]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/staging/lustre/lustre/include/lustre/lustre_idl.h
staging: lustre: lmv: separate master object with master stripe
[mirror_ubuntu-bionic-kernel.git] / drivers / staging / lustre / lustre / include / lustre / lustre_idl.h
1 /*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.gnu.org/licenses/gpl-2.0.html
19 *
20 * GPL HEADER END
21 */
22 /*
23 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Use is subject to license terms.
25 *
26 * Copyright (c) 2011, 2015, Intel Corporation.
27 */
28 /*
29 * This file is part of Lustre, http://www.lustre.org/
30 * Lustre is a trademark of Sun Microsystems, Inc.
31 *
32 * lustre/include/lustre/lustre_idl.h
33 *
34 * Lustre wire protocol definitions.
35 */
36
37 /** \defgroup lustreidl lustreidl
38 *
39 * Lustre wire protocol definitions.
40 *
41 * ALL structs passing over the wire should be declared here. Structs
42 * that are used in interfaces with userspace should go in lustre_user.h.
43 *
44 * All structs being declared here should be built from simple fixed-size
45 * types (__u8, __u16, __u32, __u64) or be built from other types or
46 * structs also declared in this file. Similarly, all flags and magic
47 * values in those structs should also be declared here. This ensures
48 * that the Lustre wire protocol is not influenced by external dependencies.
49 *
50 * The only other acceptable items in this file are VERY SIMPLE accessor
51 * functions to avoid callers grubbing inside the structures, and the
52 * prototypes of the swabber functions for each struct. Nothing that
53 * depends on external functions or definitions should be in here.
54 *
55 * Structs must be properly aligned to put 64-bit values on an 8-byte
56 * boundary. Any structs being added here must also be added to
57 * utils/wirecheck.c and "make newwiretest" run to regenerate the
58 * utils/wiretest.c sources. This allows us to verify that wire structs
59 * have the proper alignment/size on all architectures.
60 *
61 * DO NOT CHANGE any of the structs, flags, values declared here and used
62 * in released Lustre versions. Some structs may have padding fields that
63 * can be used. Some structs might allow addition at the end (verify this
64 * in the code to ensure that new/old clients that see this larger struct
65 * do not fail, otherwise you need to implement protocol compatibility).
66 *
67 * We assume all nodes are either little-endian or big-endian, and we
68 * always send messages in the sender's native format. The receiver
69 * detects the message format by checking the 'magic' field of the message
70 * (see lustre_msg_swabbed() below).
71 *
72 * Each wire type has corresponding 'lustre_swab_xxxtypexxx()' routines,
73 * implemented either here, inline (trivial implementations) or in
74 * ptlrpc/pack_generic.c. These 'swabbers' convert the type from "other"
75 * endian, in-place in the message buffer.
76 *
77 * A swabber takes a single pointer argument. The caller must already have
78 * verified that the length of the message buffer >= sizeof (type).
79 *
80 * For variable length types, a second 'lustre_swab_v_xxxtypexxx()' routine
81 * may be defined that swabs just the variable part, after the caller has
82 * verified that the message buffer is large enough.
83 *
84 * @{
85 */
86
87 #ifndef _LUSTRE_IDL_H_
88 #define _LUSTRE_IDL_H_
89
90 #include "../../../include/linux/libcfs/libcfs.h"
91 #include "../../../include/linux/lnet/types.h"
92
93 /* Defn's shared with user-space. */
94 #include "lustre_user.h"
95 #include "lustre_errno.h"
96
97 /*
98 * GENERAL STUFF
99 */
100 /* FOO_REQUEST_PORTAL is for incoming requests on the FOO
101 * FOO_REPLY_PORTAL is for incoming replies on the FOO
102 * FOO_BULK_PORTAL is for incoming bulk on the FOO
103 */
104
105 /* Lustre service names are following the format
106 * service name + MDT + seq name
107 */
108 #define LUSTRE_MDT_MAXNAMELEN 80
109
110 #define CONNMGR_REQUEST_PORTAL 1
111 #define CONNMGR_REPLY_PORTAL 2
112 /*#define OSC_REQUEST_PORTAL 3 */
113 #define OSC_REPLY_PORTAL 4
114 /*#define OSC_BULK_PORTAL 5 */
115 #define OST_IO_PORTAL 6
116 #define OST_CREATE_PORTAL 7
117 #define OST_BULK_PORTAL 8
118 /*#define MDC_REQUEST_PORTAL 9 */
119 #define MDC_REPLY_PORTAL 10
120 /*#define MDC_BULK_PORTAL 11 */
121 #define MDS_REQUEST_PORTAL 12
122 /*#define MDS_REPLY_PORTAL 13 */
123 #define MDS_BULK_PORTAL 14
124 #define LDLM_CB_REQUEST_PORTAL 15
125 #define LDLM_CB_REPLY_PORTAL 16
126 #define LDLM_CANCEL_REQUEST_PORTAL 17
127 #define LDLM_CANCEL_REPLY_PORTAL 18
128 /*#define PTLBD_REQUEST_PORTAL 19 */
129 /*#define PTLBD_REPLY_PORTAL 20 */
130 /*#define PTLBD_BULK_PORTAL 21 */
131 #define MDS_SETATTR_PORTAL 22
132 #define MDS_READPAGE_PORTAL 23
133 #define OUT_PORTAL 24
134
135 #define MGC_REPLY_PORTAL 25
136 #define MGS_REQUEST_PORTAL 26
137 #define MGS_REPLY_PORTAL 27
138 #define OST_REQUEST_PORTAL 28
139 #define FLD_REQUEST_PORTAL 29
140 #define SEQ_METADATA_PORTAL 30
141 #define SEQ_DATA_PORTAL 31
142 #define SEQ_CONTROLLER_PORTAL 32
143 #define MGS_BULK_PORTAL 33
144
145 /* Portal 63 is reserved for the Cray Inc DVS - nic@cray.com, roe@cray.com,
146 * n8851@cray.com
147 */
148
149 /* packet types */
150 #define PTL_RPC_MSG_REQUEST 4711
151 #define PTL_RPC_MSG_ERR 4712
152 #define PTL_RPC_MSG_REPLY 4713
153
154 /* DON'T use swabbed values of MAGIC as magic! */
155 #define LUSTRE_MSG_MAGIC_V2 0x0BD00BD3
156 #define LUSTRE_MSG_MAGIC_V2_SWABBED 0xD30BD00B
157
158 #define LUSTRE_MSG_MAGIC LUSTRE_MSG_MAGIC_V2
159
160 #define PTLRPC_MSG_VERSION 0x00000003
161 #define LUSTRE_VERSION_MASK 0xffff0000
162 #define LUSTRE_OBD_VERSION 0x00010000
163 #define LUSTRE_MDS_VERSION 0x00020000
164 #define LUSTRE_OST_VERSION 0x00030000
165 #define LUSTRE_DLM_VERSION 0x00040000
166 #define LUSTRE_LOG_VERSION 0x00050000
167 #define LUSTRE_MGS_VERSION 0x00060000
168
169 /**
170 * Describes a range of sequence, lsr_start is included but lsr_end is
171 * not in the range.
172 * Same structure is used in fld module where lsr_index field holds mdt id
173 * of the home mdt.
174 */
175 struct lu_seq_range {
176 __u64 lsr_start;
177 __u64 lsr_end;
178 __u32 lsr_index;
179 __u32 lsr_flags;
180 };
181
182 struct lu_seq_range_array {
183 __u32 lsra_count;
184 __u32 lsra_padding;
185 struct lu_seq_range lsra_lsr[0];
186 };
187
188 #define LU_SEQ_RANGE_MDT 0x0
189 #define LU_SEQ_RANGE_OST 0x1
190 #define LU_SEQ_RANGE_ANY 0x3
191
192 #define LU_SEQ_RANGE_MASK 0x3
193
194 static inline unsigned fld_range_type(const struct lu_seq_range *range)
195 {
196 return range->lsr_flags & LU_SEQ_RANGE_MASK;
197 }
198
199 static inline bool fld_range_is_ost(const struct lu_seq_range *range)
200 {
201 return fld_range_type(range) == LU_SEQ_RANGE_OST;
202 }
203
204 static inline bool fld_range_is_mdt(const struct lu_seq_range *range)
205 {
206 return fld_range_type(range) == LU_SEQ_RANGE_MDT;
207 }
208
209 /**
210 * This all range is only being used when fld client sends fld query request,
211 * but it does not know whether the seq is MDT or OST, so it will send req
212 * with ALL type, which means either seq type gotten from lookup can be
213 * expected.
214 */
215 static inline unsigned fld_range_is_any(const struct lu_seq_range *range)
216 {
217 return fld_range_type(range) == LU_SEQ_RANGE_ANY;
218 }
219
220 static inline void fld_range_set_type(struct lu_seq_range *range,
221 unsigned flags)
222 {
223 range->lsr_flags |= flags;
224 }
225
226 static inline void fld_range_set_mdt(struct lu_seq_range *range)
227 {
228 fld_range_set_type(range, LU_SEQ_RANGE_MDT);
229 }
230
231 static inline void fld_range_set_ost(struct lu_seq_range *range)
232 {
233 fld_range_set_type(range, LU_SEQ_RANGE_OST);
234 }
235
236 static inline void fld_range_set_any(struct lu_seq_range *range)
237 {
238 fld_range_set_type(range, LU_SEQ_RANGE_ANY);
239 }
240
241 /**
242 * returns width of given range \a r
243 */
244
245 static inline __u64 range_space(const struct lu_seq_range *range)
246 {
247 return range->lsr_end - range->lsr_start;
248 }
249
250 /**
251 * initialize range to zero
252 */
253
254 static inline void range_init(struct lu_seq_range *range)
255 {
256 memset(range, 0, sizeof(*range));
257 }
258
259 /**
260 * check if given seq id \a s is within given range \a r
261 */
262
263 static inline bool range_within(const struct lu_seq_range *range,
264 __u64 s)
265 {
266 return s >= range->lsr_start && s < range->lsr_end;
267 }
268
269 static inline bool range_is_sane(const struct lu_seq_range *range)
270 {
271 return (range->lsr_end >= range->lsr_start);
272 }
273
274 static inline bool range_is_zero(const struct lu_seq_range *range)
275 {
276 return (range->lsr_start == 0 && range->lsr_end == 0);
277 }
278
279 static inline bool range_is_exhausted(const struct lu_seq_range *range)
280
281 {
282 return range_space(range) == 0;
283 }
284
285 /* return 0 if two range have the same location */
286 static inline int range_compare_loc(const struct lu_seq_range *r1,
287 const struct lu_seq_range *r2)
288 {
289 return r1->lsr_index != r2->lsr_index ||
290 r1->lsr_flags != r2->lsr_flags;
291 }
292
293 #define DRANGE "[%#16.16Lx-%#16.16Lx):%x:%s"
294
295 #define PRANGE(range) \
296 (range)->lsr_start, \
297 (range)->lsr_end, \
298 (range)->lsr_index, \
299 fld_range_is_mdt(range) ? "mdt" : "ost"
300
301 /** \defgroup lu_fid lu_fid
302 * @{
303 */
304
305 /**
306 * Flags for lustre_mdt_attrs::lma_compat and lustre_mdt_attrs::lma_incompat.
307 * Deprecated since HSM and SOM attributes are now stored in separate on-disk
308 * xattr.
309 */
310 enum lma_compat {
311 LMAC_HSM = 0x00000001,
312 LMAC_SOM = 0x00000002,
313 LMAC_NOT_IN_OI = 0x00000004, /* the object does NOT need OI mapping */
314 LMAC_FID_ON_OST = 0x00000008, /* For OST-object, its OI mapping is
315 * under /O/<seq>/d<x>.
316 */
317 };
318
319 /**
320 * Masks for all features that should be supported by a Lustre version to
321 * access a specific file.
322 * This information is stored in lustre_mdt_attrs::lma_incompat.
323 */
324 enum lma_incompat {
325 LMAI_RELEASED = 0x00000001, /* file is released */
326 LMAI_AGENT = 0x00000002, /* agent inode */
327 LMAI_REMOTE_PARENT = 0x00000004, /* the parent of the object
328 * is on the remote MDT
329 */
330 };
331
332 #define LMA_INCOMPAT_SUPP (LMAI_AGENT | LMAI_REMOTE_PARENT)
333
334 /**
335 * fid constants
336 */
337 enum {
338 /** LASTID file has zero OID */
339 LUSTRE_FID_LASTID_OID = 0UL,
340 /** initial fid id value */
341 LUSTRE_FID_INIT_OID = 1UL
342 };
343
344 /** returns fid object sequence */
345 static inline __u64 fid_seq(const struct lu_fid *fid)
346 {
347 return fid->f_seq;
348 }
349
350 /** returns fid object id */
351 static inline __u32 fid_oid(const struct lu_fid *fid)
352 {
353 return fid->f_oid;
354 }
355
356 /** returns fid object version */
357 static inline __u32 fid_ver(const struct lu_fid *fid)
358 {
359 return fid->f_ver;
360 }
361
362 static inline void fid_zero(struct lu_fid *fid)
363 {
364 memset(fid, 0, sizeof(*fid));
365 }
366
367 static inline __u64 fid_ver_oid(const struct lu_fid *fid)
368 {
369 return ((__u64)fid_ver(fid) << 32 | fid_oid(fid));
370 }
371
372 /* copytool uses a 32b bitmask field to encode archive-Ids during register
373 * with MDT thru kuc.
374 * archive num = 0 => all
375 * archive num from 1 to 32
376 */
377 #define LL_HSM_MAX_ARCHIVE (sizeof(__u32) * 8)
378
379 /**
380 * Note that reserved SEQ numbers below 12 will conflict with ldiskfs
381 * inodes in the IGIF namespace, so these reserved SEQ numbers can be
382 * used for other purposes and not risk collisions with existing inodes.
383 *
384 * Different FID Format
385 * http://wiki.old.lustre.org/index.php/Architecture_-_Interoperability_fids_zfs
386 */
387 enum fid_seq {
388 FID_SEQ_OST_MDT0 = 0,
389 FID_SEQ_LLOG = 1, /* unnamed llogs */
390 FID_SEQ_ECHO = 2,
391 FID_SEQ_OST_MDT1 = 3,
392 FID_SEQ_OST_MAX = 9, /* Max MDT count before OST_on_FID */
393 FID_SEQ_LLOG_NAME = 10, /* named llogs */
394 FID_SEQ_RSVD = 11,
395 FID_SEQ_IGIF = 12,
396 FID_SEQ_IGIF_MAX = 0x0ffffffffULL,
397 FID_SEQ_IDIF = 0x100000000ULL,
398 FID_SEQ_IDIF_MAX = 0x1ffffffffULL,
399 /* Normal FID sequence starts from this value, i.e. 1<<33 */
400 FID_SEQ_START = 0x200000000ULL,
401 /* sequence for local pre-defined FIDs listed in local_oid */
402 FID_SEQ_LOCAL_FILE = 0x200000001ULL,
403 FID_SEQ_DOT_LUSTRE = 0x200000002ULL,
404 /* sequence is used for local named objects FIDs generated
405 * by local_object_storage library
406 */
407 FID_SEQ_LOCAL_NAME = 0x200000003ULL,
408 /* Because current FLD will only cache the fid sequence, instead
409 * of oid on the client side, if the FID needs to be exposed to
410 * clients sides, it needs to make sure all of fids under one
411 * sequence will be located in one MDT.
412 */
413 FID_SEQ_SPECIAL = 0x200000004ULL,
414 FID_SEQ_QUOTA = 0x200000005ULL,
415 FID_SEQ_QUOTA_GLB = 0x200000006ULL,
416 FID_SEQ_ROOT = 0x200000007ULL, /* Located on MDT0 */
417 FID_SEQ_NORMAL = 0x200000400ULL,
418 FID_SEQ_LOV_DEFAULT = 0xffffffffffffffffULL
419 };
420
421 #define OBIF_OID_MAX_BITS 32
422 #define OBIF_MAX_OID (1ULL << OBIF_OID_MAX_BITS)
423 #define OBIF_OID_MASK ((1ULL << OBIF_OID_MAX_BITS) - 1)
424 #define IDIF_OID_MAX_BITS 48
425 #define IDIF_MAX_OID (1ULL << IDIF_OID_MAX_BITS)
426 #define IDIF_OID_MASK ((1ULL << IDIF_OID_MAX_BITS) - 1)
427
428 /** OID for FID_SEQ_SPECIAL */
429 enum special_oid {
430 /* Big Filesystem Lock to serialize rename operations */
431 FID_OID_SPECIAL_BFL = 1UL,
432 };
433
434 /** OID for FID_SEQ_DOT_LUSTRE */
435 enum dot_lustre_oid {
436 FID_OID_DOT_LUSTRE = 1UL,
437 FID_OID_DOT_LUSTRE_OBF = 2UL,
438 };
439
440 static inline bool fid_seq_is_mdt0(__u64 seq)
441 {
442 return (seq == FID_SEQ_OST_MDT0);
443 }
444
445 static inline bool fid_seq_is_mdt(__u64 seq)
446 {
447 return seq == FID_SEQ_OST_MDT0 || seq >= FID_SEQ_NORMAL;
448 };
449
450 static inline bool fid_seq_is_echo(__u64 seq)
451 {
452 return (seq == FID_SEQ_ECHO);
453 }
454
455 static inline bool fid_is_echo(const struct lu_fid *fid)
456 {
457 return fid_seq_is_echo(fid_seq(fid));
458 }
459
460 static inline bool fid_seq_is_llog(__u64 seq)
461 {
462 return (seq == FID_SEQ_LLOG);
463 }
464
465 static inline bool fid_is_llog(const struct lu_fid *fid)
466 {
467 /* file with OID == 0 is not llog but contains last oid */
468 return fid_seq_is_llog(fid_seq(fid)) && fid_oid(fid) > 0;
469 }
470
471 static inline bool fid_seq_is_rsvd(__u64 seq)
472 {
473 return (seq > FID_SEQ_OST_MDT0 && seq <= FID_SEQ_RSVD);
474 };
475
476 static inline bool fid_seq_is_special(__u64 seq)
477 {
478 return seq == FID_SEQ_SPECIAL;
479 };
480
481 static inline bool fid_seq_is_local_file(__u64 seq)
482 {
483 return seq == FID_SEQ_LOCAL_FILE ||
484 seq == FID_SEQ_LOCAL_NAME;
485 };
486
487 static inline bool fid_seq_is_root(__u64 seq)
488 {
489 return seq == FID_SEQ_ROOT;
490 }
491
492 static inline bool fid_seq_is_dot(__u64 seq)
493 {
494 return seq == FID_SEQ_DOT_LUSTRE;
495 }
496
497 static inline bool fid_seq_is_default(__u64 seq)
498 {
499 return seq == FID_SEQ_LOV_DEFAULT;
500 }
501
502 static inline bool fid_is_mdt0(const struct lu_fid *fid)
503 {
504 return fid_seq_is_mdt0(fid_seq(fid));
505 }
506
507 static inline void lu_root_fid(struct lu_fid *fid)
508 {
509 fid->f_seq = FID_SEQ_ROOT;
510 fid->f_oid = 1;
511 fid->f_ver = 0;
512 }
513
514 /**
515 * Check if a fid is igif or not.
516 * \param fid the fid to be tested.
517 * \return true if the fid is a igif; otherwise false.
518 */
519 static inline bool fid_seq_is_igif(__u64 seq)
520 {
521 return seq >= FID_SEQ_IGIF && seq <= FID_SEQ_IGIF_MAX;
522 }
523
524 static inline bool fid_is_igif(const struct lu_fid *fid)
525 {
526 return fid_seq_is_igif(fid_seq(fid));
527 }
528
529 /**
530 * Check if a fid is idif or not.
531 * \param fid the fid to be tested.
532 * \return true if the fid is a idif; otherwise false.
533 */
534 static inline bool fid_seq_is_idif(__u64 seq)
535 {
536 return seq >= FID_SEQ_IDIF && seq <= FID_SEQ_IDIF_MAX;
537 }
538
539 static inline bool fid_is_idif(const struct lu_fid *fid)
540 {
541 return fid_seq_is_idif(fid_seq(fid));
542 }
543
544 static inline bool fid_is_local_file(const struct lu_fid *fid)
545 {
546 return fid_seq_is_local_file(fid_seq(fid));
547 }
548
549 static inline bool fid_seq_is_norm(__u64 seq)
550 {
551 return (seq >= FID_SEQ_NORMAL);
552 }
553
554 static inline bool fid_is_norm(const struct lu_fid *fid)
555 {
556 return fid_seq_is_norm(fid_seq(fid));
557 }
558
559 /* convert an OST objid into an IDIF FID SEQ number */
560 static inline __u64 fid_idif_seq(__u64 id, __u32 ost_idx)
561 {
562 return FID_SEQ_IDIF | (ost_idx << 16) | ((id >> 32) & 0xffff);
563 }
564
565 /* convert a packed IDIF FID into an OST objid */
566 static inline __u64 fid_idif_id(__u64 seq, __u32 oid, __u32 ver)
567 {
568 return ((__u64)ver << 48) | ((seq & 0xffff) << 32) | oid;
569 }
570
571 /* extract ost index from IDIF FID */
572 static inline __u32 fid_idif_ost_idx(const struct lu_fid *fid)
573 {
574 return (fid_seq(fid) >> 16) & 0xffff;
575 }
576
577 /* extract OST sequence (group) from a wire ost_id (id/seq) pair */
578 static inline __u64 ostid_seq(const struct ost_id *ostid)
579 {
580 if (fid_seq_is_mdt0(ostid->oi.oi_seq))
581 return FID_SEQ_OST_MDT0;
582
583 if (unlikely(fid_seq_is_default(ostid->oi.oi_seq)))
584 return FID_SEQ_LOV_DEFAULT;
585
586 if (fid_is_idif(&ostid->oi_fid))
587 return FID_SEQ_OST_MDT0;
588
589 return fid_seq(&ostid->oi_fid);
590 }
591
592 /* extract OST objid from a wire ost_id (id/seq) pair */
593 static inline __u64 ostid_id(const struct ost_id *ostid)
594 {
595 if (fid_seq_is_mdt0(ostid->oi.oi_seq))
596 return ostid->oi.oi_id & IDIF_OID_MASK;
597
598 if (unlikely(fid_seq_is_default(ostid->oi.oi_seq)))
599 return ostid->oi.oi_id;
600
601 if (fid_is_idif(&ostid->oi_fid))
602 return fid_idif_id(fid_seq(&ostid->oi_fid),
603 fid_oid(&ostid->oi_fid), 0);
604
605 return fid_oid(&ostid->oi_fid);
606 }
607
608 static inline void ostid_set_seq(struct ost_id *oi, __u64 seq)
609 {
610 if (fid_seq_is_mdt0(seq) || fid_seq_is_default(seq)) {
611 oi->oi.oi_seq = seq;
612 } else {
613 oi->oi_fid.f_seq = seq;
614 /* Note: if f_oid + f_ver is zero, we need init it
615 * to be 1, otherwise, ostid_seq will treat this
616 * as old ostid (oi_seq == 0)
617 */
618 if (oi->oi_fid.f_oid == 0 && oi->oi_fid.f_ver == 0)
619 oi->oi_fid.f_oid = LUSTRE_FID_INIT_OID;
620 }
621 }
622
623 static inline void ostid_set_seq_mdt0(struct ost_id *oi)
624 {
625 ostid_set_seq(oi, FID_SEQ_OST_MDT0);
626 }
627
628 static inline void ostid_set_seq_echo(struct ost_id *oi)
629 {
630 ostid_set_seq(oi, FID_SEQ_ECHO);
631 }
632
633 static inline void ostid_set_seq_llog(struct ost_id *oi)
634 {
635 ostid_set_seq(oi, FID_SEQ_LLOG);
636 }
637
638 /**
639 * Note: we need check oi_seq to decide where to set oi_id,
640 * so oi_seq should always be set ahead of oi_id.
641 */
642 static inline void ostid_set_id(struct ost_id *oi, __u64 oid)
643 {
644 if (fid_seq_is_mdt0(oi->oi.oi_seq)) {
645 if (oid >= IDIF_MAX_OID) {
646 CERROR("Bad %llu to set " DOSTID "\n", oid, POSTID(oi));
647 return;
648 }
649 oi->oi.oi_id = oid;
650 } else if (fid_is_idif(&oi->oi_fid)) {
651 if (oid >= IDIF_MAX_OID) {
652 CERROR("Bad %llu to set "DOSTID"\n",
653 oid, POSTID(oi));
654 return;
655 }
656 oi->oi_fid.f_seq = fid_idif_seq(oid,
657 fid_idif_ost_idx(&oi->oi_fid));
658 oi->oi_fid.f_oid = oid;
659 oi->oi_fid.f_ver = oid >> 48;
660 } else {
661 if (oid > OBIF_MAX_OID) {
662 CERROR("Bad %llu to set " DOSTID "\n", oid, POSTID(oi));
663 return;
664 }
665 oi->oi_fid.f_oid = oid;
666 }
667 }
668
669 static inline int fid_set_id(struct lu_fid *fid, __u64 oid)
670 {
671 if (unlikely(fid_seq_is_igif(fid->f_seq))) {
672 CERROR("bad IGIF, "DFID"\n", PFID(fid));
673 return -EBADF;
674 }
675
676 if (fid_is_idif(fid)) {
677 if (oid >= IDIF_MAX_OID) {
678 CERROR("Too large OID %#llx to set IDIF "DFID"\n",
679 (unsigned long long)oid, PFID(fid));
680 return -EBADF;
681 }
682 fid->f_seq = fid_idif_seq(oid, fid_idif_ost_idx(fid));
683 fid->f_oid = oid;
684 fid->f_ver = oid >> 48;
685 } else {
686 if (oid > OBIF_MAX_OID) {
687 CERROR("Too large OID %#llx to set REG "DFID"\n",
688 (unsigned long long)oid, PFID(fid));
689 return -EBADF;
690 }
691 fid->f_oid = oid;
692 }
693 return 0;
694 }
695
696 /**
697 * Unpack an OST object id/seq (group) into a FID. This is needed for
698 * converting all obdo, lmm, lsm, etc. 64-bit id/seq pairs into proper
699 * FIDs. Note that if an id/seq is already in FID/IDIF format it will
700 * be passed through unchanged. Only legacy OST objects in "group 0"
701 * will be mapped into the IDIF namespace so that they can fit into the
702 * struct lu_fid fields without loss. For reference see:
703 * http://wiki.old.lustre.org/index.php/Architecture_-_Interoperability_fids_zfs
704 */
705 static inline int ostid_to_fid(struct lu_fid *fid, struct ost_id *ostid,
706 __u32 ost_idx)
707 {
708 __u64 seq = ostid_seq(ostid);
709
710 if (ost_idx > 0xffff) {
711 CERROR("bad ost_idx, "DOSTID" ost_idx:%u\n", POSTID(ostid),
712 ost_idx);
713 return -EBADF;
714 }
715
716 if (fid_seq_is_mdt0(seq)) {
717 __u64 oid = ostid_id(ostid);
718
719 /* This is a "legacy" (old 1.x/2.early) OST object in "group 0"
720 * that we map into the IDIF namespace. It allows up to 2^48
721 * objects per OST, as this is the object namespace that has
722 * been in production for years. This can handle create rates
723 * of 1M objects/s/OST for 9 years, or combinations thereof.
724 */
725 if (oid >= IDIF_MAX_OID) {
726 CERROR("bad MDT0 id, " DOSTID " ost_idx:%u\n",
727 POSTID(ostid), ost_idx);
728 return -EBADF;
729 }
730 fid->f_seq = fid_idif_seq(oid, ost_idx);
731 /* truncate to 32 bits by assignment */
732 fid->f_oid = oid;
733 /* in theory, not currently used */
734 fid->f_ver = oid >> 48;
735 } else if (likely(!fid_seq_is_default(seq))) {
736 /* This is either an IDIF object, which identifies objects across
737 * all OSTs, or a regular FID. The IDIF namespace maps legacy
738 * OST objects into the FID namespace. In both cases, we just
739 * pass the FID through, no conversion needed.
740 */
741 if (ostid->oi_fid.f_ver != 0) {
742 CERROR("bad MDT0 id, " DOSTID " ost_idx:%u\n",
743 POSTID(ostid), ost_idx);
744 return -EBADF;
745 }
746 *fid = ostid->oi_fid;
747 }
748
749 return 0;
750 }
751
752 /* pack any OST FID into an ostid (id/seq) for the wire/disk */
753 static inline int fid_to_ostid(const struct lu_fid *fid, struct ost_id *ostid)
754 {
755 if (unlikely(fid_seq_is_igif(fid->f_seq))) {
756 CERROR("bad IGIF, "DFID"\n", PFID(fid));
757 return -EBADF;
758 }
759
760 if (fid_is_idif(fid)) {
761 ostid_set_seq_mdt0(ostid);
762 ostid_set_id(ostid, fid_idif_id(fid_seq(fid), fid_oid(fid),
763 fid_ver(fid)));
764 } else {
765 ostid->oi_fid = *fid;
766 }
767
768 return 0;
769 }
770
771 /* Check whether the fid is for LAST_ID */
772 static inline bool fid_is_last_id(const struct lu_fid *fid)
773 {
774 return (fid_oid(fid) == 0);
775 }
776
777 /**
778 * Get inode number from a igif.
779 * \param fid a igif to get inode number from.
780 * \return inode number for the igif.
781 */
782 static inline ino_t lu_igif_ino(const struct lu_fid *fid)
783 {
784 return fid_seq(fid);
785 }
786
787 void lustre_swab_ost_id(struct ost_id *oid);
788
789 /**
790 * Get inode generation from a igif.
791 * \param fid a igif to get inode generation from.
792 * \return inode generation for the igif.
793 */
794 static inline __u32 lu_igif_gen(const struct lu_fid *fid)
795 {
796 return fid_oid(fid);
797 }
798
799 /**
800 * Build igif from the inode number/generation.
801 */
802 static inline void lu_igif_build(struct lu_fid *fid, __u32 ino, __u32 gen)
803 {
804 fid->f_seq = ino;
805 fid->f_oid = gen;
806 fid->f_ver = 0;
807 }
808
809 /*
810 * Fids are transmitted across network (in the sender byte-ordering),
811 * and stored on disk in big-endian order.
812 */
813 static inline void fid_cpu_to_le(struct lu_fid *dst, const struct lu_fid *src)
814 {
815 dst->f_seq = cpu_to_le64(fid_seq(src));
816 dst->f_oid = cpu_to_le32(fid_oid(src));
817 dst->f_ver = cpu_to_le32(fid_ver(src));
818 }
819
820 static inline void fid_le_to_cpu(struct lu_fid *dst, const struct lu_fid *src)
821 {
822 dst->f_seq = le64_to_cpu(fid_seq(src));
823 dst->f_oid = le32_to_cpu(fid_oid(src));
824 dst->f_ver = le32_to_cpu(fid_ver(src));
825 }
826
827 static inline void fid_cpu_to_be(struct lu_fid *dst, const struct lu_fid *src)
828 {
829 dst->f_seq = cpu_to_be64(fid_seq(src));
830 dst->f_oid = cpu_to_be32(fid_oid(src));
831 dst->f_ver = cpu_to_be32(fid_ver(src));
832 }
833
834 static inline void fid_be_to_cpu(struct lu_fid *dst, const struct lu_fid *src)
835 {
836 dst->f_seq = be64_to_cpu(fid_seq(src));
837 dst->f_oid = be32_to_cpu(fid_oid(src));
838 dst->f_ver = be32_to_cpu(fid_ver(src));
839 }
840
841 static inline bool fid_is_sane(const struct lu_fid *fid)
842 {
843 return fid &&
844 ((fid_seq(fid) >= FID_SEQ_START && fid_ver(fid) == 0) ||
845 fid_is_igif(fid) || fid_is_idif(fid) ||
846 fid_seq_is_rsvd(fid_seq(fid)));
847 }
848
849 static inline bool fid_is_zero(const struct lu_fid *fid)
850 {
851 return fid_seq(fid) == 0 && fid_oid(fid) == 0;
852 }
853
854 void lustre_swab_lu_fid(struct lu_fid *fid);
855 void lustre_swab_lu_seq_range(struct lu_seq_range *range);
856
857 static inline bool lu_fid_eq(const struct lu_fid *f0, const struct lu_fid *f1)
858 {
859 return memcmp(f0, f1, sizeof(*f0)) == 0;
860 }
861
862 #define __diff_normalize(val0, val1) \
863 ({ \
864 typeof(val0) __val0 = (val0); \
865 typeof(val1) __val1 = (val1); \
866 \
867 (__val0 == __val1 ? 0 : __val0 > __val1 ? 1 : -1); \
868 })
869
870 static inline int lu_fid_cmp(const struct lu_fid *f0,
871 const struct lu_fid *f1)
872 {
873 return
874 __diff_normalize(fid_seq(f0), fid_seq(f1)) ?:
875 __diff_normalize(fid_oid(f0), fid_oid(f1)) ?:
876 __diff_normalize(fid_ver(f0), fid_ver(f1));
877 }
878
879 static inline void ostid_cpu_to_le(const struct ost_id *src_oi,
880 struct ost_id *dst_oi)
881 {
882 if (fid_seq_is_mdt0(ostid_seq(src_oi))) {
883 dst_oi->oi.oi_id = cpu_to_le64(src_oi->oi.oi_id);
884 dst_oi->oi.oi_seq = cpu_to_le64(src_oi->oi.oi_seq);
885 } else {
886 fid_cpu_to_le(&dst_oi->oi_fid, &src_oi->oi_fid);
887 }
888 }
889
890 static inline void ostid_le_to_cpu(const struct ost_id *src_oi,
891 struct ost_id *dst_oi)
892 {
893 if (fid_seq_is_mdt0(ostid_seq(src_oi))) {
894 dst_oi->oi.oi_id = le64_to_cpu(src_oi->oi.oi_id);
895 dst_oi->oi.oi_seq = le64_to_cpu(src_oi->oi.oi_seq);
896 } else {
897 fid_le_to_cpu(&dst_oi->oi_fid, &src_oi->oi_fid);
898 }
899 }
900
901 /** @} lu_fid */
902
903 /** \defgroup lu_dir lu_dir
904 * @{
905 */
906
907 /**
908 * Enumeration of possible directory entry attributes.
909 *
910 * Attributes follow directory entry header in the order they appear in this
911 * enumeration.
912 */
913 enum lu_dirent_attrs {
914 LUDA_FID = 0x0001,
915 LUDA_TYPE = 0x0002,
916 LUDA_64BITHASH = 0x0004,
917 };
918
919 /**
920 * Layout of readdir pages, as transmitted on wire.
921 */
922 struct lu_dirent {
923 /** valid if LUDA_FID is set. */
924 struct lu_fid lde_fid;
925 /** a unique entry identifier: a hash or an offset. */
926 __u64 lde_hash;
927 /** total record length, including all attributes. */
928 __u16 lde_reclen;
929 /** name length */
930 __u16 lde_namelen;
931 /** optional variable size attributes following this entry.
932 * taken from enum lu_dirent_attrs.
933 */
934 __u32 lde_attrs;
935 /** name is followed by the attributes indicated in ->ldp_attrs, in
936 * their natural order. After the last attribute, padding bytes are
937 * added to make ->lde_reclen a multiple of 8.
938 */
939 char lde_name[0];
940 };
941
942 /*
943 * Definitions of optional directory entry attributes formats.
944 *
945 * Individual attributes do not have their length encoded in a generic way. It
946 * is assumed that consumer of an attribute knows its format. This means that
947 * it is impossible to skip over an unknown attribute, except by skipping over all
948 * remaining attributes (by using ->lde_reclen), which is not too
949 * constraining, because new server versions will append new attributes at
950 * the end of an entry.
951 */
952
953 /**
954 * Fid directory attribute: a fid of an object referenced by the entry. This
955 * will be almost always requested by the client and supplied by the server.
956 *
957 * Aligned to 8 bytes.
958 */
959 /* To have compatibility with 1.8, lets have fid in lu_dirent struct. */
960
961 /**
962 * File type.
963 *
964 * Aligned to 2 bytes.
965 */
966 struct luda_type {
967 __u16 lt_type;
968 };
969
970 #ifndef IFSHIFT
971 #define IFSHIFT 12
972 #endif
973
974 #ifndef IFTODT
975 #define IFTODT(type) (((type) & S_IFMT) >> IFSHIFT)
976 #endif
977 #ifndef DTTOIF
978 #define DTTOIF(dirtype) ((dirtype) << IFSHIFT)
979 #endif
980
981 struct lu_dirpage {
982 __u64 ldp_hash_start;
983 __u64 ldp_hash_end;
984 __u32 ldp_flags;
985 __u32 ldp_pad0;
986 struct lu_dirent ldp_entries[0];
987 };
988
989 enum lu_dirpage_flags {
990 /**
991 * dirpage contains no entry.
992 */
993 LDF_EMPTY = 1 << 0,
994 /**
995 * last entry's lde_hash equals ldp_hash_end.
996 */
997 LDF_COLLIDE = 1 << 1
998 };
999
1000 static inline struct lu_dirent *lu_dirent_start(struct lu_dirpage *dp)
1001 {
1002 if (le32_to_cpu(dp->ldp_flags) & LDF_EMPTY)
1003 return NULL;
1004 else
1005 return dp->ldp_entries;
1006 }
1007
1008 static inline struct lu_dirent *lu_dirent_next(struct lu_dirent *ent)
1009 {
1010 struct lu_dirent *next;
1011
1012 if (le16_to_cpu(ent->lde_reclen) != 0)
1013 next = ((void *)ent) + le16_to_cpu(ent->lde_reclen);
1014 else
1015 next = NULL;
1016
1017 return next;
1018 }
1019
1020 static inline int lu_dirent_calc_size(int namelen, __u16 attr)
1021 {
1022 int size;
1023
1024 if (attr & LUDA_TYPE) {
1025 const unsigned align = sizeof(struct luda_type) - 1;
1026
1027 size = (sizeof(struct lu_dirent) + namelen + align) & ~align;
1028 size += sizeof(struct luda_type);
1029 } else {
1030 size = sizeof(struct lu_dirent) + namelen;
1031 }
1032
1033 return (size + 7) & ~7;
1034 }
1035
1036 static inline int lu_dirent_size(const struct lu_dirent *ent)
1037 {
1038 if (le16_to_cpu(ent->lde_reclen) == 0) {
1039 return lu_dirent_calc_size(le16_to_cpu(ent->lde_namelen),
1040 le32_to_cpu(ent->lde_attrs));
1041 }
1042 return le16_to_cpu(ent->lde_reclen);
1043 }
1044
1045 #define MDS_DIR_END_OFF 0xfffffffffffffffeULL
1046
1047 /**
1048 * MDS_READPAGE page size
1049 *
1050 * This is the directory page size packed in MDS_READPAGE RPC.
1051 * It's different than PAGE_SIZE because the client needs to
1052 * access the struct lu_dirpage header packed at the beginning of
1053 * the "page" and without this there isn't any way to know find the
1054 * lu_dirpage header is if client and server PAGE_SIZE differ.
1055 */
1056 #define LU_PAGE_SHIFT 12
1057 #define LU_PAGE_SIZE (1UL << LU_PAGE_SHIFT)
1058 #define LU_PAGE_MASK (~(LU_PAGE_SIZE - 1))
1059
1060 #define LU_PAGE_COUNT (1 << (PAGE_SHIFT - LU_PAGE_SHIFT))
1061
1062 /** @} lu_dir */
1063
1064 struct lustre_handle {
1065 __u64 cookie;
1066 };
1067
1068 #define DEAD_HANDLE_MAGIC 0xdeadbeefcafebabeULL
1069
1070 static inline bool lustre_handle_is_used(const struct lustre_handle *lh)
1071 {
1072 return lh->cookie != 0ull;
1073 }
1074
1075 static inline bool lustre_handle_equal(const struct lustre_handle *lh1,
1076 const struct lustre_handle *lh2)
1077 {
1078 return lh1->cookie == lh2->cookie;
1079 }
1080
1081 static inline void lustre_handle_copy(struct lustre_handle *tgt,
1082 const struct lustre_handle *src)
1083 {
1084 tgt->cookie = src->cookie;
1085 }
1086
1087 /* flags for lm_flags */
1088 #define MSGHDR_AT_SUPPORT 0x1
1089 #define MSGHDR_CKSUM_INCOMPAT18 0x2
1090
1091 #define lustre_msg lustre_msg_v2
1092 /* we depend on this structure to be 8-byte aligned */
1093 /* this type is only endian-adjusted in lustre_unpack_msg() */
1094 struct lustre_msg_v2 {
1095 __u32 lm_bufcount;
1096 __u32 lm_secflvr;
1097 __u32 lm_magic;
1098 __u32 lm_repsize;
1099 __u32 lm_cksum;
1100 __u32 lm_flags;
1101 __u32 lm_padding_2;
1102 __u32 lm_padding_3;
1103 __u32 lm_buflens[0];
1104 };
1105
1106 /* without gss, ptlrpc_body is put at the first buffer. */
1107 #define PTLRPC_NUM_VERSIONS 4
1108 #define JOBSTATS_JOBID_SIZE 32 /* 32 bytes string */
1109 struct ptlrpc_body_v3 {
1110 struct lustre_handle pb_handle;
1111 __u32 pb_type;
1112 __u32 pb_version;
1113 __u32 pb_opc;
1114 __u32 pb_status;
1115 __u64 pb_last_xid;
1116 __u64 pb_last_seen;
1117 __u64 pb_last_committed;
1118 __u64 pb_transno;
1119 __u32 pb_flags;
1120 __u32 pb_op_flags;
1121 __u32 pb_conn_cnt;
1122 __u32 pb_timeout; /* for req, the deadline, for rep, the service est */
1123 __u32 pb_service_time; /* for rep, actual service time */
1124 __u32 pb_limit;
1125 __u64 pb_slv;
1126 /* VBR: pre-versions */
1127 __u64 pb_pre_versions[PTLRPC_NUM_VERSIONS];
1128 /* padding for future needs */
1129 __u64 pb_padding[4];
1130 char pb_jobid[JOBSTATS_JOBID_SIZE];
1131 };
1132
1133 #define ptlrpc_body ptlrpc_body_v3
1134
1135 struct ptlrpc_body_v2 {
1136 struct lustre_handle pb_handle;
1137 __u32 pb_type;
1138 __u32 pb_version;
1139 __u32 pb_opc;
1140 __u32 pb_status;
1141 __u64 pb_last_xid;
1142 __u64 pb_last_seen;
1143 __u64 pb_last_committed;
1144 __u64 pb_transno;
1145 __u32 pb_flags;
1146 __u32 pb_op_flags;
1147 __u32 pb_conn_cnt;
1148 __u32 pb_timeout; /* for req, the deadline, for rep, the service est */
1149 __u32 pb_service_time; /* for rep, actual service time, also used for
1150 * net_latency of req
1151 */
1152 __u32 pb_limit;
1153 __u64 pb_slv;
1154 /* VBR: pre-versions */
1155 __u64 pb_pre_versions[PTLRPC_NUM_VERSIONS];
1156 /* padding for future needs */
1157 __u64 pb_padding[4];
1158 };
1159
1160 void lustre_swab_ptlrpc_body(struct ptlrpc_body *pb);
1161
1162 /* message body offset for lustre_msg_v2 */
1163 /* ptlrpc body offset in all request/reply messages */
1164 #define MSG_PTLRPC_BODY_OFF 0
1165
1166 /* normal request/reply message record offset */
1167 #define REQ_REC_OFF 1
1168 #define REPLY_REC_OFF 1
1169
1170 /* ldlm request message body offset */
1171 #define DLM_LOCKREQ_OFF 1 /* lockreq offset */
1172 #define DLM_REQ_REC_OFF 2 /* normal dlm request record offset */
1173
1174 /* ldlm intent lock message body offset */
1175 #define DLM_INTENT_IT_OFF 2 /* intent lock it offset */
1176 #define DLM_INTENT_REC_OFF 3 /* intent lock record offset */
1177
1178 /* ldlm reply message body offset */
1179 #define DLM_LOCKREPLY_OFF 1 /* lockrep offset */
1180 #define DLM_REPLY_REC_OFF 2 /* reply record offset */
1181
1182 /** only use in req->rq_{req,rep}_swab_mask */
1183 #define MSG_PTLRPC_HEADER_OFF 31
1184
1185 /* Flags that are operation-specific go in the top 16 bits. */
1186 #define MSG_OP_FLAG_MASK 0xffff0000
1187 #define MSG_OP_FLAG_SHIFT 16
1188
1189 /* Flags that apply to all requests are in the bottom 16 bits */
1190 #define MSG_GEN_FLAG_MASK 0x0000ffff
1191 #define MSG_LAST_REPLAY 0x0001
1192 #define MSG_RESENT 0x0002
1193 #define MSG_REPLAY 0x0004
1194 /* #define MSG_AT_SUPPORT 0x0008
1195 * This was used in early prototypes of adaptive timeouts, and while there
1196 * shouldn't be any users of that code there also isn't a need for using this
1197 * bits. Defer usage until at least 1.10 to avoid potential conflict.
1198 */
1199 #define MSG_DELAY_REPLAY 0x0010
1200 #define MSG_VERSION_REPLAY 0x0020
1201 #define MSG_REQ_REPLAY_DONE 0x0040
1202 #define MSG_LOCK_REPLAY_DONE 0x0080
1203
1204 /*
1205 * Flags for all connect opcodes (MDS_CONNECT, OST_CONNECT)
1206 */
1207
1208 #define MSG_CONNECT_RECOVERING 0x00000001
1209 #define MSG_CONNECT_RECONNECT 0x00000002
1210 #define MSG_CONNECT_REPLAYABLE 0x00000004
1211 /*#define MSG_CONNECT_PEER 0x8 */
1212 #define MSG_CONNECT_LIBCLIENT 0x00000010
1213 #define MSG_CONNECT_INITIAL 0x00000020
1214 #define MSG_CONNECT_ASYNC 0x00000040
1215 #define MSG_CONNECT_NEXT_VER 0x00000080 /* use next version of lustre_msg */
1216 #define MSG_CONNECT_TRANSNO 0x00000100 /* report transno */
1217
1218 /* Connect flags */
1219 #define OBD_CONNECT_RDONLY 0x1ULL /*client has read-only access*/
1220 #define OBD_CONNECT_INDEX 0x2ULL /*connect specific LOV idx */
1221 #define OBD_CONNECT_MDS 0x4ULL /*connect from MDT to OST */
1222 #define OBD_CONNECT_GRANT 0x8ULL /*OSC gets grant at connect */
1223 #define OBD_CONNECT_SRVLOCK 0x10ULL /*server takes locks for cli */
1224 #define OBD_CONNECT_VERSION 0x20ULL /*Lustre versions in ocd */
1225 #define OBD_CONNECT_REQPORTAL 0x40ULL /*Separate non-IO req portal */
1226 #define OBD_CONNECT_ACL 0x80ULL /*access control lists */
1227 #define OBD_CONNECT_XATTR 0x100ULL /*client use extended attr */
1228 #define OBD_CONNECT_CROW 0x200ULL /*MDS+OST create obj on write*/
1229 #define OBD_CONNECT_TRUNCLOCK 0x400ULL /*locks on server for punch */
1230 #define OBD_CONNECT_TRANSNO 0x800ULL /*replay sends init transno */
1231 #define OBD_CONNECT_IBITS 0x1000ULL /*support for inodebits locks*/
1232 #define OBD_CONNECT_JOIN 0x2000ULL /*files can be concatenated.
1233 *We do not support JOIN FILE
1234 *anymore, reserve this flags
1235 *just for preventing such bit
1236 *to be reused.
1237 */
1238 #define OBD_CONNECT_ATTRFID 0x4000ULL /*Server can GetAttr By Fid*/
1239 #define OBD_CONNECT_NODEVOH 0x8000ULL /*No open hndl on specl nodes*/
1240 #define OBD_CONNECT_RMT_CLIENT 0x10000ULL /* Remote client, never used
1241 * in production. Removed in
1242 * 2.9. Keep this flag to
1243 * avoid reuse.
1244 */
1245 #define OBD_CONNECT_RMT_CLIENT_FORCE 0x20000ULL /* Remote client by force,
1246 * never used in production.
1247 * Removed in 2.9. Keep this
1248 * flag to avoid reuse
1249 */
1250 #define OBD_CONNECT_BRW_SIZE 0x40000ULL /*Max bytes per rpc */
1251 #define OBD_CONNECT_QUOTA64 0x80000ULL /*Not used since 2.4 */
1252 #define OBD_CONNECT_MDS_CAPA 0x100000ULL /*MDS capability */
1253 #define OBD_CONNECT_OSS_CAPA 0x200000ULL /*OSS capability */
1254 #define OBD_CONNECT_CANCELSET 0x400000ULL /*Early batched cancels. */
1255 #define OBD_CONNECT_SOM 0x800000ULL /*Size on MDS */
1256 #define OBD_CONNECT_AT 0x1000000ULL /*client uses AT */
1257 #define OBD_CONNECT_LRU_RESIZE 0x2000000ULL /*LRU resize feature. */
1258 #define OBD_CONNECT_MDS_MDS 0x4000000ULL /*MDS-MDS connection */
1259 #define OBD_CONNECT_REAL 0x8000000ULL /*real connection */
1260 #define OBD_CONNECT_CHANGE_QS 0x10000000ULL /*Not used since 2.4 */
1261 #define OBD_CONNECT_CKSUM 0x20000000ULL /*support several cksum algos*/
1262 #define OBD_CONNECT_FID 0x40000000ULL /*FID is supported by server */
1263 #define OBD_CONNECT_VBR 0x80000000ULL /*version based recovery */
1264 #define OBD_CONNECT_LOV_V3 0x100000000ULL /*client supports LOV v3 EA */
1265 #define OBD_CONNECT_GRANT_SHRINK 0x200000000ULL /* support grant shrink */
1266 #define OBD_CONNECT_SKIP_ORPHAN 0x400000000ULL /* don't reuse orphan objids */
1267 #define OBD_CONNECT_MAX_EASIZE 0x800000000ULL /* preserved for large EA */
1268 #define OBD_CONNECT_FULL20 0x1000000000ULL /* it is 2.0 client */
1269 #define OBD_CONNECT_LAYOUTLOCK 0x2000000000ULL /* client uses layout lock */
1270 #define OBD_CONNECT_64BITHASH 0x4000000000ULL /* client supports 64-bits
1271 * directory hash
1272 */
1273 #define OBD_CONNECT_MAXBYTES 0x8000000000ULL /* max stripe size */
1274 #define OBD_CONNECT_IMP_RECOV 0x10000000000ULL /* imp recovery support */
1275 #define OBD_CONNECT_JOBSTATS 0x20000000000ULL /* jobid in ptlrpc_body */
1276 #define OBD_CONNECT_UMASK 0x40000000000ULL /* create uses client umask */
1277 #define OBD_CONNECT_EINPROGRESS 0x80000000000ULL /* client handles -EINPROGRESS
1278 * RPC error properly
1279 */
1280 #define OBD_CONNECT_GRANT_PARAM 0x100000000000ULL/* extra grant params used for
1281 * finer space reservation
1282 */
1283 #define OBD_CONNECT_FLOCK_OWNER 0x200000000000ULL /* for the fixed 1.8
1284 * policy and 2.x server
1285 */
1286 #define OBD_CONNECT_LVB_TYPE 0x400000000000ULL /* variable type of LVB */
1287 #define OBD_CONNECT_NANOSEC_TIME 0x800000000000ULL /* nanosecond timestamps */
1288 #define OBD_CONNECT_LIGHTWEIGHT 0x1000000000000ULL/* lightweight connection */
1289 #define OBD_CONNECT_SHORTIO 0x2000000000000ULL/* short io */
1290 #define OBD_CONNECT_PINGLESS 0x4000000000000ULL/* pings not required */
1291 #define OBD_CONNECT_FLOCK_DEAD 0x8000000000000ULL/* flock deadlock detection */
1292 #define OBD_CONNECT_DISP_STRIPE 0x10000000000000ULL/*create stripe disposition*/
1293 #define OBD_CONNECT_OPEN_BY_FID 0x20000000000000ULL /* open by fid won't pack
1294 * name in request
1295 */
1296
1297 /* XXX README XXX:
1298 * Please DO NOT add flag values here before first ensuring that this same
1299 * flag value is not in use on some other branch. Please clear any such
1300 * changes with senior engineers before starting to use a new flag. Then,
1301 * submit a small patch against EVERY branch that ONLY adds the new flag,
1302 * updates obd_connect_names[] for lprocfs_rd_connect_flags(), adds the
1303 * flag to check_obd_connect_data(), and updates wiretests accordingly, so it
1304 * can be approved and landed easily to reserve the flag for future use.
1305 */
1306
1307 /* The MNE_SWAB flag is overloading the MDS_MDS bit only for the MGS
1308 * connection. It is a temporary bug fix for Imperative Recovery interop
1309 * between 2.2 and 2.3 x86/ppc nodes, and can be removed when interop for
1310 * 2.2 clients/servers is no longer needed. LU-1252/LU-1644.
1311 */
1312 #define OBD_CONNECT_MNE_SWAB OBD_CONNECT_MDS_MDS
1313
1314 #define OCD_HAS_FLAG(ocd, flg) \
1315 (!!((ocd)->ocd_connect_flags & OBD_CONNECT_##flg))
1316
1317 /* Features required for this version of the client to work with server */
1318 #define CLIENT_CONNECT_MDT_REQD (OBD_CONNECT_IBITS | OBD_CONNECT_FID | \
1319 OBD_CONNECT_FULL20)
1320
1321 #define OBD_OCD_VERSION(major, minor, patch, fix) (((major)<<24) + \
1322 ((minor)<<16) + \
1323 ((patch)<<8) + (fix))
1324 #define OBD_OCD_VERSION_MAJOR(version) ((int)((version)>>24)&255)
1325 #define OBD_OCD_VERSION_MINOR(version) ((int)((version)>>16)&255)
1326 #define OBD_OCD_VERSION_PATCH(version) ((int)((version)>>8)&255)
1327 #define OBD_OCD_VERSION_FIX(version) ((int)(version)&255)
1328
1329 /* This structure is used for both request and reply.
1330 *
1331 * If we eventually have separate connect data for different types, which we
1332 * almost certainly will, then perhaps we stick a union in here.
1333 */
1334 struct obd_connect_data_v1 {
1335 __u64 ocd_connect_flags; /* OBD_CONNECT_* per above */
1336 __u32 ocd_version; /* lustre release version number */
1337 __u32 ocd_grant; /* initial cache grant amount (bytes) */
1338 __u32 ocd_index; /* LOV index to connect to */
1339 __u32 ocd_brw_size; /* Maximum BRW size in bytes, must be 2^n */
1340 __u64 ocd_ibits_known; /* inode bits this client understands */
1341 __u8 ocd_blocksize; /* log2 of the backend filesystem blocksize */
1342 __u8 ocd_inodespace; /* log2 of the per-inode space consumption */
1343 __u16 ocd_grant_extent; /* per-extent grant overhead, in 1K blocks */
1344 __u32 ocd_unused; /* also fix lustre_swab_connect */
1345 __u64 ocd_transno; /* first transno from client to be replayed */
1346 __u32 ocd_group; /* MDS group on OST */
1347 __u32 ocd_cksum_types; /* supported checksum algorithms */
1348 __u32 ocd_max_easize; /* How big LOV EA can be on MDS */
1349 __u32 ocd_instance; /* also fix lustre_swab_connect */
1350 __u64 ocd_maxbytes; /* Maximum stripe size in bytes */
1351 };
1352
1353 struct obd_connect_data {
1354 __u64 ocd_connect_flags; /* OBD_CONNECT_* per above */
1355 __u32 ocd_version; /* lustre release version number */
1356 __u32 ocd_grant; /* initial cache grant amount (bytes) */
1357 __u32 ocd_index; /* LOV index to connect to */
1358 __u32 ocd_brw_size; /* Maximum BRW size in bytes */
1359 __u64 ocd_ibits_known; /* inode bits this client understands */
1360 __u8 ocd_blocksize; /* log2 of the backend filesystem blocksize */
1361 __u8 ocd_inodespace; /* log2 of the per-inode space consumption */
1362 __u16 ocd_grant_extent; /* per-extent grant overhead, in 1K blocks */
1363 __u32 ocd_unused; /* also fix lustre_swab_connect */
1364 __u64 ocd_transno; /* first transno from client to be replayed */
1365 __u32 ocd_group; /* MDS group on OST */
1366 __u32 ocd_cksum_types; /* supported checksum algorithms */
1367 __u32 ocd_max_easize; /* How big LOV EA can be on MDS */
1368 __u32 ocd_instance; /* instance # of this target */
1369 __u64 ocd_maxbytes; /* Maximum stripe size in bytes */
1370 /* Fields after ocd_maxbytes are only accessible by the receiver
1371 * if the corresponding flag in ocd_connect_flags is set. Accessing
1372 * any field after ocd_maxbytes on the receiver without a valid flag
1373 * may result in out-of-bound memory access and kernel oops.
1374 */
1375 __u64 padding1; /* added 2.1.0. also fix lustre_swab_connect */
1376 __u64 padding2; /* added 2.1.0. also fix lustre_swab_connect */
1377 __u64 padding3; /* added 2.1.0. also fix lustre_swab_connect */
1378 __u64 padding4; /* added 2.1.0. also fix lustre_swab_connect */
1379 __u64 padding5; /* added 2.1.0. also fix lustre_swab_connect */
1380 __u64 padding6; /* added 2.1.0. also fix lustre_swab_connect */
1381 __u64 padding7; /* added 2.1.0. also fix lustre_swab_connect */
1382 __u64 padding8; /* added 2.1.0. also fix lustre_swab_connect */
1383 __u64 padding9; /* added 2.1.0. also fix lustre_swab_connect */
1384 __u64 paddingA; /* added 2.1.0. also fix lustre_swab_connect */
1385 __u64 paddingB; /* added 2.1.0. also fix lustre_swab_connect */
1386 __u64 paddingC; /* added 2.1.0. also fix lustre_swab_connect */
1387 __u64 paddingD; /* added 2.1.0. also fix lustre_swab_connect */
1388 __u64 paddingE; /* added 2.1.0. also fix lustre_swab_connect */
1389 __u64 paddingF; /* added 2.1.0. also fix lustre_swab_connect */
1390 };
1391
1392 /* XXX README XXX:
1393 * Please DO NOT use any fields here before first ensuring that this same
1394 * field is not in use on some other branch. Please clear any such changes
1395 * with senior engineers before starting to use a new field. Then, submit
1396 * a small patch against EVERY branch that ONLY adds the new field along with
1397 * the matching OBD_CONNECT flag, so that can be approved and landed easily to
1398 * reserve the flag for future use.
1399 */
1400
1401 void lustre_swab_connect(struct obd_connect_data *ocd);
1402
1403 /*
1404 * Supported checksum algorithms. Up to 32 checksum types are supported.
1405 * (32-bit mask stored in obd_connect_data::ocd_cksum_types)
1406 * Please update DECLARE_CKSUM_NAME/OBD_CKSUM_ALL in obd.h when adding a new
1407 * algorithm and also the OBD_FL_CKSUM* flags.
1408 */
1409 enum cksum_type {
1410 OBD_CKSUM_CRC32 = 0x00000001,
1411 OBD_CKSUM_ADLER = 0x00000002,
1412 OBD_CKSUM_CRC32C = 0x00000004,
1413 };
1414
1415 /*
1416 * OST requests: OBDO & OBD request records
1417 */
1418
1419 /* opcodes */
1420 enum ost_cmd {
1421 OST_REPLY = 0, /* reply ? */
1422 OST_GETATTR = 1,
1423 OST_SETATTR = 2,
1424 OST_READ = 3,
1425 OST_WRITE = 4,
1426 OST_CREATE = 5,
1427 OST_DESTROY = 6,
1428 OST_GET_INFO = 7,
1429 OST_CONNECT = 8,
1430 OST_DISCONNECT = 9,
1431 OST_PUNCH = 10,
1432 OST_OPEN = 11,
1433 OST_CLOSE = 12,
1434 OST_STATFS = 13,
1435 OST_SYNC = 16,
1436 OST_SET_INFO = 17,
1437 OST_QUOTACHECK = 18,
1438 OST_QUOTACTL = 19,
1439 OST_QUOTA_ADJUST_QUNIT = 20, /* not used since 2.4 */
1440 OST_LAST_OPC
1441 };
1442 #define OST_FIRST_OPC OST_REPLY
1443
1444 enum obdo_flags {
1445 OBD_FL_INLINEDATA = 0x00000001,
1446 OBD_FL_OBDMDEXISTS = 0x00000002,
1447 OBD_FL_DELORPHAN = 0x00000004, /* if set in o_flags delete orphans */
1448 OBD_FL_NORPC = 0x00000008, /* set in o_flags do in OSC not OST */
1449 OBD_FL_IDONLY = 0x00000010, /* set in o_flags only adjust obj id*/
1450 OBD_FL_RECREATE_OBJS = 0x00000020, /* recreate missing obj */
1451 OBD_FL_DEBUG_CHECK = 0x00000040, /* echo client/server debug check */
1452 OBD_FL_NO_USRQUOTA = 0x00000100, /* the object's owner is over quota */
1453 OBD_FL_NO_GRPQUOTA = 0x00000200, /* the object's group is over quota */
1454 OBD_FL_CREATE_CROW = 0x00000400, /* object should be create on write */
1455 OBD_FL_SRVLOCK = 0x00000800, /* delegate DLM locking to server */
1456 OBD_FL_CKSUM_CRC32 = 0x00001000, /* CRC32 checksum type */
1457 OBD_FL_CKSUM_ADLER = 0x00002000, /* ADLER checksum type */
1458 OBD_FL_CKSUM_CRC32C = 0x00004000, /* CRC32C checksum type */
1459 OBD_FL_CKSUM_RSVD2 = 0x00008000, /* for future cksum types */
1460 OBD_FL_CKSUM_RSVD3 = 0x00010000, /* for future cksum types */
1461 OBD_FL_SHRINK_GRANT = 0x00020000, /* object shrink the grant */
1462 OBD_FL_MMAP = 0x00040000, /* object is mmapped on the client.
1463 * XXX: obsoleted - reserved for old
1464 * clients prior than 2.2
1465 */
1466 OBD_FL_RECOV_RESEND = 0x00080000, /* recoverable resent */
1467 OBD_FL_NOSPC_BLK = 0x00100000, /* no more block space on OST */
1468 OBD_FL_FLUSH = 0x00200000, /* flush pages on the OST */
1469 OBD_FL_SHORT_IO = 0x00400000, /* short io request */
1470
1471 /* Note that while these checksum values are currently separate bits,
1472 * in 2.x we can actually allow all values from 1-31 if we wanted.
1473 */
1474 OBD_FL_CKSUM_ALL = OBD_FL_CKSUM_CRC32 | OBD_FL_CKSUM_ADLER |
1475 OBD_FL_CKSUM_CRC32C,
1476
1477 /* mask for local-only flag, which won't be sent over network */
1478 OBD_FL_LOCAL_MASK = 0xF0000000,
1479 };
1480
1481 /*
1482 * All LOV EA magics should have the same postfix, if some new version
1483 * Lustre instroduces new LOV EA magic, then when down-grade to an old
1484 * Lustre, even though the old version system does not recognizes such
1485 * new magic, it still can distinguish the corrupted cases by checking
1486 * the magic's postfix.
1487 */
1488 #define LOV_MAGIC_MAGIC 0x0BD0
1489 #define LOV_MAGIC_MASK 0xFFFF
1490
1491 #define LOV_MAGIC_V1 (0x0BD10000 | LOV_MAGIC_MAGIC)
1492 #define LOV_MAGIC_JOIN_V1 (0x0BD20000 | LOV_MAGIC_MAGIC)
1493 #define LOV_MAGIC_V3 (0x0BD30000 | LOV_MAGIC_MAGIC)
1494 #define LOV_MAGIC_MIGRATE (0x0BD40000 | LOV_MAGIC_MAGIC)
1495 #define LOV_MAGIC LOV_MAGIC_V1
1496
1497 /*
1498 * magic for fully defined striping
1499 * the idea is that we should have different magics for striping "hints"
1500 * (struct lov_user_md_v[13]) and defined ready-to-use striping (struct
1501 * lov_mds_md_v[13]). at the moment the magics are used in wire protocol,
1502 * we can't just change it w/o long way preparation, but we still need a
1503 * mechanism to allow LOD to differentiate hint versus ready striping.
1504 * so, at the moment we do a trick: MDT knows what to expect from request
1505 * depending on the case (replay uses ready striping, non-replay req uses
1506 * hints), so MDT replaces magic with appropriate one and now LOD can
1507 * easily understand what's inside -bzzz
1508 */
1509 #define LOV_MAGIC_V1_DEF 0x0CD10BD0
1510 #define LOV_MAGIC_V3_DEF 0x0CD30BD0
1511
1512 #define LOV_PATTERN_RAID0 0x001 /* stripes are used round-robin */
1513 #define LOV_PATTERN_RAID1 0x002 /* stripes are mirrors of each other */
1514 #define LOV_PATTERN_FIRST 0x100 /* first stripe is not in round-robin */
1515 #define LOV_PATTERN_CMOBD 0x200
1516
1517 #define LOV_PATTERN_F_MASK 0xffff0000
1518 #define LOV_PATTERN_F_RELEASED 0x80000000 /* HSM released file */
1519
1520 #define lov_pattern(pattern) (pattern & ~LOV_PATTERN_F_MASK)
1521 #define lov_pattern_flags(pattern) (pattern & LOV_PATTERN_F_MASK)
1522
1523 #define lov_ost_data lov_ost_data_v1
1524 struct lov_ost_data_v1 { /* per-stripe data structure (little-endian)*/
1525 struct ost_id l_ost_oi; /* OST object ID */
1526 __u32 l_ost_gen; /* generation of this l_ost_idx */
1527 __u32 l_ost_idx; /* OST index in LOV (lov_tgt_desc->tgts) */
1528 };
1529
1530 #define lov_mds_md lov_mds_md_v1
1531 struct lov_mds_md_v1 { /* LOV EA mds/wire data (little-endian) */
1532 __u32 lmm_magic; /* magic number = LOV_MAGIC_V1 */
1533 __u32 lmm_pattern; /* LOV_PATTERN_RAID0, LOV_PATTERN_RAID1 */
1534 struct ost_id lmm_oi; /* LOV object ID */
1535 __u32 lmm_stripe_size; /* size of stripe in bytes */
1536 /* lmm_stripe_count used to be __u32 */
1537 __u16 lmm_stripe_count; /* num stripes in use for this object */
1538 __u16 lmm_layout_gen; /* layout generation number */
1539 struct lov_ost_data_v1 lmm_objects[0]; /* per-stripe data */
1540 };
1541
1542 /**
1543 * Sigh, because pre-2.4 uses
1544 * struct lov_mds_md_v1 {
1545 * ........
1546 * __u64 lmm_object_id;
1547 * __u64 lmm_object_seq;
1548 * ......
1549 * }
1550 * to identify the LOV(MDT) object, and lmm_object_seq will
1551 * be normal_fid, which make it hard to combine these conversion
1552 * to ostid_to FID. so we will do lmm_oi/fid conversion separately
1553 *
1554 * We can tell the lmm_oi by this way,
1555 * 1.8: lmm_object_id = {inode}, lmm_object_gr = 0
1556 * 2.1: lmm_object_id = {oid < 128k}, lmm_object_seq = FID_SEQ_NORMAL
1557 * 2.4: lmm_oi.f_seq = FID_SEQ_NORMAL, lmm_oi.f_oid = {oid < 128k},
1558 * lmm_oi.f_ver = 0
1559 *
1560 * But currently lmm_oi/lsm_oi does not have any "real" usages,
1561 * except for printing some information, and the user can always
1562 * get the real FID from LMA, besides this multiple case check might
1563 * make swab more complicate. So we will keep using id/seq for lmm_oi.
1564 */
1565
1566 static inline void fid_to_lmm_oi(const struct lu_fid *fid,
1567 struct ost_id *oi)
1568 {
1569 oi->oi.oi_id = fid_oid(fid);
1570 oi->oi.oi_seq = fid_seq(fid);
1571 }
1572
1573 static inline void lmm_oi_set_seq(struct ost_id *oi, __u64 seq)
1574 {
1575 oi->oi.oi_seq = seq;
1576 }
1577
1578 static inline void lmm_oi_set_id(struct ost_id *oi, __u64 oid)
1579 {
1580 oi->oi.oi_id = oid;
1581 }
1582
1583 static inline __u64 lmm_oi_id(const struct ost_id *oi)
1584 {
1585 return oi->oi.oi_id;
1586 }
1587
1588 static inline __u64 lmm_oi_seq(const struct ost_id *oi)
1589 {
1590 return oi->oi.oi_seq;
1591 }
1592
1593 static inline void lmm_oi_le_to_cpu(struct ost_id *dst_oi,
1594 const struct ost_id *src_oi)
1595 {
1596 dst_oi->oi.oi_id = le64_to_cpu(src_oi->oi.oi_id);
1597 dst_oi->oi.oi_seq = le64_to_cpu(src_oi->oi.oi_seq);
1598 }
1599
1600 static inline void lmm_oi_cpu_to_le(struct ost_id *dst_oi,
1601 const struct ost_id *src_oi)
1602 {
1603 dst_oi->oi.oi_id = cpu_to_le64(src_oi->oi.oi_id);
1604 dst_oi->oi.oi_seq = cpu_to_le64(src_oi->oi.oi_seq);
1605 }
1606
1607 /* extern void lustre_swab_lov_mds_md(struct lov_mds_md *llm); */
1608
1609 #define MAX_MD_SIZE \
1610 (sizeof(struct lov_mds_md) + 4 * sizeof(struct lov_ost_data))
1611 #define MIN_MD_SIZE \
1612 (sizeof(struct lov_mds_md) + 1 * sizeof(struct lov_ost_data))
1613
1614 #define XATTR_NAME_ACL_ACCESS "system.posix_acl_access"
1615 #define XATTR_NAME_ACL_DEFAULT "system.posix_acl_default"
1616 #define XATTR_USER_PREFIX "user."
1617 #define XATTR_TRUSTED_PREFIX "trusted."
1618 #define XATTR_SECURITY_PREFIX "security."
1619 #define XATTR_LUSTRE_PREFIX "lustre."
1620
1621 #define XATTR_NAME_LOV "trusted.lov"
1622 #define XATTR_NAME_LMA "trusted.lma"
1623 #define XATTR_NAME_LMV "trusted.lmv"
1624 #define XATTR_NAME_DEFAULT_LMV "trusted.dmv"
1625 #define XATTR_NAME_LINK "trusted.link"
1626 #define XATTR_NAME_FID "trusted.fid"
1627 #define XATTR_NAME_VERSION "trusted.version"
1628 #define XATTR_NAME_SOM "trusted.som"
1629 #define XATTR_NAME_HSM "trusted.hsm"
1630 #define XATTR_NAME_LFSCK_NAMESPACE "trusted.lfsck_namespace"
1631
1632 struct lov_mds_md_v3 { /* LOV EA mds/wire data (little-endian) */
1633 __u32 lmm_magic; /* magic number = LOV_MAGIC_V3 */
1634 __u32 lmm_pattern; /* LOV_PATTERN_RAID0, LOV_PATTERN_RAID1 */
1635 struct ost_id lmm_oi; /* LOV object ID */
1636 __u32 lmm_stripe_size; /* size of stripe in bytes */
1637 /* lmm_stripe_count used to be __u32 */
1638 __u16 lmm_stripe_count; /* num stripes in use for this object */
1639 __u16 lmm_layout_gen; /* layout generation number */
1640 char lmm_pool_name[LOV_MAXPOOLNAME]; /* must be 32bit aligned */
1641 struct lov_ost_data_v1 lmm_objects[0]; /* per-stripe data */
1642 };
1643
1644 static inline __u32 lov_mds_md_size(__u16 stripes, __u32 lmm_magic)
1645 {
1646 if (lmm_magic == LOV_MAGIC_V3)
1647 return sizeof(struct lov_mds_md_v3) +
1648 stripes * sizeof(struct lov_ost_data_v1);
1649 else
1650 return sizeof(struct lov_mds_md_v1) +
1651 stripes * sizeof(struct lov_ost_data_v1);
1652 }
1653
1654 static inline __u32
1655 lov_mds_md_max_stripe_count(size_t buf_size, __u32 lmm_magic)
1656 {
1657 switch (lmm_magic) {
1658 case LOV_MAGIC_V1: {
1659 struct lov_mds_md_v1 lmm;
1660
1661 if (buf_size < sizeof(lmm))
1662 return 0;
1663
1664 return (buf_size - sizeof(lmm)) / sizeof(lmm.lmm_objects[0]);
1665 }
1666 case LOV_MAGIC_V3: {
1667 struct lov_mds_md_v3 lmm;
1668
1669 if (buf_size < sizeof(lmm))
1670 return 0;
1671
1672 return (buf_size - sizeof(lmm)) / sizeof(lmm.lmm_objects[0]);
1673 }
1674 default:
1675 return 0;
1676 }
1677 }
1678
1679 #define OBD_MD_FLID (0x00000001ULL) /* object ID */
1680 #define OBD_MD_FLATIME (0x00000002ULL) /* access time */
1681 #define OBD_MD_FLMTIME (0x00000004ULL) /* data modification time */
1682 #define OBD_MD_FLCTIME (0x00000008ULL) /* change time */
1683 #define OBD_MD_FLSIZE (0x00000010ULL) /* size */
1684 #define OBD_MD_FLBLOCKS (0x00000020ULL) /* allocated blocks count */
1685 #define OBD_MD_FLBLKSZ (0x00000040ULL) /* block size */
1686 #define OBD_MD_FLMODE (0x00000080ULL) /* access bits (mode & ~S_IFMT) */
1687 #define OBD_MD_FLTYPE (0x00000100ULL) /* object type (mode & S_IFMT) */
1688 #define OBD_MD_FLUID (0x00000200ULL) /* user ID */
1689 #define OBD_MD_FLGID (0x00000400ULL) /* group ID */
1690 #define OBD_MD_FLFLAGS (0x00000800ULL) /* flags word */
1691 #define OBD_MD_FLNLINK (0x00002000ULL) /* link count */
1692 #define OBD_MD_FLGENER (0x00004000ULL) /* generation number */
1693 /*#define OBD_MD_FLINLINE (0x00008000ULL) inline data. used until 1.6.5 */
1694 #define OBD_MD_FLRDEV (0x00010000ULL) /* device number */
1695 #define OBD_MD_FLEASIZE (0x00020000ULL) /* extended attribute data */
1696 #define OBD_MD_LINKNAME (0x00040000ULL) /* symbolic link target */
1697 #define OBD_MD_FLHANDLE (0x00080000ULL) /* file/lock handle */
1698 #define OBD_MD_FLCKSUM (0x00100000ULL) /* bulk data checksum */
1699 #define OBD_MD_FLQOS (0x00200000ULL) /* quality of service stats */
1700 /*#define OBD_MD_FLOSCOPQ (0x00400000ULL) osc opaque data, never used */
1701 #define OBD_MD_FLCOOKIE (0x00800000ULL) /* log cancellation cookie */
1702 #define OBD_MD_FLGROUP (0x01000000ULL) /* group */
1703 #define OBD_MD_FLFID (0x02000000ULL) /* ->ost write inline fid */
1704 #define OBD_MD_FLEPOCH (0x04000000ULL) /* ->ost write with ioepoch */
1705 /* ->mds if epoch opens or closes
1706 */
1707 #define OBD_MD_FLGRANT (0x08000000ULL) /* ost preallocation space grant */
1708 #define OBD_MD_FLDIREA (0x10000000ULL) /* dir's extended attribute data */
1709 #define OBD_MD_FLUSRQUOTA (0x20000000ULL) /* over quota flags sent from ost */
1710 #define OBD_MD_FLGRPQUOTA (0x40000000ULL) /* over quota flags sent from ost */
1711 #define OBD_MD_FLMODEASIZE (0x80000000ULL) /* EA size will be changed */
1712
1713 #define OBD_MD_MDS (0x0000000100000000ULL) /* where an inode lives on */
1714 #define OBD_MD_REINT (0x0000000200000000ULL) /* reintegrate oa */
1715 #define OBD_MD_MEA (0x0000000400000000ULL) /* CMD split EA */
1716 #define OBD_MD_TSTATE (0x0000000800000000ULL) /* transient state field */
1717
1718 #define OBD_MD_FLXATTR (0x0000001000000000ULL) /* xattr */
1719 #define OBD_MD_FLXATTRLS (0x0000002000000000ULL) /* xattr list */
1720 #define OBD_MD_FLXATTRRM (0x0000004000000000ULL) /* xattr remove */
1721 #define OBD_MD_FLACL (0x0000008000000000ULL) /* ACL */
1722 /* OBD_MD_FLRMTPERM (0x0000010000000000ULL) remote perm, obsolete */
1723 #define OBD_MD_FLMDSCAPA (0x0000020000000000ULL) /* MDS capability */
1724 #define OBD_MD_FLOSSCAPA (0x0000040000000000ULL) /* OSS capability */
1725 #define OBD_MD_FLCKSPLIT (0x0000080000000000ULL) /* Check split on server */
1726 #define OBD_MD_FLCROSSREF (0x0000100000000000ULL) /* Cross-ref case */
1727 #define OBD_MD_FLGETATTRLOCK (0x0000200000000000ULL) /* Get IOEpoch attributes
1728 * under lock; for xattr
1729 * requests means the
1730 * client holds the lock
1731 */
1732 #define OBD_MD_FLOBJCOUNT (0x0000400000000000ULL) /* for multiple destroy */
1733
1734 /* OBD_MD_FLRMTLSETFACL (0x0001000000000000ULL) lfs lsetfacl, obsolete */
1735 /* OBD_MD_FLRMTLGETFACL (0x0002000000000000ULL) lfs lgetfacl, obsolete */
1736 /* OBD_MD_FLRMTRSETFACL (0x0004000000000000ULL) lfs rsetfacl, obsolete */
1737 /* OBD_MD_FLRMTRGETFACL (0x0008000000000000ULL) lfs rgetfacl, obsolete */
1738
1739 #define OBD_MD_FLDATAVERSION (0x0010000000000000ULL) /* iversion sum */
1740 #define OBD_MD_FLRELEASED (0x0020000000000000ULL) /* file released */
1741
1742 #define OBD_MD_DEFAULT_MEA (0x0040000000000000ULL) /* default MEA */
1743
1744 #define OBD_MD_FLGETATTR (OBD_MD_FLID | OBD_MD_FLATIME | OBD_MD_FLMTIME | \
1745 OBD_MD_FLCTIME | OBD_MD_FLSIZE | OBD_MD_FLBLKSZ | \
1746 OBD_MD_FLMODE | OBD_MD_FLTYPE | OBD_MD_FLUID | \
1747 OBD_MD_FLGID | OBD_MD_FLFLAGS | OBD_MD_FLNLINK | \
1748 OBD_MD_FLGENER | OBD_MD_FLRDEV | OBD_MD_FLGROUP)
1749
1750 #define OBD_MD_FLXATTRALL (OBD_MD_FLXATTR | OBD_MD_FLXATTRLS)
1751
1752 /* don't forget obdo_fid which is way down at the bottom so it can
1753 * come after the definition of llog_cookie
1754 */
1755
1756 enum hss_valid {
1757 HSS_SETMASK = 0x01,
1758 HSS_CLEARMASK = 0x02,
1759 HSS_ARCHIVE_ID = 0x04,
1760 };
1761
1762 struct hsm_state_set {
1763 __u32 hss_valid;
1764 __u32 hss_archive_id;
1765 __u64 hss_setmask;
1766 __u64 hss_clearmask;
1767 };
1768
1769 void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
1770 void lustre_swab_hsm_state_set(struct hsm_state_set *hss);
1771
1772 void lustre_swab_obd_statfs(struct obd_statfs *os);
1773
1774 /* ost_body.data values for OST_BRW */
1775
1776 #define OBD_BRW_READ 0x01
1777 #define OBD_BRW_WRITE 0x02
1778 #define OBD_BRW_RWMASK (OBD_BRW_READ | OBD_BRW_WRITE)
1779 #define OBD_BRW_SYNC 0x08 /* this page is a part of synchronous
1780 * transfer and is not accounted in
1781 * the grant.
1782 */
1783 #define OBD_BRW_CHECK 0x10
1784 #define OBD_BRW_FROM_GRANT 0x20 /* the osc manages this under llite */
1785 #define OBD_BRW_GRANTED 0x40 /* the ost manages this */
1786 #define OBD_BRW_NOCACHE 0x80 /* this page is a part of non-cached IO */
1787 #define OBD_BRW_NOQUOTA 0x100
1788 #define OBD_BRW_SRVLOCK 0x200 /* Client holds no lock over this page */
1789 #define OBD_BRW_ASYNC 0x400 /* Server may delay commit to disk */
1790 #define OBD_BRW_MEMALLOC 0x800 /* Client runs in the "kswapd" context */
1791 #define OBD_BRW_OVER_USRQUOTA 0x1000 /* Running out of user quota */
1792 #define OBD_BRW_OVER_GRPQUOTA 0x2000 /* Running out of group quota */
1793 #define OBD_BRW_SOFT_SYNC 0x4000 /* This flag notifies the server
1794 * that the client is running low on
1795 * space for unstable pages; asking
1796 * it to sync quickly
1797 */
1798
1799 #define OBD_OBJECT_EOF 0xffffffffffffffffULL
1800
1801 #define OST_MIN_PRECREATE 32
1802 #define OST_MAX_PRECREATE 20000
1803
1804 struct obd_ioobj {
1805 struct ost_id ioo_oid; /* object ID, if multi-obj BRW */
1806 __u32 ioo_max_brw; /* low 16 bits were o_mode before 2.4,
1807 * now (PTLRPC_BULK_OPS_COUNT - 1) in
1808 * high 16 bits in 2.4 and later
1809 */
1810 __u32 ioo_bufcnt; /* number of niobufs for this object */
1811 };
1812
1813 #define IOOBJ_MAX_BRW_BITS 16
1814 #define IOOBJ_TYPE_MASK ((1U << IOOBJ_MAX_BRW_BITS) - 1)
1815 #define ioobj_max_brw_get(ioo) (((ioo)->ioo_max_brw >> IOOBJ_MAX_BRW_BITS) + 1)
1816 #define ioobj_max_brw_set(ioo, num) \
1817 do { (ioo)->ioo_max_brw = ((num) - 1) << IOOBJ_MAX_BRW_BITS; } while (0)
1818
1819 void lustre_swab_obd_ioobj(struct obd_ioobj *ioo);
1820
1821 /* multiple of 8 bytes => can array */
1822 struct niobuf_remote {
1823 __u64 offset;
1824 __u32 len;
1825 __u32 flags;
1826 };
1827
1828 void lustre_swab_niobuf_remote(struct niobuf_remote *nbr);
1829
1830 /* lock value block communicated between the filter and llite */
1831
1832 /* OST_LVB_ERR_INIT is needed because the return code in rc is
1833 * negative, i.e. because ((MASK + rc) & MASK) != MASK.
1834 */
1835 #define OST_LVB_ERR_INIT 0xffbadbad80000000ULL
1836 #define OST_LVB_ERR_MASK 0xffbadbad00000000ULL
1837 #define OST_LVB_IS_ERR(blocks) \
1838 ((blocks & OST_LVB_ERR_MASK) == OST_LVB_ERR_MASK)
1839 #define OST_LVB_SET_ERR(blocks, rc) \
1840 do { blocks = OST_LVB_ERR_INIT + rc; } while (0)
1841 #define OST_LVB_GET_ERR(blocks) (int)(blocks - OST_LVB_ERR_INIT)
1842
1843 struct ost_lvb_v1 {
1844 __u64 lvb_size;
1845 __s64 lvb_mtime;
1846 __s64 lvb_atime;
1847 __s64 lvb_ctime;
1848 __u64 lvb_blocks;
1849 };
1850
1851 void lustre_swab_ost_lvb_v1(struct ost_lvb_v1 *lvb);
1852
1853 struct ost_lvb {
1854 __u64 lvb_size;
1855 __s64 lvb_mtime;
1856 __s64 lvb_atime;
1857 __s64 lvb_ctime;
1858 __u64 lvb_blocks;
1859 __u32 lvb_mtime_ns;
1860 __u32 lvb_atime_ns;
1861 __u32 lvb_ctime_ns;
1862 __u32 lvb_padding;
1863 };
1864
1865 void lustre_swab_ost_lvb(struct ost_lvb *lvb);
1866
1867 /*
1868 * lquota data structures
1869 */
1870
1871 /* The lquota_id structure is an union of all the possible identifier types that
1872 * can be used with quota, this includes:
1873 * - 64-bit user ID
1874 * - 64-bit group ID
1875 * - a FID which can be used for per-directory quota in the future
1876 */
1877 union lquota_id {
1878 struct lu_fid qid_fid; /* FID for per-directory quota */
1879 __u64 qid_uid; /* user identifier */
1880 __u64 qid_gid; /* group identifier */
1881 };
1882
1883 /* quotactl management */
1884 struct obd_quotactl {
1885 __u32 qc_cmd;
1886 __u32 qc_type; /* see Q_* flag below */
1887 __u32 qc_id;
1888 __u32 qc_stat;
1889 struct obd_dqinfo qc_dqinfo;
1890 struct obd_dqblk qc_dqblk;
1891 };
1892
1893 void lustre_swab_obd_quotactl(struct obd_quotactl *q);
1894
1895 #define Q_QUOTACHECK 0x800100 /* deprecated as of 2.4 */
1896 #define Q_INITQUOTA 0x800101 /* deprecated as of 2.4 */
1897 #define Q_GETOINFO 0x800102 /* get obd quota info */
1898 #define Q_GETOQUOTA 0x800103 /* get obd quotas */
1899 #define Q_FINVALIDATE 0x800104 /* deprecated as of 2.4 */
1900
1901 #define Q_COPY(out, in, member) (out)->member = (in)->member
1902
1903 #define QCTL_COPY(out, in) \
1904 do { \
1905 Q_COPY(out, in, qc_cmd); \
1906 Q_COPY(out, in, qc_type); \
1907 Q_COPY(out, in, qc_id); \
1908 Q_COPY(out, in, qc_stat); \
1909 Q_COPY(out, in, qc_dqinfo); \
1910 Q_COPY(out, in, qc_dqblk); \
1911 } while (0)
1912
1913 /* Data structures associated with the quota locks */
1914
1915 /* Glimpse descriptor used for the index & per-ID quota locks */
1916 struct ldlm_gl_lquota_desc {
1917 union lquota_id gl_id; /* quota ID subject to the glimpse */
1918 __u64 gl_flags; /* see LQUOTA_FL* below */
1919 __u64 gl_ver; /* new index version */
1920 __u64 gl_hardlimit; /* new hardlimit or qunit value */
1921 __u64 gl_softlimit; /* new softlimit */
1922 __u64 gl_time;
1923 __u64 gl_pad2;
1924 };
1925
1926 /* quota glimpse flags */
1927 #define LQUOTA_FL_EDQUOT 0x1 /* user/group out of quota space on QMT */
1928
1929 /* LVB used with quota (global and per-ID) locks */
1930 struct lquota_lvb {
1931 __u64 lvb_flags; /* see LQUOTA_FL* above */
1932 __u64 lvb_id_may_rel; /* space that might be released later */
1933 __u64 lvb_id_rel; /* space released by the slave for this ID */
1934 __u64 lvb_id_qunit; /* current qunit value */
1935 __u64 lvb_pad1;
1936 };
1937
1938 void lustre_swab_lquota_lvb(struct lquota_lvb *lvb);
1939
1940 /* op codes */
1941 enum quota_cmd {
1942 QUOTA_DQACQ = 601,
1943 QUOTA_DQREL = 602,
1944 QUOTA_LAST_OPC
1945 };
1946 #define QUOTA_FIRST_OPC QUOTA_DQACQ
1947
1948 /*
1949 * MDS REQ RECORDS
1950 */
1951
1952 /* opcodes */
1953 enum mds_cmd {
1954 MDS_GETATTR = 33,
1955 MDS_GETATTR_NAME = 34,
1956 MDS_CLOSE = 35,
1957 MDS_REINT = 36,
1958 MDS_READPAGE = 37,
1959 MDS_CONNECT = 38,
1960 MDS_DISCONNECT = 39,
1961 MDS_GETSTATUS = 40,
1962 MDS_STATFS = 41,
1963 MDS_PIN = 42,
1964 MDS_UNPIN = 43,
1965 MDS_SYNC = 44,
1966 MDS_DONE_WRITING = 45,
1967 MDS_SET_INFO = 46,
1968 MDS_QUOTACHECK = 47,
1969 MDS_QUOTACTL = 48,
1970 MDS_GETXATTR = 49,
1971 MDS_SETXATTR = 50, /* obsolete, now it's MDS_REINT op */
1972 MDS_WRITEPAGE = 51,
1973 MDS_IS_SUBDIR = 52,
1974 MDS_GET_INFO = 53,
1975 MDS_HSM_STATE_GET = 54,
1976 MDS_HSM_STATE_SET = 55,
1977 MDS_HSM_ACTION = 56,
1978 MDS_HSM_PROGRESS = 57,
1979 MDS_HSM_REQUEST = 58,
1980 MDS_HSM_CT_REGISTER = 59,
1981 MDS_HSM_CT_UNREGISTER = 60,
1982 MDS_SWAP_LAYOUTS = 61,
1983 MDS_LAST_OPC
1984 };
1985
1986 #define MDS_FIRST_OPC MDS_GETATTR
1987
1988 /*
1989 * Do not exceed 63
1990 */
1991
1992 enum mdt_reint_cmd {
1993 REINT_SETATTR = 1,
1994 REINT_CREATE = 2,
1995 REINT_LINK = 3,
1996 REINT_UNLINK = 4,
1997 REINT_RENAME = 5,
1998 REINT_OPEN = 6,
1999 REINT_SETXATTR = 7,
2000 REINT_RMENTRY = 8,
2001 REINT_MIGRATE = 9,
2002 REINT_MAX
2003 };
2004
2005 void lustre_swab_generic_32s(__u32 *val);
2006
2007 /* the disposition of the intent outlines what was executed */
2008 #define DISP_IT_EXECD 0x00000001
2009 #define DISP_LOOKUP_EXECD 0x00000002
2010 #define DISP_LOOKUP_NEG 0x00000004
2011 #define DISP_LOOKUP_POS 0x00000008
2012 #define DISP_OPEN_CREATE 0x00000010
2013 #define DISP_OPEN_OPEN 0x00000020
2014 #define DISP_ENQ_COMPLETE 0x00400000 /* obsolete and unused */
2015 #define DISP_ENQ_OPEN_REF 0x00800000
2016 #define DISP_ENQ_CREATE_REF 0x01000000
2017 #define DISP_OPEN_LOCK 0x02000000
2018 #define DISP_OPEN_LEASE 0x04000000
2019 #define DISP_OPEN_STRIPE 0x08000000
2020
2021 /* INODE LOCK PARTS */
2022 #define MDS_INODELOCK_LOOKUP 0x000001 /* For namespace, dentry etc, and also
2023 * was used to protect permission (mode,
2024 * owner, group etc) before 2.4.
2025 */
2026 #define MDS_INODELOCK_UPDATE 0x000002 /* size, links, timestamps */
2027 #define MDS_INODELOCK_OPEN 0x000004 /* For opened files */
2028 #define MDS_INODELOCK_LAYOUT 0x000008 /* for layout */
2029
2030 /* The PERM bit is added int 2.4, and it is used to protect permission(mode,
2031 * owner, group, acl etc), so to separate the permission from LOOKUP lock.
2032 * Because for remote directories(in DNE), these locks will be granted by
2033 * different MDTs(different ldlm namespace).
2034 *
2035 * For local directory, MDT will always grant UPDATE_LOCK|PERM_LOCK together.
2036 * For Remote directory, the master MDT, where the remote directory is, will
2037 * grant UPDATE_LOCK|PERM_LOCK, and the remote MDT, where the name entry is,
2038 * will grant LOOKUP_LOCK.
2039 */
2040 #define MDS_INODELOCK_PERM 0x000010
2041 #define MDS_INODELOCK_XATTR 0x000020 /* extended attributes */
2042
2043 #define MDS_INODELOCK_MAXSHIFT 5
2044 /* This FULL lock is useful to take on unlink sort of operations */
2045 #define MDS_INODELOCK_FULL ((1<<(MDS_INODELOCK_MAXSHIFT+1))-1)
2046
2047 /* NOTE: until Lustre 1.8.7/2.1.1 the fid_ver() was packed into name[2],
2048 * but was moved into name[1] along with the OID to avoid consuming the
2049 * name[2,3] fields that need to be used for the quota id (also a FID).
2050 */
2051 enum {
2052 LUSTRE_RES_ID_SEQ_OFF = 0,
2053 LUSTRE_RES_ID_VER_OID_OFF = 1,
2054 LUSTRE_RES_ID_WAS_VER_OFF = 2, /* see note above */
2055 LUSTRE_RES_ID_QUOTA_SEQ_OFF = 2,
2056 LUSTRE_RES_ID_QUOTA_VER_OID_OFF = 3,
2057 LUSTRE_RES_ID_HSH_OFF = 3
2058 };
2059
2060 #define MDS_STATUS_CONN 1
2061 #define MDS_STATUS_LOV 2
2062
2063 /* mdt_thread_info.mti_flags. */
2064 enum md_op_flags {
2065 /* The flag indicates Size-on-MDS attributes are changed. */
2066 MF_SOM_CHANGE = (1 << 0),
2067 /* Flags indicates an epoch opens or closes. */
2068 MF_EPOCH_OPEN = (1 << 1),
2069 MF_EPOCH_CLOSE = (1 << 2),
2070 MF_MDC_CANCEL_FID1 = (1 << 3),
2071 MF_MDC_CANCEL_FID2 = (1 << 4),
2072 MF_MDC_CANCEL_FID3 = (1 << 5),
2073 MF_MDC_CANCEL_FID4 = (1 << 6),
2074 /* There is a pending attribute update. */
2075 MF_SOM_AU = (1 << 7),
2076 /* Cancel OST locks while getattr OST attributes. */
2077 MF_GETATTR_LOCK = (1 << 8),
2078 MF_GET_MDT_IDX = (1 << 9),
2079 };
2080
2081 #define MF_SOM_LOCAL_FLAGS (MF_SOM_CHANGE | MF_EPOCH_OPEN | MF_EPOCH_CLOSE)
2082
2083 #define LUSTRE_BFLAG_UNCOMMITTED_WRITES 0x1
2084
2085 /* these should be identical to their EXT4_*_FL counterparts, they are
2086 * redefined here only to avoid dragging in fs/ext4/ext4.h
2087 */
2088 #define LUSTRE_SYNC_FL 0x00000008 /* Synchronous updates */
2089 #define LUSTRE_IMMUTABLE_FL 0x00000010 /* Immutable file */
2090 #define LUSTRE_APPEND_FL 0x00000020 /* writes to file may only append */
2091 #define LUSTRE_NOATIME_FL 0x00000080 /* do not update atime */
2092 #define LUSTRE_DIRSYNC_FL 0x00010000 /* dirsync behaviour (dir only) */
2093
2094 /* Convert wire LUSTRE_*_FL to corresponding client local VFS S_* values
2095 * for the client inode i_flags. The LUSTRE_*_FL are the Lustre wire
2096 * protocol equivalents of LDISKFS_*_FL values stored on disk, while
2097 * the S_* flags are kernel-internal values that change between kernel
2098 * versions. These flags are set/cleared via FSFILT_IOC_{GET,SET}_FLAGS.
2099 * See b=16526 for a full history.
2100 */
2101 static inline int ll_ext_to_inode_flags(int flags)
2102 {
2103 return (((flags & LUSTRE_SYNC_FL) ? S_SYNC : 0) |
2104 ((flags & LUSTRE_NOATIME_FL) ? S_NOATIME : 0) |
2105 ((flags & LUSTRE_APPEND_FL) ? S_APPEND : 0) |
2106 ((flags & LUSTRE_DIRSYNC_FL) ? S_DIRSYNC : 0) |
2107 ((flags & LUSTRE_IMMUTABLE_FL) ? S_IMMUTABLE : 0));
2108 }
2109
2110 static inline int ll_inode_to_ext_flags(int iflags)
2111 {
2112 return (((iflags & S_SYNC) ? LUSTRE_SYNC_FL : 0) |
2113 ((iflags & S_NOATIME) ? LUSTRE_NOATIME_FL : 0) |
2114 ((iflags & S_APPEND) ? LUSTRE_APPEND_FL : 0) |
2115 ((iflags & S_DIRSYNC) ? LUSTRE_DIRSYNC_FL : 0) |
2116 ((iflags & S_IMMUTABLE) ? LUSTRE_IMMUTABLE_FL : 0));
2117 }
2118
2119 /* 64 possible states */
2120 enum md_transient_state {
2121 MS_RESTORE = (1 << 0), /* restore is running */
2122 };
2123
2124 struct mdt_body {
2125 struct lu_fid fid1;
2126 struct lu_fid fid2;
2127 struct lustre_handle handle;
2128 __u64 valid;
2129 __u64 size; /* Offset, in the case of MDS_READPAGE */
2130 __s64 mtime;
2131 __s64 atime;
2132 __s64 ctime;
2133 __u64 blocks; /* XID, in the case of MDS_READPAGE */
2134 __u64 ioepoch;
2135 __u64 t_state; /* transient file state defined in
2136 * enum md_transient_state
2137 * was "ino" until 2.4.0
2138 */
2139 __u32 fsuid;
2140 __u32 fsgid;
2141 __u32 capability;
2142 __u32 mode;
2143 __u32 uid;
2144 __u32 gid;
2145 __u32 flags; /* from vfs for pin/unpin, LUSTRE_BFLAG close */
2146 __u32 rdev;
2147 __u32 nlink; /* #bytes to read in the case of MDS_READPAGE */
2148 __u32 unused2; /* was "generation" until 2.4.0 */
2149 __u32 suppgid;
2150 __u32 eadatasize;
2151 __u32 aclsize;
2152 __u32 max_mdsize;
2153 __u32 max_cookiesize;
2154 __u32 uid_h; /* high 32-bits of uid, for FUID */
2155 __u32 gid_h; /* high 32-bits of gid, for FUID */
2156 __u32 padding_5; /* also fix lustre_swab_mdt_body */
2157 __u64 padding_6;
2158 __u64 padding_7;
2159 __u64 padding_8;
2160 __u64 padding_9;
2161 __u64 padding_10;
2162 }; /* 216 */
2163
2164 void lustre_swab_mdt_body(struct mdt_body *b);
2165
2166 struct mdt_ioepoch {
2167 struct lustre_handle handle;
2168 __u64 ioepoch;
2169 __u32 flags;
2170 __u32 padding;
2171 };
2172
2173 void lustre_swab_mdt_ioepoch(struct mdt_ioepoch *b);
2174
2175 /* permissions for md_perm.mp_perm */
2176 enum {
2177 CFS_SETUID_PERM = 0x01,
2178 CFS_SETGID_PERM = 0x02,
2179 CFS_SETGRP_PERM = 0x04,
2180 };
2181
2182 struct mdt_rec_setattr {
2183 __u32 sa_opcode;
2184 __u32 sa_cap;
2185 __u32 sa_fsuid;
2186 __u32 sa_fsuid_h;
2187 __u32 sa_fsgid;
2188 __u32 sa_fsgid_h;
2189 __u32 sa_suppgid;
2190 __u32 sa_suppgid_h;
2191 __u32 sa_padding_1;
2192 __u32 sa_padding_1_h;
2193 struct lu_fid sa_fid;
2194 __u64 sa_valid;
2195 __u32 sa_uid;
2196 __u32 sa_gid;
2197 __u64 sa_size;
2198 __u64 sa_blocks;
2199 __s64 sa_mtime;
2200 __s64 sa_atime;
2201 __s64 sa_ctime;
2202 __u32 sa_attr_flags;
2203 __u32 sa_mode;
2204 __u32 sa_bias; /* some operation flags */
2205 __u32 sa_padding_3;
2206 __u32 sa_padding_4;
2207 __u32 sa_padding_5;
2208 };
2209
2210 void lustre_swab_mdt_rec_setattr(struct mdt_rec_setattr *sa);
2211
2212 /*
2213 * Attribute flags used in mdt_rec_setattr::sa_valid.
2214 * The kernel's #defines for ATTR_* should not be used over the network
2215 * since the client and MDS may run different kernels (see bug 13828)
2216 * Therefore, we should only use MDS_ATTR_* attributes for sa_valid.
2217 */
2218 #define MDS_ATTR_MODE 0x1ULL /* = 1 */
2219 #define MDS_ATTR_UID 0x2ULL /* = 2 */
2220 #define MDS_ATTR_GID 0x4ULL /* = 4 */
2221 #define MDS_ATTR_SIZE 0x8ULL /* = 8 */
2222 #define MDS_ATTR_ATIME 0x10ULL /* = 16 */
2223 #define MDS_ATTR_MTIME 0x20ULL /* = 32 */
2224 #define MDS_ATTR_CTIME 0x40ULL /* = 64 */
2225 #define MDS_ATTR_ATIME_SET 0x80ULL /* = 128 */
2226 #define MDS_ATTR_MTIME_SET 0x100ULL /* = 256 */
2227 #define MDS_ATTR_FORCE 0x200ULL /* = 512, Not a change, but a change it */
2228 #define MDS_ATTR_ATTR_FLAG 0x400ULL /* = 1024 */
2229 #define MDS_ATTR_KILL_SUID 0x800ULL /* = 2048 */
2230 #define MDS_ATTR_KILL_SGID 0x1000ULL /* = 4096 */
2231 #define MDS_ATTR_CTIME_SET 0x2000ULL /* = 8192 */
2232 #define MDS_ATTR_FROM_OPEN 0x4000ULL /* = 16384, called from open path,
2233 * ie O_TRUNC
2234 */
2235 #define MDS_ATTR_BLOCKS 0x8000ULL /* = 32768 */
2236
2237 #define MDS_FMODE_CLOSED 00000000
2238 #define MDS_FMODE_EXEC 00000004
2239 /* IO Epoch is opened on a closed file. */
2240 #define MDS_FMODE_EPOCH 01000000
2241 /* IO Epoch is opened on a file truncate. */
2242 #define MDS_FMODE_TRUNC 02000000
2243 /* Size-on-MDS Attribute Update is pending. */
2244 #define MDS_FMODE_SOM 04000000
2245
2246 #define MDS_OPEN_CREATED 00000010
2247 #define MDS_OPEN_CROSS 00000020
2248
2249 #define MDS_OPEN_CREAT 00000100
2250 #define MDS_OPEN_EXCL 00000200
2251 #define MDS_OPEN_TRUNC 00001000
2252 #define MDS_OPEN_APPEND 00002000
2253 #define MDS_OPEN_SYNC 00010000
2254 #define MDS_OPEN_DIRECTORY 00200000
2255
2256 #define MDS_OPEN_BY_FID 040000000 /* open_by_fid for known object */
2257 #define MDS_OPEN_DELAY_CREATE 0100000000 /* delay initial object create */
2258 #define MDS_OPEN_OWNEROVERRIDE 0200000000 /* NFSD rw-reopen ro file for owner */
2259 #define MDS_OPEN_JOIN_FILE 0400000000 /* open for join file.
2260 * We do not support JOIN FILE
2261 * anymore, reserve this flags
2262 * just for preventing such bit
2263 * to be reused.
2264 */
2265
2266 #define MDS_OPEN_LOCK 04000000000 /* This open requires open lock */
2267 #define MDS_OPEN_HAS_EA 010000000000 /* specify object create pattern */
2268 #define MDS_OPEN_HAS_OBJS 020000000000 /* Just set the EA the obj exist */
2269 #define MDS_OPEN_NORESTORE 0100000000000ULL /* Do not restore file at open */
2270 #define MDS_OPEN_NEWSTRIPE 0200000000000ULL /* New stripe needed (restripe or
2271 * hsm restore) */
2272 #define MDS_OPEN_VOLATILE 0400000000000ULL /* File is volatile = created
2273 unlinked */
2274 #define MDS_OPEN_LEASE 01000000000000ULL /* Open the file and grant lease
2275 * delegation, succeed if it's not
2276 * being opened with conflict mode.
2277 */
2278 #define MDS_OPEN_RELEASE 02000000000000ULL /* Open the file for HSM release */
2279
2280 enum mds_op_bias {
2281 MDS_CHECK_SPLIT = 1 << 0,
2282 MDS_CROSS_REF = 1 << 1,
2283 MDS_VTX_BYPASS = 1 << 2,
2284 MDS_PERM_BYPASS = 1 << 3,
2285 MDS_SOM = 1 << 4,
2286 MDS_QUOTA_IGNORE = 1 << 5,
2287 MDS_CLOSE_CLEANUP = 1 << 6,
2288 MDS_KEEP_ORPHAN = 1 << 7,
2289 MDS_RECOV_OPEN = 1 << 8,
2290 MDS_DATA_MODIFIED = 1 << 9,
2291 MDS_CREATE_VOLATILE = 1 << 10,
2292 MDS_OWNEROVERRIDE = 1 << 11,
2293 MDS_HSM_RELEASE = 1 << 12,
2294 MDS_RENAME_MIGRATE = BIT(13),
2295 };
2296
2297 /* instance of mdt_reint_rec */
2298 struct mdt_rec_create {
2299 __u32 cr_opcode;
2300 __u32 cr_cap;
2301 __u32 cr_fsuid;
2302 __u32 cr_fsuid_h;
2303 __u32 cr_fsgid;
2304 __u32 cr_fsgid_h;
2305 __u32 cr_suppgid1;
2306 __u32 cr_suppgid1_h;
2307 __u32 cr_suppgid2;
2308 __u32 cr_suppgid2_h;
2309 struct lu_fid cr_fid1;
2310 struct lu_fid cr_fid2;
2311 struct lustre_handle cr_old_handle; /* handle in case of open replay */
2312 __s64 cr_time;
2313 __u64 cr_rdev;
2314 __u64 cr_ioepoch;
2315 __u64 cr_padding_1; /* rr_blocks */
2316 __u32 cr_mode;
2317 __u32 cr_bias;
2318 /* use of helpers set/get_mrc_cr_flags() is needed to access
2319 * 64 bits cr_flags [cr_flags_l, cr_flags_h], this is done to
2320 * extend cr_flags size without breaking 1.8 compat
2321 */
2322 __u32 cr_flags_l; /* for use with open, low 32 bits */
2323 __u32 cr_flags_h; /* for use with open, high 32 bits */
2324 __u32 cr_umask; /* umask for create */
2325 __u32 cr_padding_4; /* rr_padding_4 */
2326 };
2327
2328 static inline void set_mrc_cr_flags(struct mdt_rec_create *mrc, __u64 flags)
2329 {
2330 mrc->cr_flags_l = (__u32)(flags & 0xFFFFFFFFUll);
2331 mrc->cr_flags_h = (__u32)(flags >> 32);
2332 }
2333
2334 static inline __u64 get_mrc_cr_flags(struct mdt_rec_create *mrc)
2335 {
2336 return ((__u64)(mrc->cr_flags_l) | ((__u64)mrc->cr_flags_h << 32));
2337 }
2338
2339 /* instance of mdt_reint_rec */
2340 struct mdt_rec_link {
2341 __u32 lk_opcode;
2342 __u32 lk_cap;
2343 __u32 lk_fsuid;
2344 __u32 lk_fsuid_h;
2345 __u32 lk_fsgid;
2346 __u32 lk_fsgid_h;
2347 __u32 lk_suppgid1;
2348 __u32 lk_suppgid1_h;
2349 __u32 lk_suppgid2;
2350 __u32 lk_suppgid2_h;
2351 struct lu_fid lk_fid1;
2352 struct lu_fid lk_fid2;
2353 __s64 lk_time;
2354 __u64 lk_padding_1; /* rr_atime */
2355 __u64 lk_padding_2; /* rr_ctime */
2356 __u64 lk_padding_3; /* rr_size */
2357 __u64 lk_padding_4; /* rr_blocks */
2358 __u32 lk_bias;
2359 __u32 lk_padding_5; /* rr_mode */
2360 __u32 lk_padding_6; /* rr_flags */
2361 __u32 lk_padding_7; /* rr_padding_2 */
2362 __u32 lk_padding_8; /* rr_padding_3 */
2363 __u32 lk_padding_9; /* rr_padding_4 */
2364 };
2365
2366 /* instance of mdt_reint_rec */
2367 struct mdt_rec_unlink {
2368 __u32 ul_opcode;
2369 __u32 ul_cap;
2370 __u32 ul_fsuid;
2371 __u32 ul_fsuid_h;
2372 __u32 ul_fsgid;
2373 __u32 ul_fsgid_h;
2374 __u32 ul_suppgid1;
2375 __u32 ul_suppgid1_h;
2376 __u32 ul_suppgid2;
2377 __u32 ul_suppgid2_h;
2378 struct lu_fid ul_fid1;
2379 struct lu_fid ul_fid2;
2380 __s64 ul_time;
2381 __u64 ul_padding_2; /* rr_atime */
2382 __u64 ul_padding_3; /* rr_ctime */
2383 __u64 ul_padding_4; /* rr_size */
2384 __u64 ul_padding_5; /* rr_blocks */
2385 __u32 ul_bias;
2386 __u32 ul_mode;
2387 __u32 ul_padding_6; /* rr_flags */
2388 __u32 ul_padding_7; /* rr_padding_2 */
2389 __u32 ul_padding_8; /* rr_padding_3 */
2390 __u32 ul_padding_9; /* rr_padding_4 */
2391 };
2392
2393 /* instance of mdt_reint_rec */
2394 struct mdt_rec_rename {
2395 __u32 rn_opcode;
2396 __u32 rn_cap;
2397 __u32 rn_fsuid;
2398 __u32 rn_fsuid_h;
2399 __u32 rn_fsgid;
2400 __u32 rn_fsgid_h;
2401 __u32 rn_suppgid1;
2402 __u32 rn_suppgid1_h;
2403 __u32 rn_suppgid2;
2404 __u32 rn_suppgid2_h;
2405 struct lu_fid rn_fid1;
2406 struct lu_fid rn_fid2;
2407 __s64 rn_time;
2408 __u64 rn_padding_1; /* rr_atime */
2409 __u64 rn_padding_2; /* rr_ctime */
2410 __u64 rn_padding_3; /* rr_size */
2411 __u64 rn_padding_4; /* rr_blocks */
2412 __u32 rn_bias; /* some operation flags */
2413 __u32 rn_mode; /* cross-ref rename has mode */
2414 __u32 rn_padding_5; /* rr_flags */
2415 __u32 rn_padding_6; /* rr_padding_2 */
2416 __u32 rn_padding_7; /* rr_padding_3 */
2417 __u32 rn_padding_8; /* rr_padding_4 */
2418 };
2419
2420 /* instance of mdt_reint_rec */
2421 struct mdt_rec_setxattr {
2422 __u32 sx_opcode;
2423 __u32 sx_cap;
2424 __u32 sx_fsuid;
2425 __u32 sx_fsuid_h;
2426 __u32 sx_fsgid;
2427 __u32 sx_fsgid_h;
2428 __u32 sx_suppgid1;
2429 __u32 sx_suppgid1_h;
2430 __u32 sx_suppgid2;
2431 __u32 sx_suppgid2_h;
2432 struct lu_fid sx_fid;
2433 __u64 sx_padding_1; /* These three are rr_fid2 */
2434 __u32 sx_padding_2;
2435 __u32 sx_padding_3;
2436 __u64 sx_valid;
2437 __s64 sx_time;
2438 __u64 sx_padding_5; /* rr_ctime */
2439 __u64 sx_padding_6; /* rr_size */
2440 __u64 sx_padding_7; /* rr_blocks */
2441 __u32 sx_size;
2442 __u32 sx_flags;
2443 __u32 sx_padding_8; /* rr_flags */
2444 __u32 sx_padding_9; /* rr_padding_2 */
2445 __u32 sx_padding_10; /* rr_padding_3 */
2446 __u32 sx_padding_11; /* rr_padding_4 */
2447 };
2448
2449 /*
2450 * mdt_rec_reint is the template for all mdt_reint_xxx structures.
2451 * Do NOT change the size of various members, otherwise the value
2452 * will be broken in lustre_swab_mdt_rec_reint().
2453 *
2454 * If you add new members in other mdt_reint_xxx structures and need to use the
2455 * rr_padding_x fields, then update lustre_swab_mdt_rec_reint() also.
2456 */
2457 struct mdt_rec_reint {
2458 __u32 rr_opcode;
2459 __u32 rr_cap;
2460 __u32 rr_fsuid;
2461 __u32 rr_fsuid_h;
2462 __u32 rr_fsgid;
2463 __u32 rr_fsgid_h;
2464 __u32 rr_suppgid1;
2465 __u32 rr_suppgid1_h;
2466 __u32 rr_suppgid2;
2467 __u32 rr_suppgid2_h;
2468 struct lu_fid rr_fid1;
2469 struct lu_fid rr_fid2;
2470 __s64 rr_mtime;
2471 __s64 rr_atime;
2472 __s64 rr_ctime;
2473 __u64 rr_size;
2474 __u64 rr_blocks;
2475 __u32 rr_bias;
2476 __u32 rr_mode;
2477 __u32 rr_flags;
2478 __u32 rr_flags_h;
2479 __u32 rr_umask;
2480 __u32 rr_padding_4; /* also fix lustre_swab_mdt_rec_reint */
2481 };
2482
2483 void lustre_swab_mdt_rec_reint(struct mdt_rec_reint *rr);
2484
2485 /* lmv structures */
2486 struct lmv_desc {
2487 __u32 ld_tgt_count; /* how many MDS's */
2488 __u32 ld_active_tgt_count; /* how many active */
2489 __u32 ld_default_stripe_count; /* how many objects are used */
2490 __u32 ld_pattern; /* default hash pattern */
2491 __u64 ld_default_hash_size;
2492 __u64 ld_padding_1; /* also fix lustre_swab_lmv_desc */
2493 __u32 ld_padding_2; /* also fix lustre_swab_lmv_desc */
2494 __u32 ld_qos_maxage; /* in second */
2495 __u32 ld_padding_3; /* also fix lustre_swab_lmv_desc */
2496 __u32 ld_padding_4; /* also fix lustre_swab_lmv_desc */
2497 struct obd_uuid ld_uuid;
2498 };
2499
2500 /* LMV layout EA, and it will be stored both in master and slave object */
2501 struct lmv_mds_md_v1 {
2502 __u32 lmv_magic;
2503 __u32 lmv_stripe_count;
2504 __u32 lmv_master_mdt_index; /* On master object, it is master
2505 * MDT index, on slave object, it
2506 * is stripe index of the slave obj
2507 */
2508 __u32 lmv_hash_type; /* dir stripe policy, i.e. indicate
2509 * which hash function to be used,
2510 * Note: only lower 16 bits is being
2511 * used for now. Higher 16 bits will
2512 * be used to mark the object status,
2513 * for example migrating or dead.
2514 */
2515 __u32 lmv_layout_version; /* Used for directory restriping */
2516 __u32 lmv_padding;
2517 struct lu_fid lmv_master_fid; /* The FID of the master object, which
2518 * is the namespace-visible dir FID
2519 */
2520 char lmv_pool_name[LOV_MAXPOOLNAME]; /* pool name */
2521 struct lu_fid lmv_stripe_fids[0]; /* FIDs for each stripe */
2522 };
2523
2524 #define LMV_MAGIC_V1 0x0CD20CD0 /* normal stripe lmv magic */
2525 #define LMV_MAGIC LMV_MAGIC_V1
2526
2527 /* #define LMV_USER_MAGIC 0x0CD30CD0 */
2528 #define LMV_MAGIC_STRIPE 0x0CD40CD0 /* magic for dir sub_stripe */
2529
2530 /*
2531 *Right now only the lower part(0-16bits) of lmv_hash_type is being used,
2532 * and the higher part will be the flag to indicate the status of object,
2533 * for example the object is being migrated. And the hash function
2534 * might be interpreted differently with different flags.
2535 */
2536 enum lmv_hash_type {
2537 LMV_HASH_TYPE_ALL_CHARS = 1,
2538 LMV_HASH_TYPE_FNV_1A_64 = 2,
2539 };
2540
2541 #define LMV_HASH_TYPE_MASK 0x0000ffff
2542
2543 #define LMV_HASH_FLAG_MIGRATION 0x80000000
2544 #define LMV_HASH_FLAG_DEAD 0x40000000
2545
2546 #define LMV_HASH_NAME_ALL_CHARS "all_char"
2547 #define LMV_HASH_NAME_FNV_1A_64 "fnv_1a_64"
2548
2549 /**
2550 * The FNV-1a hash algorithm is as follows:
2551 * hash = FNV_offset_basis
2552 * for each octet_of_data to be hashed
2553 * hash = hash XOR octet_of_data
2554 * hash = hash × FNV_prime
2555 * return hash
2556 * http://en.wikipedia.org/wiki/Fowler–Noll–Vo_hash_function#FNV-1a_hash
2557 *
2558 * http://www.isthe.com/chongo/tech/comp/fnv/index.html#FNV-reference-source
2559 * FNV_prime is 2^40 + 2^8 + 0xb3 = 0x100000001b3ULL
2560 **/
2561 #define LUSTRE_FNV_1A_64_PRIME 0x100000001b3ULL
2562 #define LUSTRE_FNV_1A_64_OFFSET_BIAS 0xcbf29ce484222325ULL
2563 static inline __u64 lustre_hash_fnv_1a_64(const void *buf, size_t size)
2564 {
2565 __u64 hash = LUSTRE_FNV_1A_64_OFFSET_BIAS;
2566 const unsigned char *p = buf;
2567 size_t i;
2568
2569 for (i = 0; i < size; i++) {
2570 hash ^= p[i];
2571 hash *= LUSTRE_FNV_1A_64_PRIME;
2572 }
2573
2574 return hash;
2575 }
2576
2577 union lmv_mds_md {
2578 __u32 lmv_magic;
2579 struct lmv_mds_md_v1 lmv_md_v1;
2580 struct lmv_user_md lmv_user_md;
2581 };
2582
2583 void lustre_swab_lmv_mds_md(union lmv_mds_md *lmm);
2584
2585 static inline ssize_t lmv_mds_md_size(int stripe_count, unsigned int lmm_magic)
2586 {
2587 ssize_t len = -EINVAL;
2588
2589 switch (lmm_magic) {
2590 case LMV_MAGIC_V1: {
2591 struct lmv_mds_md_v1 *lmm1;
2592
2593 len = sizeof(*lmm1);
2594 len += stripe_count * sizeof(lmm1->lmv_stripe_fids[0]);
2595 break; }
2596 default:
2597 break;
2598 }
2599 return len;
2600 }
2601
2602 static inline int lmv_mds_md_stripe_count_get(const union lmv_mds_md *lmm)
2603 {
2604 switch (le32_to_cpu(lmm->lmv_magic)) {
2605 case LMV_MAGIC_V1:
2606 return le32_to_cpu(lmm->lmv_md_v1.lmv_stripe_count);
2607 case LMV_USER_MAGIC:
2608 return le32_to_cpu(lmm->lmv_user_md.lum_stripe_count);
2609 default:
2610 return -EINVAL;
2611 }
2612 }
2613
2614 static inline int lmv_mds_md_stripe_count_set(union lmv_mds_md *lmm,
2615 unsigned int stripe_count)
2616 {
2617 int rc = 0;
2618
2619 switch (le32_to_cpu(lmm->lmv_magic)) {
2620 case LMV_MAGIC_V1:
2621 lmm->lmv_md_v1.lmv_stripe_count = cpu_to_le32(stripe_count);
2622 break;
2623 case LMV_USER_MAGIC:
2624 lmm->lmv_user_md.lum_stripe_count = cpu_to_le32(stripe_count);
2625 break;
2626 default:
2627 rc = -EINVAL;
2628 break;
2629 }
2630 return rc;
2631 }
2632
2633 enum fld_rpc_opc {
2634 FLD_QUERY = 900,
2635 FLD_READ = 901,
2636 FLD_LAST_OPC,
2637 FLD_FIRST_OPC = FLD_QUERY
2638 };
2639
2640 enum seq_rpc_opc {
2641 SEQ_QUERY = 700,
2642 SEQ_LAST_OPC,
2643 SEQ_FIRST_OPC = SEQ_QUERY
2644 };
2645
2646 enum seq_op {
2647 SEQ_ALLOC_SUPER = 0,
2648 SEQ_ALLOC_META = 1
2649 };
2650
2651 enum fld_op {
2652 FLD_CREATE = 0,
2653 FLD_DELETE = 1,
2654 FLD_LOOKUP = 2,
2655 };
2656
2657 /*
2658 * LOV data structures
2659 */
2660
2661 #define LOV_MAX_UUID_BUFFER_SIZE 8192
2662 /* The size of the buffer the lov/mdc reserves for the
2663 * array of UUIDs returned by the MDS. With the current
2664 * protocol, this will limit the max number of OSTs per LOV
2665 */
2666
2667 #define LOV_DESC_MAGIC 0xB0CCDE5C
2668 #define LOV_DESC_QOS_MAXAGE_DEFAULT 5 /* Seconds */
2669 #define LOV_DESC_STRIPE_SIZE_DEFAULT (1 << LNET_MTU_BITS)
2670
2671 /* LOV settings descriptor (should only contain static info) */
2672 struct lov_desc {
2673 __u32 ld_tgt_count; /* how many OBD's */
2674 __u32 ld_active_tgt_count; /* how many active */
2675 __u32 ld_default_stripe_count; /* how many objects are used */
2676 __u32 ld_pattern; /* default PATTERN_RAID0 */
2677 __u64 ld_default_stripe_size; /* in bytes */
2678 __u64 ld_default_stripe_offset; /* in bytes */
2679 __u32 ld_padding_0; /* unused */
2680 __u32 ld_qos_maxage; /* in second */
2681 __u32 ld_padding_1; /* also fix lustre_swab_lov_desc */
2682 __u32 ld_padding_2; /* also fix lustre_swab_lov_desc */
2683 struct obd_uuid ld_uuid;
2684 };
2685
2686 #define ld_magic ld_active_tgt_count /* for swabbing from llogs */
2687
2688 void lustre_swab_lov_desc(struct lov_desc *ld);
2689
2690 /*
2691 * LDLM requests:
2692 */
2693 /* opcodes -- MUST be distinct from OST/MDS opcodes */
2694 enum ldlm_cmd {
2695 LDLM_ENQUEUE = 101,
2696 LDLM_CONVERT = 102,
2697 LDLM_CANCEL = 103,
2698 LDLM_BL_CALLBACK = 104,
2699 LDLM_CP_CALLBACK = 105,
2700 LDLM_GL_CALLBACK = 106,
2701 LDLM_SET_INFO = 107,
2702 LDLM_LAST_OPC
2703 };
2704 #define LDLM_FIRST_OPC LDLM_ENQUEUE
2705
2706 #define RES_NAME_SIZE 4
2707 struct ldlm_res_id {
2708 __u64 name[RES_NAME_SIZE];
2709 };
2710
2711 #define DLDLMRES "[%#llx:%#llx:%#llx].%llx"
2712 #define PLDLMRES(res) (res)->lr_name.name[0], (res)->lr_name.name[1], \
2713 (res)->lr_name.name[2], (res)->lr_name.name[3]
2714
2715 static inline bool ldlm_res_eq(const struct ldlm_res_id *res0,
2716 const struct ldlm_res_id *res1)
2717 {
2718 return !memcmp(res0, res1, sizeof(*res0));
2719 }
2720
2721 /* lock types */
2722 enum ldlm_mode {
2723 LCK_MINMODE = 0,
2724 LCK_EX = 1,
2725 LCK_PW = 2,
2726 LCK_PR = 4,
2727 LCK_CW = 8,
2728 LCK_CR = 16,
2729 LCK_NL = 32,
2730 LCK_GROUP = 64,
2731 LCK_COS = 128,
2732 LCK_MAXMODE
2733 };
2734
2735 #define LCK_MODE_NUM 8
2736
2737 enum ldlm_type {
2738 LDLM_PLAIN = 10,
2739 LDLM_EXTENT = 11,
2740 LDLM_FLOCK = 12,
2741 LDLM_IBITS = 13,
2742 LDLM_MAX_TYPE
2743 };
2744
2745 #define LDLM_MIN_TYPE LDLM_PLAIN
2746
2747 struct ldlm_extent {
2748 __u64 start;
2749 __u64 end;
2750 __u64 gid;
2751 };
2752
2753 #define LDLM_GID_ANY ((__u64)-1)
2754
2755 static inline int ldlm_extent_overlap(const struct ldlm_extent *ex1,
2756 const struct ldlm_extent *ex2)
2757 {
2758 return (ex1->start <= ex2->end) && (ex2->start <= ex1->end);
2759 }
2760
2761 /* check if @ex1 contains @ex2 */
2762 static inline int ldlm_extent_contain(const struct ldlm_extent *ex1,
2763 const struct ldlm_extent *ex2)
2764 {
2765 return (ex1->start <= ex2->start) && (ex1->end >= ex2->end);
2766 }
2767
2768 struct ldlm_inodebits {
2769 __u64 bits;
2770 };
2771
2772 struct ldlm_flock_wire {
2773 __u64 lfw_start;
2774 __u64 lfw_end;
2775 __u64 lfw_owner;
2776 __u32 lfw_padding;
2777 __u32 lfw_pid;
2778 };
2779
2780 /* it's important that the fields of the ldlm_extent structure match
2781 * the first fields of the ldlm_flock structure because there is only
2782 * one ldlm_swab routine to process the ldlm_policy_data_t union. if
2783 * this ever changes we will need to swab the union differently based
2784 * on the resource type.
2785 */
2786
2787 typedef union {
2788 struct ldlm_extent l_extent;
2789 struct ldlm_flock_wire l_flock;
2790 struct ldlm_inodebits l_inodebits;
2791 } ldlm_wire_policy_data_t;
2792
2793 union ldlm_gl_desc {
2794 struct ldlm_gl_lquota_desc lquota_desc;
2795 };
2796
2797 void lustre_swab_gl_desc(union ldlm_gl_desc *);
2798
2799 struct ldlm_intent {
2800 __u64 opc;
2801 };
2802
2803 void lustre_swab_ldlm_intent(struct ldlm_intent *i);
2804
2805 struct ldlm_resource_desc {
2806 enum ldlm_type lr_type;
2807 __u32 lr_padding; /* also fix lustre_swab_ldlm_resource_desc */
2808 struct ldlm_res_id lr_name;
2809 };
2810
2811 struct ldlm_lock_desc {
2812 struct ldlm_resource_desc l_resource;
2813 enum ldlm_mode l_req_mode;
2814 enum ldlm_mode l_granted_mode;
2815 ldlm_wire_policy_data_t l_policy_data;
2816 };
2817
2818 #define LDLM_LOCKREQ_HANDLES 2
2819 #define LDLM_ENQUEUE_CANCEL_OFF 1
2820
2821 struct ldlm_request {
2822 __u32 lock_flags;
2823 __u32 lock_count;
2824 struct ldlm_lock_desc lock_desc;
2825 struct lustre_handle lock_handle[LDLM_LOCKREQ_HANDLES];
2826 };
2827
2828 void lustre_swab_ldlm_request(struct ldlm_request *rq);
2829
2830 /* If LDLM_ENQUEUE, 1 slot is already occupied, 1 is available.
2831 * Otherwise, 2 are available.
2832 */
2833 #define ldlm_request_bufsize(count, type) \
2834 ({ \
2835 int _avail = LDLM_LOCKREQ_HANDLES; \
2836 _avail -= (type == LDLM_ENQUEUE ? LDLM_ENQUEUE_CANCEL_OFF : 0); \
2837 sizeof(struct ldlm_request) + \
2838 (count > _avail ? count - _avail : 0) * \
2839 sizeof(struct lustre_handle); \
2840 })
2841
2842 struct ldlm_reply {
2843 __u32 lock_flags;
2844 __u32 lock_padding; /* also fix lustre_swab_ldlm_reply */
2845 struct ldlm_lock_desc lock_desc;
2846 struct lustre_handle lock_handle;
2847 __u64 lock_policy_res1;
2848 __u64 lock_policy_res2;
2849 };
2850
2851 void lustre_swab_ldlm_reply(struct ldlm_reply *r);
2852
2853 #define ldlm_flags_to_wire(flags) ((__u32)(flags))
2854 #define ldlm_flags_from_wire(flags) ((__u64)(flags))
2855
2856 /*
2857 * Opcodes for mountconf (mgs and mgc)
2858 */
2859 enum mgs_cmd {
2860 MGS_CONNECT = 250,
2861 MGS_DISCONNECT,
2862 MGS_EXCEPTION, /* node died, etc. */
2863 MGS_TARGET_REG, /* whenever target starts up */
2864 MGS_TARGET_DEL,
2865 MGS_SET_INFO,
2866 MGS_CONFIG_READ,
2867 MGS_LAST_OPC
2868 };
2869 #define MGS_FIRST_OPC MGS_CONNECT
2870
2871 #define MGS_PARAM_MAXLEN 1024
2872 #define KEY_SET_INFO "set_info"
2873
2874 struct mgs_send_param {
2875 char mgs_param[MGS_PARAM_MAXLEN];
2876 };
2877
2878 /* We pass this info to the MGS so it can write config logs */
2879 #define MTI_NAME_MAXLEN 64
2880 #define MTI_PARAM_MAXLEN 4096
2881 #define MTI_NIDS_MAX 32
2882 struct mgs_target_info {
2883 __u32 mti_lustre_ver;
2884 __u32 mti_stripe_index;
2885 __u32 mti_config_ver;
2886 __u32 mti_flags;
2887 __u32 mti_nid_count;
2888 __u32 mti_instance; /* Running instance of target */
2889 char mti_fsname[MTI_NAME_MAXLEN];
2890 char mti_svname[MTI_NAME_MAXLEN];
2891 char mti_uuid[sizeof(struct obd_uuid)];
2892 __u64 mti_nids[MTI_NIDS_MAX]; /* host nids (lnet_nid_t)*/
2893 char mti_params[MTI_PARAM_MAXLEN];
2894 };
2895
2896 void lustre_swab_mgs_target_info(struct mgs_target_info *oinfo);
2897
2898 struct mgs_nidtbl_entry {
2899 __u64 mne_version; /* table version of this entry */
2900 __u32 mne_instance; /* target instance # */
2901 __u32 mne_index; /* target index */
2902 __u32 mne_length; /* length of this entry - by bytes */
2903 __u8 mne_type; /* target type LDD_F_SV_TYPE_OST/MDT */
2904 __u8 mne_nid_type; /* type of nid(mbz). for ipv6. */
2905 __u8 mne_nid_size; /* size of each NID, by bytes */
2906 __u8 mne_nid_count; /* # of NIDs in buffer */
2907 union {
2908 lnet_nid_t nids[0]; /* variable size buffer for NIDs. */
2909 } u;
2910 };
2911
2912 void lustre_swab_mgs_nidtbl_entry(struct mgs_nidtbl_entry *oinfo);
2913
2914 struct mgs_config_body {
2915 char mcb_name[MTI_NAME_MAXLEN]; /* logname */
2916 __u64 mcb_offset; /* next index of config log to request */
2917 __u16 mcb_type; /* type of log: CONFIG_T_[CONFIG|RECOVER] */
2918 __u8 mcb_reserved;
2919 __u8 mcb_bits; /* bits unit size of config log */
2920 __u32 mcb_units; /* # of units for bulk transfer */
2921 };
2922
2923 void lustre_swab_mgs_config_body(struct mgs_config_body *body);
2924
2925 struct mgs_config_res {
2926 __u64 mcr_offset; /* index of last config log */
2927 __u64 mcr_size; /* size of the log */
2928 };
2929
2930 void lustre_swab_mgs_config_res(struct mgs_config_res *body);
2931
2932 /* Config marker flags (in config log) */
2933 #define CM_START 0x01
2934 #define CM_END 0x02
2935 #define CM_SKIP 0x04
2936 #define CM_UPGRADE146 0x08
2937 #define CM_EXCLUDE 0x10
2938 #define CM_START_SKIP (CM_START | CM_SKIP)
2939
2940 struct cfg_marker {
2941 __u32 cm_step; /* aka config version */
2942 __u32 cm_flags;
2943 __u32 cm_vers; /* lustre release version number */
2944 __u32 cm_padding; /* 64 bit align */
2945 __s64 cm_createtime; /*when this record was first created */
2946 __s64 cm_canceltime; /*when this record is no longer valid*/
2947 char cm_tgtname[MTI_NAME_MAXLEN];
2948 char cm_comment[MTI_NAME_MAXLEN];
2949 };
2950
2951 void lustre_swab_cfg_marker(struct cfg_marker *marker, int swab, int size);
2952
2953 /*
2954 * Opcodes for multiple servers.
2955 */
2956
2957 enum obd_cmd {
2958 OBD_PING = 400,
2959 OBD_LOG_CANCEL,
2960 OBD_QC_CALLBACK,
2961 OBD_IDX_READ,
2962 OBD_LAST_OPC
2963 };
2964 #define OBD_FIRST_OPC OBD_PING
2965
2966 /* catalog of log objects */
2967
2968 /** Identifier for a single log object */
2969 struct llog_logid {
2970 struct ost_id lgl_oi;
2971 __u32 lgl_ogen;
2972 } __packed;
2973
2974 /** Records written to the CATALOGS list */
2975 #define CATLIST "CATALOGS"
2976 struct llog_catid {
2977 struct llog_logid lci_logid;
2978 __u32 lci_padding1;
2979 __u32 lci_padding2;
2980 __u32 lci_padding3;
2981 } __packed;
2982
2983 /* Log data record types - there is no specific reason that these need to
2984 * be related to the RPC opcodes, but no reason not to (may be handy later?)
2985 */
2986 #define LLOG_OP_MAGIC 0x10600000
2987 #define LLOG_OP_MASK 0xfff00000
2988
2989 enum llog_op_type {
2990 LLOG_PAD_MAGIC = LLOG_OP_MAGIC | 0x00000,
2991 OST_SZ_REC = LLOG_OP_MAGIC | 0x00f00,
2992 /* OST_RAID1_REC = LLOG_OP_MAGIC | 0x01000, never used */
2993 MDS_UNLINK_REC = LLOG_OP_MAGIC | 0x10000 | (MDS_REINT << 8) |
2994 REINT_UNLINK, /* obsolete after 2.5.0 */
2995 MDS_UNLINK64_REC = LLOG_OP_MAGIC | 0x90000 | (MDS_REINT << 8) |
2996 REINT_UNLINK,
2997 /* MDS_SETATTR_REC = LLOG_OP_MAGIC | 0x12401, obsolete 1.8.0 */
2998 MDS_SETATTR64_REC = LLOG_OP_MAGIC | 0x90000 | (MDS_REINT << 8) |
2999 REINT_SETATTR,
3000 OBD_CFG_REC = LLOG_OP_MAGIC | 0x20000,
3001 /* PTL_CFG_REC = LLOG_OP_MAGIC | 0x30000, obsolete 1.4.0 */
3002 LLOG_GEN_REC = LLOG_OP_MAGIC | 0x40000,
3003 /* LLOG_JOIN_REC = LLOG_OP_MAGIC | 0x50000, obsolete 1.8.0 */
3004 CHANGELOG_REC = LLOG_OP_MAGIC | 0x60000,
3005 CHANGELOG_USER_REC = LLOG_OP_MAGIC | 0x70000,
3006 HSM_AGENT_REC = LLOG_OP_MAGIC | 0x80000,
3007 LLOG_HDR_MAGIC = LLOG_OP_MAGIC | 0x45539,
3008 LLOG_LOGID_MAGIC = LLOG_OP_MAGIC | 0x4553b,
3009 };
3010
3011 #define LLOG_REC_HDR_NEEDS_SWABBING(r) \
3012 (((r)->lrh_type & __swab32(LLOG_OP_MASK)) == __swab32(LLOG_OP_MAGIC))
3013
3014 /** Log record header - stored in little endian order.
3015 * Each record must start with this struct, end with a llog_rec_tail,
3016 * and be a multiple of 256 bits in size.
3017 */
3018 struct llog_rec_hdr {
3019 __u32 lrh_len;
3020 __u32 lrh_index;
3021 __u32 lrh_type;
3022 __u32 lrh_id;
3023 };
3024
3025 struct llog_rec_tail {
3026 __u32 lrt_len;
3027 __u32 lrt_index;
3028 };
3029
3030 /* Where data follow just after header */
3031 #define REC_DATA(ptr) \
3032 ((void *)((char *)ptr + sizeof(struct llog_rec_hdr)))
3033
3034 #define REC_DATA_LEN(rec) \
3035 (rec->lrh_len - sizeof(struct llog_rec_hdr) - \
3036 sizeof(struct llog_rec_tail))
3037
3038 struct llog_logid_rec {
3039 struct llog_rec_hdr lid_hdr;
3040 struct llog_logid lid_id;
3041 __u32 lid_padding1;
3042 __u64 lid_padding2;
3043 __u64 lid_padding3;
3044 struct llog_rec_tail lid_tail;
3045 } __packed;
3046
3047 struct llog_unlink_rec {
3048 struct llog_rec_hdr lur_hdr;
3049 __u64 lur_oid;
3050 __u32 lur_oseq;
3051 __u32 lur_count;
3052 struct llog_rec_tail lur_tail;
3053 } __packed;
3054
3055 struct llog_unlink64_rec {
3056 struct llog_rec_hdr lur_hdr;
3057 struct lu_fid lur_fid;
3058 __u32 lur_count; /* to destroy the lost precreated */
3059 __u32 lur_padding1;
3060 __u64 lur_padding2;
3061 __u64 lur_padding3;
3062 struct llog_rec_tail lur_tail;
3063 } __packed;
3064
3065 struct llog_setattr64_rec {
3066 struct llog_rec_hdr lsr_hdr;
3067 struct ost_id lsr_oi;
3068 __u32 lsr_uid;
3069 __u32 lsr_uid_h;
3070 __u32 lsr_gid;
3071 __u32 lsr_gid_h;
3072 __u64 lsr_padding;
3073 struct llog_rec_tail lsr_tail;
3074 } __packed;
3075
3076 struct llog_size_change_rec {
3077 struct llog_rec_hdr lsc_hdr;
3078 struct ll_fid lsc_fid;
3079 __u32 lsc_ioepoch;
3080 __u32 lsc_padding1;
3081 __u64 lsc_padding2;
3082 __u64 lsc_padding3;
3083 struct llog_rec_tail lsc_tail;
3084 } __packed;
3085
3086 /* changelog llog name, needed by client replicators */
3087 #define CHANGELOG_CATALOG "changelog_catalog"
3088
3089 struct changelog_setinfo {
3090 __u64 cs_recno;
3091 __u32 cs_id;
3092 } __packed;
3093
3094 /** changelog record */
3095 struct llog_changelog_rec {
3096 struct llog_rec_hdr cr_hdr;
3097 struct changelog_rec cr;
3098 struct llog_rec_tail cr_tail; /**< for_sizezof_only */
3099 } __packed;
3100
3101 struct llog_changelog_ext_rec {
3102 struct llog_rec_hdr cr_hdr;
3103 struct changelog_ext_rec cr;
3104 struct llog_rec_tail cr_tail; /**< for_sizezof_only */
3105 } __packed;
3106
3107 struct llog_changelog_user_rec {
3108 struct llog_rec_hdr cur_hdr;
3109 __u32 cur_id;
3110 __u32 cur_padding;
3111 __u64 cur_endrec;
3112 struct llog_rec_tail cur_tail;
3113 } __packed;
3114
3115 enum agent_req_status {
3116 ARS_WAITING,
3117 ARS_STARTED,
3118 ARS_FAILED,
3119 ARS_CANCELED,
3120 ARS_SUCCEED,
3121 };
3122
3123 static inline const char *agent_req_status2name(const enum agent_req_status ars)
3124 {
3125 switch (ars) {
3126 case ARS_WAITING:
3127 return "WAITING";
3128 case ARS_STARTED:
3129 return "STARTED";
3130 case ARS_FAILED:
3131 return "FAILED";
3132 case ARS_CANCELED:
3133 return "CANCELED";
3134 case ARS_SUCCEED:
3135 return "SUCCEED";
3136 default:
3137 return "UNKNOWN";
3138 }
3139 }
3140
3141 static inline bool agent_req_in_final_state(enum agent_req_status ars)
3142 {
3143 return ((ars == ARS_SUCCEED) || (ars == ARS_FAILED) ||
3144 (ars == ARS_CANCELED));
3145 }
3146
3147 struct llog_agent_req_rec {
3148 struct llog_rec_hdr arr_hdr; /**< record header */
3149 __u32 arr_status; /**< status of the request */
3150 /* must match enum
3151 * agent_req_status
3152 */
3153 __u32 arr_archive_id; /**< backend archive number */
3154 __u64 arr_flags; /**< req flags */
3155 __u64 arr_compound_id;/**< compound cookie */
3156 __u64 arr_req_create; /**< req. creation time */
3157 __u64 arr_req_change; /**< req. status change time */
3158 struct hsm_action_item arr_hai; /**< req. to the agent */
3159 struct llog_rec_tail arr_tail; /**< record tail for_sizezof_only */
3160 } __packed;
3161
3162 /* Old llog gen for compatibility */
3163 struct llog_gen {
3164 __u64 mnt_cnt;
3165 __u64 conn_cnt;
3166 } __packed;
3167
3168 struct llog_gen_rec {
3169 struct llog_rec_hdr lgr_hdr;
3170 struct llog_gen lgr_gen;
3171 __u64 padding1;
3172 __u64 padding2;
3173 __u64 padding3;
3174 struct llog_rec_tail lgr_tail;
3175 };
3176
3177 /* On-disk header structure of each log object, stored in little endian order */
3178 #define LLOG_CHUNK_SIZE 8192
3179 #define LLOG_HEADER_SIZE (96)
3180 #define LLOG_BITMAP_BYTES (LLOG_CHUNK_SIZE - LLOG_HEADER_SIZE)
3181
3182 #define LLOG_MIN_REC_SIZE (24) /* round(llog_rec_hdr + llog_rec_tail) */
3183
3184 /* flags for the logs */
3185 enum llog_flag {
3186 LLOG_F_ZAP_WHEN_EMPTY = 0x1,
3187 LLOG_F_IS_CAT = 0x2,
3188 LLOG_F_IS_PLAIN = 0x4,
3189 };
3190
3191 struct llog_log_hdr {
3192 struct llog_rec_hdr llh_hdr;
3193 __s64 llh_timestamp;
3194 __u32 llh_count;
3195 __u32 llh_bitmap_offset;
3196 __u32 llh_size;
3197 __u32 llh_flags;
3198 __u32 llh_cat_idx;
3199 /* for a catalog the first plain slot is next to it */
3200 struct obd_uuid llh_tgtuuid;
3201 __u32 llh_reserved[LLOG_HEADER_SIZE/sizeof(__u32) - 23];
3202 __u32 llh_bitmap[LLOG_BITMAP_BYTES/sizeof(__u32)];
3203 struct llog_rec_tail llh_tail;
3204 } __packed;
3205
3206 #define LLOG_BITMAP_SIZE(llh) (__u32)((llh->llh_hdr.lrh_len - \
3207 llh->llh_bitmap_offset - \
3208 sizeof(llh->llh_tail)) * 8)
3209
3210 /** log cookies are used to reference a specific log file and a record
3211 * therein
3212 */
3213 struct llog_cookie {
3214 struct llog_logid lgc_lgl;
3215 __u32 lgc_subsys;
3216 __u32 lgc_index;
3217 __u32 lgc_padding;
3218 } __packed;
3219
3220 /** llog protocol */
3221 enum llogd_rpc_ops {
3222 LLOG_ORIGIN_HANDLE_CREATE = 501,
3223 LLOG_ORIGIN_HANDLE_NEXT_BLOCK = 502,
3224 LLOG_ORIGIN_HANDLE_READ_HEADER = 503,
3225 LLOG_ORIGIN_HANDLE_WRITE_REC = 504,
3226 LLOG_ORIGIN_HANDLE_CLOSE = 505,
3227 LLOG_ORIGIN_CONNECT = 506,
3228 LLOG_CATINFO = 507, /* deprecated */
3229 LLOG_ORIGIN_HANDLE_PREV_BLOCK = 508,
3230 LLOG_ORIGIN_HANDLE_DESTROY = 509, /* for destroy llog object*/
3231 LLOG_LAST_OPC,
3232 LLOG_FIRST_OPC = LLOG_ORIGIN_HANDLE_CREATE
3233 };
3234
3235 struct llogd_body {
3236 struct llog_logid lgd_logid;
3237 __u32 lgd_ctxt_idx;
3238 __u32 lgd_llh_flags;
3239 __u32 lgd_index;
3240 __u32 lgd_saved_index;
3241 __u32 lgd_len;
3242 __u64 lgd_cur_offset;
3243 } __packed;
3244
3245 struct llogd_conn_body {
3246 struct llog_gen lgdc_gen;
3247 struct llog_logid lgdc_logid;
3248 __u32 lgdc_ctxt_idx;
3249 } __packed;
3250
3251 /* Note: 64-bit types are 64-bit aligned in structure */
3252 struct obdo {
3253 __u64 o_valid; /* hot fields in this obdo */
3254 struct ost_id o_oi;
3255 __u64 o_parent_seq;
3256 __u64 o_size; /* o_size-o_blocks == ost_lvb */
3257 __s64 o_mtime;
3258 __s64 o_atime;
3259 __s64 o_ctime;
3260 __u64 o_blocks; /* brw: cli sent cached bytes */
3261 __u64 o_grant;
3262
3263 /* 32-bit fields start here: keep an even number of them via padding */
3264 __u32 o_blksize; /* optimal IO blocksize */
3265 __u32 o_mode; /* brw: cli sent cache remain */
3266 __u32 o_uid;
3267 __u32 o_gid;
3268 __u32 o_flags;
3269 __u32 o_nlink; /* brw: checksum */
3270 __u32 o_parent_oid;
3271 __u32 o_misc; /* brw: o_dropped */
3272
3273 __u64 o_ioepoch; /* epoch in ost writes */
3274 __u32 o_stripe_idx; /* holds stripe idx */
3275 __u32 o_parent_ver;
3276 struct lustre_handle o_handle; /* brw: lock handle to prolong locks
3277 */
3278 struct llog_cookie o_lcookie; /* destroy: unlink cookie from MDS
3279 */
3280 __u32 o_uid_h;
3281 __u32 o_gid_h;
3282
3283 __u64 o_data_version; /* getattr: sum of iversion for
3284 * each stripe.
3285 * brw: grant space consumed on
3286 * the client for the write
3287 */
3288 __u64 o_padding_4;
3289 __u64 o_padding_5;
3290 __u64 o_padding_6;
3291 };
3292
3293 #define o_dirty o_blocks
3294 #define o_undirty o_mode
3295 #define o_dropped o_misc
3296 #define o_cksum o_nlink
3297 #define o_grant_used o_data_version
3298
3299 static inline void lustre_set_wire_obdo(const struct obd_connect_data *ocd,
3300 struct obdo *wobdo,
3301 const struct obdo *lobdo)
3302 {
3303 *wobdo = *lobdo;
3304 wobdo->o_flags &= ~OBD_FL_LOCAL_MASK;
3305 if (!ocd)
3306 return;
3307
3308 if (unlikely(!(ocd->ocd_connect_flags & OBD_CONNECT_FID)) &&
3309 fid_seq_is_echo(ostid_seq(&lobdo->o_oi))) {
3310 /* Currently OBD_FL_OSTID will only be used when 2.4 echo
3311 * client communicate with pre-2.4 server
3312 */
3313 wobdo->o_oi.oi.oi_id = fid_oid(&lobdo->o_oi.oi_fid);
3314 wobdo->o_oi.oi.oi_seq = fid_seq(&lobdo->o_oi.oi_fid);
3315 }
3316 }
3317
3318 static inline void lustre_get_wire_obdo(const struct obd_connect_data *ocd,
3319 struct obdo *lobdo,
3320 const struct obdo *wobdo)
3321 {
3322 __u32 local_flags = 0;
3323
3324 if (lobdo->o_valid & OBD_MD_FLFLAGS)
3325 local_flags = lobdo->o_flags & OBD_FL_LOCAL_MASK;
3326
3327 *lobdo = *wobdo;
3328 if (local_flags != 0) {
3329 lobdo->o_valid |= OBD_MD_FLFLAGS;
3330 lobdo->o_flags &= ~OBD_FL_LOCAL_MASK;
3331 lobdo->o_flags |= local_flags;
3332 }
3333 if (!ocd)
3334 return;
3335
3336 if (unlikely(!(ocd->ocd_connect_flags & OBD_CONNECT_FID)) &&
3337 fid_seq_is_echo(wobdo->o_oi.oi.oi_seq)) {
3338 /* see above */
3339 lobdo->o_oi.oi_fid.f_seq = wobdo->o_oi.oi.oi_seq;
3340 lobdo->o_oi.oi_fid.f_oid = wobdo->o_oi.oi.oi_id;
3341 lobdo->o_oi.oi_fid.f_ver = 0;
3342 }
3343 }
3344
3345 /* request structure for OST's */
3346 struct ost_body {
3347 struct obdo oa;
3348 };
3349
3350 /* Key for FIEMAP to be used in get_info calls */
3351 struct ll_fiemap_info_key {
3352 char name[8];
3353 struct obdo oa;
3354 struct ll_user_fiemap fiemap;
3355 };
3356
3357 void lustre_swab_ost_body(struct ost_body *b);
3358 void lustre_swab_ost_last_id(__u64 *id);
3359 void lustre_swab_fiemap(struct ll_user_fiemap *fiemap);
3360
3361 void lustre_swab_lov_user_md_v1(struct lov_user_md_v1 *lum);
3362 void lustre_swab_lov_user_md_v3(struct lov_user_md_v3 *lum);
3363 void lustre_swab_lov_user_md_objects(struct lov_user_ost_data *lod,
3364 int stripe_count);
3365 void lustre_swab_lov_mds_md(struct lov_mds_md *lmm);
3366
3367 /* llog_swab.c */
3368 void lustre_swab_llogd_body(struct llogd_body *d);
3369 void lustre_swab_llog_hdr(struct llog_log_hdr *h);
3370 void lustre_swab_llogd_conn_body(struct llogd_conn_body *d);
3371 void lustre_swab_llog_rec(struct llog_rec_hdr *rec);
3372
3373 struct lustre_cfg;
3374 void lustre_swab_lustre_cfg(struct lustre_cfg *lcfg);
3375
3376 /* Functions for dumping PTLRPC fields */
3377 void dump_rniobuf(struct niobuf_remote *rnb);
3378 void dump_ioo(struct obd_ioobj *nb);
3379 void dump_ost_body(struct ost_body *ob);
3380 void dump_rcs(__u32 *rc);
3381
3382 /* security opcodes */
3383 enum sec_cmd {
3384 SEC_CTX_INIT = 801,
3385 SEC_CTX_INIT_CONT = 802,
3386 SEC_CTX_FINI = 803,
3387 SEC_LAST_OPC,
3388 SEC_FIRST_OPC = SEC_CTX_INIT
3389 };
3390
3391 /*
3392 * capa related definitions
3393 */
3394 #define CAPA_HMAC_MAX_LEN 64
3395 #define CAPA_HMAC_KEY_MAX_LEN 56
3396
3397 /* NB take care when changing the sequence of elements this struct,
3398 * because the offset info is used in find_capa()
3399 */
3400 struct lustre_capa {
3401 struct lu_fid lc_fid; /** fid */
3402 __u64 lc_opc; /** operations allowed */
3403 __u64 lc_uid; /** file owner */
3404 __u64 lc_gid; /** file group */
3405 __u32 lc_flags; /** HMAC algorithm & flags */
3406 __u32 lc_keyid; /** key# used for the capability */
3407 __u32 lc_timeout; /** capa timeout value (sec) */
3408 /* FIXME: y2038 time_t overflow: */
3409 __u32 lc_expiry; /** expiry time (sec) */
3410 __u8 lc_hmac[CAPA_HMAC_MAX_LEN]; /** HMAC */
3411 } __packed;
3412
3413 void lustre_swab_lustre_capa(struct lustre_capa *c);
3414
3415 /** lustre_capa::lc_opc */
3416 enum {
3417 CAPA_OPC_BODY_WRITE = 1<<0, /**< write object data */
3418 CAPA_OPC_BODY_READ = 1<<1, /**< read object data */
3419 CAPA_OPC_INDEX_LOOKUP = 1<<2, /**< lookup object fid */
3420 CAPA_OPC_INDEX_INSERT = 1<<3, /**< insert object fid */
3421 CAPA_OPC_INDEX_DELETE = 1<<4, /**< delete object fid */
3422 CAPA_OPC_OSS_WRITE = 1<<5, /**< write oss object data */
3423 CAPA_OPC_OSS_READ = 1<<6, /**< read oss object data */
3424 CAPA_OPC_OSS_TRUNC = 1<<7, /**< truncate oss object */
3425 CAPA_OPC_OSS_DESTROY = 1<<8, /**< destroy oss object */
3426 CAPA_OPC_META_WRITE = 1<<9, /**< write object meta data */
3427 CAPA_OPC_META_READ = 1<<10, /**< read object meta data */
3428 };
3429
3430 #define CAPA_OPC_OSS_RW (CAPA_OPC_OSS_READ | CAPA_OPC_OSS_WRITE)
3431 #define CAPA_OPC_MDS_ONLY \
3432 (CAPA_OPC_BODY_WRITE | CAPA_OPC_BODY_READ | CAPA_OPC_INDEX_LOOKUP | \
3433 CAPA_OPC_INDEX_INSERT | CAPA_OPC_INDEX_DELETE)
3434 #define CAPA_OPC_OSS_ONLY \
3435 (CAPA_OPC_OSS_WRITE | CAPA_OPC_OSS_READ | CAPA_OPC_OSS_TRUNC | \
3436 CAPA_OPC_OSS_DESTROY)
3437 #define CAPA_OPC_MDS_DEFAULT ~CAPA_OPC_OSS_ONLY
3438 #define CAPA_OPC_OSS_DEFAULT ~(CAPA_OPC_MDS_ONLY | CAPA_OPC_OSS_ONLY)
3439
3440 struct lustre_capa_key {
3441 __u64 lk_seq; /**< mds# */
3442 __u32 lk_keyid; /**< key# */
3443 __u32 lk_padding;
3444 __u8 lk_key[CAPA_HMAC_KEY_MAX_LEN]; /**< key */
3445 } __packed;
3446
3447 /** The link ea holds 1 \a link_ea_entry for each hardlink */
3448 #define LINK_EA_MAGIC 0x11EAF1DFUL
3449 struct link_ea_header {
3450 __u32 leh_magic;
3451 __u32 leh_reccount;
3452 __u64 leh_len; /* total size */
3453 /* future use */
3454 __u32 padding1;
3455 __u32 padding2;
3456 };
3457
3458 /** Hardlink data is name and parent fid.
3459 * Stored in this crazy struct for maximum packing and endian-neutrality
3460 */
3461 struct link_ea_entry {
3462 /** __u16 stored big-endian, unaligned */
3463 unsigned char lee_reclen[2];
3464 unsigned char lee_parent_fid[sizeof(struct lu_fid)];
3465 char lee_name[0];
3466 } __packed;
3467
3468 /** fid2path request/reply structure */
3469 struct getinfo_fid2path {
3470 struct lu_fid gf_fid;
3471 __u64 gf_recno;
3472 __u32 gf_linkno;
3473 __u32 gf_pathlen;
3474 char gf_path[0];
3475 } __packed;
3476
3477 void lustre_swab_fid2path(struct getinfo_fid2path *gf);
3478
3479 enum {
3480 LAYOUT_INTENT_ACCESS = 0,
3481 LAYOUT_INTENT_READ = 1,
3482 LAYOUT_INTENT_WRITE = 2,
3483 LAYOUT_INTENT_GLIMPSE = 3,
3484 LAYOUT_INTENT_TRUNC = 4,
3485 LAYOUT_INTENT_RELEASE = 5,
3486 LAYOUT_INTENT_RESTORE = 6
3487 };
3488
3489 /* enqueue layout lock with intent */
3490 struct layout_intent {
3491 __u32 li_opc; /* intent operation for enqueue, read, write etc */
3492 __u32 li_flags;
3493 __u64 li_start;
3494 __u64 li_end;
3495 };
3496
3497 void lustre_swab_layout_intent(struct layout_intent *li);
3498
3499 /**
3500 * On the wire version of hsm_progress structure.
3501 *
3502 * Contains the userspace hsm_progress and some internal fields.
3503 */
3504 struct hsm_progress_kernel {
3505 /* Field taken from struct hsm_progress */
3506 struct lu_fid hpk_fid;
3507 __u64 hpk_cookie;
3508 struct hsm_extent hpk_extent;
3509 __u16 hpk_flags;
3510 __u16 hpk_errval; /* positive val */
3511 __u32 hpk_padding1;
3512 /* Additional fields */
3513 __u64 hpk_data_version;
3514 __u64 hpk_padding2;
3515 } __packed;
3516
3517 void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
3518 void lustre_swab_hsm_current_action(struct hsm_current_action *action);
3519 void lustre_swab_hsm_progress_kernel(struct hsm_progress_kernel *hpk);
3520 void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
3521 void lustre_swab_hsm_user_item(struct hsm_user_item *hui);
3522 void lustre_swab_hsm_request(struct hsm_request *hr);
3523
3524 /** layout swap request structure
3525 * fid1 and fid2 are in mdt_body
3526 */
3527 struct mdc_swap_layouts {
3528 __u64 msl_flags;
3529 } __packed;
3530
3531 void lustre_swab_swap_layouts(struct mdc_swap_layouts *msl);
3532
3533 struct close_data {
3534 struct lustre_handle cd_handle;
3535 struct lu_fid cd_fid;
3536 __u64 cd_data_version;
3537 __u64 cd_reserved[8];
3538 };
3539
3540 void lustre_swab_close_data(struct close_data *data);
3541
3542 #endif
3543 /** @} lustreidl */