]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/staging/iio/adc/ad7793.c
aab752886c9740a4a5b8c9657d4b1970f274916e
[mirror_ubuntu-bionic-kernel.git] / drivers / staging / iio / adc / ad7793.c
1 /*
2 * AD7792/AD7793 SPI ADC driver
3 *
4 * Copyright 2011 Analog Devices Inc.
5 *
6 * Licensed under the GPL-2.
7 */
8
9 #include <linux/interrupt.h>
10 #include <linux/device.h>
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/sysfs.h>
14 #include <linux/spi/spi.h>
15 #include <linux/regulator/consumer.h>
16 #include <linux/err.h>
17 #include <linux/sched.h>
18 #include <linux/delay.h>
19
20 #include "../iio.h"
21 #include "../sysfs.h"
22 #include "../ring_generic.h"
23 #include "../ring_sw.h"
24 #include "../trigger.h"
25
26 #include "ad7793.h"
27
28 /* NOTE:
29 * The AD7792/AD7793 features a dual use data out ready DOUT/RDY output.
30 * In order to avoid contentions on the SPI bus, it's therefore necessary
31 * to use spi bus locking.
32 *
33 * The DOUT/RDY output must also be wired to an interrupt capable GPIO.
34 */
35
36 struct ad7793_chip_info {
37 struct iio_chan_spec channel[7];
38 };
39
40 struct ad7793_state {
41 struct spi_device *spi;
42 struct iio_trigger *trig;
43 const struct ad7793_chip_info *chip_info;
44 struct regulator *reg;
45 struct ad7793_platform_data *pdata;
46 wait_queue_head_t wq_data_avail;
47 bool done;
48 bool irq_dis;
49 u16 int_vref_mv;
50 u16 mode;
51 u16 conf;
52 u32 scale_avail[8][2];
53 u32 available_scan_masks[7];
54 /*
55 * DMA (thus cache coherency maintenance) requires the
56 * transfer buffers to live in their own cache lines.
57 */
58 u8 data[4] ____cacheline_aligned;
59 };
60
61 enum ad7793_supported_device_ids {
62 ID_AD7792,
63 ID_AD7793,
64 };
65
66 static int __ad7793_write_reg(struct ad7793_state *st, bool locked,
67 bool cs_change, unsigned char reg,
68 unsigned size, unsigned val)
69 {
70 u8 *data = st->data;
71 struct spi_transfer t = {
72 .tx_buf = data,
73 .len = size + 1,
74 .cs_change = cs_change,
75 };
76 struct spi_message m;
77
78 data[0] = AD7793_COMM_WRITE | AD7793_COMM_ADDR(reg);
79
80 switch (size) {
81 case 3:
82 data[1] = val >> 16;
83 data[2] = val >> 8;
84 data[3] = val;
85 break;
86 case 2:
87 data[1] = val >> 8;
88 data[2] = val;
89 break;
90 case 1:
91 data[1] = val;
92 break;
93 default:
94 return -EINVAL;
95 }
96
97 spi_message_init(&m);
98 spi_message_add_tail(&t, &m);
99
100 if (locked)
101 return spi_sync_locked(st->spi, &m);
102 else
103 return spi_sync(st->spi, &m);
104 }
105
106 static int ad7793_write_reg(struct ad7793_state *st,
107 unsigned reg, unsigned size, unsigned val)
108 {
109 return __ad7793_write_reg(st, false, false, reg, size, val);
110 }
111
112 static int __ad7793_read_reg(struct ad7793_state *st, bool locked,
113 bool cs_change, unsigned char reg,
114 int *val, unsigned size)
115 {
116 u8 *data = st->data;
117 int ret;
118 struct spi_transfer t[] = {
119 {
120 .tx_buf = data,
121 .len = 1,
122 }, {
123 .rx_buf = data,
124 .len = size,
125 .cs_change = cs_change,
126 },
127 };
128 struct spi_message m;
129
130 data[0] = AD7793_COMM_READ | AD7793_COMM_ADDR(reg);
131
132 spi_message_init(&m);
133 spi_message_add_tail(&t[0], &m);
134 spi_message_add_tail(&t[1], &m);
135
136 if (locked)
137 ret = spi_sync_locked(st->spi, &m);
138 else
139 ret = spi_sync(st->spi, &m);
140
141 if (ret < 0)
142 return ret;
143
144 switch (size) {
145 case 3:
146 *val = data[0] << 16 | data[1] << 8 | data[2];
147 break;
148 case 2:
149 *val = data[0] << 8 | data[1];
150 break;
151 case 1:
152 *val = data[0];
153 break;
154 default:
155 return -EINVAL;
156 }
157
158 return 0;
159 }
160
161 static int ad7793_read_reg(struct ad7793_state *st,
162 unsigned reg, int *val, unsigned size)
163 {
164 return __ad7793_read_reg(st, 0, 0, reg, val, size);
165 }
166
167 static int ad7793_read(struct ad7793_state *st, unsigned ch,
168 unsigned len, int *val)
169 {
170 int ret;
171 st->conf = (st->conf & ~AD7793_CONF_CHAN(-1)) | AD7793_CONF_CHAN(ch);
172 st->mode = (st->mode & ~AD7793_MODE_SEL(-1)) |
173 AD7793_MODE_SEL(AD7793_MODE_SINGLE);
174
175 ad7793_write_reg(st, AD7793_REG_CONF, sizeof(st->conf), st->conf);
176
177 spi_bus_lock(st->spi->master);
178 st->done = false;
179
180 ret = __ad7793_write_reg(st, 1, 1, AD7793_REG_MODE,
181 sizeof(st->mode), st->mode);
182 if (ret < 0)
183 goto out;
184
185 st->irq_dis = false;
186 enable_irq(st->spi->irq);
187 wait_event_interruptible(st->wq_data_avail, st->done);
188
189 ret = __ad7793_read_reg(st, 1, 0, AD7793_REG_DATA, val, len);
190 out:
191 spi_bus_unlock(st->spi->master);
192
193 return ret;
194 }
195
196 static int ad7793_calibrate(struct ad7793_state *st, unsigned mode, unsigned ch)
197 {
198 int ret;
199
200 st->conf = (st->conf & ~AD7793_CONF_CHAN(-1)) | AD7793_CONF_CHAN(ch);
201 st->mode = (st->mode & ~AD7793_MODE_SEL(-1)) | AD7793_MODE_SEL(mode);
202
203 ad7793_write_reg(st, AD7793_REG_CONF, sizeof(st->conf), st->conf);
204
205 spi_bus_lock(st->spi->master);
206 st->done = false;
207
208 ret = __ad7793_write_reg(st, 1, 1, AD7793_REG_MODE,
209 sizeof(st->mode), st->mode);
210 if (ret < 0)
211 goto out;
212
213 st->irq_dis = false;
214 enable_irq(st->spi->irq);
215 wait_event_interruptible(st->wq_data_avail, st->done);
216
217 st->mode = (st->mode & ~AD7793_MODE_SEL(-1)) |
218 AD7793_MODE_SEL(AD7793_MODE_IDLE);
219
220 ret = __ad7793_write_reg(st, 1, 0, AD7793_REG_MODE,
221 sizeof(st->mode), st->mode);
222 out:
223 spi_bus_unlock(st->spi->master);
224
225 return ret;
226 }
227
228 static const u8 ad7793_calib_arr[6][2] = {
229 {AD7793_MODE_CAL_INT_ZERO, AD7793_CH_AIN1P_AIN1M},
230 {AD7793_MODE_CAL_INT_FULL, AD7793_CH_AIN1P_AIN1M},
231 {AD7793_MODE_CAL_INT_ZERO, AD7793_CH_AIN2P_AIN2M},
232 {AD7793_MODE_CAL_INT_FULL, AD7793_CH_AIN2P_AIN2M},
233 {AD7793_MODE_CAL_INT_ZERO, AD7793_CH_AIN3P_AIN3M},
234 {AD7793_MODE_CAL_INT_FULL, AD7793_CH_AIN3P_AIN3M}
235 };
236
237 static int ad7793_calibrate_all(struct ad7793_state *st)
238 {
239 int i, ret;
240
241 for (i = 0; i < ARRAY_SIZE(ad7793_calib_arr); i++) {
242 ret = ad7793_calibrate(st, ad7793_calib_arr[i][0],
243 ad7793_calib_arr[i][1]);
244 if (ret)
245 goto out;
246 }
247
248 return 0;
249 out:
250 dev_err(&st->spi->dev, "Calibration failed\n");
251 return ret;
252 }
253
254 static int ad7793_setup(struct ad7793_state *st)
255 {
256 int i, ret = -1;
257 unsigned long long scale_uv;
258 u32 id;
259
260 /* reset the serial interface */
261 ret = spi_write(st->spi, (u8 *)&ret, sizeof(ret));
262 if (ret < 0)
263 goto out;
264 msleep(1); /* Wait for at least 500us */
265
266 /* write/read test for device presence */
267 ret = ad7793_read_reg(st, AD7793_REG_ID, &id, 1);
268 if (ret)
269 goto out;
270
271 id &= AD7793_ID_MASK;
272
273 if (!((id == AD7792_ID) || (id == AD7793_ID))) {
274 dev_err(&st->spi->dev, "device ID query failed\n");
275 goto out;
276 }
277
278 st->mode = (st->pdata->mode & ~AD7793_MODE_SEL(-1)) |
279 AD7793_MODE_SEL(AD7793_MODE_IDLE);
280 st->conf = st->pdata->conf & ~AD7793_CONF_CHAN(-1);
281
282 ret = ad7793_write_reg(st, AD7793_REG_MODE, sizeof(st->mode), st->mode);
283 if (ret)
284 goto out;
285
286 ret = ad7793_write_reg(st, AD7793_REG_CONF, sizeof(st->conf), st->conf);
287 if (ret)
288 goto out;
289
290 ret = ad7793_write_reg(st, AD7793_REG_IO,
291 sizeof(st->pdata->io), st->pdata->io);
292 if (ret)
293 goto out;
294
295 ret = ad7793_calibrate_all(st);
296 if (ret)
297 goto out;
298
299 /* Populate available ADC input ranges */
300 for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++) {
301 scale_uv = ((u64)st->int_vref_mv * 100000000)
302 >> (st->chip_info->channel[0].scan_type.realbits -
303 (!!(st->conf & AD7793_CONF_UNIPOLAR) ? 0 : 1));
304 scale_uv >>= i;
305
306 st->scale_avail[i][1] = do_div(scale_uv, 100000000) * 10;
307 st->scale_avail[i][0] = scale_uv;
308 }
309
310 return 0;
311 out:
312 dev_err(&st->spi->dev, "setup failed\n");
313 return ret;
314 }
315
316 static int ad7793_scan_from_ring(struct ad7793_state *st, unsigned ch, int *val)
317 {
318 struct iio_ring_buffer *ring = iio_priv_to_dev(st)->ring;
319 int ret;
320 s64 dat64[2];
321 u32 *dat32 = (u32 *)dat64;
322
323 if (!(ring->scan_mask & (1 << ch)))
324 return -EBUSY;
325
326 ret = ring->access->read_last(ring, (u8 *) &dat64);
327 if (ret)
328 return ret;
329
330 *val = *dat32;
331
332 return 0;
333 }
334
335 static int ad7793_ring_preenable(struct iio_dev *indio_dev)
336 {
337 struct ad7793_state *st = iio_priv(indio_dev);
338 struct iio_ring_buffer *ring = indio_dev->ring;
339 size_t d_size;
340 unsigned channel;
341
342 if (!ring->scan_count)
343 return -EINVAL;
344
345 channel = __ffs(ring->scan_mask);
346
347 d_size = ring->scan_count *
348 indio_dev->channels[0].scan_type.storagebits / 8;
349
350 if (ring->scan_timestamp) {
351 d_size += sizeof(s64);
352
353 if (d_size % sizeof(s64))
354 d_size += sizeof(s64) - (d_size % sizeof(s64));
355 }
356
357 if (indio_dev->ring->access->set_bytes_per_datum)
358 indio_dev->ring->access->set_bytes_per_datum(indio_dev->ring,
359 d_size);
360
361 st->mode = (st->mode & ~AD7793_MODE_SEL(-1)) |
362 AD7793_MODE_SEL(AD7793_MODE_CONT);
363 st->conf = (st->conf & ~AD7793_CONF_CHAN(-1)) |
364 AD7793_CONF_CHAN(indio_dev->channels[channel].address);
365
366 ad7793_write_reg(st, AD7793_REG_CONF, sizeof(st->conf), st->conf);
367
368 spi_bus_lock(st->spi->master);
369 __ad7793_write_reg(st, 1, 1, AD7793_REG_MODE,
370 sizeof(st->mode), st->mode);
371
372 st->irq_dis = false;
373 enable_irq(st->spi->irq);
374
375 return 0;
376 }
377
378 static int ad7793_ring_postdisable(struct iio_dev *indio_dev)
379 {
380 struct ad7793_state *st = iio_priv(indio_dev);
381
382 st->mode = (st->mode & ~AD7793_MODE_SEL(-1)) |
383 AD7793_MODE_SEL(AD7793_MODE_IDLE);
384
385 st->done = false;
386 wait_event_interruptible(st->wq_data_avail, st->done);
387
388 if (!st->irq_dis)
389 disable_irq_nosync(st->spi->irq);
390
391 __ad7793_write_reg(st, 1, 0, AD7793_REG_MODE,
392 sizeof(st->mode), st->mode);
393
394 return spi_bus_unlock(st->spi->master);
395 }
396
397 /**
398 * ad7793_trigger_handler() bh of trigger launched polling to ring buffer
399 **/
400
401 static irqreturn_t ad7793_trigger_handler(int irq, void *p)
402 {
403 struct iio_poll_func *pf = p;
404 struct iio_dev *indio_dev = pf->indio_dev;
405 struct iio_ring_buffer *ring = indio_dev->ring;
406 struct ad7793_state *st = iio_priv(indio_dev);
407 s64 dat64[2];
408 s32 *dat32 = (s32 *)dat64;
409
410 if (ring->scan_count)
411 __ad7793_read_reg(st, 1, 1, AD7793_REG_DATA,
412 dat32,
413 indio_dev->channels[0].scan_type.realbits/8);
414
415 /* Guaranteed to be aligned with 8 byte boundary */
416 if (ring->scan_timestamp)
417 dat64[1] = pf->timestamp;
418
419 ring->access->store_to(ring, (u8 *)dat64, pf->timestamp);
420
421 iio_trigger_notify_done(indio_dev->trig);
422 st->irq_dis = false;
423 enable_irq(st->spi->irq);
424
425 return IRQ_HANDLED;
426 }
427
428 static const struct iio_ring_setup_ops ad7793_ring_setup_ops = {
429 .preenable = &ad7793_ring_preenable,
430 .postenable = &iio_triggered_ring_postenable,
431 .predisable = &iio_triggered_ring_predisable,
432 .postdisable = &ad7793_ring_postdisable,
433 };
434
435 static int ad7793_register_ring_funcs_and_init(struct iio_dev *indio_dev)
436 {
437 int ret;
438
439 indio_dev->ring = iio_sw_rb_allocate(indio_dev);
440 if (!indio_dev->ring) {
441 ret = -ENOMEM;
442 goto error_ret;
443 }
444 /* Effectively select the ring buffer implementation */
445 indio_dev->ring->access = &ring_sw_access_funcs;
446 indio_dev->pollfunc = iio_alloc_pollfunc(&iio_pollfunc_store_time,
447 &ad7793_trigger_handler,
448 IRQF_ONESHOT,
449 indio_dev,
450 "ad7793_consumer%d",
451 indio_dev->id);
452 if (indio_dev->pollfunc == NULL) {
453 ret = -ENOMEM;
454 goto error_deallocate_sw_rb;
455 }
456
457 /* Ring buffer functions - here trigger setup related */
458 indio_dev->ring->setup_ops = &ad7793_ring_setup_ops;
459
460 /* Flag that polled ring buffering is possible */
461 indio_dev->modes |= INDIO_RING_TRIGGERED;
462 return 0;
463
464 error_deallocate_sw_rb:
465 iio_sw_rb_free(indio_dev->ring);
466 error_ret:
467 return ret;
468 }
469
470 static void ad7793_ring_cleanup(struct iio_dev *indio_dev)
471 {
472 /* ensure that the trigger has been detached */
473 if (indio_dev->trig) {
474 iio_put_trigger(indio_dev->trig);
475 iio_trigger_dettach_poll_func(indio_dev->trig,
476 indio_dev->pollfunc);
477 }
478 iio_dealloc_pollfunc(indio_dev->pollfunc);
479 iio_sw_rb_free(indio_dev->ring);
480 }
481
482 /**
483 * ad7793_data_rdy_trig_poll() the event handler for the data rdy trig
484 **/
485 static irqreturn_t ad7793_data_rdy_trig_poll(int irq, void *private)
486 {
487 struct ad7793_state *st = iio_priv(private);
488
489 st->done = true;
490 wake_up_interruptible(&st->wq_data_avail);
491 disable_irq_nosync(irq);
492 st->irq_dis = true;
493 iio_trigger_poll(st->trig, iio_get_time_ns());
494
495 return IRQ_HANDLED;
496 }
497
498 static int ad7793_probe_trigger(struct iio_dev *indio_dev)
499 {
500 struct ad7793_state *st = iio_priv(indio_dev);
501 int ret;
502
503 st->trig = iio_allocate_trigger("%s-dev%d",
504 spi_get_device_id(st->spi)->name,
505 indio_dev->id);
506 if (st->trig == NULL) {
507 ret = -ENOMEM;
508 goto error_ret;
509 }
510
511 ret = request_irq(st->spi->irq,
512 ad7793_data_rdy_trig_poll,
513 IRQF_TRIGGER_LOW,
514 spi_get_device_id(st->spi)->name,
515 indio_dev);
516 if (ret)
517 goto error_free_trig;
518
519 disable_irq_nosync(st->spi->irq);
520 st->irq_dis = true;
521 st->trig->dev.parent = &st->spi->dev;
522 st->trig->owner = THIS_MODULE;
523 st->trig->private_data = indio_dev;
524
525 ret = iio_trigger_register(st->trig);
526
527 /* select default trigger */
528 indio_dev->trig = st->trig;
529 if (ret)
530 goto error_free_irq;
531
532 return 0;
533
534 error_free_irq:
535 free_irq(st->spi->irq, indio_dev);
536 error_free_trig:
537 iio_free_trigger(st->trig);
538 error_ret:
539 return ret;
540 }
541
542 static void ad7793_remove_trigger(struct iio_dev *indio_dev)
543 {
544 struct ad7793_state *st = iio_priv(indio_dev);
545
546 iio_trigger_unregister(st->trig);
547 free_irq(st->spi->irq, indio_dev);
548 iio_free_trigger(st->trig);
549 }
550
551 static const u16 sample_freq_avail[16] = {0, 470, 242, 123, 62, 50, 39, 33, 19,
552 17, 16, 12, 10, 8, 6, 4};
553
554 static ssize_t ad7793_read_frequency(struct device *dev,
555 struct device_attribute *attr,
556 char *buf)
557 {
558 struct iio_dev *indio_dev = dev_get_drvdata(dev);
559 struct ad7793_state *st = iio_priv(indio_dev);
560
561 return sprintf(buf, "%d\n",
562 sample_freq_avail[AD7793_MODE_RATE(st->mode)]);
563 }
564
565 static ssize_t ad7793_write_frequency(struct device *dev,
566 struct device_attribute *attr,
567 const char *buf,
568 size_t len)
569 {
570 struct iio_dev *indio_dev = dev_get_drvdata(dev);
571 struct ad7793_state *st = iio_priv(indio_dev);
572 long lval;
573 int i, ret;
574
575 mutex_lock(&indio_dev->mlock);
576 if (iio_ring_enabled(indio_dev)) {
577 mutex_unlock(&indio_dev->mlock);
578 return -EBUSY;
579 }
580 mutex_unlock(&indio_dev->mlock);
581
582 ret = strict_strtol(buf, 10, &lval);
583 if (ret)
584 return ret;
585
586 ret = -EINVAL;
587
588 for (i = 0; i < ARRAY_SIZE(sample_freq_avail); i++)
589 if (lval == sample_freq_avail[i]) {
590 mutex_lock(&indio_dev->mlock);
591 st->mode &= ~AD7793_MODE_RATE(-1);
592 st->mode |= AD7793_MODE_RATE(i);
593 ad7793_write_reg(st, AD7793_REG_MODE,
594 sizeof(st->mode), st->mode);
595 mutex_unlock(&indio_dev->mlock);
596 ret = 0;
597 }
598
599 return ret ? ret : len;
600 }
601
602 static IIO_DEV_ATTR_SAMP_FREQ(S_IWUSR | S_IRUGO,
603 ad7793_read_frequency,
604 ad7793_write_frequency);
605
606 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
607 "470 242 123 62 50 39 33 19 17 16 12 10 8 6 4");
608
609 static ssize_t ad7793_show_scale_available(struct device *dev,
610 struct device_attribute *attr, char *buf)
611 {
612 struct iio_dev *indio_dev = dev_get_drvdata(dev);
613 struct ad7793_state *st = iio_priv(indio_dev);
614 int i, len = 0;
615
616 for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
617 len += sprintf(buf + len, "%d.%09u ", st->scale_avail[i][0],
618 st->scale_avail[i][1]);
619
620 len += sprintf(buf + len, "\n");
621
622 return len;
623 }
624
625 static IIO_DEVICE_ATTR_NAMED(in_m_in_scale_available, in-in_scale_available,
626 S_IRUGO, ad7793_show_scale_available, NULL, 0);
627
628 static struct attribute *ad7793_attributes[] = {
629 &iio_dev_attr_sampling_frequency.dev_attr.attr,
630 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
631 &iio_dev_attr_in_m_in_scale_available.dev_attr.attr,
632 NULL
633 };
634
635 static const struct attribute_group ad7793_attribute_group = {
636 .attrs = ad7793_attributes,
637 };
638
639 static int ad7793_read_raw(struct iio_dev *indio_dev,
640 struct iio_chan_spec const *chan,
641 int *val,
642 int *val2,
643 long m)
644 {
645 struct ad7793_state *st = iio_priv(indio_dev);
646 int ret, smpl = 0;
647 unsigned long long scale_uv;
648 bool unipolar = !!(st->conf & AD7793_CONF_UNIPOLAR);
649
650 switch (m) {
651 case 0:
652 mutex_lock(&indio_dev->mlock);
653 if (iio_ring_enabled(indio_dev))
654 ret = ad7793_scan_from_ring(st,
655 chan->scan_index, &smpl);
656 else
657 ret = ad7793_read(st, chan->address,
658 chan->scan_type.realbits / 8, &smpl);
659 mutex_unlock(&indio_dev->mlock);
660
661 if (ret < 0)
662 return ret;
663
664 *val = (smpl >> chan->scan_type.shift) &
665 ((1 << (chan->scan_type.realbits)) - 1);
666
667 if (!unipolar)
668 *val -= (1 << (chan->scan_type.realbits - 1));
669
670 return IIO_VAL_INT;
671
672 case (1 << IIO_CHAN_INFO_SCALE_SHARED):
673 *val = st->scale_avail[(st->conf >> 8) & 0x7][0];
674 *val2 = st->scale_avail[(st->conf >> 8) & 0x7][1];
675
676 return IIO_VAL_INT_PLUS_NANO;
677
678 case (1 << IIO_CHAN_INFO_SCALE_SEPARATE):
679 switch (chan->type) {
680 case IIO_IN:
681 /* 1170mV / 2^23 * 6 */
682 scale_uv = (1170ULL * 100000000ULL * 6ULL)
683 >> (chan->scan_type.realbits -
684 (unipolar ? 0 : 1));
685 break;
686 case IIO_TEMP:
687 /* Always uses unity gain and internal ref */
688 scale_uv = (2500ULL * 100000000ULL)
689 >> (chan->scan_type.realbits -
690 (unipolar ? 0 : 1));
691 break;
692 default:
693 return -EINVAL;
694 }
695
696 *val2 = do_div(scale_uv, 100000000) * 10;
697 *val = scale_uv;
698
699 return IIO_VAL_INT_PLUS_NANO;
700 }
701 return -EINVAL;
702 }
703
704 static int ad7793_write_raw(struct iio_dev *indio_dev,
705 struct iio_chan_spec const *chan,
706 int val,
707 int val2,
708 long mask)
709 {
710 struct ad7793_state *st = iio_priv(indio_dev);
711 int ret, i;
712 unsigned int tmp;
713
714 mutex_lock(&indio_dev->mlock);
715 if (iio_ring_enabled(indio_dev)) {
716 mutex_unlock(&indio_dev->mlock);
717 return -EBUSY;
718 }
719
720 switch (mask) {
721 case (1 << IIO_CHAN_INFO_SCALE_SHARED):
722 ret = -EINVAL;
723 for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
724 if (val2 == st->scale_avail[i][1]) {
725 tmp = st->conf;
726 st->conf &= ~AD7793_CONF_GAIN(-1);
727 st->conf |= AD7793_CONF_GAIN(i);
728
729 if (tmp != st->conf) {
730 ad7793_write_reg(st, AD7793_REG_CONF,
731 sizeof(st->conf),
732 st->conf);
733 ad7793_calibrate_all(st);
734 }
735 ret = 0;
736 }
737
738 default:
739 ret = -EINVAL;
740 }
741
742 mutex_unlock(&indio_dev->mlock);
743 return ret;
744 }
745
746 static int ad7793_validate_trigger(struct iio_dev *indio_dev,
747 struct iio_trigger *trig)
748 {
749 if (indio_dev->trig != trig)
750 return -EINVAL;
751
752 return 0;
753 }
754
755 static int ad7793_write_raw_get_fmt(struct iio_dev *indio_dev,
756 struct iio_chan_spec const *chan,
757 long mask)
758 {
759 return IIO_VAL_INT_PLUS_NANO;
760 }
761
762 static const struct iio_info ad7793_info = {
763 .read_raw = &ad7793_read_raw,
764 .write_raw = &ad7793_write_raw,
765 .write_raw_get_fmt = &ad7793_write_raw_get_fmt,
766 .attrs = &ad7793_attribute_group,
767 .validate_trigger = ad7793_validate_trigger,
768 .driver_module = THIS_MODULE,
769 };
770
771 static const struct ad7793_chip_info ad7793_chip_info_tbl[] = {
772 [ID_AD7793] = {
773 .channel[0] = IIO_CHAN(IIO_IN_DIFF, 0, 1, 0, NULL, 0, 0,
774 (1 << IIO_CHAN_INFO_SCALE_SHARED),
775 AD7793_CH_AIN1P_AIN1M,
776 0, IIO_ST('s', 24, 32, 0), 0),
777 .channel[1] = IIO_CHAN(IIO_IN_DIFF, 0, 1, 0, NULL, 1, 1,
778 (1 << IIO_CHAN_INFO_SCALE_SHARED),
779 AD7793_CH_AIN2P_AIN2M,
780 1, IIO_ST('s', 24, 32, 0), 0),
781 .channel[2] = IIO_CHAN(IIO_IN_DIFF, 0, 1, 0, NULL, 2, 2,
782 (1 << IIO_CHAN_INFO_SCALE_SHARED),
783 AD7793_CH_AIN3P_AIN3M,
784 2, IIO_ST('s', 24, 32, 0), 0),
785 .channel[3] = IIO_CHAN(IIO_IN_DIFF, 0, 1, 0, "shorted", 0, 0,
786 (1 << IIO_CHAN_INFO_SCALE_SHARED),
787 AD7793_CH_AIN1M_AIN1M,
788 3, IIO_ST('s', 24, 32, 0), 0),
789 .channel[4] = IIO_CHAN(IIO_TEMP, 0, 1, 0, NULL, 0, 0,
790 (1 << IIO_CHAN_INFO_SCALE_SEPARATE),
791 AD7793_CH_TEMP,
792 4, IIO_ST('s', 24, 32, 0), 0),
793 .channel[5] = IIO_CHAN(IIO_IN, 0, 1, 0, "supply", 4, 0,
794 (1 << IIO_CHAN_INFO_SCALE_SEPARATE),
795 AD7793_CH_AVDD_MONITOR,
796 5, IIO_ST('s', 24, 32, 0), 0),
797 .channel[6] = IIO_CHAN_SOFT_TIMESTAMP(6),
798 },
799 [ID_AD7792] = {
800 .channel[0] = IIO_CHAN(IIO_IN_DIFF, 0, 1, 0, NULL, 0, 0,
801 (1 << IIO_CHAN_INFO_SCALE_SHARED),
802 AD7793_CH_AIN1P_AIN1M,
803 0, IIO_ST('s', 16, 32, 0), 0),
804 .channel[1] = IIO_CHAN(IIO_IN_DIFF, 0, 1, 0, NULL, 1, 1,
805 (1 << IIO_CHAN_INFO_SCALE_SHARED),
806 AD7793_CH_AIN2P_AIN2M,
807 1, IIO_ST('s', 16, 32, 0), 0),
808 .channel[2] = IIO_CHAN(IIO_IN_DIFF, 0, 1, 0, NULL, 2, 2,
809 (1 << IIO_CHAN_INFO_SCALE_SHARED),
810 AD7793_CH_AIN3P_AIN3M,
811 2, IIO_ST('s', 16, 32, 0), 0),
812 .channel[3] = IIO_CHAN(IIO_IN_DIFF, 0, 1, 0, "shorted", 0, 0,
813 (1 << IIO_CHAN_INFO_SCALE_SHARED),
814 AD7793_CH_AIN1M_AIN1M,
815 3, IIO_ST('s', 16, 32, 0), 0),
816 .channel[4] = IIO_CHAN(IIO_TEMP, 0, 1, 0, NULL, 0, 0,
817 (1 << IIO_CHAN_INFO_SCALE_SEPARATE),
818 AD7793_CH_TEMP,
819 4, IIO_ST('s', 16, 32, 0), 0),
820 .channel[5] = IIO_CHAN(IIO_IN, 0, 1, 0, "supply", 4, 0,
821 (1 << IIO_CHAN_INFO_SCALE_SEPARATE),
822 AD7793_CH_AVDD_MONITOR,
823 5, IIO_ST('s', 16, 32, 0), 0),
824 .channel[6] = IIO_CHAN_SOFT_TIMESTAMP(6),
825 },
826 };
827
828 static int __devinit ad7793_probe(struct spi_device *spi)
829 {
830 struct ad7793_platform_data *pdata = spi->dev.platform_data;
831 struct ad7793_state *st;
832 struct iio_dev *indio_dev;
833 int ret, i, voltage_uv = 0, regdone = 0;
834
835 if (!pdata) {
836 dev_err(&spi->dev, "no platform data?\n");
837 return -ENODEV;
838 }
839
840 if (!spi->irq) {
841 dev_err(&spi->dev, "no IRQ?\n");
842 return -ENODEV;
843 }
844
845 indio_dev = iio_allocate_device(sizeof(*st));
846 if (indio_dev == NULL)
847 return -ENOMEM;
848
849 st = iio_priv(indio_dev);
850
851 st->reg = regulator_get(&spi->dev, "vcc");
852 if (!IS_ERR(st->reg)) {
853 ret = regulator_enable(st->reg);
854 if (ret)
855 goto error_put_reg;
856
857 voltage_uv = regulator_get_voltage(st->reg);
858 }
859
860 st->chip_info =
861 &ad7793_chip_info_tbl[spi_get_device_id(spi)->driver_data];
862
863 st->pdata = pdata;
864
865 if (pdata && pdata->vref_mv)
866 st->int_vref_mv = pdata->vref_mv;
867 else if (voltage_uv)
868 st->int_vref_mv = voltage_uv / 1000;
869 else
870 st->int_vref_mv = 2500; /* Build-in ref */
871
872 spi_set_drvdata(spi, indio_dev);
873 st->spi = spi;
874
875 indio_dev->dev.parent = &spi->dev;
876 indio_dev->name = spi_get_device_id(spi)->name;
877 indio_dev->modes = INDIO_DIRECT_MODE;
878 indio_dev->channels = st->chip_info->channel;
879 indio_dev->available_scan_masks = st->available_scan_masks;
880 indio_dev->num_channels = 7;
881 indio_dev->info = &ad7793_info;
882
883 for (i = 0; i < indio_dev->num_channels; i++)
884 st->available_scan_masks[i] = (1 << i) | (1 <<
885 indio_dev->channels[indio_dev->num_channels - 1].
886 scan_index);
887
888 init_waitqueue_head(&st->wq_data_avail);
889
890 ret = ad7793_register_ring_funcs_and_init(indio_dev);
891 if (ret)
892 goto error_disable_reg;
893
894 ret = iio_device_register(indio_dev);
895 if (ret)
896 goto error_unreg_ring;
897 regdone = 1;
898
899 ret = ad7793_probe_trigger(indio_dev);
900 if (ret)
901 goto error_unreg_ring;
902
903 ret = iio_ring_buffer_register_ex(indio_dev->ring, 0,
904 indio_dev->channels,
905 indio_dev->num_channels);
906 if (ret)
907 goto error_remove_trigger;
908
909 ret = ad7793_setup(st);
910 if (ret)
911 goto error_uninitialize_ring;
912
913 return 0;
914
915 error_uninitialize_ring:
916 iio_ring_buffer_unregister(indio_dev->ring);
917 error_remove_trigger:
918 ad7793_remove_trigger(indio_dev);
919 error_unreg_ring:
920 ad7793_ring_cleanup(indio_dev);
921 error_disable_reg:
922 if (!IS_ERR(st->reg))
923 regulator_disable(st->reg);
924 error_put_reg:
925 if (!IS_ERR(st->reg))
926 regulator_put(st->reg);
927
928 if (regdone)
929 iio_device_unregister(indio_dev);
930 else
931 iio_free_device(indio_dev);
932
933 return ret;
934 }
935
936 static int ad7793_remove(struct spi_device *spi)
937 {
938 struct iio_dev *indio_dev = spi_get_drvdata(spi);
939 struct ad7793_state *st = iio_priv(indio_dev);
940
941 iio_ring_buffer_unregister(indio_dev->ring);
942 ad7793_remove_trigger(indio_dev);
943 ad7793_ring_cleanup(indio_dev);
944
945 if (!IS_ERR(st->reg)) {
946 regulator_disable(st->reg);
947 regulator_put(st->reg);
948 }
949
950 iio_device_unregister(indio_dev);
951
952 return 0;
953 }
954
955 static const struct spi_device_id ad7793_id[] = {
956 {"ad7792", ID_AD7792},
957 {"ad7793", ID_AD7793},
958 {}
959 };
960
961 static struct spi_driver ad7793_driver = {
962 .driver = {
963 .name = "ad7793",
964 .bus = &spi_bus_type,
965 .owner = THIS_MODULE,
966 },
967 .probe = ad7793_probe,
968 .remove = __devexit_p(ad7793_remove),
969 .id_table = ad7793_id,
970 };
971
972 static int __init ad7793_init(void)
973 {
974 return spi_register_driver(&ad7793_driver);
975 }
976 module_init(ad7793_init);
977
978 static void __exit ad7793_exit(void)
979 {
980 spi_unregister_driver(&ad7793_driver);
981 }
982 module_exit(ad7793_exit);
983
984 MODULE_AUTHOR("Michael Hennerich <hennerich@blackfin.uclinux.org>");
985 MODULE_DESCRIPTION("Analog Devices AD7792/3 ADC");
986 MODULE_LICENSE("GPL v2");