]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/staging/iio/adc/mxs-lradc.c
Merge tag 'pinctrl-v4.1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[mirror_ubuntu-zesty-kernel.git] / drivers / staging / iio / adc / mxs-lradc.c
1 /*
2 * Freescale i.MX28 LRADC driver
3 *
4 * Copyright (c) 2012 DENX Software Engineering, GmbH.
5 * Marek Vasut <marex@denx.de>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/device.h>
21 #include <linux/kernel.h>
22 #include <linux/slab.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/sysfs.h>
26 #include <linux/list.h>
27 #include <linux/io.h>
28 #include <linux/module.h>
29 #include <linux/platform_device.h>
30 #include <linux/spinlock.h>
31 #include <linux/wait.h>
32 #include <linux/sched.h>
33 #include <linux/stmp_device.h>
34 #include <linux/bitops.h>
35 #include <linux/completion.h>
36 #include <linux/delay.h>
37 #include <linux/input.h>
38 #include <linux/clk.h>
39
40 #include <linux/iio/iio.h>
41 #include <linux/iio/sysfs.h>
42 #include <linux/iio/buffer.h>
43 #include <linux/iio/trigger.h>
44 #include <linux/iio/trigger_consumer.h>
45 #include <linux/iio/triggered_buffer.h>
46
47 #define DRIVER_NAME "mxs-lradc"
48
49 #define LRADC_MAX_DELAY_CHANS 4
50 #define LRADC_MAX_MAPPED_CHANS 8
51 #define LRADC_MAX_TOTAL_CHANS 16
52
53 #define LRADC_DELAY_TIMER_HZ 2000
54
55 /*
56 * Make this runtime configurable if necessary. Currently, if the buffered mode
57 * is enabled, the LRADC takes LRADC_DELAY_TIMER_LOOP samples of data before
58 * triggering IRQ. The sampling happens every (LRADC_DELAY_TIMER_PER / 2000)
59 * seconds. The result is that the samples arrive every 500mS.
60 */
61 #define LRADC_DELAY_TIMER_PER 200
62 #define LRADC_DELAY_TIMER_LOOP 5
63
64 /*
65 * Once the pen touches the touchscreen, the touchscreen switches from
66 * IRQ-driven mode to polling mode to prevent interrupt storm. The polling
67 * is realized by worker thread, which is called every 20 or so milliseconds.
68 * This gives the touchscreen enough fluence and does not strain the system
69 * too much.
70 */
71 #define LRADC_TS_SAMPLE_DELAY_MS 5
72
73 /*
74 * The LRADC reads the following amount of samples from each touchscreen
75 * channel and the driver then computes avarage of these.
76 */
77 #define LRADC_TS_SAMPLE_AMOUNT 4
78
79 enum mxs_lradc_id {
80 IMX23_LRADC,
81 IMX28_LRADC,
82 };
83
84 static const char * const mx23_lradc_irq_names[] = {
85 "mxs-lradc-touchscreen",
86 "mxs-lradc-channel0",
87 "mxs-lradc-channel1",
88 "mxs-lradc-channel2",
89 "mxs-lradc-channel3",
90 "mxs-lradc-channel4",
91 "mxs-lradc-channel5",
92 "mxs-lradc-channel6",
93 "mxs-lradc-channel7",
94 };
95
96 static const char * const mx28_lradc_irq_names[] = {
97 "mxs-lradc-touchscreen",
98 "mxs-lradc-thresh0",
99 "mxs-lradc-thresh1",
100 "mxs-lradc-channel0",
101 "mxs-lradc-channel1",
102 "mxs-lradc-channel2",
103 "mxs-lradc-channel3",
104 "mxs-lradc-channel4",
105 "mxs-lradc-channel5",
106 "mxs-lradc-channel6",
107 "mxs-lradc-channel7",
108 "mxs-lradc-button0",
109 "mxs-lradc-button1",
110 };
111
112 struct mxs_lradc_of_config {
113 const int irq_count;
114 const char * const *irq_name;
115 const uint32_t *vref_mv;
116 };
117
118 #define VREF_MV_BASE 1850
119
120 static const uint32_t mx23_vref_mv[LRADC_MAX_TOTAL_CHANS] = {
121 VREF_MV_BASE, /* CH0 */
122 VREF_MV_BASE, /* CH1 */
123 VREF_MV_BASE, /* CH2 */
124 VREF_MV_BASE, /* CH3 */
125 VREF_MV_BASE, /* CH4 */
126 VREF_MV_BASE, /* CH5 */
127 VREF_MV_BASE * 2, /* CH6 VDDIO */
128 VREF_MV_BASE * 4, /* CH7 VBATT */
129 VREF_MV_BASE, /* CH8 Temp sense 0 */
130 VREF_MV_BASE, /* CH9 Temp sense 1 */
131 VREF_MV_BASE, /* CH10 */
132 VREF_MV_BASE, /* CH11 */
133 VREF_MV_BASE, /* CH12 USB_DP */
134 VREF_MV_BASE, /* CH13 USB_DN */
135 VREF_MV_BASE, /* CH14 VBG */
136 VREF_MV_BASE * 4, /* CH15 VDD5V */
137 };
138
139 static const uint32_t mx28_vref_mv[LRADC_MAX_TOTAL_CHANS] = {
140 VREF_MV_BASE, /* CH0 */
141 VREF_MV_BASE, /* CH1 */
142 VREF_MV_BASE, /* CH2 */
143 VREF_MV_BASE, /* CH3 */
144 VREF_MV_BASE, /* CH4 */
145 VREF_MV_BASE, /* CH5 */
146 VREF_MV_BASE, /* CH6 */
147 VREF_MV_BASE * 4, /* CH7 VBATT */
148 VREF_MV_BASE, /* CH8 Temp sense 0 */
149 VREF_MV_BASE, /* CH9 Temp sense 1 */
150 VREF_MV_BASE * 2, /* CH10 VDDIO */
151 VREF_MV_BASE, /* CH11 VTH */
152 VREF_MV_BASE * 2, /* CH12 VDDA */
153 VREF_MV_BASE, /* CH13 VDDD */
154 VREF_MV_BASE, /* CH14 VBG */
155 VREF_MV_BASE * 4, /* CH15 VDD5V */
156 };
157
158 static const struct mxs_lradc_of_config mxs_lradc_of_config[] = {
159 [IMX23_LRADC] = {
160 .irq_count = ARRAY_SIZE(mx23_lradc_irq_names),
161 .irq_name = mx23_lradc_irq_names,
162 .vref_mv = mx23_vref_mv,
163 },
164 [IMX28_LRADC] = {
165 .irq_count = ARRAY_SIZE(mx28_lradc_irq_names),
166 .irq_name = mx28_lradc_irq_names,
167 .vref_mv = mx28_vref_mv,
168 },
169 };
170
171 enum mxs_lradc_ts {
172 MXS_LRADC_TOUCHSCREEN_NONE = 0,
173 MXS_LRADC_TOUCHSCREEN_4WIRE,
174 MXS_LRADC_TOUCHSCREEN_5WIRE,
175 };
176
177 /*
178 * Touchscreen handling
179 */
180 enum lradc_ts_plate {
181 LRADC_TOUCH = 0,
182 LRADC_SAMPLE_X,
183 LRADC_SAMPLE_Y,
184 LRADC_SAMPLE_PRESSURE,
185 LRADC_SAMPLE_VALID,
186 };
187
188 enum mxs_lradc_divbytwo {
189 MXS_LRADC_DIV_DISABLED = 0,
190 MXS_LRADC_DIV_ENABLED,
191 };
192
193 struct mxs_lradc_scale {
194 unsigned int integer;
195 unsigned int nano;
196 };
197
198 struct mxs_lradc {
199 struct device *dev;
200 void __iomem *base;
201 int irq[13];
202
203 struct clk *clk;
204
205 uint32_t *buffer;
206 struct iio_trigger *trig;
207
208 struct mutex lock;
209
210 struct completion completion;
211
212 const uint32_t *vref_mv;
213 struct mxs_lradc_scale scale_avail[LRADC_MAX_TOTAL_CHANS][2];
214 unsigned long is_divided;
215
216 /*
217 * When the touchscreen is enabled, we give it two private virtual
218 * channels: #6 and #7. This means that only 6 virtual channels (instead
219 * of 8) will be available for buffered capture.
220 */
221 #define TOUCHSCREEN_VCHANNEL1 7
222 #define TOUCHSCREEN_VCHANNEL2 6
223 #define BUFFER_VCHANS_LIMITED 0x3f
224 #define BUFFER_VCHANS_ALL 0xff
225 u8 buffer_vchans;
226
227 /*
228 * Furthermore, certain LRADC channels are shared between touchscreen
229 * and/or touch-buttons and generic LRADC block. Therefore when using
230 * either of these, these channels are not available for the regular
231 * sampling. The shared channels are as follows:
232 *
233 * CH0 -- Touch button #0
234 * CH1 -- Touch button #1
235 * CH2 -- Touch screen XPUL
236 * CH3 -- Touch screen YPLL
237 * CH4 -- Touch screen XNUL
238 * CH5 -- Touch screen YNLR
239 * CH6 -- Touch screen WIPER (5-wire only)
240 *
241 * The bitfields below represents which parts of the LRADC block are
242 * switched into special mode of operation. These channels can not
243 * be sampled as regular LRADC channels. The driver will refuse any
244 * attempt to sample these channels.
245 */
246 #define CHAN_MASK_TOUCHBUTTON (BIT(1) | BIT(0))
247 #define CHAN_MASK_TOUCHSCREEN_4WIRE (0xf << 2)
248 #define CHAN_MASK_TOUCHSCREEN_5WIRE (0x1f << 2)
249 enum mxs_lradc_ts use_touchscreen;
250 bool use_touchbutton;
251
252 struct input_dev *ts_input;
253
254 enum mxs_lradc_id soc;
255 enum lradc_ts_plate cur_plate; /* statemachine */
256 bool ts_valid;
257 unsigned ts_x_pos;
258 unsigned ts_y_pos;
259 unsigned ts_pressure;
260
261 /* handle touchscreen's physical behaviour */
262 /* samples per coordinate */
263 unsigned over_sample_cnt;
264 /* time clocks between samples */
265 unsigned over_sample_delay;
266 /* time in clocks to wait after the plates where switched */
267 unsigned settling_delay;
268 };
269
270 #define LRADC_CTRL0 0x00
271 # define LRADC_CTRL0_MX28_TOUCH_DETECT_ENABLE BIT(23)
272 # define LRADC_CTRL0_MX28_TOUCH_SCREEN_TYPE BIT(22)
273 # define LRADC_CTRL0_MX28_YNNSW /* YM */ BIT(21)
274 # define LRADC_CTRL0_MX28_YPNSW /* YP */ BIT(20)
275 # define LRADC_CTRL0_MX28_YPPSW /* YP */ BIT(19)
276 # define LRADC_CTRL0_MX28_XNNSW /* XM */ BIT(18)
277 # define LRADC_CTRL0_MX28_XNPSW /* XM */ BIT(17)
278 # define LRADC_CTRL0_MX28_XPPSW /* XP */ BIT(16)
279
280 # define LRADC_CTRL0_MX23_TOUCH_DETECT_ENABLE BIT(20)
281 # define LRADC_CTRL0_MX23_YM BIT(19)
282 # define LRADC_CTRL0_MX23_XM BIT(18)
283 # define LRADC_CTRL0_MX23_YP BIT(17)
284 # define LRADC_CTRL0_MX23_XP BIT(16)
285
286 # define LRADC_CTRL0_MX28_PLATE_MASK \
287 (LRADC_CTRL0_MX28_TOUCH_DETECT_ENABLE | \
288 LRADC_CTRL0_MX28_YNNSW | LRADC_CTRL0_MX28_YPNSW | \
289 LRADC_CTRL0_MX28_YPPSW | LRADC_CTRL0_MX28_XNNSW | \
290 LRADC_CTRL0_MX28_XNPSW | LRADC_CTRL0_MX28_XPPSW)
291
292 # define LRADC_CTRL0_MX23_PLATE_MASK \
293 (LRADC_CTRL0_MX23_TOUCH_DETECT_ENABLE | \
294 LRADC_CTRL0_MX23_YM | LRADC_CTRL0_MX23_XM | \
295 LRADC_CTRL0_MX23_YP | LRADC_CTRL0_MX23_XP)
296
297 #define LRADC_CTRL1 0x10
298 #define LRADC_CTRL1_TOUCH_DETECT_IRQ_EN BIT(24)
299 #define LRADC_CTRL1_LRADC_IRQ_EN(n) (1 << ((n) + 16))
300 #define LRADC_CTRL1_MX28_LRADC_IRQ_EN_MASK (0x1fff << 16)
301 #define LRADC_CTRL1_MX23_LRADC_IRQ_EN_MASK (0x01ff << 16)
302 #define LRADC_CTRL1_LRADC_IRQ_EN_OFFSET 16
303 #define LRADC_CTRL1_TOUCH_DETECT_IRQ BIT(8)
304 #define LRADC_CTRL1_LRADC_IRQ(n) (1 << (n))
305 #define LRADC_CTRL1_MX28_LRADC_IRQ_MASK 0x1fff
306 #define LRADC_CTRL1_MX23_LRADC_IRQ_MASK 0x01ff
307 #define LRADC_CTRL1_LRADC_IRQ_OFFSET 0
308
309 #define LRADC_CTRL2 0x20
310 #define LRADC_CTRL2_DIVIDE_BY_TWO_OFFSET 24
311 #define LRADC_CTRL2_TEMPSENSE_PWD BIT(15)
312
313 #define LRADC_STATUS 0x40
314 #define LRADC_STATUS_TOUCH_DETECT_RAW BIT(0)
315
316 #define LRADC_CH(n) (0x50 + (0x10 * (n)))
317 #define LRADC_CH_ACCUMULATE BIT(29)
318 #define LRADC_CH_NUM_SAMPLES_MASK (0x1f << 24)
319 #define LRADC_CH_NUM_SAMPLES_OFFSET 24
320 #define LRADC_CH_NUM_SAMPLES(x) \
321 ((x) << LRADC_CH_NUM_SAMPLES_OFFSET)
322 #define LRADC_CH_VALUE_MASK 0x3ffff
323 #define LRADC_CH_VALUE_OFFSET 0
324
325 #define LRADC_DELAY(n) (0xd0 + (0x10 * (n)))
326 #define LRADC_DELAY_TRIGGER_LRADCS_MASK (0xff << 24)
327 #define LRADC_DELAY_TRIGGER_LRADCS_OFFSET 24
328 #define LRADC_DELAY_TRIGGER(x) \
329 (((x) << LRADC_DELAY_TRIGGER_LRADCS_OFFSET) & \
330 LRADC_DELAY_TRIGGER_LRADCS_MASK)
331 #define LRADC_DELAY_KICK (1 << 20)
332 #define LRADC_DELAY_TRIGGER_DELAYS_MASK (0xf << 16)
333 #define LRADC_DELAY_TRIGGER_DELAYS_OFFSET 16
334 #define LRADC_DELAY_TRIGGER_DELAYS(x) \
335 (((x) << LRADC_DELAY_TRIGGER_DELAYS_OFFSET) & \
336 LRADC_DELAY_TRIGGER_DELAYS_MASK)
337 #define LRADC_DELAY_LOOP_COUNT_MASK (0x1f << 11)
338 #define LRADC_DELAY_LOOP_COUNT_OFFSET 11
339 #define LRADC_DELAY_LOOP(x) \
340 (((x) << LRADC_DELAY_LOOP_COUNT_OFFSET) & \
341 LRADC_DELAY_LOOP_COUNT_MASK)
342 #define LRADC_DELAY_DELAY_MASK 0x7ff
343 #define LRADC_DELAY_DELAY_OFFSET 0
344 #define LRADC_DELAY_DELAY(x) \
345 (((x) << LRADC_DELAY_DELAY_OFFSET) & \
346 LRADC_DELAY_DELAY_MASK)
347
348 #define LRADC_CTRL4 0x140
349 #define LRADC_CTRL4_LRADCSELECT_MASK(n) (0xf << ((n) * 4))
350 #define LRADC_CTRL4_LRADCSELECT_OFFSET(n) ((n) * 4)
351 #define LRADC_CTRL4_LRADCSELECT(n, x) \
352 (((x) << LRADC_CTRL4_LRADCSELECT_OFFSET(n)) & \
353 LRADC_CTRL4_LRADCSELECT_MASK(n))
354
355 #define LRADC_RESOLUTION 12
356 #define LRADC_SINGLE_SAMPLE_MASK ((1 << LRADC_RESOLUTION) - 1)
357
358 static void mxs_lradc_reg_set(struct mxs_lradc *lradc, u32 val, u32 reg)
359 {
360 writel(val, lradc->base + reg + STMP_OFFSET_REG_SET);
361 }
362
363 static void mxs_lradc_reg_clear(struct mxs_lradc *lradc, u32 val, u32 reg)
364 {
365 writel(val, lradc->base + reg + STMP_OFFSET_REG_CLR);
366 }
367
368 static void mxs_lradc_reg_wrt(struct mxs_lradc *lradc, u32 val, u32 reg)
369 {
370 writel(val, lradc->base + reg);
371 }
372
373 static u32 mxs_lradc_plate_mask(struct mxs_lradc *lradc)
374 {
375 if (lradc->soc == IMX23_LRADC)
376 return LRADC_CTRL0_MX23_PLATE_MASK;
377 return LRADC_CTRL0_MX28_PLATE_MASK;
378 }
379
380 static u32 mxs_lradc_irq_en_mask(struct mxs_lradc *lradc)
381 {
382 if (lradc->soc == IMX23_LRADC)
383 return LRADC_CTRL1_MX23_LRADC_IRQ_EN_MASK;
384 return LRADC_CTRL1_MX28_LRADC_IRQ_EN_MASK;
385 }
386
387 static u32 mxs_lradc_irq_mask(struct mxs_lradc *lradc)
388 {
389 if (lradc->soc == IMX23_LRADC)
390 return LRADC_CTRL1_MX23_LRADC_IRQ_MASK;
391 return LRADC_CTRL1_MX28_LRADC_IRQ_MASK;
392 }
393
394 static u32 mxs_lradc_touch_detect_bit(struct mxs_lradc *lradc)
395 {
396 if (lradc->soc == IMX23_LRADC)
397 return LRADC_CTRL0_MX23_TOUCH_DETECT_ENABLE;
398 return LRADC_CTRL0_MX28_TOUCH_DETECT_ENABLE;
399 }
400
401 static u32 mxs_lradc_drive_x_plate(struct mxs_lradc *lradc)
402 {
403 if (lradc->soc == IMX23_LRADC)
404 return LRADC_CTRL0_MX23_XP | LRADC_CTRL0_MX23_XM;
405 return LRADC_CTRL0_MX28_XPPSW | LRADC_CTRL0_MX28_XNNSW;
406 }
407
408 static u32 mxs_lradc_drive_y_plate(struct mxs_lradc *lradc)
409 {
410 if (lradc->soc == IMX23_LRADC)
411 return LRADC_CTRL0_MX23_YP | LRADC_CTRL0_MX23_YM;
412 return LRADC_CTRL0_MX28_YPPSW | LRADC_CTRL0_MX28_YNNSW;
413 }
414
415 static u32 mxs_lradc_drive_pressure(struct mxs_lradc *lradc)
416 {
417 if (lradc->soc == IMX23_LRADC)
418 return LRADC_CTRL0_MX23_YP | LRADC_CTRL0_MX23_XM;
419 return LRADC_CTRL0_MX28_YPPSW | LRADC_CTRL0_MX28_XNNSW;
420 }
421
422 static bool mxs_lradc_check_touch_event(struct mxs_lradc *lradc)
423 {
424 return !!(readl(lradc->base + LRADC_STATUS) &
425 LRADC_STATUS_TOUCH_DETECT_RAW);
426 }
427
428 static void mxs_lradc_map_channel(struct mxs_lradc *lradc, unsigned vch,
429 unsigned ch)
430 {
431 mxs_lradc_reg_clear(lradc, LRADC_CTRL4_LRADCSELECT_MASK(vch),
432 LRADC_CTRL4);
433 mxs_lradc_reg_set(lradc, LRADC_CTRL4_LRADCSELECT(vch, ch), LRADC_CTRL4);
434 }
435
436 static void mxs_lradc_setup_ts_channel(struct mxs_lradc *lradc, unsigned ch)
437 {
438 /*
439 * prepare for oversampling conversion
440 *
441 * from the datasheet:
442 * "The ACCUMULATE bit in the appropriate channel register
443 * HW_LRADC_CHn must be set to 1 if NUM_SAMPLES is greater then 0;
444 * otherwise, the IRQs will not fire."
445 */
446 mxs_lradc_reg_wrt(lradc, LRADC_CH_ACCUMULATE |
447 LRADC_CH_NUM_SAMPLES(lradc->over_sample_cnt - 1),
448 LRADC_CH(ch));
449
450 /* from the datasheet:
451 * "Software must clear this register in preparation for a
452 * multi-cycle accumulation.
453 */
454 mxs_lradc_reg_clear(lradc, LRADC_CH_VALUE_MASK, LRADC_CH(ch));
455
456 /*
457 * prepare the delay/loop unit according to the oversampling count
458 *
459 * from the datasheet:
460 * "The DELAY fields in HW_LRADC_DELAY0, HW_LRADC_DELAY1,
461 * HW_LRADC_DELAY2, and HW_LRADC_DELAY3 must be non-zero; otherwise,
462 * the LRADC will not trigger the delay group."
463 */
464 mxs_lradc_reg_wrt(lradc, LRADC_DELAY_TRIGGER(1 << ch) |
465 LRADC_DELAY_TRIGGER_DELAYS(0) |
466 LRADC_DELAY_LOOP(lradc->over_sample_cnt - 1) |
467 LRADC_DELAY_DELAY(lradc->over_sample_delay - 1),
468 LRADC_DELAY(3));
469
470 mxs_lradc_reg_clear(lradc, LRADC_CTRL1_LRADC_IRQ(ch), LRADC_CTRL1);
471
472 /*
473 * after changing the touchscreen plates setting
474 * the signals need some initial time to settle. Start the
475 * SoC's delay unit and start the conversion later
476 * and automatically.
477 */
478 mxs_lradc_reg_wrt(lradc,
479 LRADC_DELAY_TRIGGER(0) | /* don't trigger ADC */
480 LRADC_DELAY_TRIGGER_DELAYS(BIT(3)) | /* trigger DELAY unit#3 */
481 LRADC_DELAY_KICK |
482 LRADC_DELAY_DELAY(lradc->settling_delay),
483 LRADC_DELAY(2));
484 }
485
486 /*
487 * Pressure detection is special:
488 * We want to do both required measurements for the pressure detection in
489 * one turn. Use the hardware features to chain both conversions and let the
490 * hardware report one interrupt if both conversions are done
491 */
492 static void mxs_lradc_setup_ts_pressure(struct mxs_lradc *lradc, unsigned ch1,
493 unsigned ch2)
494 {
495 u32 reg;
496
497 /*
498 * prepare for oversampling conversion
499 *
500 * from the datasheet:
501 * "The ACCUMULATE bit in the appropriate channel register
502 * HW_LRADC_CHn must be set to 1 if NUM_SAMPLES is greater then 0;
503 * otherwise, the IRQs will not fire."
504 */
505 reg = LRADC_CH_ACCUMULATE |
506 LRADC_CH_NUM_SAMPLES(lradc->over_sample_cnt - 1);
507 mxs_lradc_reg_wrt(lradc, reg, LRADC_CH(ch1));
508 mxs_lradc_reg_wrt(lradc, reg, LRADC_CH(ch2));
509
510 /* from the datasheet:
511 * "Software must clear this register in preparation for a
512 * multi-cycle accumulation.
513 */
514 mxs_lradc_reg_clear(lradc, LRADC_CH_VALUE_MASK, LRADC_CH(ch1));
515 mxs_lradc_reg_clear(lradc, LRADC_CH_VALUE_MASK, LRADC_CH(ch2));
516
517 /* prepare the delay/loop unit according to the oversampling count */
518 mxs_lradc_reg_wrt(lradc, LRADC_DELAY_TRIGGER(1 << ch1) |
519 LRADC_DELAY_TRIGGER(1 << ch2) | /* start both channels */
520 LRADC_DELAY_TRIGGER_DELAYS(0) |
521 LRADC_DELAY_LOOP(lradc->over_sample_cnt - 1) |
522 LRADC_DELAY_DELAY(lradc->over_sample_delay - 1),
523 LRADC_DELAY(3));
524
525 mxs_lradc_reg_clear(lradc, LRADC_CTRL1_LRADC_IRQ(ch2), LRADC_CTRL1);
526
527 /*
528 * after changing the touchscreen plates setting
529 * the signals need some initial time to settle. Start the
530 * SoC's delay unit and start the conversion later
531 * and automatically.
532 */
533 mxs_lradc_reg_wrt(lradc,
534 LRADC_DELAY_TRIGGER(0) | /* don't trigger ADC */
535 LRADC_DELAY_TRIGGER_DELAYS(BIT(3)) | /* trigger DELAY unit#3 */
536 LRADC_DELAY_KICK |
537 LRADC_DELAY_DELAY(lradc->settling_delay), LRADC_DELAY(2));
538 }
539
540 static unsigned mxs_lradc_read_raw_channel(struct mxs_lradc *lradc,
541 unsigned channel)
542 {
543 u32 reg;
544 unsigned num_samples, val;
545
546 reg = readl(lradc->base + LRADC_CH(channel));
547 if (reg & LRADC_CH_ACCUMULATE)
548 num_samples = lradc->over_sample_cnt;
549 else
550 num_samples = 1;
551
552 val = (reg & LRADC_CH_VALUE_MASK) >> LRADC_CH_VALUE_OFFSET;
553 return val / num_samples;
554 }
555
556 static unsigned mxs_lradc_read_ts_pressure(struct mxs_lradc *lradc,
557 unsigned ch1, unsigned ch2)
558 {
559 u32 reg, mask;
560 unsigned pressure, m1, m2;
561
562 mask = LRADC_CTRL1_LRADC_IRQ(ch1) | LRADC_CTRL1_LRADC_IRQ(ch2);
563 reg = readl(lradc->base + LRADC_CTRL1) & mask;
564
565 while (reg != mask) {
566 reg = readl(lradc->base + LRADC_CTRL1) & mask;
567 dev_dbg(lradc->dev, "One channel is still busy: %X\n", reg);
568 }
569
570 m1 = mxs_lradc_read_raw_channel(lradc, ch1);
571 m2 = mxs_lradc_read_raw_channel(lradc, ch2);
572
573 if (m2 == 0) {
574 dev_warn(lradc->dev, "Cannot calculate pressure\n");
575 return 1 << (LRADC_RESOLUTION - 1);
576 }
577
578 /* simply scale the value from 0 ... max ADC resolution */
579 pressure = m1;
580 pressure *= (1 << LRADC_RESOLUTION);
581 pressure /= m2;
582
583 dev_dbg(lradc->dev, "Pressure = %u\n", pressure);
584 return pressure;
585 }
586
587 #define TS_CH_XP 2
588 #define TS_CH_YP 3
589 #define TS_CH_XM 4
590 #define TS_CH_YM 5
591
592 /*
593 * YP(open)--+-------------+
594 * | |--+
595 * | | |
596 * YM(-)--+-------------+ |
597 * +--------------+
598 * | |
599 * XP(weak+) XM(open)
600 *
601 * "weak+" means 200k Ohm VDDIO
602 * (-) means GND
603 */
604 static void mxs_lradc_setup_touch_detection(struct mxs_lradc *lradc)
605 {
606 /*
607 * In order to detect a touch event the 'touch detect enable' bit
608 * enables:
609 * - a weak pullup to the X+ connector
610 * - a strong ground at the Y- connector
611 */
612 mxs_lradc_reg_clear(lradc, mxs_lradc_plate_mask(lradc), LRADC_CTRL0);
613 mxs_lradc_reg_set(lradc, mxs_lradc_touch_detect_bit(lradc),
614 LRADC_CTRL0);
615 }
616
617 /*
618 * YP(meas)--+-------------+
619 * | |--+
620 * | | |
621 * YM(open)--+-------------+ |
622 * +--------------+
623 * | |
624 * XP(+) XM(-)
625 *
626 * (+) means here 1.85 V
627 * (-) means here GND
628 */
629 static void mxs_lradc_prepare_x_pos(struct mxs_lradc *lradc)
630 {
631 mxs_lradc_reg_clear(lradc, mxs_lradc_plate_mask(lradc), LRADC_CTRL0);
632 mxs_lradc_reg_set(lradc, mxs_lradc_drive_x_plate(lradc), LRADC_CTRL0);
633
634 lradc->cur_plate = LRADC_SAMPLE_X;
635 mxs_lradc_map_channel(lradc, TOUCHSCREEN_VCHANNEL1, TS_CH_YP);
636 mxs_lradc_setup_ts_channel(lradc, TOUCHSCREEN_VCHANNEL1);
637 }
638
639 /*
640 * YP(+)--+-------------+
641 * | |--+
642 * | | |
643 * YM(-)--+-------------+ |
644 * +--------------+
645 * | |
646 * XP(open) XM(meas)
647 *
648 * (+) means here 1.85 V
649 * (-) means here GND
650 */
651 static void mxs_lradc_prepare_y_pos(struct mxs_lradc *lradc)
652 {
653 mxs_lradc_reg_clear(lradc, mxs_lradc_plate_mask(lradc), LRADC_CTRL0);
654 mxs_lradc_reg_set(lradc, mxs_lradc_drive_y_plate(lradc), LRADC_CTRL0);
655
656 lradc->cur_plate = LRADC_SAMPLE_Y;
657 mxs_lradc_map_channel(lradc, TOUCHSCREEN_VCHANNEL1, TS_CH_XM);
658 mxs_lradc_setup_ts_channel(lradc, TOUCHSCREEN_VCHANNEL1);
659 }
660
661 /*
662 * YP(+)--+-------------+
663 * | |--+
664 * | | |
665 * YM(meas)--+-------------+ |
666 * +--------------+
667 * | |
668 * XP(meas) XM(-)
669 *
670 * (+) means here 1.85 V
671 * (-) means here GND
672 */
673 static void mxs_lradc_prepare_pressure(struct mxs_lradc *lradc)
674 {
675 mxs_lradc_reg_clear(lradc, mxs_lradc_plate_mask(lradc), LRADC_CTRL0);
676 mxs_lradc_reg_set(lradc, mxs_lradc_drive_pressure(lradc), LRADC_CTRL0);
677
678 lradc->cur_plate = LRADC_SAMPLE_PRESSURE;
679 mxs_lradc_map_channel(lradc, TOUCHSCREEN_VCHANNEL1, TS_CH_YM);
680 mxs_lradc_map_channel(lradc, TOUCHSCREEN_VCHANNEL2, TS_CH_XP);
681 mxs_lradc_setup_ts_pressure(lradc, TOUCHSCREEN_VCHANNEL2,
682 TOUCHSCREEN_VCHANNEL1);
683 }
684
685 static void mxs_lradc_enable_touch_detection(struct mxs_lradc *lradc)
686 {
687 mxs_lradc_setup_touch_detection(lradc);
688
689 lradc->cur_plate = LRADC_TOUCH;
690 mxs_lradc_reg_clear(lradc, LRADC_CTRL1_TOUCH_DETECT_IRQ |
691 LRADC_CTRL1_TOUCH_DETECT_IRQ_EN, LRADC_CTRL1);
692 mxs_lradc_reg_set(lradc, LRADC_CTRL1_TOUCH_DETECT_IRQ_EN, LRADC_CTRL1);
693 }
694
695 static void mxs_lradc_start_touch_event(struct mxs_lradc *lradc)
696 {
697 mxs_lradc_reg_clear(lradc, LRADC_CTRL1_TOUCH_DETECT_IRQ_EN,
698 LRADC_CTRL1);
699 mxs_lradc_reg_set(lradc,
700 LRADC_CTRL1_LRADC_IRQ_EN(TOUCHSCREEN_VCHANNEL1), LRADC_CTRL1);
701 /*
702 * start with the Y-pos, because it uses nearly the same plate
703 * settings like the touch detection
704 */
705 mxs_lradc_prepare_y_pos(lradc);
706 }
707
708 static void mxs_lradc_report_ts_event(struct mxs_lradc *lradc)
709 {
710 input_report_abs(lradc->ts_input, ABS_X, lradc->ts_x_pos);
711 input_report_abs(lradc->ts_input, ABS_Y, lradc->ts_y_pos);
712 input_report_abs(lradc->ts_input, ABS_PRESSURE, lradc->ts_pressure);
713 input_report_key(lradc->ts_input, BTN_TOUCH, 1);
714 input_sync(lradc->ts_input);
715 }
716
717 static void mxs_lradc_complete_touch_event(struct mxs_lradc *lradc)
718 {
719 mxs_lradc_setup_touch_detection(lradc);
720 lradc->cur_plate = LRADC_SAMPLE_VALID;
721 /*
722 * start a dummy conversion to burn time to settle the signals
723 * note: we are not interested in the conversion's value
724 */
725 mxs_lradc_reg_wrt(lradc, 0, LRADC_CH(TOUCHSCREEN_VCHANNEL1));
726 mxs_lradc_reg_clear(lradc,
727 LRADC_CTRL1_LRADC_IRQ(TOUCHSCREEN_VCHANNEL1) |
728 LRADC_CTRL1_LRADC_IRQ(TOUCHSCREEN_VCHANNEL2), LRADC_CTRL1);
729 mxs_lradc_reg_wrt(lradc,
730 LRADC_DELAY_TRIGGER(1 << TOUCHSCREEN_VCHANNEL1) |
731 LRADC_DELAY_KICK | LRADC_DELAY_DELAY(10), /* waste 5 ms */
732 LRADC_DELAY(2));
733 }
734
735 /*
736 * in order to avoid false measurements, report only samples where
737 * the surface is still touched after the position measurement
738 */
739 static void mxs_lradc_finish_touch_event(struct mxs_lradc *lradc, bool valid)
740 {
741 /* if it is still touched, report the sample */
742 if (valid && mxs_lradc_check_touch_event(lradc)) {
743 lradc->ts_valid = true;
744 mxs_lradc_report_ts_event(lradc);
745 }
746
747 /* if it is even still touched, continue with the next measurement */
748 if (mxs_lradc_check_touch_event(lradc)) {
749 mxs_lradc_prepare_y_pos(lradc);
750 return;
751 }
752
753 if (lradc->ts_valid) {
754 /* signal the release */
755 lradc->ts_valid = false;
756 input_report_key(lradc->ts_input, BTN_TOUCH, 0);
757 input_sync(lradc->ts_input);
758 }
759
760 /* if it is released, wait for the next touch via IRQ */
761 lradc->cur_plate = LRADC_TOUCH;
762 mxs_lradc_reg_wrt(lradc, 0, LRADC_DELAY(2));
763 mxs_lradc_reg_wrt(lradc, 0, LRADC_DELAY(3));
764 mxs_lradc_reg_clear(lradc, LRADC_CTRL1_TOUCH_DETECT_IRQ |
765 LRADC_CTRL1_LRADC_IRQ_EN(TOUCHSCREEN_VCHANNEL1) |
766 LRADC_CTRL1_LRADC_IRQ(TOUCHSCREEN_VCHANNEL1), LRADC_CTRL1);
767 mxs_lradc_reg_set(lradc, LRADC_CTRL1_TOUCH_DETECT_IRQ_EN, LRADC_CTRL1);
768 }
769
770 /* touchscreen's state machine */
771 static void mxs_lradc_handle_touch(struct mxs_lradc *lradc)
772 {
773 switch (lradc->cur_plate) {
774 case LRADC_TOUCH:
775 if (mxs_lradc_check_touch_event(lradc))
776 mxs_lradc_start_touch_event(lradc);
777 mxs_lradc_reg_clear(lradc, LRADC_CTRL1_TOUCH_DETECT_IRQ,
778 LRADC_CTRL1);
779 return;
780
781 case LRADC_SAMPLE_Y:
782 lradc->ts_y_pos = mxs_lradc_read_raw_channel(lradc,
783 TOUCHSCREEN_VCHANNEL1);
784 mxs_lradc_prepare_x_pos(lradc);
785 return;
786
787 case LRADC_SAMPLE_X:
788 lradc->ts_x_pos = mxs_lradc_read_raw_channel(lradc,
789 TOUCHSCREEN_VCHANNEL1);
790 mxs_lradc_prepare_pressure(lradc);
791 return;
792
793 case LRADC_SAMPLE_PRESSURE:
794 lradc->ts_pressure = mxs_lradc_read_ts_pressure(lradc,
795 TOUCHSCREEN_VCHANNEL2,
796 TOUCHSCREEN_VCHANNEL1);
797 mxs_lradc_complete_touch_event(lradc);
798 return;
799
800 case LRADC_SAMPLE_VALID:
801 mxs_lradc_finish_touch_event(lradc, 1);
802 break;
803 }
804 }
805
806 /*
807 * Raw I/O operations
808 */
809 static int mxs_lradc_read_single(struct iio_dev *iio_dev, int chan, int *val)
810 {
811 struct mxs_lradc *lradc = iio_priv(iio_dev);
812 int ret;
813
814 /*
815 * See if there is no buffered operation in progess. If there is, simply
816 * bail out. This can be improved to support both buffered and raw IO at
817 * the same time, yet the code becomes horribly complicated. Therefore I
818 * applied KISS principle here.
819 */
820 ret = mutex_trylock(&lradc->lock);
821 if (!ret)
822 return -EBUSY;
823
824 reinit_completion(&lradc->completion);
825
826 /*
827 * No buffered operation in progress, map the channel and trigger it.
828 * Virtual channel 0 is always used here as the others are always not
829 * used if doing raw sampling.
830 */
831 if (lradc->soc == IMX28_LRADC)
832 mxs_lradc_reg_clear(lradc, LRADC_CTRL1_LRADC_IRQ_EN(0),
833 LRADC_CTRL1);
834 mxs_lradc_reg_clear(lradc, 0x1, LRADC_CTRL0);
835
836 /* Enable / disable the divider per requirement */
837 if (test_bit(chan, &lradc->is_divided))
838 mxs_lradc_reg_set(lradc, 1 << LRADC_CTRL2_DIVIDE_BY_TWO_OFFSET,
839 LRADC_CTRL2);
840 else
841 mxs_lradc_reg_clear(lradc,
842 1 << LRADC_CTRL2_DIVIDE_BY_TWO_OFFSET, LRADC_CTRL2);
843
844 /* Clean the slot's previous content, then set new one. */
845 mxs_lradc_reg_clear(lradc, LRADC_CTRL4_LRADCSELECT_MASK(0),
846 LRADC_CTRL4);
847 mxs_lradc_reg_set(lradc, chan, LRADC_CTRL4);
848
849 mxs_lradc_reg_wrt(lradc, 0, LRADC_CH(0));
850
851 /* Enable the IRQ and start sampling the channel. */
852 mxs_lradc_reg_set(lradc, LRADC_CTRL1_LRADC_IRQ_EN(0), LRADC_CTRL1);
853 mxs_lradc_reg_set(lradc, BIT(0), LRADC_CTRL0);
854
855 /* Wait for completion on the channel, 1 second max. */
856 ret = wait_for_completion_killable_timeout(&lradc->completion, HZ);
857 if (!ret)
858 ret = -ETIMEDOUT;
859 if (ret < 0)
860 goto err;
861
862 /* Read the data. */
863 *val = readl(lradc->base + LRADC_CH(0)) & LRADC_CH_VALUE_MASK;
864 ret = IIO_VAL_INT;
865
866 err:
867 mxs_lradc_reg_clear(lradc, LRADC_CTRL1_LRADC_IRQ_EN(0), LRADC_CTRL1);
868
869 mutex_unlock(&lradc->lock);
870
871 return ret;
872 }
873
874 static int mxs_lradc_read_temp(struct iio_dev *iio_dev, int *val)
875 {
876 int ret, min, max;
877
878 ret = mxs_lradc_read_single(iio_dev, 8, &min);
879 if (ret != IIO_VAL_INT)
880 return ret;
881
882 ret = mxs_lradc_read_single(iio_dev, 9, &max);
883 if (ret != IIO_VAL_INT)
884 return ret;
885
886 *val = max - min;
887
888 return IIO_VAL_INT;
889 }
890
891 static int mxs_lradc_read_raw(struct iio_dev *iio_dev,
892 const struct iio_chan_spec *chan,
893 int *val, int *val2, long m)
894 {
895 struct mxs_lradc *lradc = iio_priv(iio_dev);
896
897 switch (m) {
898 case IIO_CHAN_INFO_RAW:
899 if (chan->type == IIO_TEMP)
900 return mxs_lradc_read_temp(iio_dev, val);
901
902 return mxs_lradc_read_single(iio_dev, chan->channel, val);
903
904 case IIO_CHAN_INFO_SCALE:
905 if (chan->type == IIO_TEMP) {
906 /* From the datasheet, we have to multiply by 1.012 and
907 * divide by 4
908 */
909 *val = 0;
910 *val2 = 253000;
911 return IIO_VAL_INT_PLUS_MICRO;
912 }
913
914 *val = lradc->vref_mv[chan->channel];
915 *val2 = chan->scan_type.realbits -
916 test_bit(chan->channel, &lradc->is_divided);
917 return IIO_VAL_FRACTIONAL_LOG2;
918
919 case IIO_CHAN_INFO_OFFSET:
920 if (chan->type == IIO_TEMP) {
921 /* The calculated value from the ADC is in Kelvin, we
922 * want Celsius for hwmon so the offset is
923 * -272.15 * scale
924 */
925 *val = -1075;
926 *val2 = 691699;
927
928 return IIO_VAL_INT_PLUS_MICRO;
929 }
930
931 return -EINVAL;
932
933 default:
934 break;
935 }
936
937 return -EINVAL;
938 }
939
940 static int mxs_lradc_write_raw(struct iio_dev *iio_dev,
941 const struct iio_chan_spec *chan,
942 int val, int val2, long m)
943 {
944 struct mxs_lradc *lradc = iio_priv(iio_dev);
945 struct mxs_lradc_scale *scale_avail =
946 lradc->scale_avail[chan->channel];
947 int ret;
948
949 ret = mutex_trylock(&lradc->lock);
950 if (!ret)
951 return -EBUSY;
952
953 switch (m) {
954 case IIO_CHAN_INFO_SCALE:
955 ret = -EINVAL;
956 if (val == scale_avail[MXS_LRADC_DIV_DISABLED].integer &&
957 val2 == scale_avail[MXS_LRADC_DIV_DISABLED].nano) {
958 /* divider by two disabled */
959 clear_bit(chan->channel, &lradc->is_divided);
960 ret = 0;
961 } else if (val == scale_avail[MXS_LRADC_DIV_ENABLED].integer &&
962 val2 == scale_avail[MXS_LRADC_DIV_ENABLED].nano) {
963 /* divider by two enabled */
964 set_bit(chan->channel, &lradc->is_divided);
965 ret = 0;
966 }
967
968 break;
969 default:
970 ret = -EINVAL;
971 break;
972 }
973
974 mutex_unlock(&lradc->lock);
975
976 return ret;
977 }
978
979 static int mxs_lradc_write_raw_get_fmt(struct iio_dev *iio_dev,
980 const struct iio_chan_spec *chan,
981 long m)
982 {
983 return IIO_VAL_INT_PLUS_NANO;
984 }
985
986 static ssize_t mxs_lradc_show_scale_available_ch(struct device *dev,
987 struct device_attribute *attr,
988 char *buf,
989 int ch)
990 {
991 struct iio_dev *iio = dev_to_iio_dev(dev);
992 struct mxs_lradc *lradc = iio_priv(iio);
993 int i, len = 0;
994
995 for (i = 0; i < ARRAY_SIZE(lradc->scale_avail[ch]); i++)
996 len += sprintf(buf + len, "%u.%09u ",
997 lradc->scale_avail[ch][i].integer,
998 lradc->scale_avail[ch][i].nano);
999
1000 len += sprintf(buf + len, "\n");
1001
1002 return len;
1003 }
1004
1005 static ssize_t mxs_lradc_show_scale_available(struct device *dev,
1006 struct device_attribute *attr,
1007 char *buf)
1008 {
1009 struct iio_dev_attr *iio_attr = to_iio_dev_attr(attr);
1010
1011 return mxs_lradc_show_scale_available_ch(dev, attr, buf,
1012 iio_attr->address);
1013 }
1014
1015 #define SHOW_SCALE_AVAILABLE_ATTR(ch) \
1016 static IIO_DEVICE_ATTR(in_voltage##ch##_scale_available, S_IRUGO, \
1017 mxs_lradc_show_scale_available, NULL, ch)
1018
1019 SHOW_SCALE_AVAILABLE_ATTR(0);
1020 SHOW_SCALE_AVAILABLE_ATTR(1);
1021 SHOW_SCALE_AVAILABLE_ATTR(2);
1022 SHOW_SCALE_AVAILABLE_ATTR(3);
1023 SHOW_SCALE_AVAILABLE_ATTR(4);
1024 SHOW_SCALE_AVAILABLE_ATTR(5);
1025 SHOW_SCALE_AVAILABLE_ATTR(6);
1026 SHOW_SCALE_AVAILABLE_ATTR(7);
1027 SHOW_SCALE_AVAILABLE_ATTR(10);
1028 SHOW_SCALE_AVAILABLE_ATTR(11);
1029 SHOW_SCALE_AVAILABLE_ATTR(12);
1030 SHOW_SCALE_AVAILABLE_ATTR(13);
1031 SHOW_SCALE_AVAILABLE_ATTR(14);
1032 SHOW_SCALE_AVAILABLE_ATTR(15);
1033
1034 static struct attribute *mxs_lradc_attributes[] = {
1035 &iio_dev_attr_in_voltage0_scale_available.dev_attr.attr,
1036 &iio_dev_attr_in_voltage1_scale_available.dev_attr.attr,
1037 &iio_dev_attr_in_voltage2_scale_available.dev_attr.attr,
1038 &iio_dev_attr_in_voltage3_scale_available.dev_attr.attr,
1039 &iio_dev_attr_in_voltage4_scale_available.dev_attr.attr,
1040 &iio_dev_attr_in_voltage5_scale_available.dev_attr.attr,
1041 &iio_dev_attr_in_voltage6_scale_available.dev_attr.attr,
1042 &iio_dev_attr_in_voltage7_scale_available.dev_attr.attr,
1043 &iio_dev_attr_in_voltage10_scale_available.dev_attr.attr,
1044 &iio_dev_attr_in_voltage11_scale_available.dev_attr.attr,
1045 &iio_dev_attr_in_voltage12_scale_available.dev_attr.attr,
1046 &iio_dev_attr_in_voltage13_scale_available.dev_attr.attr,
1047 &iio_dev_attr_in_voltage14_scale_available.dev_attr.attr,
1048 &iio_dev_attr_in_voltage15_scale_available.dev_attr.attr,
1049 NULL
1050 };
1051
1052 static const struct attribute_group mxs_lradc_attribute_group = {
1053 .attrs = mxs_lradc_attributes,
1054 };
1055
1056 static const struct iio_info mxs_lradc_iio_info = {
1057 .driver_module = THIS_MODULE,
1058 .read_raw = mxs_lradc_read_raw,
1059 .write_raw = mxs_lradc_write_raw,
1060 .write_raw_get_fmt = mxs_lradc_write_raw_get_fmt,
1061 .attrs = &mxs_lradc_attribute_group,
1062 };
1063
1064 static int mxs_lradc_ts_open(struct input_dev *dev)
1065 {
1066 struct mxs_lradc *lradc = input_get_drvdata(dev);
1067
1068 /* Enable the touch-detect circuitry. */
1069 mxs_lradc_enable_touch_detection(lradc);
1070
1071 return 0;
1072 }
1073
1074 static void mxs_lradc_disable_ts(struct mxs_lradc *lradc)
1075 {
1076 /* stop all interrupts from firing */
1077 mxs_lradc_reg_clear(lradc, LRADC_CTRL1_TOUCH_DETECT_IRQ_EN |
1078 LRADC_CTRL1_LRADC_IRQ_EN(TOUCHSCREEN_VCHANNEL1) |
1079 LRADC_CTRL1_LRADC_IRQ_EN(TOUCHSCREEN_VCHANNEL2), LRADC_CTRL1);
1080
1081 /* Power-down touchscreen touch-detect circuitry. */
1082 mxs_lradc_reg_clear(lradc, mxs_lradc_plate_mask(lradc), LRADC_CTRL0);
1083 }
1084
1085 static void mxs_lradc_ts_close(struct input_dev *dev)
1086 {
1087 struct mxs_lradc *lradc = input_get_drvdata(dev);
1088
1089 mxs_lradc_disable_ts(lradc);
1090 }
1091
1092 static int mxs_lradc_ts_register(struct mxs_lradc *lradc)
1093 {
1094 struct input_dev *input;
1095 struct device *dev = lradc->dev;
1096 int ret;
1097
1098 if (!lradc->use_touchscreen)
1099 return 0;
1100
1101 input = input_allocate_device();
1102 if (!input)
1103 return -ENOMEM;
1104
1105 input->name = DRIVER_NAME;
1106 input->id.bustype = BUS_HOST;
1107 input->dev.parent = dev;
1108 input->open = mxs_lradc_ts_open;
1109 input->close = mxs_lradc_ts_close;
1110
1111 __set_bit(EV_ABS, input->evbit);
1112 __set_bit(EV_KEY, input->evbit);
1113 __set_bit(BTN_TOUCH, input->keybit);
1114 input_set_abs_params(input, ABS_X, 0, LRADC_SINGLE_SAMPLE_MASK, 0, 0);
1115 input_set_abs_params(input, ABS_Y, 0, LRADC_SINGLE_SAMPLE_MASK, 0, 0);
1116 input_set_abs_params(input, ABS_PRESSURE, 0, LRADC_SINGLE_SAMPLE_MASK,
1117 0, 0);
1118
1119 lradc->ts_input = input;
1120 input_set_drvdata(input, lradc);
1121 ret = input_register_device(input);
1122 if (ret)
1123 input_free_device(lradc->ts_input);
1124
1125 return ret;
1126 }
1127
1128 static void mxs_lradc_ts_unregister(struct mxs_lradc *lradc)
1129 {
1130 if (!lradc->use_touchscreen)
1131 return;
1132
1133 mxs_lradc_disable_ts(lradc);
1134 input_unregister_device(lradc->ts_input);
1135 }
1136
1137 /*
1138 * IRQ Handling
1139 */
1140 static irqreturn_t mxs_lradc_handle_irq(int irq, void *data)
1141 {
1142 struct iio_dev *iio = data;
1143 struct mxs_lradc *lradc = iio_priv(iio);
1144 unsigned long reg = readl(lradc->base + LRADC_CTRL1);
1145 uint32_t clr_irq = mxs_lradc_irq_mask(lradc);
1146 const uint32_t ts_irq_mask =
1147 LRADC_CTRL1_TOUCH_DETECT_IRQ |
1148 LRADC_CTRL1_LRADC_IRQ(TOUCHSCREEN_VCHANNEL1) |
1149 LRADC_CTRL1_LRADC_IRQ(TOUCHSCREEN_VCHANNEL2);
1150
1151 if (!(reg & mxs_lradc_irq_mask(lradc)))
1152 return IRQ_NONE;
1153
1154 if (lradc->use_touchscreen && (reg & ts_irq_mask)) {
1155 mxs_lradc_handle_touch(lradc);
1156
1157 /* Make sure we don't clear the next conversion's interrupt. */
1158 clr_irq &= ~(LRADC_CTRL1_LRADC_IRQ(TOUCHSCREEN_VCHANNEL1) |
1159 LRADC_CTRL1_LRADC_IRQ(TOUCHSCREEN_VCHANNEL2));
1160 }
1161
1162 if (iio_buffer_enabled(iio)) {
1163 if (reg & lradc->buffer_vchans)
1164 iio_trigger_poll(iio->trig);
1165 } else if (reg & LRADC_CTRL1_LRADC_IRQ(0)) {
1166 complete(&lradc->completion);
1167 }
1168
1169 mxs_lradc_reg_clear(lradc, reg & clr_irq, LRADC_CTRL1);
1170
1171 return IRQ_HANDLED;
1172 }
1173
1174 /*
1175 * Trigger handling
1176 */
1177 static irqreturn_t mxs_lradc_trigger_handler(int irq, void *p)
1178 {
1179 struct iio_poll_func *pf = p;
1180 struct iio_dev *iio = pf->indio_dev;
1181 struct mxs_lradc *lradc = iio_priv(iio);
1182 const uint32_t chan_value = LRADC_CH_ACCUMULATE |
1183 ((LRADC_DELAY_TIMER_LOOP - 1) << LRADC_CH_NUM_SAMPLES_OFFSET);
1184 unsigned int i, j = 0;
1185
1186 for_each_set_bit(i, iio->active_scan_mask, LRADC_MAX_TOTAL_CHANS) {
1187 lradc->buffer[j] = readl(lradc->base + LRADC_CH(j));
1188 mxs_lradc_reg_wrt(lradc, chan_value, LRADC_CH(j));
1189 lradc->buffer[j] &= LRADC_CH_VALUE_MASK;
1190 lradc->buffer[j] /= LRADC_DELAY_TIMER_LOOP;
1191 j++;
1192 }
1193
1194 iio_push_to_buffers_with_timestamp(iio, lradc->buffer, pf->timestamp);
1195
1196 iio_trigger_notify_done(iio->trig);
1197
1198 return IRQ_HANDLED;
1199 }
1200
1201 static int mxs_lradc_configure_trigger(struct iio_trigger *trig, bool state)
1202 {
1203 struct iio_dev *iio = iio_trigger_get_drvdata(trig);
1204 struct mxs_lradc *lradc = iio_priv(iio);
1205 const uint32_t st = state ? STMP_OFFSET_REG_SET : STMP_OFFSET_REG_CLR;
1206
1207 mxs_lradc_reg_wrt(lradc, LRADC_DELAY_KICK, LRADC_DELAY(0) + st);
1208
1209 return 0;
1210 }
1211
1212 static const struct iio_trigger_ops mxs_lradc_trigger_ops = {
1213 .owner = THIS_MODULE,
1214 .set_trigger_state = &mxs_lradc_configure_trigger,
1215 };
1216
1217 static int mxs_lradc_trigger_init(struct iio_dev *iio)
1218 {
1219 int ret;
1220 struct iio_trigger *trig;
1221 struct mxs_lradc *lradc = iio_priv(iio);
1222
1223 trig = iio_trigger_alloc("%s-dev%i", iio->name, iio->id);
1224 if (trig == NULL)
1225 return -ENOMEM;
1226
1227 trig->dev.parent = lradc->dev;
1228 iio_trigger_set_drvdata(trig, iio);
1229 trig->ops = &mxs_lradc_trigger_ops;
1230
1231 ret = iio_trigger_register(trig);
1232 if (ret) {
1233 iio_trigger_free(trig);
1234 return ret;
1235 }
1236
1237 lradc->trig = trig;
1238
1239 return 0;
1240 }
1241
1242 static void mxs_lradc_trigger_remove(struct iio_dev *iio)
1243 {
1244 struct mxs_lradc *lradc = iio_priv(iio);
1245
1246 iio_trigger_unregister(lradc->trig);
1247 iio_trigger_free(lradc->trig);
1248 }
1249
1250 static int mxs_lradc_buffer_preenable(struct iio_dev *iio)
1251 {
1252 struct mxs_lradc *lradc = iio_priv(iio);
1253 int ret = 0, chan, ofs = 0;
1254 unsigned long enable = 0;
1255 uint32_t ctrl4_set = 0;
1256 uint32_t ctrl4_clr = 0;
1257 uint32_t ctrl1_irq = 0;
1258 const uint32_t chan_value = LRADC_CH_ACCUMULATE |
1259 ((LRADC_DELAY_TIMER_LOOP - 1) << LRADC_CH_NUM_SAMPLES_OFFSET);
1260 const int len = bitmap_weight(iio->active_scan_mask,
1261 LRADC_MAX_TOTAL_CHANS);
1262
1263 if (!len)
1264 return -EINVAL;
1265
1266 /*
1267 * Lock the driver so raw access can not be done during buffered
1268 * operation. This simplifies the code a lot.
1269 */
1270 ret = mutex_trylock(&lradc->lock);
1271 if (!ret)
1272 return -EBUSY;
1273
1274 lradc->buffer = kmalloc_array(len, sizeof(*lradc->buffer), GFP_KERNEL);
1275 if (!lradc->buffer) {
1276 ret = -ENOMEM;
1277 goto err_mem;
1278 }
1279
1280 if (lradc->soc == IMX28_LRADC)
1281 mxs_lradc_reg_clear(lradc,
1282 lradc->buffer_vchans << LRADC_CTRL1_LRADC_IRQ_EN_OFFSET,
1283 LRADC_CTRL1);
1284 mxs_lradc_reg_clear(lradc, lradc->buffer_vchans, LRADC_CTRL0);
1285
1286 for_each_set_bit(chan, iio->active_scan_mask, LRADC_MAX_TOTAL_CHANS) {
1287 ctrl4_set |= chan << LRADC_CTRL4_LRADCSELECT_OFFSET(ofs);
1288 ctrl4_clr |= LRADC_CTRL4_LRADCSELECT_MASK(ofs);
1289 ctrl1_irq |= LRADC_CTRL1_LRADC_IRQ_EN(ofs);
1290 mxs_lradc_reg_wrt(lradc, chan_value, LRADC_CH(ofs));
1291 bitmap_set(&enable, ofs, 1);
1292 ofs++;
1293 }
1294
1295 mxs_lradc_reg_clear(lradc, LRADC_DELAY_TRIGGER_LRADCS_MASK |
1296 LRADC_DELAY_KICK, LRADC_DELAY(0));
1297 mxs_lradc_reg_clear(lradc, ctrl4_clr, LRADC_CTRL4);
1298 mxs_lradc_reg_set(lradc, ctrl4_set, LRADC_CTRL4);
1299 mxs_lradc_reg_set(lradc, ctrl1_irq, LRADC_CTRL1);
1300 mxs_lradc_reg_set(lradc, enable << LRADC_DELAY_TRIGGER_LRADCS_OFFSET,
1301 LRADC_DELAY(0));
1302
1303 return 0;
1304
1305 err_mem:
1306 mutex_unlock(&lradc->lock);
1307 return ret;
1308 }
1309
1310 static int mxs_lradc_buffer_postdisable(struct iio_dev *iio)
1311 {
1312 struct mxs_lradc *lradc = iio_priv(iio);
1313
1314 mxs_lradc_reg_clear(lradc, LRADC_DELAY_TRIGGER_LRADCS_MASK |
1315 LRADC_DELAY_KICK, LRADC_DELAY(0));
1316
1317 mxs_lradc_reg_clear(lradc, lradc->buffer_vchans, LRADC_CTRL0);
1318 if (lradc->soc == IMX28_LRADC)
1319 mxs_lradc_reg_clear(lradc,
1320 lradc->buffer_vchans << LRADC_CTRL1_LRADC_IRQ_EN_OFFSET,
1321 LRADC_CTRL1);
1322
1323 kfree(lradc->buffer);
1324 mutex_unlock(&lradc->lock);
1325
1326 return 0;
1327 }
1328
1329 static bool mxs_lradc_validate_scan_mask(struct iio_dev *iio,
1330 const unsigned long *mask)
1331 {
1332 struct mxs_lradc *lradc = iio_priv(iio);
1333 const int map_chans = bitmap_weight(mask, LRADC_MAX_TOTAL_CHANS);
1334 int rsvd_chans = 0;
1335 unsigned long rsvd_mask = 0;
1336
1337 if (lradc->use_touchbutton)
1338 rsvd_mask |= CHAN_MASK_TOUCHBUTTON;
1339 if (lradc->use_touchscreen == MXS_LRADC_TOUCHSCREEN_4WIRE)
1340 rsvd_mask |= CHAN_MASK_TOUCHSCREEN_4WIRE;
1341 if (lradc->use_touchscreen == MXS_LRADC_TOUCHSCREEN_5WIRE)
1342 rsvd_mask |= CHAN_MASK_TOUCHSCREEN_5WIRE;
1343
1344 if (lradc->use_touchbutton)
1345 rsvd_chans++;
1346 if (lradc->use_touchscreen)
1347 rsvd_chans += 2;
1348
1349 /* Test for attempts to map channels with special mode of operation. */
1350 if (bitmap_intersects(mask, &rsvd_mask, LRADC_MAX_TOTAL_CHANS))
1351 return false;
1352
1353 /* Test for attempts to map more channels then available slots. */
1354 if (map_chans + rsvd_chans > LRADC_MAX_MAPPED_CHANS)
1355 return false;
1356
1357 return true;
1358 }
1359
1360 static const struct iio_buffer_setup_ops mxs_lradc_buffer_ops = {
1361 .preenable = &mxs_lradc_buffer_preenable,
1362 .postenable = &iio_triggered_buffer_postenable,
1363 .predisable = &iio_triggered_buffer_predisable,
1364 .postdisable = &mxs_lradc_buffer_postdisable,
1365 .validate_scan_mask = &mxs_lradc_validate_scan_mask,
1366 };
1367
1368 /*
1369 * Driver initialization
1370 */
1371
1372 #define MXS_ADC_CHAN(idx, chan_type) { \
1373 .type = (chan_type), \
1374 .indexed = 1, \
1375 .scan_index = (idx), \
1376 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1377 BIT(IIO_CHAN_INFO_SCALE), \
1378 .channel = (idx), \
1379 .address = (idx), \
1380 .scan_type = { \
1381 .sign = 'u', \
1382 .realbits = LRADC_RESOLUTION, \
1383 .storagebits = 32, \
1384 }, \
1385 }
1386
1387 static const struct iio_chan_spec mxs_lradc_chan_spec[] = {
1388 MXS_ADC_CHAN(0, IIO_VOLTAGE),
1389 MXS_ADC_CHAN(1, IIO_VOLTAGE),
1390 MXS_ADC_CHAN(2, IIO_VOLTAGE),
1391 MXS_ADC_CHAN(3, IIO_VOLTAGE),
1392 MXS_ADC_CHAN(4, IIO_VOLTAGE),
1393 MXS_ADC_CHAN(5, IIO_VOLTAGE),
1394 MXS_ADC_CHAN(6, IIO_VOLTAGE),
1395 MXS_ADC_CHAN(7, IIO_VOLTAGE), /* VBATT */
1396 /* Combined Temperature sensors */
1397 {
1398 .type = IIO_TEMP,
1399 .indexed = 1,
1400 .scan_index = 8,
1401 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
1402 BIT(IIO_CHAN_INFO_OFFSET) |
1403 BIT(IIO_CHAN_INFO_SCALE),
1404 .channel = 8,
1405 .scan_type = {.sign = 'u', .realbits = 18, .storagebits = 32,},
1406 },
1407 /* Hidden channel to keep indexes */
1408 {
1409 .type = IIO_TEMP,
1410 .indexed = 1,
1411 .scan_index = -1,
1412 .channel = 9,
1413 },
1414 MXS_ADC_CHAN(10, IIO_VOLTAGE), /* VDDIO */
1415 MXS_ADC_CHAN(11, IIO_VOLTAGE), /* VTH */
1416 MXS_ADC_CHAN(12, IIO_VOLTAGE), /* VDDA */
1417 MXS_ADC_CHAN(13, IIO_VOLTAGE), /* VDDD */
1418 MXS_ADC_CHAN(14, IIO_VOLTAGE), /* VBG */
1419 MXS_ADC_CHAN(15, IIO_VOLTAGE), /* VDD5V */
1420 };
1421
1422 static int mxs_lradc_hw_init(struct mxs_lradc *lradc)
1423 {
1424 /* The ADC always uses DELAY CHANNEL 0. */
1425 const uint32_t adc_cfg =
1426 (1 << (LRADC_DELAY_TRIGGER_DELAYS_OFFSET + 0)) |
1427 (LRADC_DELAY_TIMER_PER << LRADC_DELAY_DELAY_OFFSET);
1428
1429 int ret = stmp_reset_block(lradc->base);
1430
1431 if (ret)
1432 return ret;
1433
1434 /* Configure DELAY CHANNEL 0 for generic ADC sampling. */
1435 mxs_lradc_reg_wrt(lradc, adc_cfg, LRADC_DELAY(0));
1436
1437 /* Disable remaining DELAY CHANNELs */
1438 mxs_lradc_reg_wrt(lradc, 0, LRADC_DELAY(1));
1439 mxs_lradc_reg_wrt(lradc, 0, LRADC_DELAY(2));
1440 mxs_lradc_reg_wrt(lradc, 0, LRADC_DELAY(3));
1441
1442 /* Configure the touchscreen type */
1443 if (lradc->soc == IMX28_LRADC) {
1444 mxs_lradc_reg_clear(lradc, LRADC_CTRL0_MX28_TOUCH_SCREEN_TYPE,
1445 LRADC_CTRL0);
1446
1447 if (lradc->use_touchscreen == MXS_LRADC_TOUCHSCREEN_5WIRE)
1448 mxs_lradc_reg_set(lradc, LRADC_CTRL0_MX28_TOUCH_SCREEN_TYPE,
1449 LRADC_CTRL0);
1450 }
1451
1452 /* Start internal temperature sensing. */
1453 mxs_lradc_reg_wrt(lradc, 0, LRADC_CTRL2);
1454
1455 return 0;
1456 }
1457
1458 static void mxs_lradc_hw_stop(struct mxs_lradc *lradc)
1459 {
1460 int i;
1461
1462 mxs_lradc_reg_clear(lradc, mxs_lradc_irq_en_mask(lradc), LRADC_CTRL1);
1463
1464 for (i = 0; i < LRADC_MAX_DELAY_CHANS; i++)
1465 mxs_lradc_reg_wrt(lradc, 0, LRADC_DELAY(i));
1466 }
1467
1468 static const struct of_device_id mxs_lradc_dt_ids[] = {
1469 { .compatible = "fsl,imx23-lradc", .data = (void *)IMX23_LRADC, },
1470 { .compatible = "fsl,imx28-lradc", .data = (void *)IMX28_LRADC, },
1471 { /* sentinel */ }
1472 };
1473 MODULE_DEVICE_TABLE(of, mxs_lradc_dt_ids);
1474
1475 static int mxs_lradc_probe_touchscreen(struct mxs_lradc *lradc,
1476 struct device_node *lradc_node)
1477 {
1478 int ret;
1479 u32 ts_wires = 0, adapt;
1480
1481 ret = of_property_read_u32(lradc_node, "fsl,lradc-touchscreen-wires",
1482 &ts_wires);
1483 if (ret)
1484 return -ENODEV; /* touchscreen feature disabled */
1485
1486 switch (ts_wires) {
1487 case 4:
1488 lradc->use_touchscreen = MXS_LRADC_TOUCHSCREEN_4WIRE;
1489 break;
1490 case 5:
1491 if (lradc->soc == IMX28_LRADC) {
1492 lradc->use_touchscreen = MXS_LRADC_TOUCHSCREEN_5WIRE;
1493 break;
1494 }
1495 /* fall through an error message for i.MX23 */
1496 default:
1497 dev_err(lradc->dev,
1498 "Unsupported number of touchscreen wires (%d)\n",
1499 ts_wires);
1500 return -EINVAL;
1501 }
1502
1503 if (of_property_read_u32(lradc_node, "fsl,ave-ctrl", &adapt)) {
1504 lradc->over_sample_cnt = 4;
1505 } else {
1506 if (adapt < 1 || adapt > 32) {
1507 dev_err(lradc->dev, "Invalid sample count (%u)\n",
1508 adapt);
1509 return -EINVAL;
1510 }
1511 lradc->over_sample_cnt = adapt;
1512 }
1513
1514 if (of_property_read_u32(lradc_node, "fsl,ave-delay", &adapt)) {
1515 lradc->over_sample_delay = 2;
1516 } else {
1517 if (adapt < 2 || adapt > LRADC_DELAY_DELAY_MASK + 1) {
1518 dev_err(lradc->dev, "Invalid sample delay (%u)\n",
1519 adapt);
1520 return -EINVAL;
1521 }
1522 lradc->over_sample_delay = adapt;
1523 }
1524
1525 if (of_property_read_u32(lradc_node, "fsl,settling", &adapt)) {
1526 lradc->settling_delay = 10;
1527 } else {
1528 if (adapt < 1 || adapt > LRADC_DELAY_DELAY_MASK) {
1529 dev_err(lradc->dev, "Invalid settling delay (%u)\n",
1530 adapt);
1531 return -EINVAL;
1532 }
1533 lradc->settling_delay = adapt;
1534 }
1535
1536 return 0;
1537 }
1538
1539 static int mxs_lradc_probe(struct platform_device *pdev)
1540 {
1541 const struct of_device_id *of_id =
1542 of_match_device(mxs_lradc_dt_ids, &pdev->dev);
1543 const struct mxs_lradc_of_config *of_cfg =
1544 &mxs_lradc_of_config[(enum mxs_lradc_id)of_id->data];
1545 struct device *dev = &pdev->dev;
1546 struct device_node *node = dev->of_node;
1547 struct mxs_lradc *lradc;
1548 struct iio_dev *iio;
1549 struct resource *iores;
1550 int ret = 0, touch_ret;
1551 int i, s;
1552 uint64_t scale_uv;
1553
1554 /* Allocate the IIO device. */
1555 iio = devm_iio_device_alloc(dev, sizeof(*lradc));
1556 if (!iio) {
1557 dev_err(dev, "Failed to allocate IIO device\n");
1558 return -ENOMEM;
1559 }
1560
1561 lradc = iio_priv(iio);
1562 lradc->soc = (enum mxs_lradc_id)of_id->data;
1563
1564 /* Grab the memory area */
1565 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1566 lradc->dev = &pdev->dev;
1567 lradc->base = devm_ioremap_resource(dev, iores);
1568 if (IS_ERR(lradc->base))
1569 return PTR_ERR(lradc->base);
1570
1571 lradc->clk = devm_clk_get(&pdev->dev, NULL);
1572 if (IS_ERR(lradc->clk)) {
1573 dev_err(dev, "Failed to get the delay unit clock\n");
1574 return PTR_ERR(lradc->clk);
1575 }
1576 ret = clk_prepare_enable(lradc->clk);
1577 if (ret != 0) {
1578 dev_err(dev, "Failed to enable the delay unit clock\n");
1579 return ret;
1580 }
1581
1582 touch_ret = mxs_lradc_probe_touchscreen(lradc, node);
1583
1584 if (touch_ret == 0)
1585 lradc->buffer_vchans = BUFFER_VCHANS_LIMITED;
1586 else
1587 lradc->buffer_vchans = BUFFER_VCHANS_ALL;
1588
1589 /* Grab all IRQ sources */
1590 for (i = 0; i < of_cfg->irq_count; i++) {
1591 lradc->irq[i] = platform_get_irq(pdev, i);
1592 if (lradc->irq[i] < 0) {
1593 ret = lradc->irq[i];
1594 goto err_clk;
1595 }
1596
1597 ret = devm_request_irq(dev, lradc->irq[i],
1598 mxs_lradc_handle_irq, 0,
1599 of_cfg->irq_name[i], iio);
1600 if (ret)
1601 goto err_clk;
1602 }
1603
1604 lradc->vref_mv = of_cfg->vref_mv;
1605
1606 platform_set_drvdata(pdev, iio);
1607
1608 init_completion(&lradc->completion);
1609 mutex_init(&lradc->lock);
1610
1611 iio->name = pdev->name;
1612 iio->dev.parent = &pdev->dev;
1613 iio->info = &mxs_lradc_iio_info;
1614 iio->modes = INDIO_DIRECT_MODE;
1615 iio->channels = mxs_lradc_chan_spec;
1616 iio->num_channels = ARRAY_SIZE(mxs_lradc_chan_spec);
1617 iio->masklength = LRADC_MAX_TOTAL_CHANS;
1618
1619 ret = iio_triggered_buffer_setup(iio, &iio_pollfunc_store_time,
1620 &mxs_lradc_trigger_handler,
1621 &mxs_lradc_buffer_ops);
1622 if (ret)
1623 goto err_clk;
1624
1625 ret = mxs_lradc_trigger_init(iio);
1626 if (ret)
1627 goto err_trig;
1628
1629 /* Populate available ADC input ranges */
1630 for (i = 0; i < LRADC_MAX_TOTAL_CHANS; i++) {
1631 for (s = 0; s < ARRAY_SIZE(lradc->scale_avail[i]); s++) {
1632 /*
1633 * [s=0] = optional divider by two disabled (default)
1634 * [s=1] = optional divider by two enabled
1635 *
1636 * The scale is calculated by doing:
1637 * Vref >> (realbits - s)
1638 * which multiplies by two on the second component
1639 * of the array.
1640 */
1641 scale_uv = ((u64)lradc->vref_mv[i] * 100000000) >>
1642 (LRADC_RESOLUTION - s);
1643 lradc->scale_avail[i][s].nano =
1644 do_div(scale_uv, 100000000) * 10;
1645 lradc->scale_avail[i][s].integer = scale_uv;
1646 }
1647 }
1648
1649 /* Configure the hardware. */
1650 ret = mxs_lradc_hw_init(lradc);
1651 if (ret)
1652 goto err_dev;
1653
1654 /* Register the touchscreen input device. */
1655 if (touch_ret == 0) {
1656 ret = mxs_lradc_ts_register(lradc);
1657 if (ret)
1658 goto err_ts_register;
1659 }
1660
1661 /* Register IIO device. */
1662 ret = iio_device_register(iio);
1663 if (ret) {
1664 dev_err(dev, "Failed to register IIO device\n");
1665 goto err_ts;
1666 }
1667
1668 return 0;
1669
1670 err_ts:
1671 mxs_lradc_ts_unregister(lradc);
1672 err_ts_register:
1673 mxs_lradc_hw_stop(lradc);
1674 err_dev:
1675 mxs_lradc_trigger_remove(iio);
1676 err_trig:
1677 iio_triggered_buffer_cleanup(iio);
1678 err_clk:
1679 clk_disable_unprepare(lradc->clk);
1680 return ret;
1681 }
1682
1683 static int mxs_lradc_remove(struct platform_device *pdev)
1684 {
1685 struct iio_dev *iio = platform_get_drvdata(pdev);
1686 struct mxs_lradc *lradc = iio_priv(iio);
1687
1688 iio_device_unregister(iio);
1689 mxs_lradc_ts_unregister(lradc);
1690 mxs_lradc_hw_stop(lradc);
1691 mxs_lradc_trigger_remove(iio);
1692 iio_triggered_buffer_cleanup(iio);
1693
1694 clk_disable_unprepare(lradc->clk);
1695 return 0;
1696 }
1697
1698 static struct platform_driver mxs_lradc_driver = {
1699 .driver = {
1700 .name = DRIVER_NAME,
1701 .of_match_table = mxs_lradc_dt_ids,
1702 },
1703 .probe = mxs_lradc_probe,
1704 .remove = mxs_lradc_remove,
1705 };
1706
1707 module_platform_driver(mxs_lradc_driver);
1708
1709 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1710 MODULE_DESCRIPTION("Freescale i.MX28 LRADC driver");
1711 MODULE_LICENSE("GPL v2");
1712 MODULE_ALIAS("platform:" DRIVER_NAME);