]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/staging/comedi/drivers/s626.c
Merge tag 'byteswap-for-linus-20121219' of git://git.infradead.org/users/dwmw2/byteswap
[mirror_ubuntu-hirsute-kernel.git] / drivers / staging / comedi / drivers / s626.c
1 /*
2 comedi/drivers/s626.c
3 Sensoray s626 Comedi driver
4
5 COMEDI - Linux Control and Measurement Device Interface
6 Copyright (C) 2000 David A. Schleef <ds@schleef.org>
7
8 Based on Sensoray Model 626 Linux driver Version 0.2
9 Copyright (C) 2002-2004 Sensoray Co., Inc.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24
25 */
26
27 /*
28 Driver: s626
29 Description: Sensoray 626 driver
30 Devices: [Sensoray] 626 (s626)
31 Authors: Gianluca Palli <gpalli@deis.unibo.it>,
32 Updated: Fri, 15 Feb 2008 10:28:42 +0000
33 Status: experimental
34
35 Configuration options: not applicable, uses PCI auto config
36
37 INSN_CONFIG instructions:
38 analog input:
39 none
40
41 analog output:
42 none
43
44 digital channel:
45 s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
46 supported configuration options:
47 INSN_CONFIG_DIO_QUERY
48 COMEDI_INPUT
49 COMEDI_OUTPUT
50
51 encoder:
52 Every channel must be configured before reading.
53
54 Example code
55
56 insn.insn=INSN_CONFIG; //configuration instruction
57 insn.n=1; //number of operation (must be 1)
58 insn.data=&initialvalue; //initial value loaded into encoder
59 //during configuration
60 insn.subdev=5; //encoder subdevice
61 insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
62 //to configure
63
64 comedi_do_insn(cf,&insn); //executing configuration
65 */
66
67 #include <linux/interrupt.h>
68 #include <linux/kernel.h>
69 #include <linux/types.h>
70
71 #include "../comedidev.h"
72
73 #include "comedi_fc.h"
74 #include "s626.h"
75
76 #define PCI_VENDOR_ID_S626 0x1131
77 #define PCI_DEVICE_ID_S626 0x7146
78 #define PCI_SUBVENDOR_ID_S626 0x6000
79 #define PCI_SUBDEVICE_ID_S626 0x0272
80
81 struct s626_private {
82 void __iomem *base_addr;
83 uint8_t ai_cmd_running; /* ai_cmd is running */
84 uint8_t ai_continous; /* continous acquisition */
85 int ai_sample_count; /* number of samples to acquire */
86 unsigned int ai_sample_timer;
87 /* time between samples in units of the timer */
88 int ai_convert_count; /* conversion counter */
89 unsigned int ai_convert_timer;
90 /* time between conversion in units of the timer */
91 uint16_t CounterIntEnabs;
92 /* Counter interrupt enable mask for MISC2 register. */
93 uint8_t AdcItems; /* Number of items in ADC poll list. */
94 struct bufferDMA RPSBuf; /* DMA buffer used to hold ADC (RPS1) program. */
95 struct bufferDMA ANABuf;
96 /* DMA buffer used to receive ADC data and hold DAC data. */
97 uint32_t *pDacWBuf;
98 /* Pointer to logical adrs of DMA buffer used to hold DAC data. */
99 uint16_t Dacpol; /* Image of DAC polarity register. */
100 uint8_t TrimSetpoint[12]; /* Images of TrimDAC setpoints */
101 /* Charge Enabled (0 or WRMISC2_CHARGE_ENABLE). */
102 uint32_t I2CAdrs;
103 /* I2C device address for onboard EEPROM (board rev dependent). */
104 /* short I2Cards; */
105 unsigned int ao_readback[S626_DAC_CHANNELS];
106 };
107
108 struct dio_private {
109 uint16_t RDDIn;
110 uint16_t WRDOut;
111 uint16_t RDEdgSel;
112 uint16_t WREdgSel;
113 uint16_t RDCapSel;
114 uint16_t WRCapSel;
115 uint16_t RDCapFlg;
116 uint16_t RDIntSel;
117 uint16_t WRIntSel;
118 };
119
120 static struct dio_private dio_private_A = {
121 .RDDIn = LP_RDDINA,
122 .WRDOut = LP_WRDOUTA,
123 .RDEdgSel = LP_RDEDGSELA,
124 .WREdgSel = LP_WREDGSELA,
125 .RDCapSel = LP_RDCAPSELA,
126 .WRCapSel = LP_WRCAPSELA,
127 .RDCapFlg = LP_RDCAPFLGA,
128 .RDIntSel = LP_RDINTSELA,
129 .WRIntSel = LP_WRINTSELA,
130 };
131
132 static struct dio_private dio_private_B = {
133 .RDDIn = LP_RDDINB,
134 .WRDOut = LP_WRDOUTB,
135 .RDEdgSel = LP_RDEDGSELB,
136 .WREdgSel = LP_WREDGSELB,
137 .RDCapSel = LP_RDCAPSELB,
138 .WRCapSel = LP_WRCAPSELB,
139 .RDCapFlg = LP_RDCAPFLGB,
140 .RDIntSel = LP_RDINTSELB,
141 .WRIntSel = LP_WRINTSELB,
142 };
143
144 static struct dio_private dio_private_C = {
145 .RDDIn = LP_RDDINC,
146 .WRDOut = LP_WRDOUTC,
147 .RDEdgSel = LP_RDEDGSELC,
148 .WREdgSel = LP_WREDGSELC,
149 .RDCapSel = LP_RDCAPSELC,
150 .WRCapSel = LP_WRCAPSELC,
151 .RDCapFlg = LP_RDCAPFLGC,
152 .RDIntSel = LP_RDINTSELC,
153 .WRIntSel = LP_WRINTSELC,
154 };
155
156 /* to group dio devices (48 bits mask and data are not allowed ???)
157 static struct dio_private *dio_private_word[]={
158 &dio_private_A,
159 &dio_private_B,
160 &dio_private_C,
161 };
162 */
163
164 #define diopriv ((struct dio_private *)s->private)
165
166 /* COUNTER OBJECT ------------------------------------------------ */
167 struct enc_private {
168 /* Pointers to functions that differ for A and B counters: */
169 uint16_t(*GetEnable) (struct comedi_device *dev, struct enc_private *); /* Return clock enable. */
170 uint16_t(*GetIntSrc) (struct comedi_device *dev, struct enc_private *); /* Return interrupt source. */
171 uint16_t(*GetLoadTrig) (struct comedi_device *dev, struct enc_private *); /* Return preload trigger source. */
172 uint16_t(*GetMode) (struct comedi_device *dev, struct enc_private *); /* Return standardized operating mode. */
173 void (*PulseIndex) (struct comedi_device *dev, struct enc_private *); /* Generate soft index strobe. */
174 void (*SetEnable) (struct comedi_device *dev, struct enc_private *, uint16_t enab); /* Program clock enable. */
175 void (*SetIntSrc) (struct comedi_device *dev, struct enc_private *, uint16_t IntSource); /* Program interrupt source. */
176 void (*SetLoadTrig) (struct comedi_device *dev, struct enc_private *, uint16_t Trig); /* Program preload trigger source. */
177 void (*SetMode) (struct comedi_device *dev, struct enc_private *, uint16_t Setup, uint16_t DisableIntSrc); /* Program standardized operating mode. */
178 void (*ResetCapFlags) (struct comedi_device *dev, struct enc_private *); /* Reset event capture flags. */
179
180 uint16_t MyCRA; /* Address of CRA register. */
181 uint16_t MyCRB; /* Address of CRB register. */
182 uint16_t MyLatchLsw; /* Address of Latch least-significant-word */
183 /* register. */
184 uint16_t MyEventBits[4]; /* Bit translations for IntSrc -->RDMISC2. */
185 };
186
187 #define encpriv ((struct enc_private *)(dev->subdevices+5)->private)
188
189 /* Counter overflow/index event flag masks for RDMISC2. */
190 #define INDXMASK(C) (1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 + 4)))
191 #define OVERMASK(C) (1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
192 #define EVBITS(C) { 0, OVERMASK(C), INDXMASK(C), OVERMASK(C) | INDXMASK(C) }
193
194 /* Translation table to map IntSrc into equivalent RDMISC2 event flag bits. */
195 /* static const uint16_t EventBits[][4] = { EVBITS(0), EVBITS(1), EVBITS(2), EVBITS(3), EVBITS(4), EVBITS(5) }; */
196
197 /* enab/disable a function or test status bit(s) that are accessed */
198 /* through Main Control Registers 1 or 2. */
199 #define MC_ENABLE(REGADRS, CTRLWORD) writel(((uint32_t)(CTRLWORD) << 16) | (uint32_t)(CTRLWORD), devpriv->base_addr+(REGADRS))
200
201 #define MC_DISABLE(REGADRS, CTRLWORD) writel((uint32_t)(CTRLWORD) << 16 , devpriv->base_addr+(REGADRS))
202
203 #define MC_TEST(REGADRS, CTRLWORD) ((readl(devpriv->base_addr+(REGADRS)) & CTRLWORD) != 0)
204
205 /* #define WR7146(REGARDS,CTRLWORD)
206 writel(CTRLWORD,(uint32_t)(devpriv->base_addr+(REGARDS))) */
207 #define WR7146(REGARDS, CTRLWORD) writel(CTRLWORD, devpriv->base_addr+(REGARDS))
208
209 /* #define RR7146(REGARDS)
210 readl((uint32_t)(devpriv->base_addr+(REGARDS))) */
211 #define RR7146(REGARDS) readl(devpriv->base_addr+(REGARDS))
212
213 #define BUGFIX_STREG(REGADRS) (REGADRS - 4)
214
215 /* Write a time slot control record to TSL2. */
216 #define VECTPORT(VECTNUM) (P_TSL2 + ((VECTNUM) << 2))
217 #define SETVECT(VECTNUM, VECTVAL) WR7146(VECTPORT(VECTNUM), (VECTVAL))
218
219 /* Code macros used for constructing I2C command bytes. */
220 #define I2C_B2(ATTR, VAL) (((ATTR) << 6) | ((VAL) << 24))
221 #define I2C_B1(ATTR, VAL) (((ATTR) << 4) | ((VAL) << 16))
222 #define I2C_B0(ATTR, VAL) (((ATTR) << 2) | ((VAL) << 8))
223
224 static const struct comedi_lrange s626_range_table = { 2, {
225 RANGE(-5, 5),
226 RANGE(-10, 10),
227 }
228 };
229
230 /* Execute a DEBI transfer. This must be called from within a */
231 /* critical section. */
232 static void DEBItransfer(struct comedi_device *dev)
233 {
234 struct s626_private *devpriv = dev->private;
235
236 /* Initiate upload of shadow RAM to DEBI control register. */
237 MC_ENABLE(P_MC2, MC2_UPLD_DEBI);
238
239 /* Wait for completion of upload from shadow RAM to DEBI control */
240 /* register. */
241 while (!MC_TEST(P_MC2, MC2_UPLD_DEBI))
242 ;
243
244 /* Wait until DEBI transfer is done. */
245 while (RR7146(P_PSR) & PSR_DEBI_S)
246 ;
247 }
248
249 /* Initialize the DEBI interface for all transfers. */
250
251 static uint16_t DEBIread(struct comedi_device *dev, uint16_t addr)
252 {
253 struct s626_private *devpriv = dev->private;
254 uint16_t retval;
255
256 /* Set up DEBI control register value in shadow RAM. */
257 WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
258
259 /* Execute the DEBI transfer. */
260 DEBItransfer(dev);
261
262 /* Fetch target register value. */
263 retval = (uint16_t) RR7146(P_DEBIAD);
264
265 /* Return register value. */
266 return retval;
267 }
268
269 /* Write a value to a gate array register. */
270 static void DEBIwrite(struct comedi_device *dev, uint16_t addr, uint16_t wdata)
271 {
272 struct s626_private *devpriv = dev->private;
273
274 /* Set up DEBI control register value in shadow RAM. */
275 WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
276 WR7146(P_DEBIAD, wdata);
277
278 /* Execute the DEBI transfer. */
279 DEBItransfer(dev);
280 }
281
282 /* Replace the specified bits in a gate array register. Imports: mask
283 * specifies bits that are to be preserved, wdata is new value to be
284 * or'd with the masked original.
285 */
286 static void DEBIreplace(struct comedi_device *dev, uint16_t addr, uint16_t mask,
287 uint16_t wdata)
288 {
289 struct s626_private *devpriv = dev->private;
290
291 /* Copy target gate array register into P_DEBIAD register. */
292 WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
293 /* Set up DEBI control reg value in shadow RAM. */
294 DEBItransfer(dev); /* Execute the DEBI Read transfer. */
295
296 /* Write back the modified image. */
297 WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
298 /* Set up DEBI control reg value in shadow RAM. */
299
300 WR7146(P_DEBIAD, wdata | ((uint16_t) RR7146(P_DEBIAD) & mask));
301 /* Modify the register image. */
302 DEBItransfer(dev); /* Execute the DEBI Write transfer. */
303 }
304
305 /* ************** EEPROM ACCESS FUNCTIONS ************** */
306
307 static uint32_t I2Chandshake(struct comedi_device *dev, uint32_t val)
308 {
309 struct s626_private *devpriv = dev->private;
310
311 /* Write I2C command to I2C Transfer Control shadow register. */
312 WR7146(P_I2CCTRL, val);
313
314 /* Upload I2C shadow registers into working registers and wait for */
315 /* upload confirmation. */
316
317 MC_ENABLE(P_MC2, MC2_UPLD_IIC);
318 while (!MC_TEST(P_MC2, MC2_UPLD_IIC))
319 ;
320
321 /* Wait until I2C bus transfer is finished or an error occurs. */
322 while ((RR7146(P_I2CCTRL) & (I2C_BUSY | I2C_ERR)) == I2C_BUSY)
323 ;
324
325 /* Return non-zero if I2C error occurred. */
326 return RR7146(P_I2CCTRL) & I2C_ERR;
327
328 }
329
330 /* Read uint8_t from EEPROM. */
331 static uint8_t I2Cread(struct comedi_device *dev, uint8_t addr)
332 {
333 struct s626_private *devpriv = dev->private;
334 uint8_t rtnval;
335
336 /* Send EEPROM target address. */
337 if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CW)
338 /* Byte2 = I2C command: write to I2C EEPROM device. */
339 | I2C_B1(I2C_ATTRSTOP, addr)
340 /* Byte1 = EEPROM internal target address. */
341 | I2C_B0(I2C_ATTRNOP, 0))) { /* Byte0 = Not sent. */
342 /* Abort function and declare error if handshake failed. */
343 return 0;
344 }
345 /* Execute EEPROM read. */
346 if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CR)
347
348 /* Byte2 = I2C */
349 /* command: read */
350 /* from I2C EEPROM */
351 /* device. */
352 |I2C_B1(I2C_ATTRSTOP, 0)
353
354 /* Byte1 receives */
355 /* uint8_t from */
356 /* EEPROM. */
357 |I2C_B0(I2C_ATTRNOP, 0))) { /* Byte0 = Not sent. */
358
359 /* Abort function and declare error if handshake failed. */
360 return 0;
361 }
362 /* Return copy of EEPROM value. */
363 rtnval = (uint8_t) (RR7146(P_I2CCTRL) >> 16);
364 return rtnval;
365 }
366
367 /* *********** DAC FUNCTIONS *********** */
368
369 /* Slot 0 base settings. */
370 #define VECT0 (XSD2 | RSD3 | SIB_A2)
371 /* Slot 0 always shifts in 0xFF and store it to FB_BUFFER2. */
372
373 /* TrimDac LogicalChan-to-PhysicalChan mapping table. */
374 static uint8_t trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
375
376 /* TrimDac LogicalChan-to-EepromAdrs mapping table. */
377 static uint8_t trimadrs[] = { 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 };
378
379 /* Private helper function: Transmit serial data to DAC via Audio
380 * channel 2. Assumes: (1) TSL2 slot records initialized, and (2)
381 * Dacpol contains valid target image.
382 */
383 static void SendDAC(struct comedi_device *dev, uint32_t val)
384 {
385 struct s626_private *devpriv = dev->private;
386
387 /* START THE SERIAL CLOCK RUNNING ------------- */
388
389 /* Assert DAC polarity control and enable gating of DAC serial clock
390 * and audio bit stream signals. At this point in time we must be
391 * assured of being in time slot 0. If we are not in slot 0, the
392 * serial clock and audio stream signals will be disabled; this is
393 * because the following DEBIwrite statement (which enables signals
394 * to be passed through the gate array) would execute before the
395 * trailing edge of WS1/WS3 (which turns off the signals), thus
396 * causing the signals to be inactive during the DAC write.
397 */
398 DEBIwrite(dev, LP_DACPOL, devpriv->Dacpol);
399
400 /* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
401
402 /* Copy DAC setpoint value to DAC's output DMA buffer. */
403
404 /* WR7146( (uint32_t)devpriv->pDacWBuf, val ); */
405 *devpriv->pDacWBuf = val;
406
407 /* enab the output DMA transfer. This will cause the DMAC to copy
408 * the DAC's data value to A2's output FIFO. The DMA transfer will
409 * then immediately terminate because the protection address is
410 * reached upon transfer of the first DWORD value.
411 */
412 MC_ENABLE(P_MC1, MC1_A2OUT);
413
414 /* While the DMA transfer is executing ... */
415
416 /* Reset Audio2 output FIFO's underflow flag (along with any other
417 * FIFO underflow/overflow flags). When set, this flag will
418 * indicate that we have emerged from slot 0.
419 */
420 WR7146(P_ISR, ISR_AFOU);
421
422 /* Wait for the DMA transfer to finish so that there will be data
423 * available in the FIFO when time slot 1 tries to transfer a DWORD
424 * from the FIFO to the output buffer register. We test for DMA
425 * Done by polling the DMAC enable flag; this flag is automatically
426 * cleared when the transfer has finished.
427 */
428 while ((RR7146(P_MC1) & MC1_A2OUT) != 0)
429 ;
430
431 /* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
432
433 /* FIFO data is now available, so we enable execution of time slots
434 * 1 and higher by clearing the EOS flag in slot 0. Note that SD3
435 * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
436 * detection.
437 */
438 SETVECT(0, XSD2 | RSD3 | SIB_A2);
439
440 /* Wait for slot 1 to execute to ensure that the Packet will be
441 * transmitted. This is detected by polling the Audio2 output FIFO
442 * underflow flag, which will be set when slot 1 execution has
443 * finished transferring the DAC's data DWORD from the output FIFO
444 * to the output buffer register.
445 */
446 while ((RR7146(P_SSR) & SSR_AF2_OUT) == 0)
447 ;
448
449 /* Set up to trap execution at slot 0 when the TSL sequencer cycles
450 * back to slot 0 after executing the EOS in slot 5. Also,
451 * simultaneously shift out and in the 0x00 that is ALWAYS the value
452 * stored in the last byte to be shifted out of the FIFO's DWORD
453 * buffer register.
454 */
455 SETVECT(0, XSD2 | XFIFO_2 | RSD2 | SIB_A2 | EOS);
456
457 /* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
458
459 /* Wait for the TSL to finish executing all time slots before
460 * exiting this function. We must do this so that the next DAC
461 * write doesn't start, thereby enabling clock/chip select signals:
462 *
463 * 1. Before the TSL sequence cycles back to slot 0, which disables
464 * the clock/cs signal gating and traps slot // list execution.
465 * we have not yet finished slot 5 then the clock/cs signals are
466 * still gated and we have not finished transmitting the stream.
467 *
468 * 2. While slots 2-5 are executing due to a late slot 0 trap. In
469 * this case, the slot sequence is currently repeating, but with
470 * clock/cs signals disabled. We must wait for slot 0 to trap
471 * execution before setting up the next DAC setpoint DMA transfer
472 * and enabling the clock/cs signals. To detect the end of slot 5,
473 * we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If
474 * the TSL has not yet finished executing slot 5 ...
475 */
476 if ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) {
477 /* The trap was set on time and we are still executing somewhere
478 * in slots 2-5, so we now wait for slot 0 to execute and trap
479 * TSL execution. This is detected when FB_BUFFER2 MSB changes
480 * from 0xFF to 0x00, which slot 0 causes to happen by shifting
481 * out/in on SD2 the 0x00 that is always referenced by slot 5.
482 */
483 while ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0)
484 ;
485 }
486 /* Either (1) we were too late setting the slot 0 trap; the TSL
487 * sequencer restarted slot 0 before we could set the EOS trap flag,
488 * or (2) we were not late and execution is now trapped at slot 0.
489 * In either case, we must now change slot 0 so that it will store
490 * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
491 * In order to do this, we reprogram slot 0 so that it will shift in
492 * SD3, which is driven only by a pull-up resistor.
493 */
494 SETVECT(0, RSD3 | SIB_A2 | EOS);
495
496 /* Wait for slot 0 to execute, at which time the TSL is setup for
497 * the next DAC write. This is detected when FB_BUFFER2 MSB changes
498 * from 0x00 to 0xFF.
499 */
500 while ((RR7146(P_FB_BUFFER2) & 0xFF000000) == 0)
501 ;
502 }
503
504 /* Private helper function: Write setpoint to an application DAC channel. */
505 static void SetDAC(struct comedi_device *dev, uint16_t chan, short dacdata)
506 {
507 struct s626_private *devpriv = dev->private;
508 register uint16_t signmask;
509 register uint32_t WSImage;
510
511 /* Adjust DAC data polarity and set up Polarity Control Register */
512 /* image. */
513 signmask = 1 << chan;
514 if (dacdata < 0) {
515 dacdata = -dacdata;
516 devpriv->Dacpol |= signmask;
517 } else
518 devpriv->Dacpol &= ~signmask;
519
520 /* Limit DAC setpoint value to valid range. */
521 if ((uint16_t) dacdata > 0x1FFF)
522 dacdata = 0x1FFF;
523
524 /* Set up TSL2 records (aka "vectors") for DAC update. Vectors V2
525 * and V3 transmit the setpoint to the target DAC. V4 and V5 send
526 * data to a non-existent TrimDac channel just to keep the clock
527 * running after sending data to the target DAC. This is necessary
528 * to eliminate the clock glitch that would otherwise occur at the
529 * end of the target DAC's serial data stream. When the sequence
530 * restarts at V0 (after executing V5), the gate array automatically
531 * disables gating for the DAC clock and all DAC chip selects.
532 */
533
534 WSImage = (chan & 2) ? WS1 : WS2;
535 /* Choose DAC chip select to be asserted. */
536 SETVECT(2, XSD2 | XFIFO_1 | WSImage);
537 /* Slot 2: Transmit high data byte to target DAC. */
538 SETVECT(3, XSD2 | XFIFO_0 | WSImage);
539 /* Slot 3: Transmit low data byte to target DAC. */
540 SETVECT(4, XSD2 | XFIFO_3 | WS3);
541 /* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
542 SETVECT(5, XSD2 | XFIFO_2 | WS3 | EOS);
543 /* Slot 5: running after writing target DAC's low data byte. */
544
545 /* Construct and transmit target DAC's serial packet:
546 * ( A10D DDDD ),( DDDD DDDD ),( 0x0F ),( 0x00 ) where A is chan<0>,
547 * and D<12:0> is the DAC setpoint. Append a WORD value (that writes
548 * to a non-existent TrimDac channel) that serves to keep the clock
549 * running after the packet has been sent to the target DAC.
550 */
551 SendDAC(dev, 0x0F000000
552 /* Continue clock after target DAC data (write to non-existent trimdac). */
553 | 0x00004000
554 /* Address the two main dual-DAC devices (TSL's chip select enables
555 * target device). */
556 | ((uint32_t) (chan & 1) << 15)
557 /* Address the DAC channel within the device. */
558 | (uint32_t) dacdata); /* Include DAC setpoint data. */
559
560 }
561
562 static void WriteTrimDAC(struct comedi_device *dev, uint8_t LogicalChan,
563 uint8_t DacData)
564 {
565 struct s626_private *devpriv = dev->private;
566 uint32_t chan;
567
568 /* Save the new setpoint in case the application needs to read it back later. */
569 devpriv->TrimSetpoint[LogicalChan] = (uint8_t) DacData;
570
571 /* Map logical channel number to physical channel number. */
572 chan = (uint32_t) trimchan[LogicalChan];
573
574 /* Set up TSL2 records for TrimDac write operation. All slots shift
575 * 0xFF in from pulled-up SD3 so that the end of the slot sequence
576 * can be detected.
577 */
578
579 SETVECT(2, XSD2 | XFIFO_1 | WS3);
580 /* Slot 2: Send high uint8_t to target TrimDac. */
581 SETVECT(3, XSD2 | XFIFO_0 | WS3);
582 /* Slot 3: Send low uint8_t to target TrimDac. */
583 SETVECT(4, XSD2 | XFIFO_3 | WS1);
584 /* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running. */
585 SETVECT(5, XSD2 | XFIFO_2 | WS1 | EOS);
586 /* Slot 5: Send NOP low uint8_t to DAC0. */
587
588 /* Construct and transmit target DAC's serial packet:
589 * ( 0000 AAAA ), ( DDDD DDDD ),( 0x00 ),( 0x00 ) where A<3:0> is the
590 * DAC channel's address, and D<7:0> is the DAC setpoint. Append a
591 * WORD value (that writes a channel 0 NOP command to a non-existent
592 * main DAC channel) that serves to keep the clock running after the
593 * packet has been sent to the target DAC.
594 */
595
596 /* Address the DAC channel within the trimdac device. */
597 SendDAC(dev, ((uint32_t) chan << 8)
598 | (uint32_t) DacData); /* Include DAC setpoint data. */
599 }
600
601 static void LoadTrimDACs(struct comedi_device *dev)
602 {
603 register uint8_t i;
604
605 /* Copy TrimDac setpoint values from EEPROM to TrimDacs. */
606 for (i = 0; i < ARRAY_SIZE(trimchan); i++)
607 WriteTrimDAC(dev, i, I2Cread(dev, trimadrs[i]));
608 }
609
610 /* ****** COUNTER FUNCTIONS ******* */
611 /* All counter functions address a specific counter by means of the
612 * "Counter" argument, which is a logical counter number. The Counter
613 * argument may have any of the following legal values: 0=0A, 1=1A,
614 * 2=2A, 3=0B, 4=1B, 5=2B.
615 */
616
617 /* Read a counter's output latch. */
618 static uint32_t ReadLatch(struct comedi_device *dev, struct enc_private *k)
619 {
620 register uint32_t value;
621
622 /* Latch counts and fetch LSW of latched counts value. */
623 value = (uint32_t) DEBIread(dev, k->MyLatchLsw);
624
625 /* Fetch MSW of latched counts and combine with LSW. */
626 value |= ((uint32_t) DEBIread(dev, k->MyLatchLsw + 2) << 16);
627
628 /* Return latched counts. */
629 return value;
630 }
631
632 /* Return/set a counter pair's latch trigger source. 0: On read
633 * access, 1: A index latches A, 2: B index latches B, 3: A overflow
634 * latches B.
635 */
636 static void SetLatchSource(struct comedi_device *dev, struct enc_private *k,
637 uint16_t value)
638 {
639 DEBIreplace(dev, k->MyCRB,
640 (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_LATCHSRC)),
641 (uint16_t) (value << CRBBIT_LATCHSRC));
642 }
643
644 /* Write value into counter preload register. */
645 static void Preload(struct comedi_device *dev, struct enc_private *k,
646 uint32_t value)
647 {
648 DEBIwrite(dev, (uint16_t) (k->MyLatchLsw), (uint16_t) value);
649 DEBIwrite(dev, (uint16_t) (k->MyLatchLsw + 2),
650 (uint16_t) (value >> 16));
651 }
652
653 static unsigned int s626_ai_reg_to_uint(int data)
654 {
655 unsigned int tempdata;
656
657 tempdata = (data >> 18);
658 if (tempdata & 0x2000)
659 tempdata &= 0x1fff;
660 else
661 tempdata += (1 << 13);
662
663 return tempdata;
664 }
665
666 /* static unsigned int s626_uint_to_reg(struct comedi_subdevice *s, int data){ */
667 /* return 0; */
668 /* } */
669
670 static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
671 {
672 unsigned int group;
673 unsigned int bitmask;
674 unsigned int status;
675
676 /* select dio bank */
677 group = chan / 16;
678 bitmask = 1 << (chan - (16 * group));
679
680 /* set channel to capture positive edge */
681 status = DEBIread(dev,
682 ((struct dio_private *)(dev->subdevices + 2 +
683 group)->private)->RDEdgSel);
684 DEBIwrite(dev,
685 ((struct dio_private *)(dev->subdevices + 2 +
686 group)->private)->WREdgSel,
687 bitmask | status);
688
689 /* enable interrupt on selected channel */
690 status = DEBIread(dev,
691 ((struct dio_private *)(dev->subdevices + 2 +
692 group)->private)->RDIntSel);
693 DEBIwrite(dev,
694 ((struct dio_private *)(dev->subdevices + 2 +
695 group)->private)->WRIntSel,
696 bitmask | status);
697
698 /* enable edge capture write command */
699 DEBIwrite(dev, LP_MISC1, MISC1_EDCAP);
700
701 /* enable edge capture on selected channel */
702 status = DEBIread(dev,
703 ((struct dio_private *)(dev->subdevices + 2 +
704 group)->private)->RDCapSel);
705 DEBIwrite(dev,
706 ((struct dio_private *)(dev->subdevices + 2 +
707 group)->private)->WRCapSel,
708 bitmask | status);
709
710 return 0;
711 }
712
713 static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group,
714 unsigned int mask)
715 {
716 /* disable edge capture write command */
717 DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
718
719 /* enable edge capture on selected channel */
720 DEBIwrite(dev,
721 ((struct dio_private *)(dev->subdevices + 2 +
722 group)->private)->WRCapSel, mask);
723
724 return 0;
725 }
726
727 static int s626_dio_clear_irq(struct comedi_device *dev)
728 {
729 unsigned int group;
730
731 /* disable edge capture write command */
732 DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
733
734 for (group = 0; group < S626_DIO_BANKS; group++) {
735 /* clear pending events and interrupt */
736 DEBIwrite(dev,
737 ((struct dio_private *)(dev->subdevices + 2 +
738 group)->private)->WRCapSel,
739 0xffff);
740 }
741
742 return 0;
743 }
744
745 static irqreturn_t s626_irq_handler(int irq, void *d)
746 {
747 struct comedi_device *dev = d;
748 struct s626_private *devpriv = dev->private;
749 struct comedi_subdevice *s;
750 struct comedi_cmd *cmd;
751 struct enc_private *k;
752 unsigned long flags;
753 int32_t *readaddr;
754 uint32_t irqtype, irqstatus;
755 int i = 0;
756 short tempdata;
757 uint8_t group;
758 uint16_t irqbit;
759
760 if (dev->attached == 0)
761 return IRQ_NONE;
762 /* lock to avoid race with comedi_poll */
763 spin_lock_irqsave(&dev->spinlock, flags);
764
765 /* save interrupt enable register state */
766 irqstatus = readl(devpriv->base_addr + P_IER);
767
768 /* read interrupt type */
769 irqtype = readl(devpriv->base_addr + P_ISR);
770
771 /* disable master interrupt */
772 writel(0, devpriv->base_addr + P_IER);
773
774 /* clear interrupt */
775 writel(irqtype, devpriv->base_addr + P_ISR);
776
777 switch (irqtype) {
778 case IRQ_RPS1: /* end_of_scan occurs */
779 /* manage ai subdevice */
780 s = dev->subdevices;
781 cmd = &(s->async->cmd);
782
783 /* Init ptr to DMA buffer that holds new ADC data. We skip the
784 * first uint16_t in the buffer because it contains junk data from
785 * the final ADC of the previous poll list scan.
786 */
787 readaddr = (int32_t *) devpriv->ANABuf.LogicalBase + 1;
788
789 /* get the data and hand it over to comedi */
790 for (i = 0; i < (s->async->cmd.chanlist_len); i++) {
791 /* Convert ADC data to 16-bit integer values and copy to application */
792 /* buffer. */
793 tempdata = s626_ai_reg_to_uint((int)*readaddr);
794 readaddr++;
795
796 /* put data into read buffer */
797 /* comedi_buf_put(s->async, tempdata); */
798 if (cfc_write_to_buffer(s, tempdata) == 0)
799 printk
800 ("s626_irq_handler: cfc_write_to_buffer error!\n");
801 }
802
803 /* end of scan occurs */
804 s->async->events |= COMEDI_CB_EOS;
805
806 if (!(devpriv->ai_continous))
807 devpriv->ai_sample_count--;
808 if (devpriv->ai_sample_count <= 0) {
809 devpriv->ai_cmd_running = 0;
810
811 /* Stop RPS program. */
812 MC_DISABLE(P_MC1, MC1_ERPS1);
813
814 /* send end of acquisition */
815 s->async->events |= COMEDI_CB_EOA;
816
817 /* disable master interrupt */
818 irqstatus = 0;
819 }
820
821 if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT)
822 s626_dio_set_irq(dev, cmd->scan_begin_arg);
823 /* tell comedi that data is there */
824 comedi_event(dev, s);
825 break;
826 case IRQ_GPIO3: /* check dio and conter interrupt */
827 /* manage ai subdevice */
828 s = dev->subdevices;
829 cmd = &(s->async->cmd);
830
831 /* s626_dio_clear_irq(dev); */
832
833 for (group = 0; group < S626_DIO_BANKS; group++) {
834 irqbit = 0;
835 /* read interrupt type */
836 irqbit = DEBIread(dev,
837 ((struct dio_private *)(dev->
838 subdevices +
839 2 +
840 group)->
841 private)->RDCapFlg);
842
843 /* check if interrupt is generated from dio channels */
844 if (irqbit) {
845 s626_dio_reset_irq(dev, group, irqbit);
846 if (devpriv->ai_cmd_running) {
847 /* check if interrupt is an ai acquisition start trigger */
848 if ((irqbit >> (cmd->start_arg -
849 (16 * group)))
850 == 1 && cmd->start_src == TRIG_EXT) {
851 /* Start executing the RPS program. */
852 MC_ENABLE(P_MC1, MC1_ERPS1);
853
854 if (cmd->scan_begin_src ==
855 TRIG_EXT) {
856 s626_dio_set_irq(dev,
857 cmd->scan_begin_arg);
858 }
859 }
860 if ((irqbit >> (cmd->scan_begin_arg -
861 (16 * group)))
862 == 1
863 && cmd->scan_begin_src ==
864 TRIG_EXT) {
865 /* Trigger ADC scan loop start by setting RPS Signal 0. */
866 MC_ENABLE(P_MC2, MC2_ADC_RPS);
867
868 if (cmd->convert_src ==
869 TRIG_EXT) {
870 devpriv->ai_convert_count
871 = cmd->chanlist_len;
872
873 s626_dio_set_irq(dev,
874 cmd->convert_arg);
875 }
876
877 if (cmd->convert_src ==
878 TRIG_TIMER) {
879 k = &encpriv[5];
880 devpriv->ai_convert_count
881 = cmd->chanlist_len;
882 k->SetEnable(dev, k,
883 CLKENAB_ALWAYS);
884 }
885 }
886 if ((irqbit >> (cmd->convert_arg -
887 (16 * group)))
888 == 1
889 && cmd->convert_src == TRIG_EXT) {
890 /* Trigger ADC scan loop start by setting RPS Signal 0. */
891 MC_ENABLE(P_MC2, MC2_ADC_RPS);
892
893 devpriv->ai_convert_count--;
894
895 if (devpriv->ai_convert_count >
896 0) {
897 s626_dio_set_irq(dev,
898 cmd->convert_arg);
899 }
900 }
901 }
902 break;
903 }
904 }
905
906 /* read interrupt type */
907 irqbit = DEBIread(dev, LP_RDMISC2);
908
909 /* check interrupt on counters */
910 if (irqbit & IRQ_COINT1A) {
911 k = &encpriv[0];
912
913 /* clear interrupt capture flag */
914 k->ResetCapFlags(dev, k);
915 }
916 if (irqbit & IRQ_COINT2A) {
917 k = &encpriv[1];
918
919 /* clear interrupt capture flag */
920 k->ResetCapFlags(dev, k);
921 }
922 if (irqbit & IRQ_COINT3A) {
923 k = &encpriv[2];
924
925 /* clear interrupt capture flag */
926 k->ResetCapFlags(dev, k);
927 }
928 if (irqbit & IRQ_COINT1B) {
929 k = &encpriv[3];
930
931 /* clear interrupt capture flag */
932 k->ResetCapFlags(dev, k);
933 }
934 if (irqbit & IRQ_COINT2B) {
935 k = &encpriv[4];
936
937 /* clear interrupt capture flag */
938 k->ResetCapFlags(dev, k);
939
940 if (devpriv->ai_convert_count > 0) {
941 devpriv->ai_convert_count--;
942 if (devpriv->ai_convert_count == 0)
943 k->SetEnable(dev, k, CLKENAB_INDEX);
944
945 if (cmd->convert_src == TRIG_TIMER) {
946 /* Trigger ADC scan loop start by setting RPS Signal 0. */
947 MC_ENABLE(P_MC2, MC2_ADC_RPS);
948 }
949 }
950 }
951 if (irqbit & IRQ_COINT3B) {
952 k = &encpriv[5];
953
954 /* clear interrupt capture flag */
955 k->ResetCapFlags(dev, k);
956
957 if (cmd->scan_begin_src == TRIG_TIMER) {
958 /* Trigger ADC scan loop start by setting RPS Signal 0. */
959 MC_ENABLE(P_MC2, MC2_ADC_RPS);
960 }
961
962 if (cmd->convert_src == TRIG_TIMER) {
963 k = &encpriv[4];
964 devpriv->ai_convert_count = cmd->chanlist_len;
965 k->SetEnable(dev, k, CLKENAB_ALWAYS);
966 }
967 }
968 }
969
970 /* enable interrupt */
971 writel(irqstatus, devpriv->base_addr + P_IER);
972
973 spin_unlock_irqrestore(&dev->spinlock, flags);
974 return IRQ_HANDLED;
975 }
976
977 /*
978 * this functions build the RPS program for hardware driven acquistion
979 */
980 static void ResetADC(struct comedi_device *dev, uint8_t *ppl)
981 {
982 struct s626_private *devpriv = dev->private;
983 register uint32_t *pRPS;
984 uint32_t JmpAdrs;
985 uint16_t i;
986 uint16_t n;
987 uint32_t LocalPPL;
988 struct comedi_cmd *cmd = &(dev->subdevices->async->cmd);
989
990 /* Stop RPS program in case it is currently running. */
991 MC_DISABLE(P_MC1, MC1_ERPS1);
992
993 /* Set starting logical address to write RPS commands. */
994 pRPS = (uint32_t *) devpriv->RPSBuf.LogicalBase;
995
996 /* Initialize RPS instruction pointer. */
997 WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
998
999 /* Construct RPS program in RPSBuf DMA buffer */
1000
1001 if (cmd != NULL && cmd->scan_begin_src != TRIG_FOLLOW) {
1002 /* Wait for Start trigger. */
1003 *pRPS++ = RPS_PAUSE | RPS_SIGADC;
1004 *pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
1005 }
1006
1007 /* SAA7146 BUG WORKAROUND Do a dummy DEBI Write. This is necessary
1008 * because the first RPS DEBI Write following a non-RPS DEBI write
1009 * seems to always fail. If we don't do this dummy write, the ADC
1010 * gain might not be set to the value required for the first slot in
1011 * the poll list; the ADC gain would instead remain unchanged from
1012 * the previously programmed value.
1013 */
1014 *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
1015 /* Write DEBI Write command and address to shadow RAM. */
1016
1017 *pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
1018 *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
1019 /* Write DEBI immediate data to shadow RAM: */
1020
1021 *pRPS++ = GSEL_BIPOLAR5V;
1022 /* arbitrary immediate data value. */
1023
1024 *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
1025 /* Reset "shadow RAM uploaded" flag. */
1026 *pRPS++ = RPS_UPLOAD | RPS_DEBI; /* Invoke shadow RAM upload. */
1027 *pRPS++ = RPS_PAUSE | RPS_DEBI; /* Wait for shadow upload to finish. */
1028
1029 /* Digitize all slots in the poll list. This is implemented as a
1030 * for loop to limit the slot count to 16 in case the application
1031 * forgot to set the EOPL flag in the final slot.
1032 */
1033 for (devpriv->AdcItems = 0; devpriv->AdcItems < 16; devpriv->AdcItems++) {
1034 /* Convert application's poll list item to private board class
1035 * format. Each app poll list item is an uint8_t with form
1036 * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
1037 * +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
1038 */
1039 LocalPPL =
1040 (*ppl << 8) | (*ppl & 0x10 ? GSEL_BIPOLAR5V :
1041 GSEL_BIPOLAR10V);
1042
1043 /* Switch ADC analog gain. */
1044 *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2); /* Write DEBI command */
1045 /* and address to */
1046 /* shadow RAM. */
1047 *pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
1048 *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2); /* Write DEBI */
1049 /* immediate data to */
1050 /* shadow RAM. */
1051 *pRPS++ = LocalPPL;
1052 *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI; /* Reset "shadow RAM uploaded" */
1053 /* flag. */
1054 *pRPS++ = RPS_UPLOAD | RPS_DEBI; /* Invoke shadow RAM upload. */
1055 *pRPS++ = RPS_PAUSE | RPS_DEBI; /* Wait for shadow upload to */
1056 /* finish. */
1057
1058 /* Select ADC analog input channel. */
1059 *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
1060 /* Write DEBI command and address to shadow RAM. */
1061 *pRPS++ = DEBI_CMD_WRWORD | LP_ISEL;
1062 *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
1063 /* Write DEBI immediate data to shadow RAM. */
1064 *pRPS++ = LocalPPL;
1065 *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
1066 /* Reset "shadow RAM uploaded" flag. */
1067
1068 *pRPS++ = RPS_UPLOAD | RPS_DEBI;
1069 /* Invoke shadow RAM upload. */
1070
1071 *pRPS++ = RPS_PAUSE | RPS_DEBI;
1072 /* Wait for shadow upload to finish. */
1073
1074 /* Delay at least 10 microseconds for analog input settling.
1075 * Instead of padding with NOPs, we use RPS_JUMP instructions
1076 * here; this allows us to produce a longer delay than is
1077 * possible with NOPs because each RPS_JUMP flushes the RPS'
1078 * instruction prefetch pipeline.
1079 */
1080 JmpAdrs =
1081 (uint32_t) devpriv->RPSBuf.PhysicalBase +
1082 (uint32_t) ((unsigned long)pRPS -
1083 (unsigned long)devpriv->RPSBuf.LogicalBase);
1084 for (i = 0; i < (10 * RPSCLK_PER_US / 2); i++) {
1085 JmpAdrs += 8; /* Repeat to implement time delay: */
1086 *pRPS++ = RPS_JUMP; /* Jump to next RPS instruction. */
1087 *pRPS++ = JmpAdrs;
1088 }
1089
1090 if (cmd != NULL && cmd->convert_src != TRIG_NOW) {
1091 /* Wait for Start trigger. */
1092 *pRPS++ = RPS_PAUSE | RPS_SIGADC;
1093 *pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
1094 }
1095 /* Start ADC by pulsing GPIO1. */
1096 *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* Begin ADC Start pulse. */
1097 *pRPS++ = GPIO_BASE | GPIO1_LO;
1098 *pRPS++ = RPS_NOP;
1099 /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1100 *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* End ADC Start pulse. */
1101 *pRPS++ = GPIO_BASE | GPIO1_HI;
1102
1103 /* Wait for ADC to complete (GPIO2 is asserted high when ADC not
1104 * busy) and for data from previous conversion to shift into FB
1105 * BUFFER 1 register.
1106 */
1107 *pRPS++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */
1108
1109 /* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
1110 *pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);
1111 *pRPS++ =
1112 (uint32_t) devpriv->ANABuf.PhysicalBase +
1113 (devpriv->AdcItems << 2);
1114
1115 /* If this slot's EndOfPollList flag is set, all channels have */
1116 /* now been processed. */
1117 if (*ppl++ & EOPL) {
1118 devpriv->AdcItems++; /* Adjust poll list item count. */
1119 break; /* Exit poll list processing loop. */
1120 }
1121 }
1122
1123 /* VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US. Allow the
1124 * ADC to stabilize for 2 microseconds before starting the final
1125 * (dummy) conversion. This delay is necessary to allow sufficient
1126 * time between last conversion finished and the start of the dummy
1127 * conversion. Without this delay, the last conversion's data value
1128 * is sometimes set to the previous conversion's data value.
1129 */
1130 for (n = 0; n < (2 * RPSCLK_PER_US); n++)
1131 *pRPS++ = RPS_NOP;
1132
1133 /* Start a dummy conversion to cause the data from the last
1134 * conversion of interest to be shifted in.
1135 */
1136 *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* Begin ADC Start pulse. */
1137 *pRPS++ = GPIO_BASE | GPIO1_LO;
1138 *pRPS++ = RPS_NOP;
1139 /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1140 *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* End ADC Start pulse. */
1141 *pRPS++ = GPIO_BASE | GPIO1_HI;
1142
1143 /* Wait for the data from the last conversion of interest to arrive
1144 * in FB BUFFER 1 register.
1145 */
1146 *pRPS++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */
1147
1148 /* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
1149 *pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2); /* */
1150 *pRPS++ =
1151 (uint32_t) devpriv->ANABuf.PhysicalBase + (devpriv->AdcItems << 2);
1152
1153 /* Indicate ADC scan loop is finished. */
1154 /* *pRPS++= RPS_CLRSIGNAL | RPS_SIGADC ; // Signal ReadADC() that scan is done. */
1155
1156 /* invoke interrupt */
1157 if (devpriv->ai_cmd_running == 1) {
1158 *pRPS++ = RPS_IRQ;
1159 }
1160 /* Restart RPS program at its beginning. */
1161 *pRPS++ = RPS_JUMP; /* Branch to start of RPS program. */
1162 *pRPS++ = (uint32_t) devpriv->RPSBuf.PhysicalBase;
1163
1164 /* End of RPS program build */
1165 }
1166
1167 /* TO COMPLETE, IF NECESSARY */
1168 static int s626_ai_insn_config(struct comedi_device *dev,
1169 struct comedi_subdevice *s,
1170 struct comedi_insn *insn, unsigned int *data)
1171 {
1172
1173 return -EINVAL;
1174 }
1175
1176 /* static int s626_ai_rinsn(struct comedi_device *dev,struct comedi_subdevice *s,struct comedi_insn *insn,unsigned int *data) */
1177 /* { */
1178 /* struct s626_private *devpriv = dev->private; */
1179 /* register uint8_t i; */
1180 /* register int32_t *readaddr; */
1181
1182 /* Trigger ADC scan loop start by setting RPS Signal 0. */
1183 /* MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
1184
1185 /* Wait until ADC scan loop is finished (RPS Signal 0 reset). */
1186 /* while ( MC_TEST( P_MC2, MC2_ADC_RPS ) ); */
1187
1188 /* Init ptr to DMA buffer that holds new ADC data. We skip the
1189 * first uint16_t in the buffer because it contains junk data from
1190 * the final ADC of the previous poll list scan.
1191 */
1192 /* readaddr = (uint32_t *)devpriv->ANABuf.LogicalBase + 1; */
1193
1194 /* Convert ADC data to 16-bit integer values and copy to application buffer. */
1195 /* for ( i = 0; i < devpriv->AdcItems; i++ ) { */
1196 /* *data = s626_ai_reg_to_uint( *readaddr++ ); */
1197 /* data++; */
1198 /* } */
1199
1200 /* return i; */
1201 /* } */
1202
1203 static int s626_ai_insn_read(struct comedi_device *dev,
1204 struct comedi_subdevice *s,
1205 struct comedi_insn *insn, unsigned int *data)
1206 {
1207 struct s626_private *devpriv = dev->private;
1208 uint16_t chan = CR_CHAN(insn->chanspec);
1209 uint16_t range = CR_RANGE(insn->chanspec);
1210 uint16_t AdcSpec = 0;
1211 uint32_t GpioImage;
1212 int n;
1213
1214 /* interrupt call test */
1215 /* writel(IRQ_GPIO3,devpriv->base_addr+P_PSR); */
1216 /* Writing a logical 1 into any of the RPS_PSR bits causes the
1217 * corresponding interrupt to be generated if enabled
1218 */
1219
1220 /* Convert application's ADC specification into form
1221 * appropriate for register programming.
1222 */
1223 if (range == 0)
1224 AdcSpec = (chan << 8) | (GSEL_BIPOLAR5V);
1225 else
1226 AdcSpec = (chan << 8) | (GSEL_BIPOLAR10V);
1227
1228 /* Switch ADC analog gain. */
1229 DEBIwrite(dev, LP_GSEL, AdcSpec); /* Set gain. */
1230
1231 /* Select ADC analog input channel. */
1232 DEBIwrite(dev, LP_ISEL, AdcSpec); /* Select channel. */
1233
1234 for (n = 0; n < insn->n; n++) {
1235
1236 /* Delay 10 microseconds for analog input settling. */
1237 udelay(10);
1238
1239 /* Start ADC by pulsing GPIO1 low. */
1240 GpioImage = RR7146(P_GPIO);
1241 /* Assert ADC Start command */
1242 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1243 /* and stretch it out. */
1244 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1245 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1246 /* Negate ADC Start command. */
1247 WR7146(P_GPIO, GpioImage | GPIO1_HI);
1248
1249 /* Wait for ADC to complete (GPIO2 is asserted high when */
1250 /* ADC not busy) and for data from previous conversion to */
1251 /* shift into FB BUFFER 1 register. */
1252
1253 /* Wait for ADC done. */
1254 while (!(RR7146(P_PSR) & PSR_GPIO2))
1255 ;
1256
1257 /* Fetch ADC data. */
1258 if (n != 0)
1259 data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
1260
1261 /* Allow the ADC to stabilize for 4 microseconds before
1262 * starting the next (final) conversion. This delay is
1263 * necessary to allow sufficient time between last
1264 * conversion finished and the start of the next
1265 * conversion. Without this delay, the last conversion's
1266 * data value is sometimes set to the previous
1267 * conversion's data value.
1268 */
1269 udelay(4);
1270 }
1271
1272 /* Start a dummy conversion to cause the data from the
1273 * previous conversion to be shifted in. */
1274 GpioImage = RR7146(P_GPIO);
1275
1276 /* Assert ADC Start command */
1277 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1278 /* and stretch it out. */
1279 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1280 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1281 /* Negate ADC Start command. */
1282 WR7146(P_GPIO, GpioImage | GPIO1_HI);
1283
1284 /* Wait for the data to arrive in FB BUFFER 1 register. */
1285
1286 /* Wait for ADC done. */
1287 while (!(RR7146(P_PSR) & PSR_GPIO2))
1288 ;
1289
1290 /* Fetch ADC data from audio interface's input shift register. */
1291
1292 /* Fetch ADC data. */
1293 if (n != 0)
1294 data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
1295
1296 return n;
1297 }
1298
1299 static int s626_ai_load_polllist(uint8_t *ppl, struct comedi_cmd *cmd)
1300 {
1301
1302 int n;
1303
1304 for (n = 0; n < cmd->chanlist_len; n++) {
1305 if (CR_RANGE((cmd->chanlist)[n]) == 0)
1306 ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_5V);
1307 else
1308 ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_10V);
1309 }
1310 if (n != 0)
1311 ppl[n - 1] |= EOPL;
1312
1313 return n;
1314 }
1315
1316 static int s626_ai_inttrig(struct comedi_device *dev,
1317 struct comedi_subdevice *s, unsigned int trignum)
1318 {
1319 struct s626_private *devpriv = dev->private;
1320
1321 if (trignum != 0)
1322 return -EINVAL;
1323
1324 /* Start executing the RPS program. */
1325 MC_ENABLE(P_MC1, MC1_ERPS1);
1326
1327 s->async->inttrig = NULL;
1328
1329 return 1;
1330 }
1331
1332 /* This function doesn't require a particular form, this is just what
1333 * happens to be used in some of the drivers. It should convert ns
1334 * nanoseconds to a counter value suitable for programming the device.
1335 * Also, it should adjust ns so that it cooresponds to the actual time
1336 * that the device will use. */
1337 static int s626_ns_to_timer(int *nanosec, int round_mode)
1338 {
1339 int divider, base;
1340
1341 base = 500; /* 2MHz internal clock */
1342
1343 switch (round_mode) {
1344 case TRIG_ROUND_NEAREST:
1345 default:
1346 divider = (*nanosec + base / 2) / base;
1347 break;
1348 case TRIG_ROUND_DOWN:
1349 divider = (*nanosec) / base;
1350 break;
1351 case TRIG_ROUND_UP:
1352 divider = (*nanosec + base - 1) / base;
1353 break;
1354 }
1355
1356 *nanosec = base * divider;
1357 return divider - 1;
1358 }
1359
1360 static void s626_timer_load(struct comedi_device *dev, struct enc_private *k,
1361 int tick)
1362 {
1363 uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
1364 /* index. */
1365 (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
1366 (CLKSRC_TIMER << BF_CLKSRC) | /* Operating mode is Timer. */
1367 (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
1368 (CNTDIR_DOWN << BF_CLKPOL) | /* Count direction is Down. */
1369 (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
1370 (CLKENAB_INDEX << BF_CLKENAB);
1371 uint16_t valueSrclatch = LATCHSRC_A_INDXA;
1372 /* uint16_t enab=CLKENAB_ALWAYS; */
1373
1374 k->SetMode(dev, k, Setup, FALSE);
1375
1376 /* Set the preload register */
1377 Preload(dev, k, tick);
1378
1379 /* Software index pulse forces the preload register to load */
1380 /* into the counter */
1381 k->SetLoadTrig(dev, k, 0);
1382 k->PulseIndex(dev, k);
1383
1384 /* set reload on counter overflow */
1385 k->SetLoadTrig(dev, k, 1);
1386
1387 /* set interrupt on overflow */
1388 k->SetIntSrc(dev, k, INTSRC_OVER);
1389
1390 SetLatchSource(dev, k, valueSrclatch);
1391 /* k->SetEnable(dev,k,(uint16_t)(enab != 0)); */
1392 }
1393
1394 /* TO COMPLETE */
1395 static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
1396 {
1397 struct s626_private *devpriv = dev->private;
1398 uint8_t ppl[16];
1399 struct comedi_cmd *cmd = &s->async->cmd;
1400 struct enc_private *k;
1401 int tick;
1402
1403 if (devpriv->ai_cmd_running) {
1404 printk(KERN_ERR "s626_ai_cmd: Another ai_cmd is running %d\n",
1405 dev->minor);
1406 return -EBUSY;
1407 }
1408 /* disable interrupt */
1409 writel(0, devpriv->base_addr + P_IER);
1410
1411 /* clear interrupt request */
1412 writel(IRQ_RPS1 | IRQ_GPIO3, devpriv->base_addr + P_ISR);
1413
1414 /* clear any pending interrupt */
1415 s626_dio_clear_irq(dev);
1416 /* s626_enc_clear_irq(dev); */
1417
1418 /* reset ai_cmd_running flag */
1419 devpriv->ai_cmd_running = 0;
1420
1421 /* test if cmd is valid */
1422 if (cmd == NULL)
1423 return -EINVAL;
1424
1425 if (dev->irq == 0) {
1426 comedi_error(dev,
1427 "s626_ai_cmd: cannot run command without an irq");
1428 return -EIO;
1429 }
1430
1431 s626_ai_load_polllist(ppl, cmd);
1432 devpriv->ai_cmd_running = 1;
1433 devpriv->ai_convert_count = 0;
1434
1435 switch (cmd->scan_begin_src) {
1436 case TRIG_FOLLOW:
1437 break;
1438 case TRIG_TIMER:
1439 /* set a conter to generate adc trigger at scan_begin_arg interval */
1440 k = &encpriv[5];
1441 tick = s626_ns_to_timer((int *)&cmd->scan_begin_arg,
1442 cmd->flags & TRIG_ROUND_MASK);
1443
1444 /* load timer value and enable interrupt */
1445 s626_timer_load(dev, k, tick);
1446 k->SetEnable(dev, k, CLKENAB_ALWAYS);
1447 break;
1448 case TRIG_EXT:
1449 /* set the digital line and interrupt for scan trigger */
1450 if (cmd->start_src != TRIG_EXT)
1451 s626_dio_set_irq(dev, cmd->scan_begin_arg);
1452 break;
1453 }
1454
1455 switch (cmd->convert_src) {
1456 case TRIG_NOW:
1457 break;
1458 case TRIG_TIMER:
1459 /* set a conter to generate adc trigger at convert_arg interval */
1460 k = &encpriv[4];
1461 tick = s626_ns_to_timer((int *)&cmd->convert_arg,
1462 cmd->flags & TRIG_ROUND_MASK);
1463
1464 /* load timer value and enable interrupt */
1465 s626_timer_load(dev, k, tick);
1466 k->SetEnable(dev, k, CLKENAB_INDEX);
1467 break;
1468 case TRIG_EXT:
1469 /* set the digital line and interrupt for convert trigger */
1470 if (cmd->scan_begin_src != TRIG_EXT
1471 && cmd->start_src == TRIG_EXT)
1472 s626_dio_set_irq(dev, cmd->convert_arg);
1473 break;
1474 }
1475
1476 switch (cmd->stop_src) {
1477 case TRIG_COUNT:
1478 /* data arrives as one packet */
1479 devpriv->ai_sample_count = cmd->stop_arg;
1480 devpriv->ai_continous = 0;
1481 break;
1482 case TRIG_NONE:
1483 /* continous acquisition */
1484 devpriv->ai_continous = 1;
1485 devpriv->ai_sample_count = 0;
1486 break;
1487 }
1488
1489 ResetADC(dev, ppl);
1490
1491 switch (cmd->start_src) {
1492 case TRIG_NOW:
1493 /* Trigger ADC scan loop start by setting RPS Signal 0. */
1494 /* MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
1495
1496 /* Start executing the RPS program. */
1497 MC_ENABLE(P_MC1, MC1_ERPS1);
1498
1499 s->async->inttrig = NULL;
1500 break;
1501 case TRIG_EXT:
1502 /* configure DIO channel for acquisition trigger */
1503 s626_dio_set_irq(dev, cmd->start_arg);
1504
1505 s->async->inttrig = NULL;
1506 break;
1507 case TRIG_INT:
1508 s->async->inttrig = s626_ai_inttrig;
1509 break;
1510 }
1511
1512 /* enable interrupt */
1513 writel(IRQ_GPIO3 | IRQ_RPS1, devpriv->base_addr + P_IER);
1514
1515 return 0;
1516 }
1517
1518 static int s626_ai_cmdtest(struct comedi_device *dev,
1519 struct comedi_subdevice *s, struct comedi_cmd *cmd)
1520 {
1521 int err = 0;
1522 int tmp;
1523
1524 /* Step 1 : check if triggers are trivially valid */
1525
1526 err |= cfc_check_trigger_src(&cmd->start_src,
1527 TRIG_NOW | TRIG_INT | TRIG_EXT);
1528 err |= cfc_check_trigger_src(&cmd->scan_begin_src,
1529 TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW);
1530 err |= cfc_check_trigger_src(&cmd->convert_src,
1531 TRIG_TIMER | TRIG_EXT | TRIG_NOW);
1532 err |= cfc_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
1533 err |= cfc_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);
1534
1535 if (err)
1536 return 1;
1537
1538 /* Step 2a : make sure trigger sources are unique */
1539
1540 err |= cfc_check_trigger_is_unique(cmd->start_src);
1541 err |= cfc_check_trigger_is_unique(cmd->scan_begin_src);
1542 err |= cfc_check_trigger_is_unique(cmd->convert_src);
1543 err |= cfc_check_trigger_is_unique(cmd->stop_src);
1544
1545 /* Step 2b : and mutually compatible */
1546
1547 if (err)
1548 return 2;
1549
1550 /* step 3: make sure arguments are trivially compatible */
1551
1552 if (cmd->start_src != TRIG_EXT)
1553 err |= cfc_check_trigger_arg_is(&cmd->start_arg, 0);
1554 if (cmd->start_src == TRIG_EXT)
1555 err |= cfc_check_trigger_arg_max(&cmd->start_arg, 39);
1556
1557 if (cmd->scan_begin_src == TRIG_EXT)
1558 err |= cfc_check_trigger_arg_max(&cmd->scan_begin_arg, 39);
1559
1560 if (cmd->convert_src == TRIG_EXT)
1561 err |= cfc_check_trigger_arg_max(&cmd->convert_arg, 39);
1562
1563 #define MAX_SPEED 200000 /* in nanoseconds */
1564 #define MIN_SPEED 2000000000 /* in nanoseconds */
1565
1566 if (cmd->scan_begin_src == TRIG_TIMER) {
1567 err |= cfc_check_trigger_arg_min(&cmd->scan_begin_arg,
1568 MAX_SPEED);
1569 err |= cfc_check_trigger_arg_max(&cmd->scan_begin_arg,
1570 MIN_SPEED);
1571 } else {
1572 /* external trigger */
1573 /* should be level/edge, hi/lo specification here */
1574 /* should specify multiple external triggers */
1575 /* err |= cfc_check_trigger_arg_max(&cmd->scan_begin_arg, 9); */
1576 }
1577 if (cmd->convert_src == TRIG_TIMER) {
1578 err |= cfc_check_trigger_arg_min(&cmd->convert_arg, MAX_SPEED);
1579 err |= cfc_check_trigger_arg_max(&cmd->convert_arg, MIN_SPEED);
1580 } else {
1581 /* external trigger */
1582 /* see above */
1583 /* err |= cfc_check_trigger_arg_max(&cmd->scan_begin_arg, 9); */
1584 }
1585
1586 err |= cfc_check_trigger_arg_is(&cmd->scan_end_arg, cmd->chanlist_len);
1587
1588 if (cmd->stop_src == TRIG_COUNT)
1589 err |= cfc_check_trigger_arg_max(&cmd->stop_arg, 0x00ffffff);
1590 else /* TRIG_NONE */
1591 err |= cfc_check_trigger_arg_is(&cmd->stop_arg, 0);
1592
1593 if (err)
1594 return 3;
1595
1596 /* step 4: fix up any arguments */
1597
1598 if (cmd->scan_begin_src == TRIG_TIMER) {
1599 tmp = cmd->scan_begin_arg;
1600 s626_ns_to_timer((int *)&cmd->scan_begin_arg,
1601 cmd->flags & TRIG_ROUND_MASK);
1602 if (tmp != cmd->scan_begin_arg)
1603 err++;
1604 }
1605 if (cmd->convert_src == TRIG_TIMER) {
1606 tmp = cmd->convert_arg;
1607 s626_ns_to_timer((int *)&cmd->convert_arg,
1608 cmd->flags & TRIG_ROUND_MASK);
1609 if (tmp != cmd->convert_arg)
1610 err++;
1611 if (cmd->scan_begin_src == TRIG_TIMER &&
1612 cmd->scan_begin_arg <
1613 cmd->convert_arg * cmd->scan_end_arg) {
1614 cmd->scan_begin_arg =
1615 cmd->convert_arg * cmd->scan_end_arg;
1616 err++;
1617 }
1618 }
1619
1620 if (err)
1621 return 4;
1622
1623 return 0;
1624 }
1625
1626 static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
1627 {
1628 struct s626_private *devpriv = dev->private;
1629
1630 /* Stop RPS program in case it is currently running. */
1631 MC_DISABLE(P_MC1, MC1_ERPS1);
1632
1633 /* disable master interrupt */
1634 writel(0, devpriv->base_addr + P_IER);
1635
1636 devpriv->ai_cmd_running = 0;
1637
1638 return 0;
1639 }
1640
1641 static int s626_ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s,
1642 struct comedi_insn *insn, unsigned int *data)
1643 {
1644 struct s626_private *devpriv = dev->private;
1645 int i;
1646 uint16_t chan = CR_CHAN(insn->chanspec);
1647 int16_t dacdata;
1648
1649 for (i = 0; i < insn->n; i++) {
1650 dacdata = (int16_t) data[i];
1651 devpriv->ao_readback[CR_CHAN(insn->chanspec)] = data[i];
1652 dacdata -= (0x1fff);
1653
1654 SetDAC(dev, chan, dacdata);
1655 }
1656
1657 return i;
1658 }
1659
1660 static int s626_ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
1661 struct comedi_insn *insn, unsigned int *data)
1662 {
1663 struct s626_private *devpriv = dev->private;
1664 int i;
1665
1666 for (i = 0; i < insn->n; i++)
1667 data[i] = devpriv->ao_readback[CR_CHAN(insn->chanspec)];
1668
1669 return i;
1670 }
1671
1672 /* *************** DIGITAL I/O FUNCTIONS ***************
1673 * All DIO functions address a group of DIO channels by means of
1674 * "group" argument. group may be 0, 1 or 2, which correspond to DIO
1675 * ports A, B and C, respectively.
1676 */
1677
1678 static void s626_dio_init(struct comedi_device *dev)
1679 {
1680 uint16_t group;
1681 struct comedi_subdevice *s;
1682
1683 /* Prepare to treat writes to WRCapSel as capture disables. */
1684 DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
1685
1686 /* For each group of sixteen channels ... */
1687 for (group = 0; group < S626_DIO_BANKS; group++) {
1688 s = dev->subdevices + 2 + group;
1689 DEBIwrite(dev, diopriv->WRIntSel, 0); /* Disable all interrupts. */
1690 DEBIwrite(dev, diopriv->WRCapSel, 0xFFFF); /* Disable all event */
1691 /* captures. */
1692 DEBIwrite(dev, diopriv->WREdgSel, 0); /* Init all DIOs to */
1693 /* default edge */
1694 /* polarity. */
1695 DEBIwrite(dev, diopriv->WRDOut, 0); /* Program all outputs */
1696 /* to inactive state. */
1697 }
1698 }
1699
1700 /* DIO devices are slightly special. Although it is possible to
1701 * implement the insn_read/insn_write interface, it is much more
1702 * useful to applications if you implement the insn_bits interface.
1703 * This allows packed reading/writing of the DIO channels. The comedi
1704 * core can convert between insn_bits and insn_read/write */
1705
1706 static int s626_dio_insn_bits(struct comedi_device *dev,
1707 struct comedi_subdevice *s,
1708 struct comedi_insn *insn, unsigned int *data)
1709 {
1710 /*
1711 * The insn data consists of a mask in data[0] and the new data in
1712 * data[1]. The mask defines which bits we are concerning about.
1713 * The new data must be anded with the mask. Each channel
1714 * corresponds to a bit.
1715 */
1716 if (data[0]) {
1717 /* Check if requested ports are configured for output */
1718 if ((s->io_bits & data[0]) != data[0])
1719 return -EIO;
1720
1721 s->state &= ~data[0];
1722 s->state |= data[0] & data[1];
1723
1724 /* Write out the new digital output lines */
1725
1726 DEBIwrite(dev, diopriv->WRDOut, s->state);
1727 }
1728 data[1] = DEBIread(dev, diopriv->RDDIn);
1729
1730 return insn->n;
1731 }
1732
1733 static int s626_dio_insn_config(struct comedi_device *dev,
1734 struct comedi_subdevice *s,
1735 struct comedi_insn *insn, unsigned int *data)
1736 {
1737
1738 switch (data[0]) {
1739 case INSN_CONFIG_DIO_QUERY:
1740 data[1] =
1741 (s->
1742 io_bits & (1 << CR_CHAN(insn->chanspec))) ? COMEDI_OUTPUT :
1743 COMEDI_INPUT;
1744 return insn->n;
1745 break;
1746 case COMEDI_INPUT:
1747 s->io_bits &= ~(1 << CR_CHAN(insn->chanspec));
1748 break;
1749 case COMEDI_OUTPUT:
1750 s->io_bits |= 1 << CR_CHAN(insn->chanspec);
1751 break;
1752 default:
1753 return -EINVAL;
1754 break;
1755 }
1756 DEBIwrite(dev, diopriv->WRDOut, s->io_bits);
1757
1758 return 1;
1759 }
1760
1761 /* Now this function initializes the value of the counter (data[0])
1762 and set the subdevice. To complete with trigger and interrupt
1763 configuration */
1764 /* FIXME: data[0] is supposed to be an INSN_CONFIG_xxx constant indicating
1765 * what is being configured, but this function appears to be using data[0]
1766 * as a variable. */
1767 static int s626_enc_insn_config(struct comedi_device *dev,
1768 struct comedi_subdevice *s,
1769 struct comedi_insn *insn, unsigned int *data)
1770 {
1771 uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
1772 /* index. */
1773 (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
1774 (CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is Counter. */
1775 (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
1776 /* ( CNTDIR_UP << BF_CLKPOL ) | // Count direction is Down. */
1777 (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
1778 (CLKENAB_INDEX << BF_CLKENAB);
1779 /* uint16_t DisableIntSrc=TRUE; */
1780 /* uint32_t Preloadvalue; //Counter initial value */
1781 uint16_t valueSrclatch = LATCHSRC_AB_READ;
1782 uint16_t enab = CLKENAB_ALWAYS;
1783 struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
1784
1785 /* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
1786
1787 k->SetMode(dev, k, Setup, TRUE);
1788 Preload(dev, k, data[0]);
1789 k->PulseIndex(dev, k);
1790 SetLatchSource(dev, k, valueSrclatch);
1791 k->SetEnable(dev, k, (uint16_t) (enab != 0));
1792
1793 return insn->n;
1794 }
1795
1796 static int s626_enc_insn_read(struct comedi_device *dev,
1797 struct comedi_subdevice *s,
1798 struct comedi_insn *insn, unsigned int *data)
1799 {
1800
1801 int n;
1802 struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
1803
1804 for (n = 0; n < insn->n; n++)
1805 data[n] = ReadLatch(dev, k);
1806
1807 return n;
1808 }
1809
1810 static int s626_enc_insn_write(struct comedi_device *dev,
1811 struct comedi_subdevice *s,
1812 struct comedi_insn *insn, unsigned int *data)
1813 {
1814
1815 struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
1816
1817 /* Set the preload register */
1818 Preload(dev, k, data[0]);
1819
1820 /* Software index pulse forces the preload register to load */
1821 /* into the counter */
1822 k->SetLoadTrig(dev, k, 0);
1823 k->PulseIndex(dev, k);
1824 k->SetLoadTrig(dev, k, 2);
1825
1826 return 1;
1827 }
1828
1829 static void WriteMISC2(struct comedi_device *dev, uint16_t NewImage)
1830 {
1831 DEBIwrite(dev, LP_MISC1, MISC1_WENABLE); /* enab writes to */
1832 /* MISC2 register. */
1833 DEBIwrite(dev, LP_WRMISC2, NewImage); /* Write new image to MISC2. */
1834 DEBIwrite(dev, LP_MISC1, MISC1_WDISABLE); /* Disable writes to MISC2. */
1835 }
1836
1837 static void CloseDMAB(struct comedi_device *dev, struct bufferDMA *pdma,
1838 size_t bsize)
1839 {
1840 struct pci_dev *pcidev = comedi_to_pci_dev(dev);
1841 void *vbptr;
1842 dma_addr_t vpptr;
1843
1844 if (pdma == NULL)
1845 return;
1846 /* find the matching allocation from the board struct */
1847
1848 vbptr = pdma->LogicalBase;
1849 vpptr = pdma->PhysicalBase;
1850 if (vbptr) {
1851 pci_free_consistent(pcidev, bsize, vbptr, vpptr);
1852 pdma->LogicalBase = NULL;
1853 pdma->PhysicalBase = 0;
1854 }
1855 }
1856
1857 /* ****** PRIVATE COUNTER FUNCTIONS ****** */
1858
1859 /* Reset a counter's index and overflow event capture flags. */
1860
1861 static void ResetCapFlags_A(struct comedi_device *dev, struct enc_private *k)
1862 {
1863 DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
1864 CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
1865 }
1866
1867 static void ResetCapFlags_B(struct comedi_device *dev, struct enc_private *k)
1868 {
1869 DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
1870 CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B);
1871 }
1872
1873 /* Return counter setup in a format (COUNTER_SETUP) that is consistent */
1874 /* for both A and B counters. */
1875
1876 static uint16_t GetMode_A(struct comedi_device *dev, struct enc_private *k)
1877 {
1878 register uint16_t cra;
1879 register uint16_t crb;
1880 register uint16_t setup;
1881
1882 /* Fetch CRA and CRB register images. */
1883 cra = DEBIread(dev, k->MyCRA);
1884 crb = DEBIread(dev, k->MyCRB);
1885
1886 /* Populate the standardized counter setup bit fields. Note: */
1887 /* IndexSrc is restricted to ENC_X or IndxPol. */
1888 setup = ((cra & STDMSK_LOADSRC) /* LoadSrc = LoadSrcA. */
1889 |((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) /* LatchSrc = LatchSrcA. */
1890 |((cra << (STDBIT_INTSRC - CRABIT_INTSRC_A)) & STDMSK_INTSRC) /* IntSrc = IntSrcA. */
1891 |((cra << (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))) & STDMSK_INDXSRC) /* IndxSrc = IndxSrcA<1>. */
1892 |((cra >> (CRABIT_INDXPOL_A - STDBIT_INDXPOL)) & STDMSK_INDXPOL) /* IndxPol = IndxPolA. */
1893 |((crb >> (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)) & STDMSK_CLKENAB)); /* ClkEnab = ClkEnabA. */
1894
1895 /* Adjust mode-dependent parameters. */
1896 if (cra & (2 << CRABIT_CLKSRC_A)) /* If Timer mode (ClkSrcA<1> == 1): */
1897 setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) /* Indicate Timer mode. */
1898 |((cra << (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) & STDMSK_CLKPOL) /* Set ClkPol to indicate count direction (ClkSrcA<0>). */
1899 |(MULT_X1 << STDBIT_CLKMULT)); /* ClkMult must be 1x in Timer mode. */
1900
1901 else /* If Counter mode (ClkSrcA<1> == 0): */
1902 setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) /* Indicate Counter mode. */
1903 |((cra >> (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) & STDMSK_CLKPOL) /* Pass through ClkPol. */
1904 |(((cra & CRAMSK_CLKMULT_A) == (MULT_X0 << CRABIT_CLKMULT_A)) ? /* Force ClkMult to 1x if not legal, else pass through. */
1905 (MULT_X1 << STDBIT_CLKMULT) :
1906 ((cra >> (CRABIT_CLKMULT_A -
1907 STDBIT_CLKMULT)) & STDMSK_CLKMULT)));
1908
1909 /* Return adjusted counter setup. */
1910 return setup;
1911 }
1912
1913 static uint16_t GetMode_B(struct comedi_device *dev, struct enc_private *k)
1914 {
1915 register uint16_t cra;
1916 register uint16_t crb;
1917 register uint16_t setup;
1918
1919 /* Fetch CRA and CRB register images. */
1920 cra = DEBIread(dev, k->MyCRA);
1921 crb = DEBIread(dev, k->MyCRB);
1922
1923 /* Populate the standardized counter setup bit fields. Note: */
1924 /* IndexSrc is restricted to ENC_X or IndxPol. */
1925 setup = (((crb << (STDBIT_INTSRC - CRBBIT_INTSRC_B)) & STDMSK_INTSRC) /* IntSrc = IntSrcB. */
1926 |((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) /* LatchSrc = LatchSrcB. */
1927 |((crb << (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)) & STDMSK_LOADSRC) /* LoadSrc = LoadSrcB. */
1928 |((crb << (STDBIT_INDXPOL - CRBBIT_INDXPOL_B)) & STDMSK_INDXPOL) /* IndxPol = IndxPolB. */
1929 |((crb >> (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) & STDMSK_CLKENAB) /* ClkEnab = ClkEnabB. */
1930 |((cra >> ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)) & STDMSK_INDXSRC)); /* IndxSrc = IndxSrcB<1>. */
1931
1932 /* Adjust mode-dependent parameters. */
1933 if ((crb & CRBMSK_CLKMULT_B) == (MULT_X0 << CRBBIT_CLKMULT_B)) /* If Extender mode (ClkMultB == MULT_X0): */
1934 setup |= ((CLKSRC_EXTENDER << STDBIT_CLKSRC) /* Indicate Extender mode. */
1935 |(MULT_X1 << STDBIT_CLKMULT) /* Indicate multiplier is 1x. */
1936 |((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); /* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
1937
1938 else if (cra & (2 << CRABIT_CLKSRC_B)) /* If Timer mode (ClkSrcB<1> == 1): */
1939 setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) /* Indicate Timer mode. */
1940 |(MULT_X1 << STDBIT_CLKMULT) /* Indicate multiplier is 1x. */
1941 |((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); /* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
1942
1943 else /* If Counter mode (ClkSrcB<1> == 0): */
1944 setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) /* Indicate Timer mode. */
1945 |((crb >> (CRBBIT_CLKMULT_B - STDBIT_CLKMULT)) & STDMSK_CLKMULT) /* Clock multiplier is passed through. */
1946 |((crb << (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) & STDMSK_CLKPOL)); /* Clock polarity is passed through. */
1947
1948 /* Return adjusted counter setup. */
1949 return setup;
1950 }
1951
1952 /*
1953 * Set the operating mode for the specified counter. The setup
1954 * parameter is treated as a COUNTER_SETUP data type. The following
1955 * parameters are programmable (all other parms are ignored): ClkMult,
1956 * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
1957 */
1958
1959 static void SetMode_A(struct comedi_device *dev, struct enc_private *k,
1960 uint16_t Setup, uint16_t DisableIntSrc)
1961 {
1962 struct s626_private *devpriv = dev->private;
1963 register uint16_t cra;
1964 register uint16_t crb;
1965 register uint16_t setup = Setup; /* Cache the Standard Setup. */
1966
1967 /* Initialize CRA and CRB images. */
1968 cra = ((setup & CRAMSK_LOADSRC_A) /* Preload trigger is passed through. */
1969 |((setup & STDMSK_INDXSRC) >> (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1)))); /* IndexSrc is restricted to ENC_X or IndxPol. */
1970
1971 crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A /* Reset any pending CounterA event captures. */
1972 | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_A - STDBIT_CLKENAB))); /* Clock enable is passed through. */
1973
1974 /* Force IntSrc to Disabled if DisableIntSrc is asserted. */
1975 if (!DisableIntSrc)
1976 cra |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
1977 CRABIT_INTSRC_A));
1978
1979 /* Populate all mode-dependent attributes of CRA & CRB images. */
1980 switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
1981 case CLKSRC_EXTENDER: /* Extender Mode: Force to Timer mode */
1982 /* (Extender valid only for B counters). */
1983
1984 case CLKSRC_TIMER: /* Timer Mode: */
1985 cra |= ((2 << CRABIT_CLKSRC_A) /* ClkSrcA<1> selects system clock */
1986 |((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) /* with count direction (ClkSrcA<0>) obtained from ClkPol. */
1987 |(1 << CRABIT_CLKPOL_A) /* ClkPolA behaves as always-on clock enable. */
1988 |(MULT_X1 << CRABIT_CLKMULT_A)); /* ClkMult must be 1x. */
1989 break;
1990
1991 default: /* Counter Mode: */
1992 cra |= (CLKSRC_COUNTER /* Select ENC_C and ENC_D as clock/direction inputs. */
1993 | ((setup & STDMSK_CLKPOL) << (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) /* Clock polarity is passed through. */
1994 |(((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? /* Force multiplier to x1 if not legal, otherwise pass through. */
1995 (MULT_X1 << CRABIT_CLKMULT_A) :
1996 ((setup & STDMSK_CLKMULT) << (CRABIT_CLKMULT_A -
1997 STDBIT_CLKMULT))));
1998 }
1999
2000 /* Force positive index polarity if IndxSrc is software-driven only, */
2001 /* otherwise pass it through. */
2002 if (~setup & STDMSK_INDXSRC)
2003 cra |= ((setup & STDMSK_INDXPOL) << (CRABIT_INDXPOL_A -
2004 STDBIT_INDXPOL));
2005
2006 /* If IntSrc has been forced to Disabled, update the MISC2 interrupt */
2007 /* enable mask to indicate the counter interrupt is disabled. */
2008 if (DisableIntSrc)
2009 devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
2010
2011 /* While retaining CounterB and LatchSrc configurations, program the */
2012 /* new counter operating mode. */
2013 DEBIreplace(dev, k->MyCRA, CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B, cra);
2014 DEBIreplace(dev, k->MyCRB,
2015 (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)), crb);
2016 }
2017
2018 static void SetMode_B(struct comedi_device *dev, struct enc_private *k,
2019 uint16_t Setup, uint16_t DisableIntSrc)
2020 {
2021 struct s626_private *devpriv = dev->private;
2022 register uint16_t cra;
2023 register uint16_t crb;
2024 register uint16_t setup = Setup; /* Cache the Standard Setup. */
2025
2026 /* Initialize CRA and CRB images. */
2027 cra = ((setup & STDMSK_INDXSRC) << ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)); /* IndexSrc field is restricted to ENC_X or IndxPol. */
2028
2029 crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B /* Reset event captures and disable interrupts. */
2030 | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) /* Clock enable is passed through. */
2031 |((setup & STDMSK_LOADSRC) >> (STDBIT_LOADSRC - CRBBIT_LOADSRC_B))); /* Preload trigger source is passed through. */
2032
2033 /* Force IntSrc to Disabled if DisableIntSrc is asserted. */
2034 if (!DisableIntSrc)
2035 crb |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
2036 CRBBIT_INTSRC_B));
2037
2038 /* Populate all mode-dependent attributes of CRA & CRB images. */
2039 switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
2040 case CLKSRC_TIMER: /* Timer Mode: */
2041 cra |= ((2 << CRABIT_CLKSRC_B) /* ClkSrcB<1> selects system clock */
2042 |((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); /* with direction (ClkSrcB<0>) obtained from ClkPol. */
2043 crb |= ((1 << CRBBIT_CLKPOL_B) /* ClkPolB behaves as always-on clock enable. */
2044 |(MULT_X1 << CRBBIT_CLKMULT_B)); /* ClkMultB must be 1x. */
2045 break;
2046
2047 case CLKSRC_EXTENDER: /* Extender Mode: */
2048 cra |= ((2 << CRABIT_CLKSRC_B) /* ClkSrcB source is OverflowA (same as "timer") */
2049 |((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); /* with direction obtained from ClkPol. */
2050 crb |= ((1 << CRBBIT_CLKPOL_B) /* ClkPolB controls IndexB -- always set to active. */
2051 |(MULT_X0 << CRBBIT_CLKMULT_B)); /* ClkMultB selects OverflowA as the clock source. */
2052 break;
2053
2054 default: /* Counter Mode: */
2055 cra |= (CLKSRC_COUNTER << CRABIT_CLKSRC_B); /* Select ENC_C and ENC_D as clock/direction inputs. */
2056 crb |= (((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) /* ClkPol is passed through. */
2057 |(((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? /* Force ClkMult to x1 if not legal, otherwise pass through. */
2058 (MULT_X1 << CRBBIT_CLKMULT_B) :
2059 ((setup & STDMSK_CLKMULT) << (CRBBIT_CLKMULT_B -
2060 STDBIT_CLKMULT))));
2061 }
2062
2063 /* Force positive index polarity if IndxSrc is software-driven only, */
2064 /* otherwise pass it through. */
2065 if (~setup & STDMSK_INDXSRC)
2066 crb |= ((setup & STDMSK_INDXPOL) >> (STDBIT_INDXPOL -
2067 CRBBIT_INDXPOL_B));
2068
2069 /* If IntSrc has been forced to Disabled, update the MISC2 interrupt */
2070 /* enable mask to indicate the counter interrupt is disabled. */
2071 if (DisableIntSrc)
2072 devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
2073
2074 /* While retaining CounterA and LatchSrc configurations, program the */
2075 /* new counter operating mode. */
2076 DEBIreplace(dev, k->MyCRA,
2077 (uint16_t) (~(CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B)), cra);
2078 DEBIreplace(dev, k->MyCRB, CRBMSK_CLKENAB_A | CRBMSK_LATCHSRC, crb);
2079 }
2080
2081 /* Return/set a counter's enable. enab: 0=always enabled, 1=enabled by index. */
2082
2083 static void SetEnable_A(struct comedi_device *dev, struct enc_private *k,
2084 uint16_t enab)
2085 {
2086 DEBIreplace(dev, k->MyCRB,
2087 (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)),
2088 (uint16_t) (enab << CRBBIT_CLKENAB_A));
2089 }
2090
2091 static void SetEnable_B(struct comedi_device *dev, struct enc_private *k,
2092 uint16_t enab)
2093 {
2094 DEBIreplace(dev, k->MyCRB,
2095 (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_B)),
2096 (uint16_t) (enab << CRBBIT_CLKENAB_B));
2097 }
2098
2099 static uint16_t GetEnable_A(struct comedi_device *dev, struct enc_private *k)
2100 {
2101 return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_A) & 1;
2102 }
2103
2104 static uint16_t GetEnable_B(struct comedi_device *dev, struct enc_private *k)
2105 {
2106 return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_B) & 1;
2107 }
2108
2109 /*
2110 * static uint16_t GetLatchSource(struct comedi_device *dev, struct enc_private *k )
2111 * {
2112 * return ( DEBIread( dev, k->MyCRB) >> CRBBIT_LATCHSRC ) & 3;
2113 * }
2114 */
2115
2116 /*
2117 * Return/set the event that will trigger transfer of the preload
2118 * register into the counter. 0=ThisCntr_Index, 1=ThisCntr_Overflow,
2119 * 2=OverflowA (B counters only), 3=disabled.
2120 */
2121
2122 static void SetLoadTrig_A(struct comedi_device *dev, struct enc_private *k,
2123 uint16_t Trig)
2124 {
2125 DEBIreplace(dev, k->MyCRA, (uint16_t) (~CRAMSK_LOADSRC_A),
2126 (uint16_t) (Trig << CRABIT_LOADSRC_A));
2127 }
2128
2129 static void SetLoadTrig_B(struct comedi_device *dev, struct enc_private *k,
2130 uint16_t Trig)
2131 {
2132 DEBIreplace(dev, k->MyCRB,
2133 (uint16_t) (~(CRBMSK_LOADSRC_B | CRBMSK_INTCTRL)),
2134 (uint16_t) (Trig << CRBBIT_LOADSRC_B));
2135 }
2136
2137 static uint16_t GetLoadTrig_A(struct comedi_device *dev, struct enc_private *k)
2138 {
2139 return (DEBIread(dev, k->MyCRA) >> CRABIT_LOADSRC_A) & 3;
2140 }
2141
2142 static uint16_t GetLoadTrig_B(struct comedi_device *dev, struct enc_private *k)
2143 {
2144 return (DEBIread(dev, k->MyCRB) >> CRBBIT_LOADSRC_B) & 3;
2145 }
2146
2147 /* Return/set counter interrupt source and clear any captured
2148 * index/overflow events. IntSource: 0=Disabled, 1=OverflowOnly,
2149 * 2=IndexOnly, 3=IndexAndOverflow.
2150 */
2151
2152 static void SetIntSrc_A(struct comedi_device *dev, struct enc_private *k,
2153 uint16_t IntSource)
2154 {
2155 struct s626_private *devpriv = dev->private;
2156
2157 /* Reset any pending counter overflow or index captures. */
2158 DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
2159 CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
2160
2161 /* Program counter interrupt source. */
2162 DEBIreplace(dev, k->MyCRA, ~CRAMSK_INTSRC_A,
2163 (uint16_t) (IntSource << CRABIT_INTSRC_A));
2164
2165 /* Update MISC2 interrupt enable mask. */
2166 devpriv->CounterIntEnabs =
2167 (devpriv->CounterIntEnabs & ~k->
2168 MyEventBits[3]) | k->MyEventBits[IntSource];
2169 }
2170
2171 static void SetIntSrc_B(struct comedi_device *dev, struct enc_private *k,
2172 uint16_t IntSource)
2173 {
2174 struct s626_private *devpriv = dev->private;
2175 uint16_t crb;
2176
2177 /* Cache writeable CRB register image. */
2178 crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;
2179
2180 /* Reset any pending counter overflow or index captures. */
2181 DEBIwrite(dev, k->MyCRB,
2182 (uint16_t) (crb | CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B));
2183
2184 /* Program counter interrupt source. */
2185 DEBIwrite(dev, k->MyCRB,
2186 (uint16_t) ((crb & ~CRBMSK_INTSRC_B) | (IntSource <<
2187 CRBBIT_INTSRC_B)));
2188
2189 /* Update MISC2 interrupt enable mask. */
2190 devpriv->CounterIntEnabs =
2191 (devpriv->CounterIntEnabs & ~k->
2192 MyEventBits[3]) | k->MyEventBits[IntSource];
2193 }
2194
2195 static uint16_t GetIntSrc_A(struct comedi_device *dev, struct enc_private *k)
2196 {
2197 return (DEBIread(dev, k->MyCRA) >> CRABIT_INTSRC_A) & 3;
2198 }
2199
2200 static uint16_t GetIntSrc_B(struct comedi_device *dev, struct enc_private *k)
2201 {
2202 return (DEBIread(dev, k->MyCRB) >> CRBBIT_INTSRC_B) & 3;
2203 }
2204
2205 /* Return/set the clock multiplier. */
2206
2207 /* static void SetClkMult(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */
2208 /* { */
2209 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKMULT ) | ( value << STDBIT_CLKMULT ) ), FALSE ); */
2210 /* } */
2211
2212 /* static uint16_t GetClkMult(struct comedi_device *dev, struct enc_private *k ) */
2213 /* { */
2214 /* return ( k->GetMode(dev, k ) >> STDBIT_CLKMULT ) & 3; */
2215 /* } */
2216
2217 /* Return/set the clock polarity. */
2218
2219 /* static void SetClkPol( struct comedi_device *dev,struct enc_private *k, uint16_t value ) */
2220 /* { */
2221 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKPOL ) | ( value << STDBIT_CLKPOL ) ), FALSE ); */
2222 /* } */
2223
2224 /* static uint16_t GetClkPol(struct comedi_device *dev, struct enc_private *k ) */
2225 /* { */
2226 /* return ( k->GetMode(dev, k ) >> STDBIT_CLKPOL ) & 1; */
2227 /* } */
2228
2229 /* Return/set the clock source. */
2230
2231 /* static void SetClkSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value ) */
2232 /* { */
2233 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKSRC ) | ( value << STDBIT_CLKSRC ) ), FALSE ); */
2234 /* } */
2235
2236 /* static uint16_t GetClkSrc( struct comedi_device *dev,struct enc_private *k ) */
2237 /* { */
2238 /* return ( k->GetMode(dev, k ) >> STDBIT_CLKSRC ) & 3; */
2239 /* } */
2240
2241 /* Return/set the index polarity. */
2242
2243 /* static void SetIndexPol(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */
2244 /* { */
2245 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXPOL ) | ( (value != 0) << STDBIT_INDXPOL ) ), FALSE ); */
2246 /* } */
2247
2248 /* static uint16_t GetIndexPol(struct comedi_device *dev, struct enc_private *k ) */
2249 /* { */
2250 /* return ( k->GetMode(dev, k ) >> STDBIT_INDXPOL ) & 1; */
2251 /* } */
2252
2253 /* Return/set the index source. */
2254
2255 /* static void SetIndexSrc(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */
2256 /* { */
2257 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXSRC ) | ( (value != 0) << STDBIT_INDXSRC ) ), FALSE ); */
2258 /* } */
2259
2260 /* static uint16_t GetIndexSrc(struct comedi_device *dev, struct enc_private *k ) */
2261 /* { */
2262 /* return ( k->GetMode(dev, k ) >> STDBIT_INDXSRC ) & 1; */
2263 /* } */
2264
2265 /* Generate an index pulse. */
2266
2267 static void PulseIndex_A(struct comedi_device *dev, struct enc_private *k)
2268 {
2269 register uint16_t cra;
2270
2271 cra = DEBIread(dev, k->MyCRA); /* Pulse index. */
2272 DEBIwrite(dev, k->MyCRA, (uint16_t) (cra ^ CRAMSK_INDXPOL_A));
2273 DEBIwrite(dev, k->MyCRA, cra);
2274 }
2275
2276 static void PulseIndex_B(struct comedi_device *dev, struct enc_private *k)
2277 {
2278 register uint16_t crb;
2279
2280 crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL; /* Pulse index. */
2281 DEBIwrite(dev, k->MyCRB, (uint16_t) (crb ^ CRBMSK_INDXPOL_B));
2282 DEBIwrite(dev, k->MyCRB, crb);
2283 }
2284
2285 static struct enc_private enc_private_data[] = {
2286 {
2287 .GetEnable = GetEnable_A,
2288 .GetIntSrc = GetIntSrc_A,
2289 .GetLoadTrig = GetLoadTrig_A,
2290 .GetMode = GetMode_A,
2291 .PulseIndex = PulseIndex_A,
2292 .SetEnable = SetEnable_A,
2293 .SetIntSrc = SetIntSrc_A,
2294 .SetLoadTrig = SetLoadTrig_A,
2295 .SetMode = SetMode_A,
2296 .ResetCapFlags = ResetCapFlags_A,
2297 .MyCRA = LP_CR0A,
2298 .MyCRB = LP_CR0B,
2299 .MyLatchLsw = LP_CNTR0ALSW,
2300 .MyEventBits = EVBITS(0),
2301 }, {
2302 .GetEnable = GetEnable_A,
2303 .GetIntSrc = GetIntSrc_A,
2304 .GetLoadTrig = GetLoadTrig_A,
2305 .GetMode = GetMode_A,
2306 .PulseIndex = PulseIndex_A,
2307 .SetEnable = SetEnable_A,
2308 .SetIntSrc = SetIntSrc_A,
2309 .SetLoadTrig = SetLoadTrig_A,
2310 .SetMode = SetMode_A,
2311 .ResetCapFlags = ResetCapFlags_A,
2312 .MyCRA = LP_CR1A,
2313 .MyCRB = LP_CR1B,
2314 .MyLatchLsw = LP_CNTR1ALSW,
2315 .MyEventBits = EVBITS(1),
2316 }, {
2317 .GetEnable = GetEnable_A,
2318 .GetIntSrc = GetIntSrc_A,
2319 .GetLoadTrig = GetLoadTrig_A,
2320 .GetMode = GetMode_A,
2321 .PulseIndex = PulseIndex_A,
2322 .SetEnable = SetEnable_A,
2323 .SetIntSrc = SetIntSrc_A,
2324 .SetLoadTrig = SetLoadTrig_A,
2325 .SetMode = SetMode_A,
2326 .ResetCapFlags = ResetCapFlags_A,
2327 .MyCRA = LP_CR2A,
2328 .MyCRB = LP_CR2B,
2329 .MyLatchLsw = LP_CNTR2ALSW,
2330 .MyEventBits = EVBITS(2),
2331 }, {
2332 .GetEnable = GetEnable_B,
2333 .GetIntSrc = GetIntSrc_B,
2334 .GetLoadTrig = GetLoadTrig_B,
2335 .GetMode = GetMode_B,
2336 .PulseIndex = PulseIndex_B,
2337 .SetEnable = SetEnable_B,
2338 .SetIntSrc = SetIntSrc_B,
2339 .SetLoadTrig = SetLoadTrig_B,
2340 .SetMode = SetMode_B,
2341 .ResetCapFlags = ResetCapFlags_B,
2342 .MyCRA = LP_CR0A,
2343 .MyCRB = LP_CR0B,
2344 .MyLatchLsw = LP_CNTR0BLSW,
2345 .MyEventBits = EVBITS(3),
2346 }, {
2347 .GetEnable = GetEnable_B,
2348 .GetIntSrc = GetIntSrc_B,
2349 .GetLoadTrig = GetLoadTrig_B,
2350 .GetMode = GetMode_B,
2351 .PulseIndex = PulseIndex_B,
2352 .SetEnable = SetEnable_B,
2353 .SetIntSrc = SetIntSrc_B,
2354 .SetLoadTrig = SetLoadTrig_B,
2355 .SetMode = SetMode_B,
2356 .ResetCapFlags = ResetCapFlags_B,
2357 .MyCRA = LP_CR1A,
2358 .MyCRB = LP_CR1B,
2359 .MyLatchLsw = LP_CNTR1BLSW,
2360 .MyEventBits = EVBITS(4),
2361 }, {
2362 .GetEnable = GetEnable_B,
2363 .GetIntSrc = GetIntSrc_B,
2364 .GetLoadTrig = GetLoadTrig_B,
2365 .GetMode = GetMode_B,
2366 .PulseIndex = PulseIndex_B,
2367 .SetEnable = SetEnable_B,
2368 .SetIntSrc = SetIntSrc_B,
2369 .SetLoadTrig = SetLoadTrig_B,
2370 .SetMode = SetMode_B,
2371 .ResetCapFlags = ResetCapFlags_B,
2372 .MyCRA = LP_CR2A,
2373 .MyCRB = LP_CR2B,
2374 .MyLatchLsw = LP_CNTR2BLSW,
2375 .MyEventBits = EVBITS(5),
2376 },
2377 };
2378
2379 static void CountersInit(struct comedi_device *dev)
2380 {
2381 int chan;
2382 struct enc_private *k;
2383 uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
2384 /* index. */
2385 (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
2386 (CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is counter. */
2387 (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
2388 (CNTDIR_UP << BF_CLKPOL) | /* Count direction is up. */
2389 (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
2390 (CLKENAB_INDEX << BF_CLKENAB); /* Enabled by index */
2391
2392 /* Disable all counter interrupts and clear any captured counter events. */
2393 for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
2394 k = &encpriv[chan];
2395 k->SetMode(dev, k, Setup, TRUE);
2396 k->SetIntSrc(dev, k, 0);
2397 k->ResetCapFlags(dev, k);
2398 k->SetEnable(dev, k, CLKENAB_ALWAYS);
2399 }
2400 }
2401
2402 static int s626_allocate_dma_buffers(struct comedi_device *dev)
2403 {
2404 struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2405 struct s626_private *devpriv = dev->private;
2406 void *addr;
2407 dma_addr_t appdma;
2408
2409 addr = pci_alloc_consistent(pcidev, DMABUF_SIZE, &appdma);
2410 if (!addr)
2411 return -ENOMEM;
2412 devpriv->ANABuf.LogicalBase = addr;
2413 devpriv->ANABuf.PhysicalBase = appdma;
2414
2415 addr = pci_alloc_consistent(pcidev, DMABUF_SIZE, &appdma);
2416 if (!addr)
2417 return -ENOMEM;
2418 devpriv->RPSBuf.LogicalBase = addr;
2419 devpriv->RPSBuf.PhysicalBase = appdma;
2420
2421 return 0;
2422 }
2423
2424 static void s626_initialize(struct comedi_device *dev)
2425 {
2426 struct s626_private *devpriv = dev->private;
2427 dma_addr_t pPhysBuf;
2428 uint16_t chan;
2429 int i;
2430
2431 /* Enable DEBI and audio pins, enable I2C interface */
2432 MC_ENABLE(P_MC1, MC1_DEBI | MC1_AUDIO | MC1_I2C);
2433
2434 /*
2435 * Configure DEBI operating mode
2436 *
2437 * Local bus is 16 bits wide
2438 * Declare DEBI transfer timeout interval
2439 * Set up byte lane steering
2440 * Intel-compatible local bus (DEBI never times out)
2441 */
2442 WR7146(P_DEBICFG, DEBI_CFG_SLAVE16 |
2443 (DEBI_TOUT << DEBI_CFG_TOUT_BIT) |
2444 DEBI_SWAP | DEBI_CFG_INTEL);
2445
2446 /* Disable MMU paging */
2447 WR7146(P_DEBIPAGE, DEBI_PAGE_DISABLE);
2448
2449 /* Init GPIO so that ADC Start* is negated */
2450 WR7146(P_GPIO, GPIO_BASE | GPIO1_HI);
2451
2452 /* I2C device address for onboard eeprom (revb) */
2453 devpriv->I2CAdrs = 0xA0;
2454
2455 /*
2456 * Issue an I2C ABORT command to halt any I2C
2457 * operation in progress and reset BUSY flag.
2458 */
2459 WR7146(P_I2CSTAT, I2C_CLKSEL | I2C_ABORT);
2460 MC_ENABLE(P_MC2, MC2_UPLD_IIC);
2461 while ((RR7146(P_MC2) & MC2_UPLD_IIC) == 0)
2462 ;
2463
2464 /*
2465 * Per SAA7146 data sheet, write to STATUS
2466 * reg twice to reset all I2C error flags.
2467 */
2468 for (i = 0; i < 2; i++) {
2469 WR7146(P_I2CSTAT, I2C_CLKSEL);
2470 MC_ENABLE(P_MC2, MC2_UPLD_IIC);
2471 while (!MC_TEST(P_MC2, MC2_UPLD_IIC))
2472 ;
2473 }
2474
2475 /*
2476 * Init audio interface functional attributes: set DAC/ADC
2477 * serial clock rates, invert DAC serial clock so that
2478 * DAC data setup times are satisfied, enable DAC serial
2479 * clock out.
2480 */
2481 WR7146(P_ACON2, ACON2_INIT);
2482
2483 /*
2484 * Set up TSL1 slot list, which is used to control the
2485 * accumulation of ADC data: RSD1 = shift data in on SD1.
2486 * SIB_A1 = store data uint8_t at next available location
2487 * in FB BUFFER1 register.
2488 */
2489 WR7146(P_TSL1, RSD1 | SIB_A1);
2490 WR7146(P_TSL1 + 4, RSD1 | SIB_A1 | EOS);
2491
2492 /* Enable TSL1 slot list so that it executes all the time */
2493 WR7146(P_ACON1, ACON1_ADCSTART);
2494
2495 /*
2496 * Initialize RPS registers used for ADC
2497 */
2498
2499 /* Physical start of RPS program */
2500 WR7146(P_RPSADDR1, (uint32_t)devpriv->RPSBuf.PhysicalBase);
2501 /* RPS program performs no explicit mem writes */
2502 WR7146(P_RPSPAGE1, 0);
2503 /* Disable RPS timeouts */
2504 WR7146(P_RPS1_TOUT, 0);
2505
2506 #if 0
2507 /*
2508 * SAA7146 BUG WORKAROUND
2509 *
2510 * Initialize SAA7146 ADC interface to a known state by
2511 * invoking ADCs until FB BUFFER 1 register shows that it
2512 * is correctly receiving ADC data. This is necessary
2513 * because the SAA7146 ADC interface does not start up in
2514 * a defined state after a PCI reset.
2515 */
2516
2517 {
2518 uint8_t PollList;
2519 uint16_t AdcData;
2520 uint16_t StartVal;
2521 uint16_t index;
2522 unsigned int data[16];
2523
2524 /* Create a simple polling list for analog input channel 0 */
2525 PollList = EOPL;
2526 ResetADC(dev, &PollList);
2527
2528 /* Get initial ADC value */
2529 s626_ai_rinsn(dev, dev->subdevices, NULL, data);
2530 StartVal = data[0];
2531
2532 /*
2533 * VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED EXECUTION.
2534 *
2535 * Invoke ADCs until the new ADC value differs from the initial
2536 * value or a timeout occurs. The timeout protects against the
2537 * possibility that the driver is restarting and the ADC data is a
2538 * fixed value resulting from the applied ADC analog input being
2539 * unusually quiet or at the rail.
2540 */
2541 for (index = 0; index < 500; index++) {
2542 s626_ai_rinsn(dev, dev->subdevices, NULL, data);
2543 AdcData = data[0];
2544 if (AdcData != StartVal)
2545 break;
2546 }
2547
2548 }
2549 #endif /* SAA7146 BUG WORKAROUND */
2550
2551 /*
2552 * Initialize the DAC interface
2553 */
2554
2555 /*
2556 * Init Audio2's output DMAC attributes:
2557 * burst length = 1 DWORD
2558 * threshold = 1 DWORD.
2559 */
2560 WR7146(P_PCI_BT_A, 0);
2561
2562 /*
2563 * Init Audio2's output DMA physical addresses. The protection
2564 * address is set to 1 DWORD past the base address so that a
2565 * single DWORD will be transferred each time a DMA transfer is
2566 * enabled.
2567 */
2568 pPhysBuf = devpriv->ANABuf.PhysicalBase +
2569 (DAC_WDMABUF_OS * sizeof(uint32_t));
2570 WR7146(P_BASEA2_OUT, (uint32_t) pPhysBuf);
2571 WR7146(P_PROTA2_OUT, (uint32_t) (pPhysBuf + sizeof(uint32_t)));
2572
2573 /*
2574 * Cache Audio2's output DMA buffer logical address. This is
2575 * where DAC data is buffered for A2 output DMA transfers.
2576 */
2577 devpriv->pDacWBuf = (uint32_t *)devpriv->ANABuf.LogicalBase +
2578 DAC_WDMABUF_OS;
2579
2580 /*
2581 * Audio2's output channels does not use paging. The
2582 * protection violation handling bit is set so that the
2583 * DMAC will automatically halt and its PCI address pointer
2584 * will be reset when the protection address is reached.
2585 */
2586 WR7146(P_PAGEA2_OUT, 8);
2587
2588 /*
2589 * Initialize time slot list 2 (TSL2), which is used to control
2590 * the clock generation for and serialization of data to be sent
2591 * to the DAC devices. Slot 0 is a NOP that is used to trap TSL
2592 * execution; this permits other slots to be safely modified
2593 * without first turning off the TSL sequencer (which is
2594 * apparently impossible to do). Also, SD3 (which is driven by a
2595 * pull-up resistor) is shifted in and stored to the MSB of
2596 * FB_BUFFER2 to be used as evidence that the slot sequence has
2597 * not yet finished executing.
2598 */
2599
2600 /* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2 */
2601 SETVECT(0, XSD2 | RSD3 | SIB_A2 | EOS);
2602
2603 /*
2604 * Initialize slot 1, which is constant. Slot 1 causes a
2605 * DWORD to be transferred from audio channel 2's output FIFO
2606 * to the FIFO's output buffer so that it can be serialized
2607 * and sent to the DAC during subsequent slots. All remaining
2608 * slots are dynamically populated as required by the target
2609 * DAC device.
2610 */
2611
2612 /* Slot 1: Fetch DWORD from Audio2's output FIFO */
2613 SETVECT(1, LF_A2);
2614
2615 /* Start DAC's audio interface (TSL2) running */
2616 WR7146(P_ACON1, ACON1_DACSTART);
2617
2618 /*
2619 * Init Trim DACs to calibrated values. Do it twice because the
2620 * SAA7146 audio channel does not always reset properly and
2621 * sometimes causes the first few TrimDAC writes to malfunction.
2622 */
2623 LoadTrimDACs(dev);
2624 LoadTrimDACs(dev);
2625
2626 /*
2627 * Manually init all gate array hardware in case this is a soft
2628 * reset (we have no way of determining whether this is a warm
2629 * or cold start). This is necessary because the gate array will
2630 * reset only in response to a PCI hard reset; there is no soft
2631 * reset function.
2632 */
2633
2634 /*
2635 * Init all DAC outputs to 0V and init all DAC setpoint and
2636 * polarity images.
2637 */
2638 for (chan = 0; chan < S626_DAC_CHANNELS; chan++)
2639 SetDAC(dev, chan, 0);
2640
2641 /* Init counters */
2642 CountersInit(dev);
2643
2644 /*
2645 * Without modifying the state of the Battery Backup enab, disable
2646 * the watchdog timer, set DIO channels 0-5 to operate in the
2647 * standard DIO (vs. counter overflow) mode, disable the battery
2648 * charger, and reset the watchdog interval selector to zero.
2649 */
2650 WriteMISC2(dev, (uint16_t)(DEBIread(dev, LP_RDMISC2) &
2651 MISC2_BATT_ENABLE));
2652
2653 /* Initialize the digital I/O subsystem */
2654 s626_dio_init(dev);
2655
2656 /* enable interrupt test */
2657 /* writel(IRQ_GPIO3 | IRQ_RPS1, devpriv->base_addr + P_IER); */
2658 }
2659
2660 static int s626_auto_attach(struct comedi_device *dev,
2661 unsigned long context_unused)
2662 {
2663 struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2664 struct s626_private *devpriv;
2665 struct comedi_subdevice *s;
2666 int ret;
2667
2668 dev->board_name = dev->driver->driver_name;
2669
2670 devpriv = kzalloc(sizeof(*devpriv), GFP_KERNEL);
2671 if (!devpriv)
2672 return -ENOMEM;
2673 dev->private = devpriv;
2674
2675 ret = comedi_pci_enable(pcidev, dev->board_name);
2676 if (ret)
2677 return ret;
2678 dev->iobase = 1; /* detach needs this */
2679
2680 devpriv->base_addr = ioremap(pci_resource_start(pcidev, 0),
2681 pci_resource_len(pcidev, 0));
2682 if (!devpriv->base_addr)
2683 return -ENOMEM;
2684
2685 /* disable master interrupt */
2686 writel(0, devpriv->base_addr + P_IER);
2687
2688 /* soft reset */
2689 writel(MC1_SOFT_RESET, devpriv->base_addr + P_MC1);
2690
2691 /* DMA FIXME DMA// */
2692
2693 ret = s626_allocate_dma_buffers(dev);
2694 if (ret)
2695 return ret;
2696
2697 if (pcidev->irq) {
2698 ret = request_irq(pcidev->irq, s626_irq_handler, IRQF_SHARED,
2699 dev->board_name, dev);
2700
2701 if (ret == 0)
2702 dev->irq = pcidev->irq;
2703 }
2704
2705 ret = comedi_alloc_subdevices(dev, 6);
2706 if (ret)
2707 return ret;
2708
2709 s = dev->subdevices + 0;
2710 /* analog input subdevice */
2711 dev->read_subdev = s;
2712 /* we support single-ended (ground) and differential */
2713 s->type = COMEDI_SUBD_AI;
2714 s->subdev_flags = SDF_READABLE | SDF_DIFF | SDF_CMD_READ;
2715 s->n_chan = S626_ADC_CHANNELS;
2716 s->maxdata = (0xffff >> 2);
2717 s->range_table = &s626_range_table;
2718 s->len_chanlist = S626_ADC_CHANNELS;
2719 s->insn_config = s626_ai_insn_config;
2720 s->insn_read = s626_ai_insn_read;
2721 s->do_cmd = s626_ai_cmd;
2722 s->do_cmdtest = s626_ai_cmdtest;
2723 s->cancel = s626_ai_cancel;
2724
2725 s = dev->subdevices + 1;
2726 /* analog output subdevice */
2727 s->type = COMEDI_SUBD_AO;
2728 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2729 s->n_chan = S626_DAC_CHANNELS;
2730 s->maxdata = (0x3fff);
2731 s->range_table = &range_bipolar10;
2732 s->insn_write = s626_ao_winsn;
2733 s->insn_read = s626_ao_rinsn;
2734
2735 s = dev->subdevices + 2;
2736 /* digital I/O subdevice */
2737 s->type = COMEDI_SUBD_DIO;
2738 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2739 s->n_chan = 16;
2740 s->maxdata = 1;
2741 s->io_bits = 0xffff;
2742 s->private = &dio_private_A;
2743 s->range_table = &range_digital;
2744 s->insn_config = s626_dio_insn_config;
2745 s->insn_bits = s626_dio_insn_bits;
2746
2747 s = dev->subdevices + 3;
2748 /* digital I/O subdevice */
2749 s->type = COMEDI_SUBD_DIO;
2750 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2751 s->n_chan = 16;
2752 s->maxdata = 1;
2753 s->io_bits = 0xffff;
2754 s->private = &dio_private_B;
2755 s->range_table = &range_digital;
2756 s->insn_config = s626_dio_insn_config;
2757 s->insn_bits = s626_dio_insn_bits;
2758
2759 s = dev->subdevices + 4;
2760 /* digital I/O subdevice */
2761 s->type = COMEDI_SUBD_DIO;
2762 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2763 s->n_chan = 16;
2764 s->maxdata = 1;
2765 s->io_bits = 0xffff;
2766 s->private = &dio_private_C;
2767 s->range_table = &range_digital;
2768 s->insn_config = s626_dio_insn_config;
2769 s->insn_bits = s626_dio_insn_bits;
2770
2771 s = dev->subdevices + 5;
2772 /* encoder (counter) subdevice */
2773 s->type = COMEDI_SUBD_COUNTER;
2774 s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
2775 s->n_chan = S626_ENCODER_CHANNELS;
2776 s->private = enc_private_data;
2777 s->insn_config = s626_enc_insn_config;
2778 s->insn_read = s626_enc_insn_read;
2779 s->insn_write = s626_enc_insn_write;
2780 s->maxdata = 0xffffff;
2781 s->range_table = &range_unknown;
2782
2783 s626_initialize(dev);
2784
2785 dev_info(dev->class_dev, "%s attached\n", dev->board_name);
2786
2787 return 0;
2788 }
2789
2790 static void s626_detach(struct comedi_device *dev)
2791 {
2792 struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2793 struct s626_private *devpriv = dev->private;
2794
2795 if (devpriv) {
2796 /* stop ai_command */
2797 devpriv->ai_cmd_running = 0;
2798
2799 if (devpriv->base_addr) {
2800 /* interrupt mask */
2801 WR7146(P_IER, 0); /* Disable master interrupt. */
2802 WR7146(P_ISR, IRQ_GPIO3 | IRQ_RPS1); /* Clear board's IRQ status flag. */
2803
2804 /* Disable the watchdog timer and battery charger. */
2805 WriteMISC2(dev, 0);
2806
2807 /* Close all interfaces on 7146 device. */
2808 WR7146(P_MC1, MC1_SHUTDOWN);
2809 WR7146(P_ACON1, ACON1_BASE);
2810
2811 CloseDMAB(dev, &devpriv->RPSBuf, DMABUF_SIZE);
2812 CloseDMAB(dev, &devpriv->ANABuf, DMABUF_SIZE);
2813 }
2814
2815 if (dev->irq)
2816 free_irq(dev->irq, dev);
2817 if (devpriv->base_addr)
2818 iounmap(devpriv->base_addr);
2819 }
2820 if (pcidev) {
2821 if (dev->iobase)
2822 comedi_pci_disable(pcidev);
2823 }
2824 }
2825
2826 static struct comedi_driver s626_driver = {
2827 .driver_name = "s626",
2828 .module = THIS_MODULE,
2829 .auto_attach = s626_auto_attach,
2830 .detach = s626_detach,
2831 };
2832
2833 static int s626_pci_probe(struct pci_dev *dev,
2834 const struct pci_device_id *ent)
2835 {
2836 return comedi_pci_auto_config(dev, &s626_driver);
2837 }
2838
2839 static void s626_pci_remove(struct pci_dev *dev)
2840 {
2841 comedi_pci_auto_unconfig(dev);
2842 }
2843
2844 /*
2845 * For devices with vendor:device id == 0x1131:0x7146 you must specify
2846 * also subvendor:subdevice ids, because otherwise it will conflict with
2847 * Philips SAA7146 media/dvb based cards.
2848 */
2849 static DEFINE_PCI_DEVICE_TABLE(s626_pci_table) = {
2850 { PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626,
2851 PCI_SUBVENDOR_ID_S626, PCI_SUBDEVICE_ID_S626, 0, 0, 0 },
2852 { 0 }
2853 };
2854 MODULE_DEVICE_TABLE(pci, s626_pci_table);
2855
2856 static struct pci_driver s626_pci_driver = {
2857 .name = "s626",
2858 .id_table = s626_pci_table,
2859 .probe = s626_pci_probe,
2860 .remove = s626_pci_remove,
2861 };
2862 module_comedi_pci_driver(s626_driver, s626_pci_driver);
2863
2864 MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
2865 MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
2866 MODULE_LICENSE("GPL");