]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/staging/iio/adc/mxs-lradc.c
Merge tag 'iio-for-4.5a' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23/iio...
[mirror_ubuntu-zesty-kernel.git] / drivers / staging / iio / adc / mxs-lradc.c
1 /*
2 * Freescale MXS LRADC driver
3 *
4 * Copyright (c) 2012 DENX Software Engineering, GmbH.
5 * Marek Vasut <marex@denx.de>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18 #include <linux/bitops.h>
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/device.h>
22 #include <linux/err.h>
23 #include <linux/input.h>
24 #include <linux/interrupt.h>
25 #include <linux/io.h>
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/mutex.h>
29 #include <linux/of.h>
30 #include <linux/of_device.h>
31 #include <linux/platform_device.h>
32 #include <linux/slab.h>
33 #include <linux/stmp_device.h>
34 #include <linux/sysfs.h>
35
36 #include <linux/iio/buffer.h>
37 #include <linux/iio/iio.h>
38 #include <linux/iio/trigger.h>
39 #include <linux/iio/trigger_consumer.h>
40 #include <linux/iio/triggered_buffer.h>
41 #include <linux/iio/sysfs.h>
42
43 #define DRIVER_NAME "mxs-lradc"
44
45 #define LRADC_MAX_DELAY_CHANS 4
46 #define LRADC_MAX_MAPPED_CHANS 8
47 #define LRADC_MAX_TOTAL_CHANS 16
48
49 #define LRADC_DELAY_TIMER_HZ 2000
50
51 /*
52 * Make this runtime configurable if necessary. Currently, if the buffered mode
53 * is enabled, the LRADC takes LRADC_DELAY_TIMER_LOOP samples of data before
54 * triggering IRQ. The sampling happens every (LRADC_DELAY_TIMER_PER / 2000)
55 * seconds. The result is that the samples arrive every 500mS.
56 */
57 #define LRADC_DELAY_TIMER_PER 200
58 #define LRADC_DELAY_TIMER_LOOP 5
59
60 /*
61 * Once the pen touches the touchscreen, the touchscreen switches from
62 * IRQ-driven mode to polling mode to prevent interrupt storm. The polling
63 * is realized by worker thread, which is called every 20 or so milliseconds.
64 * This gives the touchscreen enough fluency and does not strain the system
65 * too much.
66 */
67 #define LRADC_TS_SAMPLE_DELAY_MS 5
68
69 /*
70 * The LRADC reads the following amount of samples from each touchscreen
71 * channel and the driver then computes average of these.
72 */
73 #define LRADC_TS_SAMPLE_AMOUNT 4
74
75 enum mxs_lradc_id {
76 IMX23_LRADC,
77 IMX28_LRADC,
78 };
79
80 static const char * const mx23_lradc_irq_names[] = {
81 "mxs-lradc-touchscreen",
82 "mxs-lradc-channel0",
83 "mxs-lradc-channel1",
84 "mxs-lradc-channel2",
85 "mxs-lradc-channel3",
86 "mxs-lradc-channel4",
87 "mxs-lradc-channel5",
88 "mxs-lradc-channel6",
89 "mxs-lradc-channel7",
90 };
91
92 static const char * const mx28_lradc_irq_names[] = {
93 "mxs-lradc-touchscreen",
94 "mxs-lradc-thresh0",
95 "mxs-lradc-thresh1",
96 "mxs-lradc-channel0",
97 "mxs-lradc-channel1",
98 "mxs-lradc-channel2",
99 "mxs-lradc-channel3",
100 "mxs-lradc-channel4",
101 "mxs-lradc-channel5",
102 "mxs-lradc-channel6",
103 "mxs-lradc-channel7",
104 "mxs-lradc-button0",
105 "mxs-lradc-button1",
106 };
107
108 struct mxs_lradc_of_config {
109 const int irq_count;
110 const char * const *irq_name;
111 const u32 *vref_mv;
112 };
113
114 #define VREF_MV_BASE 1850
115
116 static const u32 mx23_vref_mv[LRADC_MAX_TOTAL_CHANS] = {
117 VREF_MV_BASE, /* CH0 */
118 VREF_MV_BASE, /* CH1 */
119 VREF_MV_BASE, /* CH2 */
120 VREF_MV_BASE, /* CH3 */
121 VREF_MV_BASE, /* CH4 */
122 VREF_MV_BASE, /* CH5 */
123 VREF_MV_BASE * 2, /* CH6 VDDIO */
124 VREF_MV_BASE * 4, /* CH7 VBATT */
125 VREF_MV_BASE, /* CH8 Temp sense 0 */
126 VREF_MV_BASE, /* CH9 Temp sense 1 */
127 VREF_MV_BASE, /* CH10 */
128 VREF_MV_BASE, /* CH11 */
129 VREF_MV_BASE, /* CH12 USB_DP */
130 VREF_MV_BASE, /* CH13 USB_DN */
131 VREF_MV_BASE, /* CH14 VBG */
132 VREF_MV_BASE * 4, /* CH15 VDD5V */
133 };
134
135 static const u32 mx28_vref_mv[LRADC_MAX_TOTAL_CHANS] = {
136 VREF_MV_BASE, /* CH0 */
137 VREF_MV_BASE, /* CH1 */
138 VREF_MV_BASE, /* CH2 */
139 VREF_MV_BASE, /* CH3 */
140 VREF_MV_BASE, /* CH4 */
141 VREF_MV_BASE, /* CH5 */
142 VREF_MV_BASE, /* CH6 */
143 VREF_MV_BASE * 4, /* CH7 VBATT */
144 VREF_MV_BASE, /* CH8 Temp sense 0 */
145 VREF_MV_BASE, /* CH9 Temp sense 1 */
146 VREF_MV_BASE * 2, /* CH10 VDDIO */
147 VREF_MV_BASE, /* CH11 VTH */
148 VREF_MV_BASE * 2, /* CH12 VDDA */
149 VREF_MV_BASE, /* CH13 VDDD */
150 VREF_MV_BASE, /* CH14 VBG */
151 VREF_MV_BASE * 4, /* CH15 VDD5V */
152 };
153
154 static const struct mxs_lradc_of_config mxs_lradc_of_config[] = {
155 [IMX23_LRADC] = {
156 .irq_count = ARRAY_SIZE(mx23_lradc_irq_names),
157 .irq_name = mx23_lradc_irq_names,
158 .vref_mv = mx23_vref_mv,
159 },
160 [IMX28_LRADC] = {
161 .irq_count = ARRAY_SIZE(mx28_lradc_irq_names),
162 .irq_name = mx28_lradc_irq_names,
163 .vref_mv = mx28_vref_mv,
164 },
165 };
166
167 enum mxs_lradc_ts {
168 MXS_LRADC_TOUCHSCREEN_NONE = 0,
169 MXS_LRADC_TOUCHSCREEN_4WIRE,
170 MXS_LRADC_TOUCHSCREEN_5WIRE,
171 };
172
173 /*
174 * Touchscreen handling
175 */
176 enum lradc_ts_plate {
177 LRADC_TOUCH = 0,
178 LRADC_SAMPLE_X,
179 LRADC_SAMPLE_Y,
180 LRADC_SAMPLE_PRESSURE,
181 LRADC_SAMPLE_VALID,
182 };
183
184 enum mxs_lradc_divbytwo {
185 MXS_LRADC_DIV_DISABLED = 0,
186 MXS_LRADC_DIV_ENABLED,
187 };
188
189 struct mxs_lradc_scale {
190 unsigned int integer;
191 unsigned int nano;
192 };
193
194 struct mxs_lradc {
195 struct device *dev;
196 void __iomem *base;
197 int irq[13];
198
199 struct clk *clk;
200
201 u32 *buffer;
202 struct iio_trigger *trig;
203
204 struct mutex lock;
205
206 struct completion completion;
207
208 const u32 *vref_mv;
209 struct mxs_lradc_scale scale_avail[LRADC_MAX_TOTAL_CHANS][2];
210 unsigned long is_divided;
211
212 /*
213 * When the touchscreen is enabled, we give it two private virtual
214 * channels: #6 and #7. This means that only 6 virtual channels (instead
215 * of 8) will be available for buffered capture.
216 */
217 #define TOUCHSCREEN_VCHANNEL1 7
218 #define TOUCHSCREEN_VCHANNEL2 6
219 #define BUFFER_VCHANS_LIMITED 0x3f
220 #define BUFFER_VCHANS_ALL 0xff
221 u8 buffer_vchans;
222
223 /*
224 * Furthermore, certain LRADC channels are shared between touchscreen
225 * and/or touch-buttons and generic LRADC block. Therefore when using
226 * either of these, these channels are not available for the regular
227 * sampling. The shared channels are as follows:
228 *
229 * CH0 -- Touch button #0
230 * CH1 -- Touch button #1
231 * CH2 -- Touch screen XPUL
232 * CH3 -- Touch screen YPLL
233 * CH4 -- Touch screen XNUL
234 * CH5 -- Touch screen YNLR
235 * CH6 -- Touch screen WIPER (5-wire only)
236 *
237 * The bit fields below represents which parts of the LRADC block are
238 * switched into special mode of operation. These channels can not
239 * be sampled as regular LRADC channels. The driver will refuse any
240 * attempt to sample these channels.
241 */
242 #define CHAN_MASK_TOUCHBUTTON (BIT(1) | BIT(0))
243 #define CHAN_MASK_TOUCHSCREEN_4WIRE (0xf << 2)
244 #define CHAN_MASK_TOUCHSCREEN_5WIRE (0x1f << 2)
245 enum mxs_lradc_ts use_touchscreen;
246 bool use_touchbutton;
247
248 struct input_dev *ts_input;
249
250 enum mxs_lradc_id soc;
251 enum lradc_ts_plate cur_plate; /* state machine */
252 bool ts_valid;
253 unsigned ts_x_pos;
254 unsigned ts_y_pos;
255 unsigned ts_pressure;
256
257 /* handle touchscreen's physical behaviour */
258 /* samples per coordinate */
259 unsigned over_sample_cnt;
260 /* time clocks between samples */
261 unsigned over_sample_delay;
262 /* time in clocks to wait after the plates where switched */
263 unsigned settling_delay;
264 };
265
266 #define LRADC_CTRL0 0x00
267 # define LRADC_CTRL0_MX28_TOUCH_DETECT_ENABLE BIT(23)
268 # define LRADC_CTRL0_MX28_TOUCH_SCREEN_TYPE BIT(22)
269 # define LRADC_CTRL0_MX28_YNNSW /* YM */ BIT(21)
270 # define LRADC_CTRL0_MX28_YPNSW /* YP */ BIT(20)
271 # define LRADC_CTRL0_MX28_YPPSW /* YP */ BIT(19)
272 # define LRADC_CTRL0_MX28_XNNSW /* XM */ BIT(18)
273 # define LRADC_CTRL0_MX28_XNPSW /* XM */ BIT(17)
274 # define LRADC_CTRL0_MX28_XPPSW /* XP */ BIT(16)
275
276 # define LRADC_CTRL0_MX23_TOUCH_DETECT_ENABLE BIT(20)
277 # define LRADC_CTRL0_MX23_YM BIT(19)
278 # define LRADC_CTRL0_MX23_XM BIT(18)
279 # define LRADC_CTRL0_MX23_YP BIT(17)
280 # define LRADC_CTRL0_MX23_XP BIT(16)
281
282 # define LRADC_CTRL0_MX28_PLATE_MASK \
283 (LRADC_CTRL0_MX28_TOUCH_DETECT_ENABLE | \
284 LRADC_CTRL0_MX28_YNNSW | LRADC_CTRL0_MX28_YPNSW | \
285 LRADC_CTRL0_MX28_YPPSW | LRADC_CTRL0_MX28_XNNSW | \
286 LRADC_CTRL0_MX28_XNPSW | LRADC_CTRL0_MX28_XPPSW)
287
288 # define LRADC_CTRL0_MX23_PLATE_MASK \
289 (LRADC_CTRL0_MX23_TOUCH_DETECT_ENABLE | \
290 LRADC_CTRL0_MX23_YM | LRADC_CTRL0_MX23_XM | \
291 LRADC_CTRL0_MX23_YP | LRADC_CTRL0_MX23_XP)
292
293 #define LRADC_CTRL1 0x10
294 #define LRADC_CTRL1_TOUCH_DETECT_IRQ_EN BIT(24)
295 #define LRADC_CTRL1_LRADC_IRQ_EN(n) (1 << ((n) + 16))
296 #define LRADC_CTRL1_MX28_LRADC_IRQ_EN_MASK (0x1fff << 16)
297 #define LRADC_CTRL1_MX23_LRADC_IRQ_EN_MASK (0x01ff << 16)
298 #define LRADC_CTRL1_LRADC_IRQ_EN_OFFSET 16
299 #define LRADC_CTRL1_TOUCH_DETECT_IRQ BIT(8)
300 #define LRADC_CTRL1_LRADC_IRQ(n) (1 << (n))
301 #define LRADC_CTRL1_MX28_LRADC_IRQ_MASK 0x1fff
302 #define LRADC_CTRL1_MX23_LRADC_IRQ_MASK 0x01ff
303 #define LRADC_CTRL1_LRADC_IRQ_OFFSET 0
304
305 #define LRADC_CTRL2 0x20
306 #define LRADC_CTRL2_DIVIDE_BY_TWO_OFFSET 24
307 #define LRADC_CTRL2_TEMPSENSE_PWD BIT(15)
308
309 #define LRADC_STATUS 0x40
310 #define LRADC_STATUS_TOUCH_DETECT_RAW BIT(0)
311
312 #define LRADC_CH(n) (0x50 + (0x10 * (n)))
313 #define LRADC_CH_ACCUMULATE BIT(29)
314 #define LRADC_CH_NUM_SAMPLES_MASK (0x1f << 24)
315 #define LRADC_CH_NUM_SAMPLES_OFFSET 24
316 #define LRADC_CH_NUM_SAMPLES(x) \
317 ((x) << LRADC_CH_NUM_SAMPLES_OFFSET)
318 #define LRADC_CH_VALUE_MASK 0x3ffff
319 #define LRADC_CH_VALUE_OFFSET 0
320
321 #define LRADC_DELAY(n) (0xd0 + (0x10 * (n)))
322 #define LRADC_DELAY_TRIGGER_LRADCS_MASK (0xff << 24)
323 #define LRADC_DELAY_TRIGGER_LRADCS_OFFSET 24
324 #define LRADC_DELAY_TRIGGER(x) \
325 (((x) << LRADC_DELAY_TRIGGER_LRADCS_OFFSET) & \
326 LRADC_DELAY_TRIGGER_LRADCS_MASK)
327 #define LRADC_DELAY_KICK BIT(20)
328 #define LRADC_DELAY_TRIGGER_DELAYS_MASK (0xf << 16)
329 #define LRADC_DELAY_TRIGGER_DELAYS_OFFSET 16
330 #define LRADC_DELAY_TRIGGER_DELAYS(x) \
331 (((x) << LRADC_DELAY_TRIGGER_DELAYS_OFFSET) & \
332 LRADC_DELAY_TRIGGER_DELAYS_MASK)
333 #define LRADC_DELAY_LOOP_COUNT_MASK (0x1f << 11)
334 #define LRADC_DELAY_LOOP_COUNT_OFFSET 11
335 #define LRADC_DELAY_LOOP(x) \
336 (((x) << LRADC_DELAY_LOOP_COUNT_OFFSET) & \
337 LRADC_DELAY_LOOP_COUNT_MASK)
338 #define LRADC_DELAY_DELAY_MASK 0x7ff
339 #define LRADC_DELAY_DELAY_OFFSET 0
340 #define LRADC_DELAY_DELAY(x) \
341 (((x) << LRADC_DELAY_DELAY_OFFSET) & \
342 LRADC_DELAY_DELAY_MASK)
343
344 #define LRADC_CTRL4 0x140
345 #define LRADC_CTRL4_LRADCSELECT_MASK(n) (0xf << ((n) * 4))
346 #define LRADC_CTRL4_LRADCSELECT_OFFSET(n) ((n) * 4)
347 #define LRADC_CTRL4_LRADCSELECT(n, x) \
348 (((x) << LRADC_CTRL4_LRADCSELECT_OFFSET(n)) & \
349 LRADC_CTRL4_LRADCSELECT_MASK(n))
350
351 #define LRADC_RESOLUTION 12
352 #define LRADC_SINGLE_SAMPLE_MASK ((1 << LRADC_RESOLUTION) - 1)
353
354 static void mxs_lradc_reg_set(struct mxs_lradc *lradc, u32 val, u32 reg)
355 {
356 writel(val, lradc->base + reg + STMP_OFFSET_REG_SET);
357 }
358
359 static void mxs_lradc_reg_clear(struct mxs_lradc *lradc, u32 val, u32 reg)
360 {
361 writel(val, lradc->base + reg + STMP_OFFSET_REG_CLR);
362 }
363
364 static void mxs_lradc_reg_wrt(struct mxs_lradc *lradc, u32 val, u32 reg)
365 {
366 writel(val, lradc->base + reg);
367 }
368
369 static u32 mxs_lradc_plate_mask(struct mxs_lradc *lradc)
370 {
371 if (lradc->soc == IMX23_LRADC)
372 return LRADC_CTRL0_MX23_PLATE_MASK;
373 return LRADC_CTRL0_MX28_PLATE_MASK;
374 }
375
376 static u32 mxs_lradc_irq_en_mask(struct mxs_lradc *lradc)
377 {
378 if (lradc->soc == IMX23_LRADC)
379 return LRADC_CTRL1_MX23_LRADC_IRQ_EN_MASK;
380 return LRADC_CTRL1_MX28_LRADC_IRQ_EN_MASK;
381 }
382
383 static u32 mxs_lradc_irq_mask(struct mxs_lradc *lradc)
384 {
385 if (lradc->soc == IMX23_LRADC)
386 return LRADC_CTRL1_MX23_LRADC_IRQ_MASK;
387 return LRADC_CTRL1_MX28_LRADC_IRQ_MASK;
388 }
389
390 static u32 mxs_lradc_touch_detect_bit(struct mxs_lradc *lradc)
391 {
392 if (lradc->soc == IMX23_LRADC)
393 return LRADC_CTRL0_MX23_TOUCH_DETECT_ENABLE;
394 return LRADC_CTRL0_MX28_TOUCH_DETECT_ENABLE;
395 }
396
397 static u32 mxs_lradc_drive_x_plate(struct mxs_lradc *lradc)
398 {
399 if (lradc->soc == IMX23_LRADC)
400 return LRADC_CTRL0_MX23_XP | LRADC_CTRL0_MX23_XM;
401 return LRADC_CTRL0_MX28_XPPSW | LRADC_CTRL0_MX28_XNNSW;
402 }
403
404 static u32 mxs_lradc_drive_y_plate(struct mxs_lradc *lradc)
405 {
406 if (lradc->soc == IMX23_LRADC)
407 return LRADC_CTRL0_MX23_YP | LRADC_CTRL0_MX23_YM;
408 return LRADC_CTRL0_MX28_YPPSW | LRADC_CTRL0_MX28_YNNSW;
409 }
410
411 static u32 mxs_lradc_drive_pressure(struct mxs_lradc *lradc)
412 {
413 if (lradc->soc == IMX23_LRADC)
414 return LRADC_CTRL0_MX23_YP | LRADC_CTRL0_MX23_XM;
415 return LRADC_CTRL0_MX28_YPPSW | LRADC_CTRL0_MX28_XNNSW;
416 }
417
418 static bool mxs_lradc_check_touch_event(struct mxs_lradc *lradc)
419 {
420 return !!(readl(lradc->base + LRADC_STATUS) &
421 LRADC_STATUS_TOUCH_DETECT_RAW);
422 }
423
424 static void mxs_lradc_map_channel(struct mxs_lradc *lradc, unsigned vch,
425 unsigned ch)
426 {
427 mxs_lradc_reg_clear(lradc, LRADC_CTRL4_LRADCSELECT_MASK(vch),
428 LRADC_CTRL4);
429 mxs_lradc_reg_set(lradc, LRADC_CTRL4_LRADCSELECT(vch, ch), LRADC_CTRL4);
430 }
431
432 static void mxs_lradc_setup_ts_channel(struct mxs_lradc *lradc, unsigned ch)
433 {
434 /*
435 * prepare for oversampling conversion
436 *
437 * from the datasheet:
438 * "The ACCUMULATE bit in the appropriate channel register
439 * HW_LRADC_CHn must be set to 1 if NUM_SAMPLES is greater then 0;
440 * otherwise, the IRQs will not fire."
441 */
442 mxs_lradc_reg_wrt(lradc, LRADC_CH_ACCUMULATE |
443 LRADC_CH_NUM_SAMPLES(lradc->over_sample_cnt - 1),
444 LRADC_CH(ch));
445
446 /* from the datasheet:
447 * "Software must clear this register in preparation for a
448 * multi-cycle accumulation.
449 */
450 mxs_lradc_reg_clear(lradc, LRADC_CH_VALUE_MASK, LRADC_CH(ch));
451
452 /*
453 * prepare the delay/loop unit according to the oversampling count
454 *
455 * from the datasheet:
456 * "The DELAY fields in HW_LRADC_DELAY0, HW_LRADC_DELAY1,
457 * HW_LRADC_DELAY2, and HW_LRADC_DELAY3 must be non-zero; otherwise,
458 * the LRADC will not trigger the delay group."
459 */
460 mxs_lradc_reg_wrt(lradc, LRADC_DELAY_TRIGGER(1 << ch) |
461 LRADC_DELAY_TRIGGER_DELAYS(0) |
462 LRADC_DELAY_LOOP(lradc->over_sample_cnt - 1) |
463 LRADC_DELAY_DELAY(lradc->over_sample_delay - 1),
464 LRADC_DELAY(3));
465
466 mxs_lradc_reg_clear(lradc, LRADC_CTRL1_LRADC_IRQ(ch), LRADC_CTRL1);
467
468 /*
469 * after changing the touchscreen plates setting
470 * the signals need some initial time to settle. Start the
471 * SoC's delay unit and start the conversion later
472 * and automatically.
473 */
474 mxs_lradc_reg_wrt(
475 lradc,
476 LRADC_DELAY_TRIGGER(0) | /* don't trigger ADC */
477 LRADC_DELAY_TRIGGER_DELAYS(BIT(3)) | /* trigger DELAY unit#3 */
478 LRADC_DELAY_KICK |
479 LRADC_DELAY_DELAY(lradc->settling_delay),
480 LRADC_DELAY(2));
481 }
482
483 /*
484 * Pressure detection is special:
485 * We want to do both required measurements for the pressure detection in
486 * one turn. Use the hardware features to chain both conversions and let the
487 * hardware report one interrupt if both conversions are done
488 */
489 static void mxs_lradc_setup_ts_pressure(struct mxs_lradc *lradc, unsigned ch1,
490 unsigned ch2)
491 {
492 u32 reg;
493
494 /*
495 * prepare for oversampling conversion
496 *
497 * from the datasheet:
498 * "The ACCUMULATE bit in the appropriate channel register
499 * HW_LRADC_CHn must be set to 1 if NUM_SAMPLES is greater then 0;
500 * otherwise, the IRQs will not fire."
501 */
502 reg = LRADC_CH_ACCUMULATE |
503 LRADC_CH_NUM_SAMPLES(lradc->over_sample_cnt - 1);
504 mxs_lradc_reg_wrt(lradc, reg, LRADC_CH(ch1));
505 mxs_lradc_reg_wrt(lradc, reg, LRADC_CH(ch2));
506
507 /* from the datasheet:
508 * "Software must clear this register in preparation for a
509 * multi-cycle accumulation.
510 */
511 mxs_lradc_reg_clear(lradc, LRADC_CH_VALUE_MASK, LRADC_CH(ch1));
512 mxs_lradc_reg_clear(lradc, LRADC_CH_VALUE_MASK, LRADC_CH(ch2));
513
514 /* prepare the delay/loop unit according to the oversampling count */
515 mxs_lradc_reg_wrt(
516 lradc,
517 LRADC_DELAY_TRIGGER(1 << ch1) |
518 LRADC_DELAY_TRIGGER(1 << ch2) | /* start both channels */
519 LRADC_DELAY_TRIGGER_DELAYS(0) |
520 LRADC_DELAY_LOOP(lradc->over_sample_cnt - 1) |
521 LRADC_DELAY_DELAY(lradc->over_sample_delay - 1),
522 LRADC_DELAY(3));
523
524 mxs_lradc_reg_clear(lradc, LRADC_CTRL1_LRADC_IRQ(ch2), LRADC_CTRL1);
525
526 /*
527 * after changing the touchscreen plates setting
528 * the signals need some initial time to settle. Start the
529 * SoC's delay unit and start the conversion later
530 * and automatically.
531 */
532 mxs_lradc_reg_wrt(
533 lradc,
534 LRADC_DELAY_TRIGGER(0) | /* don't trigger ADC */
535 LRADC_DELAY_TRIGGER_DELAYS(BIT(3)) | /* trigger DELAY unit#3 */
536 LRADC_DELAY_KICK |
537 LRADC_DELAY_DELAY(lradc->settling_delay), LRADC_DELAY(2));
538 }
539
540 static unsigned mxs_lradc_read_raw_channel(struct mxs_lradc *lradc,
541 unsigned channel)
542 {
543 u32 reg;
544 unsigned num_samples, val;
545
546 reg = readl(lradc->base + LRADC_CH(channel));
547 if (reg & LRADC_CH_ACCUMULATE)
548 num_samples = lradc->over_sample_cnt;
549 else
550 num_samples = 1;
551
552 val = (reg & LRADC_CH_VALUE_MASK) >> LRADC_CH_VALUE_OFFSET;
553 return val / num_samples;
554 }
555
556 static unsigned mxs_lradc_read_ts_pressure(struct mxs_lradc *lradc,
557 unsigned ch1, unsigned ch2)
558 {
559 u32 reg, mask;
560 unsigned pressure, m1, m2;
561
562 mask = LRADC_CTRL1_LRADC_IRQ(ch1) | LRADC_CTRL1_LRADC_IRQ(ch2);
563 reg = readl(lradc->base + LRADC_CTRL1) & mask;
564
565 while (reg != mask) {
566 reg = readl(lradc->base + LRADC_CTRL1) & mask;
567 dev_dbg(lradc->dev, "One channel is still busy: %X\n", reg);
568 }
569
570 m1 = mxs_lradc_read_raw_channel(lradc, ch1);
571 m2 = mxs_lradc_read_raw_channel(lradc, ch2);
572
573 if (m2 == 0) {
574 dev_warn(lradc->dev, "Cannot calculate pressure\n");
575 return 1 << (LRADC_RESOLUTION - 1);
576 }
577
578 /* simply scale the value from 0 ... max ADC resolution */
579 pressure = m1;
580 pressure *= (1 << LRADC_RESOLUTION);
581 pressure /= m2;
582
583 dev_dbg(lradc->dev, "Pressure = %u\n", pressure);
584 return pressure;
585 }
586
587 #define TS_CH_XP 2
588 #define TS_CH_YP 3
589 #define TS_CH_XM 4
590 #define TS_CH_YM 5
591
592 /*
593 * YP(open)--+-------------+
594 * | |--+
595 * | | |
596 * YM(-)--+-------------+ |
597 * +--------------+
598 * | |
599 * XP(weak+) XM(open)
600 *
601 * "weak+" means 200k Ohm VDDIO
602 * (-) means GND
603 */
604 static void mxs_lradc_setup_touch_detection(struct mxs_lradc *lradc)
605 {
606 /*
607 * In order to detect a touch event the 'touch detect enable' bit
608 * enables:
609 * - a weak pullup to the X+ connector
610 * - a strong ground at the Y- connector
611 */
612 mxs_lradc_reg_clear(lradc, mxs_lradc_plate_mask(lradc), LRADC_CTRL0);
613 mxs_lradc_reg_set(lradc, mxs_lradc_touch_detect_bit(lradc),
614 LRADC_CTRL0);
615 }
616
617 /*
618 * YP(meas)--+-------------+
619 * | |--+
620 * | | |
621 * YM(open)--+-------------+ |
622 * +--------------+
623 * | |
624 * XP(+) XM(-)
625 *
626 * (+) means here 1.85 V
627 * (-) means here GND
628 */
629 static void mxs_lradc_prepare_x_pos(struct mxs_lradc *lradc)
630 {
631 mxs_lradc_reg_clear(lradc, mxs_lradc_plate_mask(lradc), LRADC_CTRL0);
632 mxs_lradc_reg_set(lradc, mxs_lradc_drive_x_plate(lradc), LRADC_CTRL0);
633
634 lradc->cur_plate = LRADC_SAMPLE_X;
635 mxs_lradc_map_channel(lradc, TOUCHSCREEN_VCHANNEL1, TS_CH_YP);
636 mxs_lradc_setup_ts_channel(lradc, TOUCHSCREEN_VCHANNEL1);
637 }
638
639 /*
640 * YP(+)--+-------------+
641 * | |--+
642 * | | |
643 * YM(-)--+-------------+ |
644 * +--------------+
645 * | |
646 * XP(open) XM(meas)
647 *
648 * (+) means here 1.85 V
649 * (-) means here GND
650 */
651 static void mxs_lradc_prepare_y_pos(struct mxs_lradc *lradc)
652 {
653 mxs_lradc_reg_clear(lradc, mxs_lradc_plate_mask(lradc), LRADC_CTRL0);
654 mxs_lradc_reg_set(lradc, mxs_lradc_drive_y_plate(lradc), LRADC_CTRL0);
655
656 lradc->cur_plate = LRADC_SAMPLE_Y;
657 mxs_lradc_map_channel(lradc, TOUCHSCREEN_VCHANNEL1, TS_CH_XM);
658 mxs_lradc_setup_ts_channel(lradc, TOUCHSCREEN_VCHANNEL1);
659 }
660
661 /*
662 * YP(+)--+-------------+
663 * | |--+
664 * | | |
665 * YM(meas)--+-------------+ |
666 * +--------------+
667 * | |
668 * XP(meas) XM(-)
669 *
670 * (+) means here 1.85 V
671 * (-) means here GND
672 */
673 static void mxs_lradc_prepare_pressure(struct mxs_lradc *lradc)
674 {
675 mxs_lradc_reg_clear(lradc, mxs_lradc_plate_mask(lradc), LRADC_CTRL0);
676 mxs_lradc_reg_set(lradc, mxs_lradc_drive_pressure(lradc), LRADC_CTRL0);
677
678 lradc->cur_plate = LRADC_SAMPLE_PRESSURE;
679 mxs_lradc_map_channel(lradc, TOUCHSCREEN_VCHANNEL1, TS_CH_YM);
680 mxs_lradc_map_channel(lradc, TOUCHSCREEN_VCHANNEL2, TS_CH_XP);
681 mxs_lradc_setup_ts_pressure(lradc, TOUCHSCREEN_VCHANNEL2,
682 TOUCHSCREEN_VCHANNEL1);
683 }
684
685 static void mxs_lradc_enable_touch_detection(struct mxs_lradc *lradc)
686 {
687 mxs_lradc_setup_touch_detection(lradc);
688
689 lradc->cur_plate = LRADC_TOUCH;
690 mxs_lradc_reg_clear(lradc, LRADC_CTRL1_TOUCH_DETECT_IRQ |
691 LRADC_CTRL1_TOUCH_DETECT_IRQ_EN, LRADC_CTRL1);
692 mxs_lradc_reg_set(lradc, LRADC_CTRL1_TOUCH_DETECT_IRQ_EN, LRADC_CTRL1);
693 }
694
695 static void mxs_lradc_start_touch_event(struct mxs_lradc *lradc)
696 {
697 mxs_lradc_reg_clear(lradc,
698 LRADC_CTRL1_TOUCH_DETECT_IRQ_EN,
699 LRADC_CTRL1);
700 mxs_lradc_reg_set(lradc,
701 LRADC_CTRL1_LRADC_IRQ_EN(TOUCHSCREEN_VCHANNEL1),
702 LRADC_CTRL1);
703 /*
704 * start with the Y-pos, because it uses nearly the same plate
705 * settings like the touch detection
706 */
707 mxs_lradc_prepare_y_pos(lradc);
708 }
709
710 static void mxs_lradc_report_ts_event(struct mxs_lradc *lradc)
711 {
712 input_report_abs(lradc->ts_input, ABS_X, lradc->ts_x_pos);
713 input_report_abs(lradc->ts_input, ABS_Y, lradc->ts_y_pos);
714 input_report_abs(lradc->ts_input, ABS_PRESSURE, lradc->ts_pressure);
715 input_report_key(lradc->ts_input, BTN_TOUCH, 1);
716 input_sync(lradc->ts_input);
717 }
718
719 static void mxs_lradc_complete_touch_event(struct mxs_lradc *lradc)
720 {
721 mxs_lradc_setup_touch_detection(lradc);
722 lradc->cur_plate = LRADC_SAMPLE_VALID;
723 /*
724 * start a dummy conversion to burn time to settle the signals
725 * note: we are not interested in the conversion's value
726 */
727 mxs_lradc_reg_wrt(lradc, 0, LRADC_CH(TOUCHSCREEN_VCHANNEL1));
728 mxs_lradc_reg_clear(lradc,
729 LRADC_CTRL1_LRADC_IRQ(TOUCHSCREEN_VCHANNEL1) |
730 LRADC_CTRL1_LRADC_IRQ(TOUCHSCREEN_VCHANNEL2),
731 LRADC_CTRL1);
732 mxs_lradc_reg_wrt(
733 lradc,
734 LRADC_DELAY_TRIGGER(1 << TOUCHSCREEN_VCHANNEL1) |
735 LRADC_DELAY_KICK | LRADC_DELAY_DELAY(10), /* waste 5 ms */
736 LRADC_DELAY(2));
737 }
738
739 /*
740 * in order to avoid false measurements, report only samples where
741 * the surface is still touched after the position measurement
742 */
743 static void mxs_lradc_finish_touch_event(struct mxs_lradc *lradc, bool valid)
744 {
745 /* if it is still touched, report the sample */
746 if (valid && mxs_lradc_check_touch_event(lradc)) {
747 lradc->ts_valid = true;
748 mxs_lradc_report_ts_event(lradc);
749 }
750
751 /* if it is even still touched, continue with the next measurement */
752 if (mxs_lradc_check_touch_event(lradc)) {
753 mxs_lradc_prepare_y_pos(lradc);
754 return;
755 }
756
757 if (lradc->ts_valid) {
758 /* signal the release */
759 lradc->ts_valid = false;
760 input_report_key(lradc->ts_input, BTN_TOUCH, 0);
761 input_sync(lradc->ts_input);
762 }
763
764 /* if it is released, wait for the next touch via IRQ */
765 lradc->cur_plate = LRADC_TOUCH;
766 mxs_lradc_reg_wrt(lradc, 0, LRADC_DELAY(2));
767 mxs_lradc_reg_wrt(lradc, 0, LRADC_DELAY(3));
768 mxs_lradc_reg_clear(lradc,
769 LRADC_CTRL1_TOUCH_DETECT_IRQ |
770 LRADC_CTRL1_LRADC_IRQ_EN(TOUCHSCREEN_VCHANNEL1) |
771 LRADC_CTRL1_LRADC_IRQ(TOUCHSCREEN_VCHANNEL1),
772 LRADC_CTRL1);
773 mxs_lradc_reg_set(lradc, LRADC_CTRL1_TOUCH_DETECT_IRQ_EN, LRADC_CTRL1);
774 }
775
776 /* touchscreen's state machine */
777 static void mxs_lradc_handle_touch(struct mxs_lradc *lradc)
778 {
779 switch (lradc->cur_plate) {
780 case LRADC_TOUCH:
781 if (mxs_lradc_check_touch_event(lradc))
782 mxs_lradc_start_touch_event(lradc);
783 mxs_lradc_reg_clear(lradc, LRADC_CTRL1_TOUCH_DETECT_IRQ,
784 LRADC_CTRL1);
785 return;
786
787 case LRADC_SAMPLE_Y:
788 lradc->ts_y_pos =
789 mxs_lradc_read_raw_channel(lradc,
790 TOUCHSCREEN_VCHANNEL1);
791 mxs_lradc_prepare_x_pos(lradc);
792 return;
793
794 case LRADC_SAMPLE_X:
795 lradc->ts_x_pos =
796 mxs_lradc_read_raw_channel(lradc,
797 TOUCHSCREEN_VCHANNEL1);
798 mxs_lradc_prepare_pressure(lradc);
799 return;
800
801 case LRADC_SAMPLE_PRESSURE:
802 lradc->ts_pressure =
803 mxs_lradc_read_ts_pressure(lradc,
804 TOUCHSCREEN_VCHANNEL2,
805 TOUCHSCREEN_VCHANNEL1);
806 mxs_lradc_complete_touch_event(lradc);
807 return;
808
809 case LRADC_SAMPLE_VALID:
810 mxs_lradc_finish_touch_event(lradc, 1);
811 break;
812 }
813 }
814
815 /*
816 * Raw I/O operations
817 */
818 static int mxs_lradc_read_single(struct iio_dev *iio_dev, int chan, int *val)
819 {
820 struct mxs_lradc *lradc = iio_priv(iio_dev);
821 int ret;
822
823 /*
824 * See if there is no buffered operation in progress. If there is, simply
825 * bail out. This can be improved to support both buffered and raw IO at
826 * the same time, yet the code becomes horribly complicated. Therefore I
827 * applied KISS principle here.
828 */
829 ret = mutex_trylock(&lradc->lock);
830 if (!ret)
831 return -EBUSY;
832
833 reinit_completion(&lradc->completion);
834
835 /*
836 * No buffered operation in progress, map the channel and trigger it.
837 * Virtual channel 0 is always used here as the others are always not
838 * used if doing raw sampling.
839 */
840 if (lradc->soc == IMX28_LRADC)
841 mxs_lradc_reg_clear(lradc, LRADC_CTRL1_LRADC_IRQ_EN(0),
842 LRADC_CTRL1);
843 mxs_lradc_reg_clear(lradc, 0x1, LRADC_CTRL0);
844
845 /* Enable / disable the divider per requirement */
846 if (test_bit(chan, &lradc->is_divided))
847 mxs_lradc_reg_set(lradc,
848 1 << LRADC_CTRL2_DIVIDE_BY_TWO_OFFSET,
849 LRADC_CTRL2);
850 else
851 mxs_lradc_reg_clear(lradc,
852 1 << LRADC_CTRL2_DIVIDE_BY_TWO_OFFSET,
853 LRADC_CTRL2);
854
855 /* Clean the slot's previous content, then set new one. */
856 mxs_lradc_reg_clear(lradc, LRADC_CTRL4_LRADCSELECT_MASK(0),
857 LRADC_CTRL4);
858 mxs_lradc_reg_set(lradc, chan, LRADC_CTRL4);
859
860 mxs_lradc_reg_wrt(lradc, 0, LRADC_CH(0));
861
862 /* Enable the IRQ and start sampling the channel. */
863 mxs_lradc_reg_set(lradc, LRADC_CTRL1_LRADC_IRQ_EN(0), LRADC_CTRL1);
864 mxs_lradc_reg_set(lradc, BIT(0), LRADC_CTRL0);
865
866 /* Wait for completion on the channel, 1 second max. */
867 ret = wait_for_completion_killable_timeout(&lradc->completion, HZ);
868 if (!ret)
869 ret = -ETIMEDOUT;
870 if (ret < 0)
871 goto err;
872
873 /* Read the data. */
874 *val = readl(lradc->base + LRADC_CH(0)) & LRADC_CH_VALUE_MASK;
875 ret = IIO_VAL_INT;
876
877 err:
878 mxs_lradc_reg_clear(lradc, LRADC_CTRL1_LRADC_IRQ_EN(0), LRADC_CTRL1);
879
880 mutex_unlock(&lradc->lock);
881
882 return ret;
883 }
884
885 static int mxs_lradc_read_temp(struct iio_dev *iio_dev, int *val)
886 {
887 int ret, min, max;
888
889 ret = mxs_lradc_read_single(iio_dev, 8, &min);
890 if (ret != IIO_VAL_INT)
891 return ret;
892
893 ret = mxs_lradc_read_single(iio_dev, 9, &max);
894 if (ret != IIO_VAL_INT)
895 return ret;
896
897 *val = max - min;
898
899 return IIO_VAL_INT;
900 }
901
902 static int mxs_lradc_read_raw(struct iio_dev *iio_dev,
903 const struct iio_chan_spec *chan,
904 int *val, int *val2, long m)
905 {
906 struct mxs_lradc *lradc = iio_priv(iio_dev);
907
908 switch (m) {
909 case IIO_CHAN_INFO_RAW:
910 if (chan->type == IIO_TEMP)
911 return mxs_lradc_read_temp(iio_dev, val);
912
913 return mxs_lradc_read_single(iio_dev, chan->channel, val);
914
915 case IIO_CHAN_INFO_SCALE:
916 if (chan->type == IIO_TEMP) {
917 /* From the datasheet, we have to multiply by 1.012 and
918 * divide by 4
919 */
920 *val = 0;
921 *val2 = 253000;
922 return IIO_VAL_INT_PLUS_MICRO;
923 }
924
925 *val = lradc->vref_mv[chan->channel];
926 *val2 = chan->scan_type.realbits -
927 test_bit(chan->channel, &lradc->is_divided);
928 return IIO_VAL_FRACTIONAL_LOG2;
929
930 case IIO_CHAN_INFO_OFFSET:
931 if (chan->type == IIO_TEMP) {
932 /* The calculated value from the ADC is in Kelvin, we
933 * want Celsius for hwmon so the offset is -273.15
934 * The offset is applied before scaling so it is
935 * actually -213.15 * 4 / 1.012 = -1079.644268
936 */
937 *val = -1079;
938 *val2 = 644268;
939
940 return IIO_VAL_INT_PLUS_MICRO;
941 }
942
943 return -EINVAL;
944
945 default:
946 break;
947 }
948
949 return -EINVAL;
950 }
951
952 static int mxs_lradc_write_raw(struct iio_dev *iio_dev,
953 const struct iio_chan_spec *chan,
954 int val, int val2, long m)
955 {
956 struct mxs_lradc *lradc = iio_priv(iio_dev);
957 struct mxs_lradc_scale *scale_avail =
958 lradc->scale_avail[chan->channel];
959 int ret;
960
961 ret = mutex_trylock(&lradc->lock);
962 if (!ret)
963 return -EBUSY;
964
965 switch (m) {
966 case IIO_CHAN_INFO_SCALE:
967 ret = -EINVAL;
968 if (val == scale_avail[MXS_LRADC_DIV_DISABLED].integer &&
969 val2 == scale_avail[MXS_LRADC_DIV_DISABLED].nano) {
970 /* divider by two disabled */
971 clear_bit(chan->channel, &lradc->is_divided);
972 ret = 0;
973 } else if (val == scale_avail[MXS_LRADC_DIV_ENABLED].integer &&
974 val2 == scale_avail[MXS_LRADC_DIV_ENABLED].nano) {
975 /* divider by two enabled */
976 set_bit(chan->channel, &lradc->is_divided);
977 ret = 0;
978 }
979
980 break;
981 default:
982 ret = -EINVAL;
983 break;
984 }
985
986 mutex_unlock(&lradc->lock);
987
988 return ret;
989 }
990
991 static int mxs_lradc_write_raw_get_fmt(struct iio_dev *iio_dev,
992 const struct iio_chan_spec *chan,
993 long m)
994 {
995 return IIO_VAL_INT_PLUS_NANO;
996 }
997
998 static ssize_t mxs_lradc_show_scale_available_ch(struct device *dev,
999 struct device_attribute *attr,
1000 char *buf,
1001 int ch)
1002 {
1003 struct iio_dev *iio = dev_to_iio_dev(dev);
1004 struct mxs_lradc *lradc = iio_priv(iio);
1005 int i, len = 0;
1006
1007 for (i = 0; i < ARRAY_SIZE(lradc->scale_avail[ch]); i++)
1008 len += sprintf(buf + len, "%u.%09u ",
1009 lradc->scale_avail[ch][i].integer,
1010 lradc->scale_avail[ch][i].nano);
1011
1012 len += sprintf(buf + len, "\n");
1013
1014 return len;
1015 }
1016
1017 static ssize_t mxs_lradc_show_scale_available(struct device *dev,
1018 struct device_attribute *attr,
1019 char *buf)
1020 {
1021 struct iio_dev_attr *iio_attr = to_iio_dev_attr(attr);
1022
1023 return mxs_lradc_show_scale_available_ch(dev, attr, buf,
1024 iio_attr->address);
1025 }
1026
1027 #define SHOW_SCALE_AVAILABLE_ATTR(ch) \
1028 static IIO_DEVICE_ATTR(in_voltage##ch##_scale_available, S_IRUGO, \
1029 mxs_lradc_show_scale_available, NULL, ch)
1030
1031 SHOW_SCALE_AVAILABLE_ATTR(0);
1032 SHOW_SCALE_AVAILABLE_ATTR(1);
1033 SHOW_SCALE_AVAILABLE_ATTR(2);
1034 SHOW_SCALE_AVAILABLE_ATTR(3);
1035 SHOW_SCALE_AVAILABLE_ATTR(4);
1036 SHOW_SCALE_AVAILABLE_ATTR(5);
1037 SHOW_SCALE_AVAILABLE_ATTR(6);
1038 SHOW_SCALE_AVAILABLE_ATTR(7);
1039 SHOW_SCALE_AVAILABLE_ATTR(10);
1040 SHOW_SCALE_AVAILABLE_ATTR(11);
1041 SHOW_SCALE_AVAILABLE_ATTR(12);
1042 SHOW_SCALE_AVAILABLE_ATTR(13);
1043 SHOW_SCALE_AVAILABLE_ATTR(14);
1044 SHOW_SCALE_AVAILABLE_ATTR(15);
1045
1046 static struct attribute *mxs_lradc_attributes[] = {
1047 &iio_dev_attr_in_voltage0_scale_available.dev_attr.attr,
1048 &iio_dev_attr_in_voltage1_scale_available.dev_attr.attr,
1049 &iio_dev_attr_in_voltage2_scale_available.dev_attr.attr,
1050 &iio_dev_attr_in_voltage3_scale_available.dev_attr.attr,
1051 &iio_dev_attr_in_voltage4_scale_available.dev_attr.attr,
1052 &iio_dev_attr_in_voltage5_scale_available.dev_attr.attr,
1053 &iio_dev_attr_in_voltage6_scale_available.dev_attr.attr,
1054 &iio_dev_attr_in_voltage7_scale_available.dev_attr.attr,
1055 &iio_dev_attr_in_voltage10_scale_available.dev_attr.attr,
1056 &iio_dev_attr_in_voltage11_scale_available.dev_attr.attr,
1057 &iio_dev_attr_in_voltage12_scale_available.dev_attr.attr,
1058 &iio_dev_attr_in_voltage13_scale_available.dev_attr.attr,
1059 &iio_dev_attr_in_voltage14_scale_available.dev_attr.attr,
1060 &iio_dev_attr_in_voltage15_scale_available.dev_attr.attr,
1061 NULL
1062 };
1063
1064 static const struct attribute_group mxs_lradc_attribute_group = {
1065 .attrs = mxs_lradc_attributes,
1066 };
1067
1068 static const struct iio_info mxs_lradc_iio_info = {
1069 .driver_module = THIS_MODULE,
1070 .read_raw = mxs_lradc_read_raw,
1071 .write_raw = mxs_lradc_write_raw,
1072 .write_raw_get_fmt = mxs_lradc_write_raw_get_fmt,
1073 .attrs = &mxs_lradc_attribute_group,
1074 };
1075
1076 static int mxs_lradc_ts_open(struct input_dev *dev)
1077 {
1078 struct mxs_lradc *lradc = input_get_drvdata(dev);
1079
1080 /* Enable the touch-detect circuitry. */
1081 mxs_lradc_enable_touch_detection(lradc);
1082
1083 return 0;
1084 }
1085
1086 static void mxs_lradc_disable_ts(struct mxs_lradc *lradc)
1087 {
1088 /* stop all interrupts from firing */
1089 mxs_lradc_reg_clear(lradc, LRADC_CTRL1_TOUCH_DETECT_IRQ_EN |
1090 LRADC_CTRL1_LRADC_IRQ_EN(TOUCHSCREEN_VCHANNEL1) |
1091 LRADC_CTRL1_LRADC_IRQ_EN(TOUCHSCREEN_VCHANNEL2), LRADC_CTRL1);
1092
1093 /* Power-down touchscreen touch-detect circuitry. */
1094 mxs_lradc_reg_clear(lradc, mxs_lradc_plate_mask(lradc), LRADC_CTRL0);
1095 }
1096
1097 static void mxs_lradc_ts_close(struct input_dev *dev)
1098 {
1099 struct mxs_lradc *lradc = input_get_drvdata(dev);
1100
1101 mxs_lradc_disable_ts(lradc);
1102 }
1103
1104 static int mxs_lradc_ts_register(struct mxs_lradc *lradc)
1105 {
1106 struct input_dev *input;
1107 struct device *dev = lradc->dev;
1108 int ret;
1109
1110 if (!lradc->use_touchscreen)
1111 return 0;
1112
1113 input = input_allocate_device();
1114 if (!input)
1115 return -ENOMEM;
1116
1117 input->name = DRIVER_NAME;
1118 input->id.bustype = BUS_HOST;
1119 input->dev.parent = dev;
1120 input->open = mxs_lradc_ts_open;
1121 input->close = mxs_lradc_ts_close;
1122
1123 __set_bit(EV_ABS, input->evbit);
1124 __set_bit(EV_KEY, input->evbit);
1125 __set_bit(BTN_TOUCH, input->keybit);
1126 input_set_abs_params(input, ABS_X, 0, LRADC_SINGLE_SAMPLE_MASK, 0, 0);
1127 input_set_abs_params(input, ABS_Y, 0, LRADC_SINGLE_SAMPLE_MASK, 0, 0);
1128 input_set_abs_params(input, ABS_PRESSURE, 0, LRADC_SINGLE_SAMPLE_MASK,
1129 0, 0);
1130
1131 lradc->ts_input = input;
1132 input_set_drvdata(input, lradc);
1133 ret = input_register_device(input);
1134 if (ret)
1135 input_free_device(lradc->ts_input);
1136
1137 return ret;
1138 }
1139
1140 static void mxs_lradc_ts_unregister(struct mxs_lradc *lradc)
1141 {
1142 if (!lradc->use_touchscreen)
1143 return;
1144
1145 mxs_lradc_disable_ts(lradc);
1146 input_unregister_device(lradc->ts_input);
1147 }
1148
1149 /*
1150 * IRQ Handling
1151 */
1152 static irqreturn_t mxs_lradc_handle_irq(int irq, void *data)
1153 {
1154 struct iio_dev *iio = data;
1155 struct mxs_lradc *lradc = iio_priv(iio);
1156 unsigned long reg = readl(lradc->base + LRADC_CTRL1);
1157 u32 clr_irq = mxs_lradc_irq_mask(lradc);
1158 const u32 ts_irq_mask =
1159 LRADC_CTRL1_TOUCH_DETECT_IRQ |
1160 LRADC_CTRL1_LRADC_IRQ(TOUCHSCREEN_VCHANNEL1) |
1161 LRADC_CTRL1_LRADC_IRQ(TOUCHSCREEN_VCHANNEL2);
1162
1163 if (!(reg & mxs_lradc_irq_mask(lradc)))
1164 return IRQ_NONE;
1165
1166 if (lradc->use_touchscreen && (reg & ts_irq_mask)) {
1167 mxs_lradc_handle_touch(lradc);
1168
1169 /* Make sure we don't clear the next conversion's interrupt. */
1170 clr_irq &= ~(LRADC_CTRL1_LRADC_IRQ(TOUCHSCREEN_VCHANNEL1) |
1171 LRADC_CTRL1_LRADC_IRQ(TOUCHSCREEN_VCHANNEL2));
1172 }
1173
1174 if (iio_buffer_enabled(iio)) {
1175 if (reg & lradc->buffer_vchans)
1176 iio_trigger_poll(iio->trig);
1177 } else if (reg & LRADC_CTRL1_LRADC_IRQ(0)) {
1178 complete(&lradc->completion);
1179 }
1180
1181 mxs_lradc_reg_clear(lradc, reg & clr_irq, LRADC_CTRL1);
1182
1183 return IRQ_HANDLED;
1184 }
1185
1186 /*
1187 * Trigger handling
1188 */
1189 static irqreturn_t mxs_lradc_trigger_handler(int irq, void *p)
1190 {
1191 struct iio_poll_func *pf = p;
1192 struct iio_dev *iio = pf->indio_dev;
1193 struct mxs_lradc *lradc = iio_priv(iio);
1194 const u32 chan_value = LRADC_CH_ACCUMULATE |
1195 ((LRADC_DELAY_TIMER_LOOP - 1) << LRADC_CH_NUM_SAMPLES_OFFSET);
1196 unsigned int i, j = 0;
1197
1198 for_each_set_bit(i, iio->active_scan_mask, LRADC_MAX_TOTAL_CHANS) {
1199 lradc->buffer[j] = readl(lradc->base + LRADC_CH(j));
1200 mxs_lradc_reg_wrt(lradc, chan_value, LRADC_CH(j));
1201 lradc->buffer[j] &= LRADC_CH_VALUE_MASK;
1202 lradc->buffer[j] /= LRADC_DELAY_TIMER_LOOP;
1203 j++;
1204 }
1205
1206 iio_push_to_buffers_with_timestamp(iio, lradc->buffer, pf->timestamp);
1207
1208 iio_trigger_notify_done(iio->trig);
1209
1210 return IRQ_HANDLED;
1211 }
1212
1213 static int mxs_lradc_configure_trigger(struct iio_trigger *trig, bool state)
1214 {
1215 struct iio_dev *iio = iio_trigger_get_drvdata(trig);
1216 struct mxs_lradc *lradc = iio_priv(iio);
1217 const u32 st = state ? STMP_OFFSET_REG_SET : STMP_OFFSET_REG_CLR;
1218
1219 mxs_lradc_reg_wrt(lradc, LRADC_DELAY_KICK, LRADC_DELAY(0) + st);
1220
1221 return 0;
1222 }
1223
1224 static const struct iio_trigger_ops mxs_lradc_trigger_ops = {
1225 .owner = THIS_MODULE,
1226 .set_trigger_state = &mxs_lradc_configure_trigger,
1227 };
1228
1229 static int mxs_lradc_trigger_init(struct iio_dev *iio)
1230 {
1231 int ret;
1232 struct iio_trigger *trig;
1233 struct mxs_lradc *lradc = iio_priv(iio);
1234
1235 trig = iio_trigger_alloc("%s-dev%i", iio->name, iio->id);
1236 if (!trig)
1237 return -ENOMEM;
1238
1239 trig->dev.parent = lradc->dev;
1240 iio_trigger_set_drvdata(trig, iio);
1241 trig->ops = &mxs_lradc_trigger_ops;
1242
1243 ret = iio_trigger_register(trig);
1244 if (ret) {
1245 iio_trigger_free(trig);
1246 return ret;
1247 }
1248
1249 lradc->trig = trig;
1250
1251 return 0;
1252 }
1253
1254 static void mxs_lradc_trigger_remove(struct iio_dev *iio)
1255 {
1256 struct mxs_lradc *lradc = iio_priv(iio);
1257
1258 iio_trigger_unregister(lradc->trig);
1259 iio_trigger_free(lradc->trig);
1260 }
1261
1262 static int mxs_lradc_buffer_preenable(struct iio_dev *iio)
1263 {
1264 struct mxs_lradc *lradc = iio_priv(iio);
1265 int ret = 0, chan, ofs = 0;
1266 unsigned long enable = 0;
1267 u32 ctrl4_set = 0;
1268 u32 ctrl4_clr = 0;
1269 u32 ctrl1_irq = 0;
1270 const u32 chan_value = LRADC_CH_ACCUMULATE |
1271 ((LRADC_DELAY_TIMER_LOOP - 1) << LRADC_CH_NUM_SAMPLES_OFFSET);
1272 const int len = bitmap_weight(iio->active_scan_mask,
1273 LRADC_MAX_TOTAL_CHANS);
1274
1275 if (!len)
1276 return -EINVAL;
1277
1278 /*
1279 * Lock the driver so raw access can not be done during buffered
1280 * operation. This simplifies the code a lot.
1281 */
1282 ret = mutex_trylock(&lradc->lock);
1283 if (!ret)
1284 return -EBUSY;
1285
1286 lradc->buffer = kmalloc_array(len, sizeof(*lradc->buffer), GFP_KERNEL);
1287 if (!lradc->buffer) {
1288 ret = -ENOMEM;
1289 goto err_mem;
1290 }
1291
1292 if (lradc->soc == IMX28_LRADC)
1293 mxs_lradc_reg_clear(
1294 lradc,
1295 lradc->buffer_vchans << LRADC_CTRL1_LRADC_IRQ_EN_OFFSET,
1296 LRADC_CTRL1);
1297 mxs_lradc_reg_clear(lradc, lradc->buffer_vchans, LRADC_CTRL0);
1298
1299 for_each_set_bit(chan, iio->active_scan_mask, LRADC_MAX_TOTAL_CHANS) {
1300 ctrl4_set |= chan << LRADC_CTRL4_LRADCSELECT_OFFSET(ofs);
1301 ctrl4_clr |= LRADC_CTRL4_LRADCSELECT_MASK(ofs);
1302 ctrl1_irq |= LRADC_CTRL1_LRADC_IRQ_EN(ofs);
1303 mxs_lradc_reg_wrt(lradc, chan_value, LRADC_CH(ofs));
1304 bitmap_set(&enable, ofs, 1);
1305 ofs++;
1306 }
1307
1308 mxs_lradc_reg_clear(lradc, LRADC_DELAY_TRIGGER_LRADCS_MASK |
1309 LRADC_DELAY_KICK, LRADC_DELAY(0));
1310 mxs_lradc_reg_clear(lradc, ctrl4_clr, LRADC_CTRL4);
1311 mxs_lradc_reg_set(lradc, ctrl4_set, LRADC_CTRL4);
1312 mxs_lradc_reg_set(lradc, ctrl1_irq, LRADC_CTRL1);
1313 mxs_lradc_reg_set(lradc, enable << LRADC_DELAY_TRIGGER_LRADCS_OFFSET,
1314 LRADC_DELAY(0));
1315
1316 return 0;
1317
1318 err_mem:
1319 mutex_unlock(&lradc->lock);
1320 return ret;
1321 }
1322
1323 static int mxs_lradc_buffer_postdisable(struct iio_dev *iio)
1324 {
1325 struct mxs_lradc *lradc = iio_priv(iio);
1326
1327 mxs_lradc_reg_clear(lradc, LRADC_DELAY_TRIGGER_LRADCS_MASK |
1328 LRADC_DELAY_KICK, LRADC_DELAY(0));
1329
1330 mxs_lradc_reg_clear(lradc, lradc->buffer_vchans, LRADC_CTRL0);
1331 if (lradc->soc == IMX28_LRADC)
1332 mxs_lradc_reg_clear(
1333 lradc,
1334 lradc->buffer_vchans << LRADC_CTRL1_LRADC_IRQ_EN_OFFSET,
1335 LRADC_CTRL1);
1336
1337 kfree(lradc->buffer);
1338 mutex_unlock(&lradc->lock);
1339
1340 return 0;
1341 }
1342
1343 static bool mxs_lradc_validate_scan_mask(struct iio_dev *iio,
1344 const unsigned long *mask)
1345 {
1346 struct mxs_lradc *lradc = iio_priv(iio);
1347 const int map_chans = bitmap_weight(mask, LRADC_MAX_TOTAL_CHANS);
1348 int rsvd_chans = 0;
1349 unsigned long rsvd_mask = 0;
1350
1351 if (lradc->use_touchbutton)
1352 rsvd_mask |= CHAN_MASK_TOUCHBUTTON;
1353 if (lradc->use_touchscreen == MXS_LRADC_TOUCHSCREEN_4WIRE)
1354 rsvd_mask |= CHAN_MASK_TOUCHSCREEN_4WIRE;
1355 if (lradc->use_touchscreen == MXS_LRADC_TOUCHSCREEN_5WIRE)
1356 rsvd_mask |= CHAN_MASK_TOUCHSCREEN_5WIRE;
1357
1358 if (lradc->use_touchbutton)
1359 rsvd_chans++;
1360 if (lradc->use_touchscreen)
1361 rsvd_chans += 2;
1362
1363 /* Test for attempts to map channels with special mode of operation. */
1364 if (bitmap_intersects(mask, &rsvd_mask, LRADC_MAX_TOTAL_CHANS))
1365 return false;
1366
1367 /* Test for attempts to map more channels then available slots. */
1368 if (map_chans + rsvd_chans > LRADC_MAX_MAPPED_CHANS)
1369 return false;
1370
1371 return true;
1372 }
1373
1374 static const struct iio_buffer_setup_ops mxs_lradc_buffer_ops = {
1375 .preenable = &mxs_lradc_buffer_preenable,
1376 .postenable = &iio_triggered_buffer_postenable,
1377 .predisable = &iio_triggered_buffer_predisable,
1378 .postdisable = &mxs_lradc_buffer_postdisable,
1379 .validate_scan_mask = &mxs_lradc_validate_scan_mask,
1380 };
1381
1382 /*
1383 * Driver initialization
1384 */
1385
1386 #define MXS_ADC_CHAN(idx, chan_type, name) { \
1387 .type = (chan_type), \
1388 .indexed = 1, \
1389 .scan_index = (idx), \
1390 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1391 BIT(IIO_CHAN_INFO_SCALE), \
1392 .channel = (idx), \
1393 .address = (idx), \
1394 .scan_type = { \
1395 .sign = 'u', \
1396 .realbits = LRADC_RESOLUTION, \
1397 .storagebits = 32, \
1398 }, \
1399 .datasheet_name = (name), \
1400 }
1401
1402 static const struct iio_chan_spec mx23_lradc_chan_spec[] = {
1403 MXS_ADC_CHAN(0, IIO_VOLTAGE, "LRADC0"),
1404 MXS_ADC_CHAN(1, IIO_VOLTAGE, "LRADC1"),
1405 MXS_ADC_CHAN(2, IIO_VOLTAGE, "LRADC2"),
1406 MXS_ADC_CHAN(3, IIO_VOLTAGE, "LRADC3"),
1407 MXS_ADC_CHAN(4, IIO_VOLTAGE, "LRADC4"),
1408 MXS_ADC_CHAN(5, IIO_VOLTAGE, "LRADC5"),
1409 MXS_ADC_CHAN(6, IIO_VOLTAGE, "VDDIO"),
1410 MXS_ADC_CHAN(7, IIO_VOLTAGE, "VBATT"),
1411 /* Combined Temperature sensors */
1412 {
1413 .type = IIO_TEMP,
1414 .indexed = 1,
1415 .scan_index = 8,
1416 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
1417 BIT(IIO_CHAN_INFO_OFFSET) |
1418 BIT(IIO_CHAN_INFO_SCALE),
1419 .channel = 8,
1420 .scan_type = {.sign = 'u', .realbits = 18, .storagebits = 32,},
1421 .datasheet_name = "TEMP_DIE",
1422 },
1423 /* Hidden channel to keep indexes */
1424 {
1425 .type = IIO_TEMP,
1426 .indexed = 1,
1427 .scan_index = -1,
1428 .channel = 9,
1429 },
1430 MXS_ADC_CHAN(10, IIO_VOLTAGE, NULL),
1431 MXS_ADC_CHAN(11, IIO_VOLTAGE, NULL),
1432 MXS_ADC_CHAN(12, IIO_VOLTAGE, "USB_DP"),
1433 MXS_ADC_CHAN(13, IIO_VOLTAGE, "USB_DN"),
1434 MXS_ADC_CHAN(14, IIO_VOLTAGE, "VBG"),
1435 MXS_ADC_CHAN(15, IIO_VOLTAGE, "VDD5V"),
1436 };
1437
1438 static const struct iio_chan_spec mx28_lradc_chan_spec[] = {
1439 MXS_ADC_CHAN(0, IIO_VOLTAGE, "LRADC0"),
1440 MXS_ADC_CHAN(1, IIO_VOLTAGE, "LRADC1"),
1441 MXS_ADC_CHAN(2, IIO_VOLTAGE, "LRADC2"),
1442 MXS_ADC_CHAN(3, IIO_VOLTAGE, "LRADC3"),
1443 MXS_ADC_CHAN(4, IIO_VOLTAGE, "LRADC4"),
1444 MXS_ADC_CHAN(5, IIO_VOLTAGE, "LRADC5"),
1445 MXS_ADC_CHAN(6, IIO_VOLTAGE, "LRADC6"),
1446 MXS_ADC_CHAN(7, IIO_VOLTAGE, "VBATT"),
1447 /* Combined Temperature sensors */
1448 {
1449 .type = IIO_TEMP,
1450 .indexed = 1,
1451 .scan_index = 8,
1452 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
1453 BIT(IIO_CHAN_INFO_OFFSET) |
1454 BIT(IIO_CHAN_INFO_SCALE),
1455 .channel = 8,
1456 .scan_type = {.sign = 'u', .realbits = 18, .storagebits = 32,},
1457 .datasheet_name = "TEMP_DIE",
1458 },
1459 /* Hidden channel to keep indexes */
1460 {
1461 .type = IIO_TEMP,
1462 .indexed = 1,
1463 .scan_index = -1,
1464 .channel = 9,
1465 },
1466 MXS_ADC_CHAN(10, IIO_VOLTAGE, "VDDIO"),
1467 MXS_ADC_CHAN(11, IIO_VOLTAGE, "VTH"),
1468 MXS_ADC_CHAN(12, IIO_VOLTAGE, "VDDA"),
1469 MXS_ADC_CHAN(13, IIO_VOLTAGE, "VDDD"),
1470 MXS_ADC_CHAN(14, IIO_VOLTAGE, "VBG"),
1471 MXS_ADC_CHAN(15, IIO_VOLTAGE, "VDD5V"),
1472 };
1473
1474 static int mxs_lradc_hw_init(struct mxs_lradc *lradc)
1475 {
1476 /* The ADC always uses DELAY CHANNEL 0. */
1477 const u32 adc_cfg =
1478 (1 << (LRADC_DELAY_TRIGGER_DELAYS_OFFSET + 0)) |
1479 (LRADC_DELAY_TIMER_PER << LRADC_DELAY_DELAY_OFFSET);
1480
1481 int ret = stmp_reset_block(lradc->base);
1482
1483 if (ret)
1484 return ret;
1485
1486 /* Configure DELAY CHANNEL 0 for generic ADC sampling. */
1487 mxs_lradc_reg_wrt(lradc, adc_cfg, LRADC_DELAY(0));
1488
1489 /* Disable remaining DELAY CHANNELs */
1490 mxs_lradc_reg_wrt(lradc, 0, LRADC_DELAY(1));
1491 mxs_lradc_reg_wrt(lradc, 0, LRADC_DELAY(2));
1492 mxs_lradc_reg_wrt(lradc, 0, LRADC_DELAY(3));
1493
1494 /* Configure the touchscreen type */
1495 if (lradc->soc == IMX28_LRADC) {
1496 mxs_lradc_reg_clear(lradc, LRADC_CTRL0_MX28_TOUCH_SCREEN_TYPE,
1497 LRADC_CTRL0);
1498
1499 if (lradc->use_touchscreen == MXS_LRADC_TOUCHSCREEN_5WIRE)
1500 mxs_lradc_reg_set(lradc, LRADC_CTRL0_MX28_TOUCH_SCREEN_TYPE,
1501 LRADC_CTRL0);
1502 }
1503
1504 /* Start internal temperature sensing. */
1505 mxs_lradc_reg_wrt(lradc, 0, LRADC_CTRL2);
1506
1507 return 0;
1508 }
1509
1510 static void mxs_lradc_hw_stop(struct mxs_lradc *lradc)
1511 {
1512 int i;
1513
1514 mxs_lradc_reg_clear(lradc, mxs_lradc_irq_en_mask(lradc), LRADC_CTRL1);
1515
1516 for (i = 0; i < LRADC_MAX_DELAY_CHANS; i++)
1517 mxs_lradc_reg_wrt(lradc, 0, LRADC_DELAY(i));
1518 }
1519
1520 static const struct of_device_id mxs_lradc_dt_ids[] = {
1521 { .compatible = "fsl,imx23-lradc", .data = (void *)IMX23_LRADC, },
1522 { .compatible = "fsl,imx28-lradc", .data = (void *)IMX28_LRADC, },
1523 { /* sentinel */ }
1524 };
1525 MODULE_DEVICE_TABLE(of, mxs_lradc_dt_ids);
1526
1527 static int mxs_lradc_probe_touchscreen(struct mxs_lradc *lradc,
1528 struct device_node *lradc_node)
1529 {
1530 int ret;
1531 u32 ts_wires = 0, adapt;
1532
1533 ret = of_property_read_u32(lradc_node, "fsl,lradc-touchscreen-wires",
1534 &ts_wires);
1535 if (ret)
1536 return -ENODEV; /* touchscreen feature disabled */
1537
1538 switch (ts_wires) {
1539 case 4:
1540 lradc->use_touchscreen = MXS_LRADC_TOUCHSCREEN_4WIRE;
1541 break;
1542 case 5:
1543 if (lradc->soc == IMX28_LRADC) {
1544 lradc->use_touchscreen = MXS_LRADC_TOUCHSCREEN_5WIRE;
1545 break;
1546 }
1547 /* fall through an error message for i.MX23 */
1548 default:
1549 dev_err(lradc->dev,
1550 "Unsupported number of touchscreen wires (%d)\n",
1551 ts_wires);
1552 return -EINVAL;
1553 }
1554
1555 if (of_property_read_u32(lradc_node, "fsl,ave-ctrl", &adapt)) {
1556 lradc->over_sample_cnt = 4;
1557 } else {
1558 if (adapt < 1 || adapt > 32) {
1559 dev_err(lradc->dev, "Invalid sample count (%u)\n",
1560 adapt);
1561 return -EINVAL;
1562 }
1563 lradc->over_sample_cnt = adapt;
1564 }
1565
1566 if (of_property_read_u32(lradc_node, "fsl,ave-delay", &adapt)) {
1567 lradc->over_sample_delay = 2;
1568 } else {
1569 if (adapt < 2 || adapt > LRADC_DELAY_DELAY_MASK + 1) {
1570 dev_err(lradc->dev, "Invalid sample delay (%u)\n",
1571 adapt);
1572 return -EINVAL;
1573 }
1574 lradc->over_sample_delay = adapt;
1575 }
1576
1577 if (of_property_read_u32(lradc_node, "fsl,settling", &adapt)) {
1578 lradc->settling_delay = 10;
1579 } else {
1580 if (adapt < 1 || adapt > LRADC_DELAY_DELAY_MASK) {
1581 dev_err(lradc->dev, "Invalid settling delay (%u)\n",
1582 adapt);
1583 return -EINVAL;
1584 }
1585 lradc->settling_delay = adapt;
1586 }
1587
1588 return 0;
1589 }
1590
1591 static int mxs_lradc_probe(struct platform_device *pdev)
1592 {
1593 const struct of_device_id *of_id =
1594 of_match_device(mxs_lradc_dt_ids, &pdev->dev);
1595 const struct mxs_lradc_of_config *of_cfg =
1596 &mxs_lradc_of_config[(enum mxs_lradc_id)of_id->data];
1597 struct device *dev = &pdev->dev;
1598 struct device_node *node = dev->of_node;
1599 struct mxs_lradc *lradc;
1600 struct iio_dev *iio;
1601 struct resource *iores;
1602 int ret = 0, touch_ret;
1603 int i, s;
1604 u64 scale_uv;
1605
1606 /* Allocate the IIO device. */
1607 iio = devm_iio_device_alloc(dev, sizeof(*lradc));
1608 if (!iio) {
1609 dev_err(dev, "Failed to allocate IIO device\n");
1610 return -ENOMEM;
1611 }
1612
1613 lradc = iio_priv(iio);
1614 lradc->soc = (enum mxs_lradc_id)of_id->data;
1615
1616 /* Grab the memory area */
1617 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1618 lradc->dev = &pdev->dev;
1619 lradc->base = devm_ioremap_resource(dev, iores);
1620 if (IS_ERR(lradc->base))
1621 return PTR_ERR(lradc->base);
1622
1623 lradc->clk = devm_clk_get(&pdev->dev, NULL);
1624 if (IS_ERR(lradc->clk)) {
1625 dev_err(dev, "Failed to get the delay unit clock\n");
1626 return PTR_ERR(lradc->clk);
1627 }
1628 ret = clk_prepare_enable(lradc->clk);
1629 if (ret != 0) {
1630 dev_err(dev, "Failed to enable the delay unit clock\n");
1631 return ret;
1632 }
1633
1634 touch_ret = mxs_lradc_probe_touchscreen(lradc, node);
1635
1636 if (touch_ret == 0)
1637 lradc->buffer_vchans = BUFFER_VCHANS_LIMITED;
1638 else
1639 lradc->buffer_vchans = BUFFER_VCHANS_ALL;
1640
1641 /* Grab all IRQ sources */
1642 for (i = 0; i < of_cfg->irq_count; i++) {
1643 lradc->irq[i] = platform_get_irq(pdev, i);
1644 if (lradc->irq[i] < 0) {
1645 ret = lradc->irq[i];
1646 goto err_clk;
1647 }
1648
1649 ret = devm_request_irq(dev, lradc->irq[i],
1650 mxs_lradc_handle_irq, 0,
1651 of_cfg->irq_name[i], iio);
1652 if (ret)
1653 goto err_clk;
1654 }
1655
1656 lradc->vref_mv = of_cfg->vref_mv;
1657
1658 platform_set_drvdata(pdev, iio);
1659
1660 init_completion(&lradc->completion);
1661 mutex_init(&lradc->lock);
1662
1663 iio->name = pdev->name;
1664 iio->dev.parent = &pdev->dev;
1665 iio->info = &mxs_lradc_iio_info;
1666 iio->modes = INDIO_DIRECT_MODE;
1667 iio->masklength = LRADC_MAX_TOTAL_CHANS;
1668
1669 if (lradc->soc == IMX23_LRADC) {
1670 iio->channels = mx23_lradc_chan_spec;
1671 iio->num_channels = ARRAY_SIZE(mx23_lradc_chan_spec);
1672 } else {
1673 iio->channels = mx28_lradc_chan_spec;
1674 iio->num_channels = ARRAY_SIZE(mx28_lradc_chan_spec);
1675 }
1676
1677 ret = iio_triggered_buffer_setup(iio, &iio_pollfunc_store_time,
1678 &mxs_lradc_trigger_handler,
1679 &mxs_lradc_buffer_ops);
1680 if (ret)
1681 goto err_clk;
1682
1683 ret = mxs_lradc_trigger_init(iio);
1684 if (ret)
1685 goto err_trig;
1686
1687 /* Populate available ADC input ranges */
1688 for (i = 0; i < LRADC_MAX_TOTAL_CHANS; i++) {
1689 for (s = 0; s < ARRAY_SIZE(lradc->scale_avail[i]); s++) {
1690 /*
1691 * [s=0] = optional divider by two disabled (default)
1692 * [s=1] = optional divider by two enabled
1693 *
1694 * The scale is calculated by doing:
1695 * Vref >> (realbits - s)
1696 * which multiplies by two on the second component
1697 * of the array.
1698 */
1699 scale_uv = ((u64)lradc->vref_mv[i] * 100000000) >>
1700 (LRADC_RESOLUTION - s);
1701 lradc->scale_avail[i][s].nano =
1702 do_div(scale_uv, 100000000) * 10;
1703 lradc->scale_avail[i][s].integer = scale_uv;
1704 }
1705 }
1706
1707 /* Configure the hardware. */
1708 ret = mxs_lradc_hw_init(lradc);
1709 if (ret)
1710 goto err_dev;
1711
1712 /* Register the touchscreen input device. */
1713 if (touch_ret == 0) {
1714 ret = mxs_lradc_ts_register(lradc);
1715 if (ret)
1716 goto err_ts_register;
1717 }
1718
1719 /* Register IIO device. */
1720 ret = iio_device_register(iio);
1721 if (ret) {
1722 dev_err(dev, "Failed to register IIO device\n");
1723 goto err_ts;
1724 }
1725
1726 return 0;
1727
1728 err_ts:
1729 mxs_lradc_ts_unregister(lradc);
1730 err_ts_register:
1731 mxs_lradc_hw_stop(lradc);
1732 err_dev:
1733 mxs_lradc_trigger_remove(iio);
1734 err_trig:
1735 iio_triggered_buffer_cleanup(iio);
1736 err_clk:
1737 clk_disable_unprepare(lradc->clk);
1738 return ret;
1739 }
1740
1741 static int mxs_lradc_remove(struct platform_device *pdev)
1742 {
1743 struct iio_dev *iio = platform_get_drvdata(pdev);
1744 struct mxs_lradc *lradc = iio_priv(iio);
1745
1746 iio_device_unregister(iio);
1747 mxs_lradc_ts_unregister(lradc);
1748 mxs_lradc_hw_stop(lradc);
1749 mxs_lradc_trigger_remove(iio);
1750 iio_triggered_buffer_cleanup(iio);
1751
1752 clk_disable_unprepare(lradc->clk);
1753 return 0;
1754 }
1755
1756 static struct platform_driver mxs_lradc_driver = {
1757 .driver = {
1758 .name = DRIVER_NAME,
1759 .of_match_table = mxs_lradc_dt_ids,
1760 },
1761 .probe = mxs_lradc_probe,
1762 .remove = mxs_lradc_remove,
1763 };
1764
1765 module_platform_driver(mxs_lradc_driver);
1766
1767 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1768 MODULE_DESCRIPTION("Freescale MXS LRADC driver");
1769 MODULE_LICENSE("GPL v2");
1770 MODULE_ALIAS("platform:" DRIVER_NAME);