]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/staging/gma500/psb_intel_display.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/djm/tmem
[mirror_ubuntu-artful-kernel.git] / drivers / staging / gma500 / psb_intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc.,
15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16 *
17 * Authors:
18 * Eric Anholt <eric@anholt.net>
19 */
20
21 #include <linux/i2c.h>
22 #include <linux/pm_runtime.h>
23
24 #include <drm/drmP.h>
25 #include "psb_fb.h"
26 #include "psb_drv.h"
27 #include "psb_intel_drv.h"
28 #include "psb_intel_reg.h"
29 #include "psb_intel_display.h"
30 #include "psb_powermgmt.h"
31
32
33 struct psb_intel_clock_t {
34 /* given values */
35 int n;
36 int m1, m2;
37 int p1, p2;
38 /* derived values */
39 int dot;
40 int vco;
41 int m;
42 int p;
43 };
44
45 struct psb_intel_range_t {
46 int min, max;
47 };
48
49 struct psb_intel_p2_t {
50 int dot_limit;
51 int p2_slow, p2_fast;
52 };
53
54 #define INTEL_P2_NUM 2
55
56 struct psb_intel_limit_t {
57 struct psb_intel_range_t dot, vco, n, m, m1, m2, p, p1;
58 struct psb_intel_p2_t p2;
59 };
60
61 #define I8XX_DOT_MIN 25000
62 #define I8XX_DOT_MAX 350000
63 #define I8XX_VCO_MIN 930000
64 #define I8XX_VCO_MAX 1400000
65 #define I8XX_N_MIN 3
66 #define I8XX_N_MAX 16
67 #define I8XX_M_MIN 96
68 #define I8XX_M_MAX 140
69 #define I8XX_M1_MIN 18
70 #define I8XX_M1_MAX 26
71 #define I8XX_M2_MIN 6
72 #define I8XX_M2_MAX 16
73 #define I8XX_P_MIN 4
74 #define I8XX_P_MAX 128
75 #define I8XX_P1_MIN 2
76 #define I8XX_P1_MAX 33
77 #define I8XX_P1_LVDS_MIN 1
78 #define I8XX_P1_LVDS_MAX 6
79 #define I8XX_P2_SLOW 4
80 #define I8XX_P2_FAST 2
81 #define I8XX_P2_LVDS_SLOW 14
82 #define I8XX_P2_LVDS_FAST 14 /* No fast option */
83 #define I8XX_P2_SLOW_LIMIT 165000
84
85 #define I9XX_DOT_MIN 20000
86 #define I9XX_DOT_MAX 400000
87 #define I9XX_VCO_MIN 1400000
88 #define I9XX_VCO_MAX 2800000
89 #define I9XX_N_MIN 3
90 #define I9XX_N_MAX 8
91 #define I9XX_M_MIN 70
92 #define I9XX_M_MAX 120
93 #define I9XX_M1_MIN 10
94 #define I9XX_M1_MAX 20
95 #define I9XX_M2_MIN 5
96 #define I9XX_M2_MAX 9
97 #define I9XX_P_SDVO_DAC_MIN 5
98 #define I9XX_P_SDVO_DAC_MAX 80
99 #define I9XX_P_LVDS_MIN 7
100 #define I9XX_P_LVDS_MAX 98
101 #define I9XX_P1_MIN 1
102 #define I9XX_P1_MAX 8
103 #define I9XX_P2_SDVO_DAC_SLOW 10
104 #define I9XX_P2_SDVO_DAC_FAST 5
105 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
106 #define I9XX_P2_LVDS_SLOW 14
107 #define I9XX_P2_LVDS_FAST 7
108 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
109
110 #define INTEL_LIMIT_I8XX_DVO_DAC 0
111 #define INTEL_LIMIT_I8XX_LVDS 1
112 #define INTEL_LIMIT_I9XX_SDVO_DAC 2
113 #define INTEL_LIMIT_I9XX_LVDS 3
114
115 static const struct psb_intel_limit_t psb_intel_limits[] = {
116 { /* INTEL_LIMIT_I8XX_DVO_DAC */
117 .dot = {.min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX},
118 .vco = {.min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX},
119 .n = {.min = I8XX_N_MIN, .max = I8XX_N_MAX},
120 .m = {.min = I8XX_M_MIN, .max = I8XX_M_MAX},
121 .m1 = {.min = I8XX_M1_MIN, .max = I8XX_M1_MAX},
122 .m2 = {.min = I8XX_M2_MIN, .max = I8XX_M2_MAX},
123 .p = {.min = I8XX_P_MIN, .max = I8XX_P_MAX},
124 .p1 = {.min = I8XX_P1_MIN, .max = I8XX_P1_MAX},
125 .p2 = {.dot_limit = I8XX_P2_SLOW_LIMIT,
126 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST},
127 },
128 { /* INTEL_LIMIT_I8XX_LVDS */
129 .dot = {.min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX},
130 .vco = {.min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX},
131 .n = {.min = I8XX_N_MIN, .max = I8XX_N_MAX},
132 .m = {.min = I8XX_M_MIN, .max = I8XX_M_MAX},
133 .m1 = {.min = I8XX_M1_MIN, .max = I8XX_M1_MAX},
134 .m2 = {.min = I8XX_M2_MIN, .max = I8XX_M2_MAX},
135 .p = {.min = I8XX_P_MIN, .max = I8XX_P_MAX},
136 .p1 = {.min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX},
137 .p2 = {.dot_limit = I8XX_P2_SLOW_LIMIT,
138 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST},
139 },
140 { /* INTEL_LIMIT_I9XX_SDVO_DAC */
141 .dot = {.min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
142 .vco = {.min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX},
143 .n = {.min = I9XX_N_MIN, .max = I9XX_N_MAX},
144 .m = {.min = I9XX_M_MIN, .max = I9XX_M_MAX},
145 .m1 = {.min = I9XX_M1_MIN, .max = I9XX_M1_MAX},
146 .m2 = {.min = I9XX_M2_MIN, .max = I9XX_M2_MAX},
147 .p = {.min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX},
148 .p1 = {.min = I9XX_P1_MIN, .max = I9XX_P1_MAX},
149 .p2 = {.dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
150 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast =
151 I9XX_P2_SDVO_DAC_FAST},
152 },
153 { /* INTEL_LIMIT_I9XX_LVDS */
154 .dot = {.min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
155 .vco = {.min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX},
156 .n = {.min = I9XX_N_MIN, .max = I9XX_N_MAX},
157 .m = {.min = I9XX_M_MIN, .max = I9XX_M_MAX},
158 .m1 = {.min = I9XX_M1_MIN, .max = I9XX_M1_MAX},
159 .m2 = {.min = I9XX_M2_MIN, .max = I9XX_M2_MAX},
160 .p = {.min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX},
161 .p1 = {.min = I9XX_P1_MIN, .max = I9XX_P1_MAX},
162 /* The single-channel range is 25-112Mhz, and dual-channel
163 * is 80-224Mhz. Prefer single channel as much as possible.
164 */
165 .p2 = {.dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
166 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST},
167 },
168 };
169
170 static const struct psb_intel_limit_t *psb_intel_limit(struct drm_crtc *crtc)
171 {
172 const struct psb_intel_limit_t *limit;
173
174 if (psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
175 limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS];
176 else
177 limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
178 return limit;
179 }
180
181 /** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
182
183 static void i8xx_clock(int refclk, struct psb_intel_clock_t *clock)
184 {
185 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
186 clock->p = clock->p1 * clock->p2;
187 clock->vco = refclk * clock->m / (clock->n + 2);
188 clock->dot = clock->vco / clock->p;
189 }
190
191 /** Derive the pixel clock for the given refclk and divisors for 9xx chips. */
192
193 static void i9xx_clock(int refclk, struct psb_intel_clock_t *clock)
194 {
195 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
196 clock->p = clock->p1 * clock->p2;
197 clock->vco = refclk * clock->m / (clock->n + 2);
198 clock->dot = clock->vco / clock->p;
199 }
200
201 static void psb_intel_clock(struct drm_device *dev, int refclk,
202 struct psb_intel_clock_t *clock)
203 {
204 return i9xx_clock(refclk, clock);
205 }
206
207 /**
208 * Returns whether any output on the specified pipe is of the specified type
209 */
210 bool psb_intel_pipe_has_type(struct drm_crtc *crtc, int type)
211 {
212 struct drm_device *dev = crtc->dev;
213 struct drm_mode_config *mode_config = &dev->mode_config;
214 struct drm_connector *l_entry;
215
216 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
217 if (l_entry->encoder && l_entry->encoder->crtc == crtc) {
218 struct psb_intel_output *psb_intel_output =
219 to_psb_intel_output(l_entry);
220 if (psb_intel_output->type == type)
221 return true;
222 }
223 }
224 return false;
225 }
226
227 #define INTELPllInvalid(s) { /* ErrorF (s) */; return false; }
228 /**
229 * Returns whether the given set of divisors are valid for a given refclk with
230 * the given connectors.
231 */
232
233 static bool psb_intel_PLL_is_valid(struct drm_crtc *crtc,
234 struct psb_intel_clock_t *clock)
235 {
236 const struct psb_intel_limit_t *limit = psb_intel_limit(crtc);
237
238 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
239 INTELPllInvalid("p1 out of range\n");
240 if (clock->p < limit->p.min || limit->p.max < clock->p)
241 INTELPllInvalid("p out of range\n");
242 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
243 INTELPllInvalid("m2 out of range\n");
244 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
245 INTELPllInvalid("m1 out of range\n");
246 if (clock->m1 <= clock->m2)
247 INTELPllInvalid("m1 <= m2\n");
248 if (clock->m < limit->m.min || limit->m.max < clock->m)
249 INTELPllInvalid("m out of range\n");
250 if (clock->n < limit->n.min || limit->n.max < clock->n)
251 INTELPllInvalid("n out of range\n");
252 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
253 INTELPllInvalid("vco out of range\n");
254 /* XXX: We may need to be checking "Dot clock"
255 * depending on the multiplier, connector, etc.,
256 * rather than just a single range.
257 */
258 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
259 INTELPllInvalid("dot out of range\n");
260
261 return true;
262 }
263
264 /**
265 * Returns a set of divisors for the desired target clock with the given
266 * refclk, or FALSE. The returned values represent the clock equation:
267 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
268 */
269 static bool psb_intel_find_best_PLL(struct drm_crtc *crtc, int target,
270 int refclk,
271 struct psb_intel_clock_t *best_clock)
272 {
273 struct drm_device *dev = crtc->dev;
274 struct psb_intel_clock_t clock;
275 const struct psb_intel_limit_t *limit = psb_intel_limit(crtc);
276 int err = target;
277
278 if (psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
279 (REG_READ(LVDS) & LVDS_PORT_EN) != 0) {
280 /*
281 * For LVDS, if the panel is on, just rely on its current
282 * settings for dual-channel. We haven't figured out how to
283 * reliably set up different single/dual channel state, if we
284 * even can.
285 */
286 if ((REG_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
287 LVDS_CLKB_POWER_UP)
288 clock.p2 = limit->p2.p2_fast;
289 else
290 clock.p2 = limit->p2.p2_slow;
291 } else {
292 if (target < limit->p2.dot_limit)
293 clock.p2 = limit->p2.p2_slow;
294 else
295 clock.p2 = limit->p2.p2_fast;
296 }
297
298 memset(best_clock, 0, sizeof(*best_clock));
299
300 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
301 clock.m1++) {
302 for (clock.m2 = limit->m2.min;
303 clock.m2 < clock.m1 && clock.m2 <= limit->m2.max;
304 clock.m2++) {
305 for (clock.n = limit->n.min;
306 clock.n <= limit->n.max; clock.n++) {
307 for (clock.p1 = limit->p1.min;
308 clock.p1 <= limit->p1.max;
309 clock.p1++) {
310 int this_err;
311
312 psb_intel_clock(dev, refclk, &clock);
313
314 if (!psb_intel_PLL_is_valid
315 (crtc, &clock))
316 continue;
317
318 this_err = abs(clock.dot - target);
319 if (this_err < err) {
320 *best_clock = clock;
321 err = this_err;
322 }
323 }
324 }
325 }
326 }
327
328 return err != target;
329 }
330
331 void psb_intel_wait_for_vblank(struct drm_device *dev)
332 {
333 /* Wait for 20ms, i.e. one cycle at 50hz. */
334 udelay(20000);
335 }
336
337 int psb_intel_pipe_set_base(struct drm_crtc *crtc,
338 int x, int y, struct drm_framebuffer *old_fb)
339 {
340 struct drm_device *dev = crtc->dev;
341 /* struct drm_i915_master_private *master_priv; */
342 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
343 struct psb_framebuffer *psbfb = to_psb_fb(crtc->fb);
344 int pipe = psb_intel_crtc->pipe;
345 unsigned long start, offset;
346 int dspbase = (pipe == 0 ? DSPABASE : DSPBBASE);
347 int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF);
348 int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE;
349 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
350 u32 dspcntr;
351 int ret = 0;
352
353 PSB_DEBUG_ENTRY("\n");
354
355 /* no fb bound */
356 if (!crtc->fb) {
357 DRM_DEBUG("No FB bound\n");
358 return 0;
359 }
360
361 if (!gma_power_begin(dev, true))
362 return 0;
363
364 /* We are displaying this buffer, make sure it is actually loaded
365 into the GTT */
366 ret = psb_gtt_pin(psbfb->gtt);
367 if (ret < 0)
368 goto psb_intel_pipe_set_base_exit;
369 start = psbfb->gtt->offset;
370
371 offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
372
373 REG_WRITE(dspstride, crtc->fb->pitch);
374
375 dspcntr = REG_READ(dspcntr_reg);
376 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
377
378 switch (crtc->fb->bits_per_pixel) {
379 case 8:
380 dspcntr |= DISPPLANE_8BPP;
381 break;
382 case 16:
383 if (crtc->fb->depth == 15)
384 dspcntr |= DISPPLANE_15_16BPP;
385 else
386 dspcntr |= DISPPLANE_16BPP;
387 break;
388 case 24:
389 case 32:
390 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
391 break;
392 default:
393 DRM_ERROR("Unknown color depth\n");
394 ret = -EINVAL;
395 psb_gtt_unpin(psbfb->gtt);
396 goto psb_intel_pipe_set_base_exit;
397 }
398 REG_WRITE(dspcntr_reg, dspcntr);
399
400
401 DRM_DEBUG("Writing base %08lX %08lX %d %d\n", start, offset, x, y);
402 if (0 /* FIXMEAC - check what PSB needs */) {
403 REG_WRITE(dspbase, offset);
404 REG_READ(dspbase);
405 REG_WRITE(dspsurf, start);
406 REG_READ(dspsurf);
407 } else {
408 REG_WRITE(dspbase, start + offset);
409 REG_READ(dspbase);
410 }
411
412 /* If there was a previous display we can now unpin it */
413 if (old_fb)
414 psb_gtt_unpin(to_psb_fb(old_fb)->gtt);
415
416 psb_intel_pipe_set_base_exit:
417 gma_power_end(dev);
418 return ret;
419 }
420
421 /**
422 * Sets the power management mode of the pipe and plane.
423 *
424 * This code should probably grow support for turning the cursor off and back
425 * on appropriately at the same time as we're turning the pipe off/on.
426 */
427 static void psb_intel_crtc_dpms(struct drm_crtc *crtc, int mode)
428 {
429 struct drm_device *dev = crtc->dev;
430 /* struct drm_i915_master_private *master_priv; */
431 /* struct drm_i915_private *dev_priv = dev->dev_private; */
432 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
433 int pipe = psb_intel_crtc->pipe;
434 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
435 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
436 int dspbase_reg = (pipe == 0) ? DSPABASE : DSPBBASE;
437 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
438 u32 temp;
439 bool enabled;
440
441 /* XXX: When our outputs are all unaware of DPMS modes other than off
442 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
443 */
444 switch (mode) {
445 case DRM_MODE_DPMS_ON:
446 case DRM_MODE_DPMS_STANDBY:
447 case DRM_MODE_DPMS_SUSPEND:
448 /* Enable the DPLL */
449 temp = REG_READ(dpll_reg);
450 if ((temp & DPLL_VCO_ENABLE) == 0) {
451 REG_WRITE(dpll_reg, temp);
452 REG_READ(dpll_reg);
453 /* Wait for the clocks to stabilize. */
454 udelay(150);
455 REG_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
456 REG_READ(dpll_reg);
457 /* Wait for the clocks to stabilize. */
458 udelay(150);
459 REG_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
460 REG_READ(dpll_reg);
461 /* Wait for the clocks to stabilize. */
462 udelay(150);
463 }
464
465 /* Enable the pipe */
466 temp = REG_READ(pipeconf_reg);
467 if ((temp & PIPEACONF_ENABLE) == 0)
468 REG_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
469
470 /* Enable the plane */
471 temp = REG_READ(dspcntr_reg);
472 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
473 REG_WRITE(dspcntr_reg,
474 temp | DISPLAY_PLANE_ENABLE);
475 /* Flush the plane changes */
476 REG_WRITE(dspbase_reg, REG_READ(dspbase_reg));
477 }
478
479 psb_intel_crtc_load_lut(crtc);
480
481 /* Give the overlay scaler a chance to enable
482 * if it's on this pipe */
483 /* psb_intel_crtc_dpms_video(crtc, true); TODO */
484 break;
485 case DRM_MODE_DPMS_OFF:
486 /* Give the overlay scaler a chance to disable
487 * if it's on this pipe */
488 /* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
489
490 /* Disable the VGA plane that we never use */
491 REG_WRITE(VGACNTRL, VGA_DISP_DISABLE);
492
493 /* Disable display plane */
494 temp = REG_READ(dspcntr_reg);
495 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
496 REG_WRITE(dspcntr_reg,
497 temp & ~DISPLAY_PLANE_ENABLE);
498 /* Flush the plane changes */
499 REG_WRITE(dspbase_reg, REG_READ(dspbase_reg));
500 REG_READ(dspbase_reg);
501 }
502
503 /* Next, disable display pipes */
504 temp = REG_READ(pipeconf_reg);
505 if ((temp & PIPEACONF_ENABLE) != 0) {
506 REG_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
507 REG_READ(pipeconf_reg);
508 }
509
510 /* Wait for vblank for the disable to take effect. */
511 psb_intel_wait_for_vblank(dev);
512
513 temp = REG_READ(dpll_reg);
514 if ((temp & DPLL_VCO_ENABLE) != 0) {
515 REG_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
516 REG_READ(dpll_reg);
517 }
518
519 /* Wait for the clocks to turn off. */
520 udelay(150);
521 break;
522 }
523
524 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
525
526 /*Set FIFO Watermarks*/
527 REG_WRITE(DSPARB, 0x3F3E);
528 }
529
530 static void psb_intel_crtc_prepare(struct drm_crtc *crtc)
531 {
532 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
533 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
534 }
535
536 static void psb_intel_crtc_commit(struct drm_crtc *crtc)
537 {
538 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
539 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
540 }
541
542 void psb_intel_encoder_prepare(struct drm_encoder *encoder)
543 {
544 struct drm_encoder_helper_funcs *encoder_funcs =
545 encoder->helper_private;
546 /* lvds has its own version of prepare see psb_intel_lvds_prepare */
547 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
548 }
549
550 void psb_intel_encoder_commit(struct drm_encoder *encoder)
551 {
552 struct drm_encoder_helper_funcs *encoder_funcs =
553 encoder->helper_private;
554 /* lvds has its own version of commit see psb_intel_lvds_commit */
555 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
556 }
557
558 static bool psb_intel_crtc_mode_fixup(struct drm_crtc *crtc,
559 struct drm_display_mode *mode,
560 struct drm_display_mode *adjusted_mode)
561 {
562 return true;
563 }
564
565
566 /**
567 * Return the pipe currently connected to the panel fitter,
568 * or -1 if the panel fitter is not present or not in use
569 */
570 static int psb_intel_panel_fitter_pipe(struct drm_device *dev)
571 {
572 u32 pfit_control;
573
574 pfit_control = REG_READ(PFIT_CONTROL);
575
576 /* See if the panel fitter is in use */
577 if ((pfit_control & PFIT_ENABLE) == 0)
578 return -1;
579 /* Must be on PIPE 1 for PSB */
580 return 1;
581 }
582
583 static int psb_intel_crtc_mode_set(struct drm_crtc *crtc,
584 struct drm_display_mode *mode,
585 struct drm_display_mode *adjusted_mode,
586 int x, int y,
587 struct drm_framebuffer *old_fb)
588 {
589 struct drm_device *dev = crtc->dev;
590 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
591 int pipe = psb_intel_crtc->pipe;
592 int fp_reg = (pipe == 0) ? FPA0 : FPB0;
593 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
594 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
595 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
596 int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
597 int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
598 int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
599 int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
600 int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
601 int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
602 int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE;
603 int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS;
604 int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
605 int refclk;
606 struct psb_intel_clock_t clock;
607 u32 dpll = 0, fp = 0, dspcntr, pipeconf;
608 bool ok, is_sdvo = false, is_dvo = false;
609 bool is_crt = false, is_lvds = false, is_tv = false;
610 struct drm_mode_config *mode_config = &dev->mode_config;
611 struct drm_connector *connector;
612
613 list_for_each_entry(connector, &mode_config->connector_list, head) {
614 struct psb_intel_output *psb_intel_output =
615 to_psb_intel_output(connector);
616
617 if (!connector->encoder
618 || connector->encoder->crtc != crtc)
619 continue;
620
621 switch (psb_intel_output->type) {
622 case INTEL_OUTPUT_LVDS:
623 is_lvds = true;
624 break;
625 case INTEL_OUTPUT_SDVO:
626 is_sdvo = true;
627 break;
628 case INTEL_OUTPUT_DVO:
629 is_dvo = true;
630 break;
631 case INTEL_OUTPUT_TVOUT:
632 is_tv = true;
633 break;
634 case INTEL_OUTPUT_ANALOG:
635 is_crt = true;
636 break;
637 }
638 }
639
640 refclk = 96000;
641
642 ok = psb_intel_find_best_PLL(crtc, adjusted_mode->clock, refclk,
643 &clock);
644 if (!ok) {
645 DRM_ERROR("Couldn't find PLL settings for mode!\n");
646 return 0;
647 }
648
649 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
650
651 dpll = DPLL_VGA_MODE_DIS;
652 if (is_lvds) {
653 dpll |= DPLLB_MODE_LVDS;
654 dpll |= DPLL_DVO_HIGH_SPEED;
655 } else
656 dpll |= DPLLB_MODE_DAC_SERIAL;
657 if (is_sdvo) {
658 int sdvo_pixel_multiply =
659 adjusted_mode->clock / mode->clock;
660 dpll |= DPLL_DVO_HIGH_SPEED;
661 dpll |=
662 (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
663 }
664
665 /* compute bitmask from p1 value */
666 dpll |= (1 << (clock.p1 - 1)) << 16;
667 switch (clock.p2) {
668 case 5:
669 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
670 break;
671 case 7:
672 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
673 break;
674 case 10:
675 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
676 break;
677 case 14:
678 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
679 break;
680 }
681
682 if (is_tv) {
683 /* XXX: just matching BIOS for now */
684 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
685 dpll |= 3;
686 }
687 dpll |= PLL_REF_INPUT_DREFCLK;
688
689 /* setup pipeconf */
690 pipeconf = REG_READ(pipeconf_reg);
691
692 /* Set up the display plane register */
693 dspcntr = DISPPLANE_GAMMA_ENABLE;
694
695 if (pipe == 0)
696 dspcntr |= DISPPLANE_SEL_PIPE_A;
697 else
698 dspcntr |= DISPPLANE_SEL_PIPE_B;
699
700 dspcntr |= DISPLAY_PLANE_ENABLE;
701 pipeconf |= PIPEACONF_ENABLE;
702 dpll |= DPLL_VCO_ENABLE;
703
704
705 /* Disable the panel fitter if it was on our pipe */
706 if (psb_intel_panel_fitter_pipe(dev) == pipe)
707 REG_WRITE(PFIT_CONTROL, 0);
708
709 DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
710 drm_mode_debug_printmodeline(mode);
711
712 if (dpll & DPLL_VCO_ENABLE) {
713 REG_WRITE(fp_reg, fp);
714 REG_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
715 REG_READ(dpll_reg);
716 udelay(150);
717 }
718
719 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
720 * This is an exception to the general rule that mode_set doesn't turn
721 * things on.
722 */
723 if (is_lvds) {
724 u32 lvds = REG_READ(LVDS);
725
726 lvds |=
727 LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP |
728 LVDS_PIPEB_SELECT;
729 /* Set the B0-B3 data pairs corresponding to
730 * whether we're going to
731 * set the DPLLs for dual-channel mode or not.
732 */
733 if (clock.p2 == 7)
734 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
735 else
736 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
737
738 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
739 * appropriately here, but we need to look more
740 * thoroughly into how panels behave in the two modes.
741 */
742
743 REG_WRITE(LVDS, lvds);
744 REG_READ(LVDS);
745 }
746
747 REG_WRITE(fp_reg, fp);
748 REG_WRITE(dpll_reg, dpll);
749 REG_READ(dpll_reg);
750 /* Wait for the clocks to stabilize. */
751 udelay(150);
752
753 /* write it again -- the BIOS does, after all */
754 REG_WRITE(dpll_reg, dpll);
755
756 REG_READ(dpll_reg);
757 /* Wait for the clocks to stabilize. */
758 udelay(150);
759
760 REG_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
761 ((adjusted_mode->crtc_htotal - 1) << 16));
762 REG_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
763 ((adjusted_mode->crtc_hblank_end - 1) << 16));
764 REG_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
765 ((adjusted_mode->crtc_hsync_end - 1) << 16));
766 REG_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
767 ((adjusted_mode->crtc_vtotal - 1) << 16));
768 REG_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
769 ((adjusted_mode->crtc_vblank_end - 1) << 16));
770 REG_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
771 ((adjusted_mode->crtc_vsync_end - 1) << 16));
772 /* pipesrc and dspsize control the size that is scaled from,
773 * which should always be the user's requested size.
774 */
775 REG_WRITE(dspsize_reg,
776 ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
777 REG_WRITE(dsppos_reg, 0);
778 REG_WRITE(pipesrc_reg,
779 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
780 REG_WRITE(pipeconf_reg, pipeconf);
781 REG_READ(pipeconf_reg);
782
783 psb_intel_wait_for_vblank(dev);
784
785 REG_WRITE(dspcntr_reg, dspcntr);
786
787 /* Flush the plane changes */
788 {
789 struct drm_crtc_helper_funcs *crtc_funcs =
790 crtc->helper_private;
791 crtc_funcs->mode_set_base(crtc, x, y, old_fb);
792 }
793
794 psb_intel_wait_for_vblank(dev);
795
796 return 0;
797 }
798
799 /** Loads the palette/gamma unit for the CRTC with the prepared values */
800 void psb_intel_crtc_load_lut(struct drm_crtc *crtc)
801 {
802 struct drm_device *dev = crtc->dev;
803 struct drm_psb_private *dev_priv =
804 (struct drm_psb_private *)dev->dev_private;
805 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
806 int palreg = PALETTE_A;
807 int i;
808
809 /* The clocks have to be on to load the palette. */
810 if (!crtc->enabled)
811 return;
812
813 switch (psb_intel_crtc->pipe) {
814 case 0:
815 break;
816 case 1:
817 palreg = PALETTE_B;
818 break;
819 case 2:
820 palreg = PALETTE_C;
821 break;
822 default:
823 DRM_ERROR("Illegal Pipe Number.\n");
824 return;
825 }
826
827 if (gma_power_begin(dev, false)) {
828 for (i = 0; i < 256; i++) {
829 REG_WRITE(palreg + 4 * i,
830 ((psb_intel_crtc->lut_r[i] +
831 psb_intel_crtc->lut_adj[i]) << 16) |
832 ((psb_intel_crtc->lut_g[i] +
833 psb_intel_crtc->lut_adj[i]) << 8) |
834 (psb_intel_crtc->lut_b[i] +
835 psb_intel_crtc->lut_adj[i]));
836 }
837 gma_power_end(dev);
838 } else {
839 for (i = 0; i < 256; i++) {
840 dev_priv->save_palette_a[i] =
841 ((psb_intel_crtc->lut_r[i] +
842 psb_intel_crtc->lut_adj[i]) << 16) |
843 ((psb_intel_crtc->lut_g[i] +
844 psb_intel_crtc->lut_adj[i]) << 8) |
845 (psb_intel_crtc->lut_b[i] +
846 psb_intel_crtc->lut_adj[i]);
847 }
848
849 }
850 }
851
852 /**
853 * Save HW states of giving crtc
854 */
855 static void psb_intel_crtc_save(struct drm_crtc *crtc)
856 {
857 struct drm_device *dev = crtc->dev;
858 /* struct drm_psb_private *dev_priv =
859 (struct drm_psb_private *)dev->dev_private; */
860 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
861 struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
862 int pipeA = (psb_intel_crtc->pipe == 0);
863 uint32_t paletteReg;
864 int i;
865
866 DRM_DEBUG("\n");
867
868 if (!crtc_state) {
869 DRM_DEBUG("No CRTC state found\n");
870 return;
871 }
872
873 crtc_state->saveDSPCNTR = REG_READ(pipeA ? DSPACNTR : DSPBCNTR);
874 crtc_state->savePIPECONF = REG_READ(pipeA ? PIPEACONF : PIPEBCONF);
875 crtc_state->savePIPESRC = REG_READ(pipeA ? PIPEASRC : PIPEBSRC);
876 crtc_state->saveFP0 = REG_READ(pipeA ? FPA0 : FPB0);
877 crtc_state->saveFP1 = REG_READ(pipeA ? FPA1 : FPB1);
878 crtc_state->saveDPLL = REG_READ(pipeA ? DPLL_A : DPLL_B);
879 crtc_state->saveHTOTAL = REG_READ(pipeA ? HTOTAL_A : HTOTAL_B);
880 crtc_state->saveHBLANK = REG_READ(pipeA ? HBLANK_A : HBLANK_B);
881 crtc_state->saveHSYNC = REG_READ(pipeA ? HSYNC_A : HSYNC_B);
882 crtc_state->saveVTOTAL = REG_READ(pipeA ? VTOTAL_A : VTOTAL_B);
883 crtc_state->saveVBLANK = REG_READ(pipeA ? VBLANK_A : VBLANK_B);
884 crtc_state->saveVSYNC = REG_READ(pipeA ? VSYNC_A : VSYNC_B);
885 crtc_state->saveDSPSTRIDE = REG_READ(pipeA ? DSPASTRIDE : DSPBSTRIDE);
886
887 /*NOTE: DSPSIZE DSPPOS only for psb*/
888 crtc_state->saveDSPSIZE = REG_READ(pipeA ? DSPASIZE : DSPBSIZE);
889 crtc_state->saveDSPPOS = REG_READ(pipeA ? DSPAPOS : DSPBPOS);
890
891 crtc_state->saveDSPBASE = REG_READ(pipeA ? DSPABASE : DSPBBASE);
892
893 DRM_DEBUG("(%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n",
894 crtc_state->saveDSPCNTR,
895 crtc_state->savePIPECONF,
896 crtc_state->savePIPESRC,
897 crtc_state->saveFP0,
898 crtc_state->saveFP1,
899 crtc_state->saveDPLL,
900 crtc_state->saveHTOTAL,
901 crtc_state->saveHBLANK,
902 crtc_state->saveHSYNC,
903 crtc_state->saveVTOTAL,
904 crtc_state->saveVBLANK,
905 crtc_state->saveVSYNC,
906 crtc_state->saveDSPSTRIDE,
907 crtc_state->saveDSPSIZE,
908 crtc_state->saveDSPPOS,
909 crtc_state->saveDSPBASE
910 );
911
912 paletteReg = pipeA ? PALETTE_A : PALETTE_B;
913 for (i = 0; i < 256; ++i)
914 crtc_state->savePalette[i] = REG_READ(paletteReg + (i << 2));
915 }
916
917 /**
918 * Restore HW states of giving crtc
919 */
920 static void psb_intel_crtc_restore(struct drm_crtc *crtc)
921 {
922 struct drm_device *dev = crtc->dev;
923 /* struct drm_psb_private * dev_priv =
924 (struct drm_psb_private *)dev->dev_private; */
925 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
926 struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
927 /* struct drm_crtc_helper_funcs * crtc_funcs = crtc->helper_private; */
928 int pipeA = (psb_intel_crtc->pipe == 0);
929 uint32_t paletteReg;
930 int i;
931
932 DRM_DEBUG("\n");
933
934 if (!crtc_state) {
935 DRM_DEBUG("No crtc state\n");
936 return;
937 }
938
939 DRM_DEBUG(
940 "current:(%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n",
941 REG_READ(pipeA ? DSPACNTR : DSPBCNTR),
942 REG_READ(pipeA ? PIPEACONF : PIPEBCONF),
943 REG_READ(pipeA ? PIPEASRC : PIPEBSRC),
944 REG_READ(pipeA ? FPA0 : FPB0),
945 REG_READ(pipeA ? FPA1 : FPB1),
946 REG_READ(pipeA ? DPLL_A : DPLL_B),
947 REG_READ(pipeA ? HTOTAL_A : HTOTAL_B),
948 REG_READ(pipeA ? HBLANK_A : HBLANK_B),
949 REG_READ(pipeA ? HSYNC_A : HSYNC_B),
950 REG_READ(pipeA ? VTOTAL_A : VTOTAL_B),
951 REG_READ(pipeA ? VBLANK_A : VBLANK_B),
952 REG_READ(pipeA ? VSYNC_A : VSYNC_B),
953 REG_READ(pipeA ? DSPASTRIDE : DSPBSTRIDE),
954 REG_READ(pipeA ? DSPASIZE : DSPBSIZE),
955 REG_READ(pipeA ? DSPAPOS : DSPBPOS),
956 REG_READ(pipeA ? DSPABASE : DSPBBASE)
957 );
958
959 DRM_DEBUG(
960 "saved: (%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n",
961 crtc_state->saveDSPCNTR,
962 crtc_state->savePIPECONF,
963 crtc_state->savePIPESRC,
964 crtc_state->saveFP0,
965 crtc_state->saveFP1,
966 crtc_state->saveDPLL,
967 crtc_state->saveHTOTAL,
968 crtc_state->saveHBLANK,
969 crtc_state->saveHSYNC,
970 crtc_state->saveVTOTAL,
971 crtc_state->saveVBLANK,
972 crtc_state->saveVSYNC,
973 crtc_state->saveDSPSTRIDE,
974 crtc_state->saveDSPSIZE,
975 crtc_state->saveDSPPOS,
976 crtc_state->saveDSPBASE
977 );
978
979
980 if (crtc_state->saveDPLL & DPLL_VCO_ENABLE) {
981 REG_WRITE(pipeA ? DPLL_A : DPLL_B,
982 crtc_state->saveDPLL & ~DPLL_VCO_ENABLE);
983 REG_READ(pipeA ? DPLL_A : DPLL_B);
984 DRM_DEBUG("write dpll: %x\n",
985 REG_READ(pipeA ? DPLL_A : DPLL_B));
986 udelay(150);
987 }
988
989 REG_WRITE(pipeA ? FPA0 : FPB0, crtc_state->saveFP0);
990 REG_READ(pipeA ? FPA0 : FPB0);
991
992 REG_WRITE(pipeA ? FPA1 : FPB1, crtc_state->saveFP1);
993 REG_READ(pipeA ? FPA1 : FPB1);
994
995 REG_WRITE(pipeA ? DPLL_A : DPLL_B, crtc_state->saveDPLL);
996 REG_READ(pipeA ? DPLL_A : DPLL_B);
997 udelay(150);
998
999 REG_WRITE(pipeA ? HTOTAL_A : HTOTAL_B, crtc_state->saveHTOTAL);
1000 REG_WRITE(pipeA ? HBLANK_A : HBLANK_B, crtc_state->saveHBLANK);
1001 REG_WRITE(pipeA ? HSYNC_A : HSYNC_B, crtc_state->saveHSYNC);
1002 REG_WRITE(pipeA ? VTOTAL_A : VTOTAL_B, crtc_state->saveVTOTAL);
1003 REG_WRITE(pipeA ? VBLANK_A : VBLANK_B, crtc_state->saveVBLANK);
1004 REG_WRITE(pipeA ? VSYNC_A : VSYNC_B, crtc_state->saveVSYNC);
1005 REG_WRITE(pipeA ? DSPASTRIDE : DSPBSTRIDE, crtc_state->saveDSPSTRIDE);
1006
1007 REG_WRITE(pipeA ? DSPASIZE : DSPBSIZE, crtc_state->saveDSPSIZE);
1008 REG_WRITE(pipeA ? DSPAPOS : DSPBPOS, crtc_state->saveDSPPOS);
1009
1010 REG_WRITE(pipeA ? PIPEASRC : PIPEBSRC, crtc_state->savePIPESRC);
1011 REG_WRITE(pipeA ? DSPABASE : DSPBBASE, crtc_state->saveDSPBASE);
1012 REG_WRITE(pipeA ? PIPEACONF : PIPEBCONF, crtc_state->savePIPECONF);
1013
1014 psb_intel_wait_for_vblank(dev);
1015
1016 REG_WRITE(pipeA ? DSPACNTR : DSPBCNTR, crtc_state->saveDSPCNTR);
1017 REG_WRITE(pipeA ? DSPABASE : DSPBBASE, crtc_state->saveDSPBASE);
1018
1019 psb_intel_wait_for_vblank(dev);
1020
1021 paletteReg = pipeA ? PALETTE_A : PALETTE_B;
1022 for (i = 0; i < 256; ++i)
1023 REG_WRITE(paletteReg + (i << 2), crtc_state->savePalette[i]);
1024 }
1025
1026 static int psb_intel_crtc_cursor_set(struct drm_crtc *crtc,
1027 struct drm_file *file_priv,
1028 uint32_t handle,
1029 uint32_t width, uint32_t height)
1030 {
1031 struct drm_device *dev = crtc->dev;
1032 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1033 int pipe = psb_intel_crtc->pipe;
1034 uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
1035 uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
1036 uint32_t temp;
1037 size_t addr = 0;
1038 struct gtt_range *gt;
1039 struct drm_gem_object *obj;
1040 int ret;
1041
1042 DRM_DEBUG("\n");
1043
1044 /* if we want to turn of the cursor ignore width and height */
1045 if (!handle) {
1046 DRM_DEBUG("cursor off\n");
1047 /* turn off the cursor */
1048 temp = CURSOR_MODE_DISABLE;
1049
1050 if (gma_power_begin(dev, false)) {
1051 REG_WRITE(control, temp);
1052 REG_WRITE(base, 0);
1053 gma_power_end(dev);
1054 }
1055
1056 /* Unpin the old GEM object */
1057 if (psb_intel_crtc->cursor_obj) {
1058 gt = container_of(psb_intel_crtc->cursor_obj,
1059 struct gtt_range, gem);
1060 psb_gtt_unpin(gt);
1061 drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1062 psb_intel_crtc->cursor_obj = NULL;
1063 }
1064
1065 return 0;
1066 }
1067
1068 /* Currently we only support 64x64 cursors */
1069 if (width != 64 || height != 64) {
1070 DRM_ERROR("we currently only support 64x64 cursors\n");
1071 return -EINVAL;
1072 }
1073
1074 obj = drm_gem_object_lookup(dev, file_priv, handle);
1075 if (!obj)
1076 return -ENOENT;
1077
1078 if (obj->size < width * height * 4) {
1079 DRM_ERROR("buffer is to small\n");
1080 return -ENOMEM;
1081 }
1082
1083 gt = container_of(obj, struct gtt_range, gem);
1084
1085 /* Pin the memory into the GTT */
1086 ret = psb_gtt_pin(gt);
1087 if (ret) {
1088 DRM_ERROR("Can not pin down handle 0x%x\n", handle);
1089 return ret;
1090 }
1091
1092
1093 addr = gt->offset; /* Or resource.start ??? */
1094
1095 psb_intel_crtc->cursor_addr = addr;
1096
1097 temp = 0;
1098 /* set the pipe for the cursor */
1099 temp |= (pipe << 28);
1100 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
1101
1102 if (gma_power_begin(dev, false)) {
1103 REG_WRITE(control, temp);
1104 REG_WRITE(base, addr);
1105 gma_power_end(dev);
1106 }
1107
1108 /* unpin the old bo */
1109 if (psb_intel_crtc->cursor_obj && psb_intel_crtc->cursor_obj != obj) {
1110 gt = container_of(psb_intel_crtc->cursor_obj,
1111 struct gtt_range, gem);
1112 psb_gtt_unpin(gt);
1113 drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1114 psb_intel_crtc->cursor_obj = obj;
1115 }
1116
1117 return 0;
1118 }
1119
1120 static int psb_intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1121 {
1122 struct drm_device *dev = crtc->dev;
1123 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1124 int pipe = psb_intel_crtc->pipe;
1125 uint32_t temp = 0;
1126 uint32_t addr;
1127
1128
1129 if (x < 0) {
1130 temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
1131 x = -x;
1132 }
1133 if (y < 0) {
1134 temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
1135 y = -y;
1136 }
1137
1138 temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
1139 temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1140
1141 addr = psb_intel_crtc->cursor_addr;
1142
1143 if (gma_power_begin(dev, false)) {
1144 REG_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
1145 REG_WRITE((pipe == 0) ? CURABASE : CURBBASE, addr);
1146 gma_power_end(dev);
1147 }
1148 return 0;
1149 }
1150
1151 static void psb_intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red,
1152 u16 *green, u16 *blue, uint32_t type, uint32_t size)
1153 {
1154 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1155 int i;
1156
1157 if (size != 256)
1158 return;
1159
1160 for (i = 0; i < 256; i++) {
1161 psb_intel_crtc->lut_r[i] = red[i] >> 8;
1162 psb_intel_crtc->lut_g[i] = green[i] >> 8;
1163 psb_intel_crtc->lut_b[i] = blue[i] >> 8;
1164 }
1165
1166 psb_intel_crtc_load_lut(crtc);
1167 }
1168
1169 static int psb_crtc_set_config(struct drm_mode_set *set)
1170 {
1171 int ret;
1172 struct drm_device *dev = set->crtc->dev;
1173 struct drm_psb_private *dev_priv = dev->dev_private;
1174
1175 if (!dev_priv->rpm_enabled)
1176 return drm_crtc_helper_set_config(set);
1177
1178 pm_runtime_forbid(&dev->pdev->dev);
1179 ret = drm_crtc_helper_set_config(set);
1180 pm_runtime_allow(&dev->pdev->dev);
1181 return ret;
1182 }
1183
1184 /* Returns the clock of the currently programmed mode of the given pipe. */
1185 static int psb_intel_crtc_clock_get(struct drm_device *dev,
1186 struct drm_crtc *crtc)
1187 {
1188 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1189 int pipe = psb_intel_crtc->pipe;
1190 u32 dpll;
1191 u32 fp;
1192 struct psb_intel_clock_t clock;
1193 bool is_lvds;
1194 struct drm_psb_private *dev_priv = dev->dev_private;
1195
1196 if (gma_power_begin(dev, false)) {
1197 dpll = REG_READ((pipe == 0) ? DPLL_A : DPLL_B);
1198 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1199 fp = REG_READ((pipe == 0) ? FPA0 : FPB0);
1200 else
1201 fp = REG_READ((pipe == 0) ? FPA1 : FPB1);
1202 is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
1203 gma_power_end(dev);
1204 } else {
1205 dpll = (pipe == 0) ?
1206 dev_priv->saveDPLL_A : dev_priv->saveDPLL_B;
1207
1208 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1209 fp = (pipe == 0) ?
1210 dev_priv->saveFPA0 :
1211 dev_priv->saveFPB0;
1212 else
1213 fp = (pipe == 0) ?
1214 dev_priv->saveFPA1 :
1215 dev_priv->saveFPB1;
1216
1217 is_lvds = (pipe == 1) && (dev_priv->saveLVDS & LVDS_PORT_EN);
1218 }
1219
1220 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
1221 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
1222 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
1223
1224 if (is_lvds) {
1225 clock.p1 =
1226 ffs((dpll &
1227 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
1228 DPLL_FPA01_P1_POST_DIV_SHIFT);
1229 clock.p2 = 14;
1230
1231 if ((dpll & PLL_REF_INPUT_MASK) ==
1232 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
1233 /* XXX: might not be 66MHz */
1234 i8xx_clock(66000, &clock);
1235 } else
1236 i8xx_clock(48000, &clock);
1237 } else {
1238 if (dpll & PLL_P1_DIVIDE_BY_TWO)
1239 clock.p1 = 2;
1240 else {
1241 clock.p1 =
1242 ((dpll &
1243 DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
1244 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
1245 }
1246 if (dpll & PLL_P2_DIVIDE_BY_4)
1247 clock.p2 = 4;
1248 else
1249 clock.p2 = 2;
1250
1251 i8xx_clock(48000, &clock);
1252 }
1253
1254 /* XXX: It would be nice to validate the clocks, but we can't reuse
1255 * i830PllIsValid() because it relies on the xf86_config connector
1256 * configuration being accurate, which it isn't necessarily.
1257 */
1258
1259 return clock.dot;
1260 }
1261
1262 /** Returns the currently programmed mode of the given pipe. */
1263 struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev,
1264 struct drm_crtc *crtc)
1265 {
1266 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1267 int pipe = psb_intel_crtc->pipe;
1268 struct drm_display_mode *mode;
1269 int htot;
1270 int hsync;
1271 int vtot;
1272 int vsync;
1273 struct drm_psb_private *dev_priv = dev->dev_private;
1274
1275 if (gma_power_begin(dev, false)) {
1276 htot = REG_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
1277 hsync = REG_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
1278 vtot = REG_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
1279 vsync = REG_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
1280 gma_power_end(dev);
1281 } else {
1282 htot = (pipe == 0) ?
1283 dev_priv->saveHTOTAL_A : dev_priv->saveHTOTAL_B;
1284 hsync = (pipe == 0) ?
1285 dev_priv->saveHSYNC_A : dev_priv->saveHSYNC_B;
1286 vtot = (pipe == 0) ?
1287 dev_priv->saveVTOTAL_A : dev_priv->saveVTOTAL_B;
1288 vsync = (pipe == 0) ?
1289 dev_priv->saveVSYNC_A : dev_priv->saveVSYNC_B;
1290 }
1291
1292 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
1293 if (!mode)
1294 return NULL;
1295
1296 mode->clock = psb_intel_crtc_clock_get(dev, crtc);
1297 mode->hdisplay = (htot & 0xffff) + 1;
1298 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
1299 mode->hsync_start = (hsync & 0xffff) + 1;
1300 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
1301 mode->vdisplay = (vtot & 0xffff) + 1;
1302 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
1303 mode->vsync_start = (vsync & 0xffff) + 1;
1304 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
1305
1306 drm_mode_set_name(mode);
1307 drm_mode_set_crtcinfo(mode, 0);
1308
1309 return mode;
1310 }
1311
1312 static void psb_intel_crtc_destroy(struct drm_crtc *crtc)
1313 {
1314 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1315 struct gtt_range *gt;
1316
1317 /* Unpin the old GEM object */
1318 if (psb_intel_crtc->cursor_obj) {
1319 gt = container_of(psb_intel_crtc->cursor_obj,
1320 struct gtt_range, gem);
1321 psb_gtt_unpin(gt);
1322 drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1323 psb_intel_crtc->cursor_obj = NULL;
1324 }
1325 kfree(psb_intel_crtc->crtc_state);
1326 drm_crtc_cleanup(crtc);
1327 kfree(psb_intel_crtc);
1328 }
1329
1330 static const struct drm_crtc_helper_funcs psb_intel_helper_funcs = {
1331 .dpms = psb_intel_crtc_dpms,
1332 .mode_fixup = psb_intel_crtc_mode_fixup,
1333 .mode_set = psb_intel_crtc_mode_set,
1334 .mode_set_base = psb_intel_pipe_set_base,
1335 .prepare = psb_intel_crtc_prepare,
1336 .commit = psb_intel_crtc_commit,
1337 };
1338
1339 const struct drm_crtc_funcs psb_intel_crtc_funcs = {
1340 .save = psb_intel_crtc_save,
1341 .restore = psb_intel_crtc_restore,
1342 .cursor_set = psb_intel_crtc_cursor_set,
1343 .cursor_move = psb_intel_crtc_cursor_move,
1344 .gamma_set = psb_intel_crtc_gamma_set,
1345 .set_config = psb_crtc_set_config,
1346 .destroy = psb_intel_crtc_destroy,
1347 };
1348
1349 void psb_intel_crtc_init(struct drm_device *dev, int pipe,
1350 struct psb_intel_mode_device *mode_dev)
1351 {
1352 struct drm_psb_private *dev_priv = dev->dev_private;
1353 struct psb_intel_crtc *psb_intel_crtc;
1354 int i;
1355 uint16_t *r_base, *g_base, *b_base;
1356
1357 PSB_DEBUG_ENTRY("\n");
1358
1359 /* We allocate a extra array of drm_connector pointers
1360 * for fbdev after the crtc */
1361 psb_intel_crtc =
1362 kzalloc(sizeof(struct psb_intel_crtc) +
1363 (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
1364 GFP_KERNEL);
1365 if (psb_intel_crtc == NULL)
1366 return;
1367
1368 psb_intel_crtc->crtc_state =
1369 kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL);
1370 if (!psb_intel_crtc->crtc_state) {
1371 DRM_INFO("Crtc state error: No memory\n");
1372 kfree(psb_intel_crtc);
1373 return;
1374 }
1375
1376 drm_crtc_init(dev, &psb_intel_crtc->base, &psb_intel_crtc_funcs);
1377
1378 drm_mode_crtc_set_gamma_size(&psb_intel_crtc->base, 256);
1379 psb_intel_crtc->pipe = pipe;
1380 psb_intel_crtc->plane = pipe;
1381
1382 r_base = psb_intel_crtc->base.gamma_store;
1383 g_base = r_base + 256;
1384 b_base = g_base + 256;
1385 for (i = 0; i < 256; i++) {
1386 psb_intel_crtc->lut_r[i] = i;
1387 psb_intel_crtc->lut_g[i] = i;
1388 psb_intel_crtc->lut_b[i] = i;
1389 r_base[i] = i << 8;
1390 g_base[i] = i << 8;
1391 b_base[i] = i << 8;
1392
1393 psb_intel_crtc->lut_adj[i] = 0;
1394 }
1395
1396 psb_intel_crtc->mode_dev = mode_dev;
1397 psb_intel_crtc->cursor_addr = 0;
1398
1399 if (IS_MRST(dev))
1400 drm_crtc_helper_add(&psb_intel_crtc->base,
1401 &mrst_helper_funcs);
1402 else
1403 drm_crtc_helper_add(&psb_intel_crtc->base,
1404 &psb_intel_helper_funcs);
1405
1406 /* Setup the array of drm_connector pointer array */
1407 psb_intel_crtc->mode_set.crtc = &psb_intel_crtc->base;
1408 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
1409 dev_priv->plane_to_crtc_mapping[psb_intel_crtc->plane] != NULL);
1410 dev_priv->plane_to_crtc_mapping[psb_intel_crtc->plane] =
1411 &psb_intel_crtc->base;
1412 dev_priv->pipe_to_crtc_mapping[psb_intel_crtc->pipe] =
1413 &psb_intel_crtc->base;
1414 psb_intel_crtc->mode_set.connectors =
1415 (struct drm_connector **) (psb_intel_crtc + 1);
1416 psb_intel_crtc->mode_set.num_connectors = 0;
1417 }
1418
1419 int psb_intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
1420 struct drm_file *file_priv)
1421 {
1422 struct drm_psb_private *dev_priv = dev->dev_private;
1423 struct drm_psb_get_pipe_from_crtc_id_arg *pipe_from_crtc_id = data;
1424 struct drm_mode_object *drmmode_obj;
1425 struct psb_intel_crtc *crtc;
1426
1427 if (!dev_priv) {
1428 DRM_ERROR("called with no initialization\n");
1429 return -EINVAL;
1430 }
1431
1432 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
1433 DRM_MODE_OBJECT_CRTC);
1434
1435 if (!drmmode_obj) {
1436 DRM_ERROR("no such CRTC id\n");
1437 return -EINVAL;
1438 }
1439
1440 crtc = to_psb_intel_crtc(obj_to_crtc(drmmode_obj));
1441 pipe_from_crtc_id->pipe = crtc->pipe;
1442
1443 return 0;
1444 }
1445
1446 struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
1447 {
1448 struct drm_crtc *crtc = NULL;
1449
1450 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1451 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1452 if (psb_intel_crtc->pipe == pipe)
1453 break;
1454 }
1455 return crtc;
1456 }
1457
1458 int psb_intel_connector_clones(struct drm_device *dev, int type_mask)
1459 {
1460 int index_mask = 0;
1461 struct drm_connector *connector;
1462 int entry = 0;
1463
1464 list_for_each_entry(connector, &dev->mode_config.connector_list,
1465 head) {
1466 struct psb_intel_output *psb_intel_output =
1467 to_psb_intel_output(connector);
1468 if (type_mask & (1 << psb_intel_output->type))
1469 index_mask |= (1 << entry);
1470 entry++;
1471 }
1472 return index_mask;
1473 }
1474
1475
1476 void psb_intel_modeset_cleanup(struct drm_device *dev)
1477 {
1478 drm_mode_config_cleanup(dev);
1479 }
1480
1481
1482 /* current intel driver doesn't take advantage of encoders
1483 always give back the encoder for the connector
1484 */
1485 struct drm_encoder *psb_intel_best_encoder(struct drm_connector *connector)
1486 {
1487 struct psb_intel_output *psb_intel_output =
1488 to_psb_intel_output(connector);
1489
1490 return &psb_intel_output->enc;
1491 }
1492