;
3372 break;
3373 }
3374
3375 /* if we get here, we are dealing with data endpoints getting full */
3376
3377 if (HTC_GET_TAG_FROM_PKT(pPacket) == AR6K_CONTROL_PKT_TAG) {
3378 /* don't drop control packets issued on ANY data endpoint */
3379 break;
3380 }
3381
3382 if (ar->arNetworkType == ADHOC_NETWORK) {
3383 /* in adhoc mode, we cannot differentiate traffic priorities so there is no need to
3384 * continue, however we should stop the network */
3385 stopNet = true;
3386 break;
3387 }
3388 /* the last MAX_HI_COOKIE_NUM "batch" of cookies are reserved for the highest
3389 * active stream */
3390 if (ar->arAcStreamPriMap[arEndpoint2Ac(ar,Endpoint)] < ar->arHiAcStreamActivePri &&
3391 ar->arCookieCount <= MAX_HI_COOKIE_NUM) {
3392 /* this stream's priority is less than the highest active priority, we
3393 * give preference to the highest priority stream by directing
3394 * HTC to drop the packet that overflowed */
3395 action = HTC_SEND_FULL_DROP;
3396 /* since we are dropping packets, no need to stop the network */
3397 stopNet = false;
3398 break;
3399 }
3400
3401 } while (false);
3402
3403 if (stopNet) {
3404 AR6000_SPIN_LOCK(&ar->arLock, 0);
3405 ar->arNetQueueStopped = true;
3406 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
3407 /* one of the data endpoints queues is getting full..need to stop network stack
3408 * the queue will resume in ar6000_tx_complete() */
3409 netif_stop_queue(ar->arNetDev);
3410 }
3411
3412 return action;
3413 }
3414
3415
3416 static void
3417 ar6000_tx_complete(void *Context, struct htc_packet_queue *pPacketQueue)
3418 {
3419 struct ar6_softc *ar = (struct ar6_softc *)Context;
3420 u32 mapNo = 0;
3421 int status;
3422 struct ar_cookie * ar_cookie;
3423 HTC_ENDPOINT_ID eid;
3424 bool wakeEvent = false;
3425 struct sk_buff_head skb_queue;
3426 struct htc_packet *pPacket;
3427 struct sk_buff *pktSkb;
3428 bool flushing = false;
3429
3430 skb_queue_head_init(&skb_queue);
3431
3432 /* lock the driver as we update internal state */
3433 AR6000_SPIN_LOCK(&ar->arLock, 0);
3434
3435 /* reap completed packets */
3436 while (!HTC_QUEUE_EMPTY(pPacketQueue)) {
3437
3438 pPacket = HTC_PACKET_DEQUEUE(pPacketQueue);
3439
3440 ar_cookie = (struct ar_cookie *)pPacket->pPktContext;
3441 A_ASSERT(ar_cookie);
3442
3443 status = pPacket->Status;
3444 pktSkb = (struct sk_buff *)ar_cookie->arc_bp[0];
3445 eid = pPacket->Endpoint;
3446 mapNo = ar_cookie->arc_bp[1];
3447
3448 A_ASSERT(pktSkb);
3449 A_ASSERT(pPacket->pBuffer == A_NETBUF_DATA(pktSkb));
3450
3451 /* add this to the list, use faster non-lock API */
3452 __skb_queue_tail(&skb_queue,pktSkb);
3453
3454 if (!status) {
3455 A_ASSERT(pPacket->ActualLength == A_NETBUF_LEN(pktSkb));
3456 }
3457
3458 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_TX,("ar6000_tx_complete skb=0x%lx data=0x%lx len=0x%x eid=%d ",
3459 (unsigned long)pktSkb, (unsigned long)pPacket->pBuffer,
3460 pPacket->ActualLength,
3461 eid));
3462
3463 ar->arTxPending[eid]--;
3464
3465 if ((eid != ar->arControlEp) || bypasswmi) {
3466 ar->arTotalTxDataPending--;
3467 }
3468
3469 if (eid == ar->arControlEp)
3470 {
3471 if (ar->arWMIControlEpFull) {
3472 /* since this packet completed, the WMI EP is no longer full */
3473 ar->arWMIControlEpFull = false;
3474 }
3475
3476 if (ar->arTxPending[eid] == 0) {
3477 wakeEvent = true;
3478 }
3479 }
3480
3481 if (status) {
3482 if (status == A_ECANCELED) {
3483 /* a packet was flushed */
3484 flushing = true;
3485 }
3486 AR6000_STAT_INC(ar, tx_errors);
3487 if (status != A_NO_RESOURCE) {
3488 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s() -TX ERROR, status: 0x%x\n", __func__,
3489 status));
3490 }
3491 } else {
3492 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_TX,("OK\n"));
3493 flushing = false;
3494 AR6000_STAT_INC(ar, tx_packets);
3495 ar->arNetStats.tx_bytes += A_NETBUF_LEN(pktSkb);
3496 #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
3497 aptcTR.bytesTransmitted += a_netbuf_to_len(pktSkb);
3498 applyAPTCHeuristics(ar);
3499 #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
3500 }
3501
3502 // TODO this needs to be looked at
3503 if ((ar->arNetworkType == ADHOC_NETWORK) && ar->arIbssPsEnable
3504 && (eid != ar->arControlEp) && mapNo)
3505 {
3506 mapNo --;
3507 ar->arNodeMap[mapNo].txPending --;
3508
3509 if (!ar->arNodeMap[mapNo].txPending && (mapNo == (ar->arNodeNum - 1))) {
3510 u32 i;
3511 for (i = ar->arNodeNum; i > 0; i --) {
3512 if (!ar->arNodeMap[i - 1].txPending) {
3513 A_MEMZERO(&ar->arNodeMap[i - 1], sizeof(struct ar_node_mapping));
3514 ar->arNodeNum --;
3515 } else {
3516 break;
3517 }
3518 }
3519 }
3520 }
3521
3522 ar6000_free_cookie(ar, ar_cookie);
3523
3524 if (ar->arNetQueueStopped) {
3525 ar->arNetQueueStopped = false;
3526 }
3527 }
3528
3529 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
3530
3531 /* lock is released, we can freely call other kernel APIs */
3532
3533 /* free all skbs in our local list */
3534 while (!skb_queue_empty(&skb_queue)) {
3535 /* use non-lock version */
3536 pktSkb = __skb_dequeue(&skb_queue);
3537 A_NETBUF_FREE(pktSkb);
3538 }
3539
3540 if ((ar->arConnected == true) || bypasswmi) {
3541 if (!flushing) {
3542 /* don't wake the queue if we are flushing, other wise it will just
3543 * keep queueing packets, which will keep failing */
3544 netif_wake_queue(ar->arNetDev);
3545 }
3546 }
3547
3548 if (wakeEvent) {
3549 wake_up(&arEvent);
3550 }
3551
3552 }
3553
3554 sta_t *
3555 ieee80211_find_conn(struct ar6_softc *ar, u8 *node_addr)
3556 {
3557 sta_t *conn = NULL;
3558 u8 i, max_conn;
3559
3560 switch(ar->arNetworkType) {
3561 case AP_NETWORK:
3562 max_conn = AP_MAX_NUM_STA;
3563 break;
3564 default:
3565 max_conn=0;
3566 break;
3567 }
3568
3569 for (i = 0; i < max_conn; i++) {
3570 if (IEEE80211_ADDR_EQ(node_addr, ar->sta_list[i].mac)) {
3571 conn = &ar->sta_list[i];
3572 break;
3573 }
3574 }
3575
3576 return conn;
3577 }
3578
3579 sta_t *ieee80211_find_conn_for_aid(struct ar6_softc *ar, u8 aid)
3580 {
3581 sta_t *conn = NULL;
3582 u8 ctr;
3583
3584 for (ctr = 0; ctr < AP_MAX_NUM_STA; ctr++) {
3585 if (ar->sta_list[ctr].aid == aid) {
3586 conn = &ar->sta_list[ctr];
3587 break;
3588 }
3589 }
3590 return conn;
3591 }
3592
3593 /*
3594 * Receive event handler. This is called by HTC when a packet is received
3595 */
3596 int pktcount;
3597 static void
3598 ar6000_rx(void *Context, struct htc_packet *pPacket)
3599 {
3600 struct ar6_softc *ar = (struct ar6_softc *)Context;
3601 struct sk_buff *skb = (struct sk_buff *)pPacket->pPktContext;
3602 int minHdrLen;
3603 u8 containsDot11Hdr = 0;
3604 int status = pPacket->Status;
3605 HTC_ENDPOINT_ID ept = pPacket->Endpoint;
3606
3607 A_ASSERT((status) ||
3608 (pPacket->pBuffer == (A_NETBUF_DATA(skb) + HTC_HEADER_LEN)));
3609
3610 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_RX,("ar6000_rx ar=0x%lx eid=%d, skb=0x%lx, data=0x%lx, len=0x%x status:%d",
3611 (unsigned long)ar, ept, (unsigned long)skb, (unsigned long)pPacket->pBuffer,
3612 pPacket->ActualLength, status));
3613 if (status) {
3614 if (status != A_ECANCELED) {
3615 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("RX ERR (%d) \n",status));
3616 }
3617 }
3618
3619 /* take lock to protect buffer counts
3620 * and adaptive power throughput state */
3621 AR6000_SPIN_LOCK(&ar->arLock, 0);
3622
3623 if (!status) {
3624 AR6000_STAT_INC(ar, rx_packets);
3625 ar->arNetStats.rx_bytes += pPacket->ActualLength;
3626 #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
3627 aptcTR.bytesReceived += a_netbuf_to_len(skb);
3628 applyAPTCHeuristics(ar);
3629 #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
3630
3631 A_NETBUF_PUT(skb, pPacket->ActualLength + HTC_HEADER_LEN);
3632 A_NETBUF_PULL(skb, HTC_HEADER_LEN);
3633
3634 #ifdef DEBUG
3635 if (debugdriver >= 2) {
3636 ar6000_dump_skb(skb);
3637 }
3638 #endif /* DEBUG */
3639 }
3640
3641 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
3642
3643 skb->dev = ar->arNetDev;
3644 if (status) {
3645 AR6000_STAT_INC(ar, rx_errors);
3646 A_NETBUF_FREE(skb);
3647 } else if (ar->arWmiEnabled == true) {
3648 if (ept == ar->arControlEp) {
3649 /*
3650 * this is a wmi control msg
3651 */
3652 #ifdef CONFIG_PM
3653 ar6000_check_wow_status(ar, skb, true);
3654 #endif /* CONFIG_PM */
3655 wmi_control_rx(ar->arWmi, skb);
3656 } else {
3657 WMI_DATA_HDR *dhdr = (WMI_DATA_HDR *)A_NETBUF_DATA(skb);
3658 bool is_amsdu;
3659 u8 tid;
3660
3661 /*
3662 * This check can be removed if after a while we do not
3663 * see the warning. For now we leave it to ensure
3664 * we drop these frames accordingly in case the
3665 * target generates them for some reason. These
3666 * were used for an internal PAL but that's not
3667 * used or supported anymore. These frames should
3668 * not come up from the target.
3669 */
3670 if (WARN_ON(WMI_DATA_HDR_GET_DATA_TYPE(dhdr) ==
3671 WMI_DATA_HDR_DATA_TYPE_ACL)) {
3672 AR6000_STAT_INC(ar, rx_errors);
3673 A_NETBUF_FREE(skb);
3674 return;
3675 }
3676
3677 #ifdef CONFIG_PM
3678 ar6000_check_wow_status(ar, NULL, false);
3679 #endif /* CONFIG_PM */
3680 /*
3681 * this is a wmi data packet
3682 */
3683 // NWF
3684
3685 if (processDot11Hdr) {
3686 minHdrLen = sizeof(WMI_DATA_HDR) + sizeof(struct ieee80211_frame) + sizeof(ATH_LLC_SNAP_HDR);
3687 } else {
3688 minHdrLen = sizeof (WMI_DATA_HDR) + sizeof(ATH_MAC_HDR) +
3689 sizeof(ATH_LLC_SNAP_HDR);
3690 }
3691
3692 /* In the case of AP mode we may receive NULL data frames
3693 * that do not have LLC hdr. They are 16 bytes in size.
3694 * Allow these frames in the AP mode.
3695 * ACL data frames don't follow ethernet frame bounds for
3696 * min length
3697 */
3698 if (ar->arNetworkType != AP_NETWORK &&
3699 ((pPacket->ActualLength < minHdrLen) ||
3700 (pPacket->ActualLength > AR6000_MAX_RX_MESSAGE_SIZE)))
3701 {
3702 /*
3703 * packet is too short or too long
3704 */
3705 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("TOO SHORT or TOO LONG\n"));
3706 AR6000_STAT_INC(ar, rx_errors);
3707 AR6000_STAT_INC(ar, rx_length_errors);
3708 A_NETBUF_FREE(skb);
3709 } else {
3710 u16 seq_no;
3711 u8 meta_type;
3712
3713 #if 0
3714 /* Access RSSI values here */
3715 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("RSSI %d\n",
3716 ((WMI_DATA_HDR *) A_NETBUF_DATA(skb))->rssi));
3717 #endif
3718 /* Get the Power save state of the STA */
3719 if (ar->arNetworkType == AP_NETWORK) {
3720 sta_t *conn = NULL;
3721 u8 psState=0,prevPsState;
3722 ATH_MAC_HDR *datap=NULL;
3723 u16 offset;
3724
3725 meta_type = WMI_DATA_HDR_GET_META(dhdr);
3726
3727 psState = (((WMI_DATA_HDR *)A_NETBUF_DATA(skb))->info
3728 >> WMI_DATA_HDR_PS_SHIFT) & WMI_DATA_HDR_PS_MASK;
3729
3730 offset = sizeof(WMI_DATA_HDR);
3731
3732 switch (meta_type) {
3733 case 0:
3734 break;
3735 case WMI_META_VERSION_1:
3736 offset += sizeof(WMI_RX_META_V1);
3737 break;
3738 case WMI_META_VERSION_2:
3739 offset += sizeof(WMI_RX_META_V2);
3740 break;
3741 default:
3742 break;
3743 }
3744
3745 datap = (ATH_MAC_HDR *)(A_NETBUF_DATA(skb)+offset);
3746 conn = ieee80211_find_conn(ar, datap->srcMac);
3747
3748 if (conn) {
3749 /* if there is a change in PS state of the STA,
3750 * take appropriate steps.
3751 * 1. If Sleep-->Awake, flush the psq for the STA
3752 * Clear the PVB for the STA.
3753 * 2. If Awake-->Sleep, Starting queueing frames
3754 * the STA.
3755 */
3756 prevPsState = STA_IS_PWR_SLEEP(conn);
3757 if (psState) {
3758 STA_SET_PWR_SLEEP(conn);
3759 } else {
3760 STA_CLR_PWR_SLEEP(conn);
3761 }
3762
3763 if (prevPsState ^ STA_IS_PWR_SLEEP(conn)) {
3764
3765 if (!STA_IS_PWR_SLEEP(conn)) {
3766
3767 A_MUTEX_LOCK(&conn->psqLock);
3768 while (!A_NETBUF_QUEUE_EMPTY(&conn->psq)) {
3769 struct sk_buff *skb=NULL;
3770
3771 skb = A_NETBUF_DEQUEUE(&conn->psq);
3772 A_MUTEX_UNLOCK(&conn->psqLock);
3773 ar6000_data_tx(skb,ar->arNetDev);
3774 A_MUTEX_LOCK(&conn->psqLock);
3775 }
3776 A_MUTEX_UNLOCK(&conn->psqLock);
3777 /* Clear the PVB for this STA */
3778 wmi_set_pvb_cmd(ar->arWmi, conn->aid, 0);
3779 }
3780 }
3781 } else {
3782 /* This frame is from a STA that is not associated*/
3783 A_ASSERT(false);
3784 }
3785
3786 /* Drop NULL data frames here */
3787 if((pPacket->ActualLength < minHdrLen) ||
3788 (pPacket->ActualLength > AR6000_MAX_RX_MESSAGE_SIZE)) {
3789 A_NETBUF_FREE(skb);
3790 goto rx_done;
3791 }
3792 }
3793
3794 is_amsdu = WMI_DATA_HDR_IS_AMSDU(dhdr) ? true : false;
3795 tid = WMI_DATA_HDR_GET_UP(dhdr);
3796 seq_no = WMI_DATA_HDR_GET_SEQNO(dhdr);
3797 meta_type = WMI_DATA_HDR_GET_META(dhdr);
3798 containsDot11Hdr = WMI_DATA_HDR_GET_DOT11(dhdr);
3799
3800 wmi_data_hdr_remove(ar->arWmi, skb);
3801
3802 switch (meta_type) {
3803 case WMI_META_VERSION_1:
3804 {
3805 WMI_RX_META_V1 *pMeta = (WMI_RX_META_V1 *)A_NETBUF_DATA(skb);
3806 A_PRINTF("META %d %d %d %d %x\n", pMeta->status, pMeta->rix, pMeta->rssi, pMeta->channel, pMeta->flags);
3807 A_NETBUF_PULL((void*)skb, sizeof(WMI_RX_META_V1));
3808 break;
3809 }
3810 case WMI_META_VERSION_2:
3811 {
3812 WMI_RX_META_V2 *pMeta = (WMI_RX_META_V2 *)A_NETBUF_DATA(skb);
3813 if(pMeta->csumFlags & 0x1){
3814 skb->ip_summed=CHECKSUM_COMPLETE;
3815 skb->csum=(pMeta->csum);
3816 }
3817 A_NETBUF_PULL((void*)skb, sizeof(WMI_RX_META_V2));
3818 break;
3819 }
3820 default:
3821 break;
3822 }
3823
3824 A_ASSERT(status == 0);
3825
3826 /* NWF: print the 802.11 hdr bytes */
3827 if(containsDot11Hdr) {
3828 status = wmi_dot11_hdr_remove(ar->arWmi,skb);
3829 } else if(!is_amsdu) {
3830 status = wmi_dot3_2_dix(skb);
3831 }
3832
3833 if (status) {
3834 /* Drop frames that could not be processed (lack of memory, etc.) */
3835 A_NETBUF_FREE(skb);
3836 goto rx_done;
3837 }
3838
3839 if ((ar->arNetDev->flags & IFF_UP) == IFF_UP) {
3840 if (ar->arNetworkType == AP_NETWORK) {
3841 struct sk_buff *skb1 = NULL;
3842 ATH_MAC_HDR *datap;
3843
3844 datap = (ATH_MAC_HDR *)A_NETBUF_DATA(skb);
3845 if (IEEE80211_IS_MULTICAST(datap->dstMac)) {
3846 /* Bcast/Mcast frames should be sent to the OS
3847 * stack as well as on the air.
3848 */
3849 skb1 = skb_copy(skb,GFP_ATOMIC);
3850 } else {
3851 /* Search for a connected STA with dstMac as
3852 * the Mac address. If found send the frame to
3853 * it on the air else send the frame up the
3854 * stack
3855 */
3856 sta_t *conn = NULL;
3857 conn = ieee80211_find_conn(ar, datap->dstMac);
3858
3859 if (conn && ar->intra_bss) {
3860 skb1 = skb;
3861 skb = NULL;
3862 } else if(conn && !ar->intra_bss) {
3863 A_NETBUF_FREE(skb);
3864 skb = NULL;
3865 }
3866 }
3867 if (skb1) {
3868 ar6000_data_tx(skb1, ar->arNetDev);
3869 }
3870 }
3871 }
3872 aggr_process_recv_frm(ar->aggr_cntxt, tid, seq_no, is_amsdu, (void **)&skb);
3873 ar6000_deliver_frames_to_nw_stack((void *) ar->arNetDev, (void *)skb);
3874 }
3875 }
3876 } else {
3877 if (EPPING_ALIGNMENT_PAD > 0) {
3878 A_NETBUF_PULL(skb, EPPING_ALIGNMENT_PAD);
3879 }
3880 ar6000_deliver_frames_to_nw_stack((void *)ar->arNetDev, (void *)skb);
3881 }
3882
3883 rx_done:
3884
3885 return;
3886 }
3887
3888 static void
3889 ar6000_deliver_frames_to_nw_stack(void *dev, void *osbuf)
3890 {
3891 struct sk_buff *skb = (struct sk_buff *)osbuf;
3892
3893 if(skb) {
3894 skb->dev = dev;
3895 if ((skb->dev->flags & IFF_UP) == IFF_UP) {
3896 #ifdef CONFIG_PM
3897 ar6000_check_wow_status((struct ar6_softc *)ar6k_priv(dev), skb, false);
3898 #endif /* CONFIG_PM */
3899 skb->protocol = eth_type_trans(skb, skb->dev);
3900 /*
3901 * If this routine is called on a ISR (Hard IRQ) or DSR (Soft IRQ)
3902 * or tasklet use the netif_rx to deliver the packet to the stack
3903 * netif_rx will queue the packet onto the receive queue and mark
3904 * the softirq thread has a pending action to complete. Kernel will
3905 * schedule the softIrq kernel thread after processing the DSR.
3906 *
3907 * If this routine is called on a process context, use netif_rx_ni
3908 * which will schedle the softIrq kernel thread after queuing the packet.
3909 */
3910 if (in_interrupt()) {
3911 netif_rx(skb);
3912 } else {
3913 netif_rx_ni(skb);
3914 }
3915 } else {
3916 A_NETBUF_FREE(skb);
3917 }
3918 }
3919 }
3920
3921 #if 0
3922 static void
3923 ar6000_deliver_frames_to_bt_stack(void *dev, void *osbuf)
3924 {
3925 struct sk_buff *skb = (struct sk_buff *)osbuf;
3926
3927 if(skb) {
3928 skb->dev = dev;
3929 if ((skb->dev->flags & IFF_UP) == IFF_UP) {
3930 skb->protocol = htons(ETH_P_CONTROL);
3931 netif_rx(skb);
3932 } else {
3933 A_NETBUF_FREE(skb);
3934 }
3935 }
3936 }
3937 #endif
3938
3939 static void
3940 ar6000_rx_refill(void *Context, HTC_ENDPOINT_ID Endpoint)
3941 {
3942 struct ar6_softc *ar = (struct ar6_softc *)Context;
3943 void *osBuf;
3944 int RxBuffers;
3945 int buffersToRefill;
3946 struct htc_packet *pPacket;
3947 struct htc_packet_queue queue;
3948
3949 buffersToRefill = (int)AR6000_MAX_RX_BUFFERS -
3950 HTCGetNumRecvBuffers(ar->arHtcTarget, Endpoint);
3951
3952 if (buffersToRefill <= 0) {
3953 /* fast return, nothing to fill */
3954 return;
3955 }
3956
3957 INIT_HTC_PACKET_QUEUE(&queue);
3958
3959 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_RX,("ar6000_rx_refill: providing htc with %d buffers at eid=%d\n",
3960 buffersToRefill, Endpoint));
3961
3962 for (RxBuffers = 0; RxBuffers < buffersToRefill; RxBuffers++) {
3963 osBuf = A_NETBUF_ALLOC(AR6000_BUFFER_SIZE);
3964 if (NULL == osBuf) {
3965 break;
3966 }
3967 /* the HTC packet wrapper is at the head of the reserved area
3968 * in the skb */
3969 pPacket = (struct htc_packet *)(A_NETBUF_HEAD(osBuf));
3970 /* set re-fill info */
3971 SET_HTC_PACKET_INFO_RX_REFILL(pPacket,osBuf,A_NETBUF_DATA(osBuf),AR6000_BUFFER_SIZE,Endpoint);
3972 /* add to queue */
3973 HTC_PACKET_ENQUEUE(&queue,pPacket);
3974 }
3975
3976 if (!HTC_QUEUE_EMPTY(&queue)) {
3977 /* add packets */
3978 HTCAddReceivePktMultiple(ar->arHtcTarget, &queue);
3979 }
3980
3981 }
3982
3983 /* clean up our amsdu buffer list */
3984 static void ar6000_cleanup_amsdu_rxbufs(struct ar6_softc *ar)
3985 {
3986 struct htc_packet *pPacket;
3987 void *osBuf;
3988
3989 /* empty AMSDU buffer queue and free OS bufs */
3990 while (true) {
3991
3992 AR6000_SPIN_LOCK(&ar->arLock, 0);
3993 pPacket = HTC_PACKET_DEQUEUE(&ar->amsdu_rx_buffer_queue);
3994 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
3995
3996 if (NULL == pPacket) {
3997 break;
3998 }
3999
4000 osBuf = pPacket->pPktContext;
4001 if (NULL == osBuf) {
4002 A_ASSERT(false);
4003 break;
4004 }
4005
4006 A_NETBUF_FREE(osBuf);
4007 }
4008
4009 }
4010
4011
4012 /* refill the amsdu buffer list */
4013 static void ar6000_refill_amsdu_rxbufs(struct ar6_softc *ar, int Count)
4014 {
4015 struct htc_packet *pPacket;
4016 void *osBuf;
4017
4018 while (Count > 0) {
4019 osBuf = A_NETBUF_ALLOC(AR6000_AMSDU_BUFFER_SIZE);
4020 if (NULL == osBuf) {
4021 break;
4022 }
4023 /* the HTC packet wrapper is at the head of the reserved area
4024 * in the skb */
4025 pPacket = (struct htc_packet *)(A_NETBUF_HEAD(osBuf));
4026 /* set re-fill info */
4027 SET_HTC_PACKET_INFO_RX_REFILL(pPacket,osBuf,A_NETBUF_DATA(osBuf),AR6000_AMSDU_BUFFER_SIZE,0);
4028
4029 AR6000_SPIN_LOCK(&ar->arLock, 0);
4030 /* put it in the list */
4031 HTC_PACKET_ENQUEUE(&ar->amsdu_rx_buffer_queue,pPacket);
4032 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
4033 Count--;
4034 }
4035
4036 }
4037
4038 /* callback to allocate a large receive buffer for a pending packet. This function is called when
4039 * an HTC packet arrives whose length exceeds a threshold value
4040 *
4041 * We use a pre-allocated list of buffers of maximum AMSDU size (4K). Under linux it is more optimal to
4042 * keep the allocation size the same to optimize cached-slab allocations.
4043 *
4044 * */
4045 static struct htc_packet *ar6000_alloc_amsdu_rxbuf(void *Context, HTC_ENDPOINT_ID Endpoint, int Length)
4046 {
4047 struct htc_packet *pPacket = NULL;
4048 struct ar6_softc *ar = (struct ar6_softc *)Context;
4049 int refillCount = 0;
4050
4051 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_RX,("ar6000_alloc_amsdu_rxbuf: eid=%d, Length:%d\n",Endpoint,Length));
4052
4053 do {
4054
4055 if (Length <= AR6000_BUFFER_SIZE) {
4056 /* shouldn't be getting called on normal sized packets */
4057 A_ASSERT(false);
4058 break;
4059 }
4060
4061 if (Length > AR6000_AMSDU_BUFFER_SIZE) {
4062 A_ASSERT(false);
4063 break;
4064 }
4065
4066 AR6000_SPIN_LOCK(&ar->arLock, 0);
4067 /* allocate a packet from the list */
4068 pPacket = HTC_PACKET_DEQUEUE(&ar->amsdu_rx_buffer_queue);
4069 /* see if we need to refill again */
4070 refillCount = AR6000_MAX_AMSDU_RX_BUFFERS - HTC_PACKET_QUEUE_DEPTH(&ar->amsdu_rx_buffer_queue);
4071 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
4072
4073 if (NULL == pPacket) {
4074 break;
4075 }
4076 /* set actual endpoint ID */
4077 pPacket->Endpoint = Endpoint;
4078
4079 } while (false);
4080
4081 if (refillCount >= AR6000_AMSDU_REFILL_THRESHOLD) {
4082 ar6000_refill_amsdu_rxbufs(ar,refillCount);
4083 }
4084
4085 return pPacket;
4086 }
4087
4088 static void
4089 ar6000_set_multicast_list(struct net_device *dev)
4090 {
4091 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000: Multicast filter not supported\n"));
4092 }
4093
4094 static struct net_device_stats *
4095 ar6000_get_stats(struct net_device *dev)
4096 {
4097 struct ar6_softc *ar = (struct ar6_softc *)ar6k_priv(dev);
4098 return &ar->arNetStats;
4099 }
4100
4101 void
4102 ar6000_ready_event(void *devt, u8 *datap, u8 phyCap, u32 sw_ver, u32 abi_ver)
4103 {
4104 struct ar6_softc *ar = (struct ar6_softc *)devt;
4105 struct net_device *dev = ar->arNetDev;
4106
4107 memcpy(dev->dev_addr, datap, AR6000_ETH_ADDR_LEN);
4108 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("mac address = %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
4109 dev->dev_addr[0], dev->dev_addr[1],
4110 dev->dev_addr[2], dev->dev_addr[3],
4111 dev->dev_addr[4], dev->dev_addr[5]));
4112
4113 ar->arPhyCapability = phyCap;
4114 ar->arVersion.wlan_ver = sw_ver;
4115 ar->arVersion.abi_ver = abi_ver;
4116
4117 /* Indicate to the waiting thread that the ready event was received */
4118 ar->arWmiReady = true;
4119 wake_up(&arEvent);
4120 }
4121
4122 void ar6000_install_static_wep_keys(struct ar6_softc *ar)
4123 {
4124 u8 index;
4125 u8 keyUsage;
4126
4127 for (index = WMI_MIN_KEY_INDEX; index <= WMI_MAX_KEY_INDEX; index++) {
4128 if (ar->arWepKeyList[index].arKeyLen) {
4129 keyUsage = GROUP_USAGE;
4130 if (index == ar->arDefTxKeyIndex) {
4131 keyUsage |= TX_USAGE;
4132 }
4133 wmi_addKey_cmd(ar->arWmi,
4134 index,
4135 WEP_CRYPT,
4136 keyUsage,
4137 ar->arWepKeyList[index].arKeyLen,
4138 NULL,
4139 ar->arWepKeyList[index].arKey, KEY_OP_INIT_VAL, NULL,
4140 NO_SYNC_WMIFLAG);
4141 }
4142 }
4143 }
4144
4145 void
4146 add_new_sta(struct ar6_softc *ar, u8 *mac, u16 aid, u8 *wpaie,
4147 u8 ielen, u8 keymgmt, u8 ucipher, u8 auth)
4148 {
4149 u8 free_slot=aid-1;
4150
4151 memcpy(ar->sta_list[free_slot].mac, mac, ATH_MAC_LEN);
4152 memcpy(ar->sta_list[free_slot].wpa_ie, wpaie, ielen);
4153 ar->sta_list[free_slot].aid = aid;
4154 ar->sta_list[free_slot].keymgmt = keymgmt;
4155 ar->sta_list[free_slot].ucipher = ucipher;
4156 ar->sta_list[free_slot].auth = auth;
4157 ar->sta_list_index = ar->sta_list_index | (1 << free_slot);
4158 ar->arAPStats.sta[free_slot].aid = aid;
4159 }
4160
4161 void
4162 ar6000_connect_event(struct ar6_softc *ar, u16 channel, u8 *bssid,
4163 u16 listenInterval, u16 beaconInterval,
4164 NETWORK_TYPE networkType, u8 beaconIeLen,
4165 u8 assocReqLen, u8 assocRespLen,
4166 u8 *assocInfo)
4167 {
4168 union iwreq_data wrqu;
4169 int i, beacon_ie_pos, assoc_resp_ie_pos, assoc_req_ie_pos;
4170 static const char *tag1 = "ASSOCINFO(ReqIEs=";
4171 static const char *tag2 = "ASSOCRESPIE=";
4172 static const char *beaconIetag = "BEACONIE=";
4173 char buf[WMI_CONTROL_MSG_MAX_LEN * 2 + strlen(tag1) + 1];
4174 char *pos;
4175 u8 key_op_ctrl;
4176 unsigned long flags;
4177 struct ieee80211req_key *ik;
4178 CRYPTO_TYPE keyType = NONE_CRYPT;
4179
4180 if(ar->arNetworkType & AP_NETWORK) {
4181 struct net_device *dev = ar->arNetDev;
4182 if(memcmp(dev->dev_addr, bssid, ATH_MAC_LEN)==0) {
4183 ar->arACS = channel;
4184 ik = &ar->ap_mode_bkey;
4185
4186 switch(ar->arAuthMode) {
4187 case NONE_AUTH:
4188 if(ar->arPairwiseCrypto == WEP_CRYPT) {
4189 ar6000_install_static_wep_keys(ar);
4190 }
4191 #ifdef WAPI_ENABLE
4192 else if(ar->arPairwiseCrypto == WAPI_CRYPT) {
4193 ap_set_wapi_key(ar, ik);
4194 }
4195 #endif
4196 break;
4197 case WPA_PSK_AUTH:
4198 case WPA2_PSK_AUTH:
4199 case (WPA_PSK_AUTH|WPA2_PSK_AUTH):
4200 switch (ik->ik_type) {
4201 case IEEE80211_CIPHER_TKIP:
4202 keyType = TKIP_CRYPT;
4203 break;
4204 case IEEE80211_CIPHER_AES_CCM:
4205 keyType = AES_CRYPT;
4206 break;
4207 default:
4208 goto skip_key;
4209 }
4210 wmi_addKey_cmd(ar->arWmi, ik->ik_keyix, keyType, GROUP_USAGE,
4211 ik->ik_keylen, (u8 *)&ik->ik_keyrsc,
4212 ik->ik_keydata, KEY_OP_INIT_VAL, ik->ik_macaddr,
4213 SYNC_BOTH_WMIFLAG);
4214
4215 break;
4216 }
4217 skip_key:
4218 ar->arConnected = true;
4219 return;
4220 }
4221
4222 A_PRINTF("NEW STA %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x \n "
4223 " AID=%d \n", bssid[0], bssid[1], bssid[2],
4224 bssid[3], bssid[4], bssid[5], channel);
4225 switch ((listenInterval>>8)&0xFF) {
4226 case OPEN_AUTH:
4227 A_PRINTF("AUTH: OPEN\n");
4228 break;
4229 case SHARED_AUTH:
4230 A_PRINTF("AUTH: SHARED\n");
4231 break;
4232 default:
4233 A_PRINTF("AUTH: Unknown\n");
4234 break;
4235 }
4236 switch (listenInterval&0xFF) {
4237 case WPA_PSK_AUTH:
4238 A_PRINTF("KeyMgmt: WPA-PSK\n");
4239 break;
4240 case WPA2_PSK_AUTH:
4241 A_PRINTF("KeyMgmt: WPA2-PSK\n");
4242 break;
4243 default:
4244 A_PRINTF("KeyMgmt: NONE\n");
4245 break;
4246 }
4247 switch (beaconInterval) {
4248 case AES_CRYPT:
4249 A_PRINTF("Cipher: AES\n");
4250 break;
4251 case TKIP_CRYPT:
4252 A_PRINTF("Cipher: TKIP\n");
4253 break;
4254 case WEP_CRYPT:
4255 A_PRINTF("Cipher: WEP\n");
4256 break;
4257 #ifdef WAPI_ENABLE
4258 case WAPI_CRYPT:
4259 A_PRINTF("Cipher: WAPI\n");
4260 break;
4261 #endif
4262 default:
4263 A_PRINTF("Cipher: NONE\n");
4264 break;
4265 }
4266
4267 add_new_sta(ar, bssid, channel /*aid*/,
4268 assocInfo /* WPA IE */, assocRespLen /* IE len */,
4269 listenInterval&0xFF /* Keymgmt */, beaconInterval /* cipher */,
4270 (listenInterval>>8)&0xFF /* auth alg */);
4271
4272 /* Send event to application */
4273 A_MEMZERO(&wrqu, sizeof(wrqu));
4274 memcpy(wrqu.addr.sa_data, bssid, ATH_MAC_LEN);
4275 wireless_send_event(ar->arNetDev, IWEVREGISTERED, &wrqu, NULL);
4276 /* In case the queue is stopped when we switch modes, this will
4277 * wake it up
4278 */
4279 netif_wake_queue(ar->arNetDev);
4280 return;
4281 }
4282
4283 ar6k_cfg80211_connect_event(ar, channel, bssid,
4284 listenInterval, beaconInterval,
4285 networkType, beaconIeLen,
4286 assocReqLen, assocRespLen,
4287 assocInfo);
4288
4289 memcpy(ar->arBssid, bssid, sizeof(ar->arBssid));
4290 ar->arBssChannel = channel;
4291
4292 A_PRINTF("AR6000 connected event on freq %d ", channel);
4293 A_PRINTF("with bssid %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x "
4294 " listenInterval=%d, beaconInterval = %d, beaconIeLen = %d assocReqLen=%d"
4295 " assocRespLen =%d\n",
4296 bssid[0], bssid[1], bssid[2],
4297 bssid[3], bssid[4], bssid[5],
4298 listenInterval, beaconInterval,
4299 beaconIeLen, assocReqLen, assocRespLen);
4300 if (networkType & ADHOC_NETWORK) {
4301 if (networkType & ADHOC_CREATOR) {
4302 A_PRINTF("Network: Adhoc (Creator)\n");
4303 } else {
4304 A_PRINTF("Network: Adhoc (Joiner)\n");
4305 }
4306 } else {
4307 A_PRINTF("Network: Infrastructure\n");
4308 }
4309
4310 if ((ar->arNetworkType == INFRA_NETWORK)) {
4311 wmi_listeninterval_cmd(ar->arWmi, ar->arListenIntervalT, ar->arListenIntervalB);
4312 }
4313
4314 if (beaconIeLen && (sizeof(buf) > (9 + beaconIeLen * 2))) {
4315 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\nBeaconIEs= "));
4316
4317 beacon_ie_pos = 0;
4318 A_MEMZERO(buf, sizeof(buf));
4319 sprintf(buf, "%s", beaconIetag);
4320 pos = buf + 9;
4321 for (i = beacon_ie_pos; i < beacon_ie_pos + beaconIeLen; i++) {
4322 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("%2.2x ", assocInfo[i]));
4323 sprintf(pos, "%2.2x", assocInfo[i]);
4324 pos += 2;
4325 }
4326 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\n"));
4327
4328 A_MEMZERO(&wrqu, sizeof(wrqu));
4329 wrqu.data.length = strlen(buf);
4330 wireless_send_event(ar->arNetDev, IWEVCUSTOM, &wrqu, buf);
4331 }
4332
4333 if (assocRespLen && (sizeof(buf) > (12 + (assocRespLen * 2))))
4334 {
4335 assoc_resp_ie_pos = beaconIeLen + assocReqLen +
4336 sizeof(u16) + /* capinfo*/
4337 sizeof(u16) + /* status Code */
4338 sizeof(u16) ; /* associd */
4339 A_MEMZERO(buf, sizeof(buf));
4340 sprintf(buf, "%s", tag2);
4341 pos = buf + 12;
4342 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\nAssocRespIEs= "));
4343 /*
4344 * The Association Response Frame w.o. the WLAN header is delivered to
4345 * the host, so skip over to the IEs
4346 */
4347 for (i = assoc_resp_ie_pos; i < assoc_resp_ie_pos + assocRespLen - 6; i++)
4348 {
4349 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("%2.2x ", assocInfo[i]));
4350 sprintf(pos, "%2.2x", assocInfo[i]);
4351 pos += 2;
4352 }
4353 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\n"));
4354
4355 A_MEMZERO(&wrqu, sizeof(wrqu));
4356 wrqu.data.length = strlen(buf);
4357 wireless_send_event(ar->arNetDev, IWEVCUSTOM, &wrqu, buf);
4358 }
4359
4360 if (assocReqLen && (sizeof(buf) > (17 + (assocReqLen * 2)))) {
4361 /*
4362 * assoc Request includes capability and listen interval. Skip these.
4363 */
4364 assoc_req_ie_pos = beaconIeLen +
4365 sizeof(u16) + /* capinfo*/
4366 sizeof(u16); /* listen interval */
4367
4368 A_MEMZERO(buf, sizeof(buf));
4369 sprintf(buf, "%s", tag1);
4370 pos = buf + 17;
4371 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("AssocReqIEs= "));
4372 for (i = assoc_req_ie_pos; i < assoc_req_ie_pos + assocReqLen - 4; i++) {
4373 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("%2.2x ", assocInfo[i]));
4374 sprintf(pos, "%2.2x", assocInfo[i]);
4375 pos += 2;
4376 }
4377 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\n"));
4378
4379 A_MEMZERO(&wrqu, sizeof(wrqu));
4380 wrqu.data.length = strlen(buf);
4381 wireless_send_event(ar->arNetDev, IWEVCUSTOM, &wrqu, buf);
4382 }
4383
4384 if (ar->user_savedkeys_stat == USER_SAVEDKEYS_STAT_RUN &&
4385 ar->user_saved_keys.keyOk == true)
4386 {
4387 key_op_ctrl = KEY_OP_VALID_MASK & ~KEY_OP_INIT_TSC;
4388
4389 if (ar->user_key_ctrl & AR6000_USER_SETKEYS_RSC_UNCHANGED) {
4390 key_op_ctrl &= ~KEY_OP_INIT_RSC;
4391 } else {
4392 key_op_ctrl |= KEY_OP_INIT_RSC;
4393 }
4394 ar6000_reinstall_keys(ar, key_op_ctrl);
4395 }
4396
4397 netif_wake_queue(ar->arNetDev);
4398
4399 /* Update connect & link status atomically */
4400 spin_lock_irqsave(&ar->arLock, flags);
4401 ar->arConnected = true;
4402 ar->arConnectPending = false;
4403 netif_carrier_on(ar->arNetDev);
4404 spin_unlock_irqrestore(&ar->arLock, flags);
4405 /* reset the rx aggr state */
4406 aggr_reset_state(ar->aggr_cntxt);
4407 reconnect_flag = 0;
4408
4409 A_MEMZERO(&wrqu, sizeof(wrqu));
4410 memcpy(wrqu.addr.sa_data, bssid, IEEE80211_ADDR_LEN);
4411 wrqu.addr.sa_family = ARPHRD_ETHER;
4412 wireless_send_event(ar->arNetDev, SIOCGIWAP, &wrqu, NULL);
4413 if ((ar->arNetworkType == ADHOC_NETWORK) && ar->arIbssPsEnable) {
4414 A_MEMZERO(ar->arNodeMap, sizeof(ar->arNodeMap));
4415 ar->arNodeNum = 0;
4416 ar->arNexEpId = ENDPOINT_2;
4417 }
4418 if (!ar->arUserBssFilter) {
4419 wmi_bssfilter_cmd(ar->arWmi, NONE_BSS_FILTER, 0);
4420 }
4421
4422 }
4423
4424 void ar6000_set_numdataendpts(struct ar6_softc *ar, u32 num)
4425 {
4426 A_ASSERT(num <= (HTC_MAILBOX_NUM_MAX - 1));
4427 ar->arNumDataEndPts = num;
4428 }
4429
4430 void
4431 sta_cleanup(struct ar6_softc *ar, u8 i)
4432 {
4433 struct sk_buff *skb;
4434
4435 /* empty the queued pkts in the PS queue if any */
4436 A_MUTEX_LOCK(&ar->sta_list[i].psqLock);
4437 while (!A_NETBUF_QUEUE_EMPTY(&ar->sta_list[i].psq)) {
4438 skb = A_NETBUF_DEQUEUE(&ar->sta_list[i].psq);
4439 A_NETBUF_FREE(skb);
4440 }
4441 A_MUTEX_UNLOCK(&ar->sta_list[i].psqLock);
4442
4443 /* Zero out the state fields */
4444 A_MEMZERO(&ar->arAPStats.sta[ar->sta_list[i].aid-1], sizeof(WMI_PER_STA_STAT));
4445 A_MEMZERO(&ar->sta_list[i].mac, ATH_MAC_LEN);
4446 A_MEMZERO(&ar->sta_list[i].wpa_ie, IEEE80211_MAX_IE);
4447 ar->sta_list[i].aid = 0;
4448 ar->sta_list[i].flags = 0;
4449
4450 ar->sta_list_index = ar->sta_list_index & ~(1 << i);
4451
4452 }
4453
4454 u8 remove_sta(struct ar6_softc *ar, u8 *mac, u16 reason)
4455 {
4456 u8 i, removed=0;
4457
4458 if(IS_MAC_NULL(mac)) {
4459 return removed;
4460 }
4461
4462 if(IS_MAC_BCAST(mac)) {
4463 A_PRINTF("DEL ALL STA\n");
4464 for(i=0; i < AP_MAX_NUM_STA; i++) {
4465 if(!IS_MAC_NULL(ar->sta_list[i].mac)) {
4466 sta_cleanup(ar, i);
4467 removed = 1;
4468 }
4469 }
4470 } else {
4471 for(i=0; i < AP_MAX_NUM_STA; i++) {
4472 if(memcmp(ar->sta_list[i].mac, mac, ATH_MAC_LEN)==0) {
4473 A_PRINTF("DEL STA %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x "
4474 " aid=%d REASON=%d\n", mac[0], mac[1], mac[2],
4475 mac[3], mac[4], mac[5], ar->sta_list[i].aid, reason);
4476
4477 sta_cleanup(ar, i);
4478 removed = 1;
4479 break;
4480 }
4481 }
4482 }
4483 return removed;
4484 }
4485
4486 void
4487 ar6000_disconnect_event(struct ar6_softc *ar, u8 reason, u8 *bssid,
4488 u8 assocRespLen, u8 *assocInfo, u16 protocolReasonStatus)
4489 {
4490 u8 i;
4491 unsigned long flags;
4492 union iwreq_data wrqu;
4493
4494 if(ar->arNetworkType & AP_NETWORK) {
4495 union iwreq_data wrqu;
4496 struct sk_buff *skb;
4497
4498 if(!remove_sta(ar, bssid, protocolReasonStatus)) {
4499 return;
4500 }
4501
4502 /* If there are no more associated STAs, empty the mcast PS q */
4503 if (ar->sta_list_index == 0) {
4504 A_MUTEX_LOCK(&ar->mcastpsqLock);
4505 while (!A_NETBUF_QUEUE_EMPTY(&ar->mcastpsq)) {
4506 skb = A_NETBUF_DEQUEUE(&ar->mcastpsq);
4507 A_NETBUF_FREE(skb);
4508 }
4509 A_MUTEX_UNLOCK(&ar->mcastpsqLock);
4510
4511 /* Clear the LSB of the BitMapCtl field of the TIM IE */
4512 if (ar->arWmiReady) {
4513 wmi_set_pvb_cmd(ar->arWmi, MCAST_AID, 0);
4514 }
4515 }
4516
4517 if(!IS_MAC_BCAST(bssid)) {
4518 /* Send event to application */
4519 A_MEMZERO(&wrqu, sizeof(wrqu));
4520 memcpy(wrqu.addr.sa_data, bssid, ATH_MAC_LEN);
4521 wireless_send_event(ar->arNetDev, IWEVEXPIRED, &wrqu, NULL);
4522 }
4523
4524 ar->arConnected = false;
4525 return;
4526 }
4527
4528 ar6k_cfg80211_disconnect_event(ar, reason, bssid,
4529 assocRespLen, assocInfo,
4530 protocolReasonStatus);
4531
4532 /* Send disconnect event to supplicant */
4533 A_MEMZERO(&wrqu, sizeof(wrqu));
4534 wrqu.addr.sa_family = ARPHRD_ETHER;
4535 wireless_send_event(ar->arNetDev, SIOCGIWAP, &wrqu, NULL);
4536
4537 /* it is necessary to clear the host-side rx aggregation state */
4538 aggr_reset_state(ar->aggr_cntxt);
4539
4540 A_UNTIMEOUT(&ar->disconnect_timer);
4541
4542 A_PRINTF("AR6000 disconnected");
4543 if (bssid[0] || bssid[1] || bssid[2] || bssid[3] || bssid[4] || bssid[5]) {
4544 A_PRINTF(" from %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x ",
4545 bssid[0], bssid[1], bssid[2], bssid[3], bssid[4], bssid[5]);
4546 }
4547
4548 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\nDisconnect Reason is %d", reason));
4549 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\nProtocol Reason/Status Code is %d", protocolReasonStatus));
4550 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\nAssocResp Frame = %s",
4551 assocRespLen ? " " : "NULL"));
4552 for (i = 0; i < assocRespLen; i++) {
4553 if (!(i % 0x10)) {
4554 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\n"));
4555 }
4556 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("%2.2x ", assocInfo[i]));
4557 }
4558 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\n"));
4559 /*
4560 * If the event is due to disconnect cmd from the host, only they the target
4561 * would stop trying to connect. Under any other condition, target would
4562 * keep trying to connect.
4563 *
4564 */
4565 if( reason == DISCONNECT_CMD)
4566 {
4567 if ((!ar->arUserBssFilter) && (ar->arWmiReady)) {
4568 wmi_bssfilter_cmd(ar->arWmi, NONE_BSS_FILTER, 0);
4569 }
4570 } else {
4571 ar->arConnectPending = true;
4572 if (((reason == ASSOC_FAILED) && (protocolReasonStatus == 0x11)) ||
4573 ((reason == ASSOC_FAILED) && (protocolReasonStatus == 0x0) && (reconnect_flag == 1))) {
4574 ar->arConnected = true;
4575 return;
4576 }
4577 }
4578
4579 if ((reason == NO_NETWORK_AVAIL) && (ar->arWmiReady))
4580 {
4581 bss_t *pWmiSsidnode = NULL;
4582
4583 /* remove the current associated bssid node */
4584 wmi_free_node (ar->arWmi, bssid);
4585
4586 /*
4587 * In case any other same SSID nodes are present
4588 * remove it, since those nodes also not available now
4589 */
4590 do
4591 {
4592 /*
4593 * Find the nodes based on SSID and remove it
4594 * NOTE :: This case will not work out for Hidden-SSID
4595 */
4596 pWmiSsidnode = wmi_find_Ssidnode (ar->arWmi, ar->arSsid, ar->arSsidLen, false, true);
4597
4598 if (pWmiSsidnode)
4599 {
4600 wmi_free_node (ar->arWmi, pWmiSsidnode->ni_macaddr);
4601 }
4602
4603 } while (pWmiSsidnode);
4604 }
4605
4606 /* Update connect & link status atomically */
4607 spin_lock_irqsave(&ar->arLock, flags);
4608 ar->arConnected = false;
4609 netif_carrier_off(ar->arNetDev);
4610 spin_unlock_irqrestore(&ar->arLock, flags);
4611
4612 if( (reason != CSERV_DISCONNECT) || (reconnect_flag != 1) ) {
4613 reconnect_flag = 0;
4614 }
4615
4616 if (reason != CSERV_DISCONNECT)
4617 {
4618 ar->user_savedkeys_stat = USER_SAVEDKEYS_STAT_INIT;
4619 ar->user_key_ctrl = 0;
4620 }
4621
4622 netif_stop_queue(ar->arNetDev);
4623 A_MEMZERO(ar->arBssid, sizeof(ar->arBssid));
4624 ar->arBssChannel = 0;
4625 ar->arBeaconInterval = 0;
4626
4627 ar6000_TxDataCleanup(ar);
4628 }
4629
4630 void
4631 ar6000_regDomain_event(struct ar6_softc *ar, u32 regCode)
4632 {
4633 A_PRINTF("AR6000 Reg Code = 0x%x\n", regCode);
4634 ar->arRegCode = regCode;
4635 }
4636
4637 void
4638 ar6000_aggr_rcv_addba_req_evt(struct ar6_softc *ar, WMI_ADDBA_REQ_EVENT *evt)
4639 {
4640 if(evt->status == 0) {
4641 aggr_recv_addba_req_evt(ar->aggr_cntxt, evt->tid, evt->st_seq_no, evt->win_sz);
4642 }
4643 }
4644
4645 void
4646 ar6000_aggr_rcv_addba_resp_evt(struct ar6_softc *ar, WMI_ADDBA_RESP_EVENT *evt)
4647 {
4648 A_PRINTF("ADDBA RESP. tid %d status %d, sz %d\n", evt->tid, evt->status, evt->amsdu_sz);
4649 if(evt->status == 0) {
4650 }
4651 }
4652
4653 void
4654 ar6000_aggr_rcv_delba_req_evt(struct ar6_softc *ar, WMI_DELBA_EVENT *evt)
4655 {
4656 aggr_recv_delba_req_evt(ar->aggr_cntxt, evt->tid);
4657 }
4658
4659 void register_pal_cb(ar6k_pal_config_t *palConfig_p)
4660 {
4661 ar6k_pal_config_g = *palConfig_p;
4662 }
4663
4664 void
4665 ar6000_hci_event_rcv_evt(struct ar6_softc *ar, WMI_HCI_EVENT *cmd)
4666 {
4667 void *osbuf = NULL;
4668 s8 i;
4669 u8 size, *buf;
4670 int ret = 0;
4671
4672 size = cmd->evt_buf_sz + 4;
4673 osbuf = A_NETBUF_ALLOC(size);
4674 if (osbuf == NULL) {
4675 ret = A_NO_MEMORY;
4676 A_PRINTF("Error in allocating netbuf \n");
4677 return;
4678 }
4679
4680 A_NETBUF_PUT(osbuf, size);
4681 buf = (u8 *)A_NETBUF_DATA(osbuf);
4682 /* First 2-bytes carry HCI event/ACL data type
4683 * the next 2 are free
4684 */
4685 *((short *)buf) = WMI_HCI_EVENT_EVENTID;
4686 buf += sizeof(int);
4687 memcpy(buf, cmd->buf, cmd->evt_buf_sz);
4688
4689 ar6000_deliver_frames_to_nw_stack(ar->arNetDev, osbuf);
4690 if(loghci) {
4691 A_PRINTF_LOG("HCI Event From PAL <-- \n");
4692 for(i = 0; i < cmd->evt_buf_sz; i++) {
4693 A_PRINTF_LOG("0x%02x ", cmd->buf[i]);
4694 if((i % 10) == 0) {
4695 A_PRINTF_LOG("\n");
4696 }
4697 }
4698 A_PRINTF_LOG("\n");
4699 A_PRINTF_LOG("==================================\n");
4700 }
4701 }
4702
4703 void
4704 ar6000_neighborReport_event(struct ar6_softc *ar, int numAps, WMI_NEIGHBOR_INFO *info)
4705 {
4706 #if WIRELESS_EXT >= 18
4707 struct iw_pmkid_cand *pmkcand;
4708 #else /* WIRELESS_EXT >= 18 */
4709 static const char *tag = "PRE-AUTH";
4710 char buf[128];
4711 #endif /* WIRELESS_EXT >= 18 */
4712
4713 union iwreq_data wrqu;
4714 int i;
4715
4716 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_SCAN,("AR6000 Neighbor Report Event\n"));
4717 for (i=0; i < numAps; info++, i++) {
4718 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_SCAN,("bssid %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x ",
4719 info->bssid[0], info->bssid[1], info->bssid[2],
4720 info->bssid[3], info->bssid[4], info->bssid[5]));
4721 if (info->bssFlags & WMI_PREAUTH_CAPABLE_BSS) {
4722 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_SCAN,("preauth-cap"));
4723 }
4724 if (info->bssFlags & WMI_PMKID_VALID_BSS) {
4725 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_SCAN,(" pmkid-valid\n"));
4726 continue; /* we skip bss if the pmkid is already valid */
4727 }
4728 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_SCAN,("\n"));
4729 A_MEMZERO(&wrqu, sizeof(wrqu));
4730 #if WIRELESS_EXT >= 18
4731 pmkcand = A_MALLOC_NOWAIT(sizeof(struct iw_pmkid_cand));
4732 A_MEMZERO(pmkcand, sizeof(struct iw_pmkid_cand));
4733 pmkcand->index = i;
4734 pmkcand->flags = info->bssFlags;
4735 memcpy(pmkcand->bssid.sa_data, info->bssid, ATH_MAC_LEN);
4736 wrqu.data.length = sizeof(struct iw_pmkid_cand);
4737 wireless_send_event(ar->arNetDev, IWEVPMKIDCAND, &wrqu, (char *)pmkcand);
4738 kfree(pmkcand);
4739 #else /* WIRELESS_EXT >= 18 */
4740 snprintf(buf, sizeof(buf), "%s%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x",
4741 tag,
4742 info->bssid[0], info->bssid[1], info->bssid[2],
4743 info->bssid[3], info->bssid[4], info->bssid[5],
4744 i, info->bssFlags);
4745 wrqu.data.length = strlen(buf);
4746 wireless_send_event(ar->arNetDev, IWEVCUSTOM, &wrqu, buf);
4747 #endif /* WIRELESS_EXT >= 18 */
4748 }
4749 }
4750
4751 void
4752 ar6000_tkip_micerr_event(struct ar6_softc *ar, u8 keyid, bool ismcast)
4753 {
4754 static const char *tag = "MLME-MICHAELMICFAILURE.indication";
4755 char buf[128];
4756 union iwreq_data wrqu;
4757
4758 /*
4759 * For AP case, keyid will have aid of STA which sent pkt with
4760 * MIC error. Use this aid to get MAC & send it to hostapd.
4761 */
4762 if (ar->arNetworkType == AP_NETWORK) {
4763 sta_t *s = ieee80211_find_conn_for_aid(ar, (keyid >> 2));
4764 if(!s){
4765 A_PRINTF("AP TKIP MIC error received from Invalid aid / STA not found =%d\n", keyid);
4766 return;
4767 }
4768 A_PRINTF("AP TKIP MIC error received from aid=%d\n", keyid);
4769 snprintf(buf,sizeof(buf), "%s addr=%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x",
4770 tag, s->mac[0],s->mac[1],s->mac[2],s->mac[3],s->mac[4],s->mac[5]);
4771 } else {
4772
4773 ar6k_cfg80211_tkip_micerr_event(ar, keyid, ismcast);
4774
4775 A_PRINTF("AR6000 TKIP MIC error received for keyid %d %scast\n",
4776 keyid & 0x3, ismcast ? "multi": "uni");
4777 snprintf(buf, sizeof(buf), "%s(keyid=%d %sicast)", tag, keyid & 0x3,
4778 ismcast ? "mult" : "un");
4779 }
4780
4781 memset(&wrqu, 0, sizeof(wrqu));
4782 wrqu.data.length = strlen(buf);
4783 wireless_send_event(ar->arNetDev, IWEVCUSTOM, &wrqu, buf);
4784 }
4785
4786 void
4787 ar6000_scanComplete_event(struct ar6_softc *ar, int status)
4788 {
4789
4790 ar6k_cfg80211_scanComplete_event(ar, status);
4791
4792 if (!ar->arUserBssFilter) {
4793 wmi_bssfilter_cmd(ar->arWmi, NONE_BSS_FILTER, 0);
4794 }
4795 if (ar->scan_triggered) {
4796 if (status== 0) {
4797 union iwreq_data wrqu;
4798 A_MEMZERO(&wrqu, sizeof(wrqu));
4799 wireless_send_event(ar->arNetDev, SIOCGIWSCAN, &wrqu, NULL);
4800 }
4801 ar->scan_triggered = 0;
4802 }
4803
4804 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_SCAN,( "AR6000 scan complete: %d\n", status));
4805 }
4806
4807 void
4808 ar6000_targetStats_event(struct ar6_softc *ar, u8 *ptr, u32 len)
4809 {
4810 u8 ac;
4811
4812 if(ar->arNetworkType == AP_NETWORK) {
4813 WMI_AP_MODE_STAT *p = (WMI_AP_MODE_STAT *)ptr;
4814 WMI_AP_MODE_STAT *ap = &ar->arAPStats;
4815
4816 if (len < sizeof(*p)) {
4817 return;
4818 }
4819
4820 for(ac=0;ac<AP_MAX_NUM_STA;ac++) {
4821 ap->sta[ac].tx_bytes += p->sta[ac].tx_bytes;
4822 ap->sta[ac].tx_pkts += p->sta[ac].tx_pkts;
4823 ap->sta[ac].tx_error += p->sta[ac].tx_error;
4824 ap->sta[ac].tx_discard += p->sta[ac].tx_discard;
4825 ap->sta[ac].rx_bytes += p->sta[ac].rx_bytes;
4826 ap->sta[ac].rx_pkts += p->sta[ac].rx_pkts;
4827 ap->sta[ac].rx_error += p->sta[ac].rx_error;
4828 ap->sta[ac].rx_discard += p->sta[ac].rx_discard;
4829 }
4830
4831 } else {
4832 WMI_TARGET_STATS *pTarget = (WMI_TARGET_STATS *)ptr;
4833 TARGET_STATS *pStats = &ar->arTargetStats;
4834
4835 if (len < sizeof(*pTarget)) {
4836 return;
4837 }
4838
4839 // Update the RSSI of the connected bss.
4840 if (ar->arConnected) {
4841 bss_t *pConnBss = NULL;
4842
4843 pConnBss = wmi_find_node(ar->arWmi,ar->arBssid);
4844 if (pConnBss)
4845 {
4846 pConnBss->ni_rssi = pTarget->cservStats.cs_aveBeacon_rssi;
4847 pConnBss->ni_snr = pTarget->cservStats.cs_aveBeacon_snr;
4848 wmi_node_return(ar->arWmi, pConnBss);
4849 }
4850 }
4851
4852 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("AR6000 updating target stats\n"));
4853 pStats->tx_packets += pTarget->txrxStats.tx_stats.tx_packets;
4854 pStats->tx_bytes += pTarget->txrxStats.tx_stats.tx_bytes;
4855 pStats->tx_unicast_pkts += pTarget->txrxStats.tx_stats.tx_unicast_pkts;
4856 pStats->tx_unicast_bytes += pTarget->txrxStats.tx_stats.tx_unicast_bytes;
4857 pStats->tx_multicast_pkts += pTarget->txrxStats.tx_stats.tx_multicast_pkts;
4858 pStats->tx_multicast_bytes += pTarget->txrxStats.tx_stats.tx_multicast_bytes;
4859 pStats->tx_broadcast_pkts += pTarget->txrxStats.tx_stats.tx_broadcast_pkts;
4860 pStats->tx_broadcast_bytes += pTarget->txrxStats.tx_stats.tx_broadcast_bytes;
4861 pStats->tx_rts_success_cnt += pTarget->txrxStats.tx_stats.tx_rts_success_cnt;
4862 for(ac = 0; ac < WMM_NUM_AC; ac++)
4863 pStats->tx_packet_per_ac[ac] += pTarget->txrxStats.tx_stats.tx_packet_per_ac[ac];
4864 pStats->tx_errors += pTarget->txrxStats.tx_stats.tx_errors;
4865 pStats->tx_failed_cnt += pTarget->txrxStats.tx_stats.tx_failed_cnt;
4866 pStats->tx_retry_cnt += pTarget->txrxStats.tx_stats.tx_retry_cnt;
4867 pStats->tx_mult_retry_cnt += pTarget->txrxStats.tx_stats.tx_mult_retry_cnt;
4868 pStats->tx_rts_fail_cnt += pTarget->txrxStats.tx_stats.tx_rts_fail_cnt;
4869 pStats->tx_unicast_rate = wmi_get_rate(pTarget->txrxStats.tx_stats.tx_unicast_rate);
4870
4871 pStats->rx_packets += pTarget->txrxStats.rx_stats.rx_packets;
4872 pStats->rx_bytes += pTarget->txrxStats.rx_stats.rx_bytes;
4873 pStats->rx_unicast_pkts += pTarget->txrxStats.rx_stats.rx_unicast_pkts;
4874 pStats->rx_unicast_bytes += pTarget->txrxStats.rx_stats.rx_unicast_bytes;
4875 pStats->rx_multicast_pkts += pTarget->txrxStats.rx_stats.rx_multicast_pkts;
4876 pStats->rx_multicast_bytes += pTarget->txrxStats.rx_stats.rx_multicast_bytes;
4877 pStats->rx_broadcast_pkts += pTarget->txrxStats.rx_stats.rx_broadcast_pkts;
4878 pStats->rx_broadcast_bytes += pTarget->txrxStats.rx_stats.rx_broadcast_bytes;
4879 pStats->rx_fragment_pkt += pTarget->txrxStats.rx_stats.rx_fragment_pkt;
4880 pStats->rx_errors += pTarget->txrxStats.rx_stats.rx_errors;
4881 pStats->rx_crcerr += pTarget->txrxStats.rx_stats.rx_crcerr;
4882 pStats->rx_key_cache_miss += pTarget->txrxStats.rx_stats.rx_key_cache_miss;
4883 pStats->rx_decrypt_err += pTarget->txrxStats.rx_stats.rx_decrypt_err;
4884 pStats->rx_duplicate_frames += pTarget->txrxStats.rx_stats.rx_duplicate_frames;
4885 pStats->rx_unicast_rate = wmi_get_rate(pTarget->txrxStats.rx_stats.rx_unicast_rate);
4886
4887
4888 pStats->tkip_local_mic_failure
4889 += pTarget->txrxStats.tkipCcmpStats.tkip_local_mic_failure;
4890 pStats->tkip_counter_measures_invoked
4891 += pTarget->txrxStats.tkipCcmpStats.tkip_counter_measures_invoked;
4892 pStats->tkip_replays += pTarget->txrxStats.tkipCcmpStats.tkip_replays;
4893 pStats->tkip_format_errors += pTarget->txrxStats.tkipCcmpStats.tkip_format_errors;
4894 pStats->ccmp_format_errors += pTarget->txrxStats.tkipCcmpStats.ccmp_format_errors;
4895 pStats->ccmp_replays += pTarget->txrxStats.tkipCcmpStats.ccmp_replays;
4896
4897 pStats->power_save_failure_cnt += pTarget->pmStats.power_save_failure_cnt;
4898 pStats->noise_floor_calibation = pTarget->noise_floor_calibation;
4899
4900 pStats->cs_bmiss_cnt += pTarget->cservStats.cs_bmiss_cnt;
4901 pStats->cs_lowRssi_cnt += pTarget->cservStats.cs_lowRssi_cnt;
4902 pStats->cs_connect_cnt += pTarget->cservStats.cs_connect_cnt;
4903 pStats->cs_disconnect_cnt += pTarget->cservStats.cs_disconnect_cnt;
4904 pStats->cs_aveBeacon_snr = pTarget->cservStats.cs_aveBeacon_snr;
4905 pStats->cs_aveBeacon_rssi = pTarget->cservStats.cs_aveBeacon_rssi;
4906
4907 if (enablerssicompensation) {
4908 pStats->cs_aveBeacon_rssi =
4909 rssi_compensation_calc(ar, pStats->cs_aveBeacon_rssi);
4910 }
4911 pStats->cs_lastRoam_msec = pTarget->cservStats.cs_lastRoam_msec;
4912 pStats->cs_snr = pTarget->cservStats.cs_snr;
4913 pStats->cs_rssi = pTarget->cservStats.cs_rssi;
4914
4915 pStats->lq_val = pTarget->lqVal;
4916
4917 pStats->wow_num_pkts_dropped += pTarget->wowStats.wow_num_pkts_dropped;
4918 pStats->wow_num_host_pkt_wakeups += pTarget->wowStats.wow_num_host_pkt_wakeups;
4919 pStats->wow_num_host_event_wakeups += pTarget->wowStats.wow_num_host_event_wakeups;
4920 pStats->wow_num_events_discarded += pTarget->wowStats.wow_num_events_discarded;
4921 pStats->arp_received += pTarget->arpStats.arp_received;
4922 pStats->arp_matched += pTarget->arpStats.arp_matched;
4923 pStats->arp_replied += pTarget->arpStats.arp_replied;
4924
4925 if (ar->statsUpdatePending) {
4926 ar->statsUpdatePending = false;
4927 wake_up(&arEvent);
4928 }
4929 }
4930 }
4931
4932 void
4933 ar6000_rssiThreshold_event(struct ar6_softc *ar, WMI_RSSI_THRESHOLD_VAL newThreshold, s16 rssi)
4934 {
4935 USER_RSSI_THOLD userRssiThold;
4936
4937 rssi = rssi + SIGNAL_QUALITY_NOISE_FLOOR;
4938
4939 if (enablerssicompensation) {
4940 rssi = rssi_compensation_calc(ar, rssi);
4941 }
4942
4943 /* Send an event to the app */
4944 userRssiThold.tag = ar->rssi_map[newThreshold].tag;
4945 userRssiThold.rssi = rssi;
4946 A_PRINTF("rssi Threshold range = %d tag = %d rssi = %d\n", newThreshold,
4947 userRssiThold.tag, userRssiThold.rssi);
4948 }
4949
4950
4951 void
4952 ar6000_hbChallengeResp_event(struct ar6_softc *ar, u32 cookie, u32 source)
4953 {
4954 if (source != APP_HB_CHALLENGE) {
4955 /* This would ignore the replys that come in after their due time */
4956 if (cookie == ar->arHBChallengeResp.seqNum) {
4957 ar->arHBChallengeResp.outstanding = false;
4958 }
4959 }
4960 }
4961
4962
4963 void
4964 ar6000_reportError_event(struct ar6_softc *ar, WMI_TARGET_ERROR_VAL errorVal)
4965 {
4966 static const char * const errString[] = {
4967 [WMI_TARGET_PM_ERR_FAIL] "WMI_TARGET_PM_ERR_FAIL",
4968 [WMI_TARGET_KEY_NOT_FOUND] "WMI_TARGET_KEY_NOT_FOUND",
4969 [WMI_TARGET_DECRYPTION_ERR] "WMI_TARGET_DECRYPTION_ERR",
4970 [WMI_TARGET_BMISS] "WMI_TARGET_BMISS",
4971 [WMI_PSDISABLE_NODE_JOIN] "WMI_PSDISABLE_NODE_JOIN"
4972 };
4973
4974 A_PRINTF("AR6000 Error on Target. Error = 0x%x\n", errorVal);
4975
4976 /* One error is reported at a time, and errorval is a bitmask */
4977 if(errorVal & (errorVal - 1))
4978 return;
4979
4980 A_PRINTF("AR6000 Error type = ");
4981 switch(errorVal)
4982 {
4983 case WMI_TARGET_PM_ERR_FAIL:
4984 case WMI_TARGET_KEY_NOT_FOUND:
4985 case WMI_TARGET_DECRYPTION_ERR:
4986 case WMI_TARGET_BMISS:
4987 case WMI_PSDISABLE_NODE_JOIN:
4988 A_PRINTF("%s\n", errString[errorVal]);
4989 break;
4990 default:
4991 A_PRINTF("INVALID\n");
4992 break;
4993 }
4994
4995 }
4996
4997
4998 void
4999 ar6000_cac_event(struct ar6_softc *ar, u8 ac, u8 cacIndication,
5000 u8 statusCode, u8 *tspecSuggestion)
5001 {
5002 WMM_TSPEC_IE *tspecIe;
5003
5004 /*
5005 * This is the TSPEC IE suggestion from AP.
5006 * Suggestion provided by AP under some error
5007 * cases, could be helpful for the host app.
5008 * Check documentation.
5009 */
5010 tspecIe = (WMM_TSPEC_IE *)tspecSuggestion;
5011
5012 /*
5013 * What do we do, if we get TSPEC rejection? One thought
5014 * that comes to mind is implictly delete the pstream...
5015 */
5016 A_PRINTF("AR6000 CAC notification. "
5017 "AC = %d, cacIndication = 0x%x, statusCode = 0x%x\n",
5018 ac, cacIndication, statusCode);
5019 }
5020
5021 void
5022 ar6000_channel_change_event(struct ar6_softc *ar, u16 oldChannel,
5023 u16 newChannel)
5024 {
5025 A_PRINTF("Channel Change notification\nOld Channel: %d, New Channel: %d\n",
5026 oldChannel, newChannel);
5027 }
5028
5029 #define AR6000_PRINT_BSSID(_pBss) do { \
5030 A_PRINTF("%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x ",\
5031 (_pBss)[0],(_pBss)[1],(_pBss)[2],(_pBss)[3],\
5032 (_pBss)[4],(_pBss)[5]); \
5033 } while(0)
5034
5035 void
5036 ar6000_roam_tbl_event(struct ar6_softc *ar, WMI_TARGET_ROAM_TBL *pTbl)
5037 {
5038 u8 i;
5039
5040 A_PRINTF("ROAM TABLE NO OF ENTRIES is %d ROAM MODE is %d\n",
5041 pTbl->numEntries, pTbl->roamMode);
5042 for (i= 0; i < pTbl->numEntries; i++) {
5043 A_PRINTF("[%d]bssid %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x ", i,
5044 pTbl->bssRoamInfo[i].bssid[0], pTbl->bssRoamInfo[i].bssid[1],
5045 pTbl->bssRoamInfo[i].bssid[2],
5046 pTbl->bssRoamInfo[i].bssid[3],
5047 pTbl->bssRoamInfo[i].bssid[4],
5048 pTbl->bssRoamInfo[i].bssid[5]);
5049 A_PRINTF("RSSI %d RSSIDT %d LAST RSSI %d UTIL %d ROAM_UTIL %d"
5050 " BIAS %d\n",
5051 pTbl->bssRoamInfo[i].rssi,
5052 pTbl->bssRoamInfo[i].rssidt,
5053 pTbl->bssRoamInfo[i].last_rssi,
5054 pTbl->bssRoamInfo[i].util,
5055 pTbl->bssRoamInfo[i].roam_util,
5056 pTbl->bssRoamInfo[i].bias);
5057 }
5058 }
5059
5060 void
5061 ar6000_wow_list_event(struct ar6_softc *ar, u8 num_filters, WMI_GET_WOW_LIST_REPLY *wow_reply)
5062 {
5063 u8 i,j;
5064
5065 /*Each event now contains exactly one filter, see bug 26613*/
5066 A_PRINTF("WOW pattern %d of %d patterns\n", wow_reply->this_filter_num, wow_reply->num_filters);
5067 A_PRINTF("wow mode = %s host mode = %s\n",
5068 (wow_reply->wow_mode == 0? "disabled":"enabled"),
5069 (wow_reply->host_mode == 1 ? "awake":"asleep"));
5070
5071
5072 /*If there are no patterns, the reply will only contain generic
5073 WoW information. Pattern information will exist only if there are
5074 patterns present. Bug 26716*/
5075
5076 /* If this event contains pattern information, display it*/
5077 if (wow_reply->this_filter_num) {
5078 i=0;
5079 A_PRINTF("id=%d size=%d offset=%d\n",
5080 wow_reply->wow_filters[i].wow_filter_id,
5081 wow_reply->wow_filters[i].wow_filter_size,
5082 wow_reply->wow_filters[i].wow_filter_offset);
5083 A_PRINTF("wow pattern = ");
5084 for (j=0; j< wow_reply->wow_filters[i].wow_filter_size; j++) {
5085 A_PRINTF("%2.2x",wow_reply->wow_filters[i].wow_filter_pattern[j]);
5086 }
5087
5088 A_PRINTF("\nwow mask = ");
5089 for (j=0; j< wow_reply->wow_filters[i].wow_filter_size; j++) {
5090 A_PRINTF("%2.2x",wow_reply->wow_filters[i].wow_filter_mask[j]);
5091 }
5092 A_PRINTF("\n");
5093 }
5094 }
5095
5096 /*
5097 * Report the Roaming related data collected on the target
5098 */
5099 void
5100 ar6000_display_roam_time(WMI_TARGET_ROAM_TIME *p)
5101 {
5102 A_PRINTF("Disconnect Data : BSSID: ");
5103 AR6000_PRINT_BSSID(p->disassoc_bssid);
5104 A_PRINTF(" RSSI %d DISASSOC Time %d NO_TXRX_TIME %d\n",
5105 p->disassoc_bss_rssi,p->disassoc_time,
5106 p->no_txrx_time);
5107 A_PRINTF("Connect Data: BSSID: ");
5108 AR6000_PRINT_BSSID(p->assoc_bssid);
5109 A_PRINTF(" RSSI %d ASSOC Time %d TXRX_TIME %d\n",
5110 p->assoc_bss_rssi,p->assoc_time,
5111 p->allow_txrx_time);
5112 }
5113
5114 void
5115 ar6000_roam_data_event(struct ar6_softc *ar, WMI_TARGET_ROAM_DATA *p)
5116 {
5117 switch (p->roamDataType) {
5118 case ROAM_DATA_TIME:
5119 ar6000_display_roam_time(&p->u.roamTime);
5120 break;
5121 default:
5122 break;
5123 }
5124 }
5125
5126 void
5127 ar6000_bssInfo_event_rx(struct ar6_softc *ar, u8 *datap, int len)
5128 {
5129 struct sk_buff *skb;
5130 WMI_BSS_INFO_HDR *bih = (WMI_BSS_INFO_HDR *)datap;
5131
5132
5133 if (!ar->arMgmtFilter) {
5134 return;
5135 }
5136 if (((ar->arMgmtFilter & IEEE80211_FILTER_TYPE_BEACON) &&
5137 (bih->frameType != BEACON_FTYPE)) ||
5138 ((ar->arMgmtFilter & IEEE80211_FILTER_TYPE_PROBE_RESP) &&
5139 (bih->frameType != PROBERESP_FTYPE)))
5140 {
5141 return;
5142 }
5143
5144 if ((skb = A_NETBUF_ALLOC_RAW(len)) != NULL) {
5145
5146 A_NETBUF_PUT(skb, len);
5147 memcpy(A_NETBUF_DATA(skb), datap, len);
5148 skb->dev = ar->arNetDev;
5149 memcpy(skb_mac_header(skb), A_NETBUF_DATA(skb), 6);
5150 skb->ip_summed = CHECKSUM_NONE;
5151 skb->pkt_type = PACKET_OTHERHOST;
5152 skb->protocol = __constant_htons(0x0019);
5153 netif_rx(skb);
5154 }
5155 }
5156
5157 u32 wmiSendCmdNum;
5158
5159 int
5160 ar6000_control_tx(void *devt, void *osbuf, HTC_ENDPOINT_ID eid)
5161 {
5162 struct ar6_softc *ar = (struct ar6_softc *)devt;
5163 int status = 0;
5164 struct ar_cookie *cookie = NULL;
5165 int i;
5166 #ifdef CONFIG_PM
5167 if (ar->arWowState != WLAN_WOW_STATE_NONE) {
5168 A_NETBUF_FREE(osbuf);
5169 return A_EACCES;
5170 }
5171 #endif /* CONFIG_PM */
5172 /* take lock to protect ar6000_alloc_cookie() */
5173 AR6000_SPIN_LOCK(&ar->arLock, 0);
5174
5175 do {
5176
5177 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_TX,("ar_contrstatus = ol_tx: skb=0x%lx, len=0x%x eid =%d\n",
5178 (unsigned long)osbuf, A_NETBUF_LEN(osbuf), eid));
5179
5180 if (ar->arWMIControlEpFull && (eid == ar->arControlEp)) {
5181 /* control endpoint is full, don't allocate resources, we
5182 * are just going to drop this packet */
5183 cookie = NULL;
5184 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,(" WMI Control EP full, dropping packet : 0x%lX, len:%d \n",
5185 (unsigned long)osbuf, A_NETBUF_LEN(osbuf)));
5186 } else {
5187 cookie = ar6000_alloc_cookie(ar);
5188 }
5189
5190 if (cookie == NULL) {
5191 status = A_NO_MEMORY;
5192 break;
5193 }
5194
5195 if(logWmiRawMsgs) {
5196 A_PRINTF("WMI cmd send, msgNo %d :", wmiSendCmdNum);
5197 for(i = 0; i < a_netbuf_to_len(osbuf); i++)
5198 A_PRINTF("%x ", ((u8 *)a_netbuf_to_data(osbuf))[i]);
5199 A_PRINTF("\n");
5200 }
5201
5202 wmiSendCmdNum++;
5203
5204 } while (false);
5205
5206 if (cookie != NULL) {
5207 /* got a structure to send it out on */
5208 ar->arTxPending[eid]++;
5209
5210 if (eid != ar->arControlEp) {
5211 ar->arTotalTxDataPending++;
5212 }
5213 }
5214
5215 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
5216
5217 if (cookie != NULL) {
5218 cookie->arc_bp[0] = (unsigned long)osbuf;
5219 cookie->arc_bp[1] = 0;
5220 SET_HTC_PACKET_INFO_TX(&cookie->HtcPkt,
5221 cookie,
5222 A_NETBUF_DATA(osbuf),
5223 A_NETBUF_LEN(osbuf),
5224 eid,
5225 AR6K_CONTROL_PKT_TAG);
5226 /* this interface is asynchronous, if there is an error, cleanup will happen in the
5227 * TX completion callback */
5228 HTCSendPkt(ar->arHtcTarget, &cookie->HtcPkt);
5229 status = 0;
5230 }
5231
5232 if (status) {
5233 A_NETBUF_FREE(osbuf);
5234 }
5235 return status;
5236 }
5237
5238 /* indicate tx activity or inactivity on a WMI stream */
5239 void ar6000_indicate_tx_activity(void *devt, u8 TrafficClass, bool Active)
5240 {
5241 struct ar6_softc *ar = (struct ar6_softc *)devt;
5242 HTC_ENDPOINT_ID eid ;
5243 int i;
5244
5245 if (ar->arWmiEnabled) {
5246 eid = arAc2EndpointID(ar, TrafficClass);
5247
5248 AR6000_SPIN_LOCK(&ar->arLock, 0);
5249
5250 ar->arAcStreamActive[TrafficClass] = Active;
5251
5252 if (Active) {
5253 /* when a stream goes active, keep track of the active stream with the highest priority */
5254
5255 if (ar->arAcStreamPriMap[TrafficClass] > ar->arHiAcStreamActivePri) {
5256 /* set the new highest active priority */
5257 ar->arHiAcStreamActivePri = ar->arAcStreamPriMap[TrafficClass];
5258 }
5259
5260 } else {
5261 /* when a stream goes inactive, we may have to search for the next active stream
5262 * that is the highest priority */
5263
5264 if (ar->arHiAcStreamActivePri == ar->arAcStreamPriMap[TrafficClass]) {
5265
5266 /* the highest priority stream just went inactive */
5267
5268 /* reset and search for the "next" highest "active" priority stream */
5269 ar->arHiAcStreamActivePri = 0;
5270 for (i = 0; i < WMM_NUM_AC; i++) {
5271 if (ar->arAcStreamActive[i]) {
5272 if (ar->arAcStreamPriMap[i] > ar->arHiAcStreamActivePri) {
5273 /* set the new highest active priority */
5274 ar->arHiAcStreamActivePri = ar->arAcStreamPriMap[i];
5275 }
5276 }
5277 }
5278 }
5279 }
5280
5281 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
5282
5283 } else {
5284 /* for mbox ping testing, the traffic class is mapped directly as a stream ID,
5285 * see handling of AR6000_XIOCTL_TRAFFIC_ACTIVITY_CHANGE in ioctl.c
5286 * convert the stream ID to a endpoint */
5287 eid = arAc2EndpointID(ar, TrafficClass);
5288 }
5289
5290 /* notify HTC, this may cause credit distribution changes */
5291
5292 HTCIndicateActivityChange(ar->arHtcTarget,
5293 eid,
5294 Active);
5295
5296 }
5297
5298 void
5299 ar6000_btcoex_config_event(struct ar6_softc *ar, u8 *ptr, u32 len)
5300 {
5301
5302 WMI_BTCOEX_CONFIG_EVENT *pBtcoexConfig = (WMI_BTCOEX_CONFIG_EVENT *)ptr;
5303 WMI_BTCOEX_CONFIG_EVENT *pArbtcoexConfig =&ar->arBtcoexConfig;
5304
5305 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("AR6000 BTCOEX CONFIG EVENT \n"));
5306
5307 A_PRINTF("received config event\n");
5308 pArbtcoexConfig->btProfileType = pBtcoexConfig->btProfileType;
5309 pArbtcoexConfig->linkId = pBtcoexConfig->linkId;
5310
5311 switch (pBtcoexConfig->btProfileType) {
5312 case WMI_BTCOEX_BT_PROFILE_SCO:
5313 memcpy(&pArbtcoexConfig->info.scoConfigCmd, &pBtcoexConfig->info.scoConfigCmd,
5314 sizeof(WMI_SET_BTCOEX_SCO_CONFIG_CMD));
5315 break;
5316 case WMI_BTCOEX_BT_PROFILE_A2DP:
5317 memcpy(&pArbtcoexConfig->info.a2dpConfigCmd, &pBtcoexConfig->info.a2dpConfigCmd,
5318 sizeof(WMI_SET_BTCOEX_A2DP_CONFIG_CMD));
5319 break;
5320 case WMI_BTCOEX_BT_PROFILE_ACLCOEX:
5321 memcpy(&pArbtcoexConfig->info.aclcoexConfig, &pBtcoexConfig->info.aclcoexConfig,
5322 sizeof(WMI_SET_BTCOEX_ACLCOEX_CONFIG_CMD));
5323 break;
5324 case WMI_BTCOEX_BT_PROFILE_INQUIRY_PAGE:
5325 memcpy(&pArbtcoexConfig->info.btinquiryPageConfigCmd, &pBtcoexConfig->info.btinquiryPageConfigCmd,
5326 sizeof(WMI_SET_BTCOEX_ACLCOEX_CONFIG_CMD));
5327 break;
5328 }
5329 if (ar->statsUpdatePending) {
5330 ar->statsUpdatePending = false;
5331 wake_up(&arEvent);
5332 }
5333 }
5334
5335 void
5336 ar6000_btcoex_stats_event(struct ar6_softc *ar, u8 *ptr, u32 len)
5337 {
5338 WMI_BTCOEX_STATS_EVENT *pBtcoexStats = (WMI_BTCOEX_STATS_EVENT *)ptr;
5339
5340 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("AR6000 BTCOEX CONFIG EVENT \n"));
5341
5342 memcpy(&ar->arBtcoexStats, pBtcoexStats, sizeof(WMI_BTCOEX_STATS_EVENT));
5343
5344 if (ar->statsUpdatePending) {
5345 ar->statsUpdatePending = false;
5346 wake_up(&arEvent);
5347 }
5348
5349 }
5350 module_init(ar6000_init_module);
5351 module_exit(ar6000_cleanup_module);
5352
5353 /* Init cookie queue */
5354 static void
5355 ar6000_cookie_init(struct ar6_softc *ar)
5356 {
5357 u32 i;
5358
5359 ar->arCookieList = NULL;
5360 ar->arCookieCount = 0;
5361
5362 A_MEMZERO(s_ar_cookie_mem, sizeof(s_ar_cookie_mem));
5363
5364 for (i = 0; i < MAX_COOKIE_NUM; i++) {
5365 ar6000_free_cookie(ar, &s_ar_cookie_mem[i]);
5366 }
5367 }
5368
5369 /* cleanup cookie queue */
5370 static void
5371 ar6000_cookie_cleanup(struct ar6_softc *ar)
5372 {
5373 /* It is gone .... */
5374 ar->arCookieList = NULL;
5375 ar->arCookieCount = 0;
5376 }
5377
5378 /* Init cookie queue */
5379 static void
5380 ar6000_free_cookie(struct ar6_softc *ar, struct ar_cookie * cookie)
5381 {
5382 /* Insert first */
5383 A_ASSERT(ar != NULL);
5384 A_ASSERT(cookie != NULL);
5385
5386 cookie->arc_list_next = ar->arCookieList;
5387 ar->arCookieList = cookie;
5388 ar->arCookieCount++;
5389 }
5390
5391 /* cleanup cookie queue */
5392 static struct ar_cookie *
5393 ar6000_alloc_cookie(struct ar6_softc *ar)
5394 {
5395 struct ar_cookie *cookie;
5396
5397 cookie = ar->arCookieList;
5398 if(cookie != NULL)
5399 {
5400 ar->arCookieList = cookie->arc_list_next;
5401 ar->arCookieCount--;
5402 }
5403
5404 return cookie;
5405 }
5406
5407 void
5408 ar6000_tx_retry_err_event(void *devt)
5409 {
5410 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Tx retries reach maximum!\n"));
5411 }
5412
5413 void
5414 ar6000_snrThresholdEvent_rx(void *devt, WMI_SNR_THRESHOLD_VAL newThreshold, u8 snr)
5415 {
5416 WMI_SNR_THRESHOLD_EVENT event;
5417
5418 event.range = newThreshold;
5419 event.snr = snr;
5420 }
5421
5422 void
5423 ar6000_lqThresholdEvent_rx(void *devt, WMI_LQ_THRESHOLD_VAL newThreshold, u8 lq)
5424 {
5425 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("lq threshold range %d, lq %d\n", newThreshold, lq));
5426 }
5427
5428
5429
5430 u32 a_copy_to_user(void *to, const void *from, u32 n)
5431 {
5432 return(copy_to_user(to, from, n));
5433 }
5434
5435 u32 a_copy_from_user(void *to, const void *from, u32 n)
5436 {
5437 return(copy_from_user(to, from, n));
5438 }
5439
5440
5441 int
5442 ar6000_get_driver_cfg(struct net_device *dev,
5443 u16 cfgParam,
5444 void *result)
5445 {
5446
5447 int ret = 0;
5448
5449 switch(cfgParam)
5450 {
5451 case AR6000_DRIVER_CFG_GET_WLANNODECACHING:
5452 *((u32 *)result) = wlanNodeCaching;
5453 break;
5454 case AR6000_DRIVER_CFG_LOG_RAW_WMI_MSGS:
5455 *((u32 *)result) = logWmiRawMsgs;
5456 break;
5457 default:
5458 ret = EINVAL;
5459 break;
5460 }
5461
5462 return ret;
5463 }
5464
5465 void
5466 ar6000_keepalive_rx(void *devt, u8 configured)
5467 {
5468 struct ar6_softc *ar = (struct ar6_softc *)devt;
5469
5470 ar->arKeepaliveConfigured = configured;
5471 wake_up(&arEvent);
5472 }
5473
5474 void
5475 ar6000_pmkid_list_event(void *devt, u8 numPMKID, WMI_PMKID *pmkidList,
5476 u8 *bssidList)
5477 {
5478 u8 i, j;
5479
5480 A_PRINTF("Number of Cached PMKIDs is %d\n", numPMKID);
5481
5482 for (i = 0; i < numPMKID; i++) {
5483 A_PRINTF("\nBSSID %d ", i);
5484 for (j = 0; j < ATH_MAC_LEN; j++) {
5485 A_PRINTF("%2.2x", bssidList[j]);
5486 }
5487 bssidList += (ATH_MAC_LEN + WMI_PMKID_LEN);
5488 A_PRINTF("\nPMKID %d ", i);
5489 for (j = 0; j < WMI_PMKID_LEN; j++) {
5490 A_PRINTF("%2.2x", pmkidList->pmkid[j]);
5491 }
5492 pmkidList = (WMI_PMKID *)((u8 *)pmkidList + ATH_MAC_LEN +
5493 WMI_PMKID_LEN);
5494 }
5495 }
5496
5497 void ar6000_pspoll_event(struct ar6_softc *ar,u8 aid)
5498 {
5499 sta_t *conn=NULL;
5500 bool isPsqEmpty = false;
5501
5502 conn = ieee80211_find_conn_for_aid(ar, aid);
5503
5504 /* If the PS q for this STA is not empty, dequeue and send a pkt from
5505 * the head of the q. Also update the More data bit in the WMI_DATA_HDR
5506 * if there are more pkts for this STA in the PS q. If there are no more
5507 * pkts for this STA, update the PVB for this STA.
5508 */
5509 A_MUTEX_LOCK(&conn->psqLock);
5510 isPsqEmpty = A_NETBUF_QUEUE_EMPTY(&conn->psq);
5511 A_MUTEX_UNLOCK(&conn->psqLock);
5512
5513 if (isPsqEmpty) {
5514 /* TODO:No buffered pkts for this STA. Send out a NULL data frame */
5515 } else {
5516 struct sk_buff *skb = NULL;
5517
5518 A_MUTEX_LOCK(&conn->psqLock);
5519 skb = A_NETBUF_DEQUEUE(&conn->psq);
5520 A_MUTEX_UNLOCK(&conn->psqLock);
5521 /* Set the STA flag to PSPolled, so that the frame will go out */
5522 STA_SET_PS_POLLED(conn);
5523 ar6000_data_tx(skb, ar->arNetDev);
5524 STA_CLR_PS_POLLED(conn);
5525
5526 /* Clear the PVB for this STA if the queue has become empty */
5527 A_MUTEX_LOCK(&conn->psqLock);
5528 isPsqEmpty = A_NETBUF_QUEUE_EMPTY(&conn->psq);
5529 A_MUTEX_UNLOCK(&conn->psqLock);
5530
5531 if (isPsqEmpty) {
5532 wmi_set_pvb_cmd(ar->arWmi, conn->aid, 0);
5533 }
5534 }
5535 }
5536
5537 void ar6000_dtimexpiry_event(struct ar6_softc *ar)
5538 {
5539 bool isMcastQueued = false;
5540 struct sk_buff *skb = NULL;
5541
5542 /* If there are no associated STAs, ignore the DTIM expiry event.
5543 * There can be potential race conditions where the last associated
5544 * STA may disconnect & before the host could clear the 'Indicate DTIM'
5545 * request to the firmware, the firmware would have just indicated a DTIM
5546 * expiry event. The race is between 'clear DTIM expiry cmd' going
5547 * from the host to the firmware & the DTIM expiry event happening from
5548 * the firmware to the host.
5549 */
5550 if (ar->sta_list_index == 0) {
5551 return;
5552 }
5553
5554 A_MUTEX_LOCK(&ar->mcastpsqLock);
5555 isMcastQueued = A_NETBUF_QUEUE_EMPTY(&ar->mcastpsq);
5556 A_MUTEX_UNLOCK(&ar->mcastpsqLock);
5557
5558 A_ASSERT(isMcastQueued == false);
5559
5560 /* Flush the mcast psq to the target */
5561 /* Set the STA flag to DTIMExpired, so that the frame will go out */
5562 ar->DTIMExpired = true;
5563
5564 A_MUTEX_LOCK(&ar->mcastpsqLock);
5565 while (!A_NETBUF_QUEUE_EMPTY(&ar->mcastpsq)) {
5566 skb = A_NETBUF_DEQUEUE(&ar->mcastpsq);
5567 A_MUTEX_UNLOCK(&ar->mcastpsqLock);
5568
5569 ar6000_data_tx(skb, ar->arNetDev);
5570
5571 A_MUTEX_LOCK(&ar->mcastpsqLock);
5572 }
5573 A_MUTEX_UNLOCK(&ar->mcastpsqLock);
5574
5575 /* Reset the DTIMExpired flag back to 0 */
5576 ar->DTIMExpired = false;
5577
5578 /* Clear the LSB of the BitMapCtl field of the TIM IE */
5579 wmi_set_pvb_cmd(ar->arWmi, MCAST_AID, 0);
5580 }
5581
5582 void
5583 read_rssi_compensation_param(struct ar6_softc *ar)
5584 {
5585 u8 *cust_data_ptr;
5586
5587 //#define RSSICOMPENSATION_PRINT
5588
5589 #ifdef RSSICOMPENSATION_PRINT
5590 s16 i;
5591 cust_data_ptr = ar6000_get_cust_data_buffer(ar->arTargetType);
5592 for (i=0; i<16; i++) {
5593 A_PRINTF("cust_data_%d = %x \n", i, *(u8 *)cust_data_ptr);
5594 cust_data_ptr += 1;
5595 }
5596 #endif
5597
5598 cust_data_ptr = ar6000_get_cust_data_buffer(ar->arTargetType);
5599
5600 rssi_compensation_param.customerID = *(u16 *)cust_data_ptr & 0xffff;
5601 rssi_compensation_param.enable = *(u16 *)(cust_data_ptr+2) & 0xffff;
5602 rssi_compensation_param.bg_param_a = *(u16 *)(cust_data_ptr+4) & 0xffff;
5603 rssi_compensation_param.bg_param_b = *(u16 *)(cust_data_ptr+6) & 0xffff;
5604 rssi_compensation_param.a_param_a = *(u16 *)(cust_data_ptr+8) & 0xffff;
5605 rssi_compensation_param.a_param_b = *(u16 *)(cust_data_ptr+10) &0xffff;
5606 rssi_compensation_param.reserved = *(u32 *)(cust_data_ptr+12);
5607
5608 #ifdef RSSICOMPENSATION_PRINT
5609 A_PRINTF("customerID = 0x%x \n", rssi_compensation_param.customerID);
5610 A_PRINTF("enable = 0x%x \n", rssi_compensation_param.enable);
5611 A_PRINTF("bg_param_a = 0x%x and %d \n", rssi_compensation_param.bg_param_a, rssi_compensation_param.bg_param_a);
5612 A_PRINTF("bg_param_b = 0x%x and %d \n", rssi_compensation_param.bg_param_b, rssi_compensation_param.bg_param_b);
5613 A_PRINTF("a_param_a = 0x%x and %d \n", rssi_compensation_param.a_param_a, rssi_compensation_param.a_param_a);
5614 A_PRINTF("a_param_b = 0x%x and %d \n", rssi_compensation_param.a_param_b, rssi_compensation_param.a_param_b);
5615 A_PRINTF("Last 4 bytes = 0x%x \n", rssi_compensation_param.reserved);
5616 #endif
5617
5618 if (rssi_compensation_param.enable != 0x1) {
5619 rssi_compensation_param.enable = 0;
5620 }
5621
5622 return;
5623 }
5624
5625 s32 rssi_compensation_calc_tcmd(u32 freq, s32 rssi, u32 totalPkt)
5626 {
5627
5628 if (freq > 5000)
5629 {
5630 if (rssi_compensation_param.enable)
5631 {
5632 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, (">>> 11a\n"));
5633 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi before compensation = %d, totalPkt = %d\n", rssi,totalPkt));
5634 rssi = rssi * rssi_compensation_param.a_param_a + totalPkt * rssi_compensation_param.a_param_b;
5635 rssi = (rssi-50) /100;
5636 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi after compensation = %d\n", rssi));
5637 }
5638 }
5639 else
5640 {
5641 if (rssi_compensation_param.enable)
5642 {
5643 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, (">>> 11bg\n"));
5644 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi before compensation = %d, totalPkt = %d\n", rssi,totalPkt));
5645 rssi = rssi * rssi_compensation_param.bg_param_a + totalPkt * rssi_compensation_param.bg_param_b;
5646 rssi = (rssi-50) /100;
5647 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi after compensation = %d\n", rssi));
5648 }
5649 }
5650
5651 return rssi;
5652 }
5653
5654 s16 rssi_compensation_calc(struct ar6_softc *ar, s16 rssi)
5655 {
5656 if (ar->arBssChannel > 5000)
5657 {
5658 if (rssi_compensation_param.enable)
5659 {
5660 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, (">>> 11a\n"));
5661 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi before compensation = %d\n", rssi));
5662 rssi = rssi * rssi_compensation_param.a_param_a + rssi_compensation_param.a_param_b;
5663 rssi = (rssi-50) /100;
5664 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi after compensation = %d\n", rssi));
5665 }
5666 }
5667 else
5668 {
5669 if (rssi_compensation_param.enable)
5670 {
5671 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, (">>> 11bg\n"));
5672 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi before compensation = %d\n", rssi));
5673 rssi = rssi * rssi_compensation_param.bg_param_a + rssi_compensation_param.bg_param_b;
5674 rssi = (rssi-50) /100;
5675 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi after compensation = %d\n", rssi));
5676 }
5677 }
5678
5679 return rssi;
5680 }
5681
5682 s16 rssi_compensation_reverse_calc(struct ar6_softc *ar, s16 rssi, bool Above)
5683 {
5684 s16 i;
5685
5686 if (ar->arBssChannel > 5000)
5687 {
5688 if (rssi_compensation_param.enable)
5689 {
5690 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, (">>> 11a\n"));
5691 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi before rev compensation = %d\n", rssi));
5692 rssi = rssi * 100;
5693 rssi = (rssi - rssi_compensation_param.a_param_b) / rssi_compensation_param.a_param_a;
5694 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi after rev compensation = %d\n", rssi));
5695 }
5696 }
5697 else
5698 {
5699 if (rssi_compensation_param.enable)
5700 {
5701 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, (">>> 11bg\n"));
5702 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi before rev compensation = %d\n", rssi));
5703
5704 if (Above) {
5705 for (i=95; i>=0; i--) {
5706 if (rssi <= rssi_compensation_table[i]) {
5707 rssi = 0 - i;
5708 break;
5709 }
5710 }
5711 } else {
5712 for (i=0; i<=95; i++) {
5713 if (rssi >= rssi_compensation_table[i]) {
5714 rssi = 0 - i;
5715 break;
5716 }
5717 }
5718 }
5719 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi after rev compensation = %d\n", rssi));
5720 }
5721 }
5722
5723 return rssi;
5724 }
5725
5726 #ifdef WAPI_ENABLE
5727 void ap_wapi_rekey_event(struct ar6_softc *ar, u8 type, u8 *mac)
5728 {
5729 union iwreq_data wrqu;
5730 char buf[20];
5731
5732 A_MEMZERO(buf, sizeof(buf));
5733
5734 strcpy(buf, "WAPI_REKEY");
5735 buf[10] = type;
5736 memcpy(&buf[11], mac, ATH_MAC_LEN);
5737
5738 A_MEMZERO(&wrqu, sizeof(wrqu));
5739 wrqu.data.length = 10+1+ATH_MAC_LEN;
5740 wireless_send_event(ar->arNetDev, IWEVCUSTOM, &wrqu, buf);
5741
5742 A_PRINTF("WAPI REKEY - %d - %02x:%02x\n", type, mac[4], mac[5]);
5743 }
5744 #endif
5745
5746 static int
5747 ar6000_reinstall_keys(struct ar6_softc *ar, u8 key_op_ctrl)
5748 {
5749 int status = 0;
5750 struct ieee80211req_key *uik = &ar->user_saved_keys.ucast_ik;
5751 struct ieee80211req_key *bik = &ar->user_saved_keys.bcast_ik;
5752 CRYPTO_TYPE keyType = ar->user_saved_keys.keyType;
5753
5754 if (IEEE80211_CIPHER_CCKM_KRK != uik->ik_type) {
5755 if (NONE_CRYPT == keyType) {
5756 goto _reinstall_keys_out;
5757 }
5758
5759 if (uik->ik_keylen) {
5760 status = wmi_addKey_cmd(ar->arWmi, uik->ik_keyix,
5761 ar->user_saved_keys.keyType, PAIRWISE_USAGE,
5762 uik->ik_keylen, (u8 *)&uik->ik_keyrsc,
5763 uik->ik_keydata, key_op_ctrl, uik->ik_macaddr, SYNC_BEFORE_WMIFLAG);
5764 }
5765
5766 } else {
5767 status = wmi_add_krk_cmd(ar->arWmi, uik->ik_keydata);
5768 }
5769
5770 if (IEEE80211_CIPHER_CCKM_KRK != bik->ik_type) {
5771 if (NONE_CRYPT == keyType) {
5772 goto _reinstall_keys_out;
5773 }
5774
5775 if (bik->ik_keylen) {
5776 status = wmi_addKey_cmd(ar->arWmi, bik->ik_keyix,
5777 ar->user_saved_keys.keyType, GROUP_USAGE,
5778 bik->ik_keylen, (u8 *)&bik->ik_keyrsc,
5779 bik->ik_keydata, key_op_ctrl, bik->ik_macaddr, NO_SYNC_WMIFLAG);
5780 }
5781 } else {
5782 status = wmi_add_krk_cmd(ar->arWmi, bik->ik_keydata);
5783 }
5784
5785 _reinstall_keys_out:
5786 ar->user_savedkeys_stat = USER_SAVEDKEYS_STAT_INIT;
5787 ar->user_key_ctrl = 0;
5788
5789 return status;
5790 }
5791
5792
5793 void
5794 ar6000_dset_open_req(
5795 void *context,
5796 u32 id,
5797 u32 targHandle,
5798 u32 targReplyFn,
5799 u32 targReplyArg)
5800 {
5801 }
5802
5803 void
5804 ar6000_dset_close(
5805 void *context,
5806 u32 access_cookie)
5807 {
5808 return;
5809 }
5810
5811 void
5812 ar6000_dset_data_req(
5813 void *context,
5814 u32 accessCookie,
5815 u32 offset,
5816 u32 length,
5817 u32 targBuf,
5818 u32 targReplyFn,
5819 u32 targReplyArg)
5820 {
5821 }
5822
5823 int
5824 ar6000_ap_mode_profile_commit(struct ar6_softc *ar)
5825 {
5826 WMI_CONNECT_CMD p;
5827 unsigned long flags;
5828
5829 /* No change in AP's profile configuration */
5830 if(ar->ap_profile_flag==0) {
5831 A_PRINTF("COMMIT: No change in profile!!!\n");
5832 return -ENODATA;
5833 }
5834
5835 if(!ar->arSsidLen) {
5836 A_PRINTF("SSID not set!!!\n");
5837 return -ECHRNG;
5838 }
5839
5840 switch(ar->arAuthMode) {
5841 case NONE_AUTH:
5842 if((ar->arPairwiseCrypto != NONE_CRYPT) &&
5843 #ifdef WAPI_ENABLE
5844 (ar->arPairwiseCrypto != WAPI_CRYPT) &&
5845 #endif
5846 (ar->arPairwiseCrypto != WEP_CRYPT)) {
5847 A_PRINTF("Cipher not supported in AP mode Open auth\n");
5848 return -EOPNOTSUPP;
5849 }
5850 break;
5851 case WPA_PSK_AUTH:
5852 case WPA2_PSK_AUTH:
5853 case (WPA_PSK_AUTH|WPA2_PSK_AUTH):
5854 break;
5855 default:
5856 A_PRINTF("This key mgmt type not supported in AP mode\n");
5857 return -EOPNOTSUPP;
5858 }
5859
5860 /* Update the arNetworkType */
5861 ar->arNetworkType = ar->arNextMode;
5862
5863 A_MEMZERO(&p,sizeof(p));
5864 p.ssidLength = ar->arSsidLen;
5865 memcpy(p.ssid,ar->arSsid,p.ssidLength);
5866 p.channel = ar->arChannelHint;
5867 p.networkType = ar->arNetworkType;
5868
5869 p.dot11AuthMode = ar->arDot11AuthMode;
5870 p.authMode = ar->arAuthMode;
5871 p.pairwiseCryptoType = ar->arPairwiseCrypto;
5872 p.pairwiseCryptoLen = ar->arPairwiseCryptoLen;
5873 p.groupCryptoType = ar->arGroupCrypto;
5874 p.groupCryptoLen = ar->arGroupCryptoLen;
5875 p.ctrl_flags = ar->arConnectCtrlFlags;
5876
5877 wmi_ap_profile_commit(ar->arWmi, &p);
5878 spin_lock_irqsave(&ar->arLock, flags);
5879 ar->arConnected = true;
5880 netif_carrier_on(ar->arNetDev);
5881 spin_unlock_irqrestore(&ar->arLock, flags);
5882 ar->ap_profile_flag = 0;
5883 return 0;
5884 }
5885
5886 int
5887 ar6000_connect_to_ap(struct ar6_softc *ar)
5888 {
5889 /* The ssid length check prevents second "essid off" from the user,
5890 to be treated as a connect cmd. The second "essid off" is ignored.
5891 */
5892 if((ar->arWmiReady == true) && (ar->arSsidLen > 0) && ar->arNetworkType!=AP_NETWORK)
5893 {
5894 int status;
5895 if((ADHOC_NETWORK != ar->arNetworkType) &&
5896 (NONE_AUTH==ar->arAuthMode) &&
5897 (WEP_CRYPT==ar->arPairwiseCrypto)) {
5898 ar6000_install_static_wep_keys(ar);
5899 }
5900
5901 if (!ar->arUserBssFilter) {
5902 if (wmi_bssfilter_cmd(ar->arWmi, ALL_BSS_FILTER, 0) != 0) {
5903 return -EIO;
5904 }
5905 }
5906 #ifdef WAPI_ENABLE
5907 if (ar->arWapiEnable) {
5908 ar->arPairwiseCrypto = WAPI_CRYPT;
5909 ar->arPairwiseCryptoLen = 0;
5910 ar->arGroupCrypto = WAPI_CRYPT;
5911 ar->arGroupCryptoLen = 0;
5912 ar->arAuthMode = NONE_AUTH;
5913 ar->arConnectCtrlFlags |= CONNECT_IGNORE_WPAx_GROUP_CIPHER;
5914 }
5915 #endif
5916 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("Connect called with authmode %d dot11 auth %d"\
5917 " PW crypto %d PW crypto Len %d GRP crypto %d"\
5918 " GRP crypto Len %d\n",
5919 ar->arAuthMode, ar->arDot11AuthMode,
5920 ar->arPairwiseCrypto, ar->arPairwiseCryptoLen,
5921 ar->arGroupCrypto, ar->arGroupCryptoLen));
5922 reconnect_flag = 0;
5923 /* Set the listen interval into 1000TUs or more. This value will be indicated to Ap in the conn.
5924 later set it back locally at the STA to 100/1000 TUs depending on the power mode */
5925 if ((ar->arNetworkType == INFRA_NETWORK)) {
5926 wmi_listeninterval_cmd(ar->arWmi, max(ar->arListenIntervalT, (u16)A_MAX_WOW_LISTEN_INTERVAL), 0);
5927 }
5928 status = wmi_connect_cmd(ar->arWmi, ar->arNetworkType,
5929 ar->arDot11AuthMode, ar->arAuthMode,
5930 ar->arPairwiseCrypto, ar->arPairwiseCryptoLen,
5931 ar->arGroupCrypto,ar->arGroupCryptoLen,
5932 ar->arSsidLen, ar->arSsid,
5933 ar->arReqBssid, ar->arChannelHint,
5934 ar->arConnectCtrlFlags);
5935 if (status) {
5936 wmi_listeninterval_cmd(ar->arWmi, ar->arListenIntervalT, ar->arListenIntervalB);
5937 if (!ar->arUserBssFilter) {
5938 wmi_bssfilter_cmd(ar->arWmi, NONE_BSS_FILTER, 0);
5939 }
5940 return status;
5941 }
5942
5943 if ((!(ar->arConnectCtrlFlags & CONNECT_DO_WPA_OFFLOAD)) &&
5944 ((WPA_PSK_AUTH == ar->arAuthMode) || (WPA2_PSK_AUTH == ar->arAuthMode)))
5945 {
5946 A_TIMEOUT_MS(&ar->disconnect_timer, A_DISCONNECT_TIMER_INTERVAL, 0);
5947 }
5948
5949 ar->arConnectCtrlFlags &= ~CONNECT_DO_WPA_OFFLOAD;
5950
5951 ar->arConnectPending = true;
5952 return status;
5953 }
5954 return A_ERROR;
5955 }
5956
5957 int
5958 ar6000_disconnect(struct ar6_softc *ar)
5959 {
5960 if ((ar->arConnected == true) || (ar->arConnectPending == true)) {
5961 wmi_disconnect_cmd(ar->arWmi);
5962 /*
5963 * Disconnect cmd is issued, clear connectPending.
5964 * arConnected will be cleard in disconnect_event notification.
5965 */
5966 ar->arConnectPending = false;
5967 }
5968
5969 return 0;
5970 }
5971
5972 int
5973 ar6000_ap_mode_get_wpa_ie(struct ar6_softc *ar, struct ieee80211req_wpaie *wpaie)
5974 {
5975 sta_t *conn = NULL;
5976 conn = ieee80211_find_conn(ar, wpaie->wpa_macaddr);
5977
5978 A_MEMZERO(wpaie->wpa_ie, IEEE80211_MAX_IE);
5979 A_MEMZERO(wpaie->rsn_ie, IEEE80211_MAX_IE);
5980
5981 if(conn) {
5982 memcpy(wpaie->wpa_ie, conn->wpa_ie, IEEE80211_MAX_IE);
5983 }
5984
5985 return 0;
5986 }
5987
5988 int
5989 is_iwioctl_allowed(u8 mode, u16 cmd)
5990 {
5991 if(cmd >= SIOCSIWCOMMIT && cmd <= SIOCGIWPOWER) {
5992 cmd -= SIOCSIWCOMMIT;
5993 if(sioctl_filter[cmd] == 0xFF) return 0;
5994 if(sioctl_filter[cmd] & mode) return 0;
5995 } else if(cmd >= SIOCIWFIRSTPRIV && cmd <= (SIOCIWFIRSTPRIV+30)) {
5996 cmd -= SIOCIWFIRSTPRIV;
5997 if(pioctl_filter[cmd] == 0xFF) return 0;
5998 if(pioctl_filter[cmd] & mode) return 0;
5999 } else {
6000 return A_ERROR;
6001 }
6002 return A_ENOTSUP;
6003 }
6004
6005 int
6006 is_xioctl_allowed(u8 mode, int cmd)
6007 {
6008 if(sizeof(xioctl_filter)-1 < cmd) {
6009 A_PRINTF("Filter for this cmd=%d not defined\n",cmd);
6010 return 0;
6011 }
6012 if(xioctl_filter[cmd] == 0xFF) return 0;
6013 if(xioctl_filter[cmd] & mode) return 0;
6014 return A_ERROR;
6015 }
6016
6017 #ifdef WAPI_ENABLE
6018 int
6019 ap_set_wapi_key(struct ar6_softc *ar, void *ikey)
6020 {
6021 struct ieee80211req_key *ik = (struct ieee80211req_key *)ikey;
6022 KEY_USAGE keyUsage = 0;
6023 int status;
6024
6025 if (memcmp(ik->ik_macaddr, bcast_mac, IEEE80211_ADDR_LEN) == 0) {
6026 keyUsage = GROUP_USAGE;
6027 } else {
6028 keyUsage = PAIRWISE_USAGE;
6029 }
6030 A_PRINTF("WAPI_KEY: Type:%d ix:%d mac:%02x:%02x len:%d\n",
6031 keyUsage, ik->ik_keyix, ik->ik_macaddr[4], ik->ik_macaddr[5],
6032 ik->ik_keylen);
6033
6034 status = wmi_addKey_cmd(ar->arWmi, ik->ik_keyix, WAPI_CRYPT, keyUsage,
6035 ik->ik_keylen, (u8 *)&ik->ik_keyrsc,
6036 ik->ik_keydata, KEY_OP_INIT_VAL, ik->ik_macaddr,
6037 SYNC_BOTH_WMIFLAG);
6038
6039 if (0 != status) {
6040 return -EIO;
6041 }
6042 return 0;
6043 }
6044 #endif
6045
6046 void ar6000_peer_event(
6047 void *context,
6048 u8 eventCode,
6049 u8 *macAddr)
6050 {
6051 u8 pos;
6052
6053 for (pos=0;pos<6;pos++)
6054 printk("%02x: ",*(macAddr+pos));
6055 printk("\n");
6056 }
6057
6058 #ifdef HTC_TEST_SEND_PKTS
6059 #define HTC_TEST_DUPLICATE 8
6060 static void DoHTCSendPktsTest(struct ar6_softc *ar, int MapNo, HTC_ENDPOINT_ID eid, struct sk_buff *dupskb)
6061 {
6062 struct ar_cookie *cookie;
6063 struct ar_cookie *cookieArray[HTC_TEST_DUPLICATE];
6064 struct sk_buff *new_skb;
6065 int i;
6066 int pkts = 0;
6067 struct htc_packet_queue pktQueue;
6068 EPPING_HEADER *eppingHdr;
6069
6070 eppingHdr = A_NETBUF_DATA(dupskb);
6071
6072 if (eppingHdr->Cmd_h == EPPING_CMD_NO_ECHO) {
6073 /* skip test if this is already a tx perf test */
6074 return;
6075 }
6076
6077 for (i = 0; i < HTC_TEST_DUPLICATE; i++,pkts++) {
6078 AR6000_SPIN_LOCK(&ar->arLock, 0);
6079 cookie = ar6000_alloc_cookie(ar);
6080 if (cookie != NULL) {
6081 ar->arTxPending[eid]++;
6082 ar->arTotalTxDataPending++;
6083 }
6084
6085 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
6086
6087 if (NULL == cookie) {
6088 break;
6089 }
6090
6091 new_skb = A_NETBUF_ALLOC(A_NETBUF_LEN(dupskb));
6092
6093 if (new_skb == NULL) {
6094 AR6000_SPIN_LOCK(&ar->arLock, 0);
6095 ar6000_free_cookie(ar,cookie);
6096 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
6097 break;
6098 }
6099
6100 A_NETBUF_PUT_DATA(new_skb, A_NETBUF_DATA(dupskb), A_NETBUF_LEN(dupskb));
6101 cookie->arc_bp[0] = (unsigned long)new_skb;
6102 cookie->arc_bp[1] = MapNo;
6103 SET_HTC_PACKET_INFO_TX(&cookie->HtcPkt,
6104 cookie,
6105 A_NETBUF_DATA(new_skb),
6106 A_NETBUF_LEN(new_skb),
6107 eid,
6108 AR6K_DATA_PKT_TAG);
6109
6110 cookieArray[i] = cookie;
6111
6112 {
6113 EPPING_HEADER *pHdr = (EPPING_HEADER *)A_NETBUF_DATA(new_skb);
6114 pHdr->Cmd_h = EPPING_CMD_NO_ECHO; /* do not echo the packet */
6115 }
6116 }
6117
6118 if (pkts == 0) {
6119 return;
6120 }
6121
6122 INIT_HTC_PACKET_QUEUE(&pktQueue);
6123
6124 for (i = 0; i < pkts; i++) {
6125 HTC_PACKET_ENQUEUE(&pktQueue,&cookieArray[i]->HtcPkt);
6126 }
6127
6128 HTCSendPktsMultiple(ar->arHtcTarget, &pktQueue);
6129
6130 }
6131 #endif
6132
6133 #ifdef CONFIG_AP_VIRTUAL_ADAPTER_SUPPORT
6134 /*
6135 * Add support for adding and removing a virtual adapter for soft AP.
6136 * Some OS requires different adapters names for station and soft AP mode.
6137 * To support these requirement, create and destroy a netdevice instance
6138 * when the AP mode is operational. A full fledged support for virual device
6139 * is not implemented. Rather a virtual interface is created and is linked
6140 * with the existing physical device instance during the operation of the
6141 * AP mode.
6142 */
6143
6144 int ar6000_start_ap_interface(struct ar6_softc *ar)
6145 {
6146 struct ar_virtual_interface *arApDev;
6147
6148 /* Change net_device to point to AP instance */
6149 arApDev = (struct ar_virtual_interface *)ar->arApDev;
6150 ar->arNetDev = arApDev->arNetDev;
6151
6152 return 0;
6153 }
6154
6155 int ar6000_stop_ap_interface(struct ar6_softc *ar)
6156 {
6157 struct ar_virtual_interface *arApDev;
6158
6159 /* Change net_device to point to sta instance */
6160 arApDev = (struct ar_virtual_interface *)ar->arApDev;
6161 if (arApDev) {
6162 ar->arNetDev = arApDev->arStaNetDev;
6163 }
6164
6165 return 0;
6166 }
6167
6168
6169 int ar6000_create_ap_interface(struct ar6_softc *ar, char *ap_ifname)
6170 {
6171 struct net_device *dev;
6172 struct ar_virtual_interface *arApDev;
6173
6174 dev = alloc_etherdev(sizeof(struct ar_virtual_interface));
6175 if (dev == NULL) {
6176 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_create_ap_interface: can't alloc etherdev\n"));
6177 return A_ERROR;
6178 }
6179
6180 ether_setup(dev);
6181 init_netdev(dev, ap_ifname);
6182
6183 if (register_netdev(dev)) {
6184 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_create_ap_interface: register_netdev failed\n"));
6185 return A_ERROR;
6186 }
6187
6188 arApDev = netdev_priv(dev);
6189 arApDev->arDev = ar;
6190 arApDev->arNetDev = dev;
6191 arApDev->arStaNetDev = ar->arNetDev;
6192
6193 ar->arApDev = arApDev;
6194 arApNetDev = dev;
6195
6196 /* Copy the MAC address */
6197 memcpy(dev->dev_addr, ar->arNetDev->dev_addr, AR6000_ETH_ADDR_LEN);
6198
6199 return 0;
6200 }
6201
6202 int ar6000_add_ap_interface(struct ar6_softc *ar, char *ap_ifname)
6203 {
6204 /* Interface already added, need not proceed further */
6205 if (ar->arApDev != NULL) {
6206 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_add_ap_interface: interface already present \n"));
6207 return 0;
6208 }
6209
6210 if (ar6000_create_ap_interface(ar, ap_ifname) != 0) {
6211 return A_ERROR;
6212 }
6213
6214 A_PRINTF("Add AP interface %s \n",ap_ifname);
6215
6216 return ar6000_start_ap_interface(ar);
6217 }
6218
6219 int ar6000_remove_ap_interface(struct ar6_softc *ar)
6220 {
6221 if (arApNetDev) {
6222 ar6000_stop_ap_interface(ar);
6223
6224 unregister_netdev(arApNetDev);
6225 free_netdev(apApNetDev);
6226
6227 A_PRINTF("Remove AP interface\n");
6228 }
6229 ar->arApDev = NULL;
6230 arApNetDev = NULL;
6231
6232
6233 return 0;
6234 }
6235 #endif /* CONFIG_AP_VIRTUAL_ADAPTER_SUPPORT */
6236
6237
6238 #ifdef EXPORT_HCI_BRIDGE_INTERFACE
6239 EXPORT_SYMBOL(setupbtdev);
6240 #endif