]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/staging/ath6kl/os/linux/ar6000_drv.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[mirror_ubuntu-zesty-kernel.git] / drivers / staging / ath6kl / os / linux / ar6000_drv.c
1 //------------------------------------------------------------------------------
2 // Copyright (c) 2004-2010 Atheros Communications Inc.
3 // All rights reserved.
4 //
5 //
6 //
7 // Permission to use, copy, modify, and/or distribute this software for any
8 // purpose with or without fee is hereby granted, provided that the above
9 // copyright notice and this permission notice appear in all copies.
10 //
11 // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 // ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 // ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 // OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 //
19 //
20 //
21 // Author(s): ="Atheros"
22 //------------------------------------------------------------------------------
23
24 /*
25 * This driver is a pseudo ethernet driver to access the Atheros AR6000
26 * WLAN Device
27 */
28
29 #include "ar6000_drv.h"
30 #include "cfg80211.h"
31 #include "htc.h"
32 #include "wmi_filter_linux.h"
33 #include "epping_test.h"
34 #include "wlan_config.h"
35 #include "ar3kconfig.h"
36 #include "ar6k_pal.h"
37 #include "AR6002/addrs.h"
38
39
40 /* LINUX_HACK_FUDGE_FACTOR -- this is used to provide a workaround for linux behavior. When
41 * the meta data was added to the header it was found that linux did not correctly provide
42 * enough headroom. However when more headroom was requested beyond what was truly needed
43 * Linux gave the requested headroom. Therefore to get the necessary headroom from Linux
44 * the driver requests more than is needed by the amount = LINUX_HACK_FUDGE_FACTOR */
45 #define LINUX_HACK_FUDGE_FACTOR 16
46 #define BDATA_BDADDR_OFFSET 28
47
48 u8 bcast_mac[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
49 u8 null_mac[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0};
50
51 #ifdef DEBUG
52
53 #define ATH_DEBUG_DBG_LOG ATH_DEBUG_MAKE_MODULE_MASK(0)
54 #define ATH_DEBUG_WLAN_CONNECT ATH_DEBUG_MAKE_MODULE_MASK(1)
55 #define ATH_DEBUG_WLAN_SCAN ATH_DEBUG_MAKE_MODULE_MASK(2)
56 #define ATH_DEBUG_WLAN_TX ATH_DEBUG_MAKE_MODULE_MASK(3)
57 #define ATH_DEBUG_WLAN_RX ATH_DEBUG_MAKE_MODULE_MASK(4)
58 #define ATH_DEBUG_HTC_RAW ATH_DEBUG_MAKE_MODULE_MASK(5)
59 #define ATH_DEBUG_HCI_BRIDGE ATH_DEBUG_MAKE_MODULE_MASK(6)
60
61 static struct ath_debug_mask_description driver_debug_desc[] = {
62 { ATH_DEBUG_DBG_LOG , "Target Debug Logs"},
63 { ATH_DEBUG_WLAN_CONNECT , "WLAN connect"},
64 { ATH_DEBUG_WLAN_SCAN , "WLAN scan"},
65 { ATH_DEBUG_WLAN_TX , "WLAN Tx"},
66 { ATH_DEBUG_WLAN_RX , "WLAN Rx"},
67 { ATH_DEBUG_HTC_RAW , "HTC Raw IF tracing"},
68 { ATH_DEBUG_HCI_BRIDGE , "HCI Bridge Setup"},
69 { ATH_DEBUG_HCI_RECV , "HCI Recv tracing"},
70 { ATH_DEBUG_HCI_DUMP , "HCI Packet dumps"},
71 };
72
73 ATH_DEBUG_INSTANTIATE_MODULE_VAR(driver,
74 "driver",
75 "Linux Driver Interface",
76 ATH_DEBUG_MASK_DEFAULTS | ATH_DEBUG_WLAN_SCAN |
77 ATH_DEBUG_HCI_BRIDGE,
78 ATH_DEBUG_DESCRIPTION_COUNT(driver_debug_desc),
79 driver_debug_desc);
80
81 #endif
82
83
84 #define IS_MAC_NULL(mac) (mac[0]==0 && mac[1]==0 && mac[2]==0 && mac[3]==0 && mac[4]==0 && mac[5]==0)
85 #define IS_MAC_BCAST(mac) (*mac==0xff)
86
87 #define DESCRIPTION "Driver to access the Atheros AR600x Device, version " __stringify(__VER_MAJOR_) "." __stringify(__VER_MINOR_) "." __stringify(__VER_PATCH_) "." __stringify(__BUILD_NUMBER_)
88
89 MODULE_AUTHOR("Atheros Communications, Inc.");
90 MODULE_DESCRIPTION(DESCRIPTION);
91 MODULE_LICENSE("Dual BSD/GPL");
92
93 #ifndef REORG_APTC_HEURISTICS
94 #undef ADAPTIVE_POWER_THROUGHPUT_CONTROL
95 #endif /* REORG_APTC_HEURISTICS */
96
97 #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
98 #define APTC_TRAFFIC_SAMPLING_INTERVAL 100 /* msec */
99 #define APTC_UPPER_THROUGHPUT_THRESHOLD 3000 /* Kbps */
100 #define APTC_LOWER_THROUGHPUT_THRESHOLD 2000 /* Kbps */
101
102 typedef struct aptc_traffic_record {
103 bool timerScheduled;
104 struct timeval samplingTS;
105 unsigned long bytesReceived;
106 unsigned long bytesTransmitted;
107 } APTC_TRAFFIC_RECORD;
108
109 A_TIMER aptcTimer;
110 APTC_TRAFFIC_RECORD aptcTR;
111 #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
112
113 #ifdef EXPORT_HCI_BRIDGE_INTERFACE
114 // callbacks registered by HCI transport driver
115 struct hci_transport_callbacks ar6kHciTransCallbacks = { NULL };
116 #endif
117
118 unsigned int processDot11Hdr = 0;
119
120 char ifname[IFNAMSIZ] = {0,};
121
122 int wlaninitmode = WLAN_INIT_MODE_DEFAULT;
123 static bool bypasswmi;
124 unsigned int debuglevel = 0;
125 int tspecCompliance = ATHEROS_COMPLIANCE;
126 unsigned int busspeedlow = 0;
127 unsigned int onebitmode = 0;
128 unsigned int skipflash = 0;
129 unsigned int wmitimeout = 2;
130 unsigned int wlanNodeCaching = 1;
131 unsigned int enableuartprint = ENABLEUARTPRINT_DEFAULT;
132 unsigned int logWmiRawMsgs = 0;
133 unsigned int enabletimerwar = 0;
134 unsigned int num_device = 1;
135 unsigned int regscanmode;
136 unsigned int fwmode = 1;
137 unsigned int mbox_yield_limit = 99;
138 unsigned int enablerssicompensation = 0;
139 int reduce_credit_dribble = 1 + HTC_CONNECT_FLAGS_THRESHOLD_LEVEL_ONE_HALF;
140 int allow_trace_signal = 0;
141 #ifdef CONFIG_HOST_TCMD_SUPPORT
142 unsigned int testmode =0;
143 #endif
144
145 unsigned int irqprocmode = HIF_DEVICE_IRQ_SYNC_ONLY;//HIF_DEVICE_IRQ_ASYNC_SYNC;
146 unsigned int panic_on_assert = 1;
147 unsigned int nohifscattersupport = NOHIFSCATTERSUPPORT_DEFAULT;
148
149 unsigned int setuphci = SETUPHCI_DEFAULT;
150 unsigned int loghci = 0;
151 unsigned int setupbtdev = SETUPBTDEV_DEFAULT;
152 #ifndef EXPORT_HCI_BRIDGE_INTERFACE
153 unsigned int ar3khcibaud = AR3KHCIBAUD_DEFAULT;
154 unsigned int hciuartscale = HCIUARTSCALE_DEFAULT;
155 unsigned int hciuartstep = HCIUARTSTEP_DEFAULT;
156 #endif
157 unsigned int csumOffload=0;
158 unsigned int csumOffloadTest=0;
159 unsigned int eppingtest=0;
160 unsigned int mac_addr_method;
161 unsigned int firmware_bridge;
162
163 module_param_string(ifname, ifname, sizeof(ifname), 0644);
164 module_param(wlaninitmode, int, 0644);
165 module_param(bypasswmi, bool, 0644);
166 module_param(debuglevel, uint, 0644);
167 module_param(tspecCompliance, int, 0644);
168 module_param(onebitmode, uint, 0644);
169 module_param(busspeedlow, uint, 0644);
170 module_param(skipflash, uint, 0644);
171 module_param(wmitimeout, uint, 0644);
172 module_param(wlanNodeCaching, uint, 0644);
173 module_param(logWmiRawMsgs, uint, 0644);
174 module_param(enableuartprint, uint, 0644);
175 module_param(enabletimerwar, uint, 0644);
176 module_param(fwmode, uint, 0644);
177 module_param(mbox_yield_limit, uint, 0644);
178 module_param(reduce_credit_dribble, int, 0644);
179 module_param(allow_trace_signal, int, 0644);
180 module_param(enablerssicompensation, uint, 0644);
181 module_param(processDot11Hdr, uint, 0644);
182 module_param(csumOffload, uint, 0644);
183 #ifdef CONFIG_HOST_TCMD_SUPPORT
184 module_param(testmode, uint, 0644);
185 #endif
186 module_param(irqprocmode, uint, 0644);
187 module_param(nohifscattersupport, uint, 0644);
188 module_param(panic_on_assert, uint, 0644);
189 module_param(setuphci, uint, 0644);
190 module_param(loghci, uint, 0644);
191 module_param(setupbtdev, uint, 0644);
192 #ifndef EXPORT_HCI_BRIDGE_INTERFACE
193 module_param(ar3khcibaud, uint, 0644);
194 module_param(hciuartscale, uint, 0644);
195 module_param(hciuartstep, uint, 0644);
196 #endif
197 module_param(eppingtest, uint, 0644);
198
199 /* in 2.6.10 and later this is now a pointer to a uint */
200 unsigned int _mboxnum = HTC_MAILBOX_NUM_MAX;
201 #define mboxnum &_mboxnum
202
203 #ifdef DEBUG
204 u32 g_dbg_flags = DBG_DEFAULTS;
205 unsigned int debugflags = 0;
206 int debugdriver = 0;
207 unsigned int debughtc = 0;
208 unsigned int debugbmi = 0;
209 unsigned int debughif = 0;
210 unsigned int txcreditsavailable[HTC_MAILBOX_NUM_MAX] = {0};
211 unsigned int txcreditsconsumed[HTC_MAILBOX_NUM_MAX] = {0};
212 unsigned int txcreditintrenable[HTC_MAILBOX_NUM_MAX] = {0};
213 unsigned int txcreditintrenableaggregate[HTC_MAILBOX_NUM_MAX] = {0};
214 module_param(debugflags, uint, 0644);
215 module_param(debugdriver, int, 0644);
216 module_param(debughtc, uint, 0644);
217 module_param(debugbmi, uint, 0644);
218 module_param(debughif, uint, 0644);
219 module_param_array(txcreditsavailable, uint, mboxnum, 0644);
220 module_param_array(txcreditsconsumed, uint, mboxnum, 0644);
221 module_param_array(txcreditintrenable, uint, mboxnum, 0644);
222 module_param_array(txcreditintrenableaggregate, uint, mboxnum, 0644);
223
224 #endif /* DEBUG */
225
226 unsigned int resetok = 1;
227 unsigned int tx_attempt[HTC_MAILBOX_NUM_MAX] = {0};
228 unsigned int tx_post[HTC_MAILBOX_NUM_MAX] = {0};
229 unsigned int tx_complete[HTC_MAILBOX_NUM_MAX] = {0};
230 unsigned int hifBusRequestNumMax = 40;
231 unsigned int war23838_disabled = 0;
232 #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
233 unsigned int enableAPTCHeuristics = 1;
234 #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
235 module_param_array(tx_attempt, uint, mboxnum, 0644);
236 module_param_array(tx_post, uint, mboxnum, 0644);
237 module_param_array(tx_complete, uint, mboxnum, 0644);
238 module_param(hifBusRequestNumMax, uint, 0644);
239 module_param(war23838_disabled, uint, 0644);
240 module_param(resetok, uint, 0644);
241 #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
242 module_param(enableAPTCHeuristics, uint, 0644);
243 #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
244
245 #ifdef BLOCK_TX_PATH_FLAG
246 int blocktx = 0;
247 module_param(blocktx, int, 0644);
248 #endif /* BLOCK_TX_PATH_FLAG */
249
250 typedef struct user_rssi_compensation_t {
251 u16 customerID;
252 union {
253 u16 a_enable;
254 u16 bg_enable;
255 u16 enable;
256 };
257 s16 bg_param_a;
258 s16 bg_param_b;
259 s16 a_param_a;
260 s16 a_param_b;
261 u32 reserved;
262 } USER_RSSI_CPENSATION;
263
264 static USER_RSSI_CPENSATION rssi_compensation_param;
265
266 static s16 rssi_compensation_table[96];
267
268 int reconnect_flag = 0;
269 static ar6k_pal_config_t ar6k_pal_config_g;
270
271 /* Function declarations */
272 static int ar6000_init_module(void);
273 static void ar6000_cleanup_module(void);
274
275 int ar6000_init(struct net_device *dev);
276 static int ar6000_open(struct net_device *dev);
277 static int ar6000_close(struct net_device *dev);
278 static void ar6000_init_control_info(struct ar6_softc *ar);
279 static int ar6000_data_tx(struct sk_buff *skb, struct net_device *dev);
280
281 void ar6000_destroy(struct net_device *dev, unsigned int unregister);
282 static void ar6000_detect_error(unsigned long ptr);
283 static void ar6000_set_multicast_list(struct net_device *dev);
284 static struct net_device_stats *ar6000_get_stats(struct net_device *dev);
285
286 static void disconnect_timer_handler(unsigned long ptr);
287
288 void read_rssi_compensation_param(struct ar6_softc *ar);
289
290 /*
291 * HTC service connection handlers
292 */
293 static int ar6000_avail_ev(void *context, void *hif_handle);
294
295 static int ar6000_unavail_ev(void *context, void *hif_handle);
296
297 int ar6000_configure_target(struct ar6_softc *ar);
298
299 static void ar6000_target_failure(void *Instance, int Status);
300
301 static void ar6000_rx(void *Context, struct htc_packet *pPacket);
302
303 static void ar6000_rx_refill(void *Context,HTC_ENDPOINT_ID Endpoint);
304
305 static void ar6000_tx_complete(void *Context, struct htc_packet_queue *pPackets);
306
307 static HTC_SEND_FULL_ACTION ar6000_tx_queue_full(void *Context, struct htc_packet *pPacket);
308
309 static void ar6000_alloc_netbufs(A_NETBUF_QUEUE_T *q, u16 num);
310 static void ar6000_deliver_frames_to_nw_stack(void * dev, void *osbuf);
311 //static void ar6000_deliver_frames_to_bt_stack(void * dev, void *osbuf);
312
313 static struct htc_packet *ar6000_alloc_amsdu_rxbuf(void *Context, HTC_ENDPOINT_ID Endpoint, int Length);
314
315 static void ar6000_refill_amsdu_rxbufs(struct ar6_softc *ar, int Count);
316
317 static void ar6000_cleanup_amsdu_rxbufs(struct ar6_softc *ar);
318
319 static ssize_t
320 ar6000_sysfs_bmi_read(struct file *fp, struct kobject *kobj,
321 struct bin_attribute *bin_attr,
322 char *buf, loff_t pos, size_t count);
323
324 static ssize_t
325 ar6000_sysfs_bmi_write(struct file *fp, struct kobject *kobj,
326 struct bin_attribute *bin_attr,
327 char *buf, loff_t pos, size_t count);
328
329 static int
330 ar6000_sysfs_bmi_init(struct ar6_softc *ar);
331
332 void ar6k_cleanup_hci_pal(struct ar6_softc *ar);
333
334 static void
335 ar6000_sysfs_bmi_deinit(struct ar6_softc *ar);
336
337 int
338 ar6000_sysfs_bmi_get_config(struct ar6_softc *ar, u32 mode);
339
340 /*
341 * Static variables
342 */
343
344 struct net_device *ar6000_devices[MAX_AR6000];
345 static int is_netdev_registered;
346 DECLARE_WAIT_QUEUE_HEAD(arEvent);
347 static void ar6000_cookie_init(struct ar6_softc *ar);
348 static void ar6000_cookie_cleanup(struct ar6_softc *ar);
349 static void ar6000_free_cookie(struct ar6_softc *ar, struct ar_cookie * cookie);
350 static struct ar_cookie *ar6000_alloc_cookie(struct ar6_softc *ar);
351
352 static int ar6000_reinstall_keys(struct ar6_softc *ar,u8 key_op_ctrl);
353
354 #ifdef CONFIG_AP_VIRTUAL_ADAPTER_SUPPORT
355 struct net_device *arApNetDev;
356 #endif /* CONFIG_AP_VIRTUAL_ADAPTER_SUPPORT */
357
358 static struct ar_cookie s_ar_cookie_mem[MAX_COOKIE_NUM];
359
360 #define HOST_INTEREST_ITEM_ADDRESS(ar, item) \
361 (((ar)->arTargetType == TARGET_TYPE_AR6002) ? AR6002_HOST_INTEREST_ITEM_ADDRESS(item) : \
362 (((ar)->arTargetType == TARGET_TYPE_AR6003) ? AR6003_HOST_INTEREST_ITEM_ADDRESS(item) : 0))
363
364
365 static struct net_device_ops ar6000_netdev_ops = {
366 .ndo_init = NULL,
367 .ndo_open = ar6000_open,
368 .ndo_stop = ar6000_close,
369 .ndo_get_stats = ar6000_get_stats,
370 .ndo_start_xmit = ar6000_data_tx,
371 .ndo_set_multicast_list = ar6000_set_multicast_list,
372 };
373
374 /* Debug log support */
375
376 /*
377 * Flag to govern whether the debug logs should be parsed in the kernel
378 * or reported to the application.
379 */
380 #define REPORT_DEBUG_LOGS_TO_APP
381
382 int
383 ar6000_set_host_app_area(struct ar6_softc *ar)
384 {
385 u32 address, data;
386 struct host_app_area_s host_app_area;
387
388 /* Fetch the address of the host_app_area_s instance in the host interest area */
389 address = TARG_VTOP(ar->arTargetType, HOST_INTEREST_ITEM_ADDRESS(ar, hi_app_host_interest));
390 if (ar6000_ReadRegDiag(ar->arHifDevice, &address, &data) != 0) {
391 return A_ERROR;
392 }
393 address = TARG_VTOP(ar->arTargetType, data);
394 host_app_area.wmi_protocol_ver = WMI_PROTOCOL_VERSION;
395 if (ar6000_WriteDataDiag(ar->arHifDevice, address,
396 (u8 *)&host_app_area,
397 sizeof(struct host_app_area_s)) != 0)
398 {
399 return A_ERROR;
400 }
401
402 return 0;
403 }
404
405 u32 dbglog_get_debug_hdr_ptr(struct ar6_softc *ar)
406 {
407 u32 param;
408 u32 address;
409 int status;
410
411 address = TARG_VTOP(ar->arTargetType, HOST_INTEREST_ITEM_ADDRESS(ar, hi_dbglog_hdr));
412 if ((status = ar6000_ReadDataDiag(ar->arHifDevice, address,
413 (u8 *)&param, 4)) != 0)
414 {
415 param = 0;
416 }
417
418 return param;
419 }
420
421 /*
422 * The dbglog module has been initialized. Its ok to access the relevant
423 * data stuctures over the diagnostic window.
424 */
425 void
426 ar6000_dbglog_init_done(struct ar6_softc *ar)
427 {
428 ar->dbglog_init_done = true;
429 }
430
431 u32 dbglog_get_debug_fragment(s8 *datap, u32 len, u32 limit)
432 {
433 s32 *buffer;
434 u32 count;
435 u32 numargs;
436 u32 length;
437 u32 fraglen;
438
439 count = fraglen = 0;
440 buffer = (s32 *)datap;
441 length = (limit >> 2);
442
443 if (len <= limit) {
444 fraglen = len;
445 } else {
446 while (count < length) {
447 numargs = DBGLOG_GET_NUMARGS(buffer[count]);
448 fraglen = (count << 2);
449 count += numargs + 1;
450 }
451 }
452
453 return fraglen;
454 }
455
456 void
457 dbglog_parse_debug_logs(s8 *datap, u32 len)
458 {
459 s32 *buffer;
460 u32 count;
461 u32 timestamp;
462 u32 debugid;
463 u32 moduleid;
464 u32 numargs;
465 u32 length;
466
467 count = 0;
468 buffer = (s32 *)datap;
469 length = (len >> 2);
470 while (count < length) {
471 debugid = DBGLOG_GET_DBGID(buffer[count]);
472 moduleid = DBGLOG_GET_MODULEID(buffer[count]);
473 numargs = DBGLOG_GET_NUMARGS(buffer[count]);
474 timestamp = DBGLOG_GET_TIMESTAMP(buffer[count]);
475 switch (numargs) {
476 case 0:
477 AR_DEBUG_PRINTF(ATH_DEBUG_DBG_LOG,("%d %d (%d)\n", moduleid, debugid, timestamp));
478 break;
479
480 case 1:
481 AR_DEBUG_PRINTF(ATH_DEBUG_DBG_LOG,("%d %d (%d): 0x%x\n", moduleid, debugid,
482 timestamp, buffer[count+1]));
483 break;
484
485 case 2:
486 AR_DEBUG_PRINTF(ATH_DEBUG_DBG_LOG,("%d %d (%d): 0x%x, 0x%x\n", moduleid, debugid,
487 timestamp, buffer[count+1], buffer[count+2]));
488 break;
489
490 default:
491 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Invalid args: %d\n", numargs));
492 }
493 count += numargs + 1;
494 }
495 }
496
497 int
498 ar6000_dbglog_get_debug_logs(struct ar6_softc *ar)
499 {
500 u32 data[8]; /* Should be able to accommodate struct dbglog_buf_s */
501 u32 address;
502 u32 length;
503 u32 dropped;
504 u32 firstbuf;
505 u32 debug_hdr_ptr;
506
507 if (!ar->dbglog_init_done) return A_ERROR;
508
509
510 AR6000_SPIN_LOCK(&ar->arLock, 0);
511
512 if (ar->dbgLogFetchInProgress) {
513 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
514 return A_EBUSY;
515 }
516
517 /* block out others */
518 ar->dbgLogFetchInProgress = true;
519
520 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
521
522 debug_hdr_ptr = dbglog_get_debug_hdr_ptr(ar);
523 printk("debug_hdr_ptr: 0x%x\n", debug_hdr_ptr);
524
525 /* Get the contents of the ring buffer */
526 if (debug_hdr_ptr) {
527 address = TARG_VTOP(ar->arTargetType, debug_hdr_ptr);
528 length = 4 /* sizeof(dbuf) */ + 4 /* sizeof(dropped) */;
529 A_MEMZERO(data, sizeof(data));
530 ar6000_ReadDataDiag(ar->arHifDevice, address, (u8 *)data, length);
531 address = TARG_VTOP(ar->arTargetType, data[0] /* dbuf */);
532 firstbuf = address;
533 dropped = data[1]; /* dropped */
534 length = 4 /* sizeof(next) */ + 4 /* sizeof(buffer) */ + 4 /* sizeof(bufsize) */ + 4 /* sizeof(length) */ + 4 /* sizeof(count) */ + 4 /* sizeof(free) */;
535 A_MEMZERO(data, sizeof(data));
536 ar6000_ReadDataDiag(ar->arHifDevice, address, (u8 *)&data, length);
537
538 do {
539 address = TARG_VTOP(ar->arTargetType, data[1] /* buffer*/);
540 length = data[3]; /* length */
541 if ((length) && (length <= data[2] /* bufsize*/)) {
542 /* Rewind the index if it is about to overrun the buffer */
543 if (ar->log_cnt > (DBGLOG_HOST_LOG_BUFFER_SIZE - length)) {
544 ar->log_cnt = 0;
545 }
546 if(0 != ar6000_ReadDataDiag(ar->arHifDevice, address,
547 (u8 *)&ar->log_buffer[ar->log_cnt], length))
548 {
549 break;
550 }
551 ar6000_dbglog_event(ar, dropped, (s8 *)&ar->log_buffer[ar->log_cnt], length);
552 ar->log_cnt += length;
553 } else {
554 AR_DEBUG_PRINTF(ATH_DEBUG_DBG_LOG,("Length: %d (Total size: %d)\n",
555 data[3], data[2]));
556 }
557
558 address = TARG_VTOP(ar->arTargetType, data[0] /* next */);
559 length = 4 /* sizeof(next) */ + 4 /* sizeof(buffer) */ + 4 /* sizeof(bufsize) */ + 4 /* sizeof(length) */ + 4 /* sizeof(count) */ + 4 /* sizeof(free) */;
560 A_MEMZERO(data, sizeof(data));
561 if(0 != ar6000_ReadDataDiag(ar->arHifDevice, address,
562 (u8 *)&data, length))
563 {
564 break;
565 }
566
567 } while (address != firstbuf);
568 }
569
570 ar->dbgLogFetchInProgress = false;
571
572 return 0;
573 }
574
575 void
576 ar6000_dbglog_event(struct ar6_softc *ar, u32 dropped,
577 s8 *buffer, u32 length)
578 {
579 #ifdef REPORT_DEBUG_LOGS_TO_APP
580 #define MAX_WIRELESS_EVENT_SIZE 252
581 /*
582 * Break it up into chunks of MAX_WIRELESS_EVENT_SIZE bytes of messages.
583 * There seems to be a limitation on the length of message that could be
584 * transmitted to the user app via this mechanism.
585 */
586 u32 send, sent;
587
588 sent = 0;
589 send = dbglog_get_debug_fragment(&buffer[sent], length - sent,
590 MAX_WIRELESS_EVENT_SIZE);
591 while (send) {
592 sent += send;
593 send = dbglog_get_debug_fragment(&buffer[sent], length - sent,
594 MAX_WIRELESS_EVENT_SIZE);
595 }
596 #else
597 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Dropped logs: 0x%x\nDebug info length: %d\n",
598 dropped, length));
599
600 /* Interpret the debug logs */
601 dbglog_parse_debug_logs((s8 *)buffer, length);
602 #endif /* REPORT_DEBUG_LOGS_TO_APP */
603 }
604
605
606 static int __init
607 ar6000_init_module(void)
608 {
609 static int probed = 0;
610 int r;
611 OSDRV_CALLBACKS osdrvCallbacks;
612
613 a_module_debug_support_init();
614
615 #ifdef DEBUG
616 /* check for debug mask overrides */
617 if (debughtc != 0) {
618 ATH_DEBUG_SET_DEBUG_MASK(htc,debughtc);
619 }
620 if (debugbmi != 0) {
621 ATH_DEBUG_SET_DEBUG_MASK(bmi,debugbmi);
622 }
623 if (debughif != 0) {
624 ATH_DEBUG_SET_DEBUG_MASK(hif,debughif);
625 }
626 if (debugdriver != 0) {
627 ATH_DEBUG_SET_DEBUG_MASK(driver,debugdriver);
628 }
629
630 #endif
631
632 A_REGISTER_MODULE_DEBUG_INFO(driver);
633
634 A_MEMZERO(&osdrvCallbacks,sizeof(osdrvCallbacks));
635 osdrvCallbacks.deviceInsertedHandler = ar6000_avail_ev;
636 osdrvCallbacks.deviceRemovedHandler = ar6000_unavail_ev;
637 #ifdef CONFIG_PM
638 osdrvCallbacks.deviceSuspendHandler = ar6000_suspend_ev;
639 osdrvCallbacks.deviceResumeHandler = ar6000_resume_ev;
640 osdrvCallbacks.devicePowerChangeHandler = ar6000_power_change_ev;
641 #endif
642
643 #ifdef DEBUG
644 /* Set the debug flags if specified at load time */
645 if(debugflags != 0)
646 {
647 g_dbg_flags = debugflags;
648 }
649 #endif
650
651 if (probed) {
652 return -ENODEV;
653 }
654 probed++;
655
656 #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
657 memset(&aptcTR, 0, sizeof(APTC_TRAFFIC_RECORD));
658 #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
659
660 r = HIFInit(&osdrvCallbacks);
661 if (r)
662 return r;
663
664 return 0;
665 }
666
667 static void __exit
668 ar6000_cleanup_module(void)
669 {
670 int i = 0;
671 struct net_device *ar6000_netdev;
672
673 #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
674 /* Delete the Adaptive Power Control timer */
675 if (timer_pending(&aptcTimer)) {
676 del_timer_sync(&aptcTimer);
677 }
678 #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
679
680 for (i=0; i < MAX_AR6000; i++) {
681 if (ar6000_devices[i] != NULL) {
682 ar6000_netdev = ar6000_devices[i];
683 ar6000_devices[i] = NULL;
684 ar6000_destroy(ar6000_netdev, 1);
685 }
686 }
687
688 HIFShutDownDevice(NULL);
689
690 a_module_debug_support_cleanup();
691
692 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("ar6000_cleanup: success\n"));
693 }
694
695 #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
696 void
697 aptcTimerHandler(unsigned long arg)
698 {
699 u32 numbytes;
700 u32 throughput;
701 struct ar6_softc *ar;
702 int status;
703
704 ar = (struct ar6_softc *)arg;
705 A_ASSERT(ar != NULL);
706 A_ASSERT(!timer_pending(&aptcTimer));
707
708 AR6000_SPIN_LOCK(&ar->arLock, 0);
709
710 /* Get the number of bytes transferred */
711 numbytes = aptcTR.bytesTransmitted + aptcTR.bytesReceived;
712 aptcTR.bytesTransmitted = aptcTR.bytesReceived = 0;
713
714 /* Calculate and decide based on throughput thresholds */
715 throughput = ((numbytes * 8)/APTC_TRAFFIC_SAMPLING_INTERVAL); /* Kbps */
716 if (throughput < APTC_LOWER_THROUGHPUT_THRESHOLD) {
717 /* Enable Sleep and delete the timer */
718 A_ASSERT(ar->arWmiReady == true);
719 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
720 status = wmi_powermode_cmd(ar->arWmi, REC_POWER);
721 AR6000_SPIN_LOCK(&ar->arLock, 0);
722 A_ASSERT(status == 0);
723 aptcTR.timerScheduled = false;
724 } else {
725 A_TIMEOUT_MS(&aptcTimer, APTC_TRAFFIC_SAMPLING_INTERVAL, 0);
726 }
727
728 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
729 }
730 #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
731
732 static void
733 ar6000_alloc_netbufs(A_NETBUF_QUEUE_T *q, u16 num)
734 {
735 void * osbuf;
736
737 while(num) {
738 if((osbuf = A_NETBUF_ALLOC(AR6000_BUFFER_SIZE))) {
739 A_NETBUF_ENQUEUE(q, osbuf);
740 } else {
741 break;
742 }
743 num--;
744 }
745
746 if(num) {
747 A_PRINTF("%s(), allocation of netbuf failed", __func__);
748 }
749 }
750
751 static struct bin_attribute bmi_attr = {
752 .attr = {.name = "bmi", .mode = 0600},
753 .read = ar6000_sysfs_bmi_read,
754 .write = ar6000_sysfs_bmi_write,
755 };
756
757 static ssize_t
758 ar6000_sysfs_bmi_read(struct file *fp, struct kobject *kobj,
759 struct bin_attribute *bin_attr,
760 char *buf, loff_t pos, size_t count)
761 {
762 int index;
763 struct ar6_softc *ar;
764 struct hif_device_os_device_info *osDevInfo;
765
766 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("BMI: Read %d bytes\n", (u32)count));
767 for (index=0; index < MAX_AR6000; index++) {
768 ar = (struct ar6_softc *)ar6k_priv(ar6000_devices[index]);
769 osDevInfo = &ar->osDevInfo;
770 if (kobj == (&(((struct device *)osDevInfo->pOSDevice)->kobj))) {
771 break;
772 }
773 }
774
775 if (index == MAX_AR6000) return 0;
776
777 if ((BMIRawRead(ar->arHifDevice, (u8*)buf, count, true)) != 0) {
778 return 0;
779 }
780
781 return count;
782 }
783
784 static ssize_t
785 ar6000_sysfs_bmi_write(struct file *fp, struct kobject *kobj,
786 struct bin_attribute *bin_attr,
787 char *buf, loff_t pos, size_t count)
788 {
789 int index;
790 struct ar6_softc *ar;
791 struct hif_device_os_device_info *osDevInfo;
792
793 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("BMI: Write %d bytes\n", (u32)count));
794 for (index=0; index < MAX_AR6000; index++) {
795 ar = (struct ar6_softc *)ar6k_priv(ar6000_devices[index]);
796 osDevInfo = &ar->osDevInfo;
797 if (kobj == (&(((struct device *)osDevInfo->pOSDevice)->kobj))) {
798 break;
799 }
800 }
801
802 if (index == MAX_AR6000) return 0;
803
804 if ((BMIRawWrite(ar->arHifDevice, (u8*)buf, count)) != 0) {
805 return 0;
806 }
807
808 return count;
809 }
810
811 static int
812 ar6000_sysfs_bmi_init(struct ar6_softc *ar)
813 {
814 int status;
815
816 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("BMI: Creating sysfs entry\n"));
817 A_MEMZERO(&ar->osDevInfo, sizeof(struct hif_device_os_device_info));
818
819 /* Get the underlying OS device */
820 status = HIFConfigureDevice(ar->arHifDevice,
821 HIF_DEVICE_GET_OS_DEVICE,
822 &ar->osDevInfo,
823 sizeof(struct hif_device_os_device_info));
824
825 if (status) {
826 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("BMI: Failed to get OS device info from HIF\n"));
827 return A_ERROR;
828 }
829
830 /* Create a bmi entry in the sysfs filesystem */
831 if ((sysfs_create_bin_file(&(((struct device *)ar->osDevInfo.pOSDevice)->kobj), &bmi_attr)) < 0)
832 {
833 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMI: Failed to create entry for bmi in sysfs filesystem\n"));
834 return A_ERROR;
835 }
836
837 return 0;
838 }
839
840 static void
841 ar6000_sysfs_bmi_deinit(struct ar6_softc *ar)
842 {
843 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("BMI: Deleting sysfs entry\n"));
844
845 sysfs_remove_bin_file(&(((struct device *)ar->osDevInfo.pOSDevice)->kobj), &bmi_attr);
846 }
847
848 #define bmifn(fn) do { \
849 if ((fn) < 0) { \
850 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("BMI operation failed: %d\n", __LINE__)); \
851 return A_ERROR; \
852 } \
853 } while(0)
854
855 #ifdef SOFTMAC_FILE_USED
856 #define AR6002_MAC_ADDRESS_OFFSET 0x0A
857 #define AR6003_MAC_ADDRESS_OFFSET 0x16
858 static
859 void calculate_crc(u32 TargetType, u8 *eeprom_data)
860 {
861 u16 *ptr_crc;
862 u16 *ptr16_eeprom;
863 u16 checksum;
864 u32 i;
865 u32 eeprom_size;
866
867 if (TargetType == TARGET_TYPE_AR6001)
868 {
869 eeprom_size = 512;
870 ptr_crc = (u16 *)eeprom_data;
871 }
872 else if (TargetType == TARGET_TYPE_AR6003)
873 {
874 eeprom_size = 1024;
875 ptr_crc = (u16 *)((u8 *)eeprom_data + 0x04);
876 }
877 else
878 {
879 eeprom_size = 768;
880 ptr_crc = (u16 *)((u8 *)eeprom_data + 0x04);
881 }
882
883
884 // Clear the crc
885 *ptr_crc = 0;
886
887 // Recalculate new CRC
888 checksum = 0;
889 ptr16_eeprom = (u16 *)eeprom_data;
890 for (i = 0;i < eeprom_size; i += 2)
891 {
892 checksum = checksum ^ (*ptr16_eeprom);
893 ptr16_eeprom++;
894 }
895 checksum = 0xFFFF ^ checksum;
896 *ptr_crc = checksum;
897 }
898
899 static void
900 ar6000_softmac_update(struct ar6_softc *ar, u8 *eeprom_data, size_t size)
901 {
902 const char *source = "random generated";
903 const struct firmware *softmac_entry;
904 u8 *ptr_mac;
905 switch (ar->arTargetType) {
906 case TARGET_TYPE_AR6002:
907 ptr_mac = (u8 *)((u8 *)eeprom_data + AR6002_MAC_ADDRESS_OFFSET);
908 break;
909 case TARGET_TYPE_AR6003:
910 ptr_mac = (u8 *)((u8 *)eeprom_data + AR6003_MAC_ADDRESS_OFFSET);
911 break;
912 default:
913 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Invalid Target Type\n"));
914 return;
915 }
916 printk(KERN_DEBUG "MAC from EEPROM %pM\n", ptr_mac);
917
918 /* create a random MAC in case we cannot read file from system */
919 ptr_mac[0] = 0;
920 ptr_mac[1] = 0x03;
921 ptr_mac[2] = 0x7F;
922 ptr_mac[3] = random32() & 0xff;
923 ptr_mac[4] = random32() & 0xff;
924 ptr_mac[5] = random32() & 0xff;
925 if ((A_REQUEST_FIRMWARE(&softmac_entry, "softmac", ((struct device *)ar->osDevInfo.pOSDevice))) == 0)
926 {
927 char *macbuf = A_MALLOC_NOWAIT(softmac_entry->size+1);
928 if (macbuf) {
929 unsigned int softmac[6];
930 memcpy(macbuf, softmac_entry->data, softmac_entry->size);
931 macbuf[softmac_entry->size] = '\0';
932 if (sscanf(macbuf, "%02x:%02x:%02x:%02x:%02x:%02x",
933 &softmac[0], &softmac[1], &softmac[2],
934 &softmac[3], &softmac[4], &softmac[5])==6) {
935 int i;
936 for (i=0; i<6; ++i) {
937 ptr_mac[i] = softmac[i] & 0xff;
938 }
939 source = "softmac file";
940 }
941 kfree(macbuf);
942 }
943 A_RELEASE_FIRMWARE(softmac_entry);
944 }
945 printk(KERN_DEBUG "MAC from %s %pM\n", source, ptr_mac);
946 calculate_crc(ar->arTargetType, eeprom_data);
947 }
948 #endif /* SOFTMAC_FILE_USED */
949
950 static int
951 ar6000_transfer_bin_file(struct ar6_softc *ar, AR6K_BIN_FILE file, u32 address, bool compressed)
952 {
953 int status;
954 const char *filename;
955 const struct firmware *fw_entry;
956 u32 fw_entry_size;
957 u8 **buf;
958 size_t *buf_len;
959
960 switch (file) {
961 case AR6K_OTP_FILE:
962 buf = &ar->fw_otp;
963 buf_len = &ar->fw_otp_len;
964 if (ar->arVersion.target_ver == AR6003_REV1_VERSION) {
965 filename = AR6003_REV1_OTP_FILE;
966 } else if (ar->arVersion.target_ver == AR6003_REV2_VERSION) {
967 filename = AR6003_REV2_OTP_FILE;
968 } else if (ar->arVersion.target_ver == AR6003_REV3_VERSION) {
969 filename = AR6003_REV3_OTP_FILE;
970 } else {
971 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Unknown firmware revision: %d\n", ar->arVersion.target_ver));
972 return A_ERROR;
973 }
974 break;
975
976 case AR6K_FIRMWARE_FILE:
977 buf = &ar->fw;
978 buf_len = &ar->fw_len;
979 if (ar->arVersion.target_ver == AR6003_REV1_VERSION) {
980 filename = AR6003_REV1_FIRMWARE_FILE;
981 } else if (ar->arVersion.target_ver == AR6003_REV2_VERSION) {
982 filename = AR6003_REV2_FIRMWARE_FILE;
983 } else if (ar->arVersion.target_ver == AR6003_REV3_VERSION) {
984 filename = AR6003_REV3_FIRMWARE_FILE;
985 } else {
986 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Unknown firmware revision: %d\n", ar->arVersion.target_ver));
987 return A_ERROR;
988 }
989
990 if (eppingtest) {
991 bypasswmi = true;
992 if (ar->arVersion.target_ver == AR6003_REV1_VERSION) {
993 filename = AR6003_REV1_EPPING_FIRMWARE_FILE;
994 } else if (ar->arVersion.target_ver == AR6003_REV2_VERSION) {
995 filename = AR6003_REV2_EPPING_FIRMWARE_FILE;
996 } else if (ar->arVersion.target_ver == AR6003_REV3_VERSION) {
997 filename = AR6003_REV3_EPPING_FIRMWARE_FILE;
998 } else {
999 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("eppingtest : unsupported firmware revision: %d\n",
1000 ar->arVersion.target_ver));
1001 return A_ERROR;
1002 }
1003 compressed = false;
1004 }
1005
1006 #ifdef CONFIG_HOST_TCMD_SUPPORT
1007 if(testmode) {
1008 if (ar->arVersion.target_ver == AR6003_REV1_VERSION) {
1009 filename = AR6003_REV1_TCMD_FIRMWARE_FILE;
1010 } else if (ar->arVersion.target_ver == AR6003_REV2_VERSION) {
1011 filename = AR6003_REV2_TCMD_FIRMWARE_FILE;
1012 } else if (ar->arVersion.target_ver == AR6003_REV3_VERSION) {
1013 filename = AR6003_REV3_TCMD_FIRMWARE_FILE;
1014 } else {
1015 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Unknown firmware revision: %d\n", ar->arVersion.target_ver));
1016 return A_ERROR;
1017 }
1018 compressed = false;
1019 }
1020 #endif
1021 #ifdef HTC_RAW_INTERFACE
1022 if (!eppingtest && bypasswmi) {
1023 if (ar->arVersion.target_ver == AR6003_REV1_VERSION) {
1024 filename = AR6003_REV1_ART_FIRMWARE_FILE;
1025 } else if (ar->arVersion.target_ver == AR6003_REV2_VERSION) {
1026 filename = AR6003_REV2_ART_FIRMWARE_FILE;
1027 } else {
1028 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Unknown firmware revision: %d\n", ar->arVersion.target_ver));
1029 return A_ERROR;
1030 }
1031 compressed = false;
1032 }
1033 #endif
1034 break;
1035
1036 case AR6K_PATCH_FILE:
1037 buf = &ar->fw_patch;
1038 buf_len = &ar->fw_patch_len;
1039 if (ar->arVersion.target_ver == AR6003_REV1_VERSION) {
1040 filename = AR6003_REV1_PATCH_FILE;
1041 } else if (ar->arVersion.target_ver == AR6003_REV2_VERSION) {
1042 filename = AR6003_REV2_PATCH_FILE;
1043 } else if (ar->arVersion.target_ver == AR6003_REV3_VERSION) {
1044 filename = AR6003_REV3_PATCH_FILE;
1045 } else {
1046 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Unknown firmware revision: %d\n", ar->arVersion.target_ver));
1047 return A_ERROR;
1048 }
1049 break;
1050
1051 case AR6K_BOARD_DATA_FILE:
1052 buf = &ar->fw_data;
1053 buf_len = &ar->fw_data_len;
1054 if (ar->arVersion.target_ver == AR6003_REV1_VERSION) {
1055 filename = AR6003_REV1_BOARD_DATA_FILE;
1056 } else if (ar->arVersion.target_ver == AR6003_REV2_VERSION) {
1057 filename = AR6003_REV2_BOARD_DATA_FILE;
1058 } else if (ar->arVersion.target_ver == AR6003_REV3_VERSION) {
1059 filename = AR6003_REV3_BOARD_DATA_FILE;
1060 } else {
1061 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Unknown firmware revision: %d\n", ar->arVersion.target_ver));
1062 return A_ERROR;
1063 }
1064 break;
1065
1066 default:
1067 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Unknown file type: %d\n", file));
1068 return A_ERROR;
1069 }
1070
1071 if (*buf == NULL) {
1072 if ((A_REQUEST_FIRMWARE(&fw_entry, filename, ((struct device *)ar->osDevInfo.pOSDevice))) != 0) {
1073 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Failed to get %s\n", filename));
1074 return A_ENOENT;
1075 }
1076
1077 *buf = kmemdup(fw_entry->data, fw_entry->size, GFP_KERNEL);
1078 *buf_len = fw_entry->size;
1079 A_RELEASE_FIRMWARE(fw_entry);
1080 }
1081
1082 #ifdef SOFTMAC_FILE_USED
1083 if (file==AR6K_BOARD_DATA_FILE && *buf_len) {
1084 ar6000_softmac_update(ar, *buf, *buf_len);
1085 }
1086 #endif
1087
1088
1089 fw_entry_size = *buf_len;
1090
1091 /* Load extended board data for AR6003 */
1092 if ((file==AR6K_BOARD_DATA_FILE) && *buf) {
1093 u32 board_ext_address;
1094 u32 board_ext_data_size;
1095 u32 board_data_size;
1096
1097 board_ext_data_size = (((ar)->arTargetType == TARGET_TYPE_AR6002) ? AR6002_BOARD_EXT_DATA_SZ : \
1098 (((ar)->arTargetType == TARGET_TYPE_AR6003) ? AR6003_BOARD_EXT_DATA_SZ : 0));
1099
1100 board_data_size = (((ar)->arTargetType == TARGET_TYPE_AR6002) ? AR6002_BOARD_DATA_SZ : \
1101 (((ar)->arTargetType == TARGET_TYPE_AR6003) ? AR6003_BOARD_DATA_SZ : 0));
1102
1103 /* Determine where in Target RAM to write Board Data */
1104 bmifn(BMIReadMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_board_ext_data), (u8 *)&board_ext_address, 4));
1105 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("Board extended Data download address: 0x%x\n", board_ext_address));
1106
1107 /* check whether the target has allocated memory for extended board data and file contains extended board data */
1108 if ((board_ext_address) && (*buf_len == (board_data_size + board_ext_data_size))) {
1109 u32 param;
1110
1111 status = BMIWriteMemory(ar->arHifDevice, board_ext_address, (u8 *)(*buf + board_data_size), board_ext_data_size);
1112
1113 if (status) {
1114 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("BMI operation failed: %d\n", __LINE__));
1115 return A_ERROR;
1116 }
1117
1118 /* Record the fact that extended board Data IS initialized */
1119 param = (board_ext_data_size << 16) | 1;
1120 bmifn(BMIWriteMemory(ar->arHifDevice,
1121 HOST_INTEREST_ITEM_ADDRESS(ar, hi_board_ext_data_config),
1122 (unsigned char *)&param, 4));
1123 }
1124 fw_entry_size = board_data_size;
1125 }
1126
1127 if (compressed) {
1128 status = BMIFastDownload(ar->arHifDevice, address, *buf, fw_entry_size);
1129 } else {
1130 status = BMIWriteMemory(ar->arHifDevice, address, *buf, fw_entry_size);
1131 }
1132
1133 if (status) {
1134 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("BMI operation failed: %d\n", __LINE__));
1135 return A_ERROR;
1136 }
1137
1138 return 0;
1139 }
1140
1141 int
1142 ar6000_update_bdaddr(struct ar6_softc *ar)
1143 {
1144
1145 if (setupbtdev != 0) {
1146 u32 address;
1147
1148 if (BMIReadMemory(ar->arHifDevice,
1149 HOST_INTEREST_ITEM_ADDRESS(ar, hi_board_data), (u8 *)&address, 4) != 0)
1150 {
1151 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIReadMemory for hi_board_data failed\n"));
1152 return A_ERROR;
1153 }
1154
1155 if (BMIReadMemory(ar->arHifDevice, address + BDATA_BDADDR_OFFSET, (u8 *)ar->bdaddr, 6) != 0)
1156 {
1157 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIReadMemory for BD address failed\n"));
1158 return A_ERROR;
1159 }
1160 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BDADDR 0x%x:0x%x:0x%x:0x%x:0x%x:0x%x\n", ar->bdaddr[0],
1161 ar->bdaddr[1], ar->bdaddr[2], ar->bdaddr[3],
1162 ar->bdaddr[4], ar->bdaddr[5]));
1163 }
1164
1165 return 0;
1166 }
1167
1168 int
1169 ar6000_sysfs_bmi_get_config(struct ar6_softc *ar, u32 mode)
1170 {
1171 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("BMI: Requesting device specific configuration\n"));
1172
1173 if (mode == WLAN_INIT_MODE_UDEV) {
1174 char version[16];
1175 const struct firmware *fw_entry;
1176
1177 /* Get config using udev through a script in user space */
1178 sprintf(version, "%2.2x", ar->arVersion.target_ver);
1179 if ((A_REQUEST_FIRMWARE(&fw_entry, version, ((struct device *)ar->osDevInfo.pOSDevice))) != 0)
1180 {
1181 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("BMI: Failure to get configuration for target version: %s\n", version));
1182 return A_ERROR;
1183 }
1184
1185 A_RELEASE_FIRMWARE(fw_entry);
1186 } else {
1187 /* The config is contained within the driver itself */
1188 int status;
1189 u32 param, options, sleep, address;
1190
1191 /* Temporarily disable system sleep */
1192 address = MBOX_BASE_ADDRESS + LOCAL_SCRATCH_ADDRESS;
1193 bmifn(BMIReadSOCRegister(ar->arHifDevice, address, &param));
1194 options = param;
1195 param |= AR6K_OPTION_SLEEP_DISABLE;
1196 bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
1197
1198 address = RTC_BASE_ADDRESS + SYSTEM_SLEEP_ADDRESS;
1199 bmifn(BMIReadSOCRegister(ar->arHifDevice, address, &param));
1200 sleep = param;
1201 param |= WLAN_SYSTEM_SLEEP_DISABLE_SET(1);
1202 bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
1203 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("old options: %d, old sleep: %d\n", options, sleep));
1204
1205 if (ar->arTargetType == TARGET_TYPE_AR6003) {
1206 /* Program analog PLL register */
1207 bmifn(BMIWriteSOCRegister(ar->arHifDevice, ANALOG_INTF_BASE_ADDRESS + 0x284, 0xF9104001));
1208 /* Run at 80/88MHz by default */
1209 param = CPU_CLOCK_STANDARD_SET(1);
1210 } else {
1211 /* Run at 40/44MHz by default */
1212 param = CPU_CLOCK_STANDARD_SET(0);
1213 }
1214 address = RTC_BASE_ADDRESS + CPU_CLOCK_ADDRESS;
1215 bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
1216
1217 param = 0;
1218 if (ar->arTargetType == TARGET_TYPE_AR6002) {
1219 bmifn(BMIReadMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_ext_clk_detected), (u8 *)&param, 4));
1220 }
1221
1222 /* LPO_CAL.ENABLE = 1 if no external clk is detected */
1223 if (param != 1) {
1224 address = RTC_BASE_ADDRESS + LPO_CAL_ADDRESS;
1225 param = LPO_CAL_ENABLE_SET(1);
1226 bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
1227 }
1228
1229 /* Venus2.0: Lower SDIO pad drive strength,
1230 * temporary WAR to avoid SDIO CRC error */
1231 if (ar->arVersion.target_ver == AR6003_REV2_VERSION) {
1232 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("AR6K: Temporary WAR to avoid SDIO CRC error\n"));
1233 param = 0x20;
1234 address = GPIO_BASE_ADDRESS + GPIO_PIN10_ADDRESS;
1235 bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
1236
1237 address = GPIO_BASE_ADDRESS + GPIO_PIN11_ADDRESS;
1238 bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
1239
1240 address = GPIO_BASE_ADDRESS + GPIO_PIN12_ADDRESS;
1241 bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
1242
1243 address = GPIO_BASE_ADDRESS + GPIO_PIN13_ADDRESS;
1244 bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
1245 }
1246
1247 #ifdef FORCE_INTERNAL_CLOCK
1248 /* Ignore external clock, if any, and force use of internal clock */
1249 if (ar->arTargetType == TARGET_TYPE_AR6003) {
1250 /* hi_ext_clk_detected = 0 */
1251 param = 0;
1252 bmifn(BMIWriteMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_ext_clk_detected), (u8 *)&param, 4));
1253
1254 /* CLOCK_CONTROL &= ~LF_CLK32 */
1255 address = RTC_BASE_ADDRESS + CLOCK_CONTROL_ADDRESS;
1256 bmifn(BMIReadSOCRegister(ar->arHifDevice, address, &param));
1257 param &= (~CLOCK_CONTROL_LF_CLK32_SET(1));
1258 bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
1259 }
1260 #endif /* FORCE_INTERNAL_CLOCK */
1261
1262 /* Transfer Board Data from Target EEPROM to Target RAM */
1263 if (ar->arTargetType == TARGET_TYPE_AR6003) {
1264 /* Determine where in Target RAM to write Board Data */
1265 bmifn(BMIReadMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_board_data), (u8 *)&address, 4));
1266 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("Board Data download address: 0x%x\n", address));
1267
1268 /* Write EEPROM data to Target RAM */
1269 if ((ar6000_transfer_bin_file(ar, AR6K_BOARD_DATA_FILE, address, false)) != 0) {
1270 return A_ERROR;
1271 }
1272
1273 /* Record the fact that Board Data IS initialized */
1274 param = 1;
1275 bmifn(BMIWriteMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_board_data_initialized), (u8 *)&param, 4));
1276
1277 /* Transfer One time Programmable data */
1278 AR6K_APP_LOAD_ADDRESS(address, ar->arVersion.target_ver);
1279 if (ar->arVersion.target_ver == AR6003_REV3_VERSION)
1280 address = 0x1234;
1281 status = ar6000_transfer_bin_file(ar, AR6K_OTP_FILE, address, true);
1282 if (status == 0) {
1283 /* Execute the OTP code */
1284 param = 0;
1285 AR6K_APP_START_OVERRIDE_ADDRESS(address, ar->arVersion.target_ver);
1286 bmifn(BMIExecute(ar->arHifDevice, address, &param));
1287 } else if (status != A_ENOENT) {
1288 return A_ERROR;
1289 }
1290 } else {
1291 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Programming of board data for chip %d not supported\n", ar->arTargetType));
1292 return A_ERROR;
1293 }
1294
1295 /* Download Target firmware */
1296 AR6K_APP_LOAD_ADDRESS(address, ar->arVersion.target_ver);
1297 if (ar->arVersion.target_ver == AR6003_REV3_VERSION)
1298 address = 0x1234;
1299 if ((ar6000_transfer_bin_file(ar, AR6K_FIRMWARE_FILE, address, true)) != 0) {
1300 return A_ERROR;
1301 }
1302
1303 /* Set starting address for firmware */
1304 AR6K_APP_START_OVERRIDE_ADDRESS(address, ar->arVersion.target_ver);
1305 bmifn(BMISetAppStart(ar->arHifDevice, address));
1306
1307 if(ar->arTargetType == TARGET_TYPE_AR6003) {
1308 AR6K_DATASET_PATCH_ADDRESS(address, ar->arVersion.target_ver);
1309 if ((ar6000_transfer_bin_file(ar, AR6K_PATCH_FILE,
1310 address, false)) != 0)
1311 return A_ERROR;
1312 param = address;
1313 bmifn(BMIWriteMemory(ar->arHifDevice,
1314 HOST_INTEREST_ITEM_ADDRESS(ar, hi_dset_list_head),
1315 (unsigned char *)&param, 4));
1316 }
1317
1318 /* Restore system sleep */
1319 address = RTC_BASE_ADDRESS + SYSTEM_SLEEP_ADDRESS;
1320 bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, sleep));
1321
1322 address = MBOX_BASE_ADDRESS + LOCAL_SCRATCH_ADDRESS;
1323 param = options | 0x20;
1324 bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
1325
1326 if (ar->arTargetType == TARGET_TYPE_AR6003) {
1327 /* Configure GPIO AR6003 UART */
1328 #ifndef CONFIG_AR600x_DEBUG_UART_TX_PIN
1329 #define CONFIG_AR600x_DEBUG_UART_TX_PIN 8
1330 #endif
1331 param = CONFIG_AR600x_DEBUG_UART_TX_PIN;
1332 bmifn(BMIWriteMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_dbg_uart_txpin), (u8 *)&param, 4));
1333
1334 #if (CONFIG_AR600x_DEBUG_UART_TX_PIN == 23)
1335 {
1336 address = GPIO_BASE_ADDRESS + CLOCK_GPIO_ADDRESS;
1337 bmifn(BMIReadSOCRegister(ar->arHifDevice, address, &param));
1338 param |= CLOCK_GPIO_BT_CLK_OUT_EN_SET(1);
1339 bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
1340 }
1341 #endif
1342
1343 /* Configure GPIO for BT Reset */
1344 #ifdef ATH6KL_CONFIG_GPIO_BT_RESET
1345 #define CONFIG_AR600x_BT_RESET_PIN 0x16
1346 param = CONFIG_AR600x_BT_RESET_PIN;
1347 bmifn(BMIWriteMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_hci_uart_support_pins), (u8 *)&param, 4));
1348 #endif /* ATH6KL_CONFIG_GPIO_BT_RESET */
1349
1350 /* Configure UART flow control polarity */
1351 #ifndef CONFIG_ATH6KL_BT_UART_FC_POLARITY
1352 #define CONFIG_ATH6KL_BT_UART_FC_POLARITY 0
1353 #endif
1354
1355 #if (CONFIG_ATH6KL_BT_UART_FC_POLARITY == 1)
1356 if (ar->arVersion.target_ver == AR6003_REV2_VERSION) {
1357 param = ((CONFIG_ATH6KL_BT_UART_FC_POLARITY << 1) & 0x2);
1358 bmifn(BMIWriteMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_hci_uart_pwr_mgmt_params), (u8 *)&param, 4));
1359 }
1360 #endif /* CONFIG_ATH6KL_BT_UART_FC_POLARITY */
1361 }
1362
1363 #ifdef HTC_RAW_INTERFACE
1364 if (!eppingtest && bypasswmi) {
1365 /* Don't run BMIDone for ART mode and force resetok=0 */
1366 resetok = 0;
1367 msleep(1000);
1368 }
1369 #endif /* HTC_RAW_INTERFACE */
1370 }
1371
1372 return 0;
1373 }
1374
1375 int
1376 ar6000_configure_target(struct ar6_softc *ar)
1377 {
1378 u32 param;
1379 if (enableuartprint) {
1380 param = 1;
1381 if (BMIWriteMemory(ar->arHifDevice,
1382 HOST_INTEREST_ITEM_ADDRESS(ar, hi_serial_enable),
1383 (u8 *)&param,
1384 4)!= 0)
1385 {
1386 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIWriteMemory for enableuartprint failed \n"));
1387 return A_ERROR;
1388 }
1389 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("Serial console prints enabled\n"));
1390 }
1391
1392 /* Tell target which HTC version it is used*/
1393 param = HTC_PROTOCOL_VERSION;
1394 if (BMIWriteMemory(ar->arHifDevice,
1395 HOST_INTEREST_ITEM_ADDRESS(ar, hi_app_host_interest),
1396 (u8 *)&param,
1397 4)!= 0)
1398 {
1399 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIWriteMemory for htc version failed \n"));
1400 return A_ERROR;
1401 }
1402
1403 #ifdef CONFIG_HOST_TCMD_SUPPORT
1404 if(testmode) {
1405 ar->arTargetMode = AR6000_TCMD_MODE;
1406 }else {
1407 ar->arTargetMode = AR6000_WLAN_MODE;
1408 }
1409 #endif
1410 if (enabletimerwar) {
1411 u32 param;
1412
1413 if (BMIReadMemory(ar->arHifDevice,
1414 HOST_INTEREST_ITEM_ADDRESS(ar, hi_option_flag),
1415 (u8 *)&param,
1416 4)!= 0)
1417 {
1418 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIReadMemory for enabletimerwar failed \n"));
1419 return A_ERROR;
1420 }
1421
1422 param |= HI_OPTION_TIMER_WAR;
1423
1424 if (BMIWriteMemory(ar->arHifDevice,
1425 HOST_INTEREST_ITEM_ADDRESS(ar, hi_option_flag),
1426 (u8 *)&param,
1427 4) != 0)
1428 {
1429 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIWriteMemory for enabletimerwar failed \n"));
1430 return A_ERROR;
1431 }
1432 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("Timer WAR enabled\n"));
1433 }
1434
1435 /* set the firmware mode to STA/IBSS/AP */
1436 {
1437 u32 param;
1438
1439 if (BMIReadMemory(ar->arHifDevice,
1440 HOST_INTEREST_ITEM_ADDRESS(ar, hi_option_flag),
1441 (u8 *)&param,
1442 4)!= 0)
1443 {
1444 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIReadMemory for setting fwmode failed \n"));
1445 return A_ERROR;
1446 }
1447
1448 param |= (num_device << HI_OPTION_NUM_DEV_SHIFT);
1449 param |= (fwmode << HI_OPTION_FW_MODE_SHIFT);
1450 param |= (mac_addr_method << HI_OPTION_MAC_ADDR_METHOD_SHIFT);
1451 param |= (firmware_bridge << HI_OPTION_FW_BRIDGE_SHIFT);
1452
1453
1454 if (BMIWriteMemory(ar->arHifDevice,
1455 HOST_INTEREST_ITEM_ADDRESS(ar, hi_option_flag),
1456 (u8 *)&param,
1457 4) != 0)
1458 {
1459 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIWriteMemory for setting fwmode failed \n"));
1460 return A_ERROR;
1461 }
1462 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("Firmware mode set\n"));
1463 }
1464
1465 #ifdef ATH6KL_DISABLE_TARGET_DBGLOGS
1466 {
1467 u32 param;
1468
1469 if (BMIReadMemory(ar->arHifDevice,
1470 HOST_INTEREST_ITEM_ADDRESS(ar, hi_option_flag),
1471 (u8 *)&param,
1472 4)!= 0)
1473 {
1474 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIReadMemory for disabling debug logs failed\n"));
1475 return A_ERROR;
1476 }
1477
1478 param |= HI_OPTION_DISABLE_DBGLOG;
1479
1480 if (BMIWriteMemory(ar->arHifDevice,
1481 HOST_INTEREST_ITEM_ADDRESS(ar, hi_option_flag),
1482 (u8 *)&param,
1483 4) != 0)
1484 {
1485 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIWriteMemory for HI_OPTION_DISABLE_DBGLOG\n"));
1486 return A_ERROR;
1487 }
1488 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("Firmware mode set\n"));
1489 }
1490 #endif /* ATH6KL_DISABLE_TARGET_DBGLOGS */
1491
1492 /*
1493 * Hardcode the address use for the extended board data
1494 * Ideally this should be pre-allocate by the OS at boot time
1495 * But since it is a new feature and board data is loaded
1496 * at init time, we have to workaround this from host.
1497 * It is difficult to patch the firmware boot code,
1498 * but possible in theory.
1499 */
1500
1501 if (ar->arTargetType == TARGET_TYPE_AR6003) {
1502 u32 ramReservedSz;
1503 if (ar->arVersion.target_ver == AR6003_REV2_VERSION) {
1504 param = AR6003_REV2_BOARD_EXT_DATA_ADDRESS;
1505 ramReservedSz = AR6003_REV2_RAM_RESERVE_SIZE;
1506 } else {
1507 param = AR6003_REV3_BOARD_EXT_DATA_ADDRESS;
1508 ramReservedSz = AR6003_REV3_RAM_RESERVE_SIZE;
1509 }
1510 if (BMIWriteMemory(ar->arHifDevice,
1511 HOST_INTEREST_ITEM_ADDRESS(ar, hi_board_ext_data),
1512 (u8 *)&param, 4) != 0) {
1513 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,
1514 ("BMIWriteMemory for "
1515 "hi_board_ext_data failed\n"));
1516 return A_ERROR;
1517 }
1518 if (BMIWriteMemory(ar->arHifDevice,
1519 HOST_INTEREST_ITEM_ADDRESS(ar,
1520 hi_end_RAM_reserve_sz),
1521 (u8 *)&ramReservedSz, 4) != 0) {
1522 AR_DEBUG_PRINTF(ATH_DEBUG_ERR ,
1523 ("BMIWriteMemory for "
1524 "hi_end_RAM_reserve_sz failed\n"));
1525 return A_ERROR;
1526 }
1527 }
1528
1529 /* since BMIInit is called in the driver layer, we have to set the block
1530 * size here for the target */
1531
1532 if (ar6000_set_htc_params(ar->arHifDevice, ar->arTargetType,
1533 mbox_yield_limit, 0)) {
1534 /* use default number of control buffers */
1535 return A_ERROR;
1536 }
1537
1538 if (setupbtdev != 0) {
1539 if (ar6000_set_hci_bridge_flags(ar->arHifDevice,
1540 ar->arTargetType,
1541 setupbtdev)) {
1542 return A_ERROR;
1543 }
1544 }
1545 return 0;
1546 }
1547
1548 static void
1549 init_netdev(struct net_device *dev, char *name)
1550 {
1551 dev->netdev_ops = &ar6000_netdev_ops;
1552 dev->watchdog_timeo = AR6000_TX_TIMEOUT;
1553
1554 /*
1555 * We need the OS to provide us with more headroom in order to
1556 * perform dix to 802.3, WMI header encap, and the HTC header
1557 */
1558 if (processDot11Hdr) {
1559 dev->hard_header_len = sizeof(struct ieee80211_qosframe) + sizeof(ATH_LLC_SNAP_HDR) + sizeof(WMI_DATA_HDR) + HTC_HEADER_LEN + WMI_MAX_TX_META_SZ + LINUX_HACK_FUDGE_FACTOR;
1560 } else {
1561 dev->hard_header_len = ETH_HLEN + sizeof(ATH_LLC_SNAP_HDR) +
1562 sizeof(WMI_DATA_HDR) + HTC_HEADER_LEN + WMI_MAX_TX_META_SZ + LINUX_HACK_FUDGE_FACTOR;
1563 }
1564
1565 if (name[0])
1566 {
1567 strcpy(dev->name, name);
1568 }
1569
1570 #ifdef CONFIG_CHECKSUM_OFFLOAD
1571 if(csumOffload){
1572 dev->features |= NETIF_F_IP_CSUM; /*advertise kernel capability to do TCP/UDP CSUM offload for IPV4*/
1573 }
1574 #endif
1575
1576 return;
1577 }
1578
1579 static int __ath6kl_init_netdev(struct net_device *dev)
1580 {
1581 int r;
1582
1583 rtnl_lock();
1584 r = ar6000_init(dev);
1585 rtnl_unlock();
1586
1587 if (r) {
1588 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_avail: ar6000_init\n"));
1589 return r;
1590 }
1591
1592 return 0;
1593 }
1594
1595 #ifdef HTC_RAW_INTERFACE
1596 static int ath6kl_init_netdev_wmi(struct net_device *dev)
1597 {
1598 if (!eppingtest && bypasswmi)
1599 return 0;
1600
1601 return __ath6kl_init_netdev(dev);
1602 }
1603 #else
1604 static int ath6kl_init_netdev_wmi(struct net_device *dev)
1605 {
1606 return __ath6kl_init_netdev(dev);
1607 }
1608 #endif
1609
1610 static int ath6kl_init_netdev(struct ar6_softc *ar)
1611 {
1612 int r;
1613
1614 r = ar6000_sysfs_bmi_get_config(ar, wlaninitmode);
1615 if (r) {
1616 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,
1617 ("ar6000_avail: "
1618 "ar6000_sysfs_bmi_get_config failed\n"));
1619 return r;
1620 }
1621
1622 return ath6kl_init_netdev_wmi(ar->arNetDev);
1623 }
1624
1625 /*
1626 * HTC Event handlers
1627 */
1628 static int
1629 ar6000_avail_ev(void *context, void *hif_handle)
1630 {
1631 int i;
1632 struct net_device *dev;
1633 void *ar_netif;
1634 struct ar6_softc *ar;
1635 int device_index = 0;
1636 struct htc_init_info htcInfo;
1637 struct wireless_dev *wdev;
1638 int r = 0;
1639 struct hif_device_os_device_info osDevInfo;
1640
1641 memset(&osDevInfo, 0, sizeof(osDevInfo));
1642 if (HIFConfigureDevice(hif_handle, HIF_DEVICE_GET_OS_DEVICE,
1643 &osDevInfo, sizeof(osDevInfo))) {
1644 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s: Failed to get OS device instance\n", __func__));
1645 return A_ERROR;
1646 }
1647
1648 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("ar6000_available\n"));
1649
1650 for (i=0; i < MAX_AR6000; i++) {
1651 if (ar6000_devices[i] == NULL) {
1652 break;
1653 }
1654 }
1655
1656 if (i == MAX_AR6000) {
1657 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_available: max devices reached\n"));
1658 return A_ERROR;
1659 }
1660
1661 /* Save this. It gives a bit better readability especially since */
1662 /* we use another local "i" variable below. */
1663 device_index = i;
1664
1665 wdev = ar6k_cfg80211_init(osDevInfo.pOSDevice);
1666 if (IS_ERR(wdev)) {
1667 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("%s: ar6k_cfg80211_init failed\n", __func__));
1668 return A_ERROR;
1669 }
1670 ar_netif = wdev_priv(wdev);
1671
1672 if (ar_netif == NULL) {
1673 AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("%s: Can't allocate ar6k priv memory\n", __func__));
1674 return A_ERROR;
1675 }
1676
1677 A_MEMZERO(ar_netif, sizeof(struct ar6_softc));
1678 ar = (struct ar6_softc *)ar_netif;
1679
1680 ar->wdev = wdev;
1681 wdev->iftype = NL80211_IFTYPE_STATION;
1682
1683 dev = alloc_netdev_mq(0, "wlan%d", ether_setup, 1);
1684 if (!dev) {
1685 printk(KERN_CRIT "AR6K: no memory for network device instance\n");
1686 ar6k_cfg80211_deinit(ar);
1687 return A_ERROR;
1688 }
1689
1690 dev->ieee80211_ptr = wdev;
1691 SET_NETDEV_DEV(dev, wiphy_dev(wdev->wiphy));
1692 wdev->netdev = dev;
1693 ar->arNetworkType = INFRA_NETWORK;
1694 ar->smeState = SME_DISCONNECTED;
1695 ar->arAutoAuthStage = AUTH_IDLE;
1696
1697 init_netdev(dev, ifname);
1698
1699
1700 ar->arNetDev = dev;
1701 ar->arHifDevice = hif_handle;
1702 ar->arWlanState = WLAN_ENABLED;
1703 ar->arDeviceIndex = device_index;
1704
1705 ar->arWlanPowerState = WLAN_POWER_STATE_ON;
1706 ar->arWlanOff = false; /* We are in ON state */
1707 #ifdef CONFIG_PM
1708 ar->arWowState = WLAN_WOW_STATE_NONE;
1709 ar->arBTOff = true; /* BT chip assumed to be OFF */
1710 ar->arBTSharing = WLAN_CONFIG_BT_SHARING;
1711 ar->arWlanOffConfig = WLAN_CONFIG_WLAN_OFF;
1712 ar->arSuspendConfig = WLAN_CONFIG_PM_SUSPEND;
1713 ar->arWow2Config = WLAN_CONFIG_PM_WOW2;
1714 #endif /* CONFIG_PM */
1715
1716 A_INIT_TIMER(&ar->arHBChallengeResp.timer, ar6000_detect_error, dev);
1717 ar->arHBChallengeResp.seqNum = 0;
1718 ar->arHBChallengeResp.outstanding = false;
1719 ar->arHBChallengeResp.missCnt = 0;
1720 ar->arHBChallengeResp.frequency = AR6000_HB_CHALLENGE_RESP_FREQ_DEFAULT;
1721 ar->arHBChallengeResp.missThres = AR6000_HB_CHALLENGE_RESP_MISS_THRES_DEFAULT;
1722
1723 ar6000_init_control_info(ar);
1724 init_waitqueue_head(&arEvent);
1725 sema_init(&ar->arSem, 1);
1726 ar->bIsDestroyProgress = false;
1727
1728 INIT_HTC_PACKET_QUEUE(&ar->amsdu_rx_buffer_queue);
1729
1730 #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
1731 A_INIT_TIMER(&aptcTimer, aptcTimerHandler, ar);
1732 #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
1733
1734 A_INIT_TIMER(&ar->disconnect_timer, disconnect_timer_handler, dev);
1735
1736 BMIInit();
1737
1738 ar6000_sysfs_bmi_init(ar);
1739
1740 {
1741 struct bmi_target_info targ_info;
1742
1743 r = BMIGetTargetInfo(ar->arHifDevice, &targ_info);
1744 if (r)
1745 goto avail_ev_failed;
1746
1747 ar->arVersion.target_ver = targ_info.target_ver;
1748 ar->arTargetType = targ_info.target_type;
1749 wdev->wiphy->hw_version = targ_info.target_ver;
1750 }
1751
1752 r = ar6000_configure_target(ar);
1753 if (r)
1754 goto avail_ev_failed;
1755
1756 A_MEMZERO(&htcInfo,sizeof(htcInfo));
1757 htcInfo.pContext = ar;
1758 htcInfo.TargetFailure = ar6000_target_failure;
1759
1760 ar->arHtcTarget = HTCCreate(ar->arHifDevice,&htcInfo);
1761
1762 if (!ar->arHtcTarget) {
1763 r = -ENOMEM;
1764 goto avail_ev_failed;
1765 }
1766
1767 spin_lock_init(&ar->arLock);
1768
1769 #ifdef WAPI_ENABLE
1770 ar->arWapiEnable = 0;
1771 #endif
1772
1773
1774 if(csumOffload){
1775 /*if external frame work is also needed, change and use an extended rxMetaVerion*/
1776 ar->rxMetaVersion=WMI_META_VERSION_2;
1777 }
1778
1779 ar->aggr_cntxt = aggr_init(ar6000_alloc_netbufs);
1780 if (!ar->aggr_cntxt) {
1781 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s() Failed to initialize aggr.\n", __func__));
1782 r = -ENOMEM;
1783 goto avail_ev_failed;
1784 }
1785
1786 aggr_register_rx_dispatcher(ar->aggr_cntxt, (void *)dev, ar6000_deliver_frames_to_nw_stack);
1787
1788 HIFClaimDevice(ar->arHifDevice, ar);
1789
1790 /* We only register the device in the global list if we succeed. */
1791 /* If the device is in the global list, it will be destroyed */
1792 /* when the module is unloaded. */
1793 ar6000_devices[device_index] = dev;
1794
1795 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("BMI enabled: %d\n", wlaninitmode));
1796 if ((wlaninitmode == WLAN_INIT_MODE_UDEV) ||
1797 (wlaninitmode == WLAN_INIT_MODE_DRV)) {
1798 r = ath6kl_init_netdev(ar);
1799 if (r)
1800 goto avail_ev_failed;
1801 }
1802
1803 /* This runs the init function if registered */
1804 r = register_netdev(dev);
1805 if (r) {
1806 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_avail: register_netdev failed\n"));
1807 ar6000_destroy(dev, 0);
1808 return r;
1809 }
1810
1811 is_netdev_registered = 1;
1812
1813 #ifdef CONFIG_AP_VIRTUAL_ADAPTER_SUPPORT
1814 arApNetDev = NULL;
1815 #endif /* CONFIG_AP_VIRTUAL_ADAPTER_SUPPORT */
1816 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("ar6000_avail: name=%s hifdevice=0x%lx, dev=0x%lx (%d), ar=0x%lx\n",
1817 dev->name, (unsigned long)ar->arHifDevice, (unsigned long)dev, device_index,
1818 (unsigned long)ar));
1819
1820 avail_ev_failed :
1821 if (r)
1822 ar6000_sysfs_bmi_deinit(ar);
1823
1824 return r;
1825 }
1826
1827 static void ar6000_target_failure(void *Instance, int Status)
1828 {
1829 struct ar6_softc *ar = (struct ar6_softc *)Instance;
1830 WMI_TARGET_ERROR_REPORT_EVENT errEvent;
1831 static bool sip = false;
1832
1833 if (Status != 0) {
1834
1835 printk(KERN_ERR "ar6000_target_failure: target asserted \n");
1836
1837 if (timer_pending(&ar->arHBChallengeResp.timer)) {
1838 A_UNTIMEOUT(&ar->arHBChallengeResp.timer);
1839 }
1840
1841 /* try dumping target assertion information (if any) */
1842 ar6000_dump_target_assert_info(ar->arHifDevice,ar->arTargetType);
1843
1844 /*
1845 * Fetch the logs from the target via the diagnostic
1846 * window.
1847 */
1848 ar6000_dbglog_get_debug_logs(ar);
1849
1850 /* Report the error only once */
1851 if (!sip) {
1852 sip = true;
1853 errEvent.errorVal = WMI_TARGET_COM_ERR |
1854 WMI_TARGET_FATAL_ERR;
1855 }
1856 }
1857 }
1858
1859 static int
1860 ar6000_unavail_ev(void *context, void *hif_handle)
1861 {
1862 struct ar6_softc *ar = (struct ar6_softc *)context;
1863 /* NULL out it's entry in the global list */
1864 ar6000_devices[ar->arDeviceIndex] = NULL;
1865 ar6000_destroy(ar->arNetDev, 1);
1866
1867 return 0;
1868 }
1869
1870 void
1871 ar6000_restart_endpoint(struct net_device *dev)
1872 {
1873 int status = 0;
1874 struct ar6_softc *ar = (struct ar6_softc *)ar6k_priv(dev);
1875
1876 BMIInit();
1877 do {
1878 if ( (status=ar6000_configure_target(ar))!= 0)
1879 break;
1880 if ( (status=ar6000_sysfs_bmi_get_config(ar, wlaninitmode)) != 0)
1881 {
1882 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_avail: ar6000_sysfs_bmi_get_config failed\n"));
1883 break;
1884 }
1885 rtnl_lock();
1886 status = (ar6000_init(dev)==0) ? 0 : A_ERROR;
1887 rtnl_unlock();
1888
1889 if (status) {
1890 break;
1891 }
1892 if (ar->arSsidLen && ar->arWlanState == WLAN_ENABLED) {
1893 ar6000_connect_to_ap(ar);
1894 }
1895 } while (0);
1896
1897 if (status== 0) {
1898 return;
1899 }
1900
1901 ar6000_devices[ar->arDeviceIndex] = NULL;
1902 ar6000_destroy(ar->arNetDev, 1);
1903 }
1904
1905 void
1906 ar6000_stop_endpoint(struct net_device *dev, bool keepprofile, bool getdbglogs)
1907 {
1908 struct ar6_softc *ar = (struct ar6_softc *)ar6k_priv(dev);
1909
1910 /* Stop the transmit queues */
1911 netif_stop_queue(dev);
1912
1913 /* Disable the target and the interrupts associated with it */
1914 if (ar->arWmiReady == true)
1915 {
1916 if (!bypasswmi)
1917 {
1918 bool disconnectIssued;
1919
1920 disconnectIssued = (ar->arConnected) || (ar->arConnectPending);
1921 ar6000_disconnect(ar);
1922 if (!keepprofile) {
1923 ar6000_init_profile_info(ar);
1924 }
1925
1926 A_UNTIMEOUT(&ar->disconnect_timer);
1927
1928 if (getdbglogs) {
1929 ar6000_dbglog_get_debug_logs(ar);
1930 }
1931
1932 ar->arWmiReady = false;
1933 wmi_shutdown(ar->arWmi);
1934 ar->arWmiEnabled = false;
1935 ar->arWmi = NULL;
1936 /*
1937 * After wmi_shudown all WMI events will be dropped.
1938 * We need to cleanup the buffers allocated in AP mode
1939 * and give disconnect notification to stack, which usually
1940 * happens in the disconnect_event.
1941 * Simulate the disconnect_event by calling the function directly.
1942 * Sometimes disconnect_event will be received when the debug logs
1943 * are collected.
1944 */
1945 if (disconnectIssued) {
1946 if(ar->arNetworkType & AP_NETWORK) {
1947 ar6000_disconnect_event(ar, DISCONNECT_CMD, bcast_mac, 0, NULL, 0);
1948 } else {
1949 ar6000_disconnect_event(ar, DISCONNECT_CMD, ar->arBssid, 0, NULL, 0);
1950 }
1951 }
1952 ar->user_savedkeys_stat = USER_SAVEDKEYS_STAT_INIT;
1953 ar->user_key_ctrl = 0;
1954 }
1955
1956 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("%s(): WMI stopped\n", __func__));
1957 }
1958 else
1959 {
1960 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("%s(): WMI not ready 0x%lx 0x%lx\n",
1961 __func__, (unsigned long) ar, (unsigned long) ar->arWmi));
1962
1963 /* Shut down WMI if we have started it */
1964 if(ar->arWmiEnabled == true)
1965 {
1966 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("%s(): Shut down WMI\n", __func__));
1967 wmi_shutdown(ar->arWmi);
1968 ar->arWmiEnabled = false;
1969 ar->arWmi = NULL;
1970 }
1971 }
1972
1973 if (ar->arHtcTarget != NULL) {
1974 #ifdef EXPORT_HCI_BRIDGE_INTERFACE
1975 if (NULL != ar6kHciTransCallbacks.cleanupTransport) {
1976 ar6kHciTransCallbacks.cleanupTransport(NULL);
1977 }
1978 #else
1979 // FIXME: workaround to reset BT's UART baud rate to default
1980 if (NULL != ar->exitCallback) {
1981 struct ar3k_config_info ar3kconfig;
1982 int status;
1983
1984 A_MEMZERO(&ar3kconfig,sizeof(ar3kconfig));
1985 ar6000_set_default_ar3kconfig(ar, (void *)&ar3kconfig);
1986 status = ar->exitCallback(&ar3kconfig);
1987 if (0 != status) {
1988 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Failed to reset AR3K baud rate! \n"));
1989 }
1990 }
1991 // END workaround
1992 if (setuphci)
1993 ar6000_cleanup_hci(ar);
1994 #endif
1995 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,(" Shutting down HTC .... \n"));
1996 /* stop HTC */
1997 HTCStop(ar->arHtcTarget);
1998 }
1999
2000 if (resetok) {
2001 /* try to reset the device if we can
2002 * The driver may have been configure NOT to reset the target during
2003 * a debug session */
2004 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,(" Attempting to reset target on instance destroy.... \n"));
2005 if (ar->arHifDevice != NULL) {
2006 bool coldReset = (ar->arTargetType == TARGET_TYPE_AR6003) ? true: false;
2007 ar6000_reset_device(ar->arHifDevice, ar->arTargetType, true, coldReset);
2008 }
2009 } else {
2010 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,(" Host does not want target reset. \n"));
2011 }
2012 /* Done with cookies */
2013 ar6000_cookie_cleanup(ar);
2014
2015 /* cleanup any allocated AMSDU buffers */
2016 ar6000_cleanup_amsdu_rxbufs(ar);
2017 }
2018 /*
2019 * We need to differentiate between the surprise and planned removal of the
2020 * device because of the following consideration:
2021 * - In case of surprise removal, the hcd already frees up the pending
2022 * for the device and hence there is no need to unregister the function
2023 * driver inorder to get these requests. For planned removal, the function
2024 * driver has to explicitly unregister itself to have the hcd return all the
2025 * pending requests before the data structures for the devices are freed up.
2026 * Note that as per the current implementation, the function driver will
2027 * end up releasing all the devices since there is no API to selectively
2028 * release a particular device.
2029 * - Certain commands issued to the target can be skipped for surprise
2030 * removal since they will anyway not go through.
2031 */
2032 void
2033 ar6000_destroy(struct net_device *dev, unsigned int unregister)
2034 {
2035 struct ar6_softc *ar;
2036
2037 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("+ar6000_destroy \n"));
2038
2039 if((dev == NULL) || ((ar = ar6k_priv(dev)) == NULL))
2040 {
2041 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s(): Failed to get device structure.\n", __func__));
2042 return;
2043 }
2044
2045 ar->bIsDestroyProgress = true;
2046
2047 if (down_interruptible(&ar->arSem)) {
2048 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s(): down_interruptible failed \n", __func__));
2049 return;
2050 }
2051
2052 if (ar->arWlanPowerState != WLAN_POWER_STATE_CUT_PWR) {
2053 /* only stop endpoint if we are not stop it in suspend_ev */
2054 ar6000_stop_endpoint(dev, false, true);
2055 }
2056
2057 ar->arWlanState = WLAN_DISABLED;
2058 if (ar->arHtcTarget != NULL) {
2059 /* destroy HTC */
2060 HTCDestroy(ar->arHtcTarget);
2061 }
2062 if (ar->arHifDevice != NULL) {
2063 /*release the device so we do not get called back on remove incase we
2064 * we're explicity destroyed by module unload */
2065 HIFReleaseDevice(ar->arHifDevice);
2066 HIFShutDownDevice(ar->arHifDevice);
2067 }
2068 aggr_module_destroy(ar->aggr_cntxt);
2069
2070 /* Done with cookies */
2071 ar6000_cookie_cleanup(ar);
2072
2073 /* cleanup any allocated AMSDU buffers */
2074 ar6000_cleanup_amsdu_rxbufs(ar);
2075
2076 ar6000_sysfs_bmi_deinit(ar);
2077
2078 /* Cleanup BMI */
2079 BMICleanup();
2080
2081 /* Clear the tx counters */
2082 memset(tx_attempt, 0, sizeof(tx_attempt));
2083 memset(tx_post, 0, sizeof(tx_post));
2084 memset(tx_complete, 0, sizeof(tx_complete));
2085
2086 #ifdef HTC_RAW_INTERFACE
2087 if (ar->arRawHtc) {
2088 kfree(ar->arRawHtc);
2089 ar->arRawHtc = NULL;
2090 }
2091 #endif
2092 /* Free up the device data structure */
2093 if (unregister && is_netdev_registered) {
2094 unregister_netdev(dev);
2095 is_netdev_registered = 0;
2096 }
2097 free_netdev(dev);
2098
2099 ar6k_cfg80211_deinit(ar);
2100
2101 #ifdef CONFIG_AP_VIRTUL_ADAPTER_SUPPORT
2102 ar6000_remove_ap_interface();
2103 #endif /*CONFIG_AP_VIRTUAL_ADAPTER_SUPPORT */
2104
2105 kfree(ar->fw_otp);
2106 kfree(ar->fw);
2107 kfree(ar->fw_patch);
2108 kfree(ar->fw_data);
2109
2110 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("-ar6000_destroy \n"));
2111 }
2112
2113 static void disconnect_timer_handler(unsigned long ptr)
2114 {
2115 struct net_device *dev = (struct net_device *)ptr;
2116 struct ar6_softc *ar = (struct ar6_softc *)ar6k_priv(dev);
2117
2118 A_UNTIMEOUT(&ar->disconnect_timer);
2119
2120 ar6000_init_profile_info(ar);
2121 ar6000_disconnect(ar);
2122 }
2123
2124 static void ar6000_detect_error(unsigned long ptr)
2125 {
2126 struct net_device *dev = (struct net_device *)ptr;
2127 struct ar6_softc *ar = (struct ar6_softc *)ar6k_priv(dev);
2128 WMI_TARGET_ERROR_REPORT_EVENT errEvent;
2129
2130 AR6000_SPIN_LOCK(&ar->arLock, 0);
2131
2132 if (ar->arHBChallengeResp.outstanding) {
2133 ar->arHBChallengeResp.missCnt++;
2134 } else {
2135 ar->arHBChallengeResp.missCnt = 0;
2136 }
2137
2138 if (ar->arHBChallengeResp.missCnt > ar->arHBChallengeResp.missThres) {
2139 /* Send Error Detect event to the application layer and do not reschedule the error detection module timer */
2140 ar->arHBChallengeResp.missCnt = 0;
2141 ar->arHBChallengeResp.seqNum = 0;
2142 errEvent.errorVal = WMI_TARGET_COM_ERR | WMI_TARGET_FATAL_ERR;
2143 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
2144 return;
2145 }
2146
2147 /* Generate the sequence number for the next challenge */
2148 ar->arHBChallengeResp.seqNum++;
2149 ar->arHBChallengeResp.outstanding = true;
2150
2151 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
2152
2153 /* Send the challenge on the control channel */
2154 if (wmi_get_challenge_resp_cmd(ar->arWmi, ar->arHBChallengeResp.seqNum, DRV_HB_CHALLENGE) != 0) {
2155 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Unable to send heart beat challenge\n"));
2156 }
2157
2158
2159 /* Reschedule the timer for the next challenge */
2160 A_TIMEOUT_MS(&ar->arHBChallengeResp.timer, ar->arHBChallengeResp.frequency * 1000, 0);
2161 }
2162
2163 void ar6000_init_profile_info(struct ar6_softc *ar)
2164 {
2165 ar->arSsidLen = 0;
2166 A_MEMZERO(ar->arSsid, sizeof(ar->arSsid));
2167
2168 switch(fwmode) {
2169 case HI_OPTION_FW_MODE_IBSS:
2170 ar->arNetworkType = ar->arNextMode = ADHOC_NETWORK;
2171 break;
2172 case HI_OPTION_FW_MODE_BSS_STA:
2173 ar->arNetworkType = ar->arNextMode = INFRA_NETWORK;
2174 break;
2175 case HI_OPTION_FW_MODE_AP:
2176 ar->arNetworkType = ar->arNextMode = AP_NETWORK;
2177 break;
2178 }
2179
2180 ar->arDot11AuthMode = OPEN_AUTH;
2181 ar->arAuthMode = NONE_AUTH;
2182 ar->arPairwiseCrypto = NONE_CRYPT;
2183 ar->arPairwiseCryptoLen = 0;
2184 ar->arGroupCrypto = NONE_CRYPT;
2185 ar->arGroupCryptoLen = 0;
2186 A_MEMZERO(ar->arWepKeyList, sizeof(ar->arWepKeyList));
2187 A_MEMZERO(ar->arReqBssid, sizeof(ar->arReqBssid));
2188 A_MEMZERO(ar->arBssid, sizeof(ar->arBssid));
2189 ar->arBssChannel = 0;
2190 }
2191
2192 static void
2193 ar6000_init_control_info(struct ar6_softc *ar)
2194 {
2195 ar->arWmiEnabled = false;
2196 ar6000_init_profile_info(ar);
2197 ar->arDefTxKeyIndex = 0;
2198 A_MEMZERO(ar->arWepKeyList, sizeof(ar->arWepKeyList));
2199 ar->arChannelHint = 0;
2200 ar->arListenIntervalT = A_DEFAULT_LISTEN_INTERVAL;
2201 ar->arListenIntervalB = 0;
2202 ar->arVersion.host_ver = AR6K_SW_VERSION;
2203 ar->arRssi = 0;
2204 ar->arTxPwr = 0;
2205 ar->arTxPwrSet = false;
2206 ar->arSkipScan = 0;
2207 ar->arBeaconInterval = 0;
2208 ar->arBitRate = 0;
2209 ar->arMaxRetries = 0;
2210 ar->arWmmEnabled = true;
2211 ar->intra_bss = 1;
2212 ar->scan_triggered = 0;
2213 A_MEMZERO(&ar->scParams, sizeof(ar->scParams));
2214 ar->scParams.shortScanRatio = WMI_SHORTSCANRATIO_DEFAULT;
2215 ar->scParams.scanCtrlFlags = DEFAULT_SCAN_CTRL_FLAGS;
2216
2217 /* Initialize the AP mode state info */
2218 {
2219 u8 ctr;
2220 A_MEMZERO((u8 *)ar->sta_list, AP_MAX_NUM_STA * sizeof(sta_t));
2221
2222 /* init the Mutexes */
2223 A_MUTEX_INIT(&ar->mcastpsqLock);
2224
2225 /* Init the PS queues */
2226 for (ctr=0; ctr < AP_MAX_NUM_STA ; ctr++) {
2227 A_MUTEX_INIT(&ar->sta_list[ctr].psqLock);
2228 A_NETBUF_QUEUE_INIT(&ar->sta_list[ctr].psq);
2229 }
2230
2231 ar->ap_profile_flag = 0;
2232 A_NETBUF_QUEUE_INIT(&ar->mcastpsq);
2233
2234 memcpy(ar->ap_country_code, DEF_AP_COUNTRY_CODE, 3);
2235 ar->ap_wmode = DEF_AP_WMODE_G;
2236 ar->ap_dtim_period = DEF_AP_DTIM;
2237 ar->ap_beacon_interval = DEF_BEACON_INTERVAL;
2238 }
2239 }
2240
2241 static int
2242 ar6000_open(struct net_device *dev)
2243 {
2244 unsigned long flags;
2245 struct ar6_softc *ar = (struct ar6_softc *)ar6k_priv(dev);
2246
2247 spin_lock_irqsave(&ar->arLock, flags);
2248
2249 if(ar->arWlanState == WLAN_DISABLED) {
2250 ar->arWlanState = WLAN_ENABLED;
2251 }
2252
2253 if( ar->arConnected || bypasswmi) {
2254 netif_carrier_on(dev);
2255 /* Wake up the queues */
2256 netif_wake_queue(dev);
2257 }
2258 else
2259 netif_carrier_off(dev);
2260
2261 spin_unlock_irqrestore(&ar->arLock, flags);
2262 return 0;
2263 }
2264
2265 static int
2266 ar6000_close(struct net_device *dev)
2267 {
2268 struct ar6_softc *ar = (struct ar6_softc *)ar6k_priv(dev);
2269 netif_stop_queue(dev);
2270
2271 ar6000_disconnect(ar);
2272
2273 if(ar->arWmiReady == true) {
2274 if (wmi_scanparams_cmd(ar->arWmi, 0xFFFF, 0,
2275 0, 0, 0, 0, 0, 0, 0, 0) != 0) {
2276 return -EIO;
2277 }
2278 ar->arWlanState = WLAN_DISABLED;
2279 }
2280 ar6k_cfg80211_scanComplete_event(ar, A_ECANCELED);
2281
2282 return 0;
2283 }
2284
2285 /* connect to a service */
2286 static int ar6000_connectservice(struct ar6_softc *ar,
2287 struct htc_service_connect_req *pConnect,
2288 char *pDesc)
2289 {
2290 int status;
2291 struct htc_service_connect_resp response;
2292
2293 do {
2294
2295 A_MEMZERO(&response,sizeof(response));
2296
2297 status = HTCConnectService(ar->arHtcTarget,
2298 pConnect,
2299 &response);
2300
2301 if (status) {
2302 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,(" Failed to connect to %s service status:%d \n",
2303 pDesc, status));
2304 break;
2305 }
2306 switch (pConnect->ServiceID) {
2307 case WMI_CONTROL_SVC :
2308 if (ar->arWmiEnabled) {
2309 /* set control endpoint for WMI use */
2310 wmi_set_control_ep(ar->arWmi, response.Endpoint);
2311 }
2312 /* save EP for fast lookup */
2313 ar->arControlEp = response.Endpoint;
2314 break;
2315 case WMI_DATA_BE_SVC :
2316 arSetAc2EndpointIDMap(ar, WMM_AC_BE, response.Endpoint);
2317 break;
2318 case WMI_DATA_BK_SVC :
2319 arSetAc2EndpointIDMap(ar, WMM_AC_BK, response.Endpoint);
2320 break;
2321 case WMI_DATA_VI_SVC :
2322 arSetAc2EndpointIDMap(ar, WMM_AC_VI, response.Endpoint);
2323 break;
2324 case WMI_DATA_VO_SVC :
2325 arSetAc2EndpointIDMap(ar, WMM_AC_VO, response.Endpoint);
2326 break;
2327 default:
2328 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ServiceID not mapped %d\n", pConnect->ServiceID));
2329 status = A_EINVAL;
2330 break;
2331 }
2332
2333 } while (false);
2334
2335 return status;
2336 }
2337
2338 void ar6000_TxDataCleanup(struct ar6_softc *ar)
2339 {
2340 /* flush all the data (non-control) streams
2341 * we only flush packets that are tagged as data, we leave any control packets that
2342 * were in the TX queues alone */
2343 HTCFlushEndpoint(ar->arHtcTarget,
2344 arAc2EndpointID(ar, WMM_AC_BE),
2345 AR6K_DATA_PKT_TAG);
2346 HTCFlushEndpoint(ar->arHtcTarget,
2347 arAc2EndpointID(ar, WMM_AC_BK),
2348 AR6K_DATA_PKT_TAG);
2349 HTCFlushEndpoint(ar->arHtcTarget,
2350 arAc2EndpointID(ar, WMM_AC_VI),
2351 AR6K_DATA_PKT_TAG);
2352 HTCFlushEndpoint(ar->arHtcTarget,
2353 arAc2EndpointID(ar, WMM_AC_VO),
2354 AR6K_DATA_PKT_TAG);
2355 }
2356
2357 HTC_ENDPOINT_ID
2358 ar6000_ac2_endpoint_id ( void * devt, u8 ac)
2359 {
2360 struct ar6_softc *ar = (struct ar6_softc *) devt;
2361 return(arAc2EndpointID(ar, ac));
2362 }
2363
2364 u8 ar6000_endpoint_id2_ac(void * devt, HTC_ENDPOINT_ID ep )
2365 {
2366 struct ar6_softc *ar = (struct ar6_softc *) devt;
2367 return(arEndpoint2Ac(ar, ep ));
2368 }
2369
2370 #if defined(CONFIG_ATH6KL_ENABLE_COEXISTENCE)
2371 static int ath6kl_config_btcoex_params(struct ar6_softc *ar)
2372 {
2373 int r;
2374 WMI_SET_BTCOEX_COLOCATED_BT_DEV_CMD sbcb_cmd;
2375 WMI_SET_BTCOEX_FE_ANT_CMD sbfa_cmd;
2376
2377 /* Configure the type of BT collocated with WLAN */
2378 memset(&sbcb_cmd, 0, sizeof(WMI_SET_BTCOEX_COLOCATED_BT_DEV_CMD));
2379 sbcb_cmd.btcoexCoLocatedBTdev = ATH6KL_BT_DEV;
2380
2381 r = wmi_set_btcoex_colocated_bt_dev_cmd(ar->arWmi, &sbcb_cmd);
2382
2383 if (r) {
2384 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,
2385 ("Unable to set collocated BT type\n"));
2386 return r;
2387 }
2388
2389 /* Configure the type of BT collocated with WLAN */
2390 memset(&sbfa_cmd, 0, sizeof(WMI_SET_BTCOEX_FE_ANT_CMD));
2391
2392 sbfa_cmd.btcoexFeAntType = ATH6KL_BT_ANTENNA;
2393
2394 r = wmi_set_btcoex_fe_ant_cmd(ar->arWmi, &sbfa_cmd);
2395 if (r) {
2396 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,
2397 ("Unable to set fornt end antenna configuration\n"));
2398 return r;
2399 }
2400
2401 return 0;
2402 }
2403 #else
2404 static int ath6kl_config_btcoex_params(struct ar6_softc *ar)
2405 {
2406 return 0;
2407 }
2408 #endif /* CONFIG_ATH6KL_ENABLE_COEXISTENCE */
2409
2410 /*
2411 * This function applies WLAN specific configuration defined in wlan_config.h
2412 */
2413 int ar6000_target_config_wlan_params(struct ar6_softc *ar)
2414 {
2415 int status = 0;
2416
2417 #ifdef CONFIG_HOST_TCMD_SUPPORT
2418 if (ar->arTargetMode != AR6000_WLAN_MODE) {
2419 return 0;
2420 }
2421 #endif /* CONFIG_HOST_TCMD_SUPPORT */
2422
2423 /*
2424 * configure the device for rx dot11 header rules 0,0 are the default values
2425 * therefore this command can be skipped if the inputs are 0,FALSE,FALSE.Required
2426 * if checksum offload is needed. Set RxMetaVersion to 2
2427 */
2428 if ((wmi_set_rx_frame_format_cmd(ar->arWmi,ar->rxMetaVersion, processDot11Hdr, processDot11Hdr)) != 0) {
2429 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Unable to set the rx frame format.\n"));
2430 status = A_ERROR;
2431 }
2432
2433 status = ath6kl_config_btcoex_params(ar);
2434 if (status)
2435 return status;
2436
2437 #if WLAN_CONFIG_IGNORE_POWER_SAVE_FAIL_EVENT_DURING_SCAN
2438 if ((wmi_pmparams_cmd(ar->arWmi, 0, 1, 0, 0, 1, IGNORE_POWER_SAVE_FAIL_EVENT_DURING_SCAN)) != 0) {
2439 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Unable to set power save fail event policy\n"));
2440 status = A_ERROR;
2441 }
2442 #endif
2443
2444 #if WLAN_CONFIG_DONOT_IGNORE_BARKER_IN_ERP
2445 if ((wmi_set_lpreamble_cmd(ar->arWmi, 0, WMI_DONOT_IGNORE_BARKER_IN_ERP)) != 0) {
2446 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Unable to set barker preamble policy\n"));
2447 status = A_ERROR;
2448 }
2449 #endif
2450
2451 if ((wmi_set_keepalive_cmd(ar->arWmi, WLAN_CONFIG_KEEP_ALIVE_INTERVAL)) != 0) {
2452 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Unable to set keep alive interval\n"));
2453 status = A_ERROR;
2454 }
2455
2456 #if WLAN_CONFIG_DISABLE_11N
2457 {
2458 WMI_SET_HT_CAP_CMD htCap;
2459
2460 memset(&htCap, 0, sizeof(WMI_SET_HT_CAP_CMD));
2461 htCap.band = 0;
2462 if ((wmi_set_ht_cap_cmd(ar->arWmi, &htCap)) != 0) {
2463 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Unable to set ht capabilities \n"));
2464 status = A_ERROR;
2465 }
2466
2467 htCap.band = 1;
2468 if ((wmi_set_ht_cap_cmd(ar->arWmi, &htCap)) != 0) {
2469 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Unable to set ht capabilities \n"));
2470 status = A_ERROR;
2471 }
2472 }
2473 #endif /* WLAN_CONFIG_DISABLE_11N */
2474
2475 #ifdef ATH6K_CONFIG_OTA_MODE
2476 if ((wmi_powermode_cmd(ar->arWmi, MAX_PERF_POWER)) != 0) {
2477 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Unable to set power mode \n"));
2478 status = A_ERROR;
2479 }
2480 #endif
2481
2482 if ((wmi_disctimeout_cmd(ar->arWmi, WLAN_CONFIG_DISCONNECT_TIMEOUT)) != 0) {
2483 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Unable to set disconnect timeout \n"));
2484 status = A_ERROR;
2485 }
2486
2487 #if WLAN_CONFIG_DISABLE_TX_BURSTING
2488 if ((wmi_set_wmm_txop(ar->arWmi, WMI_TXOP_DISABLED)) != 0) {
2489 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Unable to set txop bursting \n"));
2490 status = A_ERROR;
2491 }
2492 #endif
2493
2494 return status;
2495 }
2496
2497 /* This function does one time initialization for the lifetime of the device */
2498 int ar6000_init(struct net_device *dev)
2499 {
2500 struct ar6_softc *ar;
2501 int status;
2502 s32 timeleft;
2503 s16 i;
2504 int ret = 0;
2505
2506 if((ar = ar6k_priv(dev)) == NULL)
2507 {
2508 return -EIO;
2509 }
2510
2511 if (wlaninitmode == WLAN_INIT_MODE_USR || wlaninitmode == WLAN_INIT_MODE_DRV) {
2512
2513 ar6000_update_bdaddr(ar);
2514
2515 if (enablerssicompensation) {
2516 ar6000_copy_cust_data_from_target(ar->arHifDevice, ar->arTargetType);
2517 read_rssi_compensation_param(ar);
2518 for (i=-95; i<=0; i++) {
2519 rssi_compensation_table[0-i] = rssi_compensation_calc(ar,i);
2520 }
2521 }
2522 }
2523
2524 dev_hold(dev);
2525 rtnl_unlock();
2526
2527 /* Do we need to finish the BMI phase */
2528 if ((wlaninitmode == WLAN_INIT_MODE_USR || wlaninitmode == WLAN_INIT_MODE_DRV) &&
2529 (BMIDone(ar->arHifDevice) != 0))
2530 {
2531 ret = -EIO;
2532 goto ar6000_init_done;
2533 }
2534
2535 if (!bypasswmi)
2536 {
2537 #if 0 /* TBDXXX */
2538 if (ar->arVersion.host_ver != ar->arVersion.target_ver) {
2539 A_PRINTF("WARNING: Host version 0x%x does not match Target "
2540 " version 0x%x!\n",
2541 ar->arVersion.host_ver, ar->arVersion.target_ver);
2542 }
2543 #endif
2544
2545 /* Indicate that WMI is enabled (although not ready yet) */
2546 ar->arWmiEnabled = true;
2547 if ((ar->arWmi = wmi_init((void *) ar)) == NULL)
2548 {
2549 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s() Failed to initialize WMI.\n", __func__));
2550 ret = -EIO;
2551 goto ar6000_init_done;
2552 }
2553
2554 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s() Got WMI @ 0x%lx.\n", __func__,
2555 (unsigned long) ar->arWmi));
2556 }
2557
2558 do {
2559 struct htc_service_connect_req connect;
2560
2561 /* the reason we have to wait for the target here is that the driver layer
2562 * has to init BMI in order to set the host block size,
2563 */
2564 status = HTCWaitTarget(ar->arHtcTarget);
2565
2566 if (status) {
2567 break;
2568 }
2569
2570 A_MEMZERO(&connect,sizeof(connect));
2571 /* meta data is unused for now */
2572 connect.pMetaData = NULL;
2573 connect.MetaDataLength = 0;
2574 /* these fields are the same for all service endpoints */
2575 connect.EpCallbacks.pContext = ar;
2576 connect.EpCallbacks.EpTxCompleteMultiple = ar6000_tx_complete;
2577 connect.EpCallbacks.EpRecv = ar6000_rx;
2578 connect.EpCallbacks.EpRecvRefill = ar6000_rx_refill;
2579 connect.EpCallbacks.EpSendFull = ar6000_tx_queue_full;
2580 /* set the max queue depth so that our ar6000_tx_queue_full handler gets called.
2581 * Linux has the peculiarity of not providing flow control between the
2582 * NIC and the network stack. There is no API to indicate that a TX packet
2583 * was sent which could provide some back pressure to the network stack.
2584 * Under linux you would have to wait till the network stack consumed all sk_buffs
2585 * before any back-flow kicked in. Which isn't very friendly.
2586 * So we have to manage this ourselves */
2587 connect.MaxSendQueueDepth = MAX_DEFAULT_SEND_QUEUE_DEPTH;
2588 connect.EpCallbacks.RecvRefillWaterMark = AR6000_MAX_RX_BUFFERS / 4; /* set to 25 % */
2589 if (0 == connect.EpCallbacks.RecvRefillWaterMark) {
2590 connect.EpCallbacks.RecvRefillWaterMark++;
2591 }
2592 /* connect to control service */
2593 connect.ServiceID = WMI_CONTROL_SVC;
2594 status = ar6000_connectservice(ar,
2595 &connect,
2596 "WMI CONTROL");
2597 if (status) {
2598 break;
2599 }
2600
2601 connect.LocalConnectionFlags |= HTC_LOCAL_CONN_FLAGS_ENABLE_SEND_BUNDLE_PADDING;
2602 /* limit the HTC message size on the send path, although we can receive A-MSDU frames of
2603 * 4K, we will only send ethernet-sized (802.3) frames on the send path. */
2604 connect.MaxSendMsgSize = WMI_MAX_TX_DATA_FRAME_LENGTH;
2605
2606 /* to reduce the amount of committed memory for larger A_MSDU frames, use the recv-alloc threshold
2607 * mechanism for larger packets */
2608 connect.EpCallbacks.RecvAllocThreshold = AR6000_BUFFER_SIZE;
2609 connect.EpCallbacks.EpRecvAllocThresh = ar6000_alloc_amsdu_rxbuf;
2610
2611 /* for the remaining data services set the connection flag to reduce dribbling,
2612 * if configured to do so */
2613 if (reduce_credit_dribble) {
2614 connect.ConnectionFlags |= HTC_CONNECT_FLAGS_REDUCE_CREDIT_DRIBBLE;
2615 /* the credit dribble trigger threshold is (reduce_credit_dribble - 1) for a value
2616 * of 0-3 */
2617 connect.ConnectionFlags &= ~HTC_CONNECT_FLAGS_THRESHOLD_LEVEL_MASK;
2618 connect.ConnectionFlags |=
2619 ((u16)reduce_credit_dribble - 1) & HTC_CONNECT_FLAGS_THRESHOLD_LEVEL_MASK;
2620 }
2621 /* connect to best-effort service */
2622 connect.ServiceID = WMI_DATA_BE_SVC;
2623
2624 status = ar6000_connectservice(ar,
2625 &connect,
2626 "WMI DATA BE");
2627 if (status) {
2628 break;
2629 }
2630
2631 /* connect to back-ground
2632 * map this to WMI LOW_PRI */
2633 connect.ServiceID = WMI_DATA_BK_SVC;
2634 status = ar6000_connectservice(ar,
2635 &connect,
2636 "WMI DATA BK");
2637 if (status) {
2638 break;
2639 }
2640
2641 /* connect to Video service, map this to
2642 * to HI PRI */
2643 connect.ServiceID = WMI_DATA_VI_SVC;
2644 status = ar6000_connectservice(ar,
2645 &connect,
2646 "WMI DATA VI");
2647 if (status) {
2648 break;
2649 }
2650
2651 /* connect to VO service, this is currently not
2652 * mapped to a WMI priority stream due to historical reasons.
2653 * WMI originally defined 3 priorities over 3 mailboxes
2654 * We can change this when WMI is reworked so that priorities are not
2655 * dependent on mailboxes */
2656 connect.ServiceID = WMI_DATA_VO_SVC;
2657 status = ar6000_connectservice(ar,
2658 &connect,
2659 "WMI DATA VO");
2660 if (status) {
2661 break;
2662 }
2663
2664 A_ASSERT(arAc2EndpointID(ar,WMM_AC_BE) != 0);
2665 A_ASSERT(arAc2EndpointID(ar,WMM_AC_BK) != 0);
2666 A_ASSERT(arAc2EndpointID(ar,WMM_AC_VI) != 0);
2667 A_ASSERT(arAc2EndpointID(ar,WMM_AC_VO) != 0);
2668
2669 /* setup access class priority mappings */
2670 ar->arAcStreamPriMap[WMM_AC_BK] = 0; /* lowest */
2671 ar->arAcStreamPriMap[WMM_AC_BE] = 1; /* */
2672 ar->arAcStreamPriMap[WMM_AC_VI] = 2; /* */
2673 ar->arAcStreamPriMap[WMM_AC_VO] = 3; /* highest */
2674
2675 #ifdef EXPORT_HCI_BRIDGE_INTERFACE
2676 if (setuphci && (NULL != ar6kHciTransCallbacks.setupTransport)) {
2677 struct hci_transport_misc_handles hciHandles;
2678
2679 hciHandles.netDevice = ar->arNetDev;
2680 hciHandles.hifDevice = ar->arHifDevice;
2681 hciHandles.htcHandle = ar->arHtcTarget;
2682 status = (int)(ar6kHciTransCallbacks.setupTransport(&hciHandles));
2683 }
2684 #else
2685 if (setuphci) {
2686 /* setup HCI */
2687 status = ar6000_setup_hci(ar);
2688 }
2689 #endif
2690
2691 } while (false);
2692
2693 if (status) {
2694 ret = -EIO;
2695 goto ar6000_init_done;
2696 }
2697
2698 if (regscanmode) {
2699 u32 param;
2700
2701 if (BMIReadMemory(ar->arHifDevice,
2702 HOST_INTEREST_ITEM_ADDRESS(ar,
2703 hi_option_flag),
2704 (u8 *)&param,
2705 4) != 0) {
2706 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,
2707 ("BMIReadMemory forsetting "
2708 "regscanmode failed\n"));
2709 return A_ERROR;
2710 }
2711
2712 if (regscanmode == 1)
2713 param |= HI_OPTION_SKIP_REG_SCAN;
2714 else if (regscanmode == 2)
2715 param |= HI_OPTION_INIT_REG_SCAN;
2716
2717 if (BMIWriteMemory(ar->arHifDevice,
2718 HOST_INTEREST_ITEM_ADDRESS(ar,
2719 hi_option_flag),
2720 (u8 *)&param,
2721 4) != 0) {
2722 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,
2723 ("BMIWriteMemory forsetting "
2724 "regscanmode failed\n"));
2725 return A_ERROR;
2726 }
2727 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("Regulatory scan mode set\n"));
2728 }
2729
2730 /*
2731 * give our connected endpoints some buffers
2732 */
2733
2734 ar6000_rx_refill(ar, ar->arControlEp);
2735 ar6000_rx_refill(ar, arAc2EndpointID(ar,WMM_AC_BE));
2736
2737 /*
2738 * We will post the receive buffers only for SPE or endpoint ping testing so we are
2739 * making it conditional on the 'bypasswmi' flag.
2740 */
2741 if (bypasswmi) {
2742 ar6000_rx_refill(ar,arAc2EndpointID(ar,WMM_AC_BK));
2743 ar6000_rx_refill(ar,arAc2EndpointID(ar,WMM_AC_VI));
2744 ar6000_rx_refill(ar,arAc2EndpointID(ar,WMM_AC_VO));
2745 }
2746
2747 /* allocate some buffers that handle larger AMSDU frames */
2748 ar6000_refill_amsdu_rxbufs(ar,AR6000_MAX_AMSDU_RX_BUFFERS);
2749
2750 /* setup credit distribution */
2751 ar6000_setup_credit_dist(ar->arHtcTarget, &ar->arCreditStateInfo);
2752
2753 /* Since cookies are used for HTC transports, they should be */
2754 /* initialized prior to enabling HTC. */
2755 ar6000_cookie_init(ar);
2756
2757 /* start HTC */
2758 status = HTCStart(ar->arHtcTarget);
2759
2760 if (status) {
2761 if (ar->arWmiEnabled == true) {
2762 wmi_shutdown(ar->arWmi);
2763 ar->arWmiEnabled = false;
2764 ar->arWmi = NULL;
2765 }
2766 ar6000_cookie_cleanup(ar);
2767 ret = -EIO;
2768 goto ar6000_init_done;
2769 }
2770
2771 if (!bypasswmi) {
2772 /* Wait for Wmi event to be ready */
2773 timeleft = wait_event_interruptible_timeout(arEvent,
2774 (ar->arWmiReady == true), wmitimeout * HZ);
2775
2776 if (ar->arVersion.abi_ver != AR6K_ABI_VERSION) {
2777 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ABI Version mismatch: Host(0x%x), Target(0x%x)\n", AR6K_ABI_VERSION, ar->arVersion.abi_ver));
2778 #ifndef ATH6K_SKIP_ABI_VERSION_CHECK
2779 ret = -EIO;
2780 goto ar6000_init_done;
2781 #endif /* ATH6K_SKIP_ABI_VERSION_CHECK */
2782 }
2783
2784 if(!timeleft || signal_pending(current))
2785 {
2786 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("WMI is not ready or wait was interrupted\n"));
2787 ret = -EIO;
2788 goto ar6000_init_done;
2789 }
2790
2791 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s() WMI is ready\n", __func__));
2792
2793 /* Communicate the wmi protocol verision to the target */
2794 if ((ar6000_set_host_app_area(ar)) != 0) {
2795 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Unable to set the host app area\n"));
2796 }
2797 ar6000_target_config_wlan_params(ar);
2798 }
2799
2800 ar->arNumDataEndPts = 1;
2801
2802 if (bypasswmi) {
2803 /* for tests like endpoint ping, the MAC address needs to be non-zero otherwise
2804 * the data path through a raw socket is disabled */
2805 dev->dev_addr[0] = 0x00;
2806 dev->dev_addr[1] = 0x01;
2807 dev->dev_addr[2] = 0x02;
2808 dev->dev_addr[3] = 0xAA;
2809 dev->dev_addr[4] = 0xBB;
2810 dev->dev_addr[5] = 0xCC;
2811 }
2812
2813 ar6000_init_done:
2814 rtnl_lock();
2815 dev_put(dev);
2816
2817 return ret;
2818 }
2819
2820
2821 void
2822 ar6000_bitrate_rx(void *devt, s32 rateKbps)
2823 {
2824 struct ar6_softc *ar = (struct ar6_softc *)devt;
2825
2826 ar->arBitRate = rateKbps;
2827 wake_up(&arEvent);
2828 }
2829
2830 void
2831 ar6000_ratemask_rx(void *devt, u32 ratemask)
2832 {
2833 struct ar6_softc *ar = (struct ar6_softc *)devt;
2834
2835 ar->arRateMask = ratemask;
2836 wake_up(&arEvent);
2837 }
2838
2839 void
2840 ar6000_txPwr_rx(void *devt, u8 txPwr)
2841 {
2842 struct ar6_softc *ar = (struct ar6_softc *)devt;
2843
2844 ar->arTxPwr = txPwr;
2845 wake_up(&arEvent);
2846 }
2847
2848
2849 void
2850 ar6000_channelList_rx(void *devt, s8 numChan, u16 *chanList)
2851 {
2852 struct ar6_softc *ar = (struct ar6_softc *)devt;
2853
2854 memcpy(ar->arChannelList, chanList, numChan * sizeof (u16));
2855 ar->arNumChannels = numChan;
2856
2857 wake_up(&arEvent);
2858 }
2859
2860 u8 ar6000_ibss_map_epid(struct sk_buff *skb, struct net_device *dev, u32 *mapNo)
2861 {
2862 struct ar6_softc *ar = (struct ar6_softc *)ar6k_priv(dev);
2863 u8 *datap;
2864 ATH_MAC_HDR *macHdr;
2865 u32 i, eptMap;
2866
2867 (*mapNo) = 0;
2868 datap = A_NETBUF_DATA(skb);
2869 macHdr = (ATH_MAC_HDR *)(datap + sizeof(WMI_DATA_HDR));
2870 if (IEEE80211_IS_MULTICAST(macHdr->dstMac)) {
2871 return ENDPOINT_2;
2872 }
2873
2874 eptMap = -1;
2875 for (i = 0; i < ar->arNodeNum; i ++) {
2876 if (IEEE80211_ADDR_EQ(macHdr->dstMac, ar->arNodeMap[i].macAddress)) {
2877 (*mapNo) = i + 1;
2878 ar->arNodeMap[i].txPending ++;
2879 return ar->arNodeMap[i].epId;
2880 }
2881
2882 if ((eptMap == -1) && !ar->arNodeMap[i].txPending) {
2883 eptMap = i;
2884 }
2885 }
2886
2887 if (eptMap == -1) {
2888 eptMap = ar->arNodeNum;
2889 ar->arNodeNum ++;
2890 A_ASSERT(ar->arNodeNum <= MAX_NODE_NUM);
2891 }
2892
2893 memcpy(ar->arNodeMap[eptMap].macAddress, macHdr->dstMac, IEEE80211_ADDR_LEN);
2894
2895 for (i = ENDPOINT_2; i <= ENDPOINT_5; i ++) {
2896 if (!ar->arTxPending[i]) {
2897 ar->arNodeMap[eptMap].epId = i;
2898 break;
2899 }
2900 // No free endpoint is available, start redistribution on the inuse endpoints.
2901 if (i == ENDPOINT_5) {
2902 ar->arNodeMap[eptMap].epId = ar->arNexEpId;
2903 ar->arNexEpId ++;
2904 if (ar->arNexEpId > ENDPOINT_5) {
2905 ar->arNexEpId = ENDPOINT_2;
2906 }
2907 }
2908 }
2909
2910 (*mapNo) = eptMap + 1;
2911 ar->arNodeMap[eptMap].txPending ++;
2912
2913 return ar->arNodeMap[eptMap].epId;
2914 }
2915
2916 #ifdef DEBUG
2917 static void ar6000_dump_skb(struct sk_buff *skb)
2918 {
2919 u_char *ch;
2920 for (ch = A_NETBUF_DATA(skb);
2921 (unsigned long)ch < ((unsigned long)A_NETBUF_DATA(skb) +
2922 A_NETBUF_LEN(skb)); ch++)
2923 {
2924 AR_DEBUG_PRINTF(ATH_DEBUG_WARN,("%2.2x ", *ch));
2925 }
2926 AR_DEBUG_PRINTF(ATH_DEBUG_WARN,("\n"));
2927 }
2928 #endif
2929
2930 #ifdef HTC_TEST_SEND_PKTS
2931 static void DoHTCSendPktsTest(struct ar6_softc *ar, int MapNo, HTC_ENDPOINT_ID eid, struct sk_buff *skb);
2932 #endif
2933
2934 static int
2935 ar6000_data_tx(struct sk_buff *skb, struct net_device *dev)
2936 {
2937 #define AC_NOT_MAPPED 99
2938 struct ar6_softc *ar = (struct ar6_softc *)ar6k_priv(dev);
2939 u8 ac = AC_NOT_MAPPED;
2940 HTC_ENDPOINT_ID eid = ENDPOINT_UNUSED;
2941 u32 mapNo = 0;
2942 int len;
2943 struct ar_cookie *cookie;
2944 bool checkAdHocPsMapping = false,bMoreData = false;
2945 HTC_TX_TAG htc_tag = AR6K_DATA_PKT_TAG;
2946 u8 dot11Hdr = processDot11Hdr;
2947 #ifdef CONFIG_PM
2948 if (ar->arWowState != WLAN_WOW_STATE_NONE) {
2949 A_NETBUF_FREE(skb);
2950 return 0;
2951 }
2952 #endif /* CONFIG_PM */
2953
2954 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_TX,("ar6000_data_tx start - skb=0x%lx, data=0x%lx, len=0x%x\n",
2955 (unsigned long)skb, (unsigned long)A_NETBUF_DATA(skb),
2956 A_NETBUF_LEN(skb)));
2957
2958 /* If target is not associated */
2959 if( (!ar->arConnected && !bypasswmi)
2960 #ifdef CONFIG_HOST_TCMD_SUPPORT
2961 /* TCMD doesn't support any data, free the buf and return */
2962 || (ar->arTargetMode == AR6000_TCMD_MODE)
2963 #endif
2964 ) {
2965 A_NETBUF_FREE(skb);
2966 return 0;
2967 }
2968
2969 do {
2970
2971 if (ar->arWmiReady == false && bypasswmi == 0) {
2972 break;
2973 }
2974
2975 #ifdef BLOCK_TX_PATH_FLAG
2976 if (blocktx) {
2977 break;
2978 }
2979 #endif /* BLOCK_TX_PATH_FLAG */
2980
2981 /* AP mode Power save processing */
2982 /* If the dst STA is in sleep state, queue the pkt in its PS queue */
2983
2984 if (ar->arNetworkType == AP_NETWORK) {
2985 ATH_MAC_HDR *datap = (ATH_MAC_HDR *)A_NETBUF_DATA(skb);
2986 sta_t *conn = NULL;
2987
2988 /* If the dstMac is a Multicast address & atleast one of the
2989 * associated STA is in PS mode, then queue the pkt to the
2990 * mcastq
2991 */
2992 if (IEEE80211_IS_MULTICAST(datap->dstMac)) {
2993 u8 ctr=0;
2994 bool qMcast=false;
2995
2996
2997 for (ctr=0; ctr<AP_MAX_NUM_STA; ctr++) {
2998 if (STA_IS_PWR_SLEEP((&ar->sta_list[ctr]))) {
2999 qMcast = true;
3000 }
3001 }
3002 if(qMcast) {
3003
3004 /* If this transmit is not because of a Dtim Expiry q it */
3005 if (ar->DTIMExpired == false) {
3006 bool isMcastqEmpty = false;
3007
3008 A_MUTEX_LOCK(&ar->mcastpsqLock);
3009 isMcastqEmpty = A_NETBUF_QUEUE_EMPTY(&ar->mcastpsq);
3010 A_NETBUF_ENQUEUE(&ar->mcastpsq, skb);
3011 A_MUTEX_UNLOCK(&ar->mcastpsqLock);
3012
3013 /* If this is the first Mcast pkt getting queued
3014 * indicate to the target to set the BitmapControl LSB
3015 * of the TIM IE.
3016 */
3017 if (isMcastqEmpty) {
3018 wmi_set_pvb_cmd(ar->arWmi, MCAST_AID, 1);
3019 }
3020 return 0;
3021 } else {
3022 /* This transmit is because of Dtim expiry. Determine if
3023 * MoreData bit has to be set.
3024 */
3025 A_MUTEX_LOCK(&ar->mcastpsqLock);
3026 if(!A_NETBUF_QUEUE_EMPTY(&ar->mcastpsq)) {
3027 bMoreData = true;
3028 }
3029 A_MUTEX_UNLOCK(&ar->mcastpsqLock);
3030 }
3031 }
3032 } else {
3033 conn = ieee80211_find_conn(ar, datap->dstMac);
3034 if (conn) {
3035 if (STA_IS_PWR_SLEEP(conn)) {
3036 /* If this transmit is not because of a PsPoll q it*/
3037 if (!STA_IS_PS_POLLED(conn)) {
3038 bool isPsqEmpty = false;
3039 /* Queue the frames if the STA is sleeping */
3040 A_MUTEX_LOCK(&conn->psqLock);
3041 isPsqEmpty = A_NETBUF_QUEUE_EMPTY(&conn->psq);
3042 A_NETBUF_ENQUEUE(&conn->psq, skb);
3043 A_MUTEX_UNLOCK(&conn->psqLock);
3044
3045 /* If this is the first pkt getting queued
3046 * for this STA, update the PVB for this STA
3047 */
3048 if (isPsqEmpty) {
3049 wmi_set_pvb_cmd(ar->arWmi, conn->aid, 1);
3050 }
3051
3052 return 0;
3053 } else {
3054 /* This tx is because of a PsPoll. Determine if
3055 * MoreData bit has to be set
3056 */
3057 A_MUTEX_LOCK(&conn->psqLock);
3058 if (!A_NETBUF_QUEUE_EMPTY(&conn->psq)) {
3059 bMoreData = true;
3060 }
3061 A_MUTEX_UNLOCK(&conn->psqLock);
3062 }
3063 }
3064 } else {
3065
3066 /* non existent STA. drop the frame */
3067 A_NETBUF_FREE(skb);
3068 return 0;
3069 }
3070 }
3071 }
3072
3073 if (ar->arWmiEnabled) {
3074 u8 csumStart=0;
3075 u8 csumDest=0;
3076 u8 csum=skb->ip_summed;
3077 if(csumOffload && (csum==CHECKSUM_PARTIAL)){
3078 csumStart = (skb->head + skb->csum_start - skb_network_header(skb) +
3079 sizeof(ATH_LLC_SNAP_HDR));
3080 csumDest=skb->csum_offset+csumStart;
3081 }
3082 if (A_NETBUF_HEADROOM(skb) < dev->hard_header_len - LINUX_HACK_FUDGE_FACTOR) {
3083 struct sk_buff *newbuf;
3084
3085 /*
3086 * We really should have gotten enough headroom but sometimes
3087 * we still get packets with not enough headroom. Copy the packet.
3088 */
3089 len = A_NETBUF_LEN(skb);
3090 newbuf = A_NETBUF_ALLOC(len);
3091 if (newbuf == NULL) {
3092 break;
3093 }
3094 A_NETBUF_PUT(newbuf, len);
3095 memcpy(A_NETBUF_DATA(newbuf), A_NETBUF_DATA(skb), len);
3096 A_NETBUF_FREE(skb);
3097 skb = newbuf;
3098 /* fall through and assemble header */
3099 }
3100
3101 if (dot11Hdr) {
3102 if (wmi_dot11_hdr_add(ar->arWmi,skb,ar->arNetworkType) != 0) {
3103 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_data_tx-wmi_dot11_hdr_add failed\n"));
3104 break;
3105 }
3106 } else {
3107 if (wmi_dix_2_dot3(ar->arWmi, skb) != 0) {
3108 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_data_tx - wmi_dix_2_dot3 failed\n"));
3109 break;
3110 }
3111 }
3112 if(csumOffload && (csum ==CHECKSUM_PARTIAL)){
3113 WMI_TX_META_V2 metaV2;
3114 metaV2.csumStart =csumStart;
3115 metaV2.csumDest = csumDest;
3116 metaV2.csumFlags = 0x1;/*instruct target to calculate checksum*/
3117 if (wmi_data_hdr_add(ar->arWmi, skb, DATA_MSGTYPE, bMoreData, dot11Hdr,
3118 WMI_META_VERSION_2,&metaV2) != 0) {
3119 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_data_tx - wmi_data_hdr_add failed\n"));
3120 break;
3121 }
3122
3123 }
3124 else
3125 {
3126 if (wmi_data_hdr_add(ar->arWmi, skb, DATA_MSGTYPE, bMoreData, dot11Hdr,0,NULL) != 0) {
3127 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_data_tx - wmi_data_hdr_add failed\n"));
3128 break;
3129 }
3130 }
3131
3132
3133 if ((ar->arNetworkType == ADHOC_NETWORK) &&
3134 ar->arIbssPsEnable && ar->arConnected) {
3135 /* flag to check adhoc mapping once we take the lock below: */
3136 checkAdHocPsMapping = true;
3137
3138 } else {
3139 /* get the stream mapping */
3140 ac = wmi_implicit_create_pstream(ar->arWmi, skb, 0, ar->arWmmEnabled);
3141 }
3142
3143 } else {
3144 EPPING_HEADER *eppingHdr;
3145
3146 eppingHdr = A_NETBUF_DATA(skb);
3147
3148 if (IS_EPPING_PACKET(eppingHdr)) {
3149 /* the stream ID is mapped to an access class */
3150 ac = eppingHdr->StreamNo_h;
3151 /* some EPPING packets cannot be dropped no matter what access class it was
3152 * sent on. We can change the packet tag to guarantee it will not get dropped */
3153 if (IS_EPING_PACKET_NO_DROP(eppingHdr)) {
3154 htc_tag = AR6K_CONTROL_PKT_TAG;
3155 }
3156
3157 if (ac == HCI_TRANSPORT_STREAM_NUM) {
3158 /* pass this to HCI */
3159 #ifndef EXPORT_HCI_BRIDGE_INTERFACE
3160 if (!hci_test_send(ar,skb)) {
3161 return 0;
3162 }
3163 #endif
3164 /* set AC to discard this skb */
3165 ac = AC_NOT_MAPPED;
3166 } else {
3167 /* a quirk of linux, the payload of the frame is 32-bit aligned and thus the addition
3168 * of the HTC header will mis-align the start of the HTC frame, so we add some
3169 * padding which will be stripped off in the target */
3170 if (EPPING_ALIGNMENT_PAD > 0) {
3171 A_NETBUF_PUSH(skb, EPPING_ALIGNMENT_PAD);
3172 }
3173 }
3174
3175 } else {
3176 /* not a ping packet, drop it */
3177 ac = AC_NOT_MAPPED;
3178 }
3179 }
3180
3181 } while (false);
3182
3183 /* did we succeed ? */
3184 if ((ac == AC_NOT_MAPPED) && !checkAdHocPsMapping) {
3185 /* cleanup and exit */
3186 A_NETBUF_FREE(skb);
3187 AR6000_STAT_INC(ar, tx_dropped);
3188 AR6000_STAT_INC(ar, tx_aborted_errors);
3189 return 0;
3190 }
3191
3192 cookie = NULL;
3193
3194 /* take the lock to protect driver data */
3195 AR6000_SPIN_LOCK(&ar->arLock, 0);
3196
3197 do {
3198
3199 if (checkAdHocPsMapping) {
3200 eid = ar6000_ibss_map_epid(skb, dev, &mapNo);
3201 }else {
3202 eid = arAc2EndpointID (ar, ac);
3203 }
3204 /* validate that the endpoint is connected */
3205 if (eid == 0 || eid == ENDPOINT_UNUSED ) {
3206 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,(" eid %d is NOT mapped!\n", eid));
3207 break;
3208 }
3209 /* allocate resource for this packet */
3210 cookie = ar6000_alloc_cookie(ar);
3211
3212 if (cookie != NULL) {
3213 /* update counts while the lock is held */
3214 ar->arTxPending[eid]++;
3215 ar->arTotalTxDataPending++;
3216 }
3217
3218 } while (false);
3219
3220 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
3221
3222 if (cookie != NULL) {
3223 cookie->arc_bp[0] = (unsigned long)skb;
3224 cookie->arc_bp[1] = mapNo;
3225 SET_HTC_PACKET_INFO_TX(&cookie->HtcPkt,
3226 cookie,
3227 A_NETBUF_DATA(skb),
3228 A_NETBUF_LEN(skb),
3229 eid,
3230 htc_tag);
3231
3232 #ifdef DEBUG
3233 if (debugdriver >= 3) {
3234 ar6000_dump_skb(skb);
3235 }
3236 #endif
3237 #ifdef HTC_TEST_SEND_PKTS
3238 DoHTCSendPktsTest(ar,mapNo,eid,skb);
3239 #endif
3240 /* HTC interface is asynchronous, if this fails, cleanup will happen in
3241 * the ar6000_tx_complete callback */
3242 HTCSendPkt(ar->arHtcTarget, &cookie->HtcPkt);
3243 } else {
3244 /* no packet to send, cleanup */
3245 A_NETBUF_FREE(skb);
3246 AR6000_STAT_INC(ar, tx_dropped);
3247 AR6000_STAT_INC(ar, tx_aborted_errors);
3248 }
3249
3250 return 0;
3251 }
3252
3253 int
3254 ar6000_acl_data_tx(struct sk_buff *skb, struct net_device *dev)
3255 {
3256 struct ar6_softc *ar = (struct ar6_softc *)ar6k_priv(dev);
3257 struct ar_cookie *cookie;
3258 HTC_ENDPOINT_ID eid = ENDPOINT_UNUSED;
3259
3260 cookie = NULL;
3261 AR6000_SPIN_LOCK(&ar->arLock, 0);
3262
3263 /* For now we send ACL on BE endpoint: We can also have a dedicated EP */
3264 eid = arAc2EndpointID (ar, 0);
3265 /* allocate resource for this packet */
3266 cookie = ar6000_alloc_cookie(ar);
3267
3268 if (cookie != NULL) {
3269 /* update counts while the lock is held */
3270 ar->arTxPending[eid]++;
3271 ar->arTotalTxDataPending++;
3272 }
3273
3274
3275 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
3276
3277 if (cookie != NULL) {
3278 cookie->arc_bp[0] = (unsigned long)skb;
3279 cookie->arc_bp[1] = 0;
3280 SET_HTC_PACKET_INFO_TX(&cookie->HtcPkt,
3281 cookie,
3282 A_NETBUF_DATA(skb),
3283 A_NETBUF_LEN(skb),
3284 eid,
3285 AR6K_DATA_PKT_TAG);
3286
3287 /* HTC interface is asynchronous, if this fails, cleanup will happen in
3288 * the ar6000_tx_complete callback */
3289 HTCSendPkt(ar->arHtcTarget, &cookie->HtcPkt);
3290 } else {
3291 /* no packet to send, cleanup */
3292 A_NETBUF_FREE(skb);
3293 AR6000_STAT_INC(ar, tx_dropped);
3294 AR6000_STAT_INC(ar, tx_aborted_errors);
3295 }
3296 return 0;
3297 }
3298
3299
3300 #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
3301 static void
3302 tvsub(register struct timeval *out, register struct timeval *in)
3303 {
3304 if((out->tv_usec -= in->tv_usec) < 0) {
3305 out->tv_sec--;
3306 out->tv_usec += 1000000;
3307 }
3308 out->tv_sec -= in->tv_sec;
3309 }
3310
3311 void
3312 applyAPTCHeuristics(struct ar6_softc *ar)
3313 {
3314 u32 duration;
3315 u32 numbytes;
3316 u32 throughput;
3317 struct timeval ts;
3318 int status;
3319
3320 AR6000_SPIN_LOCK(&ar->arLock, 0);
3321
3322 if ((enableAPTCHeuristics) && (!aptcTR.timerScheduled)) {
3323 do_gettimeofday(&ts);
3324 tvsub(&ts, &aptcTR.samplingTS);
3325 duration = ts.tv_sec * 1000 + ts.tv_usec / 1000; /* ms */
3326 numbytes = aptcTR.bytesTransmitted + aptcTR.bytesReceived;
3327
3328 if (duration > APTC_TRAFFIC_SAMPLING_INTERVAL) {
3329 /* Initialize the time stamp and byte count */
3330 aptcTR.bytesTransmitted = aptcTR.bytesReceived = 0;
3331 do_gettimeofday(&aptcTR.samplingTS);
3332
3333 /* Calculate and decide based on throughput thresholds */
3334 throughput = ((numbytes * 8) / duration);
3335 if (throughput > APTC_UPPER_THROUGHPUT_THRESHOLD) {
3336 /* Disable Sleep and schedule a timer */
3337 A_ASSERT(ar->arWmiReady == true);
3338 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
3339 status = wmi_powermode_cmd(ar->arWmi, MAX_PERF_POWER);
3340 AR6000_SPIN_LOCK(&ar->arLock, 0);
3341 A_TIMEOUT_MS(&aptcTimer, APTC_TRAFFIC_SAMPLING_INTERVAL, 0);
3342 aptcTR.timerScheduled = true;
3343 }
3344 }
3345 }
3346
3347 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
3348 }
3349 #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
3350
3351 static HTC_SEND_FULL_ACTION ar6000_tx_queue_full(void *Context, struct htc_packet *pPacket)
3352 {
3353 struct ar6_softc *ar = (struct ar6_softc *)Context;
3354 HTC_SEND_FULL_ACTION action = HTC_SEND_FULL_KEEP;
3355 bool stopNet = false;
3356 HTC_ENDPOINT_ID Endpoint = HTC_GET_ENDPOINT_FROM_PKT(pPacket);
3357
3358 do {
3359
3360 if (bypasswmi) {
3361 int accessClass;
3362
3363 if (HTC_GET_TAG_FROM_PKT(pPacket) == AR6K_CONTROL_PKT_TAG) {
3364 /* don't drop special control packets */
3365 break;
3366 }
3367
3368 accessClass = arEndpoint2Ac(ar,Endpoint);
3369 /* for endpoint ping testing drop Best Effort and Background */
3370 if ((accessClass == WMM_AC_BE) || (accessClass == WMM_AC_BK)) {
3371 action = HTC_SEND_FULL_DROP;
3372 stopNet = false;
3373 } else {
3374 /* keep but stop the netqueues */
3375 stopNet = true;
3376 }
3377 break;
3378 }
3379
3380 if (Endpoint == ar->arControlEp) {
3381 /* under normal WMI if this is getting full, then something is running rampant
3382 * the host should not be exhausting the WMI queue with too many commands
3383 * the only exception to this is during testing using endpointping */
3384 AR6000_SPIN_LOCK(&ar->arLock, 0);
3385 /* set flag to handle subsequent messages */
3386 ar->arWMIControlEpFull = true;
3387 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
3388 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("WMI Control Endpoint is FULL!!! \n"));
3389 /* no need to stop the network */
3390 stopNet = false;
3391 break;
3392 }
3393
3394 /* if we get here, we are dealing with data endpoints getting full */
3395
3396 if (HTC_GET_TAG_FROM_PKT(pPacket) == AR6K_CONTROL_PKT_TAG) {
3397 /* don't drop control packets issued on ANY data endpoint */
3398 break;
3399 }
3400
3401 if (ar->arNetworkType == ADHOC_NETWORK) {
3402 /* in adhoc mode, we cannot differentiate traffic priorities so there is no need to
3403 * continue, however we should stop the network */
3404 stopNet = true;
3405 break;
3406 }
3407 /* the last MAX_HI_COOKIE_NUM "batch" of cookies are reserved for the highest
3408 * active stream */
3409 if (ar->arAcStreamPriMap[arEndpoint2Ac(ar,Endpoint)] < ar->arHiAcStreamActivePri &&
3410 ar->arCookieCount <= MAX_HI_COOKIE_NUM) {
3411 /* this stream's priority is less than the highest active priority, we
3412 * give preference to the highest priority stream by directing
3413 * HTC to drop the packet that overflowed */
3414 action = HTC_SEND_FULL_DROP;
3415 /* since we are dropping packets, no need to stop the network */
3416 stopNet = false;
3417 break;
3418 }
3419
3420 } while (false);
3421
3422 if (stopNet) {
3423 AR6000_SPIN_LOCK(&ar->arLock, 0);
3424 ar->arNetQueueStopped = true;
3425 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
3426 /* one of the data endpoints queues is getting full..need to stop network stack
3427 * the queue will resume in ar6000_tx_complete() */
3428 netif_stop_queue(ar->arNetDev);
3429 }
3430
3431 return action;
3432 }
3433
3434
3435 static void
3436 ar6000_tx_complete(void *Context, struct htc_packet_queue *pPacketQueue)
3437 {
3438 struct ar6_softc *ar = (struct ar6_softc *)Context;
3439 u32 mapNo = 0;
3440 int status;
3441 struct ar_cookie * ar_cookie;
3442 HTC_ENDPOINT_ID eid;
3443 bool wakeEvent = false;
3444 struct sk_buff_head skb_queue;
3445 struct htc_packet *pPacket;
3446 struct sk_buff *pktSkb;
3447 bool flushing = false;
3448
3449 skb_queue_head_init(&skb_queue);
3450
3451 /* lock the driver as we update internal state */
3452 AR6000_SPIN_LOCK(&ar->arLock, 0);
3453
3454 /* reap completed packets */
3455 while (!HTC_QUEUE_EMPTY(pPacketQueue)) {
3456
3457 pPacket = HTC_PACKET_DEQUEUE(pPacketQueue);
3458
3459 ar_cookie = (struct ar_cookie *)pPacket->pPktContext;
3460 A_ASSERT(ar_cookie);
3461
3462 status = pPacket->Status;
3463 pktSkb = (struct sk_buff *)ar_cookie->arc_bp[0];
3464 eid = pPacket->Endpoint;
3465 mapNo = ar_cookie->arc_bp[1];
3466
3467 A_ASSERT(pktSkb);
3468 A_ASSERT(pPacket->pBuffer == A_NETBUF_DATA(pktSkb));
3469
3470 /* add this to the list, use faster non-lock API */
3471 __skb_queue_tail(&skb_queue,pktSkb);
3472
3473 if (!status) {
3474 A_ASSERT(pPacket->ActualLength == A_NETBUF_LEN(pktSkb));
3475 }
3476
3477 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_TX,("ar6000_tx_complete skb=0x%lx data=0x%lx len=0x%x eid=%d ",
3478 (unsigned long)pktSkb, (unsigned long)pPacket->pBuffer,
3479 pPacket->ActualLength,
3480 eid));
3481
3482 ar->arTxPending[eid]--;
3483
3484 if ((eid != ar->arControlEp) || bypasswmi) {
3485 ar->arTotalTxDataPending--;
3486 }
3487
3488 if (eid == ar->arControlEp)
3489 {
3490 if (ar->arWMIControlEpFull) {
3491 /* since this packet completed, the WMI EP is no longer full */
3492 ar->arWMIControlEpFull = false;
3493 }
3494
3495 if (ar->arTxPending[eid] == 0) {
3496 wakeEvent = true;
3497 }
3498 }
3499
3500 if (status) {
3501 if (status == A_ECANCELED) {
3502 /* a packet was flushed */
3503 flushing = true;
3504 }
3505 AR6000_STAT_INC(ar, tx_errors);
3506 if (status != A_NO_RESOURCE) {
3507 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s() -TX ERROR, status: 0x%x\n", __func__,
3508 status));
3509 }
3510 } else {
3511 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_TX,("OK\n"));
3512 flushing = false;
3513 AR6000_STAT_INC(ar, tx_packets);
3514 ar->arNetStats.tx_bytes += A_NETBUF_LEN(pktSkb);
3515 #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
3516 aptcTR.bytesTransmitted += a_netbuf_to_len(pktSkb);
3517 applyAPTCHeuristics(ar);
3518 #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
3519 }
3520
3521 // TODO this needs to be looked at
3522 if ((ar->arNetworkType == ADHOC_NETWORK) && ar->arIbssPsEnable
3523 && (eid != ar->arControlEp) && mapNo)
3524 {
3525 mapNo --;
3526 ar->arNodeMap[mapNo].txPending --;
3527
3528 if (!ar->arNodeMap[mapNo].txPending && (mapNo == (ar->arNodeNum - 1))) {
3529 u32 i;
3530 for (i = ar->arNodeNum; i > 0; i --) {
3531 if (!ar->arNodeMap[i - 1].txPending) {
3532 A_MEMZERO(&ar->arNodeMap[i - 1], sizeof(struct ar_node_mapping));
3533 ar->arNodeNum --;
3534 } else {
3535 break;
3536 }
3537 }
3538 }
3539 }
3540
3541 ar6000_free_cookie(ar, ar_cookie);
3542
3543 if (ar->arNetQueueStopped) {
3544 ar->arNetQueueStopped = false;
3545 }
3546 }
3547
3548 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
3549
3550 /* lock is released, we can freely call other kernel APIs */
3551
3552 /* free all skbs in our local list */
3553 while (!skb_queue_empty(&skb_queue)) {
3554 /* use non-lock version */
3555 pktSkb = __skb_dequeue(&skb_queue);
3556 A_NETBUF_FREE(pktSkb);
3557 }
3558
3559 if ((ar->arConnected == true) || bypasswmi) {
3560 if (!flushing) {
3561 /* don't wake the queue if we are flushing, other wise it will just
3562 * keep queueing packets, which will keep failing */
3563 netif_wake_queue(ar->arNetDev);
3564 }
3565 }
3566
3567 if (wakeEvent) {
3568 wake_up(&arEvent);
3569 }
3570
3571 }
3572
3573 sta_t *
3574 ieee80211_find_conn(struct ar6_softc *ar, u8 *node_addr)
3575 {
3576 sta_t *conn = NULL;
3577 u8 i, max_conn;
3578
3579 switch(ar->arNetworkType) {
3580 case AP_NETWORK:
3581 max_conn = AP_MAX_NUM_STA;
3582 break;
3583 default:
3584 max_conn=0;
3585 break;
3586 }
3587
3588 for (i = 0; i < max_conn; i++) {
3589 if (IEEE80211_ADDR_EQ(node_addr, ar->sta_list[i].mac)) {
3590 conn = &ar->sta_list[i];
3591 break;
3592 }
3593 }
3594
3595 return conn;
3596 }
3597
3598 sta_t *ieee80211_find_conn_for_aid(struct ar6_softc *ar, u8 aid)
3599 {
3600 sta_t *conn = NULL;
3601 u8 ctr;
3602
3603 for (ctr = 0; ctr < AP_MAX_NUM_STA; ctr++) {
3604 if (ar->sta_list[ctr].aid == aid) {
3605 conn = &ar->sta_list[ctr];
3606 break;
3607 }
3608 }
3609 return conn;
3610 }
3611
3612 /*
3613 * Receive event handler. This is called by HTC when a packet is received
3614 */
3615 int pktcount;
3616 static void
3617 ar6000_rx(void *Context, struct htc_packet *pPacket)
3618 {
3619 struct ar6_softc *ar = (struct ar6_softc *)Context;
3620 struct sk_buff *skb = (struct sk_buff *)pPacket->pPktContext;
3621 int minHdrLen;
3622 u8 containsDot11Hdr = 0;
3623 int status = pPacket->Status;
3624 HTC_ENDPOINT_ID ept = pPacket->Endpoint;
3625
3626 A_ASSERT((status) ||
3627 (pPacket->pBuffer == (A_NETBUF_DATA(skb) + HTC_HEADER_LEN)));
3628
3629 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_RX,("ar6000_rx ar=0x%lx eid=%d, skb=0x%lx, data=0x%lx, len=0x%x status:%d",
3630 (unsigned long)ar, ept, (unsigned long)skb, (unsigned long)pPacket->pBuffer,
3631 pPacket->ActualLength, status));
3632 if (status) {
3633 if (status != A_ECANCELED) {
3634 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("RX ERR (%d) \n",status));
3635 }
3636 }
3637
3638 /* take lock to protect buffer counts
3639 * and adaptive power throughput state */
3640 AR6000_SPIN_LOCK(&ar->arLock, 0);
3641
3642 if (!status) {
3643 AR6000_STAT_INC(ar, rx_packets);
3644 ar->arNetStats.rx_bytes += pPacket->ActualLength;
3645 #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
3646 aptcTR.bytesReceived += a_netbuf_to_len(skb);
3647 applyAPTCHeuristics(ar);
3648 #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
3649
3650 A_NETBUF_PUT(skb, pPacket->ActualLength + HTC_HEADER_LEN);
3651 A_NETBUF_PULL(skb, HTC_HEADER_LEN);
3652
3653 #ifdef DEBUG
3654 if (debugdriver >= 2) {
3655 ar6000_dump_skb(skb);
3656 }
3657 #endif /* DEBUG */
3658 }
3659
3660 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
3661
3662 skb->dev = ar->arNetDev;
3663 if (status) {
3664 AR6000_STAT_INC(ar, rx_errors);
3665 A_NETBUF_FREE(skb);
3666 } else if (ar->arWmiEnabled == true) {
3667 if (ept == ar->arControlEp) {
3668 /*
3669 * this is a wmi control msg
3670 */
3671 #ifdef CONFIG_PM
3672 ar6000_check_wow_status(ar, skb, true);
3673 #endif /* CONFIG_PM */
3674 wmi_control_rx(ar->arWmi, skb);
3675 } else {
3676 WMI_DATA_HDR *dhdr = (WMI_DATA_HDR *)A_NETBUF_DATA(skb);
3677 bool is_amsdu;
3678 u8 tid;
3679
3680 /*
3681 * This check can be removed if after a while we do not
3682 * see the warning. For now we leave it to ensure
3683 * we drop these frames accordingly in case the
3684 * target generates them for some reason. These
3685 * were used for an internal PAL but that's not
3686 * used or supported anymore. These frames should
3687 * not come up from the target.
3688 */
3689 if (WARN_ON(WMI_DATA_HDR_GET_DATA_TYPE(dhdr) ==
3690 WMI_DATA_HDR_DATA_TYPE_ACL)) {
3691 AR6000_STAT_INC(ar, rx_errors);
3692 A_NETBUF_FREE(skb);
3693 return;
3694 }
3695
3696 #ifdef CONFIG_PM
3697 ar6000_check_wow_status(ar, NULL, false);
3698 #endif /* CONFIG_PM */
3699 /*
3700 * this is a wmi data packet
3701 */
3702 // NWF
3703
3704 if (processDot11Hdr) {
3705 minHdrLen = sizeof(WMI_DATA_HDR) + sizeof(struct ieee80211_frame) + sizeof(ATH_LLC_SNAP_HDR);
3706 } else {
3707 minHdrLen = sizeof (WMI_DATA_HDR) + sizeof(ATH_MAC_HDR) +
3708 sizeof(ATH_LLC_SNAP_HDR);
3709 }
3710
3711 /* In the case of AP mode we may receive NULL data frames
3712 * that do not have LLC hdr. They are 16 bytes in size.
3713 * Allow these frames in the AP mode.
3714 * ACL data frames don't follow ethernet frame bounds for
3715 * min length
3716 */
3717 if (ar->arNetworkType != AP_NETWORK &&
3718 ((pPacket->ActualLength < minHdrLen) ||
3719 (pPacket->ActualLength > AR6000_MAX_RX_MESSAGE_SIZE)))
3720 {
3721 /*
3722 * packet is too short or too long
3723 */
3724 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("TOO SHORT or TOO LONG\n"));
3725 AR6000_STAT_INC(ar, rx_errors);
3726 AR6000_STAT_INC(ar, rx_length_errors);
3727 A_NETBUF_FREE(skb);
3728 } else {
3729 u16 seq_no;
3730 u8 meta_type;
3731
3732 #if 0
3733 /* Access RSSI values here */
3734 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("RSSI %d\n",
3735 ((WMI_DATA_HDR *) A_NETBUF_DATA(skb))->rssi));
3736 #endif
3737 /* Get the Power save state of the STA */
3738 if (ar->arNetworkType == AP_NETWORK) {
3739 sta_t *conn = NULL;
3740 u8 psState=0,prevPsState;
3741 ATH_MAC_HDR *datap=NULL;
3742 u16 offset;
3743
3744 meta_type = WMI_DATA_HDR_GET_META(dhdr);
3745
3746 psState = (((WMI_DATA_HDR *)A_NETBUF_DATA(skb))->info
3747 >> WMI_DATA_HDR_PS_SHIFT) & WMI_DATA_HDR_PS_MASK;
3748
3749 offset = sizeof(WMI_DATA_HDR);
3750
3751 switch (meta_type) {
3752 case 0:
3753 break;
3754 case WMI_META_VERSION_1:
3755 offset += sizeof(WMI_RX_META_V1);
3756 break;
3757 case WMI_META_VERSION_2:
3758 offset += sizeof(WMI_RX_META_V2);
3759 break;
3760 default:
3761 break;
3762 }
3763
3764 datap = (ATH_MAC_HDR *)(A_NETBUF_DATA(skb)+offset);
3765 conn = ieee80211_find_conn(ar, datap->srcMac);
3766
3767 if (conn) {
3768 /* if there is a change in PS state of the STA,
3769 * take appropriate steps.
3770 * 1. If Sleep-->Awake, flush the psq for the STA
3771 * Clear the PVB for the STA.
3772 * 2. If Awake-->Sleep, Starting queueing frames
3773 * the STA.
3774 */
3775 prevPsState = STA_IS_PWR_SLEEP(conn);
3776 if (psState) {
3777 STA_SET_PWR_SLEEP(conn);
3778 } else {
3779 STA_CLR_PWR_SLEEP(conn);
3780 }
3781
3782 if (prevPsState ^ STA_IS_PWR_SLEEP(conn)) {
3783
3784 if (!STA_IS_PWR_SLEEP(conn)) {
3785
3786 A_MUTEX_LOCK(&conn->psqLock);
3787 while (!A_NETBUF_QUEUE_EMPTY(&conn->psq)) {
3788 struct sk_buff *skb=NULL;
3789
3790 skb = A_NETBUF_DEQUEUE(&conn->psq);
3791 A_MUTEX_UNLOCK(&conn->psqLock);
3792 ar6000_data_tx(skb,ar->arNetDev);
3793 A_MUTEX_LOCK(&conn->psqLock);
3794 }
3795 A_MUTEX_UNLOCK(&conn->psqLock);
3796 /* Clear the PVB for this STA */
3797 wmi_set_pvb_cmd(ar->arWmi, conn->aid, 0);
3798 }
3799 }
3800 } else {
3801 /* This frame is from a STA that is not associated*/
3802 A_ASSERT(false);
3803 }
3804
3805 /* Drop NULL data frames here */
3806 if((pPacket->ActualLength < minHdrLen) ||
3807 (pPacket->ActualLength > AR6000_MAX_RX_MESSAGE_SIZE)) {
3808 A_NETBUF_FREE(skb);
3809 goto rx_done;
3810 }
3811 }
3812
3813 is_amsdu = WMI_DATA_HDR_IS_AMSDU(dhdr) ? true : false;
3814 tid = WMI_DATA_HDR_GET_UP(dhdr);
3815 seq_no = WMI_DATA_HDR_GET_SEQNO(dhdr);
3816 meta_type = WMI_DATA_HDR_GET_META(dhdr);
3817 containsDot11Hdr = WMI_DATA_HDR_GET_DOT11(dhdr);
3818
3819 wmi_data_hdr_remove(ar->arWmi, skb);
3820
3821 switch (meta_type) {
3822 case WMI_META_VERSION_1:
3823 {
3824 WMI_RX_META_V1 *pMeta = (WMI_RX_META_V1 *)A_NETBUF_DATA(skb);
3825 A_PRINTF("META %d %d %d %d %x\n", pMeta->status, pMeta->rix, pMeta->rssi, pMeta->channel, pMeta->flags);
3826 A_NETBUF_PULL((void*)skb, sizeof(WMI_RX_META_V1));
3827 break;
3828 }
3829 case WMI_META_VERSION_2:
3830 {
3831 WMI_RX_META_V2 *pMeta = (WMI_RX_META_V2 *)A_NETBUF_DATA(skb);
3832 if(pMeta->csumFlags & 0x1){
3833 skb->ip_summed=CHECKSUM_COMPLETE;
3834 skb->csum=(pMeta->csum);
3835 }
3836 A_NETBUF_PULL((void*)skb, sizeof(WMI_RX_META_V2));
3837 break;
3838 }
3839 default:
3840 break;
3841 }
3842
3843 A_ASSERT(status == 0);
3844
3845 /* NWF: print the 802.11 hdr bytes */
3846 if(containsDot11Hdr) {
3847 status = wmi_dot11_hdr_remove(ar->arWmi,skb);
3848 } else if(!is_amsdu) {
3849 status = wmi_dot3_2_dix(skb);
3850 }
3851
3852 if (status) {
3853 /* Drop frames that could not be processed (lack of memory, etc.) */
3854 A_NETBUF_FREE(skb);
3855 goto rx_done;
3856 }
3857
3858 if ((ar->arNetDev->flags & IFF_UP) == IFF_UP) {
3859 if (ar->arNetworkType == AP_NETWORK) {
3860 struct sk_buff *skb1 = NULL;
3861 ATH_MAC_HDR *datap;
3862
3863 datap = (ATH_MAC_HDR *)A_NETBUF_DATA(skb);
3864 if (IEEE80211_IS_MULTICAST(datap->dstMac)) {
3865 /* Bcast/Mcast frames should be sent to the OS
3866 * stack as well as on the air.
3867 */
3868 skb1 = skb_copy(skb,GFP_ATOMIC);
3869 } else {
3870 /* Search for a connected STA with dstMac as
3871 * the Mac address. If found send the frame to
3872 * it on the air else send the frame up the
3873 * stack
3874 */
3875 sta_t *conn = NULL;
3876 conn = ieee80211_find_conn(ar, datap->dstMac);
3877
3878 if (conn && ar->intra_bss) {
3879 skb1 = skb;
3880 skb = NULL;
3881 } else if(conn && !ar->intra_bss) {
3882 A_NETBUF_FREE(skb);
3883 skb = NULL;
3884 }
3885 }
3886 if (skb1) {
3887 ar6000_data_tx(skb1, ar->arNetDev);
3888 }
3889 }
3890 }
3891 aggr_process_recv_frm(ar->aggr_cntxt, tid, seq_no, is_amsdu, (void **)&skb);
3892 ar6000_deliver_frames_to_nw_stack((void *) ar->arNetDev, (void *)skb);
3893 }
3894 }
3895 } else {
3896 if (EPPING_ALIGNMENT_PAD > 0) {
3897 A_NETBUF_PULL(skb, EPPING_ALIGNMENT_PAD);
3898 }
3899 ar6000_deliver_frames_to_nw_stack((void *)ar->arNetDev, (void *)skb);
3900 }
3901
3902 rx_done:
3903
3904 return;
3905 }
3906
3907 static void
3908 ar6000_deliver_frames_to_nw_stack(void *dev, void *osbuf)
3909 {
3910 struct sk_buff *skb = (struct sk_buff *)osbuf;
3911
3912 if(skb) {
3913 skb->dev = dev;
3914 if ((skb->dev->flags & IFF_UP) == IFF_UP) {
3915 #ifdef CONFIG_PM
3916 ar6000_check_wow_status((struct ar6_softc *)ar6k_priv(dev), skb, false);
3917 #endif /* CONFIG_PM */
3918 skb->protocol = eth_type_trans(skb, skb->dev);
3919 /*
3920 * If this routine is called on a ISR (Hard IRQ) or DSR (Soft IRQ)
3921 * or tasklet use the netif_rx to deliver the packet to the stack
3922 * netif_rx will queue the packet onto the receive queue and mark
3923 * the softirq thread has a pending action to complete. Kernel will
3924 * schedule the softIrq kernel thread after processing the DSR.
3925 *
3926 * If this routine is called on a process context, use netif_rx_ni
3927 * which will schedle the softIrq kernel thread after queuing the packet.
3928 */
3929 if (in_interrupt()) {
3930 netif_rx(skb);
3931 } else {
3932 netif_rx_ni(skb);
3933 }
3934 } else {
3935 A_NETBUF_FREE(skb);
3936 }
3937 }
3938 }
3939
3940 #if 0
3941 static void
3942 ar6000_deliver_frames_to_bt_stack(void *dev, void *osbuf)
3943 {
3944 struct sk_buff *skb = (struct sk_buff *)osbuf;
3945
3946 if(skb) {
3947 skb->dev = dev;
3948 if ((skb->dev->flags & IFF_UP) == IFF_UP) {
3949 skb->protocol = htons(ETH_P_CONTROL);
3950 netif_rx(skb);
3951 } else {
3952 A_NETBUF_FREE(skb);
3953 }
3954 }
3955 }
3956 #endif
3957
3958 static void
3959 ar6000_rx_refill(void *Context, HTC_ENDPOINT_ID Endpoint)
3960 {
3961 struct ar6_softc *ar = (struct ar6_softc *)Context;
3962 void *osBuf;
3963 int RxBuffers;
3964 int buffersToRefill;
3965 struct htc_packet *pPacket;
3966 struct htc_packet_queue queue;
3967
3968 buffersToRefill = (int)AR6000_MAX_RX_BUFFERS -
3969 HTCGetNumRecvBuffers(ar->arHtcTarget, Endpoint);
3970
3971 if (buffersToRefill <= 0) {
3972 /* fast return, nothing to fill */
3973 return;
3974 }
3975
3976 INIT_HTC_PACKET_QUEUE(&queue);
3977
3978 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_RX,("ar6000_rx_refill: providing htc with %d buffers at eid=%d\n",
3979 buffersToRefill, Endpoint));
3980
3981 for (RxBuffers = 0; RxBuffers < buffersToRefill; RxBuffers++) {
3982 osBuf = A_NETBUF_ALLOC(AR6000_BUFFER_SIZE);
3983 if (NULL == osBuf) {
3984 break;
3985 }
3986 /* the HTC packet wrapper is at the head of the reserved area
3987 * in the skb */
3988 pPacket = (struct htc_packet *)(A_NETBUF_HEAD(osBuf));
3989 /* set re-fill info */
3990 SET_HTC_PACKET_INFO_RX_REFILL(pPacket,osBuf,A_NETBUF_DATA(osBuf),AR6000_BUFFER_SIZE,Endpoint);
3991 /* add to queue */
3992 HTC_PACKET_ENQUEUE(&queue,pPacket);
3993 }
3994
3995 if (!HTC_QUEUE_EMPTY(&queue)) {
3996 /* add packets */
3997 HTCAddReceivePktMultiple(ar->arHtcTarget, &queue);
3998 }
3999
4000 }
4001
4002 /* clean up our amsdu buffer list */
4003 static void ar6000_cleanup_amsdu_rxbufs(struct ar6_softc *ar)
4004 {
4005 struct htc_packet *pPacket;
4006 void *osBuf;
4007
4008 /* empty AMSDU buffer queue and free OS bufs */
4009 while (true) {
4010
4011 AR6000_SPIN_LOCK(&ar->arLock, 0);
4012 pPacket = HTC_PACKET_DEQUEUE(&ar->amsdu_rx_buffer_queue);
4013 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
4014
4015 if (NULL == pPacket) {
4016 break;
4017 }
4018
4019 osBuf = pPacket->pPktContext;
4020 if (NULL == osBuf) {
4021 A_ASSERT(false);
4022 break;
4023 }
4024
4025 A_NETBUF_FREE(osBuf);
4026 }
4027
4028 }
4029
4030
4031 /* refill the amsdu buffer list */
4032 static void ar6000_refill_amsdu_rxbufs(struct ar6_softc *ar, int Count)
4033 {
4034 struct htc_packet *pPacket;
4035 void *osBuf;
4036
4037 while (Count > 0) {
4038 osBuf = A_NETBUF_ALLOC(AR6000_AMSDU_BUFFER_SIZE);
4039 if (NULL == osBuf) {
4040 break;
4041 }
4042 /* the HTC packet wrapper is at the head of the reserved area
4043 * in the skb */
4044 pPacket = (struct htc_packet *)(A_NETBUF_HEAD(osBuf));
4045 /* set re-fill info */
4046 SET_HTC_PACKET_INFO_RX_REFILL(pPacket,osBuf,A_NETBUF_DATA(osBuf),AR6000_AMSDU_BUFFER_SIZE,0);
4047
4048 AR6000_SPIN_LOCK(&ar->arLock, 0);
4049 /* put it in the list */
4050 HTC_PACKET_ENQUEUE(&ar->amsdu_rx_buffer_queue,pPacket);
4051 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
4052 Count--;
4053 }
4054
4055 }
4056
4057 /* callback to allocate a large receive buffer for a pending packet. This function is called when
4058 * an HTC packet arrives whose length exceeds a threshold value
4059 *
4060 * We use a pre-allocated list of buffers of maximum AMSDU size (4K). Under linux it is more optimal to
4061 * keep the allocation size the same to optimize cached-slab allocations.
4062 *
4063 * */
4064 static struct htc_packet *ar6000_alloc_amsdu_rxbuf(void *Context, HTC_ENDPOINT_ID Endpoint, int Length)
4065 {
4066 struct htc_packet *pPacket = NULL;
4067 struct ar6_softc *ar = (struct ar6_softc *)Context;
4068 int refillCount = 0;
4069
4070 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_RX,("ar6000_alloc_amsdu_rxbuf: eid=%d, Length:%d\n",Endpoint,Length));
4071
4072 do {
4073
4074 if (Length <= AR6000_BUFFER_SIZE) {
4075 /* shouldn't be getting called on normal sized packets */
4076 A_ASSERT(false);
4077 break;
4078 }
4079
4080 if (Length > AR6000_AMSDU_BUFFER_SIZE) {
4081 A_ASSERT(false);
4082 break;
4083 }
4084
4085 AR6000_SPIN_LOCK(&ar->arLock, 0);
4086 /* allocate a packet from the list */
4087 pPacket = HTC_PACKET_DEQUEUE(&ar->amsdu_rx_buffer_queue);
4088 /* see if we need to refill again */
4089 refillCount = AR6000_MAX_AMSDU_RX_BUFFERS - HTC_PACKET_QUEUE_DEPTH(&ar->amsdu_rx_buffer_queue);
4090 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
4091
4092 if (NULL == pPacket) {
4093 break;
4094 }
4095 /* set actual endpoint ID */
4096 pPacket->Endpoint = Endpoint;
4097
4098 } while (false);
4099
4100 if (refillCount >= AR6000_AMSDU_REFILL_THRESHOLD) {
4101 ar6000_refill_amsdu_rxbufs(ar,refillCount);
4102 }
4103
4104 return pPacket;
4105 }
4106
4107 static void
4108 ar6000_set_multicast_list(struct net_device *dev)
4109 {
4110 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000: Multicast filter not supported\n"));
4111 }
4112
4113 static struct net_device_stats *
4114 ar6000_get_stats(struct net_device *dev)
4115 {
4116 struct ar6_softc *ar = (struct ar6_softc *)ar6k_priv(dev);
4117 return &ar->arNetStats;
4118 }
4119
4120 void
4121 ar6000_ready_event(void *devt, u8 *datap, u8 phyCap, u32 sw_ver, u32 abi_ver)
4122 {
4123 struct ar6_softc *ar = (struct ar6_softc *)devt;
4124 struct net_device *dev = ar->arNetDev;
4125
4126 memcpy(dev->dev_addr, datap, AR6000_ETH_ADDR_LEN);
4127 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("mac address = %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
4128 dev->dev_addr[0], dev->dev_addr[1],
4129 dev->dev_addr[2], dev->dev_addr[3],
4130 dev->dev_addr[4], dev->dev_addr[5]));
4131
4132 ar->arPhyCapability = phyCap;
4133 ar->arVersion.wlan_ver = sw_ver;
4134 ar->arVersion.abi_ver = abi_ver;
4135
4136 snprintf(ar->wdev->wiphy->fw_version, sizeof(ar->wdev->wiphy->fw_version),
4137 "%u:%u:%u:%u",
4138 (ar->arVersion.wlan_ver & 0xf0000000) >> 28,
4139 (ar->arVersion.wlan_ver & 0x0f000000) >> 24,
4140 (ar->arVersion.wlan_ver & 0x00ff0000) >> 16,
4141 (ar->arVersion.wlan_ver & 0x0000ffff));
4142
4143 /* Indicate to the waiting thread that the ready event was received */
4144 ar->arWmiReady = true;
4145 wake_up(&arEvent);
4146 }
4147
4148 void ar6000_install_static_wep_keys(struct ar6_softc *ar)
4149 {
4150 u8 index;
4151 u8 keyUsage;
4152
4153 for (index = WMI_MIN_KEY_INDEX; index <= WMI_MAX_KEY_INDEX; index++) {
4154 if (ar->arWepKeyList[index].arKeyLen) {
4155 keyUsage = GROUP_USAGE;
4156 if (index == ar->arDefTxKeyIndex) {
4157 keyUsage |= TX_USAGE;
4158 }
4159 wmi_addKey_cmd(ar->arWmi,
4160 index,
4161 WEP_CRYPT,
4162 keyUsage,
4163 ar->arWepKeyList[index].arKeyLen,
4164 NULL,
4165 ar->arWepKeyList[index].arKey, KEY_OP_INIT_VAL, NULL,
4166 NO_SYNC_WMIFLAG);
4167 }
4168 }
4169 }
4170
4171 void
4172 add_new_sta(struct ar6_softc *ar, u8 *mac, u16 aid, u8 *wpaie,
4173 u8 ielen, u8 keymgmt, u8 ucipher, u8 auth)
4174 {
4175 u8 free_slot=aid-1;
4176
4177 memcpy(ar->sta_list[free_slot].mac, mac, ATH_MAC_LEN);
4178 memcpy(ar->sta_list[free_slot].wpa_ie, wpaie, ielen);
4179 ar->sta_list[free_slot].aid = aid;
4180 ar->sta_list[free_slot].keymgmt = keymgmt;
4181 ar->sta_list[free_slot].ucipher = ucipher;
4182 ar->sta_list[free_slot].auth = auth;
4183 ar->sta_list_index = ar->sta_list_index | (1 << free_slot);
4184 ar->arAPStats.sta[free_slot].aid = aid;
4185 }
4186
4187 void
4188 ar6000_connect_event(struct ar6_softc *ar, u16 channel, u8 *bssid,
4189 u16 listenInterval, u16 beaconInterval,
4190 NETWORK_TYPE networkType, u8 beaconIeLen,
4191 u8 assocReqLen, u8 assocRespLen,
4192 u8 *assocInfo)
4193 {
4194 union iwreq_data wrqu;
4195 int i, beacon_ie_pos, assoc_resp_ie_pos, assoc_req_ie_pos;
4196 static const char *tag1 = "ASSOCINFO(ReqIEs=";
4197 static const char *tag2 = "ASSOCRESPIE=";
4198 static const char *beaconIetag = "BEACONIE=";
4199 char buf[WMI_CONTROL_MSG_MAX_LEN * 2 + strlen(tag1) + 1];
4200 char *pos;
4201 u8 key_op_ctrl;
4202 unsigned long flags;
4203 struct ieee80211req_key *ik;
4204 CRYPTO_TYPE keyType = NONE_CRYPT;
4205
4206 if(ar->arNetworkType & AP_NETWORK) {
4207 struct net_device *dev = ar->arNetDev;
4208 if(memcmp(dev->dev_addr, bssid, ATH_MAC_LEN)==0) {
4209 ar->arACS = channel;
4210 ik = &ar->ap_mode_bkey;
4211
4212 switch(ar->arAuthMode) {
4213 case NONE_AUTH:
4214 if(ar->arPairwiseCrypto == WEP_CRYPT) {
4215 ar6000_install_static_wep_keys(ar);
4216 }
4217 #ifdef WAPI_ENABLE
4218 else if(ar->arPairwiseCrypto == WAPI_CRYPT) {
4219 ap_set_wapi_key(ar, ik);
4220 }
4221 #endif
4222 break;
4223 case WPA_PSK_AUTH:
4224 case WPA2_PSK_AUTH:
4225 case (WPA_PSK_AUTH|WPA2_PSK_AUTH):
4226 switch (ik->ik_type) {
4227 case IEEE80211_CIPHER_TKIP:
4228 keyType = TKIP_CRYPT;
4229 break;
4230 case IEEE80211_CIPHER_AES_CCM:
4231 keyType = AES_CRYPT;
4232 break;
4233 default:
4234 goto skip_key;
4235 }
4236 wmi_addKey_cmd(ar->arWmi, ik->ik_keyix, keyType, GROUP_USAGE,
4237 ik->ik_keylen, (u8 *)&ik->ik_keyrsc,
4238 ik->ik_keydata, KEY_OP_INIT_VAL, ik->ik_macaddr,
4239 SYNC_BOTH_WMIFLAG);
4240
4241 break;
4242 }
4243 skip_key:
4244 ar->arConnected = true;
4245 return;
4246 }
4247
4248 A_PRINTF("NEW STA %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x \n "
4249 " AID=%d \n", bssid[0], bssid[1], bssid[2],
4250 bssid[3], bssid[4], bssid[5], channel);
4251 switch ((listenInterval>>8)&0xFF) {
4252 case OPEN_AUTH:
4253 A_PRINTF("AUTH: OPEN\n");
4254 break;
4255 case SHARED_AUTH:
4256 A_PRINTF("AUTH: SHARED\n");
4257 break;
4258 default:
4259 A_PRINTF("AUTH: Unknown\n");
4260 break;
4261 }
4262 switch (listenInterval&0xFF) {
4263 case WPA_PSK_AUTH:
4264 A_PRINTF("KeyMgmt: WPA-PSK\n");
4265 break;
4266 case WPA2_PSK_AUTH:
4267 A_PRINTF("KeyMgmt: WPA2-PSK\n");
4268 break;
4269 default:
4270 A_PRINTF("KeyMgmt: NONE\n");
4271 break;
4272 }
4273 switch (beaconInterval) {
4274 case AES_CRYPT:
4275 A_PRINTF("Cipher: AES\n");
4276 break;
4277 case TKIP_CRYPT:
4278 A_PRINTF("Cipher: TKIP\n");
4279 break;
4280 case WEP_CRYPT:
4281 A_PRINTF("Cipher: WEP\n");
4282 break;
4283 #ifdef WAPI_ENABLE
4284 case WAPI_CRYPT:
4285 A_PRINTF("Cipher: WAPI\n");
4286 break;
4287 #endif
4288 default:
4289 A_PRINTF("Cipher: NONE\n");
4290 break;
4291 }
4292
4293 add_new_sta(ar, bssid, channel /*aid*/,
4294 assocInfo /* WPA IE */, assocRespLen /* IE len */,
4295 listenInterval&0xFF /* Keymgmt */, beaconInterval /* cipher */,
4296 (listenInterval>>8)&0xFF /* auth alg */);
4297
4298 /* Send event to application */
4299 A_MEMZERO(&wrqu, sizeof(wrqu));
4300 memcpy(wrqu.addr.sa_data, bssid, ATH_MAC_LEN);
4301 wireless_send_event(ar->arNetDev, IWEVREGISTERED, &wrqu, NULL);
4302 /* In case the queue is stopped when we switch modes, this will
4303 * wake it up
4304 */
4305 netif_wake_queue(ar->arNetDev);
4306 return;
4307 }
4308
4309 ar6k_cfg80211_connect_event(ar, channel, bssid,
4310 listenInterval, beaconInterval,
4311 networkType, beaconIeLen,
4312 assocReqLen, assocRespLen,
4313 assocInfo);
4314
4315 memcpy(ar->arBssid, bssid, sizeof(ar->arBssid));
4316 ar->arBssChannel = channel;
4317
4318 A_PRINTF("AR6000 connected event on freq %d ", channel);
4319 A_PRINTF("with bssid %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x "
4320 " listenInterval=%d, beaconInterval = %d, beaconIeLen = %d assocReqLen=%d"
4321 " assocRespLen =%d\n",
4322 bssid[0], bssid[1], bssid[2],
4323 bssid[3], bssid[4], bssid[5],
4324 listenInterval, beaconInterval,
4325 beaconIeLen, assocReqLen, assocRespLen);
4326 if (networkType & ADHOC_NETWORK) {
4327 if (networkType & ADHOC_CREATOR) {
4328 A_PRINTF("Network: Adhoc (Creator)\n");
4329 } else {
4330 A_PRINTF("Network: Adhoc (Joiner)\n");
4331 }
4332 } else {
4333 A_PRINTF("Network: Infrastructure\n");
4334 }
4335
4336 if ((ar->arNetworkType == INFRA_NETWORK)) {
4337 wmi_listeninterval_cmd(ar->arWmi, ar->arListenIntervalT, ar->arListenIntervalB);
4338 }
4339
4340 if (beaconIeLen && (sizeof(buf) > (9 + beaconIeLen * 2))) {
4341 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\nBeaconIEs= "));
4342
4343 beacon_ie_pos = 0;
4344 A_MEMZERO(buf, sizeof(buf));
4345 sprintf(buf, "%s", beaconIetag);
4346 pos = buf + 9;
4347 for (i = beacon_ie_pos; i < beacon_ie_pos + beaconIeLen; i++) {
4348 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("%2.2x ", assocInfo[i]));
4349 sprintf(pos, "%2.2x", assocInfo[i]);
4350 pos += 2;
4351 }
4352 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\n"));
4353
4354 A_MEMZERO(&wrqu, sizeof(wrqu));
4355 wrqu.data.length = strlen(buf);
4356 wireless_send_event(ar->arNetDev, IWEVCUSTOM, &wrqu, buf);
4357 }
4358
4359 if (assocRespLen && (sizeof(buf) > (12 + (assocRespLen * 2))))
4360 {
4361 assoc_resp_ie_pos = beaconIeLen + assocReqLen +
4362 sizeof(u16) + /* capinfo*/
4363 sizeof(u16) + /* status Code */
4364 sizeof(u16) ; /* associd */
4365 A_MEMZERO(buf, sizeof(buf));
4366 sprintf(buf, "%s", tag2);
4367 pos = buf + 12;
4368 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\nAssocRespIEs= "));
4369 /*
4370 * The Association Response Frame w.o. the WLAN header is delivered to
4371 * the host, so skip over to the IEs
4372 */
4373 for (i = assoc_resp_ie_pos; i < assoc_resp_ie_pos + assocRespLen - 6; i++)
4374 {
4375 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("%2.2x ", assocInfo[i]));
4376 sprintf(pos, "%2.2x", assocInfo[i]);
4377 pos += 2;
4378 }
4379 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\n"));
4380
4381 A_MEMZERO(&wrqu, sizeof(wrqu));
4382 wrqu.data.length = strlen(buf);
4383 wireless_send_event(ar->arNetDev, IWEVCUSTOM, &wrqu, buf);
4384 }
4385
4386 if (assocReqLen && (sizeof(buf) > (17 + (assocReqLen * 2)))) {
4387 /*
4388 * assoc Request includes capability and listen interval. Skip these.
4389 */
4390 assoc_req_ie_pos = beaconIeLen +
4391 sizeof(u16) + /* capinfo*/
4392 sizeof(u16); /* listen interval */
4393
4394 A_MEMZERO(buf, sizeof(buf));
4395 sprintf(buf, "%s", tag1);
4396 pos = buf + 17;
4397 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("AssocReqIEs= "));
4398 for (i = assoc_req_ie_pos; i < assoc_req_ie_pos + assocReqLen - 4; i++) {
4399 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("%2.2x ", assocInfo[i]));
4400 sprintf(pos, "%2.2x", assocInfo[i]);
4401 pos += 2;
4402 }
4403 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\n"));
4404
4405 A_MEMZERO(&wrqu, sizeof(wrqu));
4406 wrqu.data.length = strlen(buf);
4407 wireless_send_event(ar->arNetDev, IWEVCUSTOM, &wrqu, buf);
4408 }
4409
4410 if (ar->user_savedkeys_stat == USER_SAVEDKEYS_STAT_RUN &&
4411 ar->user_saved_keys.keyOk == true)
4412 {
4413 key_op_ctrl = KEY_OP_VALID_MASK & ~KEY_OP_INIT_TSC;
4414
4415 if (ar->user_key_ctrl & AR6000_USER_SETKEYS_RSC_UNCHANGED) {
4416 key_op_ctrl &= ~KEY_OP_INIT_RSC;
4417 } else {
4418 key_op_ctrl |= KEY_OP_INIT_RSC;
4419 }
4420 ar6000_reinstall_keys(ar, key_op_ctrl);
4421 }
4422
4423 netif_wake_queue(ar->arNetDev);
4424
4425 /* Update connect & link status atomically */
4426 spin_lock_irqsave(&ar->arLock, flags);
4427 ar->arConnected = true;
4428 ar->arConnectPending = false;
4429 netif_carrier_on(ar->arNetDev);
4430 spin_unlock_irqrestore(&ar->arLock, flags);
4431 /* reset the rx aggr state */
4432 aggr_reset_state(ar->aggr_cntxt);
4433 reconnect_flag = 0;
4434
4435 A_MEMZERO(&wrqu, sizeof(wrqu));
4436 memcpy(wrqu.addr.sa_data, bssid, IEEE80211_ADDR_LEN);
4437 wrqu.addr.sa_family = ARPHRD_ETHER;
4438 wireless_send_event(ar->arNetDev, SIOCGIWAP, &wrqu, NULL);
4439 if ((ar->arNetworkType == ADHOC_NETWORK) && ar->arIbssPsEnable) {
4440 A_MEMZERO(ar->arNodeMap, sizeof(ar->arNodeMap));
4441 ar->arNodeNum = 0;
4442 ar->arNexEpId = ENDPOINT_2;
4443 }
4444 if (!ar->arUserBssFilter) {
4445 wmi_bssfilter_cmd(ar->arWmi, NONE_BSS_FILTER, 0);
4446 }
4447
4448 }
4449
4450 void ar6000_set_numdataendpts(struct ar6_softc *ar, u32 num)
4451 {
4452 A_ASSERT(num <= (HTC_MAILBOX_NUM_MAX - 1));
4453 ar->arNumDataEndPts = num;
4454 }
4455
4456 void
4457 sta_cleanup(struct ar6_softc *ar, u8 i)
4458 {
4459 struct sk_buff *skb;
4460
4461 /* empty the queued pkts in the PS queue if any */
4462 A_MUTEX_LOCK(&ar->sta_list[i].psqLock);
4463 while (!A_NETBUF_QUEUE_EMPTY(&ar->sta_list[i].psq)) {
4464 skb = A_NETBUF_DEQUEUE(&ar->sta_list[i].psq);
4465 A_NETBUF_FREE(skb);
4466 }
4467 A_MUTEX_UNLOCK(&ar->sta_list[i].psqLock);
4468
4469 /* Zero out the state fields */
4470 A_MEMZERO(&ar->arAPStats.sta[ar->sta_list[i].aid-1], sizeof(WMI_PER_STA_STAT));
4471 A_MEMZERO(&ar->sta_list[i].mac, ATH_MAC_LEN);
4472 A_MEMZERO(&ar->sta_list[i].wpa_ie, IEEE80211_MAX_IE);
4473 ar->sta_list[i].aid = 0;
4474 ar->sta_list[i].flags = 0;
4475
4476 ar->sta_list_index = ar->sta_list_index & ~(1 << i);
4477
4478 }
4479
4480 u8 remove_sta(struct ar6_softc *ar, u8 *mac, u16 reason)
4481 {
4482 u8 i, removed=0;
4483
4484 if(IS_MAC_NULL(mac)) {
4485 return removed;
4486 }
4487
4488 if(IS_MAC_BCAST(mac)) {
4489 A_PRINTF("DEL ALL STA\n");
4490 for(i=0; i < AP_MAX_NUM_STA; i++) {
4491 if(!IS_MAC_NULL(ar->sta_list[i].mac)) {
4492 sta_cleanup(ar, i);
4493 removed = 1;
4494 }
4495 }
4496 } else {
4497 for(i=0; i < AP_MAX_NUM_STA; i++) {
4498 if(memcmp(ar->sta_list[i].mac, mac, ATH_MAC_LEN)==0) {
4499 A_PRINTF("DEL STA %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x "
4500 " aid=%d REASON=%d\n", mac[0], mac[1], mac[2],
4501 mac[3], mac[4], mac[5], ar->sta_list[i].aid, reason);
4502
4503 sta_cleanup(ar, i);
4504 removed = 1;
4505 break;
4506 }
4507 }
4508 }
4509 return removed;
4510 }
4511
4512 void
4513 ar6000_disconnect_event(struct ar6_softc *ar, u8 reason, u8 *bssid,
4514 u8 assocRespLen, u8 *assocInfo, u16 protocolReasonStatus)
4515 {
4516 u8 i;
4517 unsigned long flags;
4518 union iwreq_data wrqu;
4519
4520 if(ar->arNetworkType & AP_NETWORK) {
4521 union iwreq_data wrqu;
4522 struct sk_buff *skb;
4523
4524 if(!remove_sta(ar, bssid, protocolReasonStatus)) {
4525 return;
4526 }
4527
4528 /* If there are no more associated STAs, empty the mcast PS q */
4529 if (ar->sta_list_index == 0) {
4530 A_MUTEX_LOCK(&ar->mcastpsqLock);
4531 while (!A_NETBUF_QUEUE_EMPTY(&ar->mcastpsq)) {
4532 skb = A_NETBUF_DEQUEUE(&ar->mcastpsq);
4533 A_NETBUF_FREE(skb);
4534 }
4535 A_MUTEX_UNLOCK(&ar->mcastpsqLock);
4536
4537 /* Clear the LSB of the BitMapCtl field of the TIM IE */
4538 if (ar->arWmiReady) {
4539 wmi_set_pvb_cmd(ar->arWmi, MCAST_AID, 0);
4540 }
4541 }
4542
4543 if(!IS_MAC_BCAST(bssid)) {
4544 /* Send event to application */
4545 A_MEMZERO(&wrqu, sizeof(wrqu));
4546 memcpy(wrqu.addr.sa_data, bssid, ATH_MAC_LEN);
4547 wireless_send_event(ar->arNetDev, IWEVEXPIRED, &wrqu, NULL);
4548 }
4549
4550 ar->arConnected = false;
4551 return;
4552 }
4553
4554 ar6k_cfg80211_disconnect_event(ar, reason, bssid,
4555 assocRespLen, assocInfo,
4556 protocolReasonStatus);
4557
4558 /* Send disconnect event to supplicant */
4559 A_MEMZERO(&wrqu, sizeof(wrqu));
4560 wrqu.addr.sa_family = ARPHRD_ETHER;
4561 wireless_send_event(ar->arNetDev, SIOCGIWAP, &wrqu, NULL);
4562
4563 /* it is necessary to clear the host-side rx aggregation state */
4564 aggr_reset_state(ar->aggr_cntxt);
4565
4566 A_UNTIMEOUT(&ar->disconnect_timer);
4567
4568 A_PRINTF("AR6000 disconnected");
4569 if (bssid[0] || bssid[1] || bssid[2] || bssid[3] || bssid[4] || bssid[5]) {
4570 A_PRINTF(" from %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x ",
4571 bssid[0], bssid[1], bssid[2], bssid[3], bssid[4], bssid[5]);
4572 }
4573
4574 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\nDisconnect Reason is %d", reason));
4575 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\nProtocol Reason/Status Code is %d", protocolReasonStatus));
4576 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\nAssocResp Frame = %s",
4577 assocRespLen ? " " : "NULL"));
4578 for (i = 0; i < assocRespLen; i++) {
4579 if (!(i % 0x10)) {
4580 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\n"));
4581 }
4582 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("%2.2x ", assocInfo[i]));
4583 }
4584 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\n"));
4585 /*
4586 * If the event is due to disconnect cmd from the host, only they the target
4587 * would stop trying to connect. Under any other condition, target would
4588 * keep trying to connect.
4589 *
4590 */
4591 if( reason == DISCONNECT_CMD)
4592 {
4593 if ((!ar->arUserBssFilter) && (ar->arWmiReady)) {
4594 wmi_bssfilter_cmd(ar->arWmi, NONE_BSS_FILTER, 0);
4595 }
4596 } else {
4597 ar->arConnectPending = true;
4598 if (((reason == ASSOC_FAILED) && (protocolReasonStatus == 0x11)) ||
4599 ((reason == ASSOC_FAILED) && (protocolReasonStatus == 0x0) && (reconnect_flag == 1))) {
4600 ar->arConnected = true;
4601 return;
4602 }
4603 }
4604
4605 if ((reason == NO_NETWORK_AVAIL) && (ar->arWmiReady))
4606 {
4607 bss_t *pWmiSsidnode = NULL;
4608
4609 /* remove the current associated bssid node */
4610 wmi_free_node (ar->arWmi, bssid);
4611
4612 /*
4613 * In case any other same SSID nodes are present
4614 * remove it, since those nodes also not available now
4615 */
4616 do
4617 {
4618 /*
4619 * Find the nodes based on SSID and remove it
4620 * NOTE :: This case will not work out for Hidden-SSID
4621 */
4622 pWmiSsidnode = wmi_find_Ssidnode (ar->arWmi, ar->arSsid, ar->arSsidLen, false, true);
4623
4624 if (pWmiSsidnode)
4625 {
4626 wmi_free_node (ar->arWmi, pWmiSsidnode->ni_macaddr);
4627 }
4628
4629 } while (pWmiSsidnode);
4630 }
4631
4632 /* Update connect & link status atomically */
4633 spin_lock_irqsave(&ar->arLock, flags);
4634 ar->arConnected = false;
4635 netif_carrier_off(ar->arNetDev);
4636 spin_unlock_irqrestore(&ar->arLock, flags);
4637
4638 if( (reason != CSERV_DISCONNECT) || (reconnect_flag != 1) ) {
4639 reconnect_flag = 0;
4640 }
4641
4642 if (reason != CSERV_DISCONNECT)
4643 {
4644 ar->user_savedkeys_stat = USER_SAVEDKEYS_STAT_INIT;
4645 ar->user_key_ctrl = 0;
4646 }
4647
4648 netif_stop_queue(ar->arNetDev);
4649 A_MEMZERO(ar->arBssid, sizeof(ar->arBssid));
4650 ar->arBssChannel = 0;
4651 ar->arBeaconInterval = 0;
4652
4653 ar6000_TxDataCleanup(ar);
4654 }
4655
4656 void
4657 ar6000_regDomain_event(struct ar6_softc *ar, u32 regCode)
4658 {
4659 A_PRINTF("AR6000 Reg Code = 0x%x\n", regCode);
4660 ar->arRegCode = regCode;
4661 }
4662
4663 void
4664 ar6000_aggr_rcv_addba_req_evt(struct ar6_softc *ar, WMI_ADDBA_REQ_EVENT *evt)
4665 {
4666 if(evt->status == 0) {
4667 aggr_recv_addba_req_evt(ar->aggr_cntxt, evt->tid, evt->st_seq_no, evt->win_sz);
4668 }
4669 }
4670
4671 void
4672 ar6000_aggr_rcv_addba_resp_evt(struct ar6_softc *ar, WMI_ADDBA_RESP_EVENT *evt)
4673 {
4674 A_PRINTF("ADDBA RESP. tid %d status %d, sz %d\n", evt->tid, evt->status, evt->amsdu_sz);
4675 if(evt->status == 0) {
4676 }
4677 }
4678
4679 void
4680 ar6000_aggr_rcv_delba_req_evt(struct ar6_softc *ar, WMI_DELBA_EVENT *evt)
4681 {
4682 aggr_recv_delba_req_evt(ar->aggr_cntxt, evt->tid);
4683 }
4684
4685 void register_pal_cb(ar6k_pal_config_t *palConfig_p)
4686 {
4687 ar6k_pal_config_g = *palConfig_p;
4688 }
4689
4690 void
4691 ar6000_hci_event_rcv_evt(struct ar6_softc *ar, WMI_HCI_EVENT *cmd)
4692 {
4693 void *osbuf = NULL;
4694 s8 i;
4695 u8 size, *buf;
4696 int ret = 0;
4697
4698 size = cmd->evt_buf_sz + 4;
4699 osbuf = A_NETBUF_ALLOC(size);
4700 if (osbuf == NULL) {
4701 ret = A_NO_MEMORY;
4702 A_PRINTF("Error in allocating netbuf \n");
4703 return;
4704 }
4705
4706 A_NETBUF_PUT(osbuf, size);
4707 buf = (u8 *)A_NETBUF_DATA(osbuf);
4708 /* First 2-bytes carry HCI event/ACL data type
4709 * the next 2 are free
4710 */
4711 *((short *)buf) = WMI_HCI_EVENT_EVENTID;
4712 buf += sizeof(int);
4713 memcpy(buf, cmd->buf, cmd->evt_buf_sz);
4714
4715 ar6000_deliver_frames_to_nw_stack(ar->arNetDev, osbuf);
4716 if(loghci) {
4717 A_PRINTF_LOG("HCI Event From PAL <-- \n");
4718 for(i = 0; i < cmd->evt_buf_sz; i++) {
4719 A_PRINTF_LOG("0x%02x ", cmd->buf[i]);
4720 if((i % 10) == 0) {
4721 A_PRINTF_LOG("\n");
4722 }
4723 }
4724 A_PRINTF_LOG("\n");
4725 A_PRINTF_LOG("==================================\n");
4726 }
4727 }
4728
4729 void
4730 ar6000_neighborReport_event(struct ar6_softc *ar, int numAps, WMI_NEIGHBOR_INFO *info)
4731 {
4732 #if WIRELESS_EXT >= 18
4733 struct iw_pmkid_cand *pmkcand;
4734 #else /* WIRELESS_EXT >= 18 */
4735 static const char *tag = "PRE-AUTH";
4736 char buf[128];
4737 #endif /* WIRELESS_EXT >= 18 */
4738
4739 union iwreq_data wrqu;
4740 int i;
4741
4742 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_SCAN,("AR6000 Neighbor Report Event\n"));
4743 for (i=0; i < numAps; info++, i++) {
4744 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_SCAN,("bssid %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x ",
4745 info->bssid[0], info->bssid[1], info->bssid[2],
4746 info->bssid[3], info->bssid[4], info->bssid[5]));
4747 if (info->bssFlags & WMI_PREAUTH_CAPABLE_BSS) {
4748 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_SCAN,("preauth-cap"));
4749 }
4750 if (info->bssFlags & WMI_PMKID_VALID_BSS) {
4751 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_SCAN,(" pmkid-valid\n"));
4752 continue; /* we skip bss if the pmkid is already valid */
4753 }
4754 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_SCAN,("\n"));
4755 A_MEMZERO(&wrqu, sizeof(wrqu));
4756 #if WIRELESS_EXT >= 18
4757 pmkcand = A_MALLOC_NOWAIT(sizeof(struct iw_pmkid_cand));
4758 A_MEMZERO(pmkcand, sizeof(struct iw_pmkid_cand));
4759 pmkcand->index = i;
4760 pmkcand->flags = info->bssFlags;
4761 memcpy(pmkcand->bssid.sa_data, info->bssid, ATH_MAC_LEN);
4762 wrqu.data.length = sizeof(struct iw_pmkid_cand);
4763 wireless_send_event(ar->arNetDev, IWEVPMKIDCAND, &wrqu, (char *)pmkcand);
4764 kfree(pmkcand);
4765 #else /* WIRELESS_EXT >= 18 */
4766 snprintf(buf, sizeof(buf), "%s%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x",
4767 tag,
4768 info->bssid[0], info->bssid[1], info->bssid[2],
4769 info->bssid[3], info->bssid[4], info->bssid[5],
4770 i, info->bssFlags);
4771 wrqu.data.length = strlen(buf);
4772 wireless_send_event(ar->arNetDev, IWEVCUSTOM, &wrqu, buf);
4773 #endif /* WIRELESS_EXT >= 18 */
4774 }
4775 }
4776
4777 void
4778 ar6000_tkip_micerr_event(struct ar6_softc *ar, u8 keyid, bool ismcast)
4779 {
4780 static const char *tag = "MLME-MICHAELMICFAILURE.indication";
4781 char buf[128];
4782 union iwreq_data wrqu;
4783
4784 /*
4785 * For AP case, keyid will have aid of STA which sent pkt with
4786 * MIC error. Use this aid to get MAC & send it to hostapd.
4787 */
4788 if (ar->arNetworkType == AP_NETWORK) {
4789 sta_t *s = ieee80211_find_conn_for_aid(ar, (keyid >> 2));
4790 if(!s){
4791 A_PRINTF("AP TKIP MIC error received from Invalid aid / STA not found =%d\n", keyid);
4792 return;
4793 }
4794 A_PRINTF("AP TKIP MIC error received from aid=%d\n", keyid);
4795 snprintf(buf,sizeof(buf), "%s addr=%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x",
4796 tag, s->mac[0],s->mac[1],s->mac[2],s->mac[3],s->mac[4],s->mac[5]);
4797 } else {
4798
4799 ar6k_cfg80211_tkip_micerr_event(ar, keyid, ismcast);
4800
4801 A_PRINTF("AR6000 TKIP MIC error received for keyid %d %scast\n",
4802 keyid & 0x3, ismcast ? "multi": "uni");
4803 snprintf(buf, sizeof(buf), "%s(keyid=%d %sicast)", tag, keyid & 0x3,
4804 ismcast ? "mult" : "un");
4805 }
4806
4807 memset(&wrqu, 0, sizeof(wrqu));
4808 wrqu.data.length = strlen(buf);
4809 wireless_send_event(ar->arNetDev, IWEVCUSTOM, &wrqu, buf);
4810 }
4811
4812 void
4813 ar6000_scanComplete_event(struct ar6_softc *ar, int status)
4814 {
4815
4816 ar6k_cfg80211_scanComplete_event(ar, status);
4817
4818 if (!ar->arUserBssFilter) {
4819 wmi_bssfilter_cmd(ar->arWmi, NONE_BSS_FILTER, 0);
4820 }
4821 if (ar->scan_triggered) {
4822 if (status== 0) {
4823 union iwreq_data wrqu;
4824 A_MEMZERO(&wrqu, sizeof(wrqu));
4825 wireless_send_event(ar->arNetDev, SIOCGIWSCAN, &wrqu, NULL);
4826 }
4827 ar->scan_triggered = 0;
4828 }
4829
4830 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_SCAN,( "AR6000 scan complete: %d\n", status));
4831 }
4832
4833 void
4834 ar6000_targetStats_event(struct ar6_softc *ar, u8 *ptr, u32 len)
4835 {
4836 u8 ac;
4837
4838 if(ar->arNetworkType == AP_NETWORK) {
4839 WMI_AP_MODE_STAT *p = (WMI_AP_MODE_STAT *)ptr;
4840 WMI_AP_MODE_STAT *ap = &ar->arAPStats;
4841
4842 if (len < sizeof(*p)) {
4843 return;
4844 }
4845
4846 for(ac=0;ac<AP_MAX_NUM_STA;ac++) {
4847 ap->sta[ac].tx_bytes += p->sta[ac].tx_bytes;
4848 ap->sta[ac].tx_pkts += p->sta[ac].tx_pkts;
4849 ap->sta[ac].tx_error += p->sta[ac].tx_error;
4850 ap->sta[ac].tx_discard += p->sta[ac].tx_discard;
4851 ap->sta[ac].rx_bytes += p->sta[ac].rx_bytes;
4852 ap->sta[ac].rx_pkts += p->sta[ac].rx_pkts;
4853 ap->sta[ac].rx_error += p->sta[ac].rx_error;
4854 ap->sta[ac].rx_discard += p->sta[ac].rx_discard;
4855 }
4856
4857 } else {
4858 WMI_TARGET_STATS *pTarget = (WMI_TARGET_STATS *)ptr;
4859 TARGET_STATS *pStats = &ar->arTargetStats;
4860
4861 if (len < sizeof(*pTarget)) {
4862 return;
4863 }
4864
4865 // Update the RSSI of the connected bss.
4866 if (ar->arConnected) {
4867 bss_t *pConnBss = NULL;
4868
4869 pConnBss = wmi_find_node(ar->arWmi,ar->arBssid);
4870 if (pConnBss)
4871 {
4872 pConnBss->ni_rssi = pTarget->cservStats.cs_aveBeacon_rssi;
4873 pConnBss->ni_snr = pTarget->cservStats.cs_aveBeacon_snr;
4874 wmi_node_return(ar->arWmi, pConnBss);
4875 }
4876 }
4877
4878 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("AR6000 updating target stats\n"));
4879 pStats->tx_packets += pTarget->txrxStats.tx_stats.tx_packets;
4880 pStats->tx_bytes += pTarget->txrxStats.tx_stats.tx_bytes;
4881 pStats->tx_unicast_pkts += pTarget->txrxStats.tx_stats.tx_unicast_pkts;
4882 pStats->tx_unicast_bytes += pTarget->txrxStats.tx_stats.tx_unicast_bytes;
4883 pStats->tx_multicast_pkts += pTarget->txrxStats.tx_stats.tx_multicast_pkts;
4884 pStats->tx_multicast_bytes += pTarget->txrxStats.tx_stats.tx_multicast_bytes;
4885 pStats->tx_broadcast_pkts += pTarget->txrxStats.tx_stats.tx_broadcast_pkts;
4886 pStats->tx_broadcast_bytes += pTarget->txrxStats.tx_stats.tx_broadcast_bytes;
4887 pStats->tx_rts_success_cnt += pTarget->txrxStats.tx_stats.tx_rts_success_cnt;
4888 for(ac = 0; ac < WMM_NUM_AC; ac++)
4889 pStats->tx_packet_per_ac[ac] += pTarget->txrxStats.tx_stats.tx_packet_per_ac[ac];
4890 pStats->tx_errors += pTarget->txrxStats.tx_stats.tx_errors;
4891 pStats->tx_failed_cnt += pTarget->txrxStats.tx_stats.tx_failed_cnt;
4892 pStats->tx_retry_cnt += pTarget->txrxStats.tx_stats.tx_retry_cnt;
4893 pStats->tx_mult_retry_cnt += pTarget->txrxStats.tx_stats.tx_mult_retry_cnt;
4894 pStats->tx_rts_fail_cnt += pTarget->txrxStats.tx_stats.tx_rts_fail_cnt;
4895 pStats->tx_unicast_rate = wmi_get_rate(pTarget->txrxStats.tx_stats.tx_unicast_rate);
4896
4897 pStats->rx_packets += pTarget->txrxStats.rx_stats.rx_packets;
4898 pStats->rx_bytes += pTarget->txrxStats.rx_stats.rx_bytes;
4899 pStats->rx_unicast_pkts += pTarget->txrxStats.rx_stats.rx_unicast_pkts;
4900 pStats->rx_unicast_bytes += pTarget->txrxStats.rx_stats.rx_unicast_bytes;
4901 pStats->rx_multicast_pkts += pTarget->txrxStats.rx_stats.rx_multicast_pkts;
4902 pStats->rx_multicast_bytes += pTarget->txrxStats.rx_stats.rx_multicast_bytes;
4903 pStats->rx_broadcast_pkts += pTarget->txrxStats.rx_stats.rx_broadcast_pkts;
4904 pStats->rx_broadcast_bytes += pTarget->txrxStats.rx_stats.rx_broadcast_bytes;
4905 pStats->rx_fragment_pkt += pTarget->txrxStats.rx_stats.rx_fragment_pkt;
4906 pStats->rx_errors += pTarget->txrxStats.rx_stats.rx_errors;
4907 pStats->rx_crcerr += pTarget->txrxStats.rx_stats.rx_crcerr;
4908 pStats->rx_key_cache_miss += pTarget->txrxStats.rx_stats.rx_key_cache_miss;
4909 pStats->rx_decrypt_err += pTarget->txrxStats.rx_stats.rx_decrypt_err;
4910 pStats->rx_duplicate_frames += pTarget->txrxStats.rx_stats.rx_duplicate_frames;
4911 pStats->rx_unicast_rate = wmi_get_rate(pTarget->txrxStats.rx_stats.rx_unicast_rate);
4912
4913
4914 pStats->tkip_local_mic_failure
4915 += pTarget->txrxStats.tkipCcmpStats.tkip_local_mic_failure;
4916 pStats->tkip_counter_measures_invoked
4917 += pTarget->txrxStats.tkipCcmpStats.tkip_counter_measures_invoked;
4918 pStats->tkip_replays += pTarget->txrxStats.tkipCcmpStats.tkip_replays;
4919 pStats->tkip_format_errors += pTarget->txrxStats.tkipCcmpStats.tkip_format_errors;
4920 pStats->ccmp_format_errors += pTarget->txrxStats.tkipCcmpStats.ccmp_format_errors;
4921 pStats->ccmp_replays += pTarget->txrxStats.tkipCcmpStats.ccmp_replays;
4922
4923 pStats->power_save_failure_cnt += pTarget->pmStats.power_save_failure_cnt;
4924 pStats->noise_floor_calibation = pTarget->noise_floor_calibation;
4925
4926 pStats->cs_bmiss_cnt += pTarget->cservStats.cs_bmiss_cnt;
4927 pStats->cs_lowRssi_cnt += pTarget->cservStats.cs_lowRssi_cnt;
4928 pStats->cs_connect_cnt += pTarget->cservStats.cs_connect_cnt;
4929 pStats->cs_disconnect_cnt += pTarget->cservStats.cs_disconnect_cnt;
4930 pStats->cs_aveBeacon_snr = pTarget->cservStats.cs_aveBeacon_snr;
4931 pStats->cs_aveBeacon_rssi = pTarget->cservStats.cs_aveBeacon_rssi;
4932
4933 if (enablerssicompensation) {
4934 pStats->cs_aveBeacon_rssi =
4935 rssi_compensation_calc(ar, pStats->cs_aveBeacon_rssi);
4936 }
4937 pStats->cs_lastRoam_msec = pTarget->cservStats.cs_lastRoam_msec;
4938 pStats->cs_snr = pTarget->cservStats.cs_snr;
4939 pStats->cs_rssi = pTarget->cservStats.cs_rssi;
4940
4941 pStats->lq_val = pTarget->lqVal;
4942
4943 pStats->wow_num_pkts_dropped += pTarget->wowStats.wow_num_pkts_dropped;
4944 pStats->wow_num_host_pkt_wakeups += pTarget->wowStats.wow_num_host_pkt_wakeups;
4945 pStats->wow_num_host_event_wakeups += pTarget->wowStats.wow_num_host_event_wakeups;
4946 pStats->wow_num_events_discarded += pTarget->wowStats.wow_num_events_discarded;
4947 pStats->arp_received += pTarget->arpStats.arp_received;
4948 pStats->arp_matched += pTarget->arpStats.arp_matched;
4949 pStats->arp_replied += pTarget->arpStats.arp_replied;
4950
4951 if (ar->statsUpdatePending) {
4952 ar->statsUpdatePending = false;
4953 wake_up(&arEvent);
4954 }
4955 }
4956 }
4957
4958 void
4959 ar6000_rssiThreshold_event(struct ar6_softc *ar, WMI_RSSI_THRESHOLD_VAL newThreshold, s16 rssi)
4960 {
4961 USER_RSSI_THOLD userRssiThold;
4962
4963 rssi = rssi + SIGNAL_QUALITY_NOISE_FLOOR;
4964
4965 if (enablerssicompensation) {
4966 rssi = rssi_compensation_calc(ar, rssi);
4967 }
4968
4969 /* Send an event to the app */
4970 userRssiThold.tag = ar->rssi_map[newThreshold].tag;
4971 userRssiThold.rssi = rssi;
4972 A_PRINTF("rssi Threshold range = %d tag = %d rssi = %d\n", newThreshold,
4973 userRssiThold.tag, userRssiThold.rssi);
4974 }
4975
4976
4977 void
4978 ar6000_hbChallengeResp_event(struct ar6_softc *ar, u32 cookie, u32 source)
4979 {
4980 if (source != APP_HB_CHALLENGE) {
4981 /* This would ignore the replys that come in after their due time */
4982 if (cookie == ar->arHBChallengeResp.seqNum) {
4983 ar->arHBChallengeResp.outstanding = false;
4984 }
4985 }
4986 }
4987
4988
4989 void
4990 ar6000_reportError_event(struct ar6_softc *ar, WMI_TARGET_ERROR_VAL errorVal)
4991 {
4992 static const char * const errString[] = {
4993 [WMI_TARGET_PM_ERR_FAIL] "WMI_TARGET_PM_ERR_FAIL",
4994 [WMI_TARGET_KEY_NOT_FOUND] "WMI_TARGET_KEY_NOT_FOUND",
4995 [WMI_TARGET_DECRYPTION_ERR] "WMI_TARGET_DECRYPTION_ERR",
4996 [WMI_TARGET_BMISS] "WMI_TARGET_BMISS",
4997 [WMI_PSDISABLE_NODE_JOIN] "WMI_PSDISABLE_NODE_JOIN"
4998 };
4999
5000 A_PRINTF("AR6000 Error on Target. Error = 0x%x\n", errorVal);
5001
5002 /* One error is reported at a time, and errorval is a bitmask */
5003 if(errorVal & (errorVal - 1))
5004 return;
5005
5006 A_PRINTF("AR6000 Error type = ");
5007 switch(errorVal)
5008 {
5009 case WMI_TARGET_PM_ERR_FAIL:
5010 case WMI_TARGET_KEY_NOT_FOUND:
5011 case WMI_TARGET_DECRYPTION_ERR:
5012 case WMI_TARGET_BMISS:
5013 case WMI_PSDISABLE_NODE_JOIN:
5014 A_PRINTF("%s\n", errString[errorVal]);
5015 break;
5016 default:
5017 A_PRINTF("INVALID\n");
5018 break;
5019 }
5020
5021 }
5022
5023
5024 void
5025 ar6000_cac_event(struct ar6_softc *ar, u8 ac, u8 cacIndication,
5026 u8 statusCode, u8 *tspecSuggestion)
5027 {
5028 WMM_TSPEC_IE *tspecIe;
5029
5030 /*
5031 * This is the TSPEC IE suggestion from AP.
5032 * Suggestion provided by AP under some error
5033 * cases, could be helpful for the host app.
5034 * Check documentation.
5035 */
5036 tspecIe = (WMM_TSPEC_IE *)tspecSuggestion;
5037
5038 /*
5039 * What do we do, if we get TSPEC rejection? One thought
5040 * that comes to mind is implictly delete the pstream...
5041 */
5042 A_PRINTF("AR6000 CAC notification. "
5043 "AC = %d, cacIndication = 0x%x, statusCode = 0x%x\n",
5044 ac, cacIndication, statusCode);
5045 }
5046
5047 void
5048 ar6000_channel_change_event(struct ar6_softc *ar, u16 oldChannel,
5049 u16 newChannel)
5050 {
5051 A_PRINTF("Channel Change notification\nOld Channel: %d, New Channel: %d\n",
5052 oldChannel, newChannel);
5053 }
5054
5055 #define AR6000_PRINT_BSSID(_pBss) do { \
5056 A_PRINTF("%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x ",\
5057 (_pBss)[0],(_pBss)[1],(_pBss)[2],(_pBss)[3],\
5058 (_pBss)[4],(_pBss)[5]); \
5059 } while(0)
5060
5061 void
5062 ar6000_roam_tbl_event(struct ar6_softc *ar, WMI_TARGET_ROAM_TBL *pTbl)
5063 {
5064 u8 i;
5065
5066 A_PRINTF("ROAM TABLE NO OF ENTRIES is %d ROAM MODE is %d\n",
5067 pTbl->numEntries, pTbl->roamMode);
5068 for (i= 0; i < pTbl->numEntries; i++) {
5069 A_PRINTF("[%d]bssid %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x ", i,
5070 pTbl->bssRoamInfo[i].bssid[0], pTbl->bssRoamInfo[i].bssid[1],
5071 pTbl->bssRoamInfo[i].bssid[2],
5072 pTbl->bssRoamInfo[i].bssid[3],
5073 pTbl->bssRoamInfo[i].bssid[4],
5074 pTbl->bssRoamInfo[i].bssid[5]);
5075 A_PRINTF("RSSI %d RSSIDT %d LAST RSSI %d UTIL %d ROAM_UTIL %d"
5076 " BIAS %d\n",
5077 pTbl->bssRoamInfo[i].rssi,
5078 pTbl->bssRoamInfo[i].rssidt,
5079 pTbl->bssRoamInfo[i].last_rssi,
5080 pTbl->bssRoamInfo[i].util,
5081 pTbl->bssRoamInfo[i].roam_util,
5082 pTbl->bssRoamInfo[i].bias);
5083 }
5084 }
5085
5086 void
5087 ar6000_wow_list_event(struct ar6_softc *ar, u8 num_filters, WMI_GET_WOW_LIST_REPLY *wow_reply)
5088 {
5089 u8 i,j;
5090
5091 /*Each event now contains exactly one filter, see bug 26613*/
5092 A_PRINTF("WOW pattern %d of %d patterns\n", wow_reply->this_filter_num, wow_reply->num_filters);
5093 A_PRINTF("wow mode = %s host mode = %s\n",
5094 (wow_reply->wow_mode == 0? "disabled":"enabled"),
5095 (wow_reply->host_mode == 1 ? "awake":"asleep"));
5096
5097
5098 /*If there are no patterns, the reply will only contain generic
5099 WoW information. Pattern information will exist only if there are
5100 patterns present. Bug 26716*/
5101
5102 /* If this event contains pattern information, display it*/
5103 if (wow_reply->this_filter_num) {
5104 i=0;
5105 A_PRINTF("id=%d size=%d offset=%d\n",
5106 wow_reply->wow_filters[i].wow_filter_id,
5107 wow_reply->wow_filters[i].wow_filter_size,
5108 wow_reply->wow_filters[i].wow_filter_offset);
5109 A_PRINTF("wow pattern = ");
5110 for (j=0; j< wow_reply->wow_filters[i].wow_filter_size; j++) {
5111 A_PRINTF("%2.2x",wow_reply->wow_filters[i].wow_filter_pattern[j]);
5112 }
5113
5114 A_PRINTF("\nwow mask = ");
5115 for (j=0; j< wow_reply->wow_filters[i].wow_filter_size; j++) {
5116 A_PRINTF("%2.2x",wow_reply->wow_filters[i].wow_filter_mask[j]);
5117 }
5118 A_PRINTF("\n");
5119 }
5120 }
5121
5122 /*
5123 * Report the Roaming related data collected on the target
5124 */
5125 void
5126 ar6000_display_roam_time(WMI_TARGET_ROAM_TIME *p)
5127 {
5128 A_PRINTF("Disconnect Data : BSSID: ");
5129 AR6000_PRINT_BSSID(p->disassoc_bssid);
5130 A_PRINTF(" RSSI %d DISASSOC Time %d NO_TXRX_TIME %d\n",
5131 p->disassoc_bss_rssi,p->disassoc_time,
5132 p->no_txrx_time);
5133 A_PRINTF("Connect Data: BSSID: ");
5134 AR6000_PRINT_BSSID(p->assoc_bssid);
5135 A_PRINTF(" RSSI %d ASSOC Time %d TXRX_TIME %d\n",
5136 p->assoc_bss_rssi,p->assoc_time,
5137 p->allow_txrx_time);
5138 }
5139
5140 void
5141 ar6000_roam_data_event(struct ar6_softc *ar, WMI_TARGET_ROAM_DATA *p)
5142 {
5143 switch (p->roamDataType) {
5144 case ROAM_DATA_TIME:
5145 ar6000_display_roam_time(&p->u.roamTime);
5146 break;
5147 default:
5148 break;
5149 }
5150 }
5151
5152 void
5153 ar6000_bssInfo_event_rx(struct ar6_softc *ar, u8 *datap, int len)
5154 {
5155 struct sk_buff *skb;
5156 WMI_BSS_INFO_HDR *bih = (WMI_BSS_INFO_HDR *)datap;
5157
5158
5159 if (!ar->arMgmtFilter) {
5160 return;
5161 }
5162 if (((ar->arMgmtFilter & IEEE80211_FILTER_TYPE_BEACON) &&
5163 (bih->frameType != BEACON_FTYPE)) ||
5164 ((ar->arMgmtFilter & IEEE80211_FILTER_TYPE_PROBE_RESP) &&
5165 (bih->frameType != PROBERESP_FTYPE)))
5166 {
5167 return;
5168 }
5169
5170 if ((skb = A_NETBUF_ALLOC_RAW(len)) != NULL) {
5171
5172 A_NETBUF_PUT(skb, len);
5173 memcpy(A_NETBUF_DATA(skb), datap, len);
5174 skb->dev = ar->arNetDev;
5175 memcpy(skb_mac_header(skb), A_NETBUF_DATA(skb), 6);
5176 skb->ip_summed = CHECKSUM_NONE;
5177 skb->pkt_type = PACKET_OTHERHOST;
5178 skb->protocol = __constant_htons(0x0019);
5179 netif_rx(skb);
5180 }
5181 }
5182
5183 u32 wmiSendCmdNum;
5184
5185 int
5186 ar6000_control_tx(void *devt, void *osbuf, HTC_ENDPOINT_ID eid)
5187 {
5188 struct ar6_softc *ar = (struct ar6_softc *)devt;
5189 int status = 0;
5190 struct ar_cookie *cookie = NULL;
5191 int i;
5192 #ifdef CONFIG_PM
5193 if (ar->arWowState != WLAN_WOW_STATE_NONE) {
5194 A_NETBUF_FREE(osbuf);
5195 return A_EACCES;
5196 }
5197 #endif /* CONFIG_PM */
5198 /* take lock to protect ar6000_alloc_cookie() */
5199 AR6000_SPIN_LOCK(&ar->arLock, 0);
5200
5201 do {
5202
5203 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_TX,("ar_contrstatus = ol_tx: skb=0x%lx, len=0x%x eid =%d\n",
5204 (unsigned long)osbuf, A_NETBUF_LEN(osbuf), eid));
5205
5206 if (ar->arWMIControlEpFull && (eid == ar->arControlEp)) {
5207 /* control endpoint is full, don't allocate resources, we
5208 * are just going to drop this packet */
5209 cookie = NULL;
5210 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,(" WMI Control EP full, dropping packet : 0x%lX, len:%d \n",
5211 (unsigned long)osbuf, A_NETBUF_LEN(osbuf)));
5212 } else {
5213 cookie = ar6000_alloc_cookie(ar);
5214 }
5215
5216 if (cookie == NULL) {
5217 status = A_NO_MEMORY;
5218 break;
5219 }
5220
5221 if(logWmiRawMsgs) {
5222 A_PRINTF("WMI cmd send, msgNo %d :", wmiSendCmdNum);
5223 for(i = 0; i < a_netbuf_to_len(osbuf); i++)
5224 A_PRINTF("%x ", ((u8 *)a_netbuf_to_data(osbuf))[i]);
5225 A_PRINTF("\n");
5226 }
5227
5228 wmiSendCmdNum++;
5229
5230 } while (false);
5231
5232 if (cookie != NULL) {
5233 /* got a structure to send it out on */
5234 ar->arTxPending[eid]++;
5235
5236 if (eid != ar->arControlEp) {
5237 ar->arTotalTxDataPending++;
5238 }
5239 }
5240
5241 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
5242
5243 if (cookie != NULL) {
5244 cookie->arc_bp[0] = (unsigned long)osbuf;
5245 cookie->arc_bp[1] = 0;
5246 SET_HTC_PACKET_INFO_TX(&cookie->HtcPkt,
5247 cookie,
5248 A_NETBUF_DATA(osbuf),
5249 A_NETBUF_LEN(osbuf),
5250 eid,
5251 AR6K_CONTROL_PKT_TAG);
5252 /* this interface is asynchronous, if there is an error, cleanup will happen in the
5253 * TX completion callback */
5254 HTCSendPkt(ar->arHtcTarget, &cookie->HtcPkt);
5255 status = 0;
5256 }
5257
5258 if (status) {
5259 A_NETBUF_FREE(osbuf);
5260 }
5261 return status;
5262 }
5263
5264 /* indicate tx activity or inactivity on a WMI stream */
5265 void ar6000_indicate_tx_activity(void *devt, u8 TrafficClass, bool Active)
5266 {
5267 struct ar6_softc *ar = (struct ar6_softc *)devt;
5268 HTC_ENDPOINT_ID eid ;
5269 int i;
5270
5271 if (ar->arWmiEnabled) {
5272 eid = arAc2EndpointID(ar, TrafficClass);
5273
5274 AR6000_SPIN_LOCK(&ar->arLock, 0);
5275
5276 ar->arAcStreamActive[TrafficClass] = Active;
5277
5278 if (Active) {
5279 /* when a stream goes active, keep track of the active stream with the highest priority */
5280
5281 if (ar->arAcStreamPriMap[TrafficClass] > ar->arHiAcStreamActivePri) {
5282 /* set the new highest active priority */
5283 ar->arHiAcStreamActivePri = ar->arAcStreamPriMap[TrafficClass];
5284 }
5285
5286 } else {
5287 /* when a stream goes inactive, we may have to search for the next active stream
5288 * that is the highest priority */
5289
5290 if (ar->arHiAcStreamActivePri == ar->arAcStreamPriMap[TrafficClass]) {
5291
5292 /* the highest priority stream just went inactive */
5293
5294 /* reset and search for the "next" highest "active" priority stream */
5295 ar->arHiAcStreamActivePri = 0;
5296 for (i = 0; i < WMM_NUM_AC; i++) {
5297 if (ar->arAcStreamActive[i]) {
5298 if (ar->arAcStreamPriMap[i] > ar->arHiAcStreamActivePri) {
5299 /* set the new highest active priority */
5300 ar->arHiAcStreamActivePri = ar->arAcStreamPriMap[i];
5301 }
5302 }
5303 }
5304 }
5305 }
5306
5307 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
5308
5309 } else {
5310 /* for mbox ping testing, the traffic class is mapped directly as a stream ID,
5311 * see handling of AR6000_XIOCTL_TRAFFIC_ACTIVITY_CHANGE in ioctl.c
5312 * convert the stream ID to a endpoint */
5313 eid = arAc2EndpointID(ar, TrafficClass);
5314 }
5315
5316 /* notify HTC, this may cause credit distribution changes */
5317
5318 HTCIndicateActivityChange(ar->arHtcTarget,
5319 eid,
5320 Active);
5321
5322 }
5323
5324 void
5325 ar6000_btcoex_config_event(struct ar6_softc *ar, u8 *ptr, u32 len)
5326 {
5327
5328 WMI_BTCOEX_CONFIG_EVENT *pBtcoexConfig = (WMI_BTCOEX_CONFIG_EVENT *)ptr;
5329 WMI_BTCOEX_CONFIG_EVENT *pArbtcoexConfig =&ar->arBtcoexConfig;
5330
5331 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("AR6000 BTCOEX CONFIG EVENT \n"));
5332
5333 A_PRINTF("received config event\n");
5334 pArbtcoexConfig->btProfileType = pBtcoexConfig->btProfileType;
5335 pArbtcoexConfig->linkId = pBtcoexConfig->linkId;
5336
5337 switch (pBtcoexConfig->btProfileType) {
5338 case WMI_BTCOEX_BT_PROFILE_SCO:
5339 memcpy(&pArbtcoexConfig->info.scoConfigCmd, &pBtcoexConfig->info.scoConfigCmd,
5340 sizeof(WMI_SET_BTCOEX_SCO_CONFIG_CMD));
5341 break;
5342 case WMI_BTCOEX_BT_PROFILE_A2DP:
5343 memcpy(&pArbtcoexConfig->info.a2dpConfigCmd, &pBtcoexConfig->info.a2dpConfigCmd,
5344 sizeof(WMI_SET_BTCOEX_A2DP_CONFIG_CMD));
5345 break;
5346 case WMI_BTCOEX_BT_PROFILE_ACLCOEX:
5347 memcpy(&pArbtcoexConfig->info.aclcoexConfig, &pBtcoexConfig->info.aclcoexConfig,
5348 sizeof(WMI_SET_BTCOEX_ACLCOEX_CONFIG_CMD));
5349 break;
5350 case WMI_BTCOEX_BT_PROFILE_INQUIRY_PAGE:
5351 memcpy(&pArbtcoexConfig->info.btinquiryPageConfigCmd, &pBtcoexConfig->info.btinquiryPageConfigCmd,
5352 sizeof(WMI_SET_BTCOEX_ACLCOEX_CONFIG_CMD));
5353 break;
5354 }
5355 if (ar->statsUpdatePending) {
5356 ar->statsUpdatePending = false;
5357 wake_up(&arEvent);
5358 }
5359 }
5360
5361 void
5362 ar6000_btcoex_stats_event(struct ar6_softc *ar, u8 *ptr, u32 len)
5363 {
5364 WMI_BTCOEX_STATS_EVENT *pBtcoexStats = (WMI_BTCOEX_STATS_EVENT *)ptr;
5365
5366 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("AR6000 BTCOEX CONFIG EVENT \n"));
5367
5368 memcpy(&ar->arBtcoexStats, pBtcoexStats, sizeof(WMI_BTCOEX_STATS_EVENT));
5369
5370 if (ar->statsUpdatePending) {
5371 ar->statsUpdatePending = false;
5372 wake_up(&arEvent);
5373 }
5374
5375 }
5376 module_init(ar6000_init_module);
5377 module_exit(ar6000_cleanup_module);
5378
5379 /* Init cookie queue */
5380 static void
5381 ar6000_cookie_init(struct ar6_softc *ar)
5382 {
5383 u32 i;
5384
5385 ar->arCookieList = NULL;
5386 ar->arCookieCount = 0;
5387
5388 A_MEMZERO(s_ar_cookie_mem, sizeof(s_ar_cookie_mem));
5389
5390 for (i = 0; i < MAX_COOKIE_NUM; i++) {
5391 ar6000_free_cookie(ar, &s_ar_cookie_mem[i]);
5392 }
5393 }
5394
5395 /* cleanup cookie queue */
5396 static void
5397 ar6000_cookie_cleanup(struct ar6_softc *ar)
5398 {
5399 /* It is gone .... */
5400 ar->arCookieList = NULL;
5401 ar->arCookieCount = 0;
5402 }
5403
5404 /* Init cookie queue */
5405 static void
5406 ar6000_free_cookie(struct ar6_softc *ar, struct ar_cookie * cookie)
5407 {
5408 /* Insert first */
5409 A_ASSERT(ar != NULL);
5410 A_ASSERT(cookie != NULL);
5411
5412 cookie->arc_list_next = ar->arCookieList;
5413 ar->arCookieList = cookie;
5414 ar->arCookieCount++;
5415 }
5416
5417 /* cleanup cookie queue */
5418 static struct ar_cookie *
5419 ar6000_alloc_cookie(struct ar6_softc *ar)
5420 {
5421 struct ar_cookie *cookie;
5422
5423 cookie = ar->arCookieList;
5424 if(cookie != NULL)
5425 {
5426 ar->arCookieList = cookie->arc_list_next;
5427 ar->arCookieCount--;
5428 }
5429
5430 return cookie;
5431 }
5432
5433 void
5434 ar6000_tx_retry_err_event(void *devt)
5435 {
5436 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Tx retries reach maximum!\n"));
5437 }
5438
5439 void
5440 ar6000_snrThresholdEvent_rx(void *devt, WMI_SNR_THRESHOLD_VAL newThreshold, u8 snr)
5441 {
5442 WMI_SNR_THRESHOLD_EVENT event;
5443
5444 event.range = newThreshold;
5445 event.snr = snr;
5446 }
5447
5448 void
5449 ar6000_lqThresholdEvent_rx(void *devt, WMI_LQ_THRESHOLD_VAL newThreshold, u8 lq)
5450 {
5451 AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("lq threshold range %d, lq %d\n", newThreshold, lq));
5452 }
5453
5454
5455
5456 u32 a_copy_to_user(void *to, const void *from, u32 n)
5457 {
5458 return(copy_to_user(to, from, n));
5459 }
5460
5461 u32 a_copy_from_user(void *to, const void *from, u32 n)
5462 {
5463 return(copy_from_user(to, from, n));
5464 }
5465
5466
5467 int
5468 ar6000_get_driver_cfg(struct net_device *dev,
5469 u16 cfgParam,
5470 void *result)
5471 {
5472
5473 int ret = 0;
5474
5475 switch(cfgParam)
5476 {
5477 case AR6000_DRIVER_CFG_GET_WLANNODECACHING:
5478 *((u32 *)result) = wlanNodeCaching;
5479 break;
5480 case AR6000_DRIVER_CFG_LOG_RAW_WMI_MSGS:
5481 *((u32 *)result) = logWmiRawMsgs;
5482 break;
5483 default:
5484 ret = EINVAL;
5485 break;
5486 }
5487
5488 return ret;
5489 }
5490
5491 void
5492 ar6000_keepalive_rx(void *devt, u8 configured)
5493 {
5494 struct ar6_softc *ar = (struct ar6_softc *)devt;
5495
5496 ar->arKeepaliveConfigured = configured;
5497 wake_up(&arEvent);
5498 }
5499
5500 void
5501 ar6000_pmkid_list_event(void *devt, u8 numPMKID, WMI_PMKID *pmkidList,
5502 u8 *bssidList)
5503 {
5504 u8 i, j;
5505
5506 A_PRINTF("Number of Cached PMKIDs is %d\n", numPMKID);
5507
5508 for (i = 0; i < numPMKID; i++) {
5509 A_PRINTF("\nBSSID %d ", i);
5510 for (j = 0; j < ATH_MAC_LEN; j++) {
5511 A_PRINTF("%2.2x", bssidList[j]);
5512 }
5513 bssidList += (ATH_MAC_LEN + WMI_PMKID_LEN);
5514 A_PRINTF("\nPMKID %d ", i);
5515 for (j = 0; j < WMI_PMKID_LEN; j++) {
5516 A_PRINTF("%2.2x", pmkidList->pmkid[j]);
5517 }
5518 pmkidList = (WMI_PMKID *)((u8 *)pmkidList + ATH_MAC_LEN +
5519 WMI_PMKID_LEN);
5520 }
5521 }
5522
5523 void ar6000_pspoll_event(struct ar6_softc *ar,u8 aid)
5524 {
5525 sta_t *conn=NULL;
5526 bool isPsqEmpty = false;
5527
5528 conn = ieee80211_find_conn_for_aid(ar, aid);
5529
5530 /* If the PS q for this STA is not empty, dequeue and send a pkt from
5531 * the head of the q. Also update the More data bit in the WMI_DATA_HDR
5532 * if there are more pkts for this STA in the PS q. If there are no more
5533 * pkts for this STA, update the PVB for this STA.
5534 */
5535 A_MUTEX_LOCK(&conn->psqLock);
5536 isPsqEmpty = A_NETBUF_QUEUE_EMPTY(&conn->psq);
5537 A_MUTEX_UNLOCK(&conn->psqLock);
5538
5539 if (isPsqEmpty) {
5540 /* TODO:No buffered pkts for this STA. Send out a NULL data frame */
5541 } else {
5542 struct sk_buff *skb = NULL;
5543
5544 A_MUTEX_LOCK(&conn->psqLock);
5545 skb = A_NETBUF_DEQUEUE(&conn->psq);
5546 A_MUTEX_UNLOCK(&conn->psqLock);
5547 /* Set the STA flag to PSPolled, so that the frame will go out */
5548 STA_SET_PS_POLLED(conn);
5549 ar6000_data_tx(skb, ar->arNetDev);
5550 STA_CLR_PS_POLLED(conn);
5551
5552 /* Clear the PVB for this STA if the queue has become empty */
5553 A_MUTEX_LOCK(&conn->psqLock);
5554 isPsqEmpty = A_NETBUF_QUEUE_EMPTY(&conn->psq);
5555 A_MUTEX_UNLOCK(&conn->psqLock);
5556
5557 if (isPsqEmpty) {
5558 wmi_set_pvb_cmd(ar->arWmi, conn->aid, 0);
5559 }
5560 }
5561 }
5562
5563 void ar6000_dtimexpiry_event(struct ar6_softc *ar)
5564 {
5565 bool isMcastQueued = false;
5566 struct sk_buff *skb = NULL;
5567
5568 /* If there are no associated STAs, ignore the DTIM expiry event.
5569 * There can be potential race conditions where the last associated
5570 * STA may disconnect & before the host could clear the 'Indicate DTIM'
5571 * request to the firmware, the firmware would have just indicated a DTIM
5572 * expiry event. The race is between 'clear DTIM expiry cmd' going
5573 * from the host to the firmware & the DTIM expiry event happening from
5574 * the firmware to the host.
5575 */
5576 if (ar->sta_list_index == 0) {
5577 return;
5578 }
5579
5580 A_MUTEX_LOCK(&ar->mcastpsqLock);
5581 isMcastQueued = A_NETBUF_QUEUE_EMPTY(&ar->mcastpsq);
5582 A_MUTEX_UNLOCK(&ar->mcastpsqLock);
5583
5584 A_ASSERT(isMcastQueued == false);
5585
5586 /* Flush the mcast psq to the target */
5587 /* Set the STA flag to DTIMExpired, so that the frame will go out */
5588 ar->DTIMExpired = true;
5589
5590 A_MUTEX_LOCK(&ar->mcastpsqLock);
5591 while (!A_NETBUF_QUEUE_EMPTY(&ar->mcastpsq)) {
5592 skb = A_NETBUF_DEQUEUE(&ar->mcastpsq);
5593 A_MUTEX_UNLOCK(&ar->mcastpsqLock);
5594
5595 ar6000_data_tx(skb, ar->arNetDev);
5596
5597 A_MUTEX_LOCK(&ar->mcastpsqLock);
5598 }
5599 A_MUTEX_UNLOCK(&ar->mcastpsqLock);
5600
5601 /* Reset the DTIMExpired flag back to 0 */
5602 ar->DTIMExpired = false;
5603
5604 /* Clear the LSB of the BitMapCtl field of the TIM IE */
5605 wmi_set_pvb_cmd(ar->arWmi, MCAST_AID, 0);
5606 }
5607
5608 void
5609 read_rssi_compensation_param(struct ar6_softc *ar)
5610 {
5611 u8 *cust_data_ptr;
5612
5613 //#define RSSICOMPENSATION_PRINT
5614
5615 #ifdef RSSICOMPENSATION_PRINT
5616 s16 i;
5617 cust_data_ptr = ar6000_get_cust_data_buffer(ar->arTargetType);
5618 for (i=0; i<16; i++) {
5619 A_PRINTF("cust_data_%d = %x \n", i, *(u8 *)cust_data_ptr);
5620 cust_data_ptr += 1;
5621 }
5622 #endif
5623
5624 cust_data_ptr = ar6000_get_cust_data_buffer(ar->arTargetType);
5625
5626 rssi_compensation_param.customerID = *(u16 *)cust_data_ptr & 0xffff;
5627 rssi_compensation_param.enable = *(u16 *)(cust_data_ptr+2) & 0xffff;
5628 rssi_compensation_param.bg_param_a = *(u16 *)(cust_data_ptr+4) & 0xffff;
5629 rssi_compensation_param.bg_param_b = *(u16 *)(cust_data_ptr+6) & 0xffff;
5630 rssi_compensation_param.a_param_a = *(u16 *)(cust_data_ptr+8) & 0xffff;
5631 rssi_compensation_param.a_param_b = *(u16 *)(cust_data_ptr+10) &0xffff;
5632 rssi_compensation_param.reserved = *(u32 *)(cust_data_ptr+12);
5633
5634 #ifdef RSSICOMPENSATION_PRINT
5635 A_PRINTF("customerID = 0x%x \n", rssi_compensation_param.customerID);
5636 A_PRINTF("enable = 0x%x \n", rssi_compensation_param.enable);
5637 A_PRINTF("bg_param_a = 0x%x and %d \n", rssi_compensation_param.bg_param_a, rssi_compensation_param.bg_param_a);
5638 A_PRINTF("bg_param_b = 0x%x and %d \n", rssi_compensation_param.bg_param_b, rssi_compensation_param.bg_param_b);
5639 A_PRINTF("a_param_a = 0x%x and %d \n", rssi_compensation_param.a_param_a, rssi_compensation_param.a_param_a);
5640 A_PRINTF("a_param_b = 0x%x and %d \n", rssi_compensation_param.a_param_b, rssi_compensation_param.a_param_b);
5641 A_PRINTF("Last 4 bytes = 0x%x \n", rssi_compensation_param.reserved);
5642 #endif
5643
5644 if (rssi_compensation_param.enable != 0x1) {
5645 rssi_compensation_param.enable = 0;
5646 }
5647
5648 return;
5649 }
5650
5651 s32 rssi_compensation_calc_tcmd(u32 freq, s32 rssi, u32 totalPkt)
5652 {
5653
5654 if (freq > 5000)
5655 {
5656 if (rssi_compensation_param.enable)
5657 {
5658 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, (">>> 11a\n"));
5659 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi before compensation = %d, totalPkt = %d\n", rssi,totalPkt));
5660 rssi = rssi * rssi_compensation_param.a_param_a + totalPkt * rssi_compensation_param.a_param_b;
5661 rssi = (rssi-50) /100;
5662 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi after compensation = %d\n", rssi));
5663 }
5664 }
5665 else
5666 {
5667 if (rssi_compensation_param.enable)
5668 {
5669 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, (">>> 11bg\n"));
5670 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi before compensation = %d, totalPkt = %d\n", rssi,totalPkt));
5671 rssi = rssi * rssi_compensation_param.bg_param_a + totalPkt * rssi_compensation_param.bg_param_b;
5672 rssi = (rssi-50) /100;
5673 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi after compensation = %d\n", rssi));
5674 }
5675 }
5676
5677 return rssi;
5678 }
5679
5680 s16 rssi_compensation_calc(struct ar6_softc *ar, s16 rssi)
5681 {
5682 if (ar->arBssChannel > 5000)
5683 {
5684 if (rssi_compensation_param.enable)
5685 {
5686 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, (">>> 11a\n"));
5687 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi before compensation = %d\n", rssi));
5688 rssi = rssi * rssi_compensation_param.a_param_a + rssi_compensation_param.a_param_b;
5689 rssi = (rssi-50) /100;
5690 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi after compensation = %d\n", rssi));
5691 }
5692 }
5693 else
5694 {
5695 if (rssi_compensation_param.enable)
5696 {
5697 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, (">>> 11bg\n"));
5698 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi before compensation = %d\n", rssi));
5699 rssi = rssi * rssi_compensation_param.bg_param_a + rssi_compensation_param.bg_param_b;
5700 rssi = (rssi-50) /100;
5701 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi after compensation = %d\n", rssi));
5702 }
5703 }
5704
5705 return rssi;
5706 }
5707
5708 s16 rssi_compensation_reverse_calc(struct ar6_softc *ar, s16 rssi, bool Above)
5709 {
5710 s16 i;
5711
5712 if (ar->arBssChannel > 5000)
5713 {
5714 if (rssi_compensation_param.enable)
5715 {
5716 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, (">>> 11a\n"));
5717 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi before rev compensation = %d\n", rssi));
5718 rssi = rssi * 100;
5719 rssi = (rssi - rssi_compensation_param.a_param_b) / rssi_compensation_param.a_param_a;
5720 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi after rev compensation = %d\n", rssi));
5721 }
5722 }
5723 else
5724 {
5725 if (rssi_compensation_param.enable)
5726 {
5727 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, (">>> 11bg\n"));
5728 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi before rev compensation = %d\n", rssi));
5729
5730 if (Above) {
5731 for (i=95; i>=0; i--) {
5732 if (rssi <= rssi_compensation_table[i]) {
5733 rssi = 0 - i;
5734 break;
5735 }
5736 }
5737 } else {
5738 for (i=0; i<=95; i++) {
5739 if (rssi >= rssi_compensation_table[i]) {
5740 rssi = 0 - i;
5741 break;
5742 }
5743 }
5744 }
5745 AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi after rev compensation = %d\n", rssi));
5746 }
5747 }
5748
5749 return rssi;
5750 }
5751
5752 #ifdef WAPI_ENABLE
5753 void ap_wapi_rekey_event(struct ar6_softc *ar, u8 type, u8 *mac)
5754 {
5755 union iwreq_data wrqu;
5756 char buf[20];
5757
5758 A_MEMZERO(buf, sizeof(buf));
5759
5760 strcpy(buf, "WAPI_REKEY");
5761 buf[10] = type;
5762 memcpy(&buf[11], mac, ATH_MAC_LEN);
5763
5764 A_MEMZERO(&wrqu, sizeof(wrqu));
5765 wrqu.data.length = 10+1+ATH_MAC_LEN;
5766 wireless_send_event(ar->arNetDev, IWEVCUSTOM, &wrqu, buf);
5767
5768 A_PRINTF("WAPI REKEY - %d - %02x:%02x\n", type, mac[4], mac[5]);
5769 }
5770 #endif
5771
5772 static int
5773 ar6000_reinstall_keys(struct ar6_softc *ar, u8 key_op_ctrl)
5774 {
5775 int status = 0;
5776 struct ieee80211req_key *uik = &ar->user_saved_keys.ucast_ik;
5777 struct ieee80211req_key *bik = &ar->user_saved_keys.bcast_ik;
5778 CRYPTO_TYPE keyType = ar->user_saved_keys.keyType;
5779
5780 if (IEEE80211_CIPHER_CCKM_KRK != uik->ik_type) {
5781 if (NONE_CRYPT == keyType) {
5782 goto _reinstall_keys_out;
5783 }
5784
5785 if (uik->ik_keylen) {
5786 status = wmi_addKey_cmd(ar->arWmi, uik->ik_keyix,
5787 ar->user_saved_keys.keyType, PAIRWISE_USAGE,
5788 uik->ik_keylen, (u8 *)&uik->ik_keyrsc,
5789 uik->ik_keydata, key_op_ctrl, uik->ik_macaddr, SYNC_BEFORE_WMIFLAG);
5790 }
5791
5792 } else {
5793 status = wmi_add_krk_cmd(ar->arWmi, uik->ik_keydata);
5794 }
5795
5796 if (IEEE80211_CIPHER_CCKM_KRK != bik->ik_type) {
5797 if (NONE_CRYPT == keyType) {
5798 goto _reinstall_keys_out;
5799 }
5800
5801 if (bik->ik_keylen) {
5802 status = wmi_addKey_cmd(ar->arWmi, bik->ik_keyix,
5803 ar->user_saved_keys.keyType, GROUP_USAGE,
5804 bik->ik_keylen, (u8 *)&bik->ik_keyrsc,
5805 bik->ik_keydata, key_op_ctrl, bik->ik_macaddr, NO_SYNC_WMIFLAG);
5806 }
5807 } else {
5808 status = wmi_add_krk_cmd(ar->arWmi, bik->ik_keydata);
5809 }
5810
5811 _reinstall_keys_out:
5812 ar->user_savedkeys_stat = USER_SAVEDKEYS_STAT_INIT;
5813 ar->user_key_ctrl = 0;
5814
5815 return status;
5816 }
5817
5818
5819 void
5820 ar6000_dset_open_req(
5821 void *context,
5822 u32 id,
5823 u32 targHandle,
5824 u32 targReplyFn,
5825 u32 targReplyArg)
5826 {
5827 }
5828
5829 void
5830 ar6000_dset_close(
5831 void *context,
5832 u32 access_cookie)
5833 {
5834 return;
5835 }
5836
5837 void
5838 ar6000_dset_data_req(
5839 void *context,
5840 u32 accessCookie,
5841 u32 offset,
5842 u32 length,
5843 u32 targBuf,
5844 u32 targReplyFn,
5845 u32 targReplyArg)
5846 {
5847 }
5848
5849 int
5850 ar6000_ap_mode_profile_commit(struct ar6_softc *ar)
5851 {
5852 WMI_CONNECT_CMD p;
5853 unsigned long flags;
5854
5855 /* No change in AP's profile configuration */
5856 if(ar->ap_profile_flag==0) {
5857 A_PRINTF("COMMIT: No change in profile!!!\n");
5858 return -ENODATA;
5859 }
5860
5861 if(!ar->arSsidLen) {
5862 A_PRINTF("SSID not set!!!\n");
5863 return -ECHRNG;
5864 }
5865
5866 switch(ar->arAuthMode) {
5867 case NONE_AUTH:
5868 if((ar->arPairwiseCrypto != NONE_CRYPT) &&
5869 #ifdef WAPI_ENABLE
5870 (ar->arPairwiseCrypto != WAPI_CRYPT) &&
5871 #endif
5872 (ar->arPairwiseCrypto != WEP_CRYPT)) {
5873 A_PRINTF("Cipher not supported in AP mode Open auth\n");
5874 return -EOPNOTSUPP;
5875 }
5876 break;
5877 case WPA_PSK_AUTH:
5878 case WPA2_PSK_AUTH:
5879 case (WPA_PSK_AUTH|WPA2_PSK_AUTH):
5880 break;
5881 default:
5882 A_PRINTF("This key mgmt type not supported in AP mode\n");
5883 return -EOPNOTSUPP;
5884 }
5885
5886 /* Update the arNetworkType */
5887 ar->arNetworkType = ar->arNextMode;
5888
5889 A_MEMZERO(&p,sizeof(p));
5890 p.ssidLength = ar->arSsidLen;
5891 memcpy(p.ssid,ar->arSsid,p.ssidLength);
5892 p.channel = ar->arChannelHint;
5893 p.networkType = ar->arNetworkType;
5894
5895 p.dot11AuthMode = ar->arDot11AuthMode;
5896 p.authMode = ar->arAuthMode;
5897 p.pairwiseCryptoType = ar->arPairwiseCrypto;
5898 p.pairwiseCryptoLen = ar->arPairwiseCryptoLen;
5899 p.groupCryptoType = ar->arGroupCrypto;
5900 p.groupCryptoLen = ar->arGroupCryptoLen;
5901 p.ctrl_flags = ar->arConnectCtrlFlags;
5902
5903 wmi_ap_profile_commit(ar->arWmi, &p);
5904 spin_lock_irqsave(&ar->arLock, flags);
5905 ar->arConnected = true;
5906 netif_carrier_on(ar->arNetDev);
5907 spin_unlock_irqrestore(&ar->arLock, flags);
5908 ar->ap_profile_flag = 0;
5909 return 0;
5910 }
5911
5912 int
5913 ar6000_connect_to_ap(struct ar6_softc *ar)
5914 {
5915 /* The ssid length check prevents second "essid off" from the user,
5916 to be treated as a connect cmd. The second "essid off" is ignored.
5917 */
5918 if((ar->arWmiReady == true) && (ar->arSsidLen > 0) && ar->arNetworkType!=AP_NETWORK)
5919 {
5920 int status;
5921 if((ADHOC_NETWORK != ar->arNetworkType) &&
5922 (NONE_AUTH==ar->arAuthMode) &&
5923 (WEP_CRYPT==ar->arPairwiseCrypto)) {
5924 ar6000_install_static_wep_keys(ar);
5925 }
5926
5927 if (!ar->arUserBssFilter) {
5928 if (wmi_bssfilter_cmd(ar->arWmi, ALL_BSS_FILTER, 0) != 0) {
5929 return -EIO;
5930 }
5931 }
5932 #ifdef WAPI_ENABLE
5933 if (ar->arWapiEnable) {
5934 ar->arPairwiseCrypto = WAPI_CRYPT;
5935 ar->arPairwiseCryptoLen = 0;
5936 ar->arGroupCrypto = WAPI_CRYPT;
5937 ar->arGroupCryptoLen = 0;
5938 ar->arAuthMode = NONE_AUTH;
5939 ar->arConnectCtrlFlags |= CONNECT_IGNORE_WPAx_GROUP_CIPHER;
5940 }
5941 #endif
5942 AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("Connect called with authmode %d dot11 auth %d"\
5943 " PW crypto %d PW crypto Len %d GRP crypto %d"\
5944 " GRP crypto Len %d\n",
5945 ar->arAuthMode, ar->arDot11AuthMode,
5946 ar->arPairwiseCrypto, ar->arPairwiseCryptoLen,
5947 ar->arGroupCrypto, ar->arGroupCryptoLen));
5948 reconnect_flag = 0;
5949 /* Set the listen interval into 1000TUs or more. This value will be indicated to Ap in the conn.
5950 later set it back locally at the STA to 100/1000 TUs depending on the power mode */
5951 if ((ar->arNetworkType == INFRA_NETWORK)) {
5952 wmi_listeninterval_cmd(ar->arWmi, max(ar->arListenIntervalT, (u16)A_MAX_WOW_LISTEN_INTERVAL), 0);
5953 }
5954 status = wmi_connect_cmd(ar->arWmi, ar->arNetworkType,
5955 ar->arDot11AuthMode, ar->arAuthMode,
5956 ar->arPairwiseCrypto, ar->arPairwiseCryptoLen,
5957 ar->arGroupCrypto,ar->arGroupCryptoLen,
5958 ar->arSsidLen, ar->arSsid,
5959 ar->arReqBssid, ar->arChannelHint,
5960 ar->arConnectCtrlFlags);
5961 if (status) {
5962 wmi_listeninterval_cmd(ar->arWmi, ar->arListenIntervalT, ar->arListenIntervalB);
5963 if (!ar->arUserBssFilter) {
5964 wmi_bssfilter_cmd(ar->arWmi, NONE_BSS_FILTER, 0);
5965 }
5966 return status;
5967 }
5968
5969 if ((!(ar->arConnectCtrlFlags & CONNECT_DO_WPA_OFFLOAD)) &&
5970 ((WPA_PSK_AUTH == ar->arAuthMode) || (WPA2_PSK_AUTH == ar->arAuthMode)))
5971 {
5972 A_TIMEOUT_MS(&ar->disconnect_timer, A_DISCONNECT_TIMER_INTERVAL, 0);
5973 }
5974
5975 ar->arConnectCtrlFlags &= ~CONNECT_DO_WPA_OFFLOAD;
5976
5977 ar->arConnectPending = true;
5978 return status;
5979 }
5980 return A_ERROR;
5981 }
5982
5983 int
5984 ar6000_disconnect(struct ar6_softc *ar)
5985 {
5986 if ((ar->arConnected == true) || (ar->arConnectPending == true)) {
5987 wmi_disconnect_cmd(ar->arWmi);
5988 /*
5989 * Disconnect cmd is issued, clear connectPending.
5990 * arConnected will be cleard in disconnect_event notification.
5991 */
5992 ar->arConnectPending = false;
5993 }
5994
5995 return 0;
5996 }
5997
5998 int
5999 ar6000_ap_mode_get_wpa_ie(struct ar6_softc *ar, struct ieee80211req_wpaie *wpaie)
6000 {
6001 sta_t *conn = NULL;
6002 conn = ieee80211_find_conn(ar, wpaie->wpa_macaddr);
6003
6004 A_MEMZERO(wpaie->wpa_ie, IEEE80211_MAX_IE);
6005 A_MEMZERO(wpaie->rsn_ie, IEEE80211_MAX_IE);
6006
6007 if(conn) {
6008 memcpy(wpaie->wpa_ie, conn->wpa_ie, IEEE80211_MAX_IE);
6009 }
6010
6011 return 0;
6012 }
6013
6014 int
6015 is_iwioctl_allowed(u8 mode, u16 cmd)
6016 {
6017 if(cmd >= SIOCSIWCOMMIT && cmd <= SIOCGIWPOWER) {
6018 cmd -= SIOCSIWCOMMIT;
6019 if(sioctl_filter[cmd] == 0xFF) return 0;
6020 if(sioctl_filter[cmd] & mode) return 0;
6021 } else if(cmd >= SIOCIWFIRSTPRIV && cmd <= (SIOCIWFIRSTPRIV+30)) {
6022 cmd -= SIOCIWFIRSTPRIV;
6023 if(pioctl_filter[cmd] == 0xFF) return 0;
6024 if(pioctl_filter[cmd] & mode) return 0;
6025 } else {
6026 return A_ERROR;
6027 }
6028 return A_ENOTSUP;
6029 }
6030
6031 int
6032 is_xioctl_allowed(u8 mode, int cmd)
6033 {
6034 if(sizeof(xioctl_filter)-1 < cmd) {
6035 A_PRINTF("Filter for this cmd=%d not defined\n",cmd);
6036 return 0;
6037 }
6038 if(xioctl_filter[cmd] == 0xFF) return 0;
6039 if(xioctl_filter[cmd] & mode) return 0;
6040 return A_ERROR;
6041 }
6042
6043 #ifdef WAPI_ENABLE
6044 int
6045 ap_set_wapi_key(struct ar6_softc *ar, void *ikey)
6046 {
6047 struct ieee80211req_key *ik = (struct ieee80211req_key *)ikey;
6048 KEY_USAGE keyUsage = 0;
6049 int status;
6050
6051 if (memcmp(ik->ik_macaddr, bcast_mac, IEEE80211_ADDR_LEN) == 0) {
6052 keyUsage = GROUP_USAGE;
6053 } else {
6054 keyUsage = PAIRWISE_USAGE;
6055 }
6056 A_PRINTF("WAPI_KEY: Type:%d ix:%d mac:%02x:%02x len:%d\n",
6057 keyUsage, ik->ik_keyix, ik->ik_macaddr[4], ik->ik_macaddr[5],
6058 ik->ik_keylen);
6059
6060 status = wmi_addKey_cmd(ar->arWmi, ik->ik_keyix, WAPI_CRYPT, keyUsage,
6061 ik->ik_keylen, (u8 *)&ik->ik_keyrsc,
6062 ik->ik_keydata, KEY_OP_INIT_VAL, ik->ik_macaddr,
6063 SYNC_BOTH_WMIFLAG);
6064
6065 if (0 != status) {
6066 return -EIO;
6067 }
6068 return 0;
6069 }
6070 #endif
6071
6072 void ar6000_peer_event(
6073 void *context,
6074 u8 eventCode,
6075 u8 *macAddr)
6076 {
6077 u8 pos;
6078
6079 for (pos=0;pos<6;pos++)
6080 printk("%02x: ",*(macAddr+pos));
6081 printk("\n");
6082 }
6083
6084 #ifdef HTC_TEST_SEND_PKTS
6085 #define HTC_TEST_DUPLICATE 8
6086 static void DoHTCSendPktsTest(struct ar6_softc *ar, int MapNo, HTC_ENDPOINT_ID eid, struct sk_buff *dupskb)
6087 {
6088 struct ar_cookie *cookie;
6089 struct ar_cookie *cookieArray[HTC_TEST_DUPLICATE];
6090 struct sk_buff *new_skb;
6091 int i;
6092 int pkts = 0;
6093 struct htc_packet_queue pktQueue;
6094 EPPING_HEADER *eppingHdr;
6095
6096 eppingHdr = A_NETBUF_DATA(dupskb);
6097
6098 if (eppingHdr->Cmd_h == EPPING_CMD_NO_ECHO) {
6099 /* skip test if this is already a tx perf test */
6100 return;
6101 }
6102
6103 for (i = 0; i < HTC_TEST_DUPLICATE; i++,pkts++) {
6104 AR6000_SPIN_LOCK(&ar->arLock, 0);
6105 cookie = ar6000_alloc_cookie(ar);
6106 if (cookie != NULL) {
6107 ar->arTxPending[eid]++;
6108 ar->arTotalTxDataPending++;
6109 }
6110
6111 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
6112
6113 if (NULL == cookie) {
6114 break;
6115 }
6116
6117 new_skb = A_NETBUF_ALLOC(A_NETBUF_LEN(dupskb));
6118
6119 if (new_skb == NULL) {
6120 AR6000_SPIN_LOCK(&ar->arLock, 0);
6121 ar6000_free_cookie(ar,cookie);
6122 AR6000_SPIN_UNLOCK(&ar->arLock, 0);
6123 break;
6124 }
6125
6126 A_NETBUF_PUT_DATA(new_skb, A_NETBUF_DATA(dupskb), A_NETBUF_LEN(dupskb));
6127 cookie->arc_bp[0] = (unsigned long)new_skb;
6128 cookie->arc_bp[1] = MapNo;
6129 SET_HTC_PACKET_INFO_TX(&cookie->HtcPkt,
6130 cookie,
6131 A_NETBUF_DATA(new_skb),
6132 A_NETBUF_LEN(new_skb),
6133 eid,
6134 AR6K_DATA_PKT_TAG);
6135
6136 cookieArray[i] = cookie;
6137
6138 {
6139 EPPING_HEADER *pHdr = (EPPING_HEADER *)A_NETBUF_DATA(new_skb);
6140 pHdr->Cmd_h = EPPING_CMD_NO_ECHO; /* do not echo the packet */
6141 }
6142 }
6143
6144 if (pkts == 0) {
6145 return;
6146 }
6147
6148 INIT_HTC_PACKET_QUEUE(&pktQueue);
6149
6150 for (i = 0; i < pkts; i++) {
6151 HTC_PACKET_ENQUEUE(&pktQueue,&cookieArray[i]->HtcPkt);
6152 }
6153
6154 HTCSendPktsMultiple(ar->arHtcTarget, &pktQueue);
6155
6156 }
6157 #endif
6158
6159 #ifdef CONFIG_AP_VIRTUAL_ADAPTER_SUPPORT
6160 /*
6161 * Add support for adding and removing a virtual adapter for soft AP.
6162 * Some OS requires different adapters names for station and soft AP mode.
6163 * To support these requirement, create and destroy a netdevice instance
6164 * when the AP mode is operational. A full fledged support for virual device
6165 * is not implemented. Rather a virtual interface is created and is linked
6166 * with the existing physical device instance during the operation of the
6167 * AP mode.
6168 */
6169
6170 int ar6000_start_ap_interface(struct ar6_softc *ar)
6171 {
6172 struct ar_virtual_interface *arApDev;
6173
6174 /* Change net_device to point to AP instance */
6175 arApDev = (struct ar_virtual_interface *)ar->arApDev;
6176 ar->arNetDev = arApDev->arNetDev;
6177
6178 return 0;
6179 }
6180
6181 int ar6000_stop_ap_interface(struct ar6_softc *ar)
6182 {
6183 struct ar_virtual_interface *arApDev;
6184
6185 /* Change net_device to point to sta instance */
6186 arApDev = (struct ar_virtual_interface *)ar->arApDev;
6187 if (arApDev) {
6188 ar->arNetDev = arApDev->arStaNetDev;
6189 }
6190
6191 return 0;
6192 }
6193
6194
6195 int ar6000_create_ap_interface(struct ar6_softc *ar, char *ap_ifname)
6196 {
6197 struct net_device *dev;
6198 struct ar_virtual_interface *arApDev;
6199
6200 dev = alloc_etherdev(sizeof(struct ar_virtual_interface));
6201 if (dev == NULL) {
6202 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_create_ap_interface: can't alloc etherdev\n"));
6203 return A_ERROR;
6204 }
6205
6206 ether_setup(dev);
6207 init_netdev(dev, ap_ifname);
6208 dev->priv_flags &= ~IFF_TX_SKB_SHARING;
6209
6210 if (register_netdev(dev)) {
6211 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_create_ap_interface: register_netdev failed\n"));
6212 return A_ERROR;
6213 }
6214
6215 arApDev = netdev_priv(dev);
6216 arApDev->arDev = ar;
6217 arApDev->arNetDev = dev;
6218 arApDev->arStaNetDev = ar->arNetDev;
6219
6220 ar->arApDev = arApDev;
6221 arApNetDev = dev;
6222
6223 /* Copy the MAC address */
6224 memcpy(dev->dev_addr, ar->arNetDev->dev_addr, AR6000_ETH_ADDR_LEN);
6225
6226 return 0;
6227 }
6228
6229 int ar6000_add_ap_interface(struct ar6_softc *ar, char *ap_ifname)
6230 {
6231 /* Interface already added, need not proceed further */
6232 if (ar->arApDev != NULL) {
6233 AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_add_ap_interface: interface already present \n"));
6234 return 0;
6235 }
6236
6237 if (ar6000_create_ap_interface(ar, ap_ifname) != 0) {
6238 return A_ERROR;
6239 }
6240
6241 A_PRINTF("Add AP interface %s \n",ap_ifname);
6242
6243 return ar6000_start_ap_interface(ar);
6244 }
6245
6246 int ar6000_remove_ap_interface(struct ar6_softc *ar)
6247 {
6248 if (arApNetDev) {
6249 ar6000_stop_ap_interface(ar);
6250
6251 unregister_netdev(arApNetDev);
6252 free_netdev(apApNetDev);
6253
6254 A_PRINTF("Remove AP interface\n");
6255 }
6256 ar->arApDev = NULL;
6257 arApNetDev = NULL;
6258
6259
6260 return 0;
6261 }
6262 #endif /* CONFIG_AP_VIRTUAL_ADAPTER_SUPPORT */
6263
6264
6265 #ifdef EXPORT_HCI_BRIDGE_INTERFACE
6266 EXPORT_SYMBOL(setupbtdev);
6267 #endif