]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/staging/et131x/et131x.c
net: get rid of SET_ETHTOOL_OPS
[mirror_ubuntu-artful-kernel.git] / drivers / staging / et131x / et131x.c
1 /* Agere Systems Inc.
2 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
3 *
4 * Copyright © 2005 Agere Systems Inc.
5 * All rights reserved.
6 * http://www.agere.com
7 *
8 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
9 *
10 *------------------------------------------------------------------------------
11 *
12 * SOFTWARE LICENSE
13 *
14 * This software is provided subject to the following terms and conditions,
15 * which you should read carefully before using the software. Using this
16 * software indicates your acceptance of these terms and conditions. If you do
17 * not agree with these terms and conditions, do not use the software.
18 *
19 * Copyright © 2005 Agere Systems Inc.
20 * All rights reserved.
21 *
22 * Redistribution and use in source or binary forms, with or without
23 * modifications, are permitted provided that the following conditions are met:
24 *
25 * . Redistributions of source code must retain the above copyright notice, this
26 * list of conditions and the following Disclaimer as comments in the code as
27 * well as in the documentation and/or other materials provided with the
28 * distribution.
29 *
30 * . Redistributions in binary form must reproduce the above copyright notice,
31 * this list of conditions and the following Disclaimer in the documentation
32 * and/or other materials provided with the distribution.
33 *
34 * . Neither the name of Agere Systems Inc. nor the names of the contributors
35 * may be used to endorse or promote products derived from this software
36 * without specific prior written permission.
37 *
38 * Disclaimer
39 *
40 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
41 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
42 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
43 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
44 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
45 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
46 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
48 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
50 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
51 * DAMAGE.
52 */
53
54 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
55
56 #include <linux/pci.h>
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/kernel.h>
60
61 #include <linux/sched.h>
62 #include <linux/ptrace.h>
63 #include <linux/slab.h>
64 #include <linux/ctype.h>
65 #include <linux/string.h>
66 #include <linux/timer.h>
67 #include <linux/interrupt.h>
68 #include <linux/in.h>
69 #include <linux/delay.h>
70 #include <linux/bitops.h>
71 #include <linux/io.h>
72
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_arp.h>
77 #include <linux/ioport.h>
78 #include <linux/crc32.h>
79 #include <linux/random.h>
80 #include <linux/phy.h>
81
82 #include "et131x.h"
83
84 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
85 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
86 MODULE_LICENSE("Dual BSD/GPL");
87 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
88
89 /* EEPROM defines */
90 #define MAX_NUM_REGISTER_POLLS 1000
91 #define MAX_NUM_WRITE_RETRIES 2
92
93 /* MAC defines */
94 #define COUNTER_WRAP_16_BIT 0x10000
95 #define COUNTER_WRAP_12_BIT 0x1000
96
97 /* PCI defines */
98 #define INTERNAL_MEM_SIZE 0x400 /* 1024 of internal memory */
99 #define INTERNAL_MEM_RX_OFFSET 0x1FF /* 50% Tx, 50% Rx */
100
101 /* ISR defines */
102 /* For interrupts, normal running is:
103 * rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
104 * watchdog_interrupt & txdma_xfer_done
105 *
106 * In both cases, when flow control is enabled for either Tx or bi-direction,
107 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
108 * buffer rings are running low.
109 */
110 #define INT_MASK_DISABLE 0xffffffff
111
112 /* NOTE: Masking out MAC_STAT Interrupt for now...
113 * #define INT_MASK_ENABLE 0xfff6bf17
114 * #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7
115 */
116 #define INT_MASK_ENABLE 0xfffebf17
117 #define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7
118
119 /* General defines */
120 /* Packet and header sizes */
121 #define NIC_MIN_PACKET_SIZE 60
122
123 /* Multicast list size */
124 #define NIC_MAX_MCAST_LIST 128
125
126 /* Supported Filters */
127 #define ET131X_PACKET_TYPE_DIRECTED 0x0001
128 #define ET131X_PACKET_TYPE_MULTICAST 0x0002
129 #define ET131X_PACKET_TYPE_BROADCAST 0x0004
130 #define ET131X_PACKET_TYPE_PROMISCUOUS 0x0008
131 #define ET131X_PACKET_TYPE_ALL_MULTICAST 0x0010
132
133 /* Tx Timeout */
134 #define ET131X_TX_TIMEOUT (1 * HZ)
135 #define NIC_SEND_HANG_THRESHOLD 0
136
137 /* MP_TCB flags */
138 #define FMP_DEST_MULTI 0x00000001
139 #define FMP_DEST_BROAD 0x00000002
140
141 /* MP_ADAPTER flags */
142 #define FMP_ADAPTER_INTERRUPT_IN_USE 0x00000008
143
144 /* MP_SHARED flags */
145 #define FMP_ADAPTER_LOWER_POWER 0x00200000
146
147 #define FMP_ADAPTER_NON_RECOVER_ERROR 0x00800000
148 #define FMP_ADAPTER_HARDWARE_ERROR 0x04000000
149
150 #define FMP_ADAPTER_FAIL_SEND_MASK 0x3ff00000
151
152 /* Some offsets in PCI config space that are actually used. */
153 #define ET1310_PCI_MAC_ADDRESS 0xA4
154 #define ET1310_PCI_EEPROM_STATUS 0xB2
155 #define ET1310_PCI_ACK_NACK 0xC0
156 #define ET1310_PCI_REPLAY 0xC2
157 #define ET1310_PCI_L0L1LATENCY 0xCF
158
159 /* PCI Product IDs */
160 #define ET131X_PCI_DEVICE_ID_GIG 0xED00 /* ET1310 1000 Base-T 8 */
161 #define ET131X_PCI_DEVICE_ID_FAST 0xED01 /* ET1310 100 Base-T */
162
163 /* Define order of magnitude converter */
164 #define NANO_IN_A_MICRO 1000
165
166 #define PARM_RX_NUM_BUFS_DEF 4
167 #define PARM_RX_TIME_INT_DEF 10
168 #define PARM_RX_MEM_END_DEF 0x2bc
169 #define PARM_TX_TIME_INT_DEF 40
170 #define PARM_TX_NUM_BUFS_DEF 4
171 #define PARM_DMA_CACHE_DEF 0
172
173 /* RX defines */
174 #define FBR_CHUNKS 32
175 #define MAX_DESC_PER_RING_RX 1024
176
177 /* number of RFDs - default and min */
178 #define RFD_LOW_WATER_MARK 40
179 #define NIC_DEFAULT_NUM_RFD 1024
180 #define NUM_FBRS 2
181
182 #define NUM_PACKETS_HANDLED 256
183
184 #define ALCATEL_MULTICAST_PKT 0x01000000
185 #define ALCATEL_BROADCAST_PKT 0x02000000
186
187 /* typedefs for Free Buffer Descriptors */
188 struct fbr_desc {
189 u32 addr_lo;
190 u32 addr_hi;
191 u32 word2; /* Bits 10-31 reserved, 0-9 descriptor */
192 };
193
194 /* Packet Status Ring Descriptors
195 *
196 * Word 0:
197 *
198 * top 16 bits are from the Alcatel Status Word as enumerated in
199 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
200 *
201 * 0: hp hash pass
202 * 1: ipa IP checksum assist
203 * 2: ipp IP checksum pass
204 * 3: tcpa TCP checksum assist
205 * 4: tcpp TCP checksum pass
206 * 5: wol WOL Event
207 * 6: rxmac_error RXMAC Error Indicator
208 * 7: drop Drop packet
209 * 8: ft Frame Truncated
210 * 9: jp Jumbo Packet
211 * 10: vp VLAN Packet
212 * 11-15: unused
213 * 16: asw_prev_pkt_dropped e.g. IFG too small on previous
214 * 17: asw_RX_DV_event short receive event detected
215 * 18: asw_false_carrier_event bad carrier since last good packet
216 * 19: asw_code_err one or more nibbles signalled as errors
217 * 20: asw_CRC_err CRC error
218 * 21: asw_len_chk_err frame length field incorrect
219 * 22: asw_too_long frame length > 1518 bytes
220 * 23: asw_OK valid CRC + no code error
221 * 24: asw_multicast has a multicast address
222 * 25: asw_broadcast has a broadcast address
223 * 26: asw_dribble_nibble spurious bits after EOP
224 * 27: asw_control_frame is a control frame
225 * 28: asw_pause_frame is a pause frame
226 * 29: asw_unsupported_op unsupported OP code
227 * 30: asw_VLAN_tag VLAN tag detected
228 * 31: asw_long_evt Rx long event
229 *
230 * Word 1:
231 * 0-15: length length in bytes
232 * 16-25: bi Buffer Index
233 * 26-27: ri Ring Index
234 * 28-31: reserved
235 */
236
237 struct pkt_stat_desc {
238 u32 word0;
239 u32 word1;
240 };
241
242 /* Typedefs for the RX DMA status word */
243
244 /* rx status word 0 holds part of the status bits of the Rx DMA engine
245 * that get copied out to memory by the ET-1310. Word 0 is a 32 bit word
246 * which contains the Free Buffer ring 0 and 1 available offset.
247 *
248 * bit 0-9 FBR1 offset
249 * bit 10 Wrap flag for FBR1
250 * bit 16-25 FBR0 offset
251 * bit 26 Wrap flag for FBR0
252 */
253
254 /* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
255 * that get copied out to memory by the ET-1310. Word 3 is a 32 bit word
256 * which contains the Packet Status Ring available offset.
257 *
258 * bit 0-15 reserved
259 * bit 16-27 PSRoffset
260 * bit 28 PSRwrap
261 * bit 29-31 unused
262 */
263
264 /* struct rx_status_block is a structure representing the status of the Rx
265 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
266 */
267 struct rx_status_block {
268 u32 word0;
269 u32 word1;
270 };
271
272 /* Structure for look-up table holding free buffer ring pointers, addresses
273 * and state.
274 */
275 struct fbr_lookup {
276 void *virt[MAX_DESC_PER_RING_RX];
277 u32 bus_high[MAX_DESC_PER_RING_RX];
278 u32 bus_low[MAX_DESC_PER_RING_RX];
279 void *ring_virtaddr;
280 dma_addr_t ring_physaddr;
281 void *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
282 dma_addr_t mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
283 u32 local_full;
284 u32 num_entries;
285 dma_addr_t buffsize;
286 };
287
288 /* struct rx_ring is the sructure representing the adaptor's local
289 * reference(s) to the rings
290 */
291 struct rx_ring {
292 struct fbr_lookup *fbr[NUM_FBRS];
293 void *ps_ring_virtaddr;
294 dma_addr_t ps_ring_physaddr;
295 u32 local_psr_full;
296 u32 psr_num_entries;
297
298 struct rx_status_block *rx_status_block;
299 dma_addr_t rx_status_bus;
300
301 /* RECV */
302 struct list_head recv_list;
303 u32 num_ready_recv;
304
305 u32 num_rfd;
306
307 bool unfinished_receives;
308 };
309
310 /* TX defines */
311 /* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
312 *
313 * 0-15: length of packet
314 * 16-27: VLAN tag
315 * 28: VLAN CFI
316 * 29-31: VLAN priority
317 *
318 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
319 *
320 * 0: last packet in the sequence
321 * 1: first packet in the sequence
322 * 2: interrupt the processor when this pkt sent
323 * 3: Control word - no packet data
324 * 4: Issue half-duplex backpressure : XON/XOFF
325 * 5: send pause frame
326 * 6: Tx frame has error
327 * 7: append CRC
328 * 8: MAC override
329 * 9: pad packet
330 * 10: Packet is a Huge packet
331 * 11: append VLAN tag
332 * 12: IP checksum assist
333 * 13: TCP checksum assist
334 * 14: UDP checksum assist
335 */
336
337 #define TXDESC_FLAG_LASTPKT 0x0001
338 #define TXDESC_FLAG_FIRSTPKT 0x0002
339 #define TXDESC_FLAG_INTPROC 0x0004
340
341 /* struct tx_desc represents each descriptor on the ring */
342 struct tx_desc {
343 u32 addr_hi;
344 u32 addr_lo;
345 u32 len_vlan; /* control words how to xmit the */
346 u32 flags; /* data (detailed above) */
347 };
348
349 /* The status of the Tx DMA engine it sits in free memory, and is pointed to
350 * by 0x101c / 0x1020. This is a DMA10 type
351 */
352
353 /* TCB (Transmit Control Block: Host Side) */
354 struct tcb {
355 struct tcb *next; /* Next entry in ring */
356 u32 flags; /* Our flags for the packet */
357 u32 count; /* Used to spot stuck/lost packets */
358 u32 stale; /* Used to spot stuck/lost packets */
359 struct sk_buff *skb; /* Network skb we are tied to */
360 u32 index; /* Ring indexes */
361 u32 index_start;
362 };
363
364 /* Structure representing our local reference(s) to the ring */
365 struct tx_ring {
366 /* TCB (Transmit Control Block) memory and lists */
367 struct tcb *tcb_ring;
368
369 /* List of TCBs that are ready to be used */
370 struct tcb *tcb_qhead;
371 struct tcb *tcb_qtail;
372
373 /* list of TCBs that are currently being sent. NOTE that access to all
374 * three of these (including used) are controlled via the
375 * TCBSendQLock. This lock should be secured prior to incementing /
376 * decrementing used, or any queue manipulation on send_head /
377 * tail
378 */
379 struct tcb *send_head;
380 struct tcb *send_tail;
381 int used;
382
383 /* The actual descriptor ring */
384 struct tx_desc *tx_desc_ring;
385 dma_addr_t tx_desc_ring_pa;
386
387 /* send_idx indicates where we last wrote to in the descriptor ring. */
388 u32 send_idx;
389
390 /* The location of the write-back status block */
391 u32 *tx_status;
392 dma_addr_t tx_status_pa;
393
394 /* Packets since the last IRQ: used for interrupt coalescing */
395 int since_irq;
396 };
397
398 /* Do not change these values: if changed, then change also in respective
399 * TXdma and Rxdma engines
400 */
401 #define NUM_DESC_PER_RING_TX 512 /* TX Do not change these values */
402 #define NUM_TCB 64
403
404 /* These values are all superseded by registry entries to facilitate tuning.
405 * Once the desired performance has been achieved, the optimal registry values
406 * should be re-populated to these #defines:
407 */
408 #define TX_ERROR_PERIOD 1000
409
410 #define LO_MARK_PERCENT_FOR_PSR 15
411 #define LO_MARK_PERCENT_FOR_RX 15
412
413 /* RFD (Receive Frame Descriptor) */
414 struct rfd {
415 struct list_head list_node;
416 struct sk_buff *skb;
417 u32 len; /* total size of receive frame */
418 u16 bufferindex;
419 u8 ringindex;
420 };
421
422 /* Flow Control */
423 #define FLOW_BOTH 0
424 #define FLOW_TXONLY 1
425 #define FLOW_RXONLY 2
426 #define FLOW_NONE 3
427
428 /* Struct to define some device statistics */
429 struct ce_stats {
430 /* MIB II variables
431 *
432 * NOTE: atomic_t types are only guaranteed to store 24-bits; if we
433 * MUST have 32, then we'll need another way to perform atomic
434 * operations
435 */
436 u32 unicast_pkts_rcvd;
437 atomic_t unicast_pkts_xmtd;
438 u32 multicast_pkts_rcvd;
439 atomic_t multicast_pkts_xmtd;
440 u32 broadcast_pkts_rcvd;
441 atomic_t broadcast_pkts_xmtd;
442 u32 rcvd_pkts_dropped;
443
444 /* Tx Statistics. */
445 u32 tx_underflows;
446
447 u32 tx_collisions;
448 u32 tx_excessive_collisions;
449 u32 tx_first_collisions;
450 u32 tx_late_collisions;
451 u32 tx_max_pkt_errs;
452 u32 tx_deferred;
453
454 /* Rx Statistics. */
455 u32 rx_overflows;
456
457 u32 rx_length_errs;
458 u32 rx_align_errs;
459 u32 rx_crc_errs;
460 u32 rx_code_violations;
461 u32 rx_other_errs;
462
463 u32 synchronous_iterations;
464 u32 interrupt_status;
465 };
466
467 /* The private adapter structure */
468 struct et131x_adapter {
469 struct net_device *netdev;
470 struct pci_dev *pdev;
471 struct mii_bus *mii_bus;
472 struct phy_device *phydev;
473 struct work_struct task;
474
475 /* Flags that indicate current state of the adapter */
476 u32 flags;
477
478 /* local link state, to determine if a state change has occurred */
479 int link;
480
481 /* Configuration */
482 u8 rom_addr[ETH_ALEN];
483 u8 addr[ETH_ALEN];
484 bool has_eeprom;
485 u8 eeprom_data[2];
486
487 /* Spinlocks */
488 spinlock_t tcb_send_qlock;
489 spinlock_t tcb_ready_qlock;
490 spinlock_t send_hw_lock;
491
492 spinlock_t rcv_lock;
493 spinlock_t fbr_lock;
494
495 /* Packet Filter and look ahead size */
496 u32 packet_filter;
497
498 /* multicast list */
499 u32 multicast_addr_count;
500 u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
501
502 /* Pointer to the device's PCI register space */
503 struct address_map __iomem *regs;
504
505 /* Registry parameters */
506 u8 wanted_flow; /* Flow we want for 802.3x flow control */
507 u32 registry_jumbo_packet; /* Max supported ethernet packet size */
508
509 /* Derived from the registry: */
510 u8 flowcontrol; /* flow control validated by the far-end */
511
512 /* Minimize init-time */
513 struct timer_list error_timer;
514
515 /* variable putting the phy into coma mode when boot up with no cable
516 * plugged in after 5 seconds
517 */
518 u8 boot_coma;
519
520 /* Next two used to save power information at power down. This
521 * information will be used during power up to set up parts of Power
522 * Management in JAGCore
523 */
524 u16 pdown_speed;
525 u8 pdown_duplex;
526
527 /* Tx Memory Variables */
528 struct tx_ring tx_ring;
529
530 /* Rx Memory Variables */
531 struct rx_ring rx_ring;
532
533 /* Stats */
534 struct ce_stats stats;
535
536 struct net_device_stats net_stats;
537 };
538
539 static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
540 {
541 u32 reg;
542 int i;
543
544 /* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
545 * bits 7,1:0 both equal to 1, at least once after reset.
546 * Subsequent operations need only to check that bits 1:0 are equal
547 * to 1 prior to starting a single byte read/write
548 */
549
550 for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
551 /* Read registers grouped in DWORD1 */
552 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
553 return -EIO;
554
555 /* I2C idle and Phy Queue Avail both true */
556 if ((reg & 0x3000) == 0x3000) {
557 if (status)
558 *status = reg;
559 return reg & 0xFF;
560 }
561 }
562 return -ETIMEDOUT;
563 }
564
565 /* eeprom_write - Write a byte to the ET1310's EEPROM
566 * @adapter: pointer to our private adapter structure
567 * @addr: the address to write
568 * @data: the value to write
569 *
570 * Returns 1 for a successful write.
571 */
572 static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
573 {
574 struct pci_dev *pdev = adapter->pdev;
575 int index = 0;
576 int retries;
577 int err = 0;
578 int i2c_wack = 0;
579 int writeok = 0;
580 u32 status;
581 u32 val = 0;
582
583 /* For an EEPROM, an I2C single byte write is defined as a START
584 * condition followed by the device address, EEPROM address, one byte
585 * of data and a STOP condition. The STOP condition will trigger the
586 * EEPROM's internally timed write cycle to the nonvolatile memory.
587 * All inputs are disabled during this write cycle and the EEPROM will
588 * not respond to any access until the internal write is complete.
589 */
590
591 err = eeprom_wait_ready(pdev, NULL);
592 if (err < 0)
593 return err;
594
595 /* 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0,
596 * and bits 1:0 both =0. Bit 5 should be set according to the
597 * type of EEPROM being accessed (1=two byte addressing, 0=one
598 * byte addressing).
599 */
600 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
601 LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE))
602 return -EIO;
603
604 i2c_wack = 1;
605
606 /* Prepare EEPROM address for Step 3 */
607
608 for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
609 /* Write the address to the LBCIF Address Register */
610 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
611 break;
612 /* Write the data to the LBCIF Data Register (the I2C write
613 * will begin).
614 */
615 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
616 break;
617 /* Monitor bit 1:0 of the LBCIF Status Register. When bits
618 * 1:0 are both equal to 1, the I2C write has completed and the
619 * internal write cycle of the EEPROM is about to start.
620 * (bits 1:0 = 01 is a legal state while waiting from both
621 * equal to 1, but bits 1:0 = 10 is invalid and implies that
622 * something is broken).
623 */
624 err = eeprom_wait_ready(pdev, &status);
625 if (err < 0)
626 return 0;
627
628 /* Check bit 3 of the LBCIF Status Register. If equal to 1,
629 * an error has occurred.Don't break here if we are revision
630 * 1, this is so we do a blind write for load bug.
631 */
632 if ((status & LBCIF_STATUS_GENERAL_ERROR)
633 && adapter->pdev->revision == 0)
634 break;
635
636 /* Check bit 2 of the LBCIF Status Register. If equal to 1 an
637 * ACK error has occurred on the address phase of the write.
638 * This could be due to an actual hardware failure or the
639 * EEPROM may still be in its internal write cycle from a
640 * previous write. This write operation was ignored and must be
641 *repeated later.
642 */
643 if (status & LBCIF_STATUS_ACK_ERROR) {
644 /* This could be due to an actual hardware failure
645 * or the EEPROM may still be in its internal write
646 * cycle from a previous write. This write operation
647 * was ignored and must be repeated later.
648 */
649 udelay(10);
650 continue;
651 }
652
653 writeok = 1;
654 break;
655 }
656
657 /* Set bit 6 of the LBCIF Control Register = 0.
658 */
659 udelay(10);
660
661 while (i2c_wack) {
662 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
663 LBCIF_CONTROL_LBCIF_ENABLE))
664 writeok = 0;
665
666 /* Do read until internal ACK_ERROR goes away meaning write
667 * completed
668 */
669 do {
670 pci_write_config_dword(pdev,
671 LBCIF_ADDRESS_REGISTER,
672 addr);
673 do {
674 pci_read_config_dword(pdev,
675 LBCIF_DATA_REGISTER, &val);
676 } while ((val & 0x00010000) == 0);
677 } while (val & 0x00040000);
678
679 if ((val & 0xFF00) != 0xC000 || index == 10000)
680 break;
681 index++;
682 }
683 return writeok ? 0 : -EIO;
684 }
685
686 /* eeprom_read - Read a byte from the ET1310's EEPROM
687 * @adapter: pointer to our private adapter structure
688 * @addr: the address from which to read
689 * @pdata: a pointer to a byte in which to store the value of the read
690 * @eeprom_id: the ID of the EEPROM
691 * @addrmode: how the EEPROM is to be accessed
692 *
693 * Returns 1 for a successful read
694 */
695 static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
696 {
697 struct pci_dev *pdev = adapter->pdev;
698 int err;
699 u32 status;
700
701 /* A single byte read is similar to the single byte write, with the
702 * exception of the data flow:
703 */
704
705 err = eeprom_wait_ready(pdev, NULL);
706 if (err < 0)
707 return err;
708 /* Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0,
709 * and bits 1:0 both =0. Bit 5 should be set according to the type
710 * of EEPROM being accessed (1=two byte addressing, 0=one byte
711 * addressing).
712 */
713 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
714 LBCIF_CONTROL_LBCIF_ENABLE))
715 return -EIO;
716 /* Write the address to the LBCIF Address Register (I2C read will
717 * begin).
718 */
719 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
720 return -EIO;
721 /* Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read
722 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
723 * has occurred).
724 */
725 err = eeprom_wait_ready(pdev, &status);
726 if (err < 0)
727 return err;
728 /* Regardless of error status, read data byte from LBCIF Data
729 * Register.
730 */
731 *pdata = err;
732 /* Check bit 2 of the LBCIF Status Register. If = 1,
733 * then an error has occurred.
734 */
735 return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
736 }
737
738 static int et131x_init_eeprom(struct et131x_adapter *adapter)
739 {
740 struct pci_dev *pdev = adapter->pdev;
741 u8 eestatus;
742
743 /* We first need to check the EEPROM Status code located at offset
744 * 0xB2 of config space
745 */
746 pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus);
747
748 /* THIS IS A WORKAROUND:
749 * I need to call this function twice to get my card in a
750 * LG M1 Express Dual running. I tried also a msleep before this
751 * function, because I thought there could be some time conditions
752 * but it didn't work. Call the whole function twice also work.
753 */
754 if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
755 dev_err(&pdev->dev,
756 "Could not read PCI config space for EEPROM Status\n");
757 return -EIO;
758 }
759
760 /* Determine if the error(s) we care about are present. If they are
761 * present we need to fail.
762 */
763 if (eestatus & 0x4C) {
764 int write_failed = 0;
765 if (pdev->revision == 0x01) {
766 int i;
767 static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
768
769 /* Re-write the first 4 bytes if we have an eeprom
770 * present and the revision id is 1, this fixes the
771 * corruption seen with 1310 B Silicon
772 */
773 for (i = 0; i < 3; i++)
774 if (eeprom_write(adapter, i, eedata[i]) < 0)
775 write_failed = 1;
776 }
777 if (pdev->revision != 0x01 || write_failed) {
778 dev_err(&pdev->dev,
779 "Fatal EEPROM Status Error - 0x%04x\n", eestatus);
780
781 /* This error could mean that there was an error
782 * reading the eeprom or that the eeprom doesn't exist.
783 * We will treat each case the same and not try to
784 * gather additional information that normally would
785 * come from the eeprom, like MAC Address
786 */
787 adapter->has_eeprom = 0;
788 return -EIO;
789 }
790 }
791 adapter->has_eeprom = 1;
792
793 /* Read the EEPROM for information regarding LED behavior. Refer to
794 * ET1310_phy.c, et131x_xcvr_init(), for its use.
795 */
796 eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
797 eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
798
799 if (adapter->eeprom_data[0] != 0xcd)
800 /* Disable all optional features */
801 adapter->eeprom_data[1] = 0x00;
802
803 return 0;
804 }
805
806 /* et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
807 * @adapter: pointer to our adapter structure
808 */
809 static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
810 {
811 /* Setup the receive dma configuration register for normal operation */
812 u32 csr = ET_RXDMA_CSR_FBR1_ENABLE;
813 struct rx_ring *rx_ring = &adapter->rx_ring;
814
815 if (rx_ring->fbr[1]->buffsize == 4096)
816 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO;
817 else if (rx_ring->fbr[1]->buffsize == 8192)
818 csr |= ET_RXDMA_CSR_FBR1_SIZE_HI;
819 else if (rx_ring->fbr[1]->buffsize == 16384)
820 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI;
821
822 csr |= ET_RXDMA_CSR_FBR0_ENABLE;
823 if (rx_ring->fbr[0]->buffsize == 256)
824 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO;
825 else if (rx_ring->fbr[0]->buffsize == 512)
826 csr |= ET_RXDMA_CSR_FBR0_SIZE_HI;
827 else if (rx_ring->fbr[0]->buffsize == 1024)
828 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI;
829 writel(csr, &adapter->regs->rxdma.csr);
830
831 csr = readl(&adapter->regs->rxdma.csr);
832 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
833 udelay(5);
834 csr = readl(&adapter->regs->rxdma.csr);
835 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
836 dev_err(&adapter->pdev->dev,
837 "RX Dma failed to exit halt state. CSR 0x%08x\n",
838 csr);
839 }
840 }
841 }
842
843 /* et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
844 * @adapter: pointer to our adapter structure
845 */
846 static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
847 {
848 u32 csr;
849 /* Setup the receive dma configuration register */
850 writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE,
851 &adapter->regs->rxdma.csr);
852 csr = readl(&adapter->regs->rxdma.csr);
853 if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) {
854 udelay(5);
855 csr = readl(&adapter->regs->rxdma.csr);
856 if (!(csr & ET_RXDMA_CSR_HALT_STATUS))
857 dev_err(&adapter->pdev->dev,
858 "RX Dma failed to enter halt state. CSR 0x%08x\n",
859 csr);
860 }
861 }
862
863 /* et131x_tx_dma_enable - re-start of Tx_DMA on the ET1310.
864 * @adapter: pointer to our adapter structure
865 *
866 * Mainly used after a return to the D0 (full-power) state from a lower state.
867 */
868 static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
869 {
870 /* Setup the transmit dma configuration register for normal
871 * operation
872 */
873 writel(ET_TXDMA_SNGL_EPKT|(PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
874 &adapter->regs->txdma.csr);
875 }
876
877 static inline void add_10bit(u32 *v, int n)
878 {
879 *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
880 }
881
882 static inline void add_12bit(u32 *v, int n)
883 {
884 *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
885 }
886
887 /* et1310_config_mac_regs1 - Initialize the first part of MAC regs
888 * @adapter: pointer to our adapter structure
889 */
890 static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
891 {
892 struct mac_regs __iomem *macregs = &adapter->regs->mac;
893 u32 station1;
894 u32 station2;
895 u32 ipg;
896
897 /* First we need to reset everything. Write to MAC configuration
898 * register 1 to perform reset.
899 */
900 writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
901 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
902 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC,
903 &macregs->cfg1);
904
905 /* Next lets configure the MAC Inter-packet gap register */
906 ipg = 0x38005860; /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
907 ipg |= 0x50 << 8; /* ifg enforce 0x50 */
908 writel(ipg, &macregs->ipg);
909
910 /* Next lets configure the MAC Half Duplex register */
911 /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
912 writel(0x00A1F037, &macregs->hfdp);
913
914 /* Next lets configure the MAC Interface Control register */
915 writel(0, &macregs->if_ctrl);
916
917 /* Let's move on to setting up the mii management configuration */
918 writel(ET_MAC_MIIMGMT_CLK_RST, &macregs->mii_mgmt_cfg);
919
920 /* Next lets configure the MAC Station Address register. These
921 * values are read from the EEPROM during initialization and stored
922 * in the adapter structure. We write what is stored in the adapter
923 * structure to the MAC Station Address registers high and low. This
924 * station address is used for generating and checking pause control
925 * packets.
926 */
927 station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
928 (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
929 station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
930 (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
931 (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
932 adapter->addr[2];
933 writel(station1, &macregs->station_addr_1);
934 writel(station2, &macregs->station_addr_2);
935
936 /* Max ethernet packet in bytes that will be passed by the mac without
937 * being truncated. Allow the MAC to pass 4 more than our max packet
938 * size. This is 4 for the Ethernet CRC.
939 *
940 * Packets larger than (registry_jumbo_packet) that do not contain a
941 * VLAN ID will be dropped by the Rx function.
942 */
943 writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
944
945 /* clear out MAC config reset */
946 writel(0, &macregs->cfg1);
947 }
948
949 /* et1310_config_mac_regs2 - Initialize the second part of MAC regs
950 * @adapter: pointer to our adapter structure
951 */
952 static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
953 {
954 int32_t delay = 0;
955 struct mac_regs __iomem *mac = &adapter->regs->mac;
956 struct phy_device *phydev = adapter->phydev;
957 u32 cfg1;
958 u32 cfg2;
959 u32 ifctrl;
960 u32 ctl;
961
962 ctl = readl(&adapter->regs->txmac.ctl);
963 cfg1 = readl(&mac->cfg1);
964 cfg2 = readl(&mac->cfg2);
965 ifctrl = readl(&mac->if_ctrl);
966
967 /* Set up the if mode bits */
968 cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK;
969 if (phydev->speed == SPEED_1000) {
970 cfg2 |= ET_MAC_CFG2_IFMODE_1000;
971 /* Phy mode bit */
972 ifctrl &= ~ET_MAC_IFCTRL_PHYMODE;
973 } else {
974 cfg2 |= ET_MAC_CFG2_IFMODE_100;
975 ifctrl |= ET_MAC_IFCTRL_PHYMODE;
976 }
977
978 /* We need to enable Rx/Tx */
979 cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE |
980 ET_MAC_CFG1_TX_FLOW;
981 /* Initialize loop back to off */
982 cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW);
983 if (adapter->flowcontrol == FLOW_RXONLY ||
984 adapter->flowcontrol == FLOW_BOTH)
985 cfg1 |= ET_MAC_CFG1_RX_FLOW;
986 writel(cfg1, &mac->cfg1);
987
988 /* Now we need to initialize the MAC Configuration 2 register */
989 /* preamble 7, check length, huge frame off, pad crc, crc enable
990 * full duplex off
991 */
992 cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT;
993 cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK;
994 cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC;
995 cfg2 |= ET_MAC_CFG2_IFMODE_CRC_ENABLE;
996 cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME;
997 cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX;
998
999 /* Turn on duplex if needed */
1000 if (phydev->duplex == DUPLEX_FULL)
1001 cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX;
1002
1003 ifctrl &= ~ET_MAC_IFCTRL_GHDMODE;
1004 if (phydev->duplex == DUPLEX_HALF)
1005 ifctrl |= ET_MAC_IFCTRL_GHDMODE;
1006
1007 writel(ifctrl, &mac->if_ctrl);
1008 writel(cfg2, &mac->cfg2);
1009
1010 do {
1011 udelay(10);
1012 delay++;
1013 cfg1 = readl(&mac->cfg1);
1014 } while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100);
1015
1016 if (delay == 100) {
1017 dev_warn(&adapter->pdev->dev,
1018 "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
1019 cfg1);
1020 }
1021
1022 /* Enable txmac */
1023 ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE;
1024 writel(ctl, &adapter->regs->txmac.ctl);
1025
1026 /* Ready to start the RXDMA/TXDMA engine */
1027 if (adapter->flags & FMP_ADAPTER_LOWER_POWER) {
1028 et131x_rx_dma_enable(adapter);
1029 et131x_tx_dma_enable(adapter);
1030 }
1031 }
1032
1033 /* et1310_in_phy_coma - check if the device is in phy coma
1034 * @adapter: pointer to our adapter structure
1035 *
1036 * Returns 0 if the device is not in phy coma, 1 if it is in phy coma
1037 */
1038 static int et1310_in_phy_coma(struct et131x_adapter *adapter)
1039 {
1040 u32 pmcsr = readl(&adapter->regs->global.pm_csr);
1041
1042 return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
1043 }
1044
1045 static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
1046 {
1047 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1048 u32 hash1 = 0;
1049 u32 hash2 = 0;
1050 u32 hash3 = 0;
1051 u32 hash4 = 0;
1052 u32 pm_csr;
1053
1054 /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
1055 * the multi-cast LIST. If it is NOT specified, (and "ALL" is not
1056 * specified) then we should pass NO multi-cast addresses to the
1057 * driver.
1058 */
1059 if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
1060 int i;
1061
1062 /* Loop through our multicast array and set up the device */
1063 for (i = 0; i < adapter->multicast_addr_count; i++) {
1064 u32 result;
1065
1066 result = ether_crc(6, adapter->multicast_list[i]);
1067
1068 result = (result & 0x3F800000) >> 23;
1069
1070 if (result < 32) {
1071 hash1 |= (1 << result);
1072 } else if ((31 < result) && (result < 64)) {
1073 result -= 32;
1074 hash2 |= (1 << result);
1075 } else if ((63 < result) && (result < 96)) {
1076 result -= 64;
1077 hash3 |= (1 << result);
1078 } else {
1079 result -= 96;
1080 hash4 |= (1 << result);
1081 }
1082 }
1083 }
1084
1085 /* Write out the new hash to the device */
1086 pm_csr = readl(&adapter->regs->global.pm_csr);
1087 if (!et1310_in_phy_coma(adapter)) {
1088 writel(hash1, &rxmac->multi_hash1);
1089 writel(hash2, &rxmac->multi_hash2);
1090 writel(hash3, &rxmac->multi_hash3);
1091 writel(hash4, &rxmac->multi_hash4);
1092 }
1093 }
1094
1095 static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
1096 {
1097 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1098 u32 uni_pf1;
1099 u32 uni_pf2;
1100 u32 uni_pf3;
1101 u32 pm_csr;
1102
1103 /* Set up unicast packet filter reg 3 to be the first two octets of
1104 * the MAC address for both address
1105 *
1106 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1107 * MAC address for second address
1108 *
1109 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1110 * MAC address for first address
1111 */
1112 uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) |
1113 (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) |
1114 (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) |
1115 adapter->addr[1];
1116
1117 uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) |
1118 (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) |
1119 (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) |
1120 adapter->addr[5];
1121
1122 uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) |
1123 (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) |
1124 (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) |
1125 adapter->addr[5];
1126
1127 pm_csr = readl(&adapter->regs->global.pm_csr);
1128 if (!et1310_in_phy_coma(adapter)) {
1129 writel(uni_pf1, &rxmac->uni_pf_addr1);
1130 writel(uni_pf2, &rxmac->uni_pf_addr2);
1131 writel(uni_pf3, &rxmac->uni_pf_addr3);
1132 }
1133 }
1134
1135 static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1136 {
1137 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1138 struct phy_device *phydev = adapter->phydev;
1139 u32 sa_lo;
1140 u32 sa_hi = 0;
1141 u32 pf_ctrl = 0;
1142
1143 /* Disable the MAC while it is being configured (also disable WOL) */
1144 writel(0x8, &rxmac->ctrl);
1145
1146 /* Initialize WOL to disabled. */
1147 writel(0, &rxmac->crc0);
1148 writel(0, &rxmac->crc12);
1149 writel(0, &rxmac->crc34);
1150
1151 /* We need to set the WOL mask0 - mask4 next. We initialize it to
1152 * its default Values of 0x00000000 because there are not WOL masks
1153 * as of this time.
1154 */
1155 writel(0, &rxmac->mask0_word0);
1156 writel(0, &rxmac->mask0_word1);
1157 writel(0, &rxmac->mask0_word2);
1158 writel(0, &rxmac->mask0_word3);
1159
1160 writel(0, &rxmac->mask1_word0);
1161 writel(0, &rxmac->mask1_word1);
1162 writel(0, &rxmac->mask1_word2);
1163 writel(0, &rxmac->mask1_word3);
1164
1165 writel(0, &rxmac->mask2_word0);
1166 writel(0, &rxmac->mask2_word1);
1167 writel(0, &rxmac->mask2_word2);
1168 writel(0, &rxmac->mask2_word3);
1169
1170 writel(0, &rxmac->mask3_word0);
1171 writel(0, &rxmac->mask3_word1);
1172 writel(0, &rxmac->mask3_word2);
1173 writel(0, &rxmac->mask3_word3);
1174
1175 writel(0, &rxmac->mask4_word0);
1176 writel(0, &rxmac->mask4_word1);
1177 writel(0, &rxmac->mask4_word2);
1178 writel(0, &rxmac->mask4_word3);
1179
1180 /* Lets setup the WOL Source Address */
1181 sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) |
1182 (adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) |
1183 (adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) |
1184 adapter->addr[5];
1185 writel(sa_lo, &rxmac->sa_lo);
1186
1187 sa_hi = (u32) (adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) |
1188 adapter->addr[1];
1189 writel(sa_hi, &rxmac->sa_hi);
1190
1191 /* Disable all Packet Filtering */
1192 writel(0, &rxmac->pf_ctrl);
1193
1194 /* Let's initialize the Unicast Packet filtering address */
1195 if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1196 et1310_setup_device_for_unicast(adapter);
1197 pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE;
1198 } else {
1199 writel(0, &rxmac->uni_pf_addr1);
1200 writel(0, &rxmac->uni_pf_addr2);
1201 writel(0, &rxmac->uni_pf_addr3);
1202 }
1203
1204 /* Let's initialize the Multicast hash */
1205 if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1206 pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE;
1207 et1310_setup_device_for_multicast(adapter);
1208 }
1209
1210 /* Runt packet filtering. Didn't work in version A silicon. */
1211 pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT;
1212 pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE;
1213
1214 if (adapter->registry_jumbo_packet > 8192)
1215 /* In order to transmit jumbo packets greater than 8k, the
1216 * FIFO between RxMAC and RxDMA needs to be reduced in size
1217 * to (16k - Jumbo packet size). In order to implement this,
1218 * we must use "cut through" mode in the RxMAC, which chops
1219 * packets down into segments which are (max_size * 16). In
1220 * this case we selected 256 bytes, since this is the size of
1221 * the PCI-Express TLP's that the 1310 uses.
1222 *
1223 * seg_en on, fc_en off, size 0x10
1224 */
1225 writel(0x41, &rxmac->mcif_ctrl_max_seg);
1226 else
1227 writel(0, &rxmac->mcif_ctrl_max_seg);
1228
1229 /* Initialize the MCIF water marks */
1230 writel(0, &rxmac->mcif_water_mark);
1231
1232 /* Initialize the MIF control */
1233 writel(0, &rxmac->mif_ctrl);
1234
1235 /* Initialize the Space Available Register */
1236 writel(0, &rxmac->space_avail);
1237
1238 /* Initialize the the mif_ctrl register
1239 * bit 3: Receive code error. One or more nibbles were signaled as
1240 * errors during the reception of the packet. Clear this
1241 * bit in Gigabit, set it in 100Mbit. This was derived
1242 * experimentally at UNH.
1243 * bit 4: Receive CRC error. The packet's CRC did not match the
1244 * internally generated CRC.
1245 * bit 5: Receive length check error. Indicates that frame length
1246 * field value in the packet does not match the actual data
1247 * byte length and is not a type field.
1248 * bit 16: Receive frame truncated.
1249 * bit 17: Drop packet enable
1250 */
1251 if (phydev && phydev->speed == SPEED_100)
1252 writel(0x30038, &rxmac->mif_ctrl);
1253 else
1254 writel(0x30030, &rxmac->mif_ctrl);
1255
1256 /* Finally we initialize RxMac to be enabled & WOL disabled. Packet
1257 * filter is always enabled since it is where the runt packets are
1258 * supposed to be dropped. For version A silicon, runt packet
1259 * dropping doesn't work, so it is disabled in the pf_ctrl register,
1260 * but we still leave the packet filter on.
1261 */
1262 writel(pf_ctrl, &rxmac->pf_ctrl);
1263 writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl);
1264 }
1265
1266 static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1267 {
1268 struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1269
1270 /* We need to update the Control Frame Parameters
1271 * cfpt - control frame pause timer set to 64 (0x40)
1272 * cfep - control frame extended pause timer set to 0x0
1273 */
1274 if (adapter->flowcontrol == FLOW_NONE)
1275 writel(0, &txmac->cf_param);
1276 else
1277 writel(0x40, &txmac->cf_param);
1278 }
1279
1280 static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1281 {
1282 struct macstat_regs __iomem *macstat =
1283 &adapter->regs->macstat;
1284
1285 /* Next we need to initialize all the macstat registers to zero on
1286 * the device.
1287 */
1288 writel(0, &macstat->txrx_0_64_byte_frames);
1289 writel(0, &macstat->txrx_65_127_byte_frames);
1290 writel(0, &macstat->txrx_128_255_byte_frames);
1291 writel(0, &macstat->txrx_256_511_byte_frames);
1292 writel(0, &macstat->txrx_512_1023_byte_frames);
1293 writel(0, &macstat->txrx_1024_1518_byte_frames);
1294 writel(0, &macstat->txrx_1519_1522_gvln_frames);
1295
1296 writel(0, &macstat->rx_bytes);
1297 writel(0, &macstat->rx_packets);
1298 writel(0, &macstat->rx_fcs_errs);
1299 writel(0, &macstat->rx_multicast_packets);
1300 writel(0, &macstat->rx_broadcast_packets);
1301 writel(0, &macstat->rx_control_frames);
1302 writel(0, &macstat->rx_pause_frames);
1303 writel(0, &macstat->rx_unknown_opcodes);
1304 writel(0, &macstat->rx_align_errs);
1305 writel(0, &macstat->rx_frame_len_errs);
1306 writel(0, &macstat->rx_code_errs);
1307 writel(0, &macstat->rx_carrier_sense_errs);
1308 writel(0, &macstat->rx_undersize_packets);
1309 writel(0, &macstat->rx_oversize_packets);
1310 writel(0, &macstat->rx_fragment_packets);
1311 writel(0, &macstat->rx_jabbers);
1312 writel(0, &macstat->rx_drops);
1313
1314 writel(0, &macstat->tx_bytes);
1315 writel(0, &macstat->tx_packets);
1316 writel(0, &macstat->tx_multicast_packets);
1317 writel(0, &macstat->tx_broadcast_packets);
1318 writel(0, &macstat->tx_pause_frames);
1319 writel(0, &macstat->tx_deferred);
1320 writel(0, &macstat->tx_excessive_deferred);
1321 writel(0, &macstat->tx_single_collisions);
1322 writel(0, &macstat->tx_multiple_collisions);
1323 writel(0, &macstat->tx_late_collisions);
1324 writel(0, &macstat->tx_excessive_collisions);
1325 writel(0, &macstat->tx_total_collisions);
1326 writel(0, &macstat->tx_pause_honored_frames);
1327 writel(0, &macstat->tx_drops);
1328 writel(0, &macstat->tx_jabbers);
1329 writel(0, &macstat->tx_fcs_errs);
1330 writel(0, &macstat->tx_control_frames);
1331 writel(0, &macstat->tx_oversize_frames);
1332 writel(0, &macstat->tx_undersize_frames);
1333 writel(0, &macstat->tx_fragments);
1334 writel(0, &macstat->carry_reg1);
1335 writel(0, &macstat->carry_reg2);
1336
1337 /* Unmask any counters that we want to track the overflow of.
1338 * Initially this will be all counters. It may become clear later
1339 * that we do not need to track all counters.
1340 */
1341 writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1342 writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1343 }
1344
1345 /* et131x_phy_mii_read - Read from the PHY through the MII Interface on the MAC
1346 * @adapter: pointer to our private adapter structure
1347 * @addr: the address of the transceiver
1348 * @reg: the register to read
1349 * @value: pointer to a 16-bit value in which the value will be stored
1350 */
1351 static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1352 u8 reg, u16 *value)
1353 {
1354 struct mac_regs __iomem *mac = &adapter->regs->mac;
1355 int status = 0;
1356 u32 delay = 0;
1357 u32 mii_addr;
1358 u32 mii_cmd;
1359 u32 mii_indicator;
1360
1361 /* Save a local copy of the registers we are dealing with so we can
1362 * set them back
1363 */
1364 mii_addr = readl(&mac->mii_mgmt_addr);
1365 mii_cmd = readl(&mac->mii_mgmt_cmd);
1366
1367 /* Stop the current operation */
1368 writel(0, &mac->mii_mgmt_cmd);
1369
1370 /* Set up the register we need to read from on the correct PHY */
1371 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1372
1373 writel(0x1, &mac->mii_mgmt_cmd);
1374
1375 do {
1376 udelay(50);
1377 delay++;
1378 mii_indicator = readl(&mac->mii_mgmt_indicator);
1379 } while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50);
1380
1381 /* If we hit the max delay, we could not read the register */
1382 if (delay == 50) {
1383 dev_warn(&adapter->pdev->dev,
1384 "reg 0x%08x could not be read\n", reg);
1385 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1386 mii_indicator);
1387
1388 status = -EIO;
1389 goto out;
1390 }
1391
1392 /* If we hit here we were able to read the register and we need to
1393 * return the value to the caller
1394 */
1395 *value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK;
1396
1397 out:
1398 /* Stop the read operation */
1399 writel(0, &mac->mii_mgmt_cmd);
1400
1401 /* set the registers we touched back to the state at which we entered
1402 * this function
1403 */
1404 writel(mii_addr, &mac->mii_mgmt_addr);
1405 writel(mii_cmd, &mac->mii_mgmt_cmd);
1406
1407 return status;
1408 }
1409
1410 static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1411 {
1412 struct phy_device *phydev = adapter->phydev;
1413
1414 if (!phydev)
1415 return -EIO;
1416
1417 return et131x_phy_mii_read(adapter, phydev->addr, reg, value);
1418 }
1419
1420 /* et131x_mii_write - Write to a PHY reg through the MII interface of the MAC
1421 * @adapter: pointer to our private adapter structure
1422 * @reg: the register to read
1423 * @value: 16-bit value to write
1424 */
1425 static int et131x_mii_write(struct et131x_adapter *adapter, u8 reg, u16 value)
1426 {
1427 struct mac_regs __iomem *mac = &adapter->regs->mac;
1428 struct phy_device *phydev = adapter->phydev;
1429 int status = 0;
1430 u8 addr;
1431 u32 delay = 0;
1432 u32 mii_addr;
1433 u32 mii_cmd;
1434 u32 mii_indicator;
1435
1436 if (!phydev)
1437 return -EIO;
1438
1439 addr = phydev->addr;
1440
1441 /* Save a local copy of the registers we are dealing with so we can
1442 * set them back
1443 */
1444 mii_addr = readl(&mac->mii_mgmt_addr);
1445 mii_cmd = readl(&mac->mii_mgmt_cmd);
1446
1447 /* Stop the current operation */
1448 writel(0, &mac->mii_mgmt_cmd);
1449
1450 /* Set up the register we need to write to on the correct PHY */
1451 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1452
1453 /* Add the value to write to the registers to the mac */
1454 writel(value, &mac->mii_mgmt_ctrl);
1455
1456 do {
1457 udelay(50);
1458 delay++;
1459 mii_indicator = readl(&mac->mii_mgmt_indicator);
1460 } while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100);
1461
1462 /* If we hit the max delay, we could not write the register */
1463 if (delay == 100) {
1464 u16 tmp;
1465
1466 dev_warn(&adapter->pdev->dev,
1467 "reg 0x%08x could not be written", reg);
1468 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1469 mii_indicator);
1470 dev_warn(&adapter->pdev->dev, "command is 0x%08x\n",
1471 readl(&mac->mii_mgmt_cmd));
1472
1473 et131x_mii_read(adapter, reg, &tmp);
1474
1475 status = -EIO;
1476 }
1477 /* Stop the write operation */
1478 writel(0, &mac->mii_mgmt_cmd);
1479
1480 /* set the registers we touched back to the state at which we entered
1481 * this function
1482 */
1483 writel(mii_addr, &mac->mii_mgmt_addr);
1484 writel(mii_cmd, &mac->mii_mgmt_cmd);
1485
1486 return status;
1487 }
1488
1489 static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter,
1490 u16 regnum,
1491 u16 bitnum,
1492 u8 *value)
1493 {
1494 u16 reg;
1495 u16 mask = 1 << bitnum;
1496
1497 /* Read the requested register */
1498 et131x_mii_read(adapter, regnum, &reg);
1499
1500 *value = (reg & mask) >> bitnum;
1501 }
1502
1503 static void et1310_config_flow_control(struct et131x_adapter *adapter)
1504 {
1505 struct phy_device *phydev = adapter->phydev;
1506
1507 if (phydev->duplex == DUPLEX_HALF) {
1508 adapter->flowcontrol = FLOW_NONE;
1509 } else {
1510 char remote_pause, remote_async_pause;
1511
1512 et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause);
1513 et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause);
1514
1515 if (remote_pause && remote_async_pause) {
1516 adapter->flowcontrol = adapter->wanted_flow;
1517 } else if (remote_pause && !remote_async_pause) {
1518 if (adapter->wanted_flow == FLOW_BOTH)
1519 adapter->flowcontrol = FLOW_BOTH;
1520 else
1521 adapter->flowcontrol = FLOW_NONE;
1522 } else if (!remote_pause && !remote_async_pause) {
1523 adapter->flowcontrol = FLOW_NONE;
1524 } else {
1525 if (adapter->wanted_flow == FLOW_BOTH)
1526 adapter->flowcontrol = FLOW_RXONLY;
1527 else
1528 adapter->flowcontrol = FLOW_NONE;
1529 }
1530 }
1531 }
1532
1533 /* et1310_update_macstat_host_counters - Update local copy of the statistics */
1534 static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1535 {
1536 struct ce_stats *stats = &adapter->stats;
1537 struct macstat_regs __iomem *macstat =
1538 &adapter->regs->macstat;
1539
1540 stats->tx_collisions += readl(&macstat->tx_total_collisions);
1541 stats->tx_first_collisions += readl(&macstat->tx_single_collisions);
1542 stats->tx_deferred += readl(&macstat->tx_deferred);
1543 stats->tx_excessive_collisions +=
1544 readl(&macstat->tx_multiple_collisions);
1545 stats->tx_late_collisions += readl(&macstat->tx_late_collisions);
1546 stats->tx_underflows += readl(&macstat->tx_undersize_frames);
1547 stats->tx_max_pkt_errs += readl(&macstat->tx_oversize_frames);
1548
1549 stats->rx_align_errs += readl(&macstat->rx_align_errs);
1550 stats->rx_crc_errs += readl(&macstat->rx_code_errs);
1551 stats->rcvd_pkts_dropped += readl(&macstat->rx_drops);
1552 stats->rx_overflows += readl(&macstat->rx_oversize_packets);
1553 stats->rx_code_violations += readl(&macstat->rx_fcs_errs);
1554 stats->rx_length_errs += readl(&macstat->rx_frame_len_errs);
1555 stats->rx_other_errs += readl(&macstat->rx_fragment_packets);
1556 }
1557
1558 /* et1310_handle_macstat_interrupt
1559 *
1560 * One of the MACSTAT counters has wrapped. Update the local copy of
1561 * the statistics held in the adapter structure, checking the "wrap"
1562 * bit for each counter.
1563 */
1564 static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1565 {
1566 u32 carry_reg1;
1567 u32 carry_reg2;
1568
1569 /* Read the interrupt bits from the register(s). These are Clear On
1570 * Write.
1571 */
1572 carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1573 carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1574
1575 writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1576 writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1577
1578 /* We need to do update the host copy of all the MAC_STAT counters.
1579 * For each counter, check it's overflow bit. If the overflow bit is
1580 * set, then increment the host version of the count by one complete
1581 * revolution of the counter. This routine is called when the counter
1582 * block indicates that one of the counters has wrapped.
1583 */
1584 if (carry_reg1 & (1 << 14))
1585 adapter->stats.rx_code_violations += COUNTER_WRAP_16_BIT;
1586 if (carry_reg1 & (1 << 8))
1587 adapter->stats.rx_align_errs += COUNTER_WRAP_12_BIT;
1588 if (carry_reg1 & (1 << 7))
1589 adapter->stats.rx_length_errs += COUNTER_WRAP_16_BIT;
1590 if (carry_reg1 & (1 << 2))
1591 adapter->stats.rx_other_errs += COUNTER_WRAP_16_BIT;
1592 if (carry_reg1 & (1 << 6))
1593 adapter->stats.rx_crc_errs += COUNTER_WRAP_16_BIT;
1594 if (carry_reg1 & (1 << 3))
1595 adapter->stats.rx_overflows += COUNTER_WRAP_16_BIT;
1596 if (carry_reg1 & (1 << 0))
1597 adapter->stats.rcvd_pkts_dropped += COUNTER_WRAP_16_BIT;
1598 if (carry_reg2 & (1 << 16))
1599 adapter->stats.tx_max_pkt_errs += COUNTER_WRAP_12_BIT;
1600 if (carry_reg2 & (1 << 15))
1601 adapter->stats.tx_underflows += COUNTER_WRAP_12_BIT;
1602 if (carry_reg2 & (1 << 6))
1603 adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1604 if (carry_reg2 & (1 << 8))
1605 adapter->stats.tx_deferred += COUNTER_WRAP_12_BIT;
1606 if (carry_reg2 & (1 << 5))
1607 adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1608 if (carry_reg2 & (1 << 4))
1609 adapter->stats.tx_late_collisions += COUNTER_WRAP_12_BIT;
1610 if (carry_reg2 & (1 << 2))
1611 adapter->stats.tx_collisions += COUNTER_WRAP_12_BIT;
1612 }
1613
1614 static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1615 {
1616 struct net_device *netdev = bus->priv;
1617 struct et131x_adapter *adapter = netdev_priv(netdev);
1618 u16 value;
1619 int ret;
1620
1621 ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1622
1623 if (ret < 0)
1624 return ret;
1625 else
1626 return value;
1627 }
1628
1629 static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1630 int reg, u16 value)
1631 {
1632 struct net_device *netdev = bus->priv;
1633 struct et131x_adapter *adapter = netdev_priv(netdev);
1634
1635 return et131x_mii_write(adapter, reg, value);
1636 }
1637
1638 static int et131x_mdio_reset(struct mii_bus *bus)
1639 {
1640 struct net_device *netdev = bus->priv;
1641 struct et131x_adapter *adapter = netdev_priv(netdev);
1642
1643 et131x_mii_write(adapter, MII_BMCR, BMCR_RESET);
1644
1645 return 0;
1646 }
1647
1648 /* et1310_phy_power_switch - PHY power control
1649 * @adapter: device to control
1650 * @down: true for off/false for back on
1651 *
1652 * one hundred, ten, one thousand megs
1653 * How would you like to have your LAN accessed
1654 * Can't you see that this code processed
1655 * Phy power, phy power..
1656 */
1657 static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down)
1658 {
1659 u16 data;
1660
1661 et131x_mii_read(adapter, MII_BMCR, &data);
1662 data &= ~BMCR_PDOWN;
1663 if (down)
1664 data |= BMCR_PDOWN;
1665 et131x_mii_write(adapter, MII_BMCR, data);
1666 }
1667
1668 /* et131x_xcvr_init - Init the phy if we are setting it into force mode */
1669 static void et131x_xcvr_init(struct et131x_adapter *adapter)
1670 {
1671 u16 lcr2;
1672
1673 /* Set the LED behavior such that LED 1 indicates speed (off =
1674 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1675 * link and activity (on for link, blink off for activity).
1676 *
1677 * NOTE: Some customizations have been added here for specific
1678 * vendors; The LED behavior is now determined by vendor data in the
1679 * EEPROM. However, the above description is the default.
1680 */
1681 if ((adapter->eeprom_data[1] & 0x4) == 0) {
1682 et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1683
1684 lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
1685 lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1686
1687 if ((adapter->eeprom_data[1] & 0x8) == 0)
1688 lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1689 else
1690 lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1691
1692 et131x_mii_write(adapter, PHY_LED_2, lcr2);
1693 }
1694 }
1695
1696 /* et131x_configure_global_regs - configure JAGCore global regs
1697 *
1698 * Used to configure the global registers on the JAGCore
1699 */
1700 static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1701 {
1702 struct global_regs __iomem *regs = &adapter->regs->global;
1703
1704 writel(0, &regs->rxq_start_addr);
1705 writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1706
1707 if (adapter->registry_jumbo_packet < 2048) {
1708 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1709 * block of RAM that the driver can split between Tx
1710 * and Rx as it desires. Our default is to split it
1711 * 50/50:
1712 */
1713 writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1714 writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1715 } else if (adapter->registry_jumbo_packet < 8192) {
1716 /* For jumbo packets > 2k but < 8k, split 50-50. */
1717 writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1718 writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1719 } else {
1720 /* 9216 is the only packet size greater than 8k that
1721 * is available. The Tx buffer has to be big enough
1722 * for one whole packet on the Tx side. We'll make
1723 * the Tx 9408, and give the rest to Rx
1724 */
1725 writel(0x01b3, &regs->rxq_end_addr);
1726 writel(0x01b4, &regs->txq_start_addr);
1727 }
1728
1729 /* Initialize the loopback register. Disable all loopbacks. */
1730 writel(0, &regs->loopback);
1731
1732 /* MSI Register */
1733 writel(0, &regs->msi_config);
1734
1735 /* By default, disable the watchdog timer. It will be enabled when
1736 * a packet is queued.
1737 */
1738 writel(0, &regs->watchdog_timer);
1739 }
1740
1741 /* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */
1742 static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1743 {
1744 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1745 struct rx_ring *rx_local = &adapter->rx_ring;
1746 struct fbr_desc *fbr_entry;
1747 u32 entry;
1748 u32 psr_num_des;
1749 unsigned long flags;
1750 u8 id;
1751
1752 /* Halt RXDMA to perform the reconfigure. */
1753 et131x_rx_dma_disable(adapter);
1754
1755 /* Load the completion writeback physical address */
1756 writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi);
1757 writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo);
1758
1759 memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1760
1761 /* Set the address and parameters of the packet status ring into the
1762 * 1310's registers
1763 */
1764 writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi);
1765 writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo);
1766 writel(rx_local->psr_num_entries - 1, &rx_dma->psr_num_des);
1767 writel(0, &rx_dma->psr_full_offset);
1768
1769 psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK;
1770 writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1771 &rx_dma->psr_min_des);
1772
1773 spin_lock_irqsave(&adapter->rcv_lock, flags);
1774
1775 /* These local variables track the PSR in the adapter structure */
1776 rx_local->local_psr_full = 0;
1777
1778 for (id = 0; id < NUM_FBRS; id++) {
1779 u32 __iomem *num_des;
1780 u32 __iomem *full_offset;
1781 u32 __iomem *min_des;
1782 u32 __iomem *base_hi;
1783 u32 __iomem *base_lo;
1784 struct fbr_lookup *fbr = rx_local->fbr[id];
1785
1786 if (id == 0) {
1787 num_des = &rx_dma->fbr0_num_des;
1788 full_offset = &rx_dma->fbr0_full_offset;
1789 min_des = &rx_dma->fbr0_min_des;
1790 base_hi = &rx_dma->fbr0_base_hi;
1791 base_lo = &rx_dma->fbr0_base_lo;
1792 } else {
1793 num_des = &rx_dma->fbr1_num_des;
1794 full_offset = &rx_dma->fbr1_full_offset;
1795 min_des = &rx_dma->fbr1_min_des;
1796 base_hi = &rx_dma->fbr1_base_hi;
1797 base_lo = &rx_dma->fbr1_base_lo;
1798 }
1799
1800 /* Now's the best time to initialize FBR contents */
1801 fbr_entry = fbr->ring_virtaddr;
1802 for (entry = 0; entry < fbr->num_entries; entry++) {
1803 fbr_entry->addr_hi = fbr->bus_high[entry];
1804 fbr_entry->addr_lo = fbr->bus_low[entry];
1805 fbr_entry->word2 = entry;
1806 fbr_entry++;
1807 }
1808
1809 /* Set the address and parameters of Free buffer ring 1 and 0
1810 * into the 1310's registers
1811 */
1812 writel(upper_32_bits(fbr->ring_physaddr), base_hi);
1813 writel(lower_32_bits(fbr->ring_physaddr), base_lo);
1814 writel(fbr->num_entries - 1, num_des);
1815 writel(ET_DMA10_WRAP, full_offset);
1816
1817 /* This variable tracks the free buffer ring 1 full position,
1818 * so it has to match the above.
1819 */
1820 fbr->local_full = ET_DMA10_WRAP;
1821 writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1822 min_des);
1823 }
1824
1825 /* Program the number of packets we will receive before generating an
1826 * interrupt.
1827 * For version B silicon, this value gets updated once autoneg is
1828 *complete.
1829 */
1830 writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1831
1832 /* The "time_done" is not working correctly to coalesce interrupts
1833 * after a given time period, but rather is giving us an interrupt
1834 * regardless of whether we have received packets.
1835 * This value gets updated once autoneg is complete.
1836 */
1837 writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1838
1839 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1840 }
1841
1842 /* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1843 *
1844 * Configure the transmit engine with the ring buffers we have created
1845 * and prepare it for use.
1846 */
1847 static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1848 {
1849 struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1850 struct tx_ring *tx_ring = &adapter->tx_ring;
1851
1852 /* Load the hardware with the start of the transmit descriptor ring. */
1853 writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi);
1854 writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo);
1855
1856 /* Initialise the transmit DMA engine */
1857 writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1858
1859 /* Load the completion writeback physical address */
1860 writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi);
1861 writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo);
1862
1863 *tx_ring->tx_status = 0;
1864
1865 writel(0, &txdma->service_request);
1866 tx_ring->send_idx = 0;
1867 }
1868
1869 /* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */
1870 static void et131x_adapter_setup(struct et131x_adapter *adapter)
1871 {
1872 /* Configure the JAGCore */
1873 et131x_configure_global_regs(adapter);
1874
1875 et1310_config_mac_regs1(adapter);
1876
1877 /* Configure the MMC registers */
1878 /* All we need to do is initialize the Memory Control Register */
1879 writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
1880
1881 et1310_config_rxmac_regs(adapter);
1882 et1310_config_txmac_regs(adapter);
1883
1884 et131x_config_rx_dma_regs(adapter);
1885 et131x_config_tx_dma_regs(adapter);
1886
1887 et1310_config_macstat_regs(adapter);
1888
1889 et1310_phy_power_switch(adapter, 0);
1890 et131x_xcvr_init(adapter);
1891 }
1892
1893 /* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */
1894 static void et131x_soft_reset(struct et131x_adapter *adapter)
1895 {
1896 u32 reg;
1897
1898 /* Disable MAC Core */
1899 reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
1900 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1901 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1902 writel(reg, &adapter->regs->mac.cfg1);
1903
1904 reg = ET_RESET_ALL;
1905 writel(reg, &adapter->regs->global.sw_reset);
1906
1907 reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1908 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1909 writel(reg, &adapter->regs->mac.cfg1);
1910 writel(0, &adapter->regs->mac.cfg1);
1911 }
1912
1913 /* et131x_enable_interrupts - enable interrupt
1914 *
1915 * Enable the appropriate interrupts on the ET131x according to our
1916 * configuration
1917 */
1918 static void et131x_enable_interrupts(struct et131x_adapter *adapter)
1919 {
1920 u32 mask;
1921
1922 /* Enable all global interrupts */
1923 if (adapter->flowcontrol == FLOW_TXONLY ||
1924 adapter->flowcontrol == FLOW_BOTH)
1925 mask = INT_MASK_ENABLE;
1926 else
1927 mask = INT_MASK_ENABLE_NO_FLOW;
1928
1929 writel(mask, &adapter->regs->global.int_mask);
1930 }
1931
1932 /* et131x_disable_interrupts - interrupt disable
1933 *
1934 * Block all interrupts from the et131x device at the device itself
1935 */
1936 static void et131x_disable_interrupts(struct et131x_adapter *adapter)
1937 {
1938 /* Disable all global interrupts */
1939 writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
1940 }
1941
1942 /* et131x_tx_dma_disable - Stop of Tx_DMA on the ET1310 */
1943 static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
1944 {
1945 /* Setup the tramsmit dma configuration register */
1946 writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT,
1947 &adapter->regs->txdma.csr);
1948 }
1949
1950 /* et131x_enable_txrx - Enable tx/rx queues */
1951 static void et131x_enable_txrx(struct net_device *netdev)
1952 {
1953 struct et131x_adapter *adapter = netdev_priv(netdev);
1954
1955 /* Enable the Tx and Rx DMA engines (if not already enabled) */
1956 et131x_rx_dma_enable(adapter);
1957 et131x_tx_dma_enable(adapter);
1958
1959 /* Enable device interrupts */
1960 if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)
1961 et131x_enable_interrupts(adapter);
1962
1963 /* We're ready to move some data, so start the queue */
1964 netif_start_queue(netdev);
1965 }
1966
1967 /* et131x_disable_txrx - Disable tx/rx queues */
1968 static void et131x_disable_txrx(struct net_device *netdev)
1969 {
1970 struct et131x_adapter *adapter = netdev_priv(netdev);
1971
1972 /* First thing is to stop the queue */
1973 netif_stop_queue(netdev);
1974
1975 /* Stop the Tx and Rx DMA engines */
1976 et131x_rx_dma_disable(adapter);
1977 et131x_tx_dma_disable(adapter);
1978
1979 /* Disable device interrupts */
1980 et131x_disable_interrupts(adapter);
1981 }
1982
1983 /* et131x_init_send - Initialize send data structures */
1984 static void et131x_init_send(struct et131x_adapter *adapter)
1985 {
1986 u32 ct;
1987 struct tx_ring *tx_ring = &adapter->tx_ring;
1988 struct tcb *tcb = tx_ring->tcb_ring;
1989
1990 tx_ring->tcb_qhead = tcb;
1991
1992 memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
1993
1994 /* Go through and set up each TCB */
1995 for (ct = 0; ct++ < NUM_TCB; tcb++)
1996 /* Set the link pointer in HW TCB to the next TCB in the
1997 * chain
1998 */
1999 tcb->next = tcb + 1;
2000
2001 /* Set the tail pointer */
2002 tcb--;
2003 tx_ring->tcb_qtail = tcb;
2004 tcb->next = NULL;
2005 /* Curr send queue should now be empty */
2006 tx_ring->send_head = NULL;
2007 tx_ring->send_tail = NULL;
2008 }
2009
2010 /* et1310_enable_phy_coma - called when network cable is unplugged
2011 *
2012 * driver receive an phy status change interrupt while in D0 and check that
2013 * phy_status is down.
2014 *
2015 * -- gate off JAGCore;
2016 * -- set gigE PHY in Coma mode
2017 * -- wake on phy_interrupt; Perform software reset JAGCore,
2018 * re-initialize jagcore and gigE PHY
2019 *
2020 * Add D0-ASPM-PhyLinkDown Support:
2021 * -- while in D0, when there is a phy_interrupt indicating phy link
2022 * down status, call the MPSetPhyComa routine to enter this active
2023 * state power saving mode
2024 * -- while in D0-ASPM-PhyLinkDown mode, when there is a phy_interrupt
2025 * indicating linkup status, call the MPDisablePhyComa routine to
2026 * restore JAGCore and gigE PHY
2027 */
2028 static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
2029 {
2030 unsigned long flags;
2031 u32 pmcsr;
2032
2033 pmcsr = readl(&adapter->regs->global.pm_csr);
2034
2035 /* Save the GbE PHY speed and duplex modes. Need to restore this
2036 * when cable is plugged back in
2037 */
2038
2039 /* Stop sending packets. */
2040 spin_lock_irqsave(&adapter->send_hw_lock, flags);
2041 adapter->flags |= FMP_ADAPTER_LOWER_POWER;
2042 spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
2043
2044 /* Wait for outstanding Receive packets */
2045
2046 et131x_disable_txrx(adapter->netdev);
2047
2048 /* Gate off JAGCore 3 clock domains */
2049 pmcsr &= ~ET_PMCSR_INIT;
2050 writel(pmcsr, &adapter->regs->global.pm_csr);
2051
2052 /* Program gigE PHY in to Coma mode */
2053 pmcsr |= ET_PM_PHY_SW_COMA;
2054 writel(pmcsr, &adapter->regs->global.pm_csr);
2055 }
2056
2057 /* et1310_disable_phy_coma - Disable the Phy Coma Mode */
2058 static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
2059 {
2060 u32 pmcsr;
2061
2062 pmcsr = readl(&adapter->regs->global.pm_csr);
2063
2064 /* Disable phy_sw_coma register and re-enable JAGCore clocks */
2065 pmcsr |= ET_PMCSR_INIT;
2066 pmcsr &= ~ET_PM_PHY_SW_COMA;
2067 writel(pmcsr, &adapter->regs->global.pm_csr);
2068
2069 /* Restore the GbE PHY speed and duplex modes;
2070 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
2071 */
2072
2073 /* Re-initialize the send structures */
2074 et131x_init_send(adapter);
2075
2076 /* Bring the device back to the state it was during init prior to
2077 * autonegotiation being complete. This way, when we get the auto-neg
2078 * complete interrupt, we can complete init by calling ConfigMacREGS2.
2079 */
2080 et131x_soft_reset(adapter);
2081
2082 /* setup et1310 as per the documentation ?? */
2083 et131x_adapter_setup(adapter);
2084
2085 /* Allow Tx to restart */
2086 adapter->flags &= ~FMP_ADAPTER_LOWER_POWER;
2087
2088 et131x_enable_txrx(adapter->netdev);
2089 }
2090
2091 static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
2092 {
2093 u32 tmp_free_buff_ring = *free_buff_ring;
2094 tmp_free_buff_ring++;
2095 /* This works for all cases where limit < 1024. The 1023 case
2096 * works because 1023++ is 1024 which means the if condition is not
2097 * taken but the carry of the bit into the wrap bit toggles the wrap
2098 * value correctly
2099 */
2100 if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
2101 tmp_free_buff_ring &= ~ET_DMA10_MASK;
2102 tmp_free_buff_ring ^= ET_DMA10_WRAP;
2103 }
2104 /* For the 1023 case */
2105 tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP);
2106 *free_buff_ring = tmp_free_buff_ring;
2107 return tmp_free_buff_ring;
2108 }
2109
2110 /* et131x_rx_dma_memory_alloc
2111 *
2112 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
2113 * and the Packet Status Ring.
2114 */
2115 static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
2116 {
2117 u8 id;
2118 u32 i, j;
2119 u32 bufsize;
2120 u32 pktstat_ringsize;
2121 u32 fbr_chunksize;
2122 struct rx_ring *rx_ring = &adapter->rx_ring;
2123 struct fbr_lookup *fbr;
2124
2125 /* Alloc memory for the lookup table */
2126 rx_ring->fbr[0] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2127 if (rx_ring->fbr[0] == NULL)
2128 return -ENOMEM;
2129 rx_ring->fbr[1] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2130 if (rx_ring->fbr[1] == NULL)
2131 return -ENOMEM;
2132
2133 /* The first thing we will do is configure the sizes of the buffer
2134 * rings. These will change based on jumbo packet support. Larger
2135 * jumbo packets increases the size of each entry in FBR0, and the
2136 * number of entries in FBR0, while at the same time decreasing the
2137 * number of entries in FBR1.
2138 *
2139 * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1
2140 * entries are huge in order to accommodate a "jumbo" frame, then it
2141 * will have less entries. Conversely, FBR1 will now be relied upon
2142 * to carry more "normal" frames, thus it's entry size also increases
2143 * and the number of entries goes up too (since it now carries
2144 * "small" + "regular" packets.
2145 *
2146 * In this scheme, we try to maintain 512 entries between the two
2147 * rings. Also, FBR1 remains a constant size - when it's size doubles
2148 * the number of entries halves. FBR0 increases in size, however.
2149 */
2150
2151 if (adapter->registry_jumbo_packet < 2048) {
2152 rx_ring->fbr[0]->buffsize = 256;
2153 rx_ring->fbr[0]->num_entries = 512;
2154 rx_ring->fbr[1]->buffsize = 2048;
2155 rx_ring->fbr[1]->num_entries = 512;
2156 } else if (adapter->registry_jumbo_packet < 4096) {
2157 rx_ring->fbr[0]->buffsize = 512;
2158 rx_ring->fbr[0]->num_entries = 1024;
2159 rx_ring->fbr[1]->buffsize = 4096;
2160 rx_ring->fbr[1]->num_entries = 512;
2161 } else {
2162 rx_ring->fbr[0]->buffsize = 1024;
2163 rx_ring->fbr[0]->num_entries = 768;
2164 rx_ring->fbr[1]->buffsize = 16384;
2165 rx_ring->fbr[1]->num_entries = 128;
2166 }
2167
2168 rx_ring->psr_num_entries = rx_ring->fbr[0]->num_entries +
2169 rx_ring->fbr[1]->num_entries;
2170
2171 for (id = 0; id < NUM_FBRS; id++) {
2172 fbr = rx_ring->fbr[id];
2173 /* Allocate an area of memory for Free Buffer Ring */
2174 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2175 fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2176 bufsize,
2177 &fbr->ring_physaddr,
2178 GFP_KERNEL);
2179 if (!fbr->ring_virtaddr) {
2180 dev_err(&adapter->pdev->dev,
2181 "Cannot alloc memory for Free Buffer Ring %d\n", id);
2182 return -ENOMEM;
2183 }
2184 }
2185
2186 for (id = 0; id < NUM_FBRS; id++) {
2187 fbr = rx_ring->fbr[id];
2188 fbr_chunksize = (FBR_CHUNKS * fbr->buffsize);
2189
2190 for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) {
2191 dma_addr_t fbr_tmp_physaddr;
2192
2193 fbr->mem_virtaddrs[i] = dma_alloc_coherent(
2194 &adapter->pdev->dev, fbr_chunksize,
2195 &fbr->mem_physaddrs[i],
2196 GFP_KERNEL);
2197
2198 if (!fbr->mem_virtaddrs[i]) {
2199 dev_err(&adapter->pdev->dev,
2200 "Could not alloc memory\n");
2201 return -ENOMEM;
2202 }
2203
2204 /* See NOTE in "Save Physical Address" comment above */
2205 fbr_tmp_physaddr = fbr->mem_physaddrs[i];
2206
2207 for (j = 0; j < FBR_CHUNKS; j++) {
2208 u32 index = (i * FBR_CHUNKS) + j;
2209
2210 /* Save the Virtual address of this index for
2211 * quick access later
2212 */
2213 fbr->virt[index] = (u8 *)fbr->mem_virtaddrs[i] +
2214 (j * fbr->buffsize);
2215
2216 /* now store the physical address in the
2217 * descriptor so the device can access it
2218 */
2219 fbr->bus_high[index] =
2220 upper_32_bits(fbr_tmp_physaddr);
2221 fbr->bus_low[index] =
2222 lower_32_bits(fbr_tmp_physaddr);
2223
2224 fbr_tmp_physaddr += fbr->buffsize;
2225 }
2226 }
2227 }
2228
2229 /* Allocate an area of memory for FIFO of Packet Status ring entries */
2230 pktstat_ringsize =
2231 sizeof(struct pkt_stat_desc) * rx_ring->psr_num_entries;
2232
2233 rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2234 pktstat_ringsize,
2235 &rx_ring->ps_ring_physaddr,
2236 GFP_KERNEL);
2237
2238 if (!rx_ring->ps_ring_virtaddr) {
2239 dev_err(&adapter->pdev->dev,
2240 "Cannot alloc memory for Packet Status Ring\n");
2241 return -ENOMEM;
2242 }
2243
2244 /* NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
2245 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2246 * are ever returned, make sure the high part is retrieved here before
2247 * storing the adjusted address.
2248 */
2249
2250 /* Allocate an area of memory for writeback of status information */
2251 rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
2252 sizeof(struct rx_status_block),
2253 &rx_ring->rx_status_bus,
2254 GFP_KERNEL);
2255 if (!rx_ring->rx_status_block) {
2256 dev_err(&adapter->pdev->dev,
2257 "Cannot alloc memory for Status Block\n");
2258 return -ENOMEM;
2259 }
2260 rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
2261
2262 /* The RFDs are going to be put on lists later on, so initialize the
2263 * lists now.
2264 */
2265 INIT_LIST_HEAD(&rx_ring->recv_list);
2266 return 0;
2267 }
2268
2269 /* et131x_rx_dma_memory_free - Free all memory allocated within this module */
2270 static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2271 {
2272 u8 id;
2273 u32 index;
2274 u32 bufsize;
2275 u32 pktstat_ringsize;
2276 struct rfd *rfd;
2277 struct rx_ring *rx_ring = &adapter->rx_ring;
2278 struct fbr_lookup *fbr;
2279
2280 /* Free RFDs and associated packet descriptors */
2281 WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2282
2283 while (!list_empty(&rx_ring->recv_list)) {
2284 rfd = list_entry(rx_ring->recv_list.next,
2285 struct rfd, list_node);
2286
2287 list_del(&rfd->list_node);
2288 rfd->skb = NULL;
2289 kfree(rfd);
2290 }
2291
2292 /* Free Free Buffer Rings */
2293 for (id = 0; id < NUM_FBRS; id++) {
2294 fbr = rx_ring->fbr[id];
2295
2296 if (!fbr || !fbr->ring_virtaddr)
2297 continue;
2298
2299 /* First the packet memory */
2300 for (index = 0;
2301 index < fbr->num_entries / FBR_CHUNKS;
2302 index++) {
2303 if (fbr->mem_virtaddrs[index]) {
2304 bufsize = fbr->buffsize * FBR_CHUNKS;
2305
2306 dma_free_coherent(&adapter->pdev->dev,
2307 bufsize,
2308 fbr->mem_virtaddrs[index],
2309 fbr->mem_physaddrs[index]);
2310
2311 fbr->mem_virtaddrs[index] = NULL;
2312 }
2313 }
2314
2315 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2316
2317 dma_free_coherent(&adapter->pdev->dev,
2318 bufsize,
2319 fbr->ring_virtaddr,
2320 fbr->ring_physaddr);
2321
2322 fbr->ring_virtaddr = NULL;
2323 }
2324
2325 /* Free Packet Status Ring */
2326 if (rx_ring->ps_ring_virtaddr) {
2327 pktstat_ringsize = sizeof(struct pkt_stat_desc) *
2328 rx_ring->psr_num_entries;
2329
2330 dma_free_coherent(&adapter->pdev->dev, pktstat_ringsize,
2331 rx_ring->ps_ring_virtaddr,
2332 rx_ring->ps_ring_physaddr);
2333
2334 rx_ring->ps_ring_virtaddr = NULL;
2335 }
2336
2337 /* Free area of memory for the writeback of status information */
2338 if (rx_ring->rx_status_block) {
2339 dma_free_coherent(&adapter->pdev->dev,
2340 sizeof(struct rx_status_block),
2341 rx_ring->rx_status_block, rx_ring->rx_status_bus);
2342 rx_ring->rx_status_block = NULL;
2343 }
2344
2345 /* Free the FBR Lookup Table */
2346 kfree(rx_ring->fbr[0]);
2347 kfree(rx_ring->fbr[1]);
2348
2349 /* Reset Counters */
2350 rx_ring->num_ready_recv = 0;
2351 }
2352
2353 /* et131x_init_recv - Initialize receive data structures */
2354 static int et131x_init_recv(struct et131x_adapter *adapter)
2355 {
2356 struct rfd *rfd;
2357 u32 rfdct;
2358 struct rx_ring *rx_ring = &adapter->rx_ring;
2359
2360 /* Setup each RFD */
2361 for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2362 rfd = kzalloc(sizeof(struct rfd), GFP_ATOMIC | GFP_DMA);
2363 if (!rfd)
2364 return -ENOMEM;
2365
2366 rfd->skb = NULL;
2367
2368 /* Add this RFD to the recv_list */
2369 list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2370
2371 /* Increment the available RFD's */
2372 rx_ring->num_ready_recv++;
2373 }
2374
2375 return 0;
2376 }
2377
2378 /* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */
2379 static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2380 {
2381 struct phy_device *phydev = adapter->phydev;
2382
2383 /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2384 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2385 */
2386 if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2387 writel(0, &adapter->regs->rxdma.max_pkt_time);
2388 writel(1, &adapter->regs->rxdma.num_pkt_done);
2389 }
2390 }
2391
2392 /* NICReturnRFD - Recycle a RFD and put it back onto the receive list
2393 * @adapter: pointer to our adapter
2394 * @rfd: pointer to the RFD
2395 */
2396 static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2397 {
2398 struct rx_ring *rx_local = &adapter->rx_ring;
2399 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2400 u16 buff_index = rfd->bufferindex;
2401 u8 ring_index = rfd->ringindex;
2402 unsigned long flags;
2403 struct fbr_lookup *fbr = rx_local->fbr[ring_index];
2404
2405 /* We don't use any of the OOB data besides status. Otherwise, we
2406 * need to clean up OOB data
2407 */
2408 if (buff_index < fbr->num_entries) {
2409 u32 free_buff_ring;
2410 u32 __iomem *offset;
2411 struct fbr_desc *next;
2412
2413 spin_lock_irqsave(&adapter->fbr_lock, flags);
2414
2415 if (ring_index == 0)
2416 offset = &rx_dma->fbr0_full_offset;
2417 else
2418 offset = &rx_dma->fbr1_full_offset;
2419
2420 next = (struct fbr_desc *)(fbr->ring_virtaddr) +
2421 INDEX10(fbr->local_full);
2422
2423 /* Handle the Free Buffer Ring advancement here. Write
2424 * the PA / Buffer Index for the returned buffer into
2425 * the oldest (next to be freed)FBR entry
2426 */
2427 next->addr_hi = fbr->bus_high[buff_index];
2428 next->addr_lo = fbr->bus_low[buff_index];
2429 next->word2 = buff_index;
2430
2431 free_buff_ring = bump_free_buff_ring(&fbr->local_full,
2432 fbr->num_entries - 1);
2433 writel(free_buff_ring, offset);
2434
2435 spin_unlock_irqrestore(&adapter->fbr_lock, flags);
2436 } else {
2437 dev_err(&adapter->pdev->dev,
2438 "%s illegal Buffer Index returned\n", __func__);
2439 }
2440
2441 /* The processing on this RFD is done, so put it back on the tail of
2442 * our list
2443 */
2444 spin_lock_irqsave(&adapter->rcv_lock, flags);
2445 list_add_tail(&rfd->list_node, &rx_local->recv_list);
2446 rx_local->num_ready_recv++;
2447 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2448
2449 WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2450 }
2451
2452 /* nic_rx_pkts - Checks the hardware for available packets
2453 *
2454 * Returns rfd, a pointer to our MPRFD.
2455 *
2456 * Checks the hardware for available packets, using completion ring
2457 * If packets are available, it gets an RFD from the recv_list, attaches
2458 * the packet to it, puts the RFD in the RecvPendList, and also returns
2459 * the pointer to the RFD.
2460 */
2461 static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2462 {
2463 struct rx_ring *rx_local = &adapter->rx_ring;
2464 struct rx_status_block *status;
2465 struct pkt_stat_desc *psr;
2466 struct rfd *rfd;
2467 u32 i;
2468 u8 *buf;
2469 unsigned long flags;
2470 struct list_head *element;
2471 u8 ring_index;
2472 u16 buff_index;
2473 u32 len;
2474 u32 word0;
2475 u32 word1;
2476 struct sk_buff *skb;
2477 struct fbr_lookup *fbr;
2478
2479 /* RX Status block is written by the DMA engine prior to every
2480 * interrupt. It contains the next to be used entry in the Packet
2481 * Status Ring, and also the two Free Buffer rings.
2482 */
2483 status = rx_local->rx_status_block;
2484 word1 = status->word1 >> 16; /* Get the useful bits */
2485
2486 /* Check the PSR and wrap bits do not match */
2487 if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2488 return NULL; /* Looks like this ring is not updated yet */
2489
2490 /* The packet status ring indicates that data is available. */
2491 psr = (struct pkt_stat_desc *) (rx_local->ps_ring_virtaddr) +
2492 (rx_local->local_psr_full & 0xFFF);
2493
2494 /* Grab any information that is required once the PSR is advanced,
2495 * since we can no longer rely on the memory being accurate
2496 */
2497 len = psr->word1 & 0xFFFF;
2498 ring_index = (psr->word1 >> 26) & 0x03;
2499 fbr = rx_local->fbr[ring_index];
2500 buff_index = (psr->word1 >> 16) & 0x3FF;
2501 word0 = psr->word0;
2502
2503 /* Indicate that we have used this PSR entry. */
2504 /* FIXME wrap 12 */
2505 add_12bit(&rx_local->local_psr_full, 1);
2506 if (
2507 (rx_local->local_psr_full & 0xFFF) > rx_local->psr_num_entries - 1) {
2508 /* Clear psr full and toggle the wrap bit */
2509 rx_local->local_psr_full &= ~0xFFF;
2510 rx_local->local_psr_full ^= 0x1000;
2511 }
2512
2513 writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset);
2514
2515 if (ring_index > 1 || buff_index > fbr->num_entries - 1) {
2516 /* Illegal buffer or ring index cannot be used by S/W*/
2517 dev_err(&adapter->pdev->dev,
2518 "NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
2519 rx_local->local_psr_full & 0xFFF, len, buff_index);
2520 return NULL;
2521 }
2522
2523 /* Get and fill the RFD. */
2524 spin_lock_irqsave(&adapter->rcv_lock, flags);
2525
2526 element = rx_local->recv_list.next;
2527 rfd = list_entry(element, struct rfd, list_node);
2528
2529 if (!rfd) {
2530 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2531 return NULL;
2532 }
2533
2534 list_del(&rfd->list_node);
2535 rx_local->num_ready_recv--;
2536
2537 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2538
2539 rfd->bufferindex = buff_index;
2540 rfd->ringindex = ring_index;
2541
2542 /* In V1 silicon, there is a bug which screws up filtering of runt
2543 * packets. Therefore runt packet filtering is disabled in the MAC and
2544 * the packets are dropped here. They are also counted here.
2545 */
2546 if (len < (NIC_MIN_PACKET_SIZE + 4)) {
2547 adapter->stats.rx_other_errs++;
2548 len = 0;
2549 }
2550
2551 if (len == 0) {
2552 rfd->len = 0;
2553 goto out;
2554 }
2555
2556 /* Determine if this is a multicast packet coming in */
2557 if ((word0 & ALCATEL_MULTICAST_PKT) &&
2558 !(word0 & ALCATEL_BROADCAST_PKT)) {
2559 /* Promiscuous mode and Multicast mode are not mutually
2560 * exclusive as was first thought. I guess Promiscuous is just
2561 * considered a super-set of the other filters. Generally filter
2562 * is 0x2b when in promiscuous mode.
2563 */
2564 if ((adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST)
2565 && !(adapter->packet_filter & ET131X_PACKET_TYPE_PROMISCUOUS)
2566 && !(adapter->packet_filter &
2567 ET131X_PACKET_TYPE_ALL_MULTICAST)) {
2568 buf = fbr->virt[buff_index];
2569
2570 /* Loop through our list to see if the destination
2571 * address of this packet matches one in our list.
2572 */
2573 for (i = 0; i < adapter->multicast_addr_count; i++) {
2574 if (buf[0] == adapter->multicast_list[i][0]
2575 && buf[1] == adapter->multicast_list[i][1]
2576 && buf[2] == adapter->multicast_list[i][2]
2577 && buf[3] == adapter->multicast_list[i][3]
2578 && buf[4] == adapter->multicast_list[i][4]
2579 && buf[5] == adapter->multicast_list[i][5]) {
2580 break;
2581 }
2582 }
2583
2584 /* If our index is equal to the number of Multicast
2585 * address we have, then this means we did not find this
2586 * packet's matching address in our list. Set the len to
2587 * zero, so we free our RFD when we return from this
2588 * function.
2589 */
2590 if (i == adapter->multicast_addr_count)
2591 len = 0;
2592 }
2593
2594 if (len > 0)
2595 adapter->stats.multicast_pkts_rcvd++;
2596 } else if (word0 & ALCATEL_BROADCAST_PKT) {
2597 adapter->stats.broadcast_pkts_rcvd++;
2598 } else {
2599 /* Not sure what this counter measures in promiscuous mode.
2600 * Perhaps we should check the MAC address to see if it is
2601 * directed to us in promiscuous mode.
2602 */
2603 adapter->stats.unicast_pkts_rcvd++;
2604 }
2605
2606 if (!len) {
2607 rfd->len = 0;
2608 goto out;
2609 }
2610
2611 rfd->len = len;
2612
2613 skb = dev_alloc_skb(rfd->len + 2);
2614 if (!skb) {
2615 dev_err(&adapter->pdev->dev, "Couldn't alloc an SKB for Rx\n");
2616 return NULL;
2617 }
2618
2619 adapter->net_stats.rx_bytes += rfd->len;
2620
2621 memcpy(skb_put(skb, rfd->len), fbr->virt[buff_index], rfd->len);
2622
2623 skb->protocol = eth_type_trans(skb, adapter->netdev);
2624 skb->ip_summed = CHECKSUM_NONE;
2625 netif_rx_ni(skb);
2626
2627 out:
2628 nic_return_rfd(adapter, rfd);
2629 return rfd;
2630 }
2631
2632 /* et131x_handle_recv_interrupt - Interrupt handler for receive processing
2633 *
2634 * Assumption, Rcv spinlock has been acquired.
2635 */
2636 static void et131x_handle_recv_interrupt(struct et131x_adapter *adapter)
2637 {
2638 struct rfd *rfd = NULL;
2639 u32 count = 0;
2640 bool done = true;
2641 struct rx_ring *rx_ring = &adapter->rx_ring;
2642
2643 /* Process up to available RFD's */
2644 while (count < NUM_PACKETS_HANDLED) {
2645 if (list_empty(&rx_ring->recv_list)) {
2646 WARN_ON(rx_ring->num_ready_recv != 0);
2647 done = false;
2648 break;
2649 }
2650
2651 rfd = nic_rx_pkts(adapter);
2652
2653 if (rfd == NULL)
2654 break;
2655
2656 /* Do not receive any packets until a filter has been set.
2657 * Do not receive any packets until we have link.
2658 * If length is zero, return the RFD in order to advance the
2659 * Free buffer ring.
2660 */
2661 if (!adapter->packet_filter ||
2662 !netif_carrier_ok(adapter->netdev) ||
2663 rfd->len == 0)
2664 continue;
2665
2666 /* Increment the number of packets we received */
2667 adapter->net_stats.rx_packets++;
2668
2669 /* Set the status on the packet, either resources or success */
2670 if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK)
2671 dev_warn(&adapter->pdev->dev, "RFD's are running out\n");
2672
2673 count++;
2674 }
2675
2676 if (count == NUM_PACKETS_HANDLED || !done) {
2677 rx_ring->unfinished_receives = true;
2678 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2679 &adapter->regs->global.watchdog_timer);
2680 } else
2681 /* Watchdog timer will disable itself if appropriate. */
2682 rx_ring->unfinished_receives = false;
2683 }
2684
2685 /* et131x_tx_dma_memory_alloc
2686 *
2687 * Allocates memory that will be visible both to the device and to the CPU.
2688 * The OS will pass us packets, pointers to which we will insert in the Tx
2689 * Descriptor queue. The device will read this queue to find the packets in
2690 * memory. The device will update the "status" in memory each time it xmits a
2691 * packet.
2692 */
2693 static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
2694 {
2695 int desc_size = 0;
2696 struct tx_ring *tx_ring = &adapter->tx_ring;
2697
2698 /* Allocate memory for the TCB's (Transmit Control Block) */
2699 tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb),
2700 GFP_ATOMIC | GFP_DMA);
2701 if (!tx_ring->tcb_ring)
2702 return -ENOMEM;
2703
2704 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2705 tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev,
2706 desc_size,
2707 &tx_ring->tx_desc_ring_pa,
2708 GFP_KERNEL);
2709 if (!tx_ring->tx_desc_ring) {
2710 dev_err(&adapter->pdev->dev,
2711 "Cannot alloc memory for Tx Ring\n");
2712 return -ENOMEM;
2713 }
2714
2715 /* Save physical address
2716 *
2717 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2718 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2719 * are ever returned, make sure the high part is retrieved here before
2720 * storing the adjusted address.
2721 */
2722 /* Allocate memory for the Tx status block */
2723 tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
2724 sizeof(u32),
2725 &tx_ring->tx_status_pa,
2726 GFP_KERNEL);
2727 if (!tx_ring->tx_status_pa) {
2728 dev_err(&adapter->pdev->dev,
2729 "Cannot alloc memory for Tx status block\n");
2730 return -ENOMEM;
2731 }
2732 return 0;
2733 }
2734
2735 /* et131x_tx_dma_memory_free - Free all memory allocated within this module */
2736 static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
2737 {
2738 int desc_size = 0;
2739 struct tx_ring *tx_ring = &adapter->tx_ring;
2740
2741 if (tx_ring->tx_desc_ring) {
2742 /* Free memory relating to Tx rings here */
2743 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2744 dma_free_coherent(&adapter->pdev->dev,
2745 desc_size,
2746 tx_ring->tx_desc_ring,
2747 tx_ring->tx_desc_ring_pa);
2748 tx_ring->tx_desc_ring = NULL;
2749 }
2750
2751 /* Free memory for the Tx status block */
2752 if (tx_ring->tx_status) {
2753 dma_free_coherent(&adapter->pdev->dev,
2754 sizeof(u32),
2755 tx_ring->tx_status,
2756 tx_ring->tx_status_pa);
2757
2758 tx_ring->tx_status = NULL;
2759 }
2760 /* Free the memory for the tcb structures */
2761 kfree(tx_ring->tcb_ring);
2762 }
2763
2764 /* nic_send_packet - NIC specific send handler for version B silicon.
2765 * @adapter: pointer to our adapter
2766 * @tcb: pointer to struct tcb
2767 */
2768 static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
2769 {
2770 u32 i;
2771 struct tx_desc desc[24]; /* 24 x 16 byte */
2772 u32 frag = 0;
2773 u32 thiscopy, remainder;
2774 struct sk_buff *skb = tcb->skb;
2775 u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
2776 struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
2777 unsigned long flags;
2778 struct phy_device *phydev = adapter->phydev;
2779 dma_addr_t dma_addr;
2780 struct tx_ring *tx_ring = &adapter->tx_ring;
2781
2782 /* Part of the optimizations of this send routine restrict us to
2783 * sending 24 fragments at a pass. In practice we should never see
2784 * more than 5 fragments.
2785 *
2786 * NOTE: The older version of this function (below) can handle any
2787 * number of fragments. If needed, we can call this function,
2788 * although it is less efficient.
2789 */
2790
2791 /* nr_frags should be no more than 18. */
2792 BUILD_BUG_ON(MAX_SKB_FRAGS + 1 > 23);
2793
2794 memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
2795
2796 for (i = 0; i < nr_frags; i++) {
2797 /* If there is something in this element, lets get a
2798 * descriptor from the ring and get the necessary data
2799 */
2800 if (i == 0) {
2801 /* If the fragments are smaller than a standard MTU,
2802 * then map them to a single descriptor in the Tx
2803 * Desc ring. However, if they're larger, as is
2804 * possible with support for jumbo packets, then
2805 * split them each across 2 descriptors.
2806 *
2807 * This will work until we determine why the hardware
2808 * doesn't seem to like large fragments.
2809 */
2810 if (skb_headlen(skb) <= 1514) {
2811 /* Low 16bits are length, high is vlan and
2812 * unused currently so zero
2813 */
2814 desc[frag].len_vlan = skb_headlen(skb);
2815 dma_addr = dma_map_single(&adapter->pdev->dev,
2816 skb->data,
2817 skb_headlen(skb),
2818 DMA_TO_DEVICE);
2819 desc[frag].addr_lo = lower_32_bits(dma_addr);
2820 desc[frag].addr_hi = upper_32_bits(dma_addr);
2821 frag++;
2822 } else {
2823 desc[frag].len_vlan = skb_headlen(skb) / 2;
2824 dma_addr = dma_map_single(&adapter->pdev->dev,
2825 skb->data,
2826 (skb_headlen(skb) / 2),
2827 DMA_TO_DEVICE);
2828 desc[frag].addr_lo = lower_32_bits(dma_addr);
2829 desc[frag].addr_hi = upper_32_bits(dma_addr);
2830 frag++;
2831
2832 desc[frag].len_vlan = skb_headlen(skb) / 2;
2833 dma_addr = dma_map_single(&adapter->pdev->dev,
2834 skb->data +
2835 (skb_headlen(skb) / 2),
2836 (skb_headlen(skb) / 2),
2837 DMA_TO_DEVICE);
2838 desc[frag].addr_lo = lower_32_bits(dma_addr);
2839 desc[frag].addr_hi = upper_32_bits(dma_addr);
2840 frag++;
2841 }
2842 } else {
2843 desc[frag].len_vlan = frags[i - 1].size;
2844 dma_addr = skb_frag_dma_map(&adapter->pdev->dev,
2845 &frags[i - 1],
2846 0,
2847 frags[i - 1].size,
2848 DMA_TO_DEVICE);
2849 desc[frag].addr_lo = lower_32_bits(dma_addr);
2850 desc[frag].addr_hi = upper_32_bits(dma_addr);
2851 frag++;
2852 }
2853 }
2854
2855 if (phydev && phydev->speed == SPEED_1000) {
2856 if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) {
2857 /* Last element & Interrupt flag */
2858 desc[frag - 1].flags =
2859 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2860 tx_ring->since_irq = 0;
2861 } else { /* Last element */
2862 desc[frag - 1].flags = TXDESC_FLAG_LASTPKT;
2863 }
2864 } else
2865 desc[frag - 1].flags =
2866 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2867
2868 desc[0].flags |= TXDESC_FLAG_FIRSTPKT;
2869
2870 tcb->index_start = tx_ring->send_idx;
2871 tcb->stale = 0;
2872
2873 spin_lock_irqsave(&adapter->send_hw_lock, flags);
2874
2875 thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx);
2876
2877 if (thiscopy >= frag) {
2878 remainder = 0;
2879 thiscopy = frag;
2880 } else {
2881 remainder = frag - thiscopy;
2882 }
2883
2884 memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx),
2885 desc,
2886 sizeof(struct tx_desc) * thiscopy);
2887
2888 add_10bit(&tx_ring->send_idx, thiscopy);
2889
2890 if (INDEX10(tx_ring->send_idx) == 0 ||
2891 INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) {
2892 tx_ring->send_idx &= ~ET_DMA10_MASK;
2893 tx_ring->send_idx ^= ET_DMA10_WRAP;
2894 }
2895
2896 if (remainder) {
2897 memcpy(tx_ring->tx_desc_ring,
2898 desc + thiscopy,
2899 sizeof(struct tx_desc) * remainder);
2900
2901 add_10bit(&tx_ring->send_idx, remainder);
2902 }
2903
2904 if (INDEX10(tx_ring->send_idx) == 0) {
2905 if (tx_ring->send_idx)
2906 tcb->index = NUM_DESC_PER_RING_TX - 1;
2907 else
2908 tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
2909 } else
2910 tcb->index = tx_ring->send_idx - 1;
2911
2912 spin_lock(&adapter->tcb_send_qlock);
2913
2914 if (tx_ring->send_tail)
2915 tx_ring->send_tail->next = tcb;
2916 else
2917 tx_ring->send_head = tcb;
2918
2919 tx_ring->send_tail = tcb;
2920
2921 WARN_ON(tcb->next != NULL);
2922
2923 tx_ring->used++;
2924
2925 spin_unlock(&adapter->tcb_send_qlock);
2926
2927 /* Write the new write pointer back to the device. */
2928 writel(tx_ring->send_idx, &adapter->regs->txdma.service_request);
2929
2930 /* For Gig only, we use Tx Interrupt coalescing. Enable the software
2931 * timer to wake us up if this packet isn't followed by N more.
2932 */
2933 if (phydev && phydev->speed == SPEED_1000) {
2934 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2935 &adapter->regs->global.watchdog_timer);
2936 }
2937 spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
2938
2939 return 0;
2940 }
2941
2942 /* send_packet - Do the work to send a packet
2943 *
2944 * Assumption: Send spinlock has been acquired
2945 */
2946 static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
2947 {
2948 int status;
2949 struct tcb *tcb;
2950 u16 *shbufva;
2951 unsigned long flags;
2952 struct tx_ring *tx_ring = &adapter->tx_ring;
2953
2954 /* All packets must have at least a MAC address and a protocol type */
2955 if (skb->len < ETH_HLEN)
2956 return -EIO;
2957
2958 /* Get a TCB for this packet */
2959 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2960
2961 tcb = tx_ring->tcb_qhead;
2962
2963 if (tcb == NULL) {
2964 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2965 return -ENOMEM;
2966 }
2967
2968 tx_ring->tcb_qhead = tcb->next;
2969
2970 if (tx_ring->tcb_qhead == NULL)
2971 tx_ring->tcb_qtail = NULL;
2972
2973 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2974
2975 tcb->skb = skb;
2976
2977 if (skb->data != NULL && skb_headlen(skb) >= 6) {
2978 shbufva = (u16 *) skb->data;
2979
2980 if ((shbufva[0] == 0xffff) &&
2981 (shbufva[1] == 0xffff) && (shbufva[2] == 0xffff))
2982 tcb->flags |= FMP_DEST_BROAD;
2983 else if ((shbufva[0] & 0x3) == 0x0001)
2984 tcb->flags |= FMP_DEST_MULTI;
2985 }
2986
2987 tcb->next = NULL;
2988
2989 /* Call the NIC specific send handler. */
2990 status = nic_send_packet(adapter, tcb);
2991
2992 if (status != 0) {
2993 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2994
2995 if (tx_ring->tcb_qtail)
2996 tx_ring->tcb_qtail->next = tcb;
2997 else
2998 /* Apparently ready Q is empty. */
2999 tx_ring->tcb_qhead = tcb;
3000
3001 tx_ring->tcb_qtail = tcb;
3002 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3003 return status;
3004 }
3005 WARN_ON(tx_ring->used > NUM_TCB);
3006 return 0;
3007 }
3008
3009 /* et131x_send_packets - This function is called by the OS to send packets */
3010 static int et131x_send_packets(struct sk_buff *skb, struct net_device *netdev)
3011 {
3012 int status = 0;
3013 struct et131x_adapter *adapter = netdev_priv(netdev);
3014 struct tx_ring *tx_ring = &adapter->tx_ring;
3015
3016 /* Send these packets
3017 *
3018 * NOTE: The Linux Tx entry point is only given one packet at a time
3019 * to Tx, so the PacketCount and it's array used makes no sense here
3020 */
3021
3022 /* TCB is not available */
3023 if (tx_ring->used >= NUM_TCB) {
3024 /* NOTE: If there's an error on send, no need to queue the
3025 * packet under Linux; if we just send an error up to the
3026 * netif layer, it will resend the skb to us.
3027 */
3028 status = -ENOMEM;
3029 } else {
3030 /* We need to see if the link is up; if it's not, make the
3031 * netif layer think we're good and drop the packet
3032 */
3033 if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) ||
3034 !netif_carrier_ok(netdev)) {
3035 dev_kfree_skb_any(skb);
3036 skb = NULL;
3037
3038 adapter->net_stats.tx_dropped++;
3039 } else {
3040 status = send_packet(skb, adapter);
3041 if (status != 0 && status != -ENOMEM) {
3042 /* On any other error, make netif think we're
3043 * OK and drop the packet
3044 */
3045 dev_kfree_skb_any(skb);
3046 skb = NULL;
3047 adapter->net_stats.tx_dropped++;
3048 }
3049 }
3050 }
3051 return status;
3052 }
3053
3054 /* free_send_packet - Recycle a struct tcb
3055 * @adapter: pointer to our adapter
3056 * @tcb: pointer to struct tcb
3057 *
3058 * Complete the packet if necessary
3059 * Assumption - Send spinlock has been acquired
3060 */
3061 static inline void free_send_packet(struct et131x_adapter *adapter,
3062 struct tcb *tcb)
3063 {
3064 unsigned long flags;
3065 struct tx_desc *desc = NULL;
3066 struct net_device_stats *stats = &adapter->net_stats;
3067 struct tx_ring *tx_ring = &adapter->tx_ring;
3068 u64 dma_addr;
3069
3070 if (tcb->flags & FMP_DEST_BROAD)
3071 atomic_inc(&adapter->stats.broadcast_pkts_xmtd);
3072 else if (tcb->flags & FMP_DEST_MULTI)
3073 atomic_inc(&adapter->stats.multicast_pkts_xmtd);
3074 else
3075 atomic_inc(&adapter->stats.unicast_pkts_xmtd);
3076
3077 if (tcb->skb) {
3078 stats->tx_bytes += tcb->skb->len;
3079
3080 /* Iterate through the TX descriptors on the ring
3081 * corresponding to this packet and umap the fragments
3082 * they point to
3083 */
3084 do {
3085 desc = tx_ring->tx_desc_ring +
3086 INDEX10(tcb->index_start);
3087
3088 dma_addr = desc->addr_lo;
3089 dma_addr |= (u64)desc->addr_hi << 32;
3090
3091 dma_unmap_single(&adapter->pdev->dev,
3092 dma_addr,
3093 desc->len_vlan, DMA_TO_DEVICE);
3094
3095 add_10bit(&tcb->index_start, 1);
3096 if (INDEX10(tcb->index_start) >=
3097 NUM_DESC_PER_RING_TX) {
3098 tcb->index_start &= ~ET_DMA10_MASK;
3099 tcb->index_start ^= ET_DMA10_WRAP;
3100 }
3101 } while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index));
3102
3103 dev_kfree_skb_any(tcb->skb);
3104 }
3105
3106 memset(tcb, 0, sizeof(struct tcb));
3107
3108 /* Add the TCB to the Ready Q */
3109 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3110
3111 adapter->net_stats.tx_packets++;
3112
3113 if (tx_ring->tcb_qtail)
3114 tx_ring->tcb_qtail->next = tcb;
3115 else
3116 /* Apparently ready Q is empty. */
3117 tx_ring->tcb_qhead = tcb;
3118
3119 tx_ring->tcb_qtail = tcb;
3120
3121 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3122 WARN_ON(tx_ring->used < 0);
3123 }
3124
3125 /* et131x_free_busy_send_packets - Free and complete the stopped active sends
3126 *
3127 * Assumption - Send spinlock has been acquired
3128 */
3129 static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
3130 {
3131 struct tcb *tcb;
3132 unsigned long flags;
3133 u32 freed = 0;
3134 struct tx_ring *tx_ring = &adapter->tx_ring;
3135
3136 /* Any packets being sent? Check the first TCB on the send list */
3137 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3138
3139 tcb = tx_ring->send_head;
3140
3141 while (tcb != NULL && freed < NUM_TCB) {
3142 struct tcb *next = tcb->next;
3143
3144 tx_ring->send_head = next;
3145
3146 if (next == NULL)
3147 tx_ring->send_tail = NULL;
3148
3149 tx_ring->used--;
3150
3151 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3152
3153 freed++;
3154 free_send_packet(adapter, tcb);
3155
3156 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3157
3158 tcb = tx_ring->send_head;
3159 }
3160
3161 WARN_ON(freed == NUM_TCB);
3162
3163 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3164
3165 tx_ring->used = 0;
3166 }
3167
3168 /* et131x_handle_send_interrupt - Interrupt handler for sending processing
3169 *
3170 * Re-claim the send resources, complete sends and get more to send from
3171 * the send wait queue.
3172 *
3173 * Assumption - Send spinlock has been acquired
3174 */
3175 static void et131x_handle_send_interrupt(struct et131x_adapter *adapter)
3176 {
3177 unsigned long flags;
3178 u32 serviced;
3179 struct tcb *tcb;
3180 u32 index;
3181 struct tx_ring *tx_ring = &adapter->tx_ring;
3182
3183 serviced = readl(&adapter->regs->txdma.new_service_complete);
3184 index = INDEX10(serviced);
3185
3186 /* Has the ring wrapped? Process any descriptors that do not have
3187 * the same "wrap" indicator as the current completion indicator
3188 */
3189 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3190
3191 tcb = tx_ring->send_head;
3192
3193 while (tcb &&
3194 ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
3195 index < INDEX10(tcb->index)) {
3196 tx_ring->used--;
3197 tx_ring->send_head = tcb->next;
3198 if (tcb->next == NULL)
3199 tx_ring->send_tail = NULL;
3200
3201 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3202 free_send_packet(adapter, tcb);
3203 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3204
3205 /* Goto the next packet */
3206 tcb = tx_ring->send_head;
3207 }
3208 while (tcb &&
3209 !((serviced ^ tcb->index) & ET_DMA10_WRAP)
3210 && index > (tcb->index & ET_DMA10_MASK)) {
3211 tx_ring->used--;
3212 tx_ring->send_head = tcb->next;
3213 if (tcb->next == NULL)
3214 tx_ring->send_tail = NULL;
3215
3216 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3217 free_send_packet(adapter, tcb);
3218 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3219
3220 /* Goto the next packet */
3221 tcb = tx_ring->send_head;
3222 }
3223
3224 /* Wake up the queue when we hit a low-water mark */
3225 if (tx_ring->used <= NUM_TCB / 3)
3226 netif_wake_queue(adapter->netdev);
3227
3228 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3229 }
3230
3231 static int et131x_get_settings(struct net_device *netdev,
3232 struct ethtool_cmd *cmd)
3233 {
3234 struct et131x_adapter *adapter = netdev_priv(netdev);
3235
3236 return phy_ethtool_gset(adapter->phydev, cmd);
3237 }
3238
3239 static int et131x_set_settings(struct net_device *netdev,
3240 struct ethtool_cmd *cmd)
3241 {
3242 struct et131x_adapter *adapter = netdev_priv(netdev);
3243
3244 return phy_ethtool_sset(adapter->phydev, cmd);
3245 }
3246
3247 static int et131x_get_regs_len(struct net_device *netdev)
3248 {
3249 #define ET131X_REGS_LEN 256
3250 return ET131X_REGS_LEN * sizeof(u32);
3251 }
3252
3253 static void et131x_get_regs(struct net_device *netdev,
3254 struct ethtool_regs *regs, void *regs_data)
3255 {
3256 struct et131x_adapter *adapter = netdev_priv(netdev);
3257 struct address_map __iomem *aregs = adapter->regs;
3258 u32 *regs_buff = regs_data;
3259 u32 num = 0;
3260 u16 tmp;
3261
3262 memset(regs_data, 0, et131x_get_regs_len(netdev));
3263
3264 regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
3265 adapter->pdev->device;
3266
3267 /* PHY regs */
3268 et131x_mii_read(adapter, MII_BMCR, &tmp);
3269 regs_buff[num++] = tmp;
3270 et131x_mii_read(adapter, MII_BMSR, &tmp);
3271 regs_buff[num++] = tmp;
3272 et131x_mii_read(adapter, MII_PHYSID1, &tmp);
3273 regs_buff[num++] = tmp;
3274 et131x_mii_read(adapter, MII_PHYSID2, &tmp);
3275 regs_buff[num++] = tmp;
3276 et131x_mii_read(adapter, MII_ADVERTISE, &tmp);
3277 regs_buff[num++] = tmp;
3278 et131x_mii_read(adapter, MII_LPA, &tmp);
3279 regs_buff[num++] = tmp;
3280 et131x_mii_read(adapter, MII_EXPANSION, &tmp);
3281 regs_buff[num++] = tmp;
3282 /* Autoneg next page transmit reg */
3283 et131x_mii_read(adapter, 0x07, &tmp);
3284 regs_buff[num++] = tmp;
3285 /* Link partner next page reg */
3286 et131x_mii_read(adapter, 0x08, &tmp);
3287 regs_buff[num++] = tmp;
3288 et131x_mii_read(adapter, MII_CTRL1000, &tmp);
3289 regs_buff[num++] = tmp;
3290 et131x_mii_read(adapter, MII_STAT1000, &tmp);
3291 regs_buff[num++] = tmp;
3292 et131x_mii_read(adapter, 0x0b, &tmp);
3293 regs_buff[num++] = tmp;
3294 et131x_mii_read(adapter, 0x0c, &tmp);
3295 regs_buff[num++] = tmp;
3296 et131x_mii_read(adapter, MII_MMD_CTRL, &tmp);
3297 regs_buff[num++] = tmp;
3298 et131x_mii_read(adapter, MII_MMD_DATA, &tmp);
3299 regs_buff[num++] = tmp;
3300 et131x_mii_read(adapter, MII_ESTATUS, &tmp);
3301 regs_buff[num++] = tmp;
3302
3303 et131x_mii_read(adapter, PHY_INDEX_REG, &tmp);
3304 regs_buff[num++] = tmp;
3305 et131x_mii_read(adapter, PHY_DATA_REG, &tmp);
3306 regs_buff[num++] = tmp;
3307 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp);
3308 regs_buff[num++] = tmp;
3309 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp);
3310 regs_buff[num++] = tmp;
3311 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp);
3312 regs_buff[num++] = tmp;
3313
3314 et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp);
3315 regs_buff[num++] = tmp;
3316 et131x_mii_read(adapter, PHY_CONFIG, &tmp);
3317 regs_buff[num++] = tmp;
3318 et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp);
3319 regs_buff[num++] = tmp;
3320 et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp);
3321 regs_buff[num++] = tmp;
3322 et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp);
3323 regs_buff[num++] = tmp;
3324 et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp);
3325 regs_buff[num++] = tmp;
3326 et131x_mii_read(adapter, PHY_LED_1, &tmp);
3327 regs_buff[num++] = tmp;
3328 et131x_mii_read(adapter, PHY_LED_2, &tmp);
3329 regs_buff[num++] = tmp;
3330
3331 /* Global regs */
3332 regs_buff[num++] = readl(&aregs->global.txq_start_addr);
3333 regs_buff[num++] = readl(&aregs->global.txq_end_addr);
3334 regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
3335 regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
3336 regs_buff[num++] = readl(&aregs->global.pm_csr);
3337 regs_buff[num++] = adapter->stats.interrupt_status;
3338 regs_buff[num++] = readl(&aregs->global.int_mask);
3339 regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
3340 regs_buff[num++] = readl(&aregs->global.int_status_alias);
3341 regs_buff[num++] = readl(&aregs->global.sw_reset);
3342 regs_buff[num++] = readl(&aregs->global.slv_timer);
3343 regs_buff[num++] = readl(&aregs->global.msi_config);
3344 regs_buff[num++] = readl(&aregs->global.loopback);
3345 regs_buff[num++] = readl(&aregs->global.watchdog_timer);
3346
3347 /* TXDMA regs */
3348 regs_buff[num++] = readl(&aregs->txdma.csr);
3349 regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
3350 regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
3351 regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
3352 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
3353 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
3354 regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
3355 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
3356 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
3357 regs_buff[num++] = readl(&aregs->txdma.service_request);
3358 regs_buff[num++] = readl(&aregs->txdma.service_complete);
3359 regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
3360 regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
3361 regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
3362 regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
3363 regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
3364 regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
3365 regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
3366 regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
3367 regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
3368 regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
3369 regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
3370 regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
3371 regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
3372 regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
3373 regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
3374
3375 /* RXDMA regs */
3376 regs_buff[num++] = readl(&aregs->rxdma.csr);
3377 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
3378 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
3379 regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
3380 regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
3381 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
3382 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
3383 regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
3384 regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
3385 regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
3386 regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
3387 regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
3388 regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
3389 regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
3390 regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
3391 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
3392 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
3393 regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
3394 regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
3395 regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
3396 regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
3397 regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
3398 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
3399 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
3400 regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
3401 regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
3402 regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
3403 regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
3404 regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
3405 }
3406
3407 static void et131x_get_drvinfo(struct net_device *netdev,
3408 struct ethtool_drvinfo *info)
3409 {
3410 struct et131x_adapter *adapter = netdev_priv(netdev);
3411
3412 strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
3413 strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
3414 strlcpy(info->bus_info, pci_name(adapter->pdev),
3415 sizeof(info->bus_info));
3416 }
3417
3418 static struct ethtool_ops et131x_ethtool_ops = {
3419 .get_settings = et131x_get_settings,
3420 .set_settings = et131x_set_settings,
3421 .get_drvinfo = et131x_get_drvinfo,
3422 .get_regs_len = et131x_get_regs_len,
3423 .get_regs = et131x_get_regs,
3424 .get_link = ethtool_op_get_link,
3425 };
3426
3427 /* et131x_hwaddr_init - set up the MAC Address on the ET1310 */
3428 static void et131x_hwaddr_init(struct et131x_adapter *adapter)
3429 {
3430 /* If have our default mac from init and no mac address from
3431 * EEPROM then we need to generate the last octet and set it on the
3432 * device
3433 */
3434 if (is_zero_ether_addr(adapter->rom_addr)) {
3435 /* We need to randomly generate the last octet so we
3436 * decrease our chances of setting the mac address to
3437 * same as another one of our cards in the system
3438 */
3439 get_random_bytes(&adapter->addr[5], 1);
3440 /* We have the default value in the register we are
3441 * working with so we need to copy the current
3442 * address into the permanent address
3443 */
3444 memcpy(adapter->rom_addr,
3445 adapter->addr, ETH_ALEN);
3446 } else {
3447 /* We do not have an override address, so set the
3448 * current address to the permanent address and add
3449 * it to the device
3450 */
3451 memcpy(adapter->addr,
3452 adapter->rom_addr, ETH_ALEN);
3453 }
3454 }
3455
3456 /* et131x_pci_init - initial PCI setup
3457 *
3458 * Perform the initial setup of PCI registers and if possible initialise
3459 * the MAC address. At this point the I/O registers have yet to be mapped
3460 */
3461 static int et131x_pci_init(struct et131x_adapter *adapter,
3462 struct pci_dev *pdev)
3463 {
3464 u16 max_payload;
3465 int i, rc;
3466
3467 rc = et131x_init_eeprom(adapter);
3468 if (rc < 0)
3469 goto out;
3470
3471 if (!pci_is_pcie(pdev)) {
3472 dev_err(&pdev->dev, "Missing PCIe capabilities\n");
3473 goto err_out;
3474 }
3475
3476 /* Let's set up the PORT LOGIC Register. */
3477
3478 /* Program the Ack/Nak latency and replay timers */
3479 max_payload = pdev->pcie_mpss;
3480
3481 if (max_payload < 2) {
3482 static const u16 acknak[2] = { 0x76, 0xD0 };
3483 static const u16 replay[2] = { 0x1E0, 0x2ED };
3484
3485 if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
3486 acknak[max_payload])) {
3487 dev_err(&pdev->dev,
3488 "Could not write PCI config space for ACK/NAK\n");
3489 goto err_out;
3490 }
3491 if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
3492 replay[max_payload])) {
3493 dev_err(&pdev->dev,
3494 "Could not write PCI config space for Replay Timer\n");
3495 goto err_out;
3496 }
3497 }
3498
3499 /* l0s and l1 latency timers. We are using default values.
3500 * Representing 001 for L0s and 010 for L1
3501 */
3502 if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
3503 dev_err(&pdev->dev,
3504 "Could not write PCI config space for Latency Timers\n");
3505 goto err_out;
3506 }
3507
3508 /* Change the max read size to 2k */
3509 if (pcie_set_readrq(pdev, 2048)) {
3510 dev_err(&pdev->dev,
3511 "Couldn't change PCI config space for Max read size\n");
3512 goto err_out;
3513 }
3514
3515 /* Get MAC address from config space if an eeprom exists, otherwise
3516 * the MAC address there will not be valid
3517 */
3518 if (!adapter->has_eeprom) {
3519 et131x_hwaddr_init(adapter);
3520 return 0;
3521 }
3522
3523 for (i = 0; i < ETH_ALEN; i++) {
3524 if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
3525 adapter->rom_addr + i)) {
3526 dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
3527 goto err_out;
3528 }
3529 }
3530 ether_addr_copy(adapter->addr, adapter->rom_addr);
3531 out:
3532 return rc;
3533 err_out:
3534 rc = -EIO;
3535 goto out;
3536 }
3537
3538 /* et131x_error_timer_handler
3539 * @data: timer-specific variable; here a pointer to our adapter structure
3540 *
3541 * The routine called when the error timer expires, to track the number of
3542 * recurring errors.
3543 */
3544 static void et131x_error_timer_handler(unsigned long data)
3545 {
3546 struct et131x_adapter *adapter = (struct et131x_adapter *) data;
3547 struct phy_device *phydev = adapter->phydev;
3548
3549 if (et1310_in_phy_coma(adapter)) {
3550 /* Bring the device immediately out of coma, to
3551 * prevent it from sleeping indefinitely, this
3552 * mechanism could be improved!
3553 */
3554 et1310_disable_phy_coma(adapter);
3555 adapter->boot_coma = 20;
3556 } else {
3557 et1310_update_macstat_host_counters(adapter);
3558 }
3559
3560 if (!phydev->link && adapter->boot_coma < 11)
3561 adapter->boot_coma++;
3562
3563 if (adapter->boot_coma == 10) {
3564 if (!phydev->link) {
3565 if (!et1310_in_phy_coma(adapter)) {
3566 /* NOTE - This was originally a 'sync with
3567 * interrupt'. How to do that under Linux?
3568 */
3569 et131x_enable_interrupts(adapter);
3570 et1310_enable_phy_coma(adapter);
3571 }
3572 }
3573 }
3574
3575 /* This is a periodic timer, so reschedule */
3576 mod_timer(&adapter->error_timer, jiffies + TX_ERROR_PERIOD * HZ / 1000);
3577 }
3578
3579 /* et131x_adapter_memory_free - Free all memory allocated for use by Tx & Rx */
3580 static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
3581 {
3582 et131x_tx_dma_memory_free(adapter);
3583 et131x_rx_dma_memory_free(adapter);
3584 }
3585
3586 /* et131x_adapter_memory_alloc
3587 * Allocate all the memory blocks for send, receive and others.
3588 */
3589 static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
3590 {
3591 int status;
3592
3593 /* Allocate memory for the Tx Ring */
3594 status = et131x_tx_dma_memory_alloc(adapter);
3595 if (status) {
3596 dev_err(&adapter->pdev->dev,
3597 "et131x_tx_dma_memory_alloc FAILED\n");
3598 et131x_tx_dma_memory_free(adapter);
3599 return status;
3600 }
3601 /* Receive buffer memory allocation */
3602 status = et131x_rx_dma_memory_alloc(adapter);
3603 if (status) {
3604 dev_err(&adapter->pdev->dev,
3605 "et131x_rx_dma_memory_alloc FAILED\n");
3606 et131x_adapter_memory_free(adapter);
3607 return status;
3608 }
3609
3610 /* Init receive data structures */
3611 status = et131x_init_recv(adapter);
3612 if (status) {
3613 dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n");
3614 et131x_adapter_memory_free(adapter);
3615 }
3616 return status;
3617 }
3618
3619 static void et131x_adjust_link(struct net_device *netdev)
3620 {
3621 struct et131x_adapter *adapter = netdev_priv(netdev);
3622 struct phy_device *phydev = adapter->phydev;
3623
3624 if (!phydev)
3625 return;
3626 if (phydev->link == adapter->link)
3627 return;
3628
3629 /* Check to see if we are in coma mode and if
3630 * so, disable it because we will not be able
3631 * to read PHY values until we are out.
3632 */
3633 if (et1310_in_phy_coma(adapter))
3634 et1310_disable_phy_coma(adapter);
3635
3636 adapter->link = phydev->link;
3637 phy_print_status(phydev);
3638
3639 if (phydev->link) {
3640 adapter->boot_coma = 20;
3641 if (phydev->speed == SPEED_10) {
3642 u16 register18;
3643
3644 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3645 &register18);
3646 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
3647 register18 | 0x4);
3648 et131x_mii_write(adapter, PHY_INDEX_REG,
3649 register18 | 0x8402);
3650 et131x_mii_write(adapter, PHY_DATA_REG,
3651 register18 | 511);
3652 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
3653 register18);
3654 }
3655
3656 et1310_config_flow_control(adapter);
3657
3658 if (phydev->speed == SPEED_1000 &&
3659 adapter->registry_jumbo_packet > 2048) {
3660 u16 reg;
3661
3662 et131x_mii_read(adapter, PHY_CONFIG, &reg);
3663 reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
3664 reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
3665 et131x_mii_write(adapter, PHY_CONFIG, reg);
3666 }
3667
3668 et131x_set_rx_dma_timer(adapter);
3669 et1310_config_mac_regs2(adapter);
3670 } else {
3671 adapter->boot_coma = 0;
3672
3673 if (phydev->speed == SPEED_10) {
3674 u16 register18;
3675
3676 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3677 &register18);
3678 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
3679 register18 | 0x4);
3680 et131x_mii_write(adapter, PHY_INDEX_REG,
3681 register18 | 0x8402);
3682 et131x_mii_write(adapter, PHY_DATA_REG,
3683 register18 | 511);
3684 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
3685 register18);
3686 }
3687
3688 /* Free the packets being actively sent & stopped */
3689 et131x_free_busy_send_packets(adapter);
3690
3691 /* Re-initialize the send structures */
3692 et131x_init_send(adapter);
3693
3694 /* Bring the device back to the state it was during
3695 * init prior to autonegotiation being complete. This
3696 * way, when we get the auto-neg complete interrupt,
3697 * we can complete init by calling config_mac_regs2.
3698 */
3699 et131x_soft_reset(adapter);
3700
3701 /* Setup ET1310 as per the documentation */
3702 et131x_adapter_setup(adapter);
3703
3704 /* perform reset of tx/rx */
3705 et131x_disable_txrx(netdev);
3706 et131x_enable_txrx(netdev);
3707 }
3708 }
3709
3710 static int et131x_mii_probe(struct net_device *netdev)
3711 {
3712 struct et131x_adapter *adapter = netdev_priv(netdev);
3713 struct phy_device *phydev = NULL;
3714
3715 phydev = phy_find_first(adapter->mii_bus);
3716 if (!phydev) {
3717 dev_err(&adapter->pdev->dev, "no PHY found\n");
3718 return -ENODEV;
3719 }
3720
3721 phydev = phy_connect(netdev, dev_name(&phydev->dev),
3722 &et131x_adjust_link, PHY_INTERFACE_MODE_MII);
3723
3724 if (IS_ERR(phydev)) {
3725 dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
3726 return PTR_ERR(phydev);
3727 }
3728
3729 phydev->supported &= (SUPPORTED_10baseT_Half
3730 | SUPPORTED_10baseT_Full
3731 | SUPPORTED_100baseT_Half
3732 | SUPPORTED_100baseT_Full
3733 | SUPPORTED_Autoneg
3734 | SUPPORTED_MII
3735 | SUPPORTED_TP);
3736
3737 if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
3738 phydev->supported |= SUPPORTED_1000baseT_Full;
3739
3740 phydev->advertising = phydev->supported;
3741 adapter->phydev = phydev;
3742
3743 dev_info(&adapter->pdev->dev,
3744 "attached PHY driver [%s] (mii_bus:phy_addr=%s)\n",
3745 phydev->drv->name, dev_name(&phydev->dev));
3746
3747 return 0;
3748 }
3749
3750 /* et131x_adapter_init
3751 *
3752 * Initialize the data structures for the et131x_adapter object and link
3753 * them together with the platform provided device structures.
3754 */
3755 static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
3756 struct pci_dev *pdev)
3757 {
3758 static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
3759
3760 struct et131x_adapter *adapter;
3761
3762 /* Allocate private adapter struct and copy in relevant information */
3763 adapter = netdev_priv(netdev);
3764 adapter->pdev = pci_dev_get(pdev);
3765 adapter->netdev = netdev;
3766
3767 /* Initialize spinlocks here */
3768 spin_lock_init(&adapter->tcb_send_qlock);
3769 spin_lock_init(&adapter->tcb_ready_qlock);
3770 spin_lock_init(&adapter->send_hw_lock);
3771 spin_lock_init(&adapter->rcv_lock);
3772 spin_lock_init(&adapter->fbr_lock);
3773
3774 adapter->registry_jumbo_packet = 1514; /* 1514-9216 */
3775
3776 /* Set the MAC address to a default */
3777 ether_addr_copy(adapter->addr, default_mac);
3778
3779 return adapter;
3780 }
3781
3782 /* et131x_pci_remove
3783 *
3784 * Registered in the pci_driver structure, this function is called when the
3785 * PCI subsystem detects that a PCI device which matches the information
3786 * contained in the pci_device_id table has been removed.
3787 */
3788 static void et131x_pci_remove(struct pci_dev *pdev)
3789 {
3790 struct net_device *netdev = pci_get_drvdata(pdev);
3791 struct et131x_adapter *adapter = netdev_priv(netdev);
3792
3793 unregister_netdev(netdev);
3794 phy_disconnect(adapter->phydev);
3795 mdiobus_unregister(adapter->mii_bus);
3796 cancel_work_sync(&adapter->task);
3797 kfree(adapter->mii_bus->irq);
3798 mdiobus_free(adapter->mii_bus);
3799
3800 et131x_adapter_memory_free(adapter);
3801 iounmap(adapter->regs);
3802 pci_dev_put(pdev);
3803
3804 free_netdev(netdev);
3805 pci_release_regions(pdev);
3806 pci_disable_device(pdev);
3807 }
3808
3809 /* et131x_up - Bring up a device for use. */
3810 static void et131x_up(struct net_device *netdev)
3811 {
3812 struct et131x_adapter *adapter = netdev_priv(netdev);
3813
3814 et131x_enable_txrx(netdev);
3815 phy_start(adapter->phydev);
3816 }
3817
3818 /* et131x_down - Bring down the device */
3819 static void et131x_down(struct net_device *netdev)
3820 {
3821 struct et131x_adapter *adapter = netdev_priv(netdev);
3822
3823 /* Save the timestamp for the TX watchdog, prevent a timeout */
3824 netdev->trans_start = jiffies;
3825
3826 phy_stop(adapter->phydev);
3827 et131x_disable_txrx(netdev);
3828 }
3829
3830 #ifdef CONFIG_PM_SLEEP
3831 static int et131x_suspend(struct device *dev)
3832 {
3833 struct pci_dev *pdev = to_pci_dev(dev);
3834 struct net_device *netdev = pci_get_drvdata(pdev);
3835
3836 if (netif_running(netdev)) {
3837 netif_device_detach(netdev);
3838 et131x_down(netdev);
3839 pci_save_state(pdev);
3840 }
3841
3842 return 0;
3843 }
3844
3845 static int et131x_resume(struct device *dev)
3846 {
3847 struct pci_dev *pdev = to_pci_dev(dev);
3848 struct net_device *netdev = pci_get_drvdata(pdev);
3849
3850 if (netif_running(netdev)) {
3851 pci_restore_state(pdev);
3852 et131x_up(netdev);
3853 netif_device_attach(netdev);
3854 }
3855
3856 return 0;
3857 }
3858
3859 static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
3860 #define ET131X_PM_OPS (&et131x_pm_ops)
3861 #else
3862 #define ET131X_PM_OPS NULL
3863 #endif
3864
3865 /* et131x_isr - The Interrupt Service Routine for the driver.
3866 * @irq: the IRQ on which the interrupt was received.
3867 * @dev_id: device-specific info (here a pointer to a net_device struct)
3868 *
3869 * Returns a value indicating if the interrupt was handled.
3870 */
3871 static irqreturn_t et131x_isr(int irq, void *dev_id)
3872 {
3873 bool handled = true;
3874 struct net_device *netdev = (struct net_device *)dev_id;
3875 struct et131x_adapter *adapter = netdev_priv(netdev);
3876 struct rx_ring *rx_ring = &adapter->rx_ring;
3877 struct tx_ring *tx_ring = &adapter->tx_ring;
3878 u32 status;
3879
3880 if (!netif_device_present(netdev)) {
3881 handled = false;
3882 goto out;
3883 }
3884
3885 /* If the adapter is in low power state, then it should not
3886 * recognize any interrupt
3887 */
3888
3889 /* Disable Device Interrupts */
3890 et131x_disable_interrupts(adapter);
3891
3892 /* Get a copy of the value in the interrupt status register
3893 * so we can process the interrupting section
3894 */
3895 status = readl(&adapter->regs->global.int_status);
3896
3897 if (adapter->flowcontrol == FLOW_TXONLY ||
3898 adapter->flowcontrol == FLOW_BOTH) {
3899 status &= ~INT_MASK_ENABLE;
3900 } else {
3901 status &= ~INT_MASK_ENABLE_NO_FLOW;
3902 }
3903
3904 /* Make sure this is our interrupt */
3905 if (!status) {
3906 handled = false;
3907 et131x_enable_interrupts(adapter);
3908 goto out;
3909 }
3910
3911 /* This is our interrupt, so process accordingly */
3912
3913 if (status & ET_INTR_WATCHDOG) {
3914 struct tcb *tcb = tx_ring->send_head;
3915
3916 if (tcb)
3917 if (++tcb->stale > 1)
3918 status |= ET_INTR_TXDMA_ISR;
3919
3920 if (rx_ring->unfinished_receives)
3921 status |= ET_INTR_RXDMA_XFR_DONE;
3922 else if (tcb == NULL)
3923 writel(0, &adapter->regs->global.watchdog_timer);
3924
3925 status &= ~ET_INTR_WATCHDOG;
3926 }
3927
3928 if (!status) {
3929 /* This interrupt has in some way been "handled" by
3930 * the ISR. Either it was a spurious Rx interrupt, or
3931 * it was a Tx interrupt that has been filtered by
3932 * the ISR.
3933 */
3934 et131x_enable_interrupts(adapter);
3935 goto out;
3936 }
3937
3938 /* We need to save the interrupt status value for use in our
3939 * DPC. We will clear the software copy of that in that
3940 * routine.
3941 */
3942 adapter->stats.interrupt_status = status;
3943
3944 /* Schedule the ISR handler as a bottom-half task in the
3945 * kernel's tq_immediate queue, and mark the queue for
3946 * execution
3947 */
3948 schedule_work(&adapter->task);
3949 out:
3950 return IRQ_RETVAL(handled);
3951 }
3952
3953 /* et131x_isr_handler - The ISR handler
3954 *
3955 * scheduled to run in a deferred context by the ISR. This is where the ISR's
3956 * work actually gets done.
3957 */
3958 static void et131x_isr_handler(struct work_struct *work)
3959 {
3960 struct et131x_adapter *adapter =
3961 container_of(work, struct et131x_adapter, task);
3962 u32 status = adapter->stats.interrupt_status;
3963 struct address_map __iomem *iomem = adapter->regs;
3964
3965 /* These first two are by far the most common. Once handled, we clear
3966 * their two bits in the status word. If the word is now zero, we
3967 * exit.
3968 */
3969 /* Handle all the completed Transmit interrupts */
3970 if (status & ET_INTR_TXDMA_ISR)
3971 et131x_handle_send_interrupt(adapter);
3972
3973 /* Handle all the completed Receives interrupts */
3974 if (status & ET_INTR_RXDMA_XFR_DONE)
3975 et131x_handle_recv_interrupt(adapter);
3976
3977 status &= ~(ET_INTR_TXDMA_ERR | ET_INTR_RXDMA_XFR_DONE);
3978
3979 if (!status)
3980 goto out;
3981
3982 /* Handle the TXDMA Error interrupt */
3983 if (status & ET_INTR_TXDMA_ERR) {
3984 /* Following read also clears the register (COR) */
3985 u32 txdma_err = readl(&iomem->txdma.tx_dma_error);
3986
3987 dev_warn(&adapter->pdev->dev,
3988 "TXDMA_ERR interrupt, error = %d\n",
3989 txdma_err);
3990 }
3991
3992 /* Handle Free Buffer Ring 0 and 1 Low interrupt */
3993 if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
3994 /* This indicates the number of unused buffers in RXDMA free
3995 * buffer ring 0 is <= the limit you programmed. Free buffer
3996 * resources need to be returned. Free buffers are consumed as
3997 * packets are passed from the network to the host. The host
3998 * becomes aware of the packets from the contents of the packet
3999 * status ring. This ring is queried when the packet done
4000 * interrupt occurs. Packets are then passed to the OS. When
4001 * the OS is done with the packets the resources can be
4002 * returned to the ET1310 for re-use. This interrupt is one
4003 * method of returning resources.
4004 */
4005
4006 /* If the user has flow control on, then we will
4007 * send a pause packet, otherwise just exit
4008 */
4009 if (adapter->flowcontrol == FLOW_TXONLY ||
4010 adapter->flowcontrol == FLOW_BOTH) {
4011 u32 pm_csr;
4012
4013 /* Tell the device to send a pause packet via the back
4014 * pressure register (bp req and bp xon/xoff)
4015 */
4016 pm_csr = readl(&iomem->global.pm_csr);
4017 if (!et1310_in_phy_coma(adapter))
4018 writel(3, &iomem->txmac.bp_ctrl);
4019 }
4020 }
4021
4022 /* Handle Packet Status Ring Low Interrupt */
4023 if (status & ET_INTR_RXDMA_STAT_LOW) {
4024 /* Same idea as with the two Free Buffer Rings. Packets going
4025 * from the network to the host each consume a free buffer
4026 * resource and a packet status resource. These resoures are
4027 * passed to the OS. When the OS is done with the resources,
4028 * they need to be returned to the ET1310. This is one method
4029 * of returning the resources.
4030 */
4031 }
4032
4033 /* Handle RXDMA Error Interrupt */
4034 if (status & ET_INTR_RXDMA_ERR) {
4035 /* The rxdma_error interrupt is sent when a time-out on a
4036 * request issued by the JAGCore has occurred or a completion is
4037 * returned with an un-successful status. In both cases the
4038 * request is considered complete. The JAGCore will
4039 * automatically re-try the request in question. Normally
4040 * information on events like these are sent to the host using
4041 * the "Advanced Error Reporting" capability. This interrupt is
4042 * another way of getting similar information. The only thing
4043 * required is to clear the interrupt by reading the ISR in the
4044 * global resources. The JAGCore will do a re-try on the
4045 * request. Normally you should never see this interrupt. If
4046 * you start to see this interrupt occurring frequently then
4047 * something bad has occurred. A reset might be the thing to do.
4048 */
4049 /* TRAP();*/
4050
4051 dev_warn(&adapter->pdev->dev,
4052 "RxDMA_ERR interrupt, error %x\n",
4053 readl(&iomem->txmac.tx_test));
4054 }
4055
4056 /* Handle the Wake on LAN Event */
4057 if (status & ET_INTR_WOL) {
4058 /* This is a secondary interrupt for wake on LAN. The driver
4059 * should never see this, if it does, something serious is
4060 * wrong. We will TRAP the message when we are in DBG mode,
4061 * otherwise we will ignore it.
4062 */
4063 dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
4064 }
4065
4066 /* Let's move on to the TxMac */
4067 if (status & ET_INTR_TXMAC) {
4068 u32 err = readl(&iomem->txmac.err);
4069
4070 /* When any of the errors occur and TXMAC generates an
4071 * interrupt to report these errors, it usually means that
4072 * TXMAC has detected an error in the data stream retrieved
4073 * from the on-chip Tx Q. All of these errors are catastrophic
4074 * and TXMAC won't be able to recover data when these errors
4075 * occur. In a nutshell, the whole Tx path will have to be reset
4076 * and re-configured afterwards.
4077 */
4078 dev_warn(&adapter->pdev->dev,
4079 "TXMAC interrupt, error 0x%08x\n",
4080 err);
4081
4082 /* If we are debugging, we want to see this error, otherwise we
4083 * just want the device to be reset and continue
4084 */
4085 }
4086
4087 /* Handle RXMAC Interrupt */
4088 if (status & ET_INTR_RXMAC) {
4089 /* These interrupts are catastrophic to the device, what we need
4090 * to do is disable the interrupts and set the flag to cause us
4091 * to reset so we can solve this issue.
4092 */
4093 /* MP_SET_FLAG( adapter, FMP_ADAPTER_HARDWARE_ERROR); */
4094
4095 dev_warn(&adapter->pdev->dev,
4096 "RXMAC interrupt, error 0x%08x. Requesting reset\n",
4097 readl(&iomem->rxmac.err_reg));
4098
4099 dev_warn(&adapter->pdev->dev,
4100 "Enable 0x%08x, Diag 0x%08x\n",
4101 readl(&iomem->rxmac.ctrl),
4102 readl(&iomem->rxmac.rxq_diag));
4103
4104 /* If we are debugging, we want to see this error, otherwise we
4105 * just want the device to be reset and continue
4106 */
4107 }
4108
4109 /* Handle MAC_STAT Interrupt */
4110 if (status & ET_INTR_MAC_STAT) {
4111 /* This means at least one of the un-masked counters in the
4112 * MAC_STAT block has rolled over. Use this to maintain the top,
4113 * software managed bits of the counter(s).
4114 */
4115 et1310_handle_macstat_interrupt(adapter);
4116 }
4117
4118 /* Handle SLV Timeout Interrupt */
4119 if (status & ET_INTR_SLV_TIMEOUT) {
4120 /* This means a timeout has occurred on a read or write request
4121 * to one of the JAGCore registers. The Global Resources block
4122 * has terminated the request and on a read request, returned a
4123 * "fake" value. The most likely reasons are: Bad Address or the
4124 * addressed module is in a power-down state and can't respond.
4125 */
4126 }
4127 out:
4128 et131x_enable_interrupts(adapter);
4129 }
4130
4131 /* et131x_stats - Return the current device statistics */
4132 static struct net_device_stats *et131x_stats(struct net_device *netdev)
4133 {
4134 struct et131x_adapter *adapter = netdev_priv(netdev);
4135 struct net_device_stats *stats = &adapter->net_stats;
4136 struct ce_stats *devstat = &adapter->stats;
4137
4138 stats->rx_errors = devstat->rx_length_errs +
4139 devstat->rx_align_errs +
4140 devstat->rx_crc_errs +
4141 devstat->rx_code_violations +
4142 devstat->rx_other_errs;
4143 stats->tx_errors = devstat->tx_max_pkt_errs;
4144 stats->multicast = devstat->multicast_pkts_rcvd;
4145 stats->collisions = devstat->tx_collisions;
4146
4147 stats->rx_length_errors = devstat->rx_length_errs;
4148 stats->rx_over_errors = devstat->rx_overflows;
4149 stats->rx_crc_errors = devstat->rx_crc_errs;
4150
4151 /* NOTE: These stats don't have corresponding values in CE_STATS,
4152 * so we're going to have to update these directly from within the
4153 * TX/RX code
4154 */
4155 /* stats->rx_bytes = 20; devstat->; */
4156 /* stats->tx_bytes = 20; devstat->; */
4157 /* stats->rx_dropped = devstat->; */
4158 /* stats->tx_dropped = devstat->; */
4159
4160 /* NOTE: Not used, can't find analogous statistics */
4161 /* stats->rx_frame_errors = devstat->; */
4162 /* stats->rx_fifo_errors = devstat->; */
4163 /* stats->rx_missed_errors = devstat->; */
4164
4165 /* stats->tx_aborted_errors = devstat->; */
4166 /* stats->tx_carrier_errors = devstat->; */
4167 /* stats->tx_fifo_errors = devstat->; */
4168 /* stats->tx_heartbeat_errors = devstat->; */
4169 /* stats->tx_window_errors = devstat->; */
4170 return stats;
4171 }
4172
4173 /* et131x_open - Open the device for use. */
4174 static int et131x_open(struct net_device *netdev)
4175 {
4176 struct et131x_adapter *adapter = netdev_priv(netdev);
4177 struct pci_dev *pdev = adapter->pdev;
4178 unsigned int irq = pdev->irq;
4179 int result;
4180
4181 /* Start the timer to track NIC errors */
4182 init_timer(&adapter->error_timer);
4183 adapter->error_timer.expires = jiffies + TX_ERROR_PERIOD * HZ / 1000;
4184 adapter->error_timer.function = et131x_error_timer_handler;
4185 adapter->error_timer.data = (unsigned long)adapter;
4186 add_timer(&adapter->error_timer);
4187
4188 result = request_irq(irq, et131x_isr,
4189 IRQF_SHARED, netdev->name, netdev);
4190 if (result) {
4191 dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
4192 return result;
4193 }
4194
4195 adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE;
4196
4197 et131x_up(netdev);
4198
4199 return result;
4200 }
4201
4202 /* et131x_close - Close the device */
4203 static int et131x_close(struct net_device *netdev)
4204 {
4205 struct et131x_adapter *adapter = netdev_priv(netdev);
4206
4207 et131x_down(netdev);
4208
4209 adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE;
4210 free_irq(adapter->pdev->irq, netdev);
4211
4212 /* Stop the error timer */
4213 return del_timer_sync(&adapter->error_timer);
4214 }
4215
4216 /* et131x_ioctl - The I/O Control handler for the driver
4217 * @netdev: device on which the control request is being made
4218 * @reqbuf: a pointer to the IOCTL request buffer
4219 * @cmd: the IOCTL command code
4220 */
4221 static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
4222 int cmd)
4223 {
4224 struct et131x_adapter *adapter = netdev_priv(netdev);
4225
4226 if (!adapter->phydev)
4227 return -EINVAL;
4228
4229 return phy_mii_ioctl(adapter->phydev, reqbuf, cmd);
4230 }
4231
4232 /* et131x_set_packet_filter - Configures the Rx Packet filtering on the device
4233 * @adapter: pointer to our private adapter structure
4234 *
4235 * FIXME: lot of dups with MAC code
4236 */
4237 static int et131x_set_packet_filter(struct et131x_adapter *adapter)
4238 {
4239 int filter = adapter->packet_filter;
4240 int status = 0;
4241 u32 ctrl;
4242 u32 pf_ctrl;
4243
4244 ctrl = readl(&adapter->regs->rxmac.ctrl);
4245 pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
4246
4247 /* Default to disabled packet filtering. Enable it in the individual
4248 * case statements that require the device to filter something
4249 */
4250 ctrl |= 0x04;
4251
4252 /* Set us to be in promiscuous mode so we receive everything, this
4253 * is also true when we get a packet filter of 0
4254 */
4255 if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
4256 pf_ctrl &= ~7; /* Clear filter bits */
4257 else {
4258 /* Set us up with Multicast packet filtering. Three cases are
4259 * possible - (1) we have a multi-cast list, (2) we receive ALL
4260 * multicast entries or (3) we receive none.
4261 */
4262 if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
4263 pf_ctrl &= ~2; /* Multicast filter bit */
4264 else {
4265 et1310_setup_device_for_multicast(adapter);
4266 pf_ctrl |= 2;
4267 ctrl &= ~0x04;
4268 }
4269
4270 /* Set us up with Unicast packet filtering */
4271 if (filter & ET131X_PACKET_TYPE_DIRECTED) {
4272 et1310_setup_device_for_unicast(adapter);
4273 pf_ctrl |= 4;
4274 ctrl &= ~0x04;
4275 }
4276
4277 /* Set us up with Broadcast packet filtering */
4278 if (filter & ET131X_PACKET_TYPE_BROADCAST) {
4279 pf_ctrl |= 1; /* Broadcast filter bit */
4280 ctrl &= ~0x04;
4281 } else
4282 pf_ctrl &= ~1;
4283
4284 /* Setup the receive mac configuration registers - Packet
4285 * Filter control + the enable / disable for packet filter
4286 * in the control reg.
4287 */
4288 writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
4289 writel(ctrl, &adapter->regs->rxmac.ctrl);
4290 }
4291 return status;
4292 }
4293
4294 /* et131x_multicast - The handler to configure multicasting on the interface */
4295 static void et131x_multicast(struct net_device *netdev)
4296 {
4297 struct et131x_adapter *adapter = netdev_priv(netdev);
4298 int packet_filter;
4299 struct netdev_hw_addr *ha;
4300 int i;
4301
4302 /* Before we modify the platform-independent filter flags, store them
4303 * locally. This allows us to determine if anything's changed and if
4304 * we even need to bother the hardware
4305 */
4306 packet_filter = adapter->packet_filter;
4307
4308 /* Clear the 'multicast' flag locally; because we only have a single
4309 * flag to check multicast, and multiple multicast addresses can be
4310 * set, this is the easiest way to determine if more than one
4311 * multicast address is being set.
4312 */
4313 packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4314
4315 /* Check the net_device flags and set the device independent flags
4316 * accordingly
4317 */
4318
4319 if (netdev->flags & IFF_PROMISC)
4320 adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
4321 else
4322 adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
4323
4324 if (netdev->flags & IFF_ALLMULTI)
4325 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4326
4327 if (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST)
4328 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4329
4330 if (netdev_mc_count(netdev) < 1) {
4331 adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
4332 adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4333 } else
4334 adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
4335
4336 /* Set values in the private adapter struct */
4337 i = 0;
4338 netdev_for_each_mc_addr(ha, netdev) {
4339 if (i == NIC_MAX_MCAST_LIST)
4340 break;
4341 memcpy(adapter->multicast_list[i++], ha->addr, ETH_ALEN);
4342 }
4343 adapter->multicast_addr_count = i;
4344
4345 /* Are the new flags different from the previous ones? If not, then no
4346 * action is required
4347 *
4348 * NOTE - This block will always update the multicast_list with the
4349 * hardware, even if the addresses aren't the same.
4350 */
4351 if (packet_filter != adapter->packet_filter)
4352 et131x_set_packet_filter(adapter);
4353 }
4354
4355 /* et131x_tx - The handler to tx a packet on the device */
4356 static int et131x_tx(struct sk_buff *skb, struct net_device *netdev)
4357 {
4358 int status = 0;
4359 struct et131x_adapter *adapter = netdev_priv(netdev);
4360 struct tx_ring *tx_ring = &adapter->tx_ring;
4361
4362 /* stop the queue if it's getting full */
4363 if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev))
4364 netif_stop_queue(netdev);
4365
4366 /* Save the timestamp for the TX timeout watchdog */
4367 netdev->trans_start = jiffies;
4368
4369 /* Call the device-specific data Tx routine */
4370 status = et131x_send_packets(skb, netdev);
4371
4372 /* Check status and manage the netif queue if necessary */
4373 if (status != 0) {
4374 if (status == -ENOMEM)
4375 status = NETDEV_TX_BUSY;
4376 else
4377 status = NETDEV_TX_OK;
4378 }
4379 return status;
4380 }
4381
4382 /* et131x_tx_timeout - Timeout handler
4383 *
4384 * The handler called when a Tx request times out. The timeout period is
4385 * specified by the 'tx_timeo" element in the net_device structure (see
4386 * et131x_alloc_device() to see how this value is set).
4387 */
4388 static void et131x_tx_timeout(struct net_device *netdev)
4389 {
4390 struct et131x_adapter *adapter = netdev_priv(netdev);
4391 struct tx_ring *tx_ring = &adapter->tx_ring;
4392 struct tcb *tcb;
4393 unsigned long flags;
4394
4395 /* If the device is closed, ignore the timeout */
4396 if (~(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE))
4397 return;
4398
4399 /* Any nonrecoverable hardware error?
4400 * Checks adapter->flags for any failure in phy reading
4401 */
4402 if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR)
4403 return;
4404
4405 /* Hardware failure? */
4406 if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) {
4407 dev_err(&adapter->pdev->dev, "hardware error - reset\n");
4408 return;
4409 }
4410
4411 /* Is send stuck? */
4412 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
4413
4414 tcb = tx_ring->send_head;
4415
4416 if (tcb != NULL) {
4417 tcb->count++;
4418
4419 if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
4420 spin_unlock_irqrestore(&adapter->tcb_send_qlock,
4421 flags);
4422
4423 dev_warn(&adapter->pdev->dev,
4424 "Send stuck - reset. tcb->WrIndex %x, flags 0x%08x\n",
4425 tcb->index,
4426 tcb->flags);
4427
4428 adapter->net_stats.tx_errors++;
4429
4430 /* perform reset of tx/rx */
4431 et131x_disable_txrx(netdev);
4432 et131x_enable_txrx(netdev);
4433 return;
4434 }
4435 }
4436
4437 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
4438 }
4439
4440 /* et131x_change_mtu - The handler called to change the MTU for the device */
4441 static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
4442 {
4443 int result = 0;
4444 struct et131x_adapter *adapter = netdev_priv(netdev);
4445
4446 /* Make sure the requested MTU is valid */
4447 if (new_mtu < 64 || new_mtu > 9216)
4448 return -EINVAL;
4449
4450 et131x_disable_txrx(netdev);
4451 et131x_handle_send_interrupt(adapter);
4452 et131x_handle_recv_interrupt(adapter);
4453
4454 /* Set the new MTU */
4455 netdev->mtu = new_mtu;
4456
4457 /* Free Rx DMA memory */
4458 et131x_adapter_memory_free(adapter);
4459
4460 /* Set the config parameter for Jumbo Packet support */
4461 adapter->registry_jumbo_packet = new_mtu + 14;
4462 et131x_soft_reset(adapter);
4463
4464 /* Alloc and init Rx DMA memory */
4465 result = et131x_adapter_memory_alloc(adapter);
4466 if (result != 0) {
4467 dev_warn(&adapter->pdev->dev,
4468 "Change MTU failed; couldn't re-alloc DMA memory\n");
4469 return result;
4470 }
4471
4472 et131x_init_send(adapter);
4473
4474 et131x_hwaddr_init(adapter);
4475 memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
4476
4477 /* Init the device with the new settings */
4478 et131x_adapter_setup(adapter);
4479
4480 et131x_enable_txrx(netdev);
4481
4482 return result;
4483 }
4484
4485 /* et131x_set_mac_addr - handler to change the MAC address for the device */
4486 static int et131x_set_mac_addr(struct net_device *netdev, void *new_mac)
4487 {
4488 int result = 0;
4489 struct et131x_adapter *adapter = netdev_priv(netdev);
4490 struct sockaddr *address = new_mac;
4491
4492 if (adapter == NULL)
4493 return -ENODEV;
4494
4495 /* Make sure the requested MAC is valid */
4496 if (!is_valid_ether_addr(address->sa_data))
4497 return -EADDRNOTAVAIL;
4498
4499 et131x_disable_txrx(netdev);
4500 et131x_handle_send_interrupt(adapter);
4501 et131x_handle_recv_interrupt(adapter);
4502
4503 /* Set the new MAC */
4504 /* netdev->set_mac_address = &new_mac; */
4505
4506 memcpy(netdev->dev_addr, address->sa_data, netdev->addr_len);
4507
4508 netdev_info(netdev, "Setting MAC address to %pM\n",
4509 netdev->dev_addr);
4510
4511 /* Free Rx DMA memory */
4512 et131x_adapter_memory_free(adapter);
4513
4514 et131x_soft_reset(adapter);
4515
4516 /* Alloc and init Rx DMA memory */
4517 result = et131x_adapter_memory_alloc(adapter);
4518 if (result != 0) {
4519 dev_err(&adapter->pdev->dev,
4520 "Change MAC failed; couldn't re-alloc DMA memory\n");
4521 return result;
4522 }
4523
4524 et131x_init_send(adapter);
4525
4526 et131x_hwaddr_init(adapter);
4527
4528 /* Init the device with the new settings */
4529 et131x_adapter_setup(adapter);
4530
4531 et131x_enable_txrx(netdev);
4532
4533 return result;
4534 }
4535
4536 static const struct net_device_ops et131x_netdev_ops = {
4537 .ndo_open = et131x_open,
4538 .ndo_stop = et131x_close,
4539 .ndo_start_xmit = et131x_tx,
4540 .ndo_set_rx_mode = et131x_multicast,
4541 .ndo_tx_timeout = et131x_tx_timeout,
4542 .ndo_change_mtu = et131x_change_mtu,
4543 .ndo_set_mac_address = et131x_set_mac_addr,
4544 .ndo_validate_addr = eth_validate_addr,
4545 .ndo_get_stats = et131x_stats,
4546 .ndo_do_ioctl = et131x_ioctl,
4547 };
4548
4549 /* et131x_pci_setup - Perform device initialization
4550 * @pdev: a pointer to the device's pci_dev structure
4551 * @ent: this device's entry in the pci_device_id table
4552 *
4553 * Registered in the pci_driver structure, this function is called when the
4554 * PCI subsystem finds a new PCI device which matches the information
4555 * contained in the pci_device_id table. This routine is the equivalent to
4556 * a device insertion routine.
4557 */
4558 static int et131x_pci_setup(struct pci_dev *pdev,
4559 const struct pci_device_id *ent)
4560 {
4561 struct net_device *netdev;
4562 struct et131x_adapter *adapter;
4563 int rc;
4564 int ii;
4565
4566 rc = pci_enable_device(pdev);
4567 if (rc < 0) {
4568 dev_err(&pdev->dev, "pci_enable_device() failed\n");
4569 goto out;
4570 }
4571
4572 /* Perform some basic PCI checks */
4573 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4574 dev_err(&pdev->dev, "Can't find PCI device's base address\n");
4575 rc = -ENODEV;
4576 goto err_disable;
4577 }
4578
4579 rc = pci_request_regions(pdev, DRIVER_NAME);
4580 if (rc < 0) {
4581 dev_err(&pdev->dev, "Can't get PCI resources\n");
4582 goto err_disable;
4583 }
4584
4585 pci_set_master(pdev);
4586
4587 /* Check the DMA addressing support of this device */
4588 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
4589 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) {
4590 dev_err(&pdev->dev, "No usable DMA addressing method\n");
4591 rc = -EIO;
4592 goto err_release_res;
4593 }
4594
4595 /* Allocate netdev and private adapter structs */
4596 netdev = alloc_etherdev(sizeof(struct et131x_adapter));
4597 if (!netdev) {
4598 dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
4599 rc = -ENOMEM;
4600 goto err_release_res;
4601 }
4602
4603 netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
4604 netdev->netdev_ops = &et131x_netdev_ops;
4605
4606 SET_NETDEV_DEV(netdev, &pdev->dev);
4607 netdev->ethtool_ops = &et131x_ethtool_ops;
4608
4609 adapter = et131x_adapter_init(netdev, pdev);
4610
4611 rc = et131x_pci_init(adapter, pdev);
4612 if (rc < 0)
4613 goto err_free_dev;
4614
4615 /* Map the bus-relative registers to system virtual memory */
4616 adapter->regs = pci_ioremap_bar(pdev, 0);
4617 if (!adapter->regs) {
4618 dev_err(&pdev->dev, "Cannot map device registers\n");
4619 rc = -ENOMEM;
4620 goto err_free_dev;
4621 }
4622
4623 /* If Phy COMA mode was enabled when we went down, disable it here. */
4624 writel(ET_PMCSR_INIT, &adapter->regs->global.pm_csr);
4625
4626 /* Issue a global reset to the et1310 */
4627 et131x_soft_reset(adapter);
4628
4629 /* Disable all interrupts (paranoid) */
4630 et131x_disable_interrupts(adapter);
4631
4632 /* Allocate DMA memory */
4633 rc = et131x_adapter_memory_alloc(adapter);
4634 if (rc < 0) {
4635 dev_err(&pdev->dev, "Could not alloc adapater memory (DMA)\n");
4636 goto err_iounmap;
4637 }
4638
4639 /* Init send data structures */
4640 et131x_init_send(adapter);
4641
4642 /* Set up the task structure for the ISR's deferred handler */
4643 INIT_WORK(&adapter->task, et131x_isr_handler);
4644
4645 /* Copy address into the net_device struct */
4646 memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
4647
4648 /* Init variable for counting how long we do not have link status */
4649 adapter->boot_coma = 0;
4650 et1310_disable_phy_coma(adapter);
4651
4652 rc = -ENOMEM;
4653
4654 /* Setup the mii_bus struct */
4655 adapter->mii_bus = mdiobus_alloc();
4656 if (!adapter->mii_bus) {
4657 dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
4658 goto err_mem_free;
4659 }
4660
4661 adapter->mii_bus->name = "et131x_eth_mii";
4662 snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
4663 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
4664 adapter->mii_bus->priv = netdev;
4665 adapter->mii_bus->read = et131x_mdio_read;
4666 adapter->mii_bus->write = et131x_mdio_write;
4667 adapter->mii_bus->reset = et131x_mdio_reset;
4668 adapter->mii_bus->irq = kmalloc_array(PHY_MAX_ADDR, sizeof(int),
4669 GFP_KERNEL);
4670 if (!adapter->mii_bus->irq)
4671 goto err_mdio_free;
4672
4673 for (ii = 0; ii < PHY_MAX_ADDR; ii++)
4674 adapter->mii_bus->irq[ii] = PHY_POLL;
4675
4676 rc = mdiobus_register(adapter->mii_bus);
4677 if (rc < 0) {
4678 dev_err(&pdev->dev, "failed to register MII bus\n");
4679 goto err_mdio_free_irq;
4680 }
4681
4682 rc = et131x_mii_probe(netdev);
4683 if (rc < 0) {
4684 dev_err(&pdev->dev, "failed to probe MII bus\n");
4685 goto err_mdio_unregister;
4686 }
4687
4688 /* Setup et1310 as per the documentation */
4689 et131x_adapter_setup(adapter);
4690
4691 /* We can enable interrupts now
4692 *
4693 * NOTE - Because registration of interrupt handler is done in the
4694 * device's open(), defer enabling device interrupts to that
4695 * point
4696 */
4697
4698 /* Register the net_device struct with the Linux network layer */
4699 rc = register_netdev(netdev);
4700 if (rc < 0) {
4701 dev_err(&pdev->dev, "register_netdev() failed\n");
4702 goto err_phy_disconnect;
4703 }
4704
4705 /* Register the net_device struct with the PCI subsystem. Save a copy
4706 * of the PCI config space for this device now that the device has
4707 * been initialized, just in case it needs to be quickly restored.
4708 */
4709 pci_set_drvdata(pdev, netdev);
4710 out:
4711 return rc;
4712
4713 err_phy_disconnect:
4714 phy_disconnect(adapter->phydev);
4715 err_mdio_unregister:
4716 mdiobus_unregister(adapter->mii_bus);
4717 err_mdio_free_irq:
4718 kfree(adapter->mii_bus->irq);
4719 err_mdio_free:
4720 mdiobus_free(adapter->mii_bus);
4721 err_mem_free:
4722 et131x_adapter_memory_free(adapter);
4723 err_iounmap:
4724 iounmap(adapter->regs);
4725 err_free_dev:
4726 pci_dev_put(pdev);
4727 free_netdev(netdev);
4728 err_release_res:
4729 pci_release_regions(pdev);
4730 err_disable:
4731 pci_disable_device(pdev);
4732 goto out;
4733 }
4734
4735 static const struct pci_device_id et131x_pci_table[] = {
4736 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
4737 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
4738 {0,}
4739 };
4740 MODULE_DEVICE_TABLE(pci, et131x_pci_table);
4741
4742 static struct pci_driver et131x_driver = {
4743 .name = DRIVER_NAME,
4744 .id_table = et131x_pci_table,
4745 .probe = et131x_pci_setup,
4746 .remove = et131x_pci_remove,
4747 .driver.pm = ET131X_PM_OPS,
4748 };
4749
4750 module_pci_driver(et131x_driver);