]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/staging/lustre/lustre/include/lu_object.h
Merge branch 'stable/for-linus-4.11' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / drivers / staging / lustre / lustre / include / lu_object.h
1 /*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.gnu.org/licenses/gpl-2.0.html
19 *
20 * GPL HEADER END
21 */
22 /*
23 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Use is subject to license terms.
25 *
26 * Copyright (c) 2011, 2015, Intel Corporation.
27 */
28 /*
29 * This file is part of Lustre, http://www.lustre.org/
30 * Lustre is a trademark of Sun Microsystems, Inc.
31 */
32
33 #ifndef __LUSTRE_LU_OBJECT_H
34 #define __LUSTRE_LU_OBJECT_H
35
36 #include <stdarg.h>
37 #include <linux/percpu_counter.h>
38 #include "../../include/linux/libcfs/libcfs.h"
39 #include "lustre/lustre_idl.h"
40 #include "lu_ref.h"
41
42 struct seq_file;
43 struct lustre_cfg;
44 struct lprocfs_stats;
45
46 /** \defgroup lu lu
47 * lu_* data-types represent server-side entities shared by data and meta-data
48 * stacks.
49 *
50 * Design goals:
51 *
52 * -# support for layering.
53 *
54 * Server side object is split into layers, one per device in the
55 * corresponding device stack. Individual layer is represented by struct
56 * lu_object. Compound layered object --- by struct lu_object_header. Most
57 * interface functions take lu_object as an argument and operate on the
58 * whole compound object. This decision was made due to the following
59 * reasons:
60 *
61 * - it's envisaged that lu_object will be used much more often than
62 * lu_object_header;
63 *
64 * - we want lower (non-top) layers to be able to initiate operations
65 * on the whole object.
66 *
67 * Generic code supports layering more complex than simple stacking, e.g.,
68 * it is possible that at some layer object "spawns" multiple sub-objects
69 * on the lower layer.
70 *
71 * -# fid-based identification.
72 *
73 * Compound object is uniquely identified by its fid. Objects are indexed
74 * by their fids (hash table is used for index).
75 *
76 * -# caching and life-cycle management.
77 *
78 * Object's life-time is controlled by reference counting. When reference
79 * count drops to 0, object is returned to cache. Cached objects still
80 * retain their identity (i.e., fid), and can be recovered from cache.
81 *
82 * Objects are kept in the global LRU list, and lu_site_purge() function
83 * can be used to reclaim given number of unused objects from the tail of
84 * the LRU.
85 *
86 * -# avoiding recursion.
87 *
88 * Generic code tries to replace recursion through layers by iterations
89 * where possible. Additionally to the end of reducing stack consumption,
90 * data, when practically possible, are allocated through lu_context_key
91 * interface rather than on stack.
92 * @{
93 */
94
95 struct lu_site;
96 struct lu_object;
97 struct lu_device;
98 struct lu_object_header;
99 struct lu_context;
100 struct lu_env;
101
102 /**
103 * Operations common for data and meta-data devices.
104 */
105 struct lu_device_operations {
106 /**
107 * Allocate object for the given device (without lower-layer
108 * parts). This is called by lu_object_operations::loo_object_init()
109 * from the parent layer, and should setup at least lu_object::lo_dev
110 * and lu_object::lo_ops fields of resulting lu_object.
111 *
112 * Object creation protocol.
113 *
114 * Due to design goal of avoiding recursion, object creation (see
115 * lu_object_alloc()) is somewhat involved:
116 *
117 * - first, lu_device_operations::ldo_object_alloc() method of the
118 * top-level device in the stack is called. It should allocate top
119 * level object (including lu_object_header), but without any
120 * lower-layer sub-object(s).
121 *
122 * - then lu_object_alloc() sets fid in the header of newly created
123 * object.
124 *
125 * - then lu_object_operations::loo_object_init() is called. It has
126 * to allocate lower-layer object(s). To do this,
127 * lu_object_operations::loo_object_init() calls ldo_object_alloc()
128 * of the lower-layer device(s).
129 *
130 * - for all new objects allocated by
131 * lu_object_operations::loo_object_init() (and inserted into object
132 * stack), lu_object_operations::loo_object_init() is called again
133 * repeatedly, until no new objects are created.
134 *
135 * \post ergo(!IS_ERR(result), result->lo_dev == d &&
136 * result->lo_ops != NULL);
137 */
138 struct lu_object *(*ldo_object_alloc)(const struct lu_env *env,
139 const struct lu_object_header *h,
140 struct lu_device *d);
141 /**
142 * process config specific for device.
143 */
144 int (*ldo_process_config)(const struct lu_env *env,
145 struct lu_device *, struct lustre_cfg *);
146 int (*ldo_recovery_complete)(const struct lu_env *,
147 struct lu_device *);
148
149 /**
150 * initialize local objects for device. this method called after layer has
151 * been initialized (after LCFG_SETUP stage) and before it starts serving
152 * user requests.
153 */
154
155 int (*ldo_prepare)(const struct lu_env *,
156 struct lu_device *parent,
157 struct lu_device *dev);
158
159 };
160
161 /**
162 * For lu_object_conf flags
163 */
164 enum loc_flags {
165 /* This is a new object to be allocated, or the file
166 * corresponding to the object does not exists.
167 */
168 LOC_F_NEW = 0x00000001,
169 };
170
171 /**
172 * Object configuration, describing particulars of object being created. On
173 * server this is not used, as server objects are full identified by fid. On
174 * client configuration contains struct lustre_md.
175 */
176 struct lu_object_conf {
177 /**
178 * Some hints for obj find and alloc.
179 */
180 enum loc_flags loc_flags;
181 };
182
183 /**
184 * Type of "printer" function used by lu_object_operations::loo_object_print()
185 * method.
186 *
187 * Printer function is needed to provide some flexibility in (semi-)debugging
188 * output: possible implementations: printk, CDEBUG, sysfs/seq_file
189 */
190 typedef int (*lu_printer_t)(const struct lu_env *env,
191 void *cookie, const char *format, ...)
192 __printf(3, 4);
193
194 /**
195 * Operations specific for particular lu_object.
196 */
197 struct lu_object_operations {
198 /**
199 * Allocate lower-layer parts of the object by calling
200 * lu_device_operations::ldo_object_alloc() of the corresponding
201 * underlying device.
202 *
203 * This method is called once for each object inserted into object
204 * stack. It's responsibility of this method to insert lower-layer
205 * object(s) it create into appropriate places of object stack.
206 */
207 int (*loo_object_init)(const struct lu_env *env,
208 struct lu_object *o,
209 const struct lu_object_conf *conf);
210 /**
211 * Called (in top-to-bottom order) during object allocation after all
212 * layers were allocated and initialized. Can be used to perform
213 * initialization depending on lower layers.
214 */
215 int (*loo_object_start)(const struct lu_env *env,
216 struct lu_object *o);
217 /**
218 * Called before lu_object_operations::loo_object_free() to signal
219 * that object is being destroyed. Dual to
220 * lu_object_operations::loo_object_init().
221 */
222 void (*loo_object_delete)(const struct lu_env *env,
223 struct lu_object *o);
224 /**
225 * Dual to lu_device_operations::ldo_object_alloc(). Called when
226 * object is removed from memory.
227 */
228 void (*loo_object_free)(const struct lu_env *env,
229 struct lu_object *o);
230 /**
231 * Called when last active reference to the object is released (and
232 * object returns to the cache). This method is optional.
233 */
234 void (*loo_object_release)(const struct lu_env *env,
235 struct lu_object *o);
236 /**
237 * Optional debugging helper. Print given object.
238 */
239 int (*loo_object_print)(const struct lu_env *env, void *cookie,
240 lu_printer_t p, const struct lu_object *o);
241 /**
242 * Optional debugging method. Returns true iff method is internally
243 * consistent.
244 */
245 int (*loo_object_invariant)(const struct lu_object *o);
246 };
247
248 /**
249 * Type of lu_device.
250 */
251 struct lu_device_type;
252
253 /**
254 * Device: a layer in the server side abstraction stacking.
255 */
256 struct lu_device {
257 /**
258 * reference count. This is incremented, in particular, on each object
259 * created at this layer.
260 *
261 * \todo XXX which means that atomic_t is probably too small.
262 */
263 atomic_t ld_ref;
264 /**
265 * Pointer to device type. Never modified once set.
266 */
267 struct lu_device_type *ld_type;
268 /**
269 * Operation vector for this device.
270 */
271 const struct lu_device_operations *ld_ops;
272 /**
273 * Stack this device belongs to.
274 */
275 struct lu_site *ld_site;
276
277 /** \todo XXX: temporary back pointer into obd. */
278 struct obd_device *ld_obd;
279 /**
280 * A list of references to this object, for debugging.
281 */
282 struct lu_ref ld_reference;
283 /**
284 * Link the device to the site.
285 **/
286 struct list_head ld_linkage;
287 };
288
289 struct lu_device_type_operations;
290
291 /**
292 * Tag bits for device type. They are used to distinguish certain groups of
293 * device types.
294 */
295 enum lu_device_tag {
296 /** this is meta-data device */
297 LU_DEVICE_MD = (1 << 0),
298 /** this is data device */
299 LU_DEVICE_DT = (1 << 1),
300 /** data device in the client stack */
301 LU_DEVICE_CL = (1 << 2)
302 };
303
304 /**
305 * Type of device.
306 */
307 struct lu_device_type {
308 /**
309 * Tag bits. Taken from enum lu_device_tag. Never modified once set.
310 */
311 __u32 ldt_tags;
312 /**
313 * Name of this class. Unique system-wide. Never modified once set.
314 */
315 char *ldt_name;
316 /**
317 * Operations for this type.
318 */
319 const struct lu_device_type_operations *ldt_ops;
320 /**
321 * \todo XXX: temporary pointer to associated obd_type.
322 */
323 struct obd_type *ldt_obd_type;
324 /**
325 * \todo XXX: temporary: context tags used by obd_*() calls.
326 */
327 __u32 ldt_ctx_tags;
328 /**
329 * Number of existing device type instances.
330 */
331 atomic_t ldt_device_nr;
332 /**
333 * Linkage into a global list of all device types.
334 *
335 * \see lu_device_types.
336 */
337 struct list_head ldt_linkage;
338 };
339
340 /**
341 * Operations on a device type.
342 */
343 struct lu_device_type_operations {
344 /**
345 * Allocate new device.
346 */
347 struct lu_device *(*ldto_device_alloc)(const struct lu_env *env,
348 struct lu_device_type *t,
349 struct lustre_cfg *lcfg);
350 /**
351 * Free device. Dual to
352 * lu_device_type_operations::ldto_device_alloc(). Returns pointer to
353 * the next device in the stack.
354 */
355 struct lu_device *(*ldto_device_free)(const struct lu_env *,
356 struct lu_device *);
357
358 /**
359 * Initialize the devices after allocation
360 */
361 int (*ldto_device_init)(const struct lu_env *env,
362 struct lu_device *, const char *,
363 struct lu_device *);
364 /**
365 * Finalize device. Dual to
366 * lu_device_type_operations::ldto_device_init(). Returns pointer to
367 * the next device in the stack.
368 */
369 struct lu_device *(*ldto_device_fini)(const struct lu_env *env,
370 struct lu_device *);
371 /**
372 * Initialize device type. This is called on module load.
373 */
374 int (*ldto_init)(struct lu_device_type *t);
375 /**
376 * Finalize device type. Dual to
377 * lu_device_type_operations::ldto_init(). Called on module unload.
378 */
379 void (*ldto_fini)(struct lu_device_type *t);
380 /**
381 * Called when the first device is created.
382 */
383 void (*ldto_start)(struct lu_device_type *t);
384 /**
385 * Called when number of devices drops to 0.
386 */
387 void (*ldto_stop)(struct lu_device_type *t);
388 };
389
390 static inline int lu_device_is_md(const struct lu_device *d)
391 {
392 return ergo(d, d->ld_type->ldt_tags & LU_DEVICE_MD);
393 }
394
395 /**
396 * Common object attributes.
397 */
398 struct lu_attr {
399 /** size in bytes */
400 __u64 la_size;
401 /** modification time in seconds since Epoch */
402 s64 la_mtime;
403 /** access time in seconds since Epoch */
404 s64 la_atime;
405 /** change time in seconds since Epoch */
406 s64 la_ctime;
407 /** 512-byte blocks allocated to object */
408 __u64 la_blocks;
409 /** permission bits and file type */
410 __u32 la_mode;
411 /** owner id */
412 __u32 la_uid;
413 /** group id */
414 __u32 la_gid;
415 /** object flags */
416 __u32 la_flags;
417 /** number of persistent references to this object */
418 __u32 la_nlink;
419 /** blk bits of the object*/
420 __u32 la_blkbits;
421 /** blk size of the object*/
422 __u32 la_blksize;
423 /** real device */
424 __u32 la_rdev;
425 /**
426 * valid bits
427 *
428 * \see enum la_valid
429 */
430 __u64 la_valid;
431 };
432
433 /** Bit-mask of valid attributes */
434 enum la_valid {
435 LA_ATIME = 1 << 0,
436 LA_MTIME = 1 << 1,
437 LA_CTIME = 1 << 2,
438 LA_SIZE = 1 << 3,
439 LA_MODE = 1 << 4,
440 LA_UID = 1 << 5,
441 LA_GID = 1 << 6,
442 LA_BLOCKS = 1 << 7,
443 LA_TYPE = 1 << 8,
444 LA_FLAGS = 1 << 9,
445 LA_NLINK = 1 << 10,
446 LA_RDEV = 1 << 11,
447 LA_BLKSIZE = 1 << 12,
448 LA_KILL_SUID = 1 << 13,
449 LA_KILL_SGID = 1 << 14,
450 };
451
452 /**
453 * Layer in the layered object.
454 */
455 struct lu_object {
456 /**
457 * Header for this object.
458 */
459 struct lu_object_header *lo_header;
460 /**
461 * Device for this layer.
462 */
463 struct lu_device *lo_dev;
464 /**
465 * Operations for this object.
466 */
467 const struct lu_object_operations *lo_ops;
468 /**
469 * Linkage into list of all layers.
470 */
471 struct list_head lo_linkage;
472 /**
473 * Link to the device, for debugging.
474 */
475 struct lu_ref_link lo_dev_ref;
476 };
477
478 enum lu_object_header_flags {
479 /**
480 * Don't keep this object in cache. Object will be destroyed as soon
481 * as last reference to it is released. This flag cannot be cleared
482 * once set.
483 */
484 LU_OBJECT_HEARD_BANSHEE = 0,
485 /**
486 * Mark this object has already been taken out of cache.
487 */
488 LU_OBJECT_UNHASHED = 1,
489 };
490
491 enum lu_object_header_attr {
492 LOHA_EXISTS = 1 << 0,
493 LOHA_REMOTE = 1 << 1,
494 /**
495 * UNIX file type is stored in S_IFMT bits.
496 */
497 LOHA_FT_START = 001 << 12, /**< S_IFIFO */
498 LOHA_FT_END = 017 << 12, /**< S_IFMT */
499 };
500
501 /**
502 * "Compound" object, consisting of multiple layers.
503 *
504 * Compound object with given fid is unique with given lu_site.
505 *
506 * Note, that object does *not* necessary correspond to the real object in the
507 * persistent storage: object is an anchor for locking and method calling, so
508 * it is created for things like not-yet-existing child created by mkdir or
509 * create calls. lu_object_operations::loo_exists() can be used to check
510 * whether object is backed by persistent storage entity.
511 */
512 struct lu_object_header {
513 /**
514 * Fid, uniquely identifying this object.
515 */
516 struct lu_fid loh_fid;
517 /**
518 * Object flags from enum lu_object_header_flags. Set and checked
519 * atomically.
520 */
521 unsigned long loh_flags;
522 /**
523 * Object reference count. Protected by lu_site::ls_guard.
524 */
525 atomic_t loh_ref;
526 /**
527 * Common object attributes, cached for efficiency. From enum
528 * lu_object_header_attr.
529 */
530 __u32 loh_attr;
531 /**
532 * Linkage into per-site hash table. Protected by lu_site::ls_guard.
533 */
534 struct hlist_node loh_hash;
535 /**
536 * Linkage into per-site LRU list. Protected by lu_site::ls_guard.
537 */
538 struct list_head loh_lru;
539 /**
540 * Linkage into list of layers. Never modified once set (except lately
541 * during object destruction). No locking is necessary.
542 */
543 struct list_head loh_layers;
544 /**
545 * A list of references to this object, for debugging.
546 */
547 struct lu_ref loh_reference;
548 };
549
550 struct fld;
551
552 struct lu_site_bkt_data {
553 /**
554 * number of object in this bucket on the lsb_lru list.
555 */
556 long lsb_lru_len;
557 /**
558 * LRU list, updated on each access to object. Protected by
559 * bucket lock of lu_site::ls_obj_hash.
560 *
561 * "Cold" end of LRU is lu_site::ls_lru.next. Accessed object are
562 * moved to the lu_site::ls_lru.prev (this is due to the non-existence
563 * of list_for_each_entry_safe_reverse()).
564 */
565 struct list_head lsb_lru;
566 /**
567 * Wait-queue signaled when an object in this site is ultimately
568 * destroyed (lu_object_free()). It is used by lu_object_find() to
569 * wait before re-trying when object in the process of destruction is
570 * found in the hash table.
571 *
572 * \see htable_lookup().
573 */
574 wait_queue_head_t lsb_marche_funebre;
575 };
576
577 enum {
578 LU_SS_CREATED = 0,
579 LU_SS_CACHE_HIT,
580 LU_SS_CACHE_MISS,
581 LU_SS_CACHE_RACE,
582 LU_SS_CACHE_DEATH_RACE,
583 LU_SS_LRU_PURGED,
584 LU_SS_LAST_STAT
585 };
586
587 /**
588 * lu_site is a "compartment" within which objects are unique, and LRU
589 * discipline is maintained.
590 *
591 * lu_site exists so that multiple layered stacks can co-exist in the same
592 * address space.
593 *
594 * lu_site has the same relation to lu_device as lu_object_header to
595 * lu_object.
596 */
597 struct lu_site {
598 /**
599 * objects hash table
600 */
601 struct cfs_hash *ls_obj_hash;
602 /**
603 * index of bucket on hash table while purging
604 */
605 unsigned int ls_purge_start;
606 /**
607 * Top-level device for this stack.
608 */
609 struct lu_device *ls_top_dev;
610 /**
611 * Bottom-level device for this stack
612 */
613 struct lu_device *ls_bottom_dev;
614 /**
615 * Linkage into global list of sites.
616 */
617 struct list_head ls_linkage;
618 /**
619 * List for lu device for this site, protected
620 * by ls_ld_lock.
621 **/
622 struct list_head ls_ld_linkage;
623 spinlock_t ls_ld_lock;
624
625 /**
626 * Lock to serialize site purge.
627 */
628 struct mutex ls_purge_mutex;
629
630 /**
631 * lu_site stats
632 */
633 struct lprocfs_stats *ls_stats;
634 /**
635 * XXX: a hack! fld has to find md_site via site, remove when possible
636 */
637 struct seq_server_site *ld_seq_site;
638 /**
639 * Number of objects in lsb_lru_lists - used for shrinking
640 */
641 struct percpu_counter ls_lru_len_counter;
642 };
643
644 static inline struct lu_site_bkt_data *
645 lu_site_bkt_from_fid(struct lu_site *site, struct lu_fid *fid)
646 {
647 struct cfs_hash_bd bd;
648
649 cfs_hash_bd_get(site->ls_obj_hash, fid, &bd);
650 return cfs_hash_bd_extra_get(site->ls_obj_hash, &bd);
651 }
652
653 static inline struct seq_server_site *lu_site2seq(const struct lu_site *s)
654 {
655 return s->ld_seq_site;
656 }
657
658 /** \name ctors
659 * Constructors/destructors.
660 * @{
661 */
662
663 int lu_site_init(struct lu_site *s, struct lu_device *d);
664 void lu_site_fini(struct lu_site *s);
665 int lu_site_init_finish(struct lu_site *s);
666 void lu_stack_fini(const struct lu_env *env, struct lu_device *top);
667 void lu_device_get(struct lu_device *d);
668 void lu_device_put(struct lu_device *d);
669 int lu_device_init(struct lu_device *d, struct lu_device_type *t);
670 void lu_device_fini(struct lu_device *d);
671 int lu_object_header_init(struct lu_object_header *h);
672 void lu_object_header_fini(struct lu_object_header *h);
673 int lu_object_init(struct lu_object *o,
674 struct lu_object_header *h, struct lu_device *d);
675 void lu_object_fini(struct lu_object *o);
676 void lu_object_add_top(struct lu_object_header *h, struct lu_object *o);
677 void lu_object_add(struct lu_object *before, struct lu_object *o);
678
679 /**
680 * Helpers to initialize and finalize device types.
681 */
682
683 int lu_device_type_init(struct lu_device_type *ldt);
684 void lu_device_type_fini(struct lu_device_type *ldt);
685
686 /** @} ctors */
687
688 /** \name caching
689 * Caching and reference counting.
690 * @{
691 */
692
693 /**
694 * Acquire additional reference to the given object. This function is used to
695 * attain additional reference. To acquire initial reference use
696 * lu_object_find().
697 */
698 static inline void lu_object_get(struct lu_object *o)
699 {
700 LASSERT(atomic_read(&o->lo_header->loh_ref) > 0);
701 atomic_inc(&o->lo_header->loh_ref);
702 }
703
704 /**
705 * Return true of object will not be cached after last reference to it is
706 * released.
707 */
708 static inline int lu_object_is_dying(const struct lu_object_header *h)
709 {
710 return test_bit(LU_OBJECT_HEARD_BANSHEE, &h->loh_flags);
711 }
712
713 void lu_object_put(const struct lu_env *env, struct lu_object *o);
714 void lu_object_unhash(const struct lu_env *env, struct lu_object *o);
715 int lu_site_purge_objects(const struct lu_env *env, struct lu_site *s, int nr,
716 bool canblock);
717
718 static inline int lu_site_purge(const struct lu_env *env, struct lu_site *s,
719 int nr)
720 {
721 return lu_site_purge_objects(env, s, nr, true);
722 }
723
724 void lu_site_print(const struct lu_env *env, struct lu_site *s, void *cookie,
725 lu_printer_t printer);
726 struct lu_object *lu_object_find_at(const struct lu_env *env,
727 struct lu_device *dev,
728 const struct lu_fid *f,
729 const struct lu_object_conf *conf);
730 struct lu_object *lu_object_find_slice(const struct lu_env *env,
731 struct lu_device *dev,
732 const struct lu_fid *f,
733 const struct lu_object_conf *conf);
734 /** @} caching */
735
736 /** \name helpers
737 * Helpers.
738 * @{
739 */
740
741 /**
742 * First (topmost) sub-object of given compound object
743 */
744 static inline struct lu_object *lu_object_top(struct lu_object_header *h)
745 {
746 LASSERT(!list_empty(&h->loh_layers));
747 return container_of0(h->loh_layers.next, struct lu_object, lo_linkage);
748 }
749
750 /**
751 * Next sub-object in the layering
752 */
753 static inline struct lu_object *lu_object_next(const struct lu_object *o)
754 {
755 return container_of0(o->lo_linkage.next, struct lu_object, lo_linkage);
756 }
757
758 /**
759 * Pointer to the fid of this object.
760 */
761 static inline const struct lu_fid *lu_object_fid(const struct lu_object *o)
762 {
763 return &o->lo_header->loh_fid;
764 }
765
766 /**
767 * return device operations vector for this object
768 */
769 static inline const struct lu_device_operations *
770 lu_object_ops(const struct lu_object *o)
771 {
772 return o->lo_dev->ld_ops;
773 }
774
775 /**
776 * Given a compound object, find its slice, corresponding to the device type
777 * \a dtype.
778 */
779 struct lu_object *lu_object_locate(struct lu_object_header *h,
780 const struct lu_device_type *dtype);
781
782 /**
783 * Printer function emitting messages through libcfs_debug_msg().
784 */
785 int lu_cdebug_printer(const struct lu_env *env,
786 void *cookie, const char *format, ...);
787
788 /**
789 * Print object description followed by a user-supplied message.
790 */
791 #define LU_OBJECT_DEBUG(mask, env, object, format, ...) \
792 do { \
793 if (cfs_cdebug_show(mask, DEBUG_SUBSYSTEM)) { \
794 LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, mask, NULL); \
795 lu_object_print(env, &msgdata, lu_cdebug_printer, object);\
796 CDEBUG(mask, format "\n", ## __VA_ARGS__); \
797 } \
798 } while (0)
799
800 /**
801 * Print short object description followed by a user-supplied message.
802 */
803 #define LU_OBJECT_HEADER(mask, env, object, format, ...) \
804 do { \
805 if (cfs_cdebug_show(mask, DEBUG_SUBSYSTEM)) { \
806 LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, mask, NULL); \
807 lu_object_header_print(env, &msgdata, lu_cdebug_printer,\
808 (object)->lo_header); \
809 lu_cdebug_printer(env, &msgdata, "\n"); \
810 CDEBUG(mask, format, ## __VA_ARGS__); \
811 } \
812 } while (0)
813
814 void lu_object_print (const struct lu_env *env, void *cookie,
815 lu_printer_t printer, const struct lu_object *o);
816 void lu_object_header_print(const struct lu_env *env, void *cookie,
817 lu_printer_t printer,
818 const struct lu_object_header *hdr);
819
820 /**
821 * Check object consistency.
822 */
823 int lu_object_invariant(const struct lu_object *o);
824
825 /**
826 * Check whether object exists, no matter on local or remote storage.
827 * Note: LOHA_EXISTS will be set once some one created the object,
828 * and it does not needs to be committed to storage.
829 */
830 #define lu_object_exists(o) ((o)->lo_header->loh_attr & LOHA_EXISTS)
831
832 /**
833 * Check whether object on the remote storage.
834 */
835 #define lu_object_remote(o) unlikely((o)->lo_header->loh_attr & LOHA_REMOTE)
836
837 static inline int lu_object_assert_exists(const struct lu_object *o)
838 {
839 return lu_object_exists(o);
840 }
841
842 static inline int lu_object_assert_not_exists(const struct lu_object *o)
843 {
844 return !lu_object_exists(o);
845 }
846
847 /**
848 * Attr of this object.
849 */
850 static inline __u32 lu_object_attr(const struct lu_object *o)
851 {
852 LASSERT(lu_object_exists(o) != 0);
853 return o->lo_header->loh_attr;
854 }
855
856 static inline void lu_object_ref_add(struct lu_object *o,
857 const char *scope,
858 const void *source)
859 {
860 lu_ref_add(&o->lo_header->loh_reference, scope, source);
861 }
862
863 static inline void lu_object_ref_add_at(struct lu_object *o,
864 struct lu_ref_link *link,
865 const char *scope,
866 const void *source)
867 {
868 lu_ref_add_at(&o->lo_header->loh_reference, link, scope, source);
869 }
870
871 static inline void lu_object_ref_del(struct lu_object *o,
872 const char *scope, const void *source)
873 {
874 lu_ref_del(&o->lo_header->loh_reference, scope, source);
875 }
876
877 static inline void lu_object_ref_del_at(struct lu_object *o,
878 struct lu_ref_link *link,
879 const char *scope, const void *source)
880 {
881 lu_ref_del_at(&o->lo_header->loh_reference, link, scope, source);
882 }
883
884 /** input params, should be filled out by mdt */
885 struct lu_rdpg {
886 /** hash */
887 __u64 rp_hash;
888 /** count in bytes */
889 unsigned int rp_count;
890 /** number of pages */
891 unsigned int rp_npages;
892 /** requested attr */
893 __u32 rp_attrs;
894 /** pointers to pages */
895 struct page **rp_pages;
896 };
897
898 enum lu_xattr_flags {
899 LU_XATTR_REPLACE = (1 << 0),
900 LU_XATTR_CREATE = (1 << 1)
901 };
902
903 /** @} helpers */
904
905 /** \name lu_context
906 * @{
907 */
908
909 /** For lu_context health-checks */
910 enum lu_context_state {
911 LCS_INITIALIZED = 1,
912 LCS_ENTERED,
913 LCS_LEFT,
914 LCS_FINALIZED
915 };
916
917 /**
918 * lu_context. Execution context for lu_object methods. Currently associated
919 * with thread.
920 *
921 * All lu_object methods, except device and device type methods (called during
922 * system initialization and shutdown) are executed "within" some
923 * lu_context. This means, that pointer to some "current" lu_context is passed
924 * as an argument to all methods.
925 *
926 * All service ptlrpc threads create lu_context as part of their
927 * initialization. It is possible to create "stand-alone" context for other
928 * execution environments (like system calls).
929 *
930 * lu_object methods mainly use lu_context through lu_context_key interface
931 * that allows each layer to associate arbitrary pieces of data with each
932 * context (see pthread_key_create(3) for similar interface).
933 *
934 * On a client, lu_context is bound to a thread, see cl_env_get().
935 *
936 * \see lu_context_key
937 */
938 struct lu_context {
939 /**
940 * lu_context is used on the client side too. Yet we don't want to
941 * allocate values of server-side keys for the client contexts and
942 * vice versa.
943 *
944 * To achieve this, set of tags in introduced. Contexts and keys are
945 * marked with tags. Key value are created only for context whose set
946 * of tags has non-empty intersection with one for key. Tags are taken
947 * from enum lu_context_tag.
948 */
949 __u32 lc_tags;
950 enum lu_context_state lc_state;
951 /**
952 * Pointer to the home service thread. NULL for other execution
953 * contexts.
954 */
955 struct ptlrpc_thread *lc_thread;
956 /**
957 * Pointer to an array with key values. Internal implementation
958 * detail.
959 */
960 void **lc_value;
961 /**
962 * Linkage into a list of all remembered contexts. Only
963 * `non-transient' contexts, i.e., ones created for service threads
964 * are placed here.
965 */
966 struct list_head lc_remember;
967 /**
968 * Version counter used to skip calls to lu_context_refill() when no
969 * keys were registered.
970 */
971 unsigned lc_version;
972 /**
973 * Debugging cookie.
974 */
975 unsigned lc_cookie;
976 };
977
978 /**
979 * lu_context_key interface. Similar to pthread_key.
980 */
981
982 enum lu_context_tag {
983 /**
984 * Thread on md server
985 */
986 LCT_MD_THREAD = 1 << 0,
987 /**
988 * Thread on dt server
989 */
990 LCT_DT_THREAD = 1 << 1,
991 /**
992 * Context for transaction handle
993 */
994 LCT_TX_HANDLE = 1 << 2,
995 /**
996 * Thread on client
997 */
998 LCT_CL_THREAD = 1 << 3,
999 /**
1000 * A per-request session on a server, and a per-system-call session on
1001 * a client.
1002 */
1003 LCT_SESSION = 1 << 4,
1004 /**
1005 * A per-request data on OSP device
1006 */
1007 LCT_OSP_THREAD = 1 << 5,
1008 /**
1009 * MGS device thread
1010 */
1011 LCT_MG_THREAD = 1 << 6,
1012 /**
1013 * Context for local operations
1014 */
1015 LCT_LOCAL = 1 << 7,
1016 /**
1017 * session for server thread
1018 **/
1019 LCT_SERVER_SESSION = BIT(8),
1020 /**
1021 * Set when at least one of keys, having values in this context has
1022 * non-NULL lu_context_key::lct_exit() method. This is used to
1023 * optimize lu_context_exit() call.
1024 */
1025 LCT_HAS_EXIT = 1 << 28,
1026 /**
1027 * Don't add references for modules creating key values in that context.
1028 * This is only for contexts used internally by lu_object framework.
1029 */
1030 LCT_NOREF = 1 << 29,
1031 /**
1032 * Key is being prepared for retiring, don't create new values for it.
1033 */
1034 LCT_QUIESCENT = 1 << 30,
1035 /**
1036 * Context should be remembered.
1037 */
1038 LCT_REMEMBER = 1 << 31,
1039 /**
1040 * Contexts usable in cache shrinker thread.
1041 */
1042 LCT_SHRINKER = LCT_MD_THREAD | LCT_DT_THREAD | LCT_CL_THREAD |
1043 LCT_NOREF
1044 };
1045
1046 /**
1047 * Key. Represents per-context value slot.
1048 *
1049 * Keys are usually registered when module owning the key is initialized, and
1050 * de-registered when module is unloaded. Once key is registered, all new
1051 * contexts with matching tags, will get key value. "Old" contexts, already
1052 * initialized at the time of key registration, can be forced to get key value
1053 * by calling lu_context_refill().
1054 *
1055 * Every key value is counted in lu_context_key::lct_used and acquires a
1056 * reference on an owning module. This means, that all key values have to be
1057 * destroyed before module can be unloaded. This is usually achieved by
1058 * stopping threads started by the module, that created contexts in their
1059 * entry functions. Situation is complicated by the threads shared by multiple
1060 * modules, like ptlrpcd daemon on a client. To work around this problem,
1061 * contexts, created in such threads, are `remembered' (see
1062 * LCT_REMEMBER)---i.e., added into a global list. When module is preparing
1063 * for unloading it does the following:
1064 *
1065 * - marks its keys as `quiescent' (lu_context_tag::LCT_QUIESCENT)
1066 * preventing new key values from being allocated in the new contexts,
1067 * and
1068 *
1069 * - scans a list of remembered contexts, destroying values of module
1070 * keys, thus releasing references to the module.
1071 *
1072 * This is done by lu_context_key_quiesce(). If module is re-activated
1073 * before key has been de-registered, lu_context_key_revive() call clears
1074 * `quiescent' marker.
1075 *
1076 * lu_context code doesn't provide any internal synchronization for these
1077 * activities---it's assumed that startup (including threads start-up) and
1078 * shutdown are serialized by some external means.
1079 *
1080 * \see lu_context
1081 */
1082 struct lu_context_key {
1083 /**
1084 * Set of tags for which values of this key are to be instantiated.
1085 */
1086 __u32 lct_tags;
1087 /**
1088 * Value constructor. This is called when new value is created for a
1089 * context. Returns pointer to new value of error pointer.
1090 */
1091 void *(*lct_init)(const struct lu_context *ctx,
1092 struct lu_context_key *key);
1093 /**
1094 * Value destructor. Called when context with previously allocated
1095 * value of this slot is destroyed. \a data is a value that was returned
1096 * by a matching call to lu_context_key::lct_init().
1097 */
1098 void (*lct_fini)(const struct lu_context *ctx,
1099 struct lu_context_key *key, void *data);
1100 /**
1101 * Optional method called on lu_context_exit() for all allocated
1102 * keys. Can be used by debugging code checking that locks are
1103 * released, etc.
1104 */
1105 void (*lct_exit)(const struct lu_context *ctx,
1106 struct lu_context_key *key, void *data);
1107 /**
1108 * Internal implementation detail: index within lu_context::lc_value[]
1109 * reserved for this key.
1110 */
1111 int lct_index;
1112 /**
1113 * Internal implementation detail: number of values created for this
1114 * key.
1115 */
1116 atomic_t lct_used;
1117 /**
1118 * Internal implementation detail: module for this key.
1119 */
1120 struct module *lct_owner;
1121 /**
1122 * References to this key. For debugging.
1123 */
1124 struct lu_ref lct_reference;
1125 };
1126
1127 #define LU_KEY_INIT(mod, type) \
1128 static void *mod##_key_init(const struct lu_context *ctx, \
1129 struct lu_context_key *key) \
1130 { \
1131 type *value; \
1132 \
1133 BUILD_BUG_ON(PAGE_SIZE < sizeof(*value)); \
1134 \
1135 value = kzalloc(sizeof(*value), GFP_NOFS); \
1136 if (!value) \
1137 value = ERR_PTR(-ENOMEM); \
1138 \
1139 return value; \
1140 } \
1141 struct __##mod##__dummy_init {; } /* semicolon catcher */
1142
1143 #define LU_KEY_FINI(mod, type) \
1144 static void mod##_key_fini(const struct lu_context *ctx, \
1145 struct lu_context_key *key, void *data) \
1146 { \
1147 type *info = data; \
1148 \
1149 kfree(info); \
1150 } \
1151 struct __##mod##__dummy_fini {; } /* semicolon catcher */
1152
1153 #define LU_KEY_INIT_FINI(mod, type) \
1154 LU_KEY_INIT(mod, type); \
1155 LU_KEY_FINI(mod, type)
1156
1157 #define LU_CONTEXT_KEY_DEFINE(mod, tags) \
1158 struct lu_context_key mod##_thread_key = { \
1159 .lct_tags = tags, \
1160 .lct_init = mod##_key_init, \
1161 .lct_fini = mod##_key_fini \
1162 }
1163
1164 #define LU_CONTEXT_KEY_INIT(key) \
1165 do { \
1166 (key)->lct_owner = THIS_MODULE; \
1167 } while (0)
1168
1169 int lu_context_key_register(struct lu_context_key *key);
1170 void lu_context_key_degister(struct lu_context_key *key);
1171 void *lu_context_key_get(const struct lu_context *ctx,
1172 const struct lu_context_key *key);
1173 void lu_context_key_quiesce(struct lu_context_key *key);
1174 void lu_context_key_revive(struct lu_context_key *key);
1175
1176 /*
1177 * LU_KEY_INIT_GENERIC() has to be a macro to correctly determine an
1178 * owning module.
1179 */
1180
1181 #define LU_KEY_INIT_GENERIC(mod) \
1182 static void mod##_key_init_generic(struct lu_context_key *k, ...) \
1183 { \
1184 struct lu_context_key *key = k; \
1185 va_list args; \
1186 \
1187 va_start(args, k); \
1188 do { \
1189 LU_CONTEXT_KEY_INIT(key); \
1190 key = va_arg(args, struct lu_context_key *); \
1191 } while (key); \
1192 va_end(args); \
1193 }
1194
1195 #define LU_TYPE_INIT(mod, ...) \
1196 LU_KEY_INIT_GENERIC(mod) \
1197 static int mod##_type_init(struct lu_device_type *t) \
1198 { \
1199 mod##_key_init_generic(__VA_ARGS__, NULL); \
1200 return lu_context_key_register_many(__VA_ARGS__, NULL); \
1201 } \
1202 struct __##mod##_dummy_type_init {; }
1203
1204 #define LU_TYPE_FINI(mod, ...) \
1205 static void mod##_type_fini(struct lu_device_type *t) \
1206 { \
1207 lu_context_key_degister_many(__VA_ARGS__, NULL); \
1208 } \
1209 struct __##mod##_dummy_type_fini {; }
1210
1211 #define LU_TYPE_START(mod, ...) \
1212 static void mod##_type_start(struct lu_device_type *t) \
1213 { \
1214 lu_context_key_revive_many(__VA_ARGS__, NULL); \
1215 } \
1216 struct __##mod##_dummy_type_start {; }
1217
1218 #define LU_TYPE_STOP(mod, ...) \
1219 static void mod##_type_stop(struct lu_device_type *t) \
1220 { \
1221 lu_context_key_quiesce_many(__VA_ARGS__, NULL); \
1222 } \
1223 struct __##mod##_dummy_type_stop {; }
1224
1225 #define LU_TYPE_INIT_FINI(mod, ...) \
1226 LU_TYPE_INIT(mod, __VA_ARGS__); \
1227 LU_TYPE_FINI(mod, __VA_ARGS__); \
1228 LU_TYPE_START(mod, __VA_ARGS__); \
1229 LU_TYPE_STOP(mod, __VA_ARGS__)
1230
1231 int lu_context_init(struct lu_context *ctx, __u32 tags);
1232 void lu_context_fini(struct lu_context *ctx);
1233 void lu_context_enter(struct lu_context *ctx);
1234 void lu_context_exit(struct lu_context *ctx);
1235 int lu_context_refill(struct lu_context *ctx);
1236
1237 /*
1238 * Helper functions to operate on multiple keys. These are used by the default
1239 * device type operations, defined by LU_TYPE_INIT_FINI().
1240 */
1241
1242 int lu_context_key_register_many(struct lu_context_key *k, ...);
1243 void lu_context_key_degister_many(struct lu_context_key *k, ...);
1244 void lu_context_key_revive_many(struct lu_context_key *k, ...);
1245 void lu_context_key_quiesce_many(struct lu_context_key *k, ...);
1246
1247 /**
1248 * Environment.
1249 */
1250 struct lu_env {
1251 /**
1252 * "Local" context, used to store data instead of stack.
1253 */
1254 struct lu_context le_ctx;
1255 /**
1256 * "Session" context for per-request data.
1257 */
1258 struct lu_context *le_ses;
1259 };
1260
1261 int lu_env_init(struct lu_env *env, __u32 tags);
1262 void lu_env_fini(struct lu_env *env);
1263 int lu_env_refill(struct lu_env *env);
1264
1265 /** @} lu_context */
1266
1267 /**
1268 * Output site statistical counters into a buffer. Suitable for
1269 * ll_rd_*()-style functions.
1270 */
1271 int lu_site_stats_print(const struct lu_site *s, struct seq_file *m);
1272
1273 /**
1274 * Common name structure to be passed around for various name related methods.
1275 */
1276 struct lu_name {
1277 const char *ln_name;
1278 int ln_namelen;
1279 };
1280
1281 /**
1282 * Validate names (path components)
1283 *
1284 * To be valid \a name must be non-empty, '\0' terminated of length \a
1285 * name_len, and not contain '/'. The maximum length of a name (before
1286 * say -ENAMETOOLONG will be returned) is really controlled by llite
1287 * and the server. We only check for something insane coming from bad
1288 * integer handling here.
1289 */
1290 static inline bool lu_name_is_valid_2(const char *name, size_t name_len)
1291 {
1292 return name && name_len > 0 && name_len < INT_MAX &&
1293 name[name_len] == '\0' && strlen(name) == name_len &&
1294 !memchr(name, '/', name_len);
1295 }
1296
1297 /**
1298 * Common buffer structure to be passed around for various xattr_{s,g}et()
1299 * methods.
1300 */
1301 struct lu_buf {
1302 void *lb_buf;
1303 size_t lb_len;
1304 };
1305
1306 #define DLUBUF "(%p %zu)"
1307 #define PLUBUF(buf) (buf)->lb_buf, (buf)->lb_len
1308 /**
1309 * One-time initializers, called at obdclass module initialization, not
1310 * exported.
1311 */
1312
1313 /**
1314 * Initialization of global lu_* data.
1315 */
1316 int lu_global_init(void);
1317
1318 /**
1319 * Dual to lu_global_init().
1320 */
1321 void lu_global_fini(void);
1322
1323 struct lu_kmem_descr {
1324 struct kmem_cache **ckd_cache;
1325 const char *ckd_name;
1326 const size_t ckd_size;
1327 };
1328
1329 int lu_kmem_init(struct lu_kmem_descr *caches);
1330 void lu_kmem_fini(struct lu_kmem_descr *caches);
1331
1332 void lu_buf_free(struct lu_buf *buf);
1333 void lu_buf_alloc(struct lu_buf *buf, size_t size);
1334 void lu_buf_realloc(struct lu_buf *buf, size_t size);
1335
1336 int lu_buf_check_and_grow(struct lu_buf *buf, size_t len);
1337 struct lu_buf *lu_buf_check_and_alloc(struct lu_buf *buf, size_t len);
1338
1339 extern __u32 lu_context_tags_default;
1340 extern __u32 lu_session_tags_default;
1341
1342 /** @} lu */
1343 #endif /* __LUSTRE_LU_OBJECT_H */