]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/staging/lirc/lirc_sir.c
[media] af9015: Fix max I2C message size when used with tda18271
[mirror_ubuntu-bionic-kernel.git] / drivers / staging / lirc / lirc_sir.c
1 /*
2 * LIRC SIR driver, (C) 2000 Milan Pikula <www@fornax.sk>
3 *
4 * lirc_sir - Device driver for use with SIR (serial infra red)
5 * mode of IrDA on many notebooks.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 *
22 * 2000/09/16 Frank Przybylski <mail@frankprzybylski.de> :
23 * added timeout and relaxed pulse detection, removed gap bug
24 *
25 * 2000/12/15 Christoph Bartelmus <lirc@bartelmus.de> :
26 * added support for Tekram Irmate 210 (sending does not work yet,
27 * kind of disappointing that nobody was able to implement that
28 * before),
29 * major clean-up
30 *
31 * 2001/02/27 Christoph Bartelmus <lirc@bartelmus.de> :
32 * added support for StrongARM SA1100 embedded microprocessor
33 * parts cut'n'pasted from sa1100_ir.c (C) 2000 Russell King
34 */
35
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/errno.h>
39 #include <linux/signal.h>
40 #include <linux/fs.h>
41 #include <linux/interrupt.h>
42 #include <linux/ioport.h>
43 #include <linux/kernel.h>
44 #include <linux/serial_reg.h>
45 #include <linux/time.h>
46 #include <linux/string.h>
47 #include <linux/types.h>
48 #include <linux/wait.h>
49 #include <linux/mm.h>
50 #include <linux/delay.h>
51 #include <linux/poll.h>
52 #include <asm/system.h>
53 #include <linux/io.h>
54 #include <asm/irq.h>
55 #include <linux/fcntl.h>
56 #ifdef LIRC_ON_SA1100
57 #include <asm/hardware.h>
58 #ifdef CONFIG_SA1100_COLLIE
59 #include <asm/arch/tc35143.h>
60 #include <asm/ucb1200.h>
61 #endif
62 #endif
63
64 #include <linux/timer.h>
65
66 #include <media/lirc.h>
67 #include <media/lirc_dev.h>
68
69 /* SECTION: Definitions */
70
71 /*** Tekram dongle ***/
72 #ifdef LIRC_SIR_TEKRAM
73 /* stolen from kernel source */
74 /* definitions for Tekram dongle */
75 #define TEKRAM_115200 0x00
76 #define TEKRAM_57600 0x01
77 #define TEKRAM_38400 0x02
78 #define TEKRAM_19200 0x03
79 #define TEKRAM_9600 0x04
80 #define TEKRAM_2400 0x08
81
82 #define TEKRAM_PW 0x10 /* Pulse select bit */
83
84 /* 10bit * 1s/115200bit in milliseconds = 87ms*/
85 #define TIME_CONST (10000000ul/115200ul)
86
87 #endif
88
89 #ifdef LIRC_SIR_ACTISYS_ACT200L
90 static void init_act200(void);
91 #elif defined(LIRC_SIR_ACTISYS_ACT220L)
92 static void init_act220(void);
93 #endif
94
95 /*** SA1100 ***/
96 #ifdef LIRC_ON_SA1100
97 struct sa1100_ser2_registers {
98 /* HSSP control register */
99 unsigned char hscr0;
100 /* UART registers */
101 unsigned char utcr0;
102 unsigned char utcr1;
103 unsigned char utcr2;
104 unsigned char utcr3;
105 unsigned char utcr4;
106 unsigned char utdr;
107 unsigned char utsr0;
108 unsigned char utsr1;
109 } sr;
110
111 static int irq = IRQ_Ser2ICP;
112
113 #define LIRC_ON_SA1100_TRANSMITTER_LATENCY 0
114
115 /* pulse/space ratio of 50/50 */
116 static unsigned long pulse_width = (13-LIRC_ON_SA1100_TRANSMITTER_LATENCY);
117 /* 1000000/freq-pulse_width */
118 static unsigned long space_width = (13-LIRC_ON_SA1100_TRANSMITTER_LATENCY);
119 static unsigned int freq = 38000; /* modulation frequency */
120 static unsigned int duty_cycle = 50; /* duty cycle of 50% */
121
122 #endif
123
124 #define RBUF_LEN 1024
125 #define WBUF_LEN 1024
126
127 #define LIRC_DRIVER_NAME "lirc_sir"
128
129 #define PULSE '['
130
131 #ifndef LIRC_SIR_TEKRAM
132 /* 9bit * 1s/115200bit in milli seconds = 78.125ms*/
133 #define TIME_CONST (9000000ul/115200ul)
134 #endif
135
136
137 /* timeout for sequences in jiffies (=5/100s), must be longer than TIME_CONST */
138 #define SIR_TIMEOUT (HZ*5/100)
139
140 #ifndef LIRC_ON_SA1100
141 #ifndef LIRC_IRQ
142 #define LIRC_IRQ 4
143 #endif
144 #ifndef LIRC_PORT
145 /* for external dongles, default to com1 */
146 #if defined(LIRC_SIR_ACTISYS_ACT200L) || \
147 defined(LIRC_SIR_ACTISYS_ACT220L) || \
148 defined(LIRC_SIR_TEKRAM)
149 #define LIRC_PORT 0x3f8
150 #else
151 /* onboard sir ports are typically com3 */
152 #define LIRC_PORT 0x3e8
153 #endif
154 #endif
155
156 static int io = LIRC_PORT;
157 static int irq = LIRC_IRQ;
158 static int threshold = 3;
159 #endif
160
161 static DEFINE_SPINLOCK(timer_lock);
162 static struct timer_list timerlist;
163 /* time of last signal change detected */
164 static struct timeval last_tv = {0, 0};
165 /* time of last UART data ready interrupt */
166 static struct timeval last_intr_tv = {0, 0};
167 static int last_value;
168
169 static DECLARE_WAIT_QUEUE_HEAD(lirc_read_queue);
170
171 static DEFINE_SPINLOCK(hardware_lock);
172
173 static int rx_buf[RBUF_LEN];
174 static unsigned int rx_tail, rx_head;
175
176 static int debug;
177 #define dprintk(fmt, args...) \
178 do { \
179 if (debug) \
180 printk(KERN_DEBUG LIRC_DRIVER_NAME ": " \
181 fmt, ## args); \
182 } while (0)
183
184 /* SECTION: Prototypes */
185
186 /* Communication with user-space */
187 static unsigned int lirc_poll(struct file *file, poll_table *wait);
188 static ssize_t lirc_read(struct file *file, char *buf, size_t count,
189 loff_t *ppos);
190 static ssize_t lirc_write(struct file *file, const char *buf, size_t n,
191 loff_t *pos);
192 static long lirc_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
193 static void add_read_queue(int flag, unsigned long val);
194 static int init_chrdev(void);
195 static void drop_chrdev(void);
196 /* Hardware */
197 static irqreturn_t sir_interrupt(int irq, void *dev_id);
198 static void send_space(unsigned long len);
199 static void send_pulse(unsigned long len);
200 static int init_hardware(void);
201 static void drop_hardware(void);
202 /* Initialisation */
203 static int init_port(void);
204 static void drop_port(void);
205
206 #ifdef LIRC_ON_SA1100
207 static void on(void)
208 {
209 PPSR |= PPC_TXD2;
210 }
211
212 static void off(void)
213 {
214 PPSR &= ~PPC_TXD2;
215 }
216 #else
217 static inline unsigned int sinp(int offset)
218 {
219 return inb(io + offset);
220 }
221
222 static inline void soutp(int offset, int value)
223 {
224 outb(value, io + offset);
225 }
226 #endif
227
228 #ifndef MAX_UDELAY_MS
229 #define MAX_UDELAY_US 5000
230 #else
231 #define MAX_UDELAY_US (MAX_UDELAY_MS*1000)
232 #endif
233
234 static void safe_udelay(unsigned long usecs)
235 {
236 while (usecs > MAX_UDELAY_US) {
237 udelay(MAX_UDELAY_US);
238 usecs -= MAX_UDELAY_US;
239 }
240 udelay(usecs);
241 }
242
243 /* SECTION: Communication with user-space */
244
245 static unsigned int lirc_poll(struct file *file, poll_table *wait)
246 {
247 poll_wait(file, &lirc_read_queue, wait);
248 if (rx_head != rx_tail)
249 return POLLIN | POLLRDNORM;
250 return 0;
251 }
252
253 static ssize_t lirc_read(struct file *file, char *buf, size_t count,
254 loff_t *ppos)
255 {
256 int n = 0;
257 int retval = 0;
258 DECLARE_WAITQUEUE(wait, current);
259
260 if (count % sizeof(int))
261 return -EINVAL;
262
263 add_wait_queue(&lirc_read_queue, &wait);
264 set_current_state(TASK_INTERRUPTIBLE);
265 while (n < count) {
266 if (rx_head != rx_tail) {
267 if (copy_to_user((void *) buf + n,
268 (void *) (rx_buf + rx_head),
269 sizeof(int))) {
270 retval = -EFAULT;
271 break;
272 }
273 rx_head = (rx_head + 1) & (RBUF_LEN - 1);
274 n += sizeof(int);
275 } else {
276 if (file->f_flags & O_NONBLOCK) {
277 retval = -EAGAIN;
278 break;
279 }
280 if (signal_pending(current)) {
281 retval = -ERESTARTSYS;
282 break;
283 }
284 schedule();
285 set_current_state(TASK_INTERRUPTIBLE);
286 }
287 }
288 remove_wait_queue(&lirc_read_queue, &wait);
289 set_current_state(TASK_RUNNING);
290 return n ? n : retval;
291 }
292 static ssize_t lirc_write(struct file *file, const char *buf, size_t n,
293 loff_t *pos)
294 {
295 unsigned long flags;
296 int i, count;
297 int *tx_buf;
298
299 count = n / sizeof(int);
300 if (n % sizeof(int) || count % 2 == 0)
301 return -EINVAL;
302 tx_buf = memdup_user(buf, n);
303 if (IS_ERR(tx_buf))
304 return PTR_ERR(tx_buf);
305 i = 0;
306 #ifdef LIRC_ON_SA1100
307 /* disable receiver */
308 Ser2UTCR3 = 0;
309 #endif
310 local_irq_save(flags);
311 while (1) {
312 if (i >= count)
313 break;
314 if (tx_buf[i])
315 send_pulse(tx_buf[i]);
316 i++;
317 if (i >= count)
318 break;
319 if (tx_buf[i])
320 send_space(tx_buf[i]);
321 i++;
322 }
323 local_irq_restore(flags);
324 #ifdef LIRC_ON_SA1100
325 off();
326 udelay(1000); /* wait 1ms for IR diode to recover */
327 Ser2UTCR3 = 0;
328 /* clear status register to prevent unwanted interrupts */
329 Ser2UTSR0 &= (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
330 /* enable receiver */
331 Ser2UTCR3 = UTCR3_RXE|UTCR3_RIE;
332 #endif
333 return count;
334 }
335
336 static long lirc_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
337 {
338 int retval = 0;
339 __u32 value = 0;
340 #ifdef LIRC_ON_SA1100
341
342 if (cmd == LIRC_GET_FEATURES)
343 value = LIRC_CAN_SEND_PULSE |
344 LIRC_CAN_SET_SEND_DUTY_CYCLE |
345 LIRC_CAN_SET_SEND_CARRIER |
346 LIRC_CAN_REC_MODE2;
347 else if (cmd == LIRC_GET_SEND_MODE)
348 value = LIRC_MODE_PULSE;
349 else if (cmd == LIRC_GET_REC_MODE)
350 value = LIRC_MODE_MODE2;
351 #else
352 if (cmd == LIRC_GET_FEATURES)
353 value = LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2;
354 else if (cmd == LIRC_GET_SEND_MODE)
355 value = LIRC_MODE_PULSE;
356 else if (cmd == LIRC_GET_REC_MODE)
357 value = LIRC_MODE_MODE2;
358 #endif
359
360 switch (cmd) {
361 case LIRC_GET_FEATURES:
362 case LIRC_GET_SEND_MODE:
363 case LIRC_GET_REC_MODE:
364 retval = put_user(value, (__u32 *) arg);
365 break;
366
367 case LIRC_SET_SEND_MODE:
368 case LIRC_SET_REC_MODE:
369 retval = get_user(value, (__u32 *) arg);
370 break;
371 #ifdef LIRC_ON_SA1100
372 case LIRC_SET_SEND_DUTY_CYCLE:
373 retval = get_user(value, (__u32 *) arg);
374 if (retval)
375 return retval;
376 if (value <= 0 || value > 100)
377 return -EINVAL;
378 /* (value/100)*(1000000/freq) */
379 duty_cycle = value;
380 pulse_width = (unsigned long) duty_cycle*10000/freq;
381 space_width = (unsigned long) 1000000L/freq-pulse_width;
382 if (pulse_width >= LIRC_ON_SA1100_TRANSMITTER_LATENCY)
383 pulse_width -= LIRC_ON_SA1100_TRANSMITTER_LATENCY;
384 if (space_width >= LIRC_ON_SA1100_TRANSMITTER_LATENCY)
385 space_width -= LIRC_ON_SA1100_TRANSMITTER_LATENCY;
386 break;
387 case LIRC_SET_SEND_CARRIER:
388 retval = get_user(value, (__u32 *) arg);
389 if (retval)
390 return retval;
391 if (value > 500000 || value < 20000)
392 return -EINVAL;
393 freq = value;
394 pulse_width = (unsigned long) duty_cycle*10000/freq;
395 space_width = (unsigned long) 1000000L/freq-pulse_width;
396 if (pulse_width >= LIRC_ON_SA1100_TRANSMITTER_LATENCY)
397 pulse_width -= LIRC_ON_SA1100_TRANSMITTER_LATENCY;
398 if (space_width >= LIRC_ON_SA1100_TRANSMITTER_LATENCY)
399 space_width -= LIRC_ON_SA1100_TRANSMITTER_LATENCY;
400 break;
401 #endif
402 default:
403 retval = -ENOIOCTLCMD;
404
405 }
406
407 if (retval)
408 return retval;
409 if (cmd == LIRC_SET_REC_MODE) {
410 if (value != LIRC_MODE_MODE2)
411 retval = -ENOSYS;
412 } else if (cmd == LIRC_SET_SEND_MODE) {
413 if (value != LIRC_MODE_PULSE)
414 retval = -ENOSYS;
415 }
416
417 return retval;
418 }
419
420 static void add_read_queue(int flag, unsigned long val)
421 {
422 unsigned int new_rx_tail;
423 int newval;
424
425 dprintk("add flag %d with val %lu\n", flag, val);
426
427 newval = val & PULSE_MASK;
428
429 /*
430 * statistically, pulses are ~TIME_CONST/2 too long. we could
431 * maybe make this more exact, but this is good enough
432 */
433 if (flag) {
434 /* pulse */
435 if (newval > TIME_CONST/2)
436 newval -= TIME_CONST/2;
437 else /* should not ever happen */
438 newval = 1;
439 newval |= PULSE_BIT;
440 } else {
441 newval += TIME_CONST/2;
442 }
443 new_rx_tail = (rx_tail + 1) & (RBUF_LEN - 1);
444 if (new_rx_tail == rx_head) {
445 dprintk("Buffer overrun.\n");
446 return;
447 }
448 rx_buf[rx_tail] = newval;
449 rx_tail = new_rx_tail;
450 wake_up_interruptible(&lirc_read_queue);
451 }
452
453 static const struct file_operations lirc_fops = {
454 .owner = THIS_MODULE,
455 .read = lirc_read,
456 .write = lirc_write,
457 .poll = lirc_poll,
458 .unlocked_ioctl = lirc_ioctl,
459 #ifdef CONFIG_COMPAT
460 .compat_ioctl = lirc_ioctl,
461 #endif
462 .open = lirc_dev_fop_open,
463 .release = lirc_dev_fop_close,
464 };
465
466 static int set_use_inc(void *data)
467 {
468 return 0;
469 }
470
471 static void set_use_dec(void *data)
472 {
473 }
474
475 static struct lirc_driver driver = {
476 .name = LIRC_DRIVER_NAME,
477 .minor = -1,
478 .code_length = 1,
479 .sample_rate = 0,
480 .data = NULL,
481 .add_to_buf = NULL,
482 .set_use_inc = set_use_inc,
483 .set_use_dec = set_use_dec,
484 .fops = &lirc_fops,
485 .dev = NULL,
486 .owner = THIS_MODULE,
487 };
488
489
490 static int init_chrdev(void)
491 {
492 driver.minor = lirc_register_driver(&driver);
493 if (driver.minor < 0) {
494 printk(KERN_ERR LIRC_DRIVER_NAME ": init_chrdev() failed.\n");
495 return -EIO;
496 }
497 return 0;
498 }
499
500 static void drop_chrdev(void)
501 {
502 lirc_unregister_driver(driver.minor);
503 }
504
505 /* SECTION: Hardware */
506 static long delta(struct timeval *tv1, struct timeval *tv2)
507 {
508 unsigned long deltv;
509
510 deltv = tv2->tv_sec - tv1->tv_sec;
511 if (deltv > 15)
512 deltv = 0xFFFFFF;
513 else
514 deltv = deltv*1000000 +
515 tv2->tv_usec -
516 tv1->tv_usec;
517 return deltv;
518 }
519
520 static void sir_timeout(unsigned long data)
521 {
522 /*
523 * if last received signal was a pulse, but receiving stopped
524 * within the 9 bit frame, we need to finish this pulse and
525 * simulate a signal change to from pulse to space. Otherwise
526 * upper layers will receive two sequences next time.
527 */
528
529 unsigned long flags;
530 unsigned long pulse_end;
531
532 /* avoid interference with interrupt */
533 spin_lock_irqsave(&timer_lock, flags);
534 if (last_value) {
535 #ifndef LIRC_ON_SA1100
536 /* clear unread bits in UART and restart */
537 outb(UART_FCR_CLEAR_RCVR, io + UART_FCR);
538 #endif
539 /* determine 'virtual' pulse end: */
540 pulse_end = delta(&last_tv, &last_intr_tv);
541 dprintk("timeout add %d for %lu usec\n", last_value, pulse_end);
542 add_read_queue(last_value, pulse_end);
543 last_value = 0;
544 last_tv = last_intr_tv;
545 }
546 spin_unlock_irqrestore(&timer_lock, flags);
547 }
548
549 static irqreturn_t sir_interrupt(int irq, void *dev_id)
550 {
551 unsigned char data;
552 struct timeval curr_tv;
553 static unsigned long deltv;
554 #ifdef LIRC_ON_SA1100
555 int status;
556 static int n;
557
558 status = Ser2UTSR0;
559 /*
560 * Deal with any receive errors first. The bytes in error may be
561 * the only bytes in the receive FIFO, so we do this first.
562 */
563 while (status & UTSR0_EIF) {
564 int bstat;
565
566 if (debug) {
567 dprintk("EIF\n");
568 bstat = Ser2UTSR1;
569
570 if (bstat & UTSR1_FRE)
571 dprintk("frame error\n");
572 if (bstat & UTSR1_ROR)
573 dprintk("receive fifo overrun\n");
574 if (bstat & UTSR1_PRE)
575 dprintk("parity error\n");
576 }
577
578 bstat = Ser2UTDR;
579 n++;
580 status = Ser2UTSR0;
581 }
582
583 if (status & (UTSR0_RFS | UTSR0_RID)) {
584 do_gettimeofday(&curr_tv);
585 deltv = delta(&last_tv, &curr_tv);
586 do {
587 data = Ser2UTDR;
588 dprintk("%d data: %u\n", n, (unsigned int) data);
589 n++;
590 } while (status & UTSR0_RID && /* do not empty fifo in order to
591 * get UTSR0_RID in any case */
592 Ser2UTSR1 & UTSR1_RNE); /* data ready */
593
594 if (status&UTSR0_RID) {
595 add_read_queue(0 , deltv - n * TIME_CONST); /*space*/
596 add_read_queue(1, n * TIME_CONST); /*pulse*/
597 n = 0;
598 last_tv = curr_tv;
599 }
600 }
601
602 if (status & UTSR0_TFS)
603 printk(KERN_ERR "transmit fifo not full, shouldn't happen\n");
604
605 /* We must clear certain bits. */
606 status &= (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
607 if (status)
608 Ser2UTSR0 = status;
609 #else
610 unsigned long deltintrtv;
611 unsigned long flags;
612 int iir, lsr;
613
614 while ((iir = inb(io + UART_IIR) & UART_IIR_ID)) {
615 switch (iir&UART_IIR_ID) { /* FIXME toto treba preriedit */
616 case UART_IIR_MSI:
617 (void) inb(io + UART_MSR);
618 break;
619 case UART_IIR_RLSI:
620 (void) inb(io + UART_LSR);
621 break;
622 case UART_IIR_THRI:
623 #if 0
624 if (lsr & UART_LSR_THRE) /* FIFO is empty */
625 outb(data, io + UART_TX)
626 #endif
627 break;
628 case UART_IIR_RDI:
629 /* avoid interference with timer */
630 spin_lock_irqsave(&timer_lock, flags);
631 do {
632 del_timer(&timerlist);
633 data = inb(io + UART_RX);
634 do_gettimeofday(&curr_tv);
635 deltv = delta(&last_tv, &curr_tv);
636 deltintrtv = delta(&last_intr_tv, &curr_tv);
637 dprintk("t %lu, d %d\n", deltintrtv, (int)data);
638 /*
639 * if nothing came in last X cycles,
640 * it was gap
641 */
642 if (deltintrtv > TIME_CONST * threshold) {
643 if (last_value) {
644 dprintk("GAP\n");
645 /* simulate signal change */
646 add_read_queue(last_value,
647 deltv -
648 deltintrtv);
649 last_value = 0;
650 last_tv.tv_sec =
651 last_intr_tv.tv_sec;
652 last_tv.tv_usec =
653 last_intr_tv.tv_usec;
654 deltv = deltintrtv;
655 }
656 }
657 data = 1;
658 if (data ^ last_value) {
659 /*
660 * deltintrtv > 2*TIME_CONST, remember?
661 * the other case is timeout
662 */
663 add_read_queue(last_value,
664 deltv-TIME_CONST);
665 last_value = data;
666 last_tv = curr_tv;
667 if (last_tv.tv_usec >= TIME_CONST) {
668 last_tv.tv_usec -= TIME_CONST;
669 } else {
670 last_tv.tv_sec--;
671 last_tv.tv_usec += 1000000 -
672 TIME_CONST;
673 }
674 }
675 last_intr_tv = curr_tv;
676 if (data) {
677 /*
678 * start timer for end of
679 * sequence detection
680 */
681 timerlist.expires = jiffies +
682 SIR_TIMEOUT;
683 add_timer(&timerlist);
684 }
685
686 lsr = inb(io + UART_LSR);
687 } while (lsr & UART_LSR_DR); /* data ready */
688 spin_unlock_irqrestore(&timer_lock, flags);
689 break;
690 default:
691 break;
692 }
693 }
694 #endif
695 return IRQ_RETVAL(IRQ_HANDLED);
696 }
697
698 #ifdef LIRC_ON_SA1100
699 static void send_pulse(unsigned long length)
700 {
701 unsigned long k, delay;
702 int flag;
703
704 if (length == 0)
705 return;
706 /*
707 * this won't give us the carrier frequency we really want
708 * due to integer arithmetic, but we can accept this inaccuracy
709 */
710
711 for (k = flag = 0; k < length; k += delay, flag = !flag) {
712 if (flag) {
713 off();
714 delay = space_width;
715 } else {
716 on();
717 delay = pulse_width;
718 }
719 safe_udelay(delay);
720 }
721 off();
722 }
723
724 static void send_space(unsigned long length)
725 {
726 if (length == 0)
727 return;
728 off();
729 safe_udelay(length);
730 }
731 #else
732 static void send_space(unsigned long len)
733 {
734 safe_udelay(len);
735 }
736
737 static void send_pulse(unsigned long len)
738 {
739 long bytes_out = len / TIME_CONST;
740 long time_left;
741
742 time_left = (long)len - (long)bytes_out * (long)TIME_CONST;
743 if (bytes_out == 0) {
744 bytes_out++;
745 time_left = 0;
746 }
747 while (bytes_out--) {
748 outb(PULSE, io + UART_TX);
749 /* FIXME treba seriozne cakanie z char/serial.c */
750 while (!(inb(io + UART_LSR) & UART_LSR_THRE))
751 ;
752 }
753 #if 0
754 if (time_left > 0)
755 safe_udelay(time_left);
756 #endif
757 }
758 #endif
759
760 #ifdef CONFIG_SA1100_COLLIE
761 static int sa1100_irda_set_power_collie(int state)
762 {
763 if (state) {
764 /*
765 * 0 - off
766 * 1 - short range, lowest power
767 * 2 - medium range, medium power
768 * 3 - maximum range, high power
769 */
770 ucb1200_set_io_direction(TC35143_GPIO_IR_ON,
771 TC35143_IODIR_OUTPUT);
772 ucb1200_set_io(TC35143_GPIO_IR_ON, TC35143_IODAT_LOW);
773 udelay(100);
774 } else {
775 /* OFF */
776 ucb1200_set_io_direction(TC35143_GPIO_IR_ON,
777 TC35143_IODIR_OUTPUT);
778 ucb1200_set_io(TC35143_GPIO_IR_ON, TC35143_IODAT_HIGH);
779 }
780 return 0;
781 }
782 #endif
783
784 static int init_hardware(void)
785 {
786 unsigned long flags;
787
788 spin_lock_irqsave(&hardware_lock, flags);
789 /* reset UART */
790 #ifdef LIRC_ON_SA1100
791 #ifdef CONFIG_SA1100_BITSY
792 if (machine_is_bitsy()) {
793 printk(KERN_INFO "Power on IR module\n");
794 set_bitsy_egpio(EGPIO_BITSY_IR_ON);
795 }
796 #endif
797 #ifdef CONFIG_SA1100_COLLIE
798 sa1100_irda_set_power_collie(3); /* power on */
799 #endif
800 sr.hscr0 = Ser2HSCR0;
801
802 sr.utcr0 = Ser2UTCR0;
803 sr.utcr1 = Ser2UTCR1;
804 sr.utcr2 = Ser2UTCR2;
805 sr.utcr3 = Ser2UTCR3;
806 sr.utcr4 = Ser2UTCR4;
807
808 sr.utdr = Ser2UTDR;
809 sr.utsr0 = Ser2UTSR0;
810 sr.utsr1 = Ser2UTSR1;
811
812 /* configure GPIO */
813 /* output */
814 PPDR |= PPC_TXD2;
815 PSDR |= PPC_TXD2;
816 /* set output to 0 */
817 off();
818
819 /* Enable HP-SIR modulation, and ensure that the port is disabled. */
820 Ser2UTCR3 = 0;
821 Ser2HSCR0 = sr.hscr0 & (~HSCR0_HSSP);
822
823 /* clear status register to prevent unwanted interrupts */
824 Ser2UTSR0 &= (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
825
826 /* 7N1 */
827 Ser2UTCR0 = UTCR0_1StpBit|UTCR0_7BitData;
828 /* 115200 */
829 Ser2UTCR1 = 0;
830 Ser2UTCR2 = 1;
831 /* use HPSIR, 1.6 usec pulses */
832 Ser2UTCR4 = UTCR4_HPSIR|UTCR4_Z1_6us;
833
834 /* enable receiver, receive fifo interrupt */
835 Ser2UTCR3 = UTCR3_RXE|UTCR3_RIE;
836
837 /* clear status register to prevent unwanted interrupts */
838 Ser2UTSR0 &= (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
839
840 #elif defined(LIRC_SIR_TEKRAM)
841 /* disable FIFO */
842 soutp(UART_FCR,
843 UART_FCR_CLEAR_RCVR|
844 UART_FCR_CLEAR_XMIT|
845 UART_FCR_TRIGGER_1);
846
847 /* Set DLAB 0. */
848 soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
849
850 /* First of all, disable all interrupts */
851 soutp(UART_IER, sinp(UART_IER) &
852 (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
853
854 /* Set DLAB 1. */
855 soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB);
856
857 /* Set divisor to 12 => 9600 Baud */
858 soutp(UART_DLM, 0);
859 soutp(UART_DLL, 12);
860
861 /* Set DLAB 0. */
862 soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
863
864 /* power supply */
865 soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
866 safe_udelay(50*1000);
867
868 /* -DTR low -> reset PIC */
869 soutp(UART_MCR, UART_MCR_RTS|UART_MCR_OUT2);
870 udelay(1*1000);
871
872 soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
873 udelay(100);
874
875
876 /* -RTS low -> send control byte */
877 soutp(UART_MCR, UART_MCR_DTR|UART_MCR_OUT2);
878 udelay(7);
879 soutp(UART_TX, TEKRAM_115200|TEKRAM_PW);
880
881 /* one byte takes ~1042 usec to transmit at 9600,8N1 */
882 udelay(1500);
883
884 /* back to normal operation */
885 soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
886 udelay(50);
887
888 udelay(1500);
889
890 /* read previous control byte */
891 printk(KERN_INFO LIRC_DRIVER_NAME
892 ": 0x%02x\n", sinp(UART_RX));
893
894 /* Set DLAB 1. */
895 soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB);
896
897 /* Set divisor to 1 => 115200 Baud */
898 soutp(UART_DLM, 0);
899 soutp(UART_DLL, 1);
900
901 /* Set DLAB 0, 8 Bit */
902 soutp(UART_LCR, UART_LCR_WLEN8);
903 /* enable interrupts */
904 soutp(UART_IER, sinp(UART_IER)|UART_IER_RDI);
905 #else
906 outb(0, io + UART_MCR);
907 outb(0, io + UART_IER);
908 /* init UART */
909 /* set DLAB, speed = 115200 */
910 outb(UART_LCR_DLAB | UART_LCR_WLEN7, io + UART_LCR);
911 outb(1, io + UART_DLL); outb(0, io + UART_DLM);
912 /* 7N1+start = 9 bits at 115200 ~ 3 bits at 44000 */
913 outb(UART_LCR_WLEN7, io + UART_LCR);
914 /* FIFO operation */
915 outb(UART_FCR_ENABLE_FIFO, io + UART_FCR);
916 /* interrupts */
917 /* outb(UART_IER_RLSI|UART_IER_RDI|UART_IER_THRI, io + UART_IER); */
918 outb(UART_IER_RDI, io + UART_IER);
919 /* turn on UART */
920 outb(UART_MCR_DTR|UART_MCR_RTS|UART_MCR_OUT2, io + UART_MCR);
921 #ifdef LIRC_SIR_ACTISYS_ACT200L
922 init_act200();
923 #elif defined(LIRC_SIR_ACTISYS_ACT220L)
924 init_act220();
925 #endif
926 #endif
927 spin_unlock_irqrestore(&hardware_lock, flags);
928 return 0;
929 }
930
931 static void drop_hardware(void)
932 {
933 unsigned long flags;
934
935 spin_lock_irqsave(&hardware_lock, flags);
936
937 #ifdef LIRC_ON_SA1100
938 Ser2UTCR3 = 0;
939
940 Ser2UTCR0 = sr.utcr0;
941 Ser2UTCR1 = sr.utcr1;
942 Ser2UTCR2 = sr.utcr2;
943 Ser2UTCR4 = sr.utcr4;
944 Ser2UTCR3 = sr.utcr3;
945
946 Ser2HSCR0 = sr.hscr0;
947 #ifdef CONFIG_SA1100_BITSY
948 if (machine_is_bitsy())
949 clr_bitsy_egpio(EGPIO_BITSY_IR_ON);
950 #endif
951 #ifdef CONFIG_SA1100_COLLIE
952 sa1100_irda_set_power_collie(0); /* power off */
953 #endif
954 #else
955 /* turn off interrupts */
956 outb(0, io + UART_IER);
957 #endif
958 spin_unlock_irqrestore(&hardware_lock, flags);
959 }
960
961 /* SECTION: Initialisation */
962
963 static int init_port(void)
964 {
965 int retval;
966
967 /* get I/O port access and IRQ line */
968 #ifndef LIRC_ON_SA1100
969 if (request_region(io, 8, LIRC_DRIVER_NAME) == NULL) {
970 printk(KERN_ERR LIRC_DRIVER_NAME
971 ": i/o port 0x%.4x already in use.\n", io);
972 return -EBUSY;
973 }
974 #endif
975 retval = request_irq(irq, sir_interrupt, IRQF_DISABLED,
976 LIRC_DRIVER_NAME, NULL);
977 if (retval < 0) {
978 # ifndef LIRC_ON_SA1100
979 release_region(io, 8);
980 # endif
981 printk(KERN_ERR LIRC_DRIVER_NAME
982 ": IRQ %d already in use.\n",
983 irq);
984 return retval;
985 }
986 #ifndef LIRC_ON_SA1100
987 printk(KERN_INFO LIRC_DRIVER_NAME
988 ": I/O port 0x%.4x, IRQ %d.\n",
989 io, irq);
990 #endif
991
992 init_timer(&timerlist);
993 timerlist.function = sir_timeout;
994 timerlist.data = 0xabadcafe;
995
996 return 0;
997 }
998
999 static void drop_port(void)
1000 {
1001 free_irq(irq, NULL);
1002 del_timer_sync(&timerlist);
1003 #ifndef LIRC_ON_SA1100
1004 release_region(io, 8);
1005 #endif
1006 }
1007
1008 #ifdef LIRC_SIR_ACTISYS_ACT200L
1009 /* Crystal/Cirrus CS8130 IR transceiver, used in Actisys Act200L dongle */
1010 /* some code borrowed from Linux IRDA driver */
1011
1012 /* Register 0: Control register #1 */
1013 #define ACT200L_REG0 0x00
1014 #define ACT200L_TXEN 0x01 /* Enable transmitter */
1015 #define ACT200L_RXEN 0x02 /* Enable receiver */
1016 #define ACT200L_ECHO 0x08 /* Echo control chars */
1017
1018 /* Register 1: Control register #2 */
1019 #define ACT200L_REG1 0x10
1020 #define ACT200L_LODB 0x01 /* Load new baud rate count value */
1021 #define ACT200L_WIDE 0x04 /* Expand the maximum allowable pulse */
1022
1023 /* Register 3: Transmit mode register #2 */
1024 #define ACT200L_REG3 0x30
1025 #define ACT200L_B0 0x01 /* DataBits, 0=6, 1=7, 2=8, 3=9(8P) */
1026 #define ACT200L_B1 0x02 /* DataBits, 0=6, 1=7, 2=8, 3=9(8P) */
1027 #define ACT200L_CHSY 0x04 /* StartBit Synced 0=bittime, 1=startbit */
1028
1029 /* Register 4: Output Power register */
1030 #define ACT200L_REG4 0x40
1031 #define ACT200L_OP0 0x01 /* Enable LED1C output */
1032 #define ACT200L_OP1 0x02 /* Enable LED2C output */
1033 #define ACT200L_BLKR 0x04
1034
1035 /* Register 5: Receive Mode register */
1036 #define ACT200L_REG5 0x50
1037 #define ACT200L_RWIDL 0x01 /* fixed 1.6us pulse mode */
1038 /*.. other various IRDA bit modes, and TV remote modes..*/
1039
1040 /* Register 6: Receive Sensitivity register #1 */
1041 #define ACT200L_REG6 0x60
1042 #define ACT200L_RS0 0x01 /* receive threshold bit 0 */
1043 #define ACT200L_RS1 0x02 /* receive threshold bit 1 */
1044
1045 /* Register 7: Receive Sensitivity register #2 */
1046 #define ACT200L_REG7 0x70
1047 #define ACT200L_ENPOS 0x04 /* Ignore the falling edge */
1048
1049 /* Register 8,9: Baud Rate Divider register #1,#2 */
1050 #define ACT200L_REG8 0x80
1051 #define ACT200L_REG9 0x90
1052
1053 #define ACT200L_2400 0x5f
1054 #define ACT200L_9600 0x17
1055 #define ACT200L_19200 0x0b
1056 #define ACT200L_38400 0x05
1057 #define ACT200L_57600 0x03
1058 #define ACT200L_115200 0x01
1059
1060 /* Register 13: Control register #3 */
1061 #define ACT200L_REG13 0xd0
1062 #define ACT200L_SHDW 0x01 /* Enable access to shadow registers */
1063
1064 /* Register 15: Status register */
1065 #define ACT200L_REG15 0xf0
1066
1067 /* Register 21: Control register #4 */
1068 #define ACT200L_REG21 0x50
1069 #define ACT200L_EXCK 0x02 /* Disable clock output driver */
1070 #define ACT200L_OSCL 0x04 /* oscillator in low power, medium accuracy mode */
1071
1072 static void init_act200(void)
1073 {
1074 int i;
1075 __u8 control[] = {
1076 ACT200L_REG15,
1077 ACT200L_REG13 | ACT200L_SHDW,
1078 ACT200L_REG21 | ACT200L_EXCK | ACT200L_OSCL,
1079 ACT200L_REG13,
1080 ACT200L_REG7 | ACT200L_ENPOS,
1081 ACT200L_REG6 | ACT200L_RS0 | ACT200L_RS1,
1082 ACT200L_REG5 | ACT200L_RWIDL,
1083 ACT200L_REG4 | ACT200L_OP0 | ACT200L_OP1 | ACT200L_BLKR,
1084 ACT200L_REG3 | ACT200L_B0,
1085 ACT200L_REG0 | ACT200L_TXEN | ACT200L_RXEN,
1086 ACT200L_REG8 | (ACT200L_115200 & 0x0f),
1087 ACT200L_REG9 | ((ACT200L_115200 >> 4) & 0x0f),
1088 ACT200L_REG1 | ACT200L_LODB | ACT200L_WIDE
1089 };
1090
1091 /* Set DLAB 1. */
1092 soutp(UART_LCR, UART_LCR_DLAB | UART_LCR_WLEN8);
1093
1094 /* Set divisor to 12 => 9600 Baud */
1095 soutp(UART_DLM, 0);
1096 soutp(UART_DLL, 12);
1097
1098 /* Set DLAB 0. */
1099 soutp(UART_LCR, UART_LCR_WLEN8);
1100 /* Set divisor to 12 => 9600 Baud */
1101
1102 /* power supply */
1103 soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
1104 for (i = 0; i < 50; i++)
1105 safe_udelay(1000);
1106
1107 /* Reset the dongle : set RTS low for 25 ms */
1108 soutp(UART_MCR, UART_MCR_DTR|UART_MCR_OUT2);
1109 for (i = 0; i < 25; i++)
1110 udelay(1000);
1111
1112 soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
1113 udelay(100);
1114
1115 /* Clear DTR and set RTS to enter command mode */
1116 soutp(UART_MCR, UART_MCR_RTS|UART_MCR_OUT2);
1117 udelay(7);
1118
1119 /* send out the control register settings for 115K 7N1 SIR operation */
1120 for (i = 0; i < sizeof(control); i++) {
1121 soutp(UART_TX, control[i]);
1122 /* one byte takes ~1042 usec to transmit at 9600,8N1 */
1123 udelay(1500);
1124 }
1125
1126 /* back to normal operation */
1127 soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
1128 udelay(50);
1129
1130 udelay(1500);
1131 soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB);
1132
1133 /* Set DLAB 1. */
1134 soutp(UART_LCR, UART_LCR_DLAB | UART_LCR_WLEN7);
1135
1136 /* Set divisor to 1 => 115200 Baud */
1137 soutp(UART_DLM, 0);
1138 soutp(UART_DLL, 1);
1139
1140 /* Set DLAB 0. */
1141 soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
1142
1143 /* Set DLAB 0, 7 Bit */
1144 soutp(UART_LCR, UART_LCR_WLEN7);
1145
1146 /* enable interrupts */
1147 soutp(UART_IER, sinp(UART_IER)|UART_IER_RDI);
1148 }
1149 #endif
1150
1151 #ifdef LIRC_SIR_ACTISYS_ACT220L
1152 /*
1153 * Derived from linux IrDA driver (net/irda/actisys.c)
1154 * Drop me a mail for any kind of comment: maxx@spaceboyz.net
1155 */
1156
1157 void init_act220(void)
1158 {
1159 int i;
1160
1161 /* DLAB 1 */
1162 soutp(UART_LCR, UART_LCR_DLAB|UART_LCR_WLEN7);
1163
1164 /* 9600 baud */
1165 soutp(UART_DLM, 0);
1166 soutp(UART_DLL, 12);
1167
1168 /* DLAB 0 */
1169 soutp(UART_LCR, UART_LCR_WLEN7);
1170
1171 /* reset the dongle, set DTR low for 10us */
1172 soutp(UART_MCR, UART_MCR_RTS|UART_MCR_OUT2);
1173 udelay(10);
1174
1175 /* back to normal (still 9600) */
1176 soutp(UART_MCR, UART_MCR_DTR|UART_MCR_RTS|UART_MCR_OUT2);
1177
1178 /*
1179 * send RTS pulses until we reach 115200
1180 * i hope this is really the same for act220l/act220l+
1181 */
1182 for (i = 0; i < 3; i++) {
1183 udelay(10);
1184 /* set RTS low for 10 us */
1185 soutp(UART_MCR, UART_MCR_DTR|UART_MCR_OUT2);
1186 udelay(10);
1187 /* set RTS high for 10 us */
1188 soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
1189 }
1190
1191 /* back to normal operation */
1192 udelay(1500); /* better safe than sorry ;) */
1193
1194 /* Set DLAB 1. */
1195 soutp(UART_LCR, UART_LCR_DLAB | UART_LCR_WLEN7);
1196
1197 /* Set divisor to 1 => 115200 Baud */
1198 soutp(UART_DLM, 0);
1199 soutp(UART_DLL, 1);
1200
1201 /* Set DLAB 0, 7 Bit */
1202 /* The dongle doesn't seem to have any problems with operation at 7N1 */
1203 soutp(UART_LCR, UART_LCR_WLEN7);
1204
1205 /* enable interrupts */
1206 soutp(UART_IER, UART_IER_RDI);
1207 }
1208 #endif
1209
1210 static int init_lirc_sir(void)
1211 {
1212 int retval;
1213
1214 init_waitqueue_head(&lirc_read_queue);
1215 retval = init_port();
1216 if (retval < 0)
1217 return retval;
1218 init_hardware();
1219 printk(KERN_INFO LIRC_DRIVER_NAME
1220 ": Installed.\n");
1221 return 0;
1222 }
1223
1224
1225 static int __init lirc_sir_init(void)
1226 {
1227 int retval;
1228
1229 retval = init_chrdev();
1230 if (retval < 0)
1231 return retval;
1232 retval = init_lirc_sir();
1233 if (retval) {
1234 drop_chrdev();
1235 return retval;
1236 }
1237 return 0;
1238 }
1239
1240 static void __exit lirc_sir_exit(void)
1241 {
1242 drop_hardware();
1243 drop_chrdev();
1244 drop_port();
1245 printk(KERN_INFO LIRC_DRIVER_NAME ": Uninstalled.\n");
1246 }
1247
1248 module_init(lirc_sir_init);
1249 module_exit(lirc_sir_exit);
1250
1251 #ifdef LIRC_SIR_TEKRAM
1252 MODULE_DESCRIPTION("Infrared receiver driver for Tekram Irmate 210");
1253 MODULE_AUTHOR("Christoph Bartelmus");
1254 #elif defined(LIRC_ON_SA1100)
1255 MODULE_DESCRIPTION("LIRC driver for StrongARM SA1100 embedded microprocessor");
1256 MODULE_AUTHOR("Christoph Bartelmus");
1257 #elif defined(LIRC_SIR_ACTISYS_ACT200L)
1258 MODULE_DESCRIPTION("LIRC driver for Actisys Act200L");
1259 MODULE_AUTHOR("Karl Bongers");
1260 #elif defined(LIRC_SIR_ACTISYS_ACT220L)
1261 MODULE_DESCRIPTION("LIRC driver for Actisys Act220L(+)");
1262 MODULE_AUTHOR("Jan Roemisch");
1263 #else
1264 MODULE_DESCRIPTION("Infrared receiver driver for SIR type serial ports");
1265 MODULE_AUTHOR("Milan Pikula");
1266 #endif
1267 MODULE_LICENSE("GPL");
1268
1269 #ifdef LIRC_ON_SA1100
1270 module_param(irq, int, S_IRUGO);
1271 MODULE_PARM_DESC(irq, "Interrupt (16)");
1272 #else
1273 module_param(io, int, S_IRUGO);
1274 MODULE_PARM_DESC(io, "I/O address base (0x3f8 or 0x2f8)");
1275
1276 module_param(irq, int, S_IRUGO);
1277 MODULE_PARM_DESC(irq, "Interrupt (4 or 3)");
1278
1279 module_param(threshold, int, S_IRUGO);
1280 MODULE_PARM_DESC(threshold, "space detection threshold (3)");
1281 #endif
1282
1283 module_param(debug, bool, S_IRUGO | S_IWUSR);
1284 MODULE_PARM_DESC(debug, "Enable debugging messages");