]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/staging/lustre/lustre/llite/rw.c
Merge tag 'pinctrl-v4.1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[mirror_ubuntu-zesty-kernel.git] / drivers / staging / lustre / lustre / llite / rw.c
1 /*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26 /*
27 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2011, 2012, Intel Corporation.
31 */
32 /*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 *
36 * lustre/llite/rw.c
37 *
38 * Lustre Lite I/O page cache routines shared by different kernel revs
39 */
40
41 #include <linux/kernel.h>
42 #include <linux/mm.h>
43 #include <linux/string.h>
44 #include <linux/stat.h>
45 #include <linux/errno.h>
46 #include <linux/unistd.h>
47 #include <linux/writeback.h>
48 #include <linux/uaccess.h>
49
50 #include <linux/fs.h>
51 #include <linux/pagemap.h>
52 /* current_is_kswapd() */
53 #include <linux/swap.h>
54
55 #define DEBUG_SUBSYSTEM S_LLITE
56
57 #include "../include/lustre_lite.h"
58 #include "../include/obd_cksum.h"
59 #include "llite_internal.h"
60 #include "../include/linux/lustre_compat25.h"
61
62 /**
63 * Finalizes cl-data before exiting typical address_space operation. Dual to
64 * ll_cl_init().
65 */
66 static void ll_cl_fini(struct ll_cl_context *lcc)
67 {
68 struct lu_env *env = lcc->lcc_env;
69 struct cl_io *io = lcc->lcc_io;
70 struct cl_page *page = lcc->lcc_page;
71
72 LASSERT(lcc->lcc_cookie == current);
73 LASSERT(env != NULL);
74
75 if (page != NULL) {
76 lu_ref_del(&page->cp_reference, "cl_io", io);
77 cl_page_put(env, page);
78 }
79
80 cl_env_put(env, &lcc->lcc_refcheck);
81 }
82
83 /**
84 * Initializes common cl-data at the typical address_space operation entry
85 * point.
86 */
87 static struct ll_cl_context *ll_cl_init(struct file *file,
88 struct page *vmpage, int create)
89 {
90 struct ll_cl_context *lcc;
91 struct lu_env *env;
92 struct cl_io *io;
93 struct cl_object *clob;
94 struct ccc_io *cio;
95
96 int refcheck;
97 int result = 0;
98
99 clob = ll_i2info(vmpage->mapping->host)->lli_clob;
100 LASSERT(clob != NULL);
101
102 env = cl_env_get(&refcheck);
103 if (IS_ERR(env))
104 return ERR_CAST(env);
105
106 lcc = &vvp_env_info(env)->vti_io_ctx;
107 memset(lcc, 0, sizeof(*lcc));
108 lcc->lcc_env = env;
109 lcc->lcc_refcheck = refcheck;
110 lcc->lcc_cookie = current;
111
112 cio = ccc_env_io(env);
113 io = cio->cui_cl.cis_io;
114 if (io == NULL && create) {
115 struct inode *inode = vmpage->mapping->host;
116 loff_t pos;
117
118 if (mutex_trylock(&inode->i_mutex)) {
119 mutex_unlock(&(inode)->i_mutex);
120
121 /* this is too bad. Someone is trying to write the
122 * page w/o holding inode mutex. This means we can
123 * add dirty pages into cache during truncate */
124 CERROR("Proc %s is dirtying page w/o inode lock, this will break truncate\n",
125 current->comm);
126 dump_stack();
127 LBUG();
128 return ERR_PTR(-EIO);
129 }
130
131 /*
132 * Loop-back driver calls ->prepare_write().
133 * methods directly, bypassing file system ->write() operation,
134 * so cl_io has to be created here.
135 */
136 io = ccc_env_thread_io(env);
137 ll_io_init(io, file, 1);
138
139 /* No lock at all for this kind of IO - we can't do it because
140 * we have held page lock, it would cause deadlock.
141 * XXX: This causes poor performance to loop device - One page
142 * per RPC.
143 * In order to get better performance, users should use
144 * lloop driver instead.
145 */
146 io->ci_lockreq = CILR_NEVER;
147
148 pos = vmpage->index << PAGE_CACHE_SHIFT;
149
150 /* Create a temp IO to serve write. */
151 result = cl_io_rw_init(env, io, CIT_WRITE, pos, PAGE_CACHE_SIZE);
152 if (result == 0) {
153 cio->cui_fd = LUSTRE_FPRIVATE(file);
154 cio->cui_iter = NULL;
155 result = cl_io_iter_init(env, io);
156 if (result == 0) {
157 result = cl_io_lock(env, io);
158 if (result == 0)
159 result = cl_io_start(env, io);
160 }
161 } else
162 result = io->ci_result;
163 }
164
165 lcc->lcc_io = io;
166 if (io == NULL)
167 result = -EIO;
168 if (result == 0) {
169 struct cl_page *page;
170
171 LASSERT(io != NULL);
172 LASSERT(io->ci_state == CIS_IO_GOING);
173 LASSERT(cio->cui_fd == LUSTRE_FPRIVATE(file));
174 page = cl_page_find(env, clob, vmpage->index, vmpage,
175 CPT_CACHEABLE);
176 if (!IS_ERR(page)) {
177 lcc->lcc_page = page;
178 lu_ref_add(&page->cp_reference, "cl_io", io);
179 result = 0;
180 } else
181 result = PTR_ERR(page);
182 }
183 if (result) {
184 ll_cl_fini(lcc);
185 lcc = ERR_PTR(result);
186 }
187
188 CDEBUG(D_VFSTRACE, "%lu@"DFID" -> %d %p %p\n",
189 vmpage->index, PFID(lu_object_fid(&clob->co_lu)), result,
190 env, io);
191 return lcc;
192 }
193
194 static struct ll_cl_context *ll_cl_get(void)
195 {
196 struct ll_cl_context *lcc;
197 struct lu_env *env;
198 int refcheck;
199
200 env = cl_env_get(&refcheck);
201 LASSERT(!IS_ERR(env));
202 lcc = &vvp_env_info(env)->vti_io_ctx;
203 LASSERT(env == lcc->lcc_env);
204 LASSERT(current == lcc->lcc_cookie);
205 cl_env_put(env, &refcheck);
206
207 /* env has got in ll_cl_init, so it is still usable. */
208 return lcc;
209 }
210
211 /**
212 * ->prepare_write() address space operation called by generic_file_write()
213 * for every page during write.
214 */
215 int ll_prepare_write(struct file *file, struct page *vmpage, unsigned from,
216 unsigned to)
217 {
218 struct ll_cl_context *lcc;
219 int result;
220
221 lcc = ll_cl_init(file, vmpage, 1);
222 if (!IS_ERR(lcc)) {
223 struct lu_env *env = lcc->lcc_env;
224 struct cl_io *io = lcc->lcc_io;
225 struct cl_page *page = lcc->lcc_page;
226
227 cl_page_assume(env, io, page);
228
229 result = cl_io_prepare_write(env, io, page, from, to);
230 if (result == 0) {
231 /*
232 * Add a reference, so that page is not evicted from
233 * the cache until ->commit_write() is called.
234 */
235 cl_page_get(page);
236 lu_ref_add(&page->cp_reference, "prepare_write",
237 current);
238 } else {
239 cl_page_unassume(env, io, page);
240 ll_cl_fini(lcc);
241 }
242 /* returning 0 in prepare assumes commit must be called
243 * afterwards */
244 } else {
245 result = PTR_ERR(lcc);
246 }
247 return result;
248 }
249
250 int ll_commit_write(struct file *file, struct page *vmpage, unsigned from,
251 unsigned to)
252 {
253 struct ll_cl_context *lcc;
254 struct lu_env *env;
255 struct cl_io *io;
256 struct cl_page *page;
257 int result = 0;
258
259 lcc = ll_cl_get();
260 env = lcc->lcc_env;
261 page = lcc->lcc_page;
262 io = lcc->lcc_io;
263
264 LASSERT(cl_page_is_owned(page, io));
265 LASSERT(from <= to);
266 if (from != to) /* handle short write case. */
267 result = cl_io_commit_write(env, io, page, from, to);
268 if (cl_page_is_owned(page, io))
269 cl_page_unassume(env, io, page);
270
271 /*
272 * Release reference acquired by ll_prepare_write().
273 */
274 lu_ref_del(&page->cp_reference, "prepare_write", current);
275 cl_page_put(env, page);
276 ll_cl_fini(lcc);
277 return result;
278 }
279
280 struct obd_capa *cl_capa_lookup(struct inode *inode, enum cl_req_type crt)
281 {
282 __u64 opc;
283
284 opc = crt == CRT_WRITE ? CAPA_OPC_OSS_WRITE : CAPA_OPC_OSS_RW;
285 return ll_osscapa_get(inode, opc);
286 }
287
288 static void ll_ra_stats_inc_sbi(struct ll_sb_info *sbi, enum ra_stat which);
289
290 /**
291 * Get readahead pages from the filesystem readahead pool of the client for a
292 * thread.
293 *
294 * /param sbi superblock for filesystem readahead state ll_ra_info
295 * /param ria per-thread readahead state
296 * /param pages number of pages requested for readahead for the thread.
297 *
298 * WARNING: This algorithm is used to reduce contention on sbi->ll_lock.
299 * It should work well if the ra_max_pages is much greater than the single
300 * file's read-ahead window, and not too many threads contending for
301 * these readahead pages.
302 *
303 * TODO: There may be a 'global sync problem' if many threads are trying
304 * to get an ra budget that is larger than the remaining readahead pages
305 * and reach here at exactly the same time. They will compute /a ret to
306 * consume the remaining pages, but will fail at atomic_add_return() and
307 * get a zero ra window, although there is still ra space remaining. - Jay */
308
309 static unsigned long ll_ra_count_get(struct ll_sb_info *sbi,
310 struct ra_io_arg *ria,
311 unsigned long pages)
312 {
313 struct ll_ra_info *ra = &sbi->ll_ra_info;
314 long ret;
315
316 /* If read-ahead pages left are less than 1M, do not do read-ahead,
317 * otherwise it will form small read RPC(< 1M), which hurt server
318 * performance a lot. */
319 ret = min(ra->ra_max_pages - atomic_read(&ra->ra_cur_pages), pages);
320 if (ret < 0 || ret < min_t(long, PTLRPC_MAX_BRW_PAGES, pages)) {
321 ret = 0;
322 goto out;
323 }
324
325 /* If the non-strided (ria_pages == 0) readahead window
326 * (ria_start + ret) has grown across an RPC boundary, then trim
327 * readahead size by the amount beyond the RPC so it ends on an
328 * RPC boundary. If the readahead window is already ending on
329 * an RPC boundary (beyond_rpc == 0), or smaller than a full
330 * RPC (beyond_rpc < ret) the readahead size is unchanged.
331 * The (beyond_rpc != 0) check is skipped since the conditional
332 * branch is more expensive than subtracting zero from the result.
333 *
334 * Strided read is left unaligned to avoid small fragments beyond
335 * the RPC boundary from needing an extra read RPC. */
336 if (ria->ria_pages == 0) {
337 long beyond_rpc = (ria->ria_start + ret) % PTLRPC_MAX_BRW_PAGES;
338 if (/* beyond_rpc != 0 && */ beyond_rpc < ret)
339 ret -= beyond_rpc;
340 }
341
342 if (atomic_add_return(ret, &ra->ra_cur_pages) > ra->ra_max_pages) {
343 atomic_sub(ret, &ra->ra_cur_pages);
344 ret = 0;
345 }
346
347 out:
348 return ret;
349 }
350
351 void ll_ra_count_put(struct ll_sb_info *sbi, unsigned long len)
352 {
353 struct ll_ra_info *ra = &sbi->ll_ra_info;
354 atomic_sub(len, &ra->ra_cur_pages);
355 }
356
357 static void ll_ra_stats_inc_sbi(struct ll_sb_info *sbi, enum ra_stat which)
358 {
359 LASSERTF(which >= 0 && which < _NR_RA_STAT, "which: %u\n", which);
360 lprocfs_counter_incr(sbi->ll_ra_stats, which);
361 }
362
363 void ll_ra_stats_inc(struct address_space *mapping, enum ra_stat which)
364 {
365 struct ll_sb_info *sbi = ll_i2sbi(mapping->host);
366 ll_ra_stats_inc_sbi(sbi, which);
367 }
368
369 #define RAS_CDEBUG(ras) \
370 CDEBUG(D_READA, \
371 "lrp %lu cr %lu cp %lu ws %lu wl %lu nra %lu r %lu ri %lu" \
372 "csr %lu sf %lu sp %lu sl %lu \n", \
373 ras->ras_last_readpage, ras->ras_consecutive_requests, \
374 ras->ras_consecutive_pages, ras->ras_window_start, \
375 ras->ras_window_len, ras->ras_next_readahead, \
376 ras->ras_requests, ras->ras_request_index, \
377 ras->ras_consecutive_stride_requests, ras->ras_stride_offset, \
378 ras->ras_stride_pages, ras->ras_stride_length)
379
380 static int index_in_window(unsigned long index, unsigned long point,
381 unsigned long before, unsigned long after)
382 {
383 unsigned long start = point - before, end = point + after;
384
385 if (start > point)
386 start = 0;
387 if (end < point)
388 end = ~0;
389
390 return start <= index && index <= end;
391 }
392
393 static struct ll_readahead_state *ll_ras_get(struct file *f)
394 {
395 struct ll_file_data *fd;
396
397 fd = LUSTRE_FPRIVATE(f);
398 return &fd->fd_ras;
399 }
400
401 void ll_ra_read_in(struct file *f, struct ll_ra_read *rar)
402 {
403 struct ll_readahead_state *ras;
404
405 ras = ll_ras_get(f);
406
407 spin_lock(&ras->ras_lock);
408 ras->ras_requests++;
409 ras->ras_request_index = 0;
410 ras->ras_consecutive_requests++;
411 rar->lrr_reader = current;
412
413 list_add(&rar->lrr_linkage, &ras->ras_read_beads);
414 spin_unlock(&ras->ras_lock);
415 }
416
417 void ll_ra_read_ex(struct file *f, struct ll_ra_read *rar)
418 {
419 struct ll_readahead_state *ras;
420
421 ras = ll_ras_get(f);
422
423 spin_lock(&ras->ras_lock);
424 list_del_init(&rar->lrr_linkage);
425 spin_unlock(&ras->ras_lock);
426 }
427
428 static struct ll_ra_read *ll_ra_read_get_locked(struct ll_readahead_state *ras)
429 {
430 struct ll_ra_read *scan;
431
432 list_for_each_entry(scan, &ras->ras_read_beads, lrr_linkage) {
433 if (scan->lrr_reader == current)
434 return scan;
435 }
436 return NULL;
437 }
438
439 struct ll_ra_read *ll_ra_read_get(struct file *f)
440 {
441 struct ll_readahead_state *ras;
442 struct ll_ra_read *bead;
443
444 ras = ll_ras_get(f);
445
446 spin_lock(&ras->ras_lock);
447 bead = ll_ra_read_get_locked(ras);
448 spin_unlock(&ras->ras_lock);
449 return bead;
450 }
451
452 static int cl_read_ahead_page(const struct lu_env *env, struct cl_io *io,
453 struct cl_page_list *queue, struct cl_page *page,
454 struct page *vmpage)
455 {
456 struct ccc_page *cp;
457 int rc;
458
459 rc = 0;
460 cl_page_assume(env, io, page);
461 lu_ref_add(&page->cp_reference, "ra", current);
462 cp = cl2ccc_page(cl_page_at(page, &vvp_device_type));
463 if (!cp->cpg_defer_uptodate && !PageUptodate(vmpage)) {
464 rc = cl_page_is_under_lock(env, io, page);
465 if (rc == -EBUSY) {
466 cp->cpg_defer_uptodate = 1;
467 cp->cpg_ra_used = 0;
468 cl_page_list_add(queue, page);
469 rc = 1;
470 } else {
471 cl_page_delete(env, page);
472 rc = -ENOLCK;
473 }
474 } else {
475 /* skip completed pages */
476 cl_page_unassume(env, io, page);
477 }
478 lu_ref_del(&page->cp_reference, "ra", current);
479 cl_page_put(env, page);
480 return rc;
481 }
482
483 /**
484 * Initiates read-ahead of a page with given index.
485 *
486 * \retval +ve: page was added to \a queue.
487 *
488 * \retval -ENOLCK: there is no extent lock for this part of a file, stop
489 * read-ahead.
490 *
491 * \retval -ve, 0: page wasn't added to \a queue for other reason.
492 */
493 static int ll_read_ahead_page(const struct lu_env *env, struct cl_io *io,
494 struct cl_page_list *queue,
495 pgoff_t index, struct address_space *mapping)
496 {
497 struct page *vmpage;
498 struct cl_object *clob = ll_i2info(mapping->host)->lli_clob;
499 struct cl_page *page;
500 enum ra_stat which = _NR_RA_STAT; /* keep gcc happy */
501 int rc = 0;
502 const char *msg = NULL;
503
504 vmpage = grab_cache_page_nowait(mapping, index);
505 if (vmpage != NULL) {
506 /* Check if vmpage was truncated or reclaimed */
507 if (vmpage->mapping == mapping) {
508 page = cl_page_find(env, clob, vmpage->index,
509 vmpage, CPT_CACHEABLE);
510 if (!IS_ERR(page)) {
511 rc = cl_read_ahead_page(env, io, queue,
512 page, vmpage);
513 if (rc == -ENOLCK) {
514 which = RA_STAT_FAILED_MATCH;
515 msg = "lock match failed";
516 }
517 } else {
518 which = RA_STAT_FAILED_GRAB_PAGE;
519 msg = "cl_page_find failed";
520 }
521 } else {
522 which = RA_STAT_WRONG_GRAB_PAGE;
523 msg = "g_c_p_n returned invalid page";
524 }
525 if (rc != 1)
526 unlock_page(vmpage);
527 page_cache_release(vmpage);
528 } else {
529 which = RA_STAT_FAILED_GRAB_PAGE;
530 msg = "g_c_p_n failed";
531 }
532 if (msg != NULL) {
533 ll_ra_stats_inc(mapping, which);
534 CDEBUG(D_READA, "%s\n", msg);
535 }
536 return rc;
537 }
538
539 #define RIA_DEBUG(ria) \
540 CDEBUG(D_READA, "rs %lu re %lu ro %lu rl %lu rp %lu\n", \
541 ria->ria_start, ria->ria_end, ria->ria_stoff, ria->ria_length,\
542 ria->ria_pages)
543
544 /* Limit this to the blocksize instead of PTLRPC_BRW_MAX_SIZE, since we don't
545 * know what the actual RPC size is. If this needs to change, it makes more
546 * sense to tune the i_blkbits value for the file based on the OSTs it is
547 * striped over, rather than having a constant value for all files here. */
548
549 /* RAS_INCREASE_STEP should be (1UL << (inode->i_blkbits - PAGE_CACHE_SHIFT)).
550 * Temporarily set RAS_INCREASE_STEP to 1MB. After 4MB RPC is enabled
551 * by default, this should be adjusted corresponding with max_read_ahead_mb
552 * and max_read_ahead_per_file_mb otherwise the readahead budget can be used
553 * up quickly which will affect read performance significantly. See LU-2816 */
554 #define RAS_INCREASE_STEP(inode) (ONE_MB_BRW_SIZE >> PAGE_CACHE_SHIFT)
555
556 static inline int stride_io_mode(struct ll_readahead_state *ras)
557 {
558 return ras->ras_consecutive_stride_requests > 1;
559 }
560 /* The function calculates how much pages will be read in
561 * [off, off + length], in such stride IO area,
562 * stride_offset = st_off, stride_length = st_len,
563 * stride_pages = st_pgs
564 *
565 * |------------------|*****|------------------|*****|------------|*****|....
566 * st_off
567 * |--- st_pgs ---|
568 * |----- st_len -----|
569 *
570 * How many pages it should read in such pattern
571 * |-------------------------------------------------------------|
572 * off
573 * |<------ length ------->|
574 *
575 * = |<----->| + |-------------------------------------| + |---|
576 * start_left st_pgs * i end_left
577 */
578 static unsigned long
579 stride_pg_count(pgoff_t st_off, unsigned long st_len, unsigned long st_pgs,
580 unsigned long off, unsigned long length)
581 {
582 __u64 start = off > st_off ? off - st_off : 0;
583 __u64 end = off + length > st_off ? off + length - st_off : 0;
584 unsigned long start_left = 0;
585 unsigned long end_left = 0;
586 unsigned long pg_count;
587
588 if (st_len == 0 || length == 0 || end == 0)
589 return length;
590
591 start_left = do_div(start, st_len);
592 if (start_left < st_pgs)
593 start_left = st_pgs - start_left;
594 else
595 start_left = 0;
596
597 end_left = do_div(end, st_len);
598 if (end_left > st_pgs)
599 end_left = st_pgs;
600
601 CDEBUG(D_READA, "start %llu, end %llu start_left %lu end_left %lu \n",
602 start, end, start_left, end_left);
603
604 if (start == end)
605 pg_count = end_left - (st_pgs - start_left);
606 else
607 pg_count = start_left + st_pgs * (end - start - 1) + end_left;
608
609 CDEBUG(D_READA, "st_off %lu, st_len %lu st_pgs %lu off %lu length %lu pgcount %lu\n",
610 st_off, st_len, st_pgs, off, length, pg_count);
611
612 return pg_count;
613 }
614
615 static int ria_page_count(struct ra_io_arg *ria)
616 {
617 __u64 length = ria->ria_end >= ria->ria_start ?
618 ria->ria_end - ria->ria_start + 1 : 0;
619
620 return stride_pg_count(ria->ria_stoff, ria->ria_length,
621 ria->ria_pages, ria->ria_start,
622 length);
623 }
624
625 /*Check whether the index is in the defined ra-window */
626 static int ras_inside_ra_window(unsigned long idx, struct ra_io_arg *ria)
627 {
628 /* If ria_length == ria_pages, it means non-stride I/O mode,
629 * idx should always inside read-ahead window in this case
630 * For stride I/O mode, just check whether the idx is inside
631 * the ria_pages. */
632 return ria->ria_length == 0 || ria->ria_length == ria->ria_pages ||
633 (idx >= ria->ria_stoff && (idx - ria->ria_stoff) %
634 ria->ria_length < ria->ria_pages);
635 }
636
637 static int ll_read_ahead_pages(const struct lu_env *env,
638 struct cl_io *io, struct cl_page_list *queue,
639 struct ra_io_arg *ria,
640 unsigned long *reserved_pages,
641 struct address_space *mapping,
642 unsigned long *ra_end)
643 {
644 int rc, count = 0, stride_ria;
645 unsigned long page_idx;
646
647 LASSERT(ria != NULL);
648 RIA_DEBUG(ria);
649
650 stride_ria = ria->ria_length > ria->ria_pages && ria->ria_pages > 0;
651 for (page_idx = ria->ria_start; page_idx <= ria->ria_end &&
652 *reserved_pages > 0; page_idx++) {
653 if (ras_inside_ra_window(page_idx, ria)) {
654 /* If the page is inside the read-ahead window*/
655 rc = ll_read_ahead_page(env, io, queue,
656 page_idx, mapping);
657 if (rc == 1) {
658 (*reserved_pages)--;
659 count ++;
660 } else if (rc == -ENOLCK)
661 break;
662 } else if (stride_ria) {
663 /* If it is not in the read-ahead window, and it is
664 * read-ahead mode, then check whether it should skip
665 * the stride gap */
666 pgoff_t offset;
667 /* FIXME: This assertion only is valid when it is for
668 * forward read-ahead, it will be fixed when backward
669 * read-ahead is implemented */
670 LASSERTF(page_idx > ria->ria_stoff, "Invalid page_idx %lu rs %lu re %lu ro %lu rl %lu rp %lu\n",
671 page_idx,
672 ria->ria_start, ria->ria_end, ria->ria_stoff,
673 ria->ria_length, ria->ria_pages);
674 offset = page_idx - ria->ria_stoff;
675 offset = offset % (ria->ria_length);
676 if (offset > ria->ria_pages) {
677 page_idx += ria->ria_length - offset;
678 CDEBUG(D_READA, "i %lu skip %lu \n", page_idx,
679 ria->ria_length - offset);
680 continue;
681 }
682 }
683 }
684 *ra_end = page_idx;
685 return count;
686 }
687
688 int ll_readahead(const struct lu_env *env, struct cl_io *io,
689 struct ll_readahead_state *ras, struct address_space *mapping,
690 struct cl_page_list *queue, int flags)
691 {
692 struct vvp_io *vio = vvp_env_io(env);
693 struct vvp_thread_info *vti = vvp_env_info(env);
694 struct cl_attr *attr = ccc_env_thread_attr(env);
695 unsigned long start = 0, end = 0, reserved;
696 unsigned long ra_end, len;
697 struct inode *inode;
698 struct ll_ra_read *bead;
699 struct ra_io_arg *ria = &vti->vti_ria;
700 struct ll_inode_info *lli;
701 struct cl_object *clob;
702 int ret = 0;
703 __u64 kms;
704
705 inode = mapping->host;
706 lli = ll_i2info(inode);
707 clob = lli->lli_clob;
708
709 memset(ria, 0, sizeof(*ria));
710
711 cl_object_attr_lock(clob);
712 ret = cl_object_attr_get(env, clob, attr);
713 cl_object_attr_unlock(clob);
714
715 if (ret != 0)
716 return ret;
717 kms = attr->cat_kms;
718 if (kms == 0) {
719 ll_ra_stats_inc(mapping, RA_STAT_ZERO_LEN);
720 return 0;
721 }
722
723 spin_lock(&ras->ras_lock);
724 if (vio->cui_ra_window_set)
725 bead = &vio->cui_bead;
726 else
727 bead = NULL;
728
729 /* Enlarge the RA window to encompass the full read */
730 if (bead != NULL && ras->ras_window_start + ras->ras_window_len <
731 bead->lrr_start + bead->lrr_count) {
732 ras->ras_window_len = bead->lrr_start + bead->lrr_count -
733 ras->ras_window_start;
734 }
735 /* Reserve a part of the read-ahead window that we'll be issuing */
736 if (ras->ras_window_len) {
737 start = ras->ras_next_readahead;
738 end = ras->ras_window_start + ras->ras_window_len - 1;
739 }
740 if (end != 0) {
741 unsigned long rpc_boundary;
742 /*
743 * Align RA window to an optimal boundary.
744 *
745 * XXX This would be better to align to cl_max_pages_per_rpc
746 * instead of PTLRPC_MAX_BRW_PAGES, because the RPC size may
747 * be aligned to the RAID stripe size in the future and that
748 * is more important than the RPC size.
749 */
750 /* Note: we only trim the RPC, instead of extending the RPC
751 * to the boundary, so to avoid reading too much pages during
752 * random reading. */
753 rpc_boundary = (end + 1) & (~(PTLRPC_MAX_BRW_PAGES - 1));
754 if (rpc_boundary > 0)
755 rpc_boundary--;
756
757 if (rpc_boundary > start)
758 end = rpc_boundary;
759
760 /* Truncate RA window to end of file */
761 end = min(end, (unsigned long)((kms - 1) >> PAGE_CACHE_SHIFT));
762
763 ras->ras_next_readahead = max(end, end + 1);
764 RAS_CDEBUG(ras);
765 }
766 ria->ria_start = start;
767 ria->ria_end = end;
768 /* If stride I/O mode is detected, get stride window*/
769 if (stride_io_mode(ras)) {
770 ria->ria_stoff = ras->ras_stride_offset;
771 ria->ria_length = ras->ras_stride_length;
772 ria->ria_pages = ras->ras_stride_pages;
773 }
774 spin_unlock(&ras->ras_lock);
775
776 if (end == 0) {
777 ll_ra_stats_inc(mapping, RA_STAT_ZERO_WINDOW);
778 return 0;
779 }
780 len = ria_page_count(ria);
781 if (len == 0)
782 return 0;
783
784 reserved = ll_ra_count_get(ll_i2sbi(inode), ria, len);
785 if (reserved < len)
786 ll_ra_stats_inc(mapping, RA_STAT_MAX_IN_FLIGHT);
787
788 CDEBUG(D_READA, "reserved page %lu ra_cur %d ra_max %lu\n", reserved,
789 atomic_read(&ll_i2sbi(inode)->ll_ra_info.ra_cur_pages),
790 ll_i2sbi(inode)->ll_ra_info.ra_max_pages);
791
792 ret = ll_read_ahead_pages(env, io, queue,
793 ria, &reserved, mapping, &ra_end);
794
795 LASSERTF(reserved >= 0, "reserved %lu\n", reserved);
796 if (reserved != 0)
797 ll_ra_count_put(ll_i2sbi(inode), reserved);
798
799 if (ra_end == end + 1 && ra_end == (kms >> PAGE_CACHE_SHIFT))
800 ll_ra_stats_inc(mapping, RA_STAT_EOF);
801
802 /* if we didn't get to the end of the region we reserved from
803 * the ras we need to go back and update the ras so that the
804 * next read-ahead tries from where we left off. we only do so
805 * if the region we failed to issue read-ahead on is still ahead
806 * of the app and behind the next index to start read-ahead from */
807 CDEBUG(D_READA, "ra_end %lu end %lu stride end %lu \n",
808 ra_end, end, ria->ria_end);
809
810 if (ra_end != end + 1) {
811 spin_lock(&ras->ras_lock);
812 if (ra_end < ras->ras_next_readahead &&
813 index_in_window(ra_end, ras->ras_window_start, 0,
814 ras->ras_window_len)) {
815 ras->ras_next_readahead = ra_end;
816 RAS_CDEBUG(ras);
817 }
818 spin_unlock(&ras->ras_lock);
819 }
820
821 return ret;
822 }
823
824 static void ras_set_start(struct inode *inode, struct ll_readahead_state *ras,
825 unsigned long index)
826 {
827 ras->ras_window_start = index & (~(RAS_INCREASE_STEP(inode) - 1));
828 }
829
830 /* called with the ras_lock held or from places where it doesn't matter */
831 static void ras_reset(struct inode *inode, struct ll_readahead_state *ras,
832 unsigned long index)
833 {
834 ras->ras_last_readpage = index;
835 ras->ras_consecutive_requests = 0;
836 ras->ras_consecutive_pages = 0;
837 ras->ras_window_len = 0;
838 ras_set_start(inode, ras, index);
839 ras->ras_next_readahead = max(ras->ras_window_start, index);
840
841 RAS_CDEBUG(ras);
842 }
843
844 /* called with the ras_lock held or from places where it doesn't matter */
845 static void ras_stride_reset(struct ll_readahead_state *ras)
846 {
847 ras->ras_consecutive_stride_requests = 0;
848 ras->ras_stride_length = 0;
849 ras->ras_stride_pages = 0;
850 RAS_CDEBUG(ras);
851 }
852
853 void ll_readahead_init(struct inode *inode, struct ll_readahead_state *ras)
854 {
855 spin_lock_init(&ras->ras_lock);
856 ras_reset(inode, ras, 0);
857 ras->ras_requests = 0;
858 INIT_LIST_HEAD(&ras->ras_read_beads);
859 }
860
861 /*
862 * Check whether the read request is in the stride window.
863 * If it is in the stride window, return 1, otherwise return 0.
864 */
865 static int index_in_stride_window(struct ll_readahead_state *ras,
866 unsigned long index)
867 {
868 unsigned long stride_gap;
869
870 if (ras->ras_stride_length == 0 || ras->ras_stride_pages == 0 ||
871 ras->ras_stride_pages == ras->ras_stride_length)
872 return 0;
873
874 stride_gap = index - ras->ras_last_readpage - 1;
875
876 /* If it is contiguous read */
877 if (stride_gap == 0)
878 return ras->ras_consecutive_pages + 1 <= ras->ras_stride_pages;
879
880 /* Otherwise check the stride by itself */
881 return (ras->ras_stride_length - ras->ras_stride_pages) == stride_gap &&
882 ras->ras_consecutive_pages == ras->ras_stride_pages;
883 }
884
885 static void ras_update_stride_detector(struct ll_readahead_state *ras,
886 unsigned long index)
887 {
888 unsigned long stride_gap = index - ras->ras_last_readpage - 1;
889
890 if (!stride_io_mode(ras) && (stride_gap != 0 ||
891 ras->ras_consecutive_stride_requests == 0)) {
892 ras->ras_stride_pages = ras->ras_consecutive_pages;
893 ras->ras_stride_length = stride_gap +ras->ras_consecutive_pages;
894 }
895 LASSERT(ras->ras_request_index == 0);
896 LASSERT(ras->ras_consecutive_stride_requests == 0);
897
898 if (index <= ras->ras_last_readpage) {
899 /*Reset stride window for forward read*/
900 ras_stride_reset(ras);
901 return;
902 }
903
904 ras->ras_stride_pages = ras->ras_consecutive_pages;
905 ras->ras_stride_length = stride_gap +ras->ras_consecutive_pages;
906
907 RAS_CDEBUG(ras);
908 return;
909 }
910
911 static unsigned long
912 stride_page_count(struct ll_readahead_state *ras, unsigned long len)
913 {
914 return stride_pg_count(ras->ras_stride_offset, ras->ras_stride_length,
915 ras->ras_stride_pages, ras->ras_stride_offset,
916 len);
917 }
918
919 /* Stride Read-ahead window will be increased inc_len according to
920 * stride I/O pattern */
921 static void ras_stride_increase_window(struct ll_readahead_state *ras,
922 struct ll_ra_info *ra,
923 unsigned long inc_len)
924 {
925 unsigned long left, step, window_len;
926 unsigned long stride_len;
927
928 LASSERT(ras->ras_stride_length > 0);
929 LASSERTF(ras->ras_window_start + ras->ras_window_len
930 >= ras->ras_stride_offset, "window_start %lu, window_len %lu stride_offset %lu\n",
931 ras->ras_window_start,
932 ras->ras_window_len, ras->ras_stride_offset);
933
934 stride_len = ras->ras_window_start + ras->ras_window_len -
935 ras->ras_stride_offset;
936
937 left = stride_len % ras->ras_stride_length;
938 window_len = ras->ras_window_len - left;
939
940 if (left < ras->ras_stride_pages)
941 left += inc_len;
942 else
943 left = ras->ras_stride_pages + inc_len;
944
945 LASSERT(ras->ras_stride_pages != 0);
946
947 step = left / ras->ras_stride_pages;
948 left %= ras->ras_stride_pages;
949
950 window_len += step * ras->ras_stride_length + left;
951
952 if (stride_page_count(ras, window_len) <= ra->ra_max_pages_per_file)
953 ras->ras_window_len = window_len;
954
955 RAS_CDEBUG(ras);
956 }
957
958 static void ras_increase_window(struct inode *inode,
959 struct ll_readahead_state *ras,
960 struct ll_ra_info *ra)
961 {
962 /* The stretch of ra-window should be aligned with max rpc_size
963 * but current clio architecture does not support retrieve such
964 * information from lower layer. FIXME later
965 */
966 if (stride_io_mode(ras))
967 ras_stride_increase_window(ras, ra, RAS_INCREASE_STEP(inode));
968 else
969 ras->ras_window_len = min(ras->ras_window_len +
970 RAS_INCREASE_STEP(inode),
971 ra->ra_max_pages_per_file);
972 }
973
974 void ras_update(struct ll_sb_info *sbi, struct inode *inode,
975 struct ll_readahead_state *ras, unsigned long index,
976 unsigned hit)
977 {
978 struct ll_ra_info *ra = &sbi->ll_ra_info;
979 int zero = 0, stride_detect = 0, ra_miss = 0;
980
981 spin_lock(&ras->ras_lock);
982
983 ll_ra_stats_inc_sbi(sbi, hit ? RA_STAT_HIT : RA_STAT_MISS);
984
985 /* reset the read-ahead window in two cases. First when the app seeks
986 * or reads to some other part of the file. Secondly if we get a
987 * read-ahead miss that we think we've previously issued. This can
988 * be a symptom of there being so many read-ahead pages that the VM is
989 * reclaiming it before we get to it. */
990 if (!index_in_window(index, ras->ras_last_readpage, 8, 8)) {
991 zero = 1;
992 ll_ra_stats_inc_sbi(sbi, RA_STAT_DISTANT_READPAGE);
993 } else if (!hit && ras->ras_window_len &&
994 index < ras->ras_next_readahead &&
995 index_in_window(index, ras->ras_window_start, 0,
996 ras->ras_window_len)) {
997 ra_miss = 1;
998 ll_ra_stats_inc_sbi(sbi, RA_STAT_MISS_IN_WINDOW);
999 }
1000
1001 /* On the second access to a file smaller than the tunable
1002 * ra_max_read_ahead_whole_pages trigger RA on all pages in the
1003 * file up to ra_max_pages_per_file. This is simply a best effort
1004 * and only occurs once per open file. Normal RA behavior is reverted
1005 * to for subsequent IO. The mmap case does not increment
1006 * ras_requests and thus can never trigger this behavior. */
1007 if (ras->ras_requests == 2 && !ras->ras_request_index) {
1008 __u64 kms_pages;
1009
1010 kms_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1011 PAGE_CACHE_SHIFT;
1012
1013 CDEBUG(D_READA, "kmsp %llu mwp %lu mp %lu\n", kms_pages,
1014 ra->ra_max_read_ahead_whole_pages, ra->ra_max_pages_per_file);
1015
1016 if (kms_pages &&
1017 kms_pages <= ra->ra_max_read_ahead_whole_pages) {
1018 ras->ras_window_start = 0;
1019 ras->ras_last_readpage = 0;
1020 ras->ras_next_readahead = 0;
1021 ras->ras_window_len = min(ra->ra_max_pages_per_file,
1022 ra->ra_max_read_ahead_whole_pages);
1023 goto out_unlock;
1024 }
1025 }
1026 if (zero) {
1027 /* check whether it is in stride I/O mode*/
1028 if (!index_in_stride_window(ras, index)) {
1029 if (ras->ras_consecutive_stride_requests == 0 &&
1030 ras->ras_request_index == 0) {
1031 ras_update_stride_detector(ras, index);
1032 ras->ras_consecutive_stride_requests++;
1033 } else {
1034 ras_stride_reset(ras);
1035 }
1036 ras_reset(inode, ras, index);
1037 ras->ras_consecutive_pages++;
1038 goto out_unlock;
1039 } else {
1040 ras->ras_consecutive_pages = 0;
1041 ras->ras_consecutive_requests = 0;
1042 if (++ras->ras_consecutive_stride_requests > 1)
1043 stride_detect = 1;
1044 RAS_CDEBUG(ras);
1045 }
1046 } else {
1047 if (ra_miss) {
1048 if (index_in_stride_window(ras, index) &&
1049 stride_io_mode(ras)) {
1050 /*If stride-RA hit cache miss, the stride dector
1051 *will not be reset to avoid the overhead of
1052 *redetecting read-ahead mode */
1053 if (index != ras->ras_last_readpage + 1)
1054 ras->ras_consecutive_pages = 0;
1055 ras_reset(inode, ras, index);
1056 RAS_CDEBUG(ras);
1057 } else {
1058 /* Reset both stride window and normal RA
1059 * window */
1060 ras_reset(inode, ras, index);
1061 ras->ras_consecutive_pages++;
1062 ras_stride_reset(ras);
1063 goto out_unlock;
1064 }
1065 } else if (stride_io_mode(ras)) {
1066 /* If this is contiguous read but in stride I/O mode
1067 * currently, check whether stride step still is valid,
1068 * if invalid, it will reset the stride ra window*/
1069 if (!index_in_stride_window(ras, index)) {
1070 /* Shrink stride read-ahead window to be zero */
1071 ras_stride_reset(ras);
1072 ras->ras_window_len = 0;
1073 ras->ras_next_readahead = index;
1074 }
1075 }
1076 }
1077 ras->ras_consecutive_pages++;
1078 ras->ras_last_readpage = index;
1079 ras_set_start(inode, ras, index);
1080
1081 if (stride_io_mode(ras))
1082 /* Since stride readahead is sensitive to the offset
1083 * of read-ahead, so we use original offset here,
1084 * instead of ras_window_start, which is RPC aligned */
1085 ras->ras_next_readahead = max(index, ras->ras_next_readahead);
1086 else
1087 ras->ras_next_readahead = max(ras->ras_window_start,
1088 ras->ras_next_readahead);
1089 RAS_CDEBUG(ras);
1090
1091 /* Trigger RA in the mmap case where ras_consecutive_requests
1092 * is not incremented and thus can't be used to trigger RA */
1093 if (!ras->ras_window_len && ras->ras_consecutive_pages == 4) {
1094 ras->ras_window_len = RAS_INCREASE_STEP(inode);
1095 goto out_unlock;
1096 }
1097
1098 /* Initially reset the stride window offset to next_readahead*/
1099 if (ras->ras_consecutive_stride_requests == 2 && stride_detect) {
1100 /**
1101 * Once stride IO mode is detected, next_readahead should be
1102 * reset to make sure next_readahead > stride offset
1103 */
1104 ras->ras_next_readahead = max(index, ras->ras_next_readahead);
1105 ras->ras_stride_offset = index;
1106 ras->ras_window_len = RAS_INCREASE_STEP(inode);
1107 }
1108
1109 /* The initial ras_window_len is set to the request size. To avoid
1110 * uselessly reading and discarding pages for random IO the window is
1111 * only increased once per consecutive request received. */
1112 if ((ras->ras_consecutive_requests > 1 || stride_detect) &&
1113 !ras->ras_request_index)
1114 ras_increase_window(inode, ras, ra);
1115 out_unlock:
1116 RAS_CDEBUG(ras);
1117 ras->ras_request_index++;
1118 spin_unlock(&ras->ras_lock);
1119 return;
1120 }
1121
1122 int ll_writepage(struct page *vmpage, struct writeback_control *wbc)
1123 {
1124 struct inode *inode = vmpage->mapping->host;
1125 struct ll_inode_info *lli = ll_i2info(inode);
1126 struct lu_env *env;
1127 struct cl_io *io;
1128 struct cl_page *page;
1129 struct cl_object *clob;
1130 struct cl_env_nest nest;
1131 bool redirtied = false;
1132 bool unlocked = false;
1133 int result;
1134
1135 LASSERT(PageLocked(vmpage));
1136 LASSERT(!PageWriteback(vmpage));
1137
1138 LASSERT(ll_i2dtexp(inode) != NULL);
1139
1140 env = cl_env_nested_get(&nest);
1141 if (IS_ERR(env)) {
1142 result = PTR_ERR(env);
1143 goto out;
1144 }
1145
1146 clob = ll_i2info(inode)->lli_clob;
1147 LASSERT(clob != NULL);
1148
1149 io = ccc_env_thread_io(env);
1150 io->ci_obj = clob;
1151 io->ci_ignore_layout = 1;
1152 result = cl_io_init(env, io, CIT_MISC, clob);
1153 if (result == 0) {
1154 page = cl_page_find(env, clob, vmpage->index,
1155 vmpage, CPT_CACHEABLE);
1156 if (!IS_ERR(page)) {
1157 lu_ref_add(&page->cp_reference, "writepage",
1158 current);
1159 cl_page_assume(env, io, page);
1160 result = cl_page_flush(env, io, page);
1161 if (result != 0) {
1162 /*
1163 * Re-dirty page on error so it retries write,
1164 * but not in case when IO has actually
1165 * occurred and completed with an error.
1166 */
1167 if (!PageError(vmpage)) {
1168 redirty_page_for_writepage(wbc, vmpage);
1169 result = 0;
1170 redirtied = true;
1171 }
1172 }
1173 cl_page_disown(env, io, page);
1174 unlocked = true;
1175 lu_ref_del(&page->cp_reference,
1176 "writepage", current);
1177 cl_page_put(env, page);
1178 } else {
1179 result = PTR_ERR(page);
1180 }
1181 }
1182 cl_io_fini(env, io);
1183
1184 if (redirtied && wbc->sync_mode == WB_SYNC_ALL) {
1185 loff_t offset = cl_offset(clob, vmpage->index);
1186
1187 /* Flush page failed because the extent is being written out.
1188 * Wait for the write of extent to be finished to avoid
1189 * breaking kernel which assumes ->writepage should mark
1190 * PageWriteback or clean the page. */
1191 result = cl_sync_file_range(inode, offset,
1192 offset + PAGE_CACHE_SIZE - 1,
1193 CL_FSYNC_LOCAL, 1);
1194 if (result > 0) {
1195 /* actually we may have written more than one page.
1196 * decreasing this page because the caller will count
1197 * it. */
1198 wbc->nr_to_write -= result - 1;
1199 result = 0;
1200 }
1201 }
1202
1203 cl_env_nested_put(&nest, env);
1204 goto out;
1205
1206 out:
1207 if (result < 0) {
1208 if (!lli->lli_async_rc)
1209 lli->lli_async_rc = result;
1210 SetPageError(vmpage);
1211 if (!unlocked)
1212 unlock_page(vmpage);
1213 }
1214 return result;
1215 }
1216
1217 int ll_writepages(struct address_space *mapping, struct writeback_control *wbc)
1218 {
1219 struct inode *inode = mapping->host;
1220 struct ll_sb_info *sbi = ll_i2sbi(inode);
1221 loff_t start;
1222 loff_t end;
1223 enum cl_fsync_mode mode;
1224 int range_whole = 0;
1225 int result;
1226 int ignore_layout = 0;
1227
1228 if (wbc->range_cyclic) {
1229 start = mapping->writeback_index << PAGE_CACHE_SHIFT;
1230 end = OBD_OBJECT_EOF;
1231 } else {
1232 start = wbc->range_start;
1233 end = wbc->range_end;
1234 if (end == LLONG_MAX) {
1235 end = OBD_OBJECT_EOF;
1236 range_whole = start == 0;
1237 }
1238 }
1239
1240 mode = CL_FSYNC_NONE;
1241 if (wbc->sync_mode == WB_SYNC_ALL)
1242 mode = CL_FSYNC_LOCAL;
1243
1244 if (sbi->ll_umounting)
1245 /* if the mountpoint is being umounted, all pages have to be
1246 * evicted to avoid hitting LBUG when truncate_inode_pages()
1247 * is called later on. */
1248 ignore_layout = 1;
1249 result = cl_sync_file_range(inode, start, end, mode, ignore_layout);
1250 if (result > 0) {
1251 wbc->nr_to_write -= result;
1252 result = 0;
1253 }
1254
1255 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) {
1256 if (end == OBD_OBJECT_EOF)
1257 end = i_size_read(inode);
1258 mapping->writeback_index = (end >> PAGE_CACHE_SHIFT) + 1;
1259 }
1260 return result;
1261 }
1262
1263 int ll_readpage(struct file *file, struct page *vmpage)
1264 {
1265 struct ll_cl_context *lcc;
1266 int result;
1267
1268 lcc = ll_cl_init(file, vmpage, 0);
1269 if (!IS_ERR(lcc)) {
1270 struct lu_env *env = lcc->lcc_env;
1271 struct cl_io *io = lcc->lcc_io;
1272 struct cl_page *page = lcc->lcc_page;
1273
1274 LASSERT(page->cp_type == CPT_CACHEABLE);
1275 if (likely(!PageUptodate(vmpage))) {
1276 cl_page_assume(env, io, page);
1277 result = cl_io_read_page(env, io, page);
1278 } else {
1279 /* Page from a non-object file. */
1280 unlock_page(vmpage);
1281 result = 0;
1282 }
1283 ll_cl_fini(lcc);
1284 } else {
1285 unlock_page(vmpage);
1286 result = PTR_ERR(lcc);
1287 }
1288 return result;
1289 }