]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/staging/lustre/lustre/obdclass/lu_object.c
Merge branch 'cpuidle' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux...
[mirror_ubuntu-zesty-kernel.git] / drivers / staging / lustre / lustre / obdclass / lu_object.c
1 /*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26 /*
27 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2011, 2015, Intel Corporation.
31 */
32 /*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 *
36 * lustre/obdclass/lu_object.c
37 *
38 * Lustre Object.
39 * These are the only exported functions, they provide some generic
40 * infrastructure for managing object devices
41 *
42 * Author: Nikita Danilov <nikita.danilov@sun.com>
43 */
44
45 #define DEBUG_SUBSYSTEM S_CLASS
46
47 #include "../../include/linux/libcfs/libcfs.h"
48
49 # include <linux/module.h>
50
51 /* hash_long() */
52 #include "../../include/linux/libcfs/libcfs_hash.h"
53 #include "../include/obd_class.h"
54 #include "../include/obd_support.h"
55 #include "../include/lustre_disk.h"
56 #include "../include/lustre_fid.h"
57 #include "../include/lu_object.h"
58 #include "../include/lu_ref.h"
59 #include <linux/list.h>
60
61 static void lu_object_free(const struct lu_env *env, struct lu_object *o);
62 static __u32 ls_stats_read(struct lprocfs_stats *stats, int idx);
63
64 /**
65 * Decrease reference counter on object. If last reference is freed, return
66 * object to the cache, unless lu_object_is_dying(o) holds. In the latter
67 * case, free object immediately.
68 */
69 void lu_object_put(const struct lu_env *env, struct lu_object *o)
70 {
71 struct lu_site_bkt_data *bkt;
72 struct lu_object_header *top;
73 struct lu_site *site;
74 struct lu_object *orig;
75 struct cfs_hash_bd bd;
76 const struct lu_fid *fid;
77
78 top = o->lo_header;
79 site = o->lo_dev->ld_site;
80 orig = o;
81
82 /*
83 * till we have full fids-on-OST implemented anonymous objects
84 * are possible in OSP. such an object isn't listed in the site
85 * so we should not remove it from the site.
86 */
87 fid = lu_object_fid(o);
88 if (fid_is_zero(fid)) {
89 LASSERT(top->loh_hash.next == NULL
90 && top->loh_hash.pprev == NULL);
91 LASSERT(list_empty(&top->loh_lru));
92 if (!atomic_dec_and_test(&top->loh_ref))
93 return;
94 list_for_each_entry_reverse(o, &top->loh_layers, lo_linkage) {
95 if (o->lo_ops->loo_object_release != NULL)
96 o->lo_ops->loo_object_release(env, o);
97 }
98 lu_object_free(env, orig);
99 return;
100 }
101
102 cfs_hash_bd_get(site->ls_obj_hash, &top->loh_fid, &bd);
103 bkt = cfs_hash_bd_extra_get(site->ls_obj_hash, &bd);
104
105 if (!cfs_hash_bd_dec_and_lock(site->ls_obj_hash, &bd, &top->loh_ref)) {
106 if (lu_object_is_dying(top)) {
107
108 /*
109 * somebody may be waiting for this, currently only
110 * used for cl_object, see cl_object_put_last().
111 */
112 wake_up_all(&bkt->lsb_marche_funebre);
113 }
114 return;
115 }
116
117 /*
118 * When last reference is released, iterate over object
119 * layers, and notify them that object is no longer busy.
120 */
121 list_for_each_entry_reverse(o, &top->loh_layers, lo_linkage) {
122 if (o->lo_ops->loo_object_release != NULL)
123 o->lo_ops->loo_object_release(env, o);
124 }
125
126 if (!lu_object_is_dying(top)) {
127 LASSERT(list_empty(&top->loh_lru));
128 list_add_tail(&top->loh_lru, &bkt->lsb_lru);
129 bkt->lsb_lru_len++;
130 lprocfs_counter_incr(site->ls_stats, LU_SS_LRU_LEN);
131 CDEBUG(D_INODE, "Add %p to site lru. hash: %p, bkt: %p, lru_len: %ld\n",
132 o, site->ls_obj_hash, bkt, bkt->lsb_lru_len);
133 cfs_hash_bd_unlock(site->ls_obj_hash, &bd, 1);
134 return;
135 }
136
137 /*
138 * If object is dying (will not be cached), removed it
139 * from hash table and LRU.
140 *
141 * This is done with hash table and LRU lists locked. As the only
142 * way to acquire first reference to previously unreferenced
143 * object is through hash-table lookup (lu_object_find()),
144 * or LRU scanning (lu_site_purge()), that are done under hash-table
145 * and LRU lock, no race with concurrent object lookup is possible
146 * and we can safely destroy object below.
147 */
148 if (!test_and_set_bit(LU_OBJECT_UNHASHED, &top->loh_flags))
149 cfs_hash_bd_del_locked(site->ls_obj_hash, &bd, &top->loh_hash);
150 cfs_hash_bd_unlock(site->ls_obj_hash, &bd, 1);
151 /*
152 * Object was already removed from hash and lru above, can
153 * kill it.
154 */
155 lu_object_free(env, orig);
156 }
157 EXPORT_SYMBOL(lu_object_put);
158
159 /**
160 * Kill the object and take it out of LRU cache.
161 * Currently used by client code for layout change.
162 */
163 void lu_object_unhash(const struct lu_env *env, struct lu_object *o)
164 {
165 struct lu_object_header *top;
166
167 top = o->lo_header;
168 set_bit(LU_OBJECT_HEARD_BANSHEE, &top->loh_flags);
169 if (!test_and_set_bit(LU_OBJECT_UNHASHED, &top->loh_flags)) {
170 struct lu_site *site = o->lo_dev->ld_site;
171 struct cfs_hash *obj_hash = site->ls_obj_hash;
172 struct cfs_hash_bd bd;
173
174 cfs_hash_bd_get_and_lock(obj_hash, &top->loh_fid, &bd, 1);
175 if (!list_empty(&top->loh_lru)) {
176 struct lu_site_bkt_data *bkt;
177
178 list_del_init(&top->loh_lru);
179 bkt = cfs_hash_bd_extra_get(obj_hash, &bd);
180 bkt->lsb_lru_len--;
181 lprocfs_counter_decr(site->ls_stats, LU_SS_LRU_LEN);
182 }
183 cfs_hash_bd_del_locked(obj_hash, &bd, &top->loh_hash);
184 cfs_hash_bd_unlock(obj_hash, &bd, 1);
185 }
186 }
187 EXPORT_SYMBOL(lu_object_unhash);
188
189 /**
190 * Allocate new object.
191 *
192 * This follows object creation protocol, described in the comment within
193 * struct lu_device_operations definition.
194 */
195 static struct lu_object *lu_object_alloc(const struct lu_env *env,
196 struct lu_device *dev,
197 const struct lu_fid *f,
198 const struct lu_object_conf *conf)
199 {
200 struct lu_object *scan;
201 struct lu_object *top;
202 struct list_head *layers;
203 unsigned int init_mask = 0;
204 unsigned int init_flag;
205 int clean;
206 int result;
207
208 /*
209 * Create top-level object slice. This will also create
210 * lu_object_header.
211 */
212 top = dev->ld_ops->ldo_object_alloc(env, NULL, dev);
213 if (top == NULL)
214 return ERR_PTR(-ENOMEM);
215 if (IS_ERR(top))
216 return top;
217 /*
218 * This is the only place where object fid is assigned. It's constant
219 * after this point.
220 */
221 top->lo_header->loh_fid = *f;
222 layers = &top->lo_header->loh_layers;
223
224 do {
225 /*
226 * Call ->loo_object_init() repeatedly, until no more new
227 * object slices are created.
228 */
229 clean = 1;
230 init_flag = 1;
231 list_for_each_entry(scan, layers, lo_linkage) {
232 if (init_mask & init_flag)
233 goto next;
234 clean = 0;
235 scan->lo_header = top->lo_header;
236 result = scan->lo_ops->loo_object_init(env, scan, conf);
237 if (result != 0) {
238 lu_object_free(env, top);
239 return ERR_PTR(result);
240 }
241 init_mask |= init_flag;
242 next:
243 init_flag <<= 1;
244 }
245 } while (!clean);
246
247 list_for_each_entry_reverse(scan, layers, lo_linkage) {
248 if (scan->lo_ops->loo_object_start != NULL) {
249 result = scan->lo_ops->loo_object_start(env, scan);
250 if (result != 0) {
251 lu_object_free(env, top);
252 return ERR_PTR(result);
253 }
254 }
255 }
256
257 lprocfs_counter_incr(dev->ld_site->ls_stats, LU_SS_CREATED);
258 return top;
259 }
260
261 /**
262 * Free an object.
263 */
264 static void lu_object_free(const struct lu_env *env, struct lu_object *o)
265 {
266 struct lu_site_bkt_data *bkt;
267 struct lu_site *site;
268 struct lu_object *scan;
269 struct list_head *layers;
270 struct list_head splice;
271
272 site = o->lo_dev->ld_site;
273 layers = &o->lo_header->loh_layers;
274 bkt = lu_site_bkt_from_fid(site, &o->lo_header->loh_fid);
275 /*
276 * First call ->loo_object_delete() method to release all resources.
277 */
278 list_for_each_entry_reverse(scan, layers, lo_linkage) {
279 if (scan->lo_ops->loo_object_delete != NULL)
280 scan->lo_ops->loo_object_delete(env, scan);
281 }
282
283 /*
284 * Then, splice object layers into stand-alone list, and call
285 * ->loo_object_free() on all layers to free memory. Splice is
286 * necessary, because lu_object_header is freed together with the
287 * top-level slice.
288 */
289 INIT_LIST_HEAD(&splice);
290 list_splice_init(layers, &splice);
291 while (!list_empty(&splice)) {
292 /*
293 * Free layers in bottom-to-top order, so that object header
294 * lives as long as possible and ->loo_object_free() methods
295 * can look at its contents.
296 */
297 o = container_of0(splice.prev, struct lu_object, lo_linkage);
298 list_del_init(&o->lo_linkage);
299 LASSERT(o->lo_ops->loo_object_free != NULL);
300 o->lo_ops->loo_object_free(env, o);
301 }
302
303 if (waitqueue_active(&bkt->lsb_marche_funebre))
304 wake_up_all(&bkt->lsb_marche_funebre);
305 }
306
307 /**
308 * Free \a nr objects from the cold end of the site LRU list.
309 */
310 int lu_site_purge(const struct lu_env *env, struct lu_site *s, int nr)
311 {
312 struct lu_object_header *h;
313 struct lu_object_header *temp;
314 struct lu_site_bkt_data *bkt;
315 struct cfs_hash_bd bd;
316 struct cfs_hash_bd bd2;
317 struct list_head dispose;
318 int did_sth;
319 int start;
320 int count;
321 int bnr;
322 int i;
323
324 if (OBD_FAIL_CHECK(OBD_FAIL_OBD_NO_LRU))
325 return 0;
326
327 INIT_LIST_HEAD(&dispose);
328 /*
329 * Under LRU list lock, scan LRU list and move unreferenced objects to
330 * the dispose list, removing them from LRU and hash table.
331 */
332 start = s->ls_purge_start;
333 bnr = (nr == ~0) ? -1 : nr / CFS_HASH_NBKT(s->ls_obj_hash) + 1;
334 again:
335 did_sth = 0;
336 cfs_hash_for_each_bucket(s->ls_obj_hash, &bd, i) {
337 if (i < start)
338 continue;
339 count = bnr;
340 cfs_hash_bd_lock(s->ls_obj_hash, &bd, 1);
341 bkt = cfs_hash_bd_extra_get(s->ls_obj_hash, &bd);
342
343 list_for_each_entry_safe(h, temp, &bkt->lsb_lru, loh_lru) {
344 LASSERT(atomic_read(&h->loh_ref) == 0);
345
346 cfs_hash_bd_get(s->ls_obj_hash, &h->loh_fid, &bd2);
347 LASSERT(bd.bd_bucket == bd2.bd_bucket);
348
349 cfs_hash_bd_del_locked(s->ls_obj_hash,
350 &bd2, &h->loh_hash);
351 list_move(&h->loh_lru, &dispose);
352 bkt->lsb_lru_len--;
353 lprocfs_counter_decr(s->ls_stats, LU_SS_LRU_LEN);
354 if (did_sth == 0)
355 did_sth = 1;
356
357 if (nr != ~0 && --nr == 0)
358 break;
359
360 if (count > 0 && --count == 0)
361 break;
362
363 }
364 cfs_hash_bd_unlock(s->ls_obj_hash, &bd, 1);
365 cond_resched();
366 /*
367 * Free everything on the dispose list. This is safe against
368 * races due to the reasons described in lu_object_put().
369 */
370 while (!list_empty(&dispose)) {
371 h = container_of0(dispose.next,
372 struct lu_object_header, loh_lru);
373 list_del_init(&h->loh_lru);
374 lu_object_free(env, lu_object_top(h));
375 lprocfs_counter_incr(s->ls_stats, LU_SS_LRU_PURGED);
376 }
377
378 if (nr == 0)
379 break;
380 }
381
382 if (nr != 0 && did_sth && start != 0) {
383 start = 0; /* restart from the first bucket */
384 goto again;
385 }
386 /* race on s->ls_purge_start, but nobody cares */
387 s->ls_purge_start = i % CFS_HASH_NBKT(s->ls_obj_hash);
388
389 return nr;
390 }
391 EXPORT_SYMBOL(lu_site_purge);
392
393 /*
394 * Object printing.
395 *
396 * Code below has to jump through certain loops to output object description
397 * into libcfs_debug_msg-based log. The problem is that lu_object_print()
398 * composes object description from strings that are parts of _lines_ of
399 * output (i.e., strings that are not terminated by newline). This doesn't fit
400 * very well into libcfs_debug_msg() interface that assumes that each message
401 * supplied to it is a self-contained output line.
402 *
403 * To work around this, strings are collected in a temporary buffer
404 * (implemented as a value of lu_cdebug_key key), until terminating newline
405 * character is detected.
406 *
407 */
408
409 enum {
410 /**
411 * Maximal line size.
412 *
413 * XXX overflow is not handled correctly.
414 */
415 LU_CDEBUG_LINE = 512
416 };
417
418 struct lu_cdebug_data {
419 /**
420 * Temporary buffer.
421 */
422 char lck_area[LU_CDEBUG_LINE];
423 };
424
425 /* context key constructor/destructor: lu_global_key_init, lu_global_key_fini */
426 LU_KEY_INIT_FINI(lu_global, struct lu_cdebug_data);
427
428 /**
429 * Key, holding temporary buffer. This key is registered very early by
430 * lu_global_init().
431 */
432 static struct lu_context_key lu_global_key = {
433 .lct_tags = LCT_MD_THREAD | LCT_DT_THREAD |
434 LCT_MG_THREAD | LCT_CL_THREAD | LCT_LOCAL,
435 .lct_init = lu_global_key_init,
436 .lct_fini = lu_global_key_fini
437 };
438
439 /**
440 * Printer function emitting messages through libcfs_debug_msg().
441 */
442 int lu_cdebug_printer(const struct lu_env *env,
443 void *cookie, const char *format, ...)
444 {
445 struct libcfs_debug_msg_data *msgdata = cookie;
446 struct lu_cdebug_data *key;
447 int used;
448 int complete;
449 va_list args;
450
451 va_start(args, format);
452
453 key = lu_context_key_get(&env->le_ctx, &lu_global_key);
454 LASSERT(key != NULL);
455
456 used = strlen(key->lck_area);
457 complete = format[strlen(format) - 1] == '\n';
458 /*
459 * Append new chunk to the buffer.
460 */
461 vsnprintf(key->lck_area + used,
462 ARRAY_SIZE(key->lck_area) - used, format, args);
463 if (complete) {
464 if (cfs_cdebug_show(msgdata->msg_mask, msgdata->msg_subsys))
465 libcfs_debug_msg(msgdata, "%s", key->lck_area);
466 key->lck_area[0] = 0;
467 }
468 va_end(args);
469 return 0;
470 }
471 EXPORT_SYMBOL(lu_cdebug_printer);
472
473 /**
474 * Print object header.
475 */
476 void lu_object_header_print(const struct lu_env *env, void *cookie,
477 lu_printer_t printer,
478 const struct lu_object_header *hdr)
479 {
480 (*printer)(env, cookie, "header@%p[%#lx, %d, "DFID"%s%s%s]",
481 hdr, hdr->loh_flags, atomic_read(&hdr->loh_ref),
482 PFID(&hdr->loh_fid),
483 hlist_unhashed(&hdr->loh_hash) ? "" : " hash",
484 list_empty((struct list_head *)&hdr->loh_lru) ? \
485 "" : " lru",
486 hdr->loh_attr & LOHA_EXISTS ? " exist":"");
487 }
488 EXPORT_SYMBOL(lu_object_header_print);
489
490 /**
491 * Print human readable representation of the \a o to the \a printer.
492 */
493 void lu_object_print(const struct lu_env *env, void *cookie,
494 lu_printer_t printer, const struct lu_object *o)
495 {
496 static const char ruler[] = "........................................";
497 struct lu_object_header *top;
498 int depth = 4;
499
500 top = o->lo_header;
501 lu_object_header_print(env, cookie, printer, top);
502 (*printer)(env, cookie, "{\n");
503
504 list_for_each_entry(o, &top->loh_layers, lo_linkage) {
505 /*
506 * print `.' \a depth times followed by type name and address
507 */
508 (*printer)(env, cookie, "%*.*s%s@%p", depth, depth, ruler,
509 o->lo_dev->ld_type->ldt_name, o);
510
511 if (o->lo_ops->loo_object_print != NULL)
512 (*o->lo_ops->loo_object_print)(env, cookie, printer, o);
513
514 (*printer)(env, cookie, "\n");
515 }
516
517 (*printer)(env, cookie, "} header@%p\n", top);
518 }
519 EXPORT_SYMBOL(lu_object_print);
520
521 static struct lu_object *htable_lookup(struct lu_site *s,
522 struct cfs_hash_bd *bd,
523 const struct lu_fid *f,
524 wait_queue_t *waiter,
525 __u64 *version)
526 {
527 struct lu_site_bkt_data *bkt;
528 struct lu_object_header *h;
529 struct hlist_node *hnode;
530 __u64 ver = cfs_hash_bd_version_get(bd);
531
532 if (*version == ver)
533 return ERR_PTR(-ENOENT);
534
535 *version = ver;
536 bkt = cfs_hash_bd_extra_get(s->ls_obj_hash, bd);
537 /* cfs_hash_bd_peek_locked is a somehow "internal" function
538 * of cfs_hash, it doesn't add refcount on object. */
539 hnode = cfs_hash_bd_peek_locked(s->ls_obj_hash, bd, (void *)f);
540 if (hnode == NULL) {
541 lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_MISS);
542 return ERR_PTR(-ENOENT);
543 }
544
545 h = container_of0(hnode, struct lu_object_header, loh_hash);
546 if (likely(!lu_object_is_dying(h))) {
547 cfs_hash_get(s->ls_obj_hash, hnode);
548 lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_HIT);
549 if (!list_empty(&h->loh_lru)) {
550 list_del_init(&h->loh_lru);
551 bkt->lsb_lru_len--;
552 lprocfs_counter_decr(s->ls_stats, LU_SS_LRU_LEN);
553 }
554 return lu_object_top(h);
555 }
556
557 /*
558 * Lookup found an object being destroyed this object cannot be
559 * returned (to assure that references to dying objects are eventually
560 * drained), and moreover, lookup has to wait until object is freed.
561 */
562
563 init_waitqueue_entry(waiter, current);
564 add_wait_queue(&bkt->lsb_marche_funebre, waiter);
565 set_current_state(TASK_UNINTERRUPTIBLE);
566 lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_DEATH_RACE);
567 return ERR_PTR(-EAGAIN);
568 }
569
570 /**
571 * Search cache for an object with the fid \a f. If such object is found,
572 * return it. Otherwise, create new object, insert it into cache and return
573 * it. In any case, additional reference is acquired on the returned object.
574 */
575 static struct lu_object *lu_object_find(const struct lu_env *env,
576 struct lu_device *dev,
577 const struct lu_fid *f,
578 const struct lu_object_conf *conf)
579 {
580 return lu_object_find_at(env, dev->ld_site->ls_top_dev, f, conf);
581 }
582
583 static struct lu_object *lu_object_new(const struct lu_env *env,
584 struct lu_device *dev,
585 const struct lu_fid *f,
586 const struct lu_object_conf *conf)
587 {
588 struct lu_object *o;
589 struct cfs_hash *hs;
590 struct cfs_hash_bd bd;
591
592 o = lu_object_alloc(env, dev, f, conf);
593 if (IS_ERR(o))
594 return o;
595
596 hs = dev->ld_site->ls_obj_hash;
597 cfs_hash_bd_get_and_lock(hs, (void *)f, &bd, 1);
598 cfs_hash_bd_add_locked(hs, &bd, &o->lo_header->loh_hash);
599 cfs_hash_bd_unlock(hs, &bd, 1);
600 return o;
601 }
602
603 /**
604 * Core logic of lu_object_find*() functions.
605 */
606 static struct lu_object *lu_object_find_try(const struct lu_env *env,
607 struct lu_device *dev,
608 const struct lu_fid *f,
609 const struct lu_object_conf *conf,
610 wait_queue_t *waiter)
611 {
612 struct lu_object *o;
613 struct lu_object *shadow;
614 struct lu_site *s;
615 struct cfs_hash *hs;
616 struct cfs_hash_bd bd;
617 __u64 version = 0;
618
619 /*
620 * This uses standard index maintenance protocol:
621 *
622 * - search index under lock, and return object if found;
623 * - otherwise, unlock index, allocate new object;
624 * - lock index and search again;
625 * - if nothing is found (usual case), insert newly created
626 * object into index;
627 * - otherwise (race: other thread inserted object), free
628 * object just allocated.
629 * - unlock index;
630 * - return object.
631 *
632 * For "LOC_F_NEW" case, we are sure the object is new established.
633 * It is unnecessary to perform lookup-alloc-lookup-insert, instead,
634 * just alloc and insert directly.
635 *
636 * If dying object is found during index search, add @waiter to the
637 * site wait-queue and return ERR_PTR(-EAGAIN).
638 */
639 if (conf != NULL && conf->loc_flags & LOC_F_NEW)
640 return lu_object_new(env, dev, f, conf);
641
642 s = dev->ld_site;
643 hs = s->ls_obj_hash;
644 cfs_hash_bd_get_and_lock(hs, (void *)f, &bd, 1);
645 o = htable_lookup(s, &bd, f, waiter, &version);
646 cfs_hash_bd_unlock(hs, &bd, 1);
647 if (!IS_ERR(o) || PTR_ERR(o) != -ENOENT)
648 return o;
649
650 /*
651 * Allocate new object. This may result in rather complicated
652 * operations, including fld queries, inode loading, etc.
653 */
654 o = lu_object_alloc(env, dev, f, conf);
655 if (IS_ERR(o))
656 return o;
657
658 LASSERT(lu_fid_eq(lu_object_fid(o), f));
659
660 cfs_hash_bd_lock(hs, &bd, 1);
661
662 shadow = htable_lookup(s, &bd, f, waiter, &version);
663 if (likely(PTR_ERR(shadow) == -ENOENT)) {
664 cfs_hash_bd_add_locked(hs, &bd, &o->lo_header->loh_hash);
665 cfs_hash_bd_unlock(hs, &bd, 1);
666 return o;
667 }
668
669 lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_RACE);
670 cfs_hash_bd_unlock(hs, &bd, 1);
671 lu_object_free(env, o);
672 return shadow;
673 }
674
675 /**
676 * Much like lu_object_find(), but top level device of object is specifically
677 * \a dev rather than top level device of the site. This interface allows
678 * objects of different "stacking" to be created within the same site.
679 */
680 struct lu_object *lu_object_find_at(const struct lu_env *env,
681 struct lu_device *dev,
682 const struct lu_fid *f,
683 const struct lu_object_conf *conf)
684 {
685 struct lu_site_bkt_data *bkt;
686 struct lu_object *obj;
687 wait_queue_t wait;
688
689 while (1) {
690 obj = lu_object_find_try(env, dev, f, conf, &wait);
691 if (obj != ERR_PTR(-EAGAIN))
692 return obj;
693 /*
694 * lu_object_find_try() already added waiter into the
695 * wait queue.
696 */
697 schedule();
698 bkt = lu_site_bkt_from_fid(dev->ld_site, (void *)f);
699 remove_wait_queue(&bkt->lsb_marche_funebre, &wait);
700 }
701 }
702 EXPORT_SYMBOL(lu_object_find_at);
703
704 /**
705 * Find object with given fid, and return its slice belonging to given device.
706 */
707 struct lu_object *lu_object_find_slice(const struct lu_env *env,
708 struct lu_device *dev,
709 const struct lu_fid *f,
710 const struct lu_object_conf *conf)
711 {
712 struct lu_object *top;
713 struct lu_object *obj;
714
715 top = lu_object_find(env, dev, f, conf);
716 if (!IS_ERR(top)) {
717 obj = lu_object_locate(top->lo_header, dev->ld_type);
718 if (obj == NULL)
719 lu_object_put(env, top);
720 } else
721 obj = top;
722 return obj;
723 }
724 EXPORT_SYMBOL(lu_object_find_slice);
725
726 /**
727 * Global list of all device types.
728 */
729 static LIST_HEAD(lu_device_types);
730
731 int lu_device_type_init(struct lu_device_type *ldt)
732 {
733 int result = 0;
734
735 INIT_LIST_HEAD(&ldt->ldt_linkage);
736 if (ldt->ldt_ops->ldto_init)
737 result = ldt->ldt_ops->ldto_init(ldt);
738 if (result == 0)
739 list_add(&ldt->ldt_linkage, &lu_device_types);
740 return result;
741 }
742 EXPORT_SYMBOL(lu_device_type_init);
743
744 void lu_device_type_fini(struct lu_device_type *ldt)
745 {
746 list_del_init(&ldt->ldt_linkage);
747 if (ldt->ldt_ops->ldto_fini)
748 ldt->ldt_ops->ldto_fini(ldt);
749 }
750 EXPORT_SYMBOL(lu_device_type_fini);
751
752 void lu_types_stop(void)
753 {
754 struct lu_device_type *ldt;
755
756 list_for_each_entry(ldt, &lu_device_types, ldt_linkage) {
757 if (ldt->ldt_device_nr == 0 && ldt->ldt_ops->ldto_stop)
758 ldt->ldt_ops->ldto_stop(ldt);
759 }
760 }
761 EXPORT_SYMBOL(lu_types_stop);
762
763 /**
764 * Global list of all sites on this node
765 */
766 static LIST_HEAD(lu_sites);
767 static DEFINE_MUTEX(lu_sites_guard);
768
769 /**
770 * Global environment used by site shrinker.
771 */
772 static struct lu_env lu_shrink_env;
773
774 struct lu_site_print_arg {
775 struct lu_env *lsp_env;
776 void *lsp_cookie;
777 lu_printer_t lsp_printer;
778 };
779
780 static int
781 lu_site_obj_print(struct cfs_hash *hs, struct cfs_hash_bd *bd,
782 struct hlist_node *hnode, void *data)
783 {
784 struct lu_site_print_arg *arg = (struct lu_site_print_arg *)data;
785 struct lu_object_header *h;
786
787 h = hlist_entry(hnode, struct lu_object_header, loh_hash);
788 if (!list_empty(&h->loh_layers)) {
789 const struct lu_object *o;
790
791 o = lu_object_top(h);
792 lu_object_print(arg->lsp_env, arg->lsp_cookie,
793 arg->lsp_printer, o);
794 } else {
795 lu_object_header_print(arg->lsp_env, arg->lsp_cookie,
796 arg->lsp_printer, h);
797 }
798 return 0;
799 }
800
801 /**
802 * Print all objects in \a s.
803 */
804 void lu_site_print(const struct lu_env *env, struct lu_site *s, void *cookie,
805 lu_printer_t printer)
806 {
807 struct lu_site_print_arg arg = {
808 .lsp_env = (struct lu_env *)env,
809 .lsp_cookie = cookie,
810 .lsp_printer = printer,
811 };
812
813 cfs_hash_for_each(s->ls_obj_hash, lu_site_obj_print, &arg);
814 }
815 EXPORT_SYMBOL(lu_site_print);
816
817 enum {
818 LU_CACHE_PERCENT_MAX = 50,
819 LU_CACHE_PERCENT_DEFAULT = 20
820 };
821
822 static unsigned int lu_cache_percent = LU_CACHE_PERCENT_DEFAULT;
823 module_param(lu_cache_percent, int, 0644);
824 MODULE_PARM_DESC(lu_cache_percent, "Percentage of memory to be used as lu_object cache");
825
826 /**
827 * Return desired hash table order.
828 */
829 static int lu_htable_order(void)
830 {
831 unsigned long cache_size;
832 int bits;
833
834 /*
835 * Calculate hash table size, assuming that we want reasonable
836 * performance when 20% of total memory is occupied by cache of
837 * lu_objects.
838 *
839 * Size of lu_object is (arbitrary) taken as 1K (together with inode).
840 */
841 cache_size = totalram_pages;
842
843 #if BITS_PER_LONG == 32
844 /* limit hashtable size for lowmem systems to low RAM */
845 if (cache_size > 1 << (30 - PAGE_CACHE_SHIFT))
846 cache_size = 1 << (30 - PAGE_CACHE_SHIFT) * 3 / 4;
847 #endif
848
849 /* clear off unreasonable cache setting. */
850 if (lu_cache_percent == 0 || lu_cache_percent > LU_CACHE_PERCENT_MAX) {
851 CWARN("obdclass: invalid lu_cache_percent: %u, it must be in the range of (0, %u]. Will use default value: %u.\n",
852 lu_cache_percent, LU_CACHE_PERCENT_MAX,
853 LU_CACHE_PERCENT_DEFAULT);
854
855 lu_cache_percent = LU_CACHE_PERCENT_DEFAULT;
856 }
857 cache_size = cache_size / 100 * lu_cache_percent *
858 (PAGE_CACHE_SIZE / 1024);
859
860 for (bits = 1; (1 << bits) < cache_size; ++bits) {
861 ;
862 }
863 return bits;
864 }
865
866 static unsigned lu_obj_hop_hash(struct cfs_hash *hs,
867 const void *key, unsigned mask)
868 {
869 struct lu_fid *fid = (struct lu_fid *)key;
870 __u32 hash;
871
872 hash = fid_flatten32(fid);
873 hash += (hash >> 4) + (hash << 12); /* mixing oid and seq */
874 hash = hash_long(hash, hs->hs_bkt_bits);
875
876 /* give me another random factor */
877 hash -= hash_long((unsigned long)hs, fid_oid(fid) % 11 + 3);
878
879 hash <<= hs->hs_cur_bits - hs->hs_bkt_bits;
880 hash |= (fid_seq(fid) + fid_oid(fid)) & (CFS_HASH_NBKT(hs) - 1);
881
882 return hash & mask;
883 }
884
885 static void *lu_obj_hop_object(struct hlist_node *hnode)
886 {
887 return hlist_entry(hnode, struct lu_object_header, loh_hash);
888 }
889
890 static void *lu_obj_hop_key(struct hlist_node *hnode)
891 {
892 struct lu_object_header *h;
893
894 h = hlist_entry(hnode, struct lu_object_header, loh_hash);
895 return &h->loh_fid;
896 }
897
898 static int lu_obj_hop_keycmp(const void *key, struct hlist_node *hnode)
899 {
900 struct lu_object_header *h;
901
902 h = hlist_entry(hnode, struct lu_object_header, loh_hash);
903 return lu_fid_eq(&h->loh_fid, (struct lu_fid *)key);
904 }
905
906 static void lu_obj_hop_get(struct cfs_hash *hs, struct hlist_node *hnode)
907 {
908 struct lu_object_header *h;
909
910 h = hlist_entry(hnode, struct lu_object_header, loh_hash);
911 atomic_inc(&h->loh_ref);
912 }
913
914 static void lu_obj_hop_put_locked(struct cfs_hash *hs, struct hlist_node *hnode)
915 {
916 LBUG(); /* we should never called it */
917 }
918
919 static struct cfs_hash_ops lu_site_hash_ops = {
920 .hs_hash = lu_obj_hop_hash,
921 .hs_key = lu_obj_hop_key,
922 .hs_keycmp = lu_obj_hop_keycmp,
923 .hs_object = lu_obj_hop_object,
924 .hs_get = lu_obj_hop_get,
925 .hs_put_locked = lu_obj_hop_put_locked,
926 };
927
928 static void lu_dev_add_linkage(struct lu_site *s, struct lu_device *d)
929 {
930 spin_lock(&s->ls_ld_lock);
931 if (list_empty(&d->ld_linkage))
932 list_add(&d->ld_linkage, &s->ls_ld_linkage);
933 spin_unlock(&s->ls_ld_lock);
934 }
935
936 /**
937 * Initialize site \a s, with \a d as the top level device.
938 */
939 #define LU_SITE_BITS_MIN 12
940 #define LU_SITE_BITS_MAX 24
941 /**
942 * total 256 buckets, we don't want too many buckets because:
943 * - consume too much memory
944 * - avoid unbalanced LRU list
945 */
946 #define LU_SITE_BKT_BITS 8
947
948 int lu_site_init(struct lu_site *s, struct lu_device *top)
949 {
950 struct lu_site_bkt_data *bkt;
951 struct cfs_hash_bd bd;
952 char name[16];
953 int bits;
954 int i;
955
956 memset(s, 0, sizeof(*s));
957 bits = lu_htable_order();
958 snprintf(name, 16, "lu_site_%s", top->ld_type->ldt_name);
959 for (bits = min(max(LU_SITE_BITS_MIN, bits), LU_SITE_BITS_MAX);
960 bits >= LU_SITE_BITS_MIN; bits--) {
961 s->ls_obj_hash = cfs_hash_create(name, bits, bits,
962 bits - LU_SITE_BKT_BITS,
963 sizeof(*bkt), 0, 0,
964 &lu_site_hash_ops,
965 CFS_HASH_SPIN_BKTLOCK |
966 CFS_HASH_NO_ITEMREF |
967 CFS_HASH_DEPTH |
968 CFS_HASH_ASSERT_EMPTY);
969 if (s->ls_obj_hash != NULL)
970 break;
971 }
972
973 if (s->ls_obj_hash == NULL) {
974 CERROR("failed to create lu_site hash with bits: %d\n", bits);
975 return -ENOMEM;
976 }
977
978 cfs_hash_for_each_bucket(s->ls_obj_hash, &bd, i) {
979 bkt = cfs_hash_bd_extra_get(s->ls_obj_hash, &bd);
980 INIT_LIST_HEAD(&bkt->lsb_lru);
981 init_waitqueue_head(&bkt->lsb_marche_funebre);
982 }
983
984 s->ls_stats = lprocfs_alloc_stats(LU_SS_LAST_STAT, 0);
985 if (s->ls_stats == NULL) {
986 cfs_hash_putref(s->ls_obj_hash);
987 s->ls_obj_hash = NULL;
988 return -ENOMEM;
989 }
990
991 lprocfs_counter_init(s->ls_stats, LU_SS_CREATED,
992 0, "created", "created");
993 lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_HIT,
994 0, "cache_hit", "cache_hit");
995 lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_MISS,
996 0, "cache_miss", "cache_miss");
997 lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_RACE,
998 0, "cache_race", "cache_race");
999 lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_DEATH_RACE,
1000 0, "cache_death_race", "cache_death_race");
1001 lprocfs_counter_init(s->ls_stats, LU_SS_LRU_PURGED,
1002 0, "lru_purged", "lru_purged");
1003 /*
1004 * Unlike other counters, lru_len can be decremented so
1005 * need lc_sum instead of just lc_count
1006 */
1007 lprocfs_counter_init(s->ls_stats, LU_SS_LRU_LEN,
1008 LPROCFS_CNTR_AVGMINMAX, "lru_len", "lru_len");
1009
1010 INIT_LIST_HEAD(&s->ls_linkage);
1011 s->ls_top_dev = top;
1012 top->ld_site = s;
1013 lu_device_get(top);
1014 lu_ref_add(&top->ld_reference, "site-top", s);
1015
1016 INIT_LIST_HEAD(&s->ls_ld_linkage);
1017 spin_lock_init(&s->ls_ld_lock);
1018
1019 lu_dev_add_linkage(s, top);
1020
1021 return 0;
1022 }
1023 EXPORT_SYMBOL(lu_site_init);
1024
1025 /**
1026 * Finalize \a s and release its resources.
1027 */
1028 void lu_site_fini(struct lu_site *s)
1029 {
1030 mutex_lock(&lu_sites_guard);
1031 list_del_init(&s->ls_linkage);
1032 mutex_unlock(&lu_sites_guard);
1033
1034 if (s->ls_obj_hash != NULL) {
1035 cfs_hash_putref(s->ls_obj_hash);
1036 s->ls_obj_hash = NULL;
1037 }
1038
1039 if (s->ls_top_dev != NULL) {
1040 s->ls_top_dev->ld_site = NULL;
1041 lu_ref_del(&s->ls_top_dev->ld_reference, "site-top", s);
1042 lu_device_put(s->ls_top_dev);
1043 s->ls_top_dev = NULL;
1044 }
1045
1046 if (s->ls_stats != NULL)
1047 lprocfs_free_stats(&s->ls_stats);
1048 }
1049 EXPORT_SYMBOL(lu_site_fini);
1050
1051 /**
1052 * Called when initialization of stack for this site is completed.
1053 */
1054 int lu_site_init_finish(struct lu_site *s)
1055 {
1056 int result;
1057
1058 mutex_lock(&lu_sites_guard);
1059 result = lu_context_refill(&lu_shrink_env.le_ctx);
1060 if (result == 0)
1061 list_add(&s->ls_linkage, &lu_sites);
1062 mutex_unlock(&lu_sites_guard);
1063 return result;
1064 }
1065 EXPORT_SYMBOL(lu_site_init_finish);
1066
1067 /**
1068 * Acquire additional reference on device \a d
1069 */
1070 void lu_device_get(struct lu_device *d)
1071 {
1072 atomic_inc(&d->ld_ref);
1073 }
1074 EXPORT_SYMBOL(lu_device_get);
1075
1076 /**
1077 * Release reference on device \a d.
1078 */
1079 void lu_device_put(struct lu_device *d)
1080 {
1081 LASSERT(atomic_read(&d->ld_ref) > 0);
1082 atomic_dec(&d->ld_ref);
1083 }
1084 EXPORT_SYMBOL(lu_device_put);
1085
1086 /**
1087 * Initialize device \a d of type \a t.
1088 */
1089 int lu_device_init(struct lu_device *d, struct lu_device_type *t)
1090 {
1091 if (t->ldt_device_nr++ == 0 && t->ldt_ops->ldto_start != NULL)
1092 t->ldt_ops->ldto_start(t);
1093 memset(d, 0, sizeof(*d));
1094 atomic_set(&d->ld_ref, 0);
1095 d->ld_type = t;
1096 lu_ref_init(&d->ld_reference);
1097 INIT_LIST_HEAD(&d->ld_linkage);
1098 return 0;
1099 }
1100 EXPORT_SYMBOL(lu_device_init);
1101
1102 /**
1103 * Finalize device \a d.
1104 */
1105 void lu_device_fini(struct lu_device *d)
1106 {
1107 struct lu_device_type *t;
1108
1109 t = d->ld_type;
1110 if (d->ld_obd != NULL) {
1111 d->ld_obd->obd_lu_dev = NULL;
1112 d->ld_obd = NULL;
1113 }
1114
1115 lu_ref_fini(&d->ld_reference);
1116 LASSERTF(atomic_read(&d->ld_ref) == 0,
1117 "Refcount is %u\n", atomic_read(&d->ld_ref));
1118 LASSERT(t->ldt_device_nr > 0);
1119 if (--t->ldt_device_nr == 0 && t->ldt_ops->ldto_stop != NULL)
1120 t->ldt_ops->ldto_stop(t);
1121 }
1122 EXPORT_SYMBOL(lu_device_fini);
1123
1124 /**
1125 * Initialize object \a o that is part of compound object \a h and was created
1126 * by device \a d.
1127 */
1128 int lu_object_init(struct lu_object *o, struct lu_object_header *h,
1129 struct lu_device *d)
1130 {
1131 memset(o, 0, sizeof(*o));
1132 o->lo_header = h;
1133 o->lo_dev = d;
1134 lu_device_get(d);
1135 lu_ref_add_at(&d->ld_reference, &o->lo_dev_ref, "lu_object", o);
1136 INIT_LIST_HEAD(&o->lo_linkage);
1137
1138 return 0;
1139 }
1140 EXPORT_SYMBOL(lu_object_init);
1141
1142 /**
1143 * Finalize object and release its resources.
1144 */
1145 void lu_object_fini(struct lu_object *o)
1146 {
1147 struct lu_device *dev = o->lo_dev;
1148
1149 LASSERT(list_empty(&o->lo_linkage));
1150
1151 if (dev != NULL) {
1152 lu_ref_del_at(&dev->ld_reference, &o->lo_dev_ref,
1153 "lu_object", o);
1154 lu_device_put(dev);
1155 o->lo_dev = NULL;
1156 }
1157 }
1158 EXPORT_SYMBOL(lu_object_fini);
1159
1160 /**
1161 * Add object \a o as first layer of compound object \a h
1162 *
1163 * This is typically called by the ->ldo_object_alloc() method of top-level
1164 * device.
1165 */
1166 void lu_object_add_top(struct lu_object_header *h, struct lu_object *o)
1167 {
1168 list_move(&o->lo_linkage, &h->loh_layers);
1169 }
1170 EXPORT_SYMBOL(lu_object_add_top);
1171
1172 /**
1173 * Add object \a o as a layer of compound object, going after \a before.
1174 *
1175 * This is typically called by the ->ldo_object_alloc() method of \a
1176 * before->lo_dev.
1177 */
1178 void lu_object_add(struct lu_object *before, struct lu_object *o)
1179 {
1180 list_move(&o->lo_linkage, &before->lo_linkage);
1181 }
1182 EXPORT_SYMBOL(lu_object_add);
1183
1184 /**
1185 * Initialize compound object.
1186 */
1187 int lu_object_header_init(struct lu_object_header *h)
1188 {
1189 memset(h, 0, sizeof(*h));
1190 atomic_set(&h->loh_ref, 1);
1191 INIT_HLIST_NODE(&h->loh_hash);
1192 INIT_LIST_HEAD(&h->loh_lru);
1193 INIT_LIST_HEAD(&h->loh_layers);
1194 lu_ref_init(&h->loh_reference);
1195 return 0;
1196 }
1197 EXPORT_SYMBOL(lu_object_header_init);
1198
1199 /**
1200 * Finalize compound object.
1201 */
1202 void lu_object_header_fini(struct lu_object_header *h)
1203 {
1204 LASSERT(list_empty(&h->loh_layers));
1205 LASSERT(list_empty(&h->loh_lru));
1206 LASSERT(hlist_unhashed(&h->loh_hash));
1207 lu_ref_fini(&h->loh_reference);
1208 }
1209 EXPORT_SYMBOL(lu_object_header_fini);
1210
1211 /**
1212 * Given a compound object, find its slice, corresponding to the device type
1213 * \a dtype.
1214 */
1215 struct lu_object *lu_object_locate(struct lu_object_header *h,
1216 const struct lu_device_type *dtype)
1217 {
1218 struct lu_object *o;
1219
1220 list_for_each_entry(o, &h->loh_layers, lo_linkage) {
1221 if (o->lo_dev->ld_type == dtype)
1222 return o;
1223 }
1224 return NULL;
1225 }
1226 EXPORT_SYMBOL(lu_object_locate);
1227
1228 /**
1229 * Finalize and free devices in the device stack.
1230 *
1231 * Finalize device stack by purging object cache, and calling
1232 * lu_device_type_operations::ldto_device_fini() and
1233 * lu_device_type_operations::ldto_device_free() on all devices in the stack.
1234 */
1235 void lu_stack_fini(const struct lu_env *env, struct lu_device *top)
1236 {
1237 struct lu_site *site = top->ld_site;
1238 struct lu_device *scan;
1239 struct lu_device *next;
1240
1241 lu_site_purge(env, site, ~0);
1242 for (scan = top; scan != NULL; scan = next) {
1243 next = scan->ld_type->ldt_ops->ldto_device_fini(env, scan);
1244 lu_ref_del(&scan->ld_reference, "lu-stack", &lu_site_init);
1245 lu_device_put(scan);
1246 }
1247
1248 /* purge again. */
1249 lu_site_purge(env, site, ~0);
1250
1251 for (scan = top; scan != NULL; scan = next) {
1252 const struct lu_device_type *ldt = scan->ld_type;
1253 struct obd_type *type;
1254
1255 next = ldt->ldt_ops->ldto_device_free(env, scan);
1256 type = ldt->ldt_obd_type;
1257 if (type != NULL) {
1258 type->typ_refcnt--;
1259 class_put_type(type);
1260 }
1261 }
1262 }
1263 EXPORT_SYMBOL(lu_stack_fini);
1264
1265 enum {
1266 /**
1267 * Maximal number of tld slots.
1268 */
1269 LU_CONTEXT_KEY_NR = 40
1270 };
1271
1272 static struct lu_context_key *lu_keys[LU_CONTEXT_KEY_NR] = { NULL, };
1273
1274 static DEFINE_SPINLOCK(lu_keys_guard);
1275
1276 /**
1277 * Global counter incremented whenever key is registered, unregistered,
1278 * revived or quiesced. This is used to void unnecessary calls to
1279 * lu_context_refill(). No locking is provided, as initialization and shutdown
1280 * are supposed to be externally serialized.
1281 */
1282 static unsigned key_set_version;
1283
1284 /**
1285 * Register new key.
1286 */
1287 int lu_context_key_register(struct lu_context_key *key)
1288 {
1289 int result;
1290 int i;
1291
1292 LASSERT(key->lct_init != NULL);
1293 LASSERT(key->lct_fini != NULL);
1294 LASSERT(key->lct_tags != 0);
1295
1296 result = -ENFILE;
1297 spin_lock(&lu_keys_guard);
1298 for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1299 if (lu_keys[i] == NULL) {
1300 key->lct_index = i;
1301 atomic_set(&key->lct_used, 1);
1302 lu_keys[i] = key;
1303 lu_ref_init(&key->lct_reference);
1304 result = 0;
1305 ++key_set_version;
1306 break;
1307 }
1308 }
1309 spin_unlock(&lu_keys_guard);
1310 return result;
1311 }
1312 EXPORT_SYMBOL(lu_context_key_register);
1313
1314 static void key_fini(struct lu_context *ctx, int index)
1315 {
1316 if (ctx->lc_value != NULL && ctx->lc_value[index] != NULL) {
1317 struct lu_context_key *key;
1318
1319 key = lu_keys[index];
1320 LASSERT(key != NULL);
1321 LASSERT(key->lct_fini != NULL);
1322 LASSERT(atomic_read(&key->lct_used) > 1);
1323
1324 key->lct_fini(ctx, key, ctx->lc_value[index]);
1325 lu_ref_del(&key->lct_reference, "ctx", ctx);
1326 atomic_dec(&key->lct_used);
1327
1328 if ((ctx->lc_tags & LCT_NOREF) == 0) {
1329 #ifdef CONFIG_MODULE_UNLOAD
1330 LINVRNT(module_refcount(key->lct_owner) > 0);
1331 #endif
1332 module_put(key->lct_owner);
1333 }
1334 ctx->lc_value[index] = NULL;
1335 }
1336 }
1337
1338 /**
1339 * Deregister key.
1340 */
1341 void lu_context_key_degister(struct lu_context_key *key)
1342 {
1343 LASSERT(atomic_read(&key->lct_used) >= 1);
1344 LINVRNT(0 <= key->lct_index && key->lct_index < ARRAY_SIZE(lu_keys));
1345
1346 lu_context_key_quiesce(key);
1347
1348 ++key_set_version;
1349 spin_lock(&lu_keys_guard);
1350 key_fini(&lu_shrink_env.le_ctx, key->lct_index);
1351 if (lu_keys[key->lct_index]) {
1352 lu_keys[key->lct_index] = NULL;
1353 lu_ref_fini(&key->lct_reference);
1354 }
1355 spin_unlock(&lu_keys_guard);
1356
1357 LASSERTF(atomic_read(&key->lct_used) == 1,
1358 "key has instances: %d\n",
1359 atomic_read(&key->lct_used));
1360 }
1361 EXPORT_SYMBOL(lu_context_key_degister);
1362
1363 /**
1364 * Register a number of keys. This has to be called after all keys have been
1365 * initialized by a call to LU_CONTEXT_KEY_INIT().
1366 */
1367 int lu_context_key_register_many(struct lu_context_key *k, ...)
1368 {
1369 struct lu_context_key *key = k;
1370 va_list args;
1371 int result;
1372
1373 va_start(args, k);
1374 do {
1375 result = lu_context_key_register(key);
1376 if (result)
1377 break;
1378 key = va_arg(args, struct lu_context_key *);
1379 } while (key != NULL);
1380 va_end(args);
1381
1382 if (result != 0) {
1383 va_start(args, k);
1384 while (k != key) {
1385 lu_context_key_degister(k);
1386 k = va_arg(args, struct lu_context_key *);
1387 }
1388 va_end(args);
1389 }
1390
1391 return result;
1392 }
1393 EXPORT_SYMBOL(lu_context_key_register_many);
1394
1395 /**
1396 * De-register a number of keys. This is a dual to
1397 * lu_context_key_register_many().
1398 */
1399 void lu_context_key_degister_many(struct lu_context_key *k, ...)
1400 {
1401 va_list args;
1402
1403 va_start(args, k);
1404 do {
1405 lu_context_key_degister(k);
1406 k = va_arg(args, struct lu_context_key*);
1407 } while (k != NULL);
1408 va_end(args);
1409 }
1410 EXPORT_SYMBOL(lu_context_key_degister_many);
1411
1412 /**
1413 * Revive a number of keys.
1414 */
1415 void lu_context_key_revive_many(struct lu_context_key *k, ...)
1416 {
1417 va_list args;
1418
1419 va_start(args, k);
1420 do {
1421 lu_context_key_revive(k);
1422 k = va_arg(args, struct lu_context_key*);
1423 } while (k != NULL);
1424 va_end(args);
1425 }
1426 EXPORT_SYMBOL(lu_context_key_revive_many);
1427
1428 /**
1429 * Quiescent a number of keys.
1430 */
1431 void lu_context_key_quiesce_many(struct lu_context_key *k, ...)
1432 {
1433 va_list args;
1434
1435 va_start(args, k);
1436 do {
1437 lu_context_key_quiesce(k);
1438 k = va_arg(args, struct lu_context_key*);
1439 } while (k != NULL);
1440 va_end(args);
1441 }
1442 EXPORT_SYMBOL(lu_context_key_quiesce_many);
1443
1444 /**
1445 * Return value associated with key \a key in context \a ctx.
1446 */
1447 void *lu_context_key_get(const struct lu_context *ctx,
1448 const struct lu_context_key *key)
1449 {
1450 LINVRNT(ctx->lc_state == LCS_ENTERED);
1451 LINVRNT(0 <= key->lct_index && key->lct_index < ARRAY_SIZE(lu_keys));
1452 LASSERT(lu_keys[key->lct_index] == key);
1453 return ctx->lc_value[key->lct_index];
1454 }
1455 EXPORT_SYMBOL(lu_context_key_get);
1456
1457 /**
1458 * List of remembered contexts. XXX document me.
1459 */
1460 static LIST_HEAD(lu_context_remembered);
1461
1462 /**
1463 * Destroy \a key in all remembered contexts. This is used to destroy key
1464 * values in "shared" contexts (like service threads), when a module owning
1465 * the key is about to be unloaded.
1466 */
1467 void lu_context_key_quiesce(struct lu_context_key *key)
1468 {
1469 struct lu_context *ctx;
1470
1471 if (!(key->lct_tags & LCT_QUIESCENT)) {
1472 /*
1473 * XXX layering violation.
1474 */
1475 key->lct_tags |= LCT_QUIESCENT;
1476 /*
1477 * XXX memory barrier has to go here.
1478 */
1479 spin_lock(&lu_keys_guard);
1480 list_for_each_entry(ctx, &lu_context_remembered,
1481 lc_remember)
1482 key_fini(ctx, key->lct_index);
1483 spin_unlock(&lu_keys_guard);
1484 ++key_set_version;
1485 }
1486 }
1487 EXPORT_SYMBOL(lu_context_key_quiesce);
1488
1489 void lu_context_key_revive(struct lu_context_key *key)
1490 {
1491 key->lct_tags &= ~LCT_QUIESCENT;
1492 ++key_set_version;
1493 }
1494 EXPORT_SYMBOL(lu_context_key_revive);
1495
1496 static void keys_fini(struct lu_context *ctx)
1497 {
1498 int i;
1499
1500 if (ctx->lc_value == NULL)
1501 return;
1502
1503 for (i = 0; i < ARRAY_SIZE(lu_keys); ++i)
1504 key_fini(ctx, i);
1505
1506 kfree(ctx->lc_value);
1507 ctx->lc_value = NULL;
1508 }
1509
1510 static int keys_fill(struct lu_context *ctx)
1511 {
1512 int i;
1513
1514 LINVRNT(ctx->lc_value != NULL);
1515 for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1516 struct lu_context_key *key;
1517
1518 key = lu_keys[i];
1519 if (ctx->lc_value[i] == NULL && key != NULL &&
1520 (key->lct_tags & ctx->lc_tags) &&
1521 /*
1522 * Don't create values for a LCT_QUIESCENT key, as this
1523 * will pin module owning a key.
1524 */
1525 !(key->lct_tags & LCT_QUIESCENT)) {
1526 void *value;
1527
1528 LINVRNT(key->lct_init != NULL);
1529 LINVRNT(key->lct_index == i);
1530
1531 value = key->lct_init(ctx, key);
1532 if (IS_ERR(value))
1533 return PTR_ERR(value);
1534
1535 if (!(ctx->lc_tags & LCT_NOREF))
1536 try_module_get(key->lct_owner);
1537 lu_ref_add_atomic(&key->lct_reference, "ctx", ctx);
1538 atomic_inc(&key->lct_used);
1539 /*
1540 * This is the only place in the code, where an
1541 * element of ctx->lc_value[] array is set to non-NULL
1542 * value.
1543 */
1544 ctx->lc_value[i] = value;
1545 if (key->lct_exit != NULL)
1546 ctx->lc_tags |= LCT_HAS_EXIT;
1547 }
1548 ctx->lc_version = key_set_version;
1549 }
1550 return 0;
1551 }
1552
1553 static int keys_init(struct lu_context *ctx)
1554 {
1555 ctx->lc_value = kcalloc(ARRAY_SIZE(lu_keys), sizeof(ctx->lc_value[0]),
1556 GFP_NOFS);
1557 if (likely(ctx->lc_value != NULL))
1558 return keys_fill(ctx);
1559
1560 return -ENOMEM;
1561 }
1562
1563 /**
1564 * Initialize context data-structure. Create values for all keys.
1565 */
1566 int lu_context_init(struct lu_context *ctx, __u32 tags)
1567 {
1568 int rc;
1569
1570 memset(ctx, 0, sizeof(*ctx));
1571 ctx->lc_state = LCS_INITIALIZED;
1572 ctx->lc_tags = tags;
1573 if (tags & LCT_REMEMBER) {
1574 spin_lock(&lu_keys_guard);
1575 list_add(&ctx->lc_remember, &lu_context_remembered);
1576 spin_unlock(&lu_keys_guard);
1577 } else {
1578 INIT_LIST_HEAD(&ctx->lc_remember);
1579 }
1580
1581 rc = keys_init(ctx);
1582 if (rc != 0)
1583 lu_context_fini(ctx);
1584
1585 return rc;
1586 }
1587 EXPORT_SYMBOL(lu_context_init);
1588
1589 /**
1590 * Finalize context data-structure. Destroy key values.
1591 */
1592 void lu_context_fini(struct lu_context *ctx)
1593 {
1594 LINVRNT(ctx->lc_state == LCS_INITIALIZED || ctx->lc_state == LCS_LEFT);
1595 ctx->lc_state = LCS_FINALIZED;
1596
1597 if ((ctx->lc_tags & LCT_REMEMBER) == 0) {
1598 LASSERT(list_empty(&ctx->lc_remember));
1599 keys_fini(ctx);
1600
1601 } else { /* could race with key degister */
1602 spin_lock(&lu_keys_guard);
1603 keys_fini(ctx);
1604 list_del_init(&ctx->lc_remember);
1605 spin_unlock(&lu_keys_guard);
1606 }
1607 }
1608 EXPORT_SYMBOL(lu_context_fini);
1609
1610 /**
1611 * Called before entering context.
1612 */
1613 void lu_context_enter(struct lu_context *ctx)
1614 {
1615 LINVRNT(ctx->lc_state == LCS_INITIALIZED || ctx->lc_state == LCS_LEFT);
1616 ctx->lc_state = LCS_ENTERED;
1617 }
1618 EXPORT_SYMBOL(lu_context_enter);
1619
1620 /**
1621 * Called after exiting from \a ctx
1622 */
1623 void lu_context_exit(struct lu_context *ctx)
1624 {
1625 int i;
1626
1627 LINVRNT(ctx->lc_state == LCS_ENTERED);
1628 ctx->lc_state = LCS_LEFT;
1629 if (ctx->lc_tags & LCT_HAS_EXIT && ctx->lc_value != NULL) {
1630 for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1631 if (ctx->lc_value[i] != NULL) {
1632 struct lu_context_key *key;
1633
1634 key = lu_keys[i];
1635 LASSERT(key != NULL);
1636 if (key->lct_exit != NULL)
1637 key->lct_exit(ctx,
1638 key, ctx->lc_value[i]);
1639 }
1640 }
1641 }
1642 }
1643 EXPORT_SYMBOL(lu_context_exit);
1644
1645 /**
1646 * Allocate for context all missing keys that were registered after context
1647 * creation. key_set_version is only changed in rare cases when modules
1648 * are loaded and removed.
1649 */
1650 int lu_context_refill(struct lu_context *ctx)
1651 {
1652 return likely(ctx->lc_version == key_set_version) ? 0 : keys_fill(ctx);
1653 }
1654 EXPORT_SYMBOL(lu_context_refill);
1655
1656 /**
1657 * lu_ctx_tags/lu_ses_tags will be updated if there are new types of
1658 * obd being added. Currently, this is only used on client side, specifically
1659 * for echo device client, for other stack (like ptlrpc threads), context are
1660 * predefined when the lu_device type are registered, during the module probe
1661 * phase.
1662 */
1663 __u32 lu_context_tags_default;
1664 __u32 lu_session_tags_default;
1665
1666 int lu_env_init(struct lu_env *env, __u32 tags)
1667 {
1668 int result;
1669
1670 env->le_ses = NULL;
1671 result = lu_context_init(&env->le_ctx, tags);
1672 if (likely(result == 0))
1673 lu_context_enter(&env->le_ctx);
1674 return result;
1675 }
1676 EXPORT_SYMBOL(lu_env_init);
1677
1678 void lu_env_fini(struct lu_env *env)
1679 {
1680 lu_context_exit(&env->le_ctx);
1681 lu_context_fini(&env->le_ctx);
1682 env->le_ses = NULL;
1683 }
1684 EXPORT_SYMBOL(lu_env_fini);
1685
1686 int lu_env_refill(struct lu_env *env)
1687 {
1688 int result;
1689
1690 result = lu_context_refill(&env->le_ctx);
1691 if (result == 0 && env->le_ses != NULL)
1692 result = lu_context_refill(env->le_ses);
1693 return result;
1694 }
1695 EXPORT_SYMBOL(lu_env_refill);
1696
1697 struct lu_site_stats {
1698 unsigned lss_populated;
1699 unsigned lss_max_search;
1700 unsigned lss_total;
1701 unsigned lss_busy;
1702 };
1703
1704 static void lu_site_stats_get(struct cfs_hash *hs,
1705 struct lu_site_stats *stats, int populated)
1706 {
1707 struct cfs_hash_bd bd;
1708 int i;
1709
1710 cfs_hash_for_each_bucket(hs, &bd, i) {
1711 struct lu_site_bkt_data *bkt = cfs_hash_bd_extra_get(hs, &bd);
1712 struct hlist_head *hhead;
1713
1714 cfs_hash_bd_lock(hs, &bd, 1);
1715 stats->lss_busy +=
1716 cfs_hash_bd_count_get(&bd) - bkt->lsb_lru_len;
1717 stats->lss_total += cfs_hash_bd_count_get(&bd);
1718 stats->lss_max_search = max((int)stats->lss_max_search,
1719 cfs_hash_bd_depmax_get(&bd));
1720 if (!populated) {
1721 cfs_hash_bd_unlock(hs, &bd, 1);
1722 continue;
1723 }
1724
1725 cfs_hash_bd_for_each_hlist(hs, &bd, hhead) {
1726 if (!hlist_empty(hhead))
1727 stats->lss_populated++;
1728 }
1729 cfs_hash_bd_unlock(hs, &bd, 1);
1730 }
1731 }
1732
1733 /*
1734 * lu_cache_shrink_count returns the number of cached objects that are
1735 * candidates to be freed by shrink_slab(). A counter, which tracks
1736 * the number of items in the site's lru, is maintained in the per cpu
1737 * stats of each site. The counter is incremented when an object is added
1738 * to a site's lru and decremented when one is removed. The number of
1739 * free-able objects is the sum of all per cpu counters for all sites.
1740 *
1741 * Using a per cpu counter is a compromise solution to concurrent access:
1742 * lu_object_put() can update the counter without locking the site and
1743 * lu_cache_shrink_count can sum the counters without locking each
1744 * ls_obj_hash bucket.
1745 */
1746 static unsigned long lu_cache_shrink_count(struct shrinker *sk,
1747 struct shrink_control *sc)
1748 {
1749 struct lu_site *s;
1750 struct lu_site *tmp;
1751 unsigned long cached = 0;
1752
1753 if (!(sc->gfp_mask & __GFP_FS))
1754 return 0;
1755
1756 mutex_lock(&lu_sites_guard);
1757 list_for_each_entry_safe(s, tmp, &lu_sites, ls_linkage) {
1758 cached += ls_stats_read(s->ls_stats, LU_SS_LRU_LEN);
1759 }
1760 mutex_unlock(&lu_sites_guard);
1761
1762 cached = (cached / 100) * sysctl_vfs_cache_pressure;
1763 CDEBUG(D_INODE, "%ld objects cached, cache pressure %d\n",
1764 cached, sysctl_vfs_cache_pressure);
1765
1766 return cached;
1767 }
1768
1769 static unsigned long lu_cache_shrink_scan(struct shrinker *sk,
1770 struct shrink_control *sc)
1771 {
1772 struct lu_site *s;
1773 struct lu_site *tmp;
1774 unsigned long remain = sc->nr_to_scan, freed = 0;
1775 LIST_HEAD(splice);
1776
1777 if (!(sc->gfp_mask & __GFP_FS))
1778 /* We must not take the lu_sites_guard lock when
1779 * __GFP_FS is *not* set because of the deadlock
1780 * possibility detailed above. Additionally,
1781 * since we cannot determine the number of
1782 * objects in the cache without taking this
1783 * lock, we're in a particularly tough spot. As
1784 * a result, we'll just lie and say our cache is
1785 * empty. This _should_ be ok, as we can't
1786 * reclaim objects when __GFP_FS is *not* set
1787 * anyways.
1788 */
1789 return SHRINK_STOP;
1790
1791 mutex_lock(&lu_sites_guard);
1792 list_for_each_entry_safe(s, tmp, &lu_sites, ls_linkage) {
1793 freed = lu_site_purge(&lu_shrink_env, s, remain);
1794 remain -= freed;
1795 /*
1796 * Move just shrunk site to the tail of site list to
1797 * assure shrinking fairness.
1798 */
1799 list_move_tail(&s->ls_linkage, &splice);
1800 }
1801 list_splice(&splice, lu_sites.prev);
1802 mutex_unlock(&lu_sites_guard);
1803
1804 return sc->nr_to_scan - remain;
1805 }
1806
1807 /**
1808 * Debugging printer function using printk().
1809 */
1810 static struct shrinker lu_site_shrinker = {
1811 .count_objects = lu_cache_shrink_count,
1812 .scan_objects = lu_cache_shrink_scan,
1813 .seeks = DEFAULT_SEEKS,
1814 };
1815
1816 /**
1817 * Initialization of global lu_* data.
1818 */
1819 int lu_global_init(void)
1820 {
1821 int result;
1822
1823 CDEBUG(D_INFO, "Lustre LU module (%p).\n", &lu_keys);
1824
1825 result = lu_ref_global_init();
1826 if (result != 0)
1827 return result;
1828
1829 LU_CONTEXT_KEY_INIT(&lu_global_key);
1830 result = lu_context_key_register(&lu_global_key);
1831 if (result != 0)
1832 return result;
1833
1834 /*
1835 * At this level, we don't know what tags are needed, so allocate them
1836 * conservatively. This should not be too bad, because this
1837 * environment is global.
1838 */
1839 mutex_lock(&lu_sites_guard);
1840 result = lu_env_init(&lu_shrink_env, LCT_SHRINKER);
1841 mutex_unlock(&lu_sites_guard);
1842 if (result != 0)
1843 return result;
1844
1845 /*
1846 * seeks estimation: 3 seeks to read a record from oi, one to read
1847 * inode, one for ea. Unfortunately setting this high value results in
1848 * lu_object/inode cache consuming all the memory.
1849 */
1850 register_shrinker(&lu_site_shrinker);
1851
1852 return result;
1853 }
1854
1855 /**
1856 * Dual to lu_global_init().
1857 */
1858 void lu_global_fini(void)
1859 {
1860 unregister_shrinker(&lu_site_shrinker);
1861 lu_context_key_degister(&lu_global_key);
1862
1863 /*
1864 * Tear shrinker environment down _after_ de-registering
1865 * lu_global_key, because the latter has a value in the former.
1866 */
1867 mutex_lock(&lu_sites_guard);
1868 lu_env_fini(&lu_shrink_env);
1869 mutex_unlock(&lu_sites_guard);
1870
1871 lu_ref_global_fini();
1872 }
1873
1874 static __u32 ls_stats_read(struct lprocfs_stats *stats, int idx)
1875 {
1876 struct lprocfs_counter ret;
1877
1878 lprocfs_stats_collect(stats, idx, &ret);
1879 if (idx == LU_SS_LRU_LEN)
1880 /*
1881 * protect against counter on cpu A being decremented
1882 * before counter is incremented on cpu B; unlikely
1883 */
1884 return (__u32)((ret.lc_sum > 0) ? ret.lc_sum : 0);
1885
1886 return (__u32)ret.lc_count;
1887 }
1888
1889 /**
1890 * Output site statistical counters into a buffer. Suitable for
1891 * lprocfs_rd_*()-style functions.
1892 */
1893 int lu_site_stats_print(const struct lu_site *s, struct seq_file *m)
1894 {
1895 struct lu_site_stats stats;
1896
1897 memset(&stats, 0, sizeof(stats));
1898 lu_site_stats_get(s->ls_obj_hash, &stats, 1);
1899
1900 seq_printf(m, "%d/%d %d/%d %d %d %d %d %d %d %d %d\n",
1901 stats.lss_busy,
1902 stats.lss_total,
1903 stats.lss_populated,
1904 CFS_HASH_NHLIST(s->ls_obj_hash),
1905 stats.lss_max_search,
1906 ls_stats_read(s->ls_stats, LU_SS_CREATED),
1907 ls_stats_read(s->ls_stats, LU_SS_CACHE_HIT),
1908 ls_stats_read(s->ls_stats, LU_SS_CACHE_MISS),
1909 ls_stats_read(s->ls_stats, LU_SS_CACHE_RACE),
1910 ls_stats_read(s->ls_stats, LU_SS_CACHE_DEATH_RACE),
1911 ls_stats_read(s->ls_stats, LU_SS_LRU_PURGED),
1912 ls_stats_read(s->ls_stats, LU_SS_LRU_LEN));
1913 return 0;
1914 }
1915 EXPORT_SYMBOL(lu_site_stats_print);
1916
1917 /**
1918 * Helper function to initialize a number of kmem slab caches at once.
1919 */
1920 int lu_kmem_init(struct lu_kmem_descr *caches)
1921 {
1922 int result;
1923 struct lu_kmem_descr *iter = caches;
1924
1925 for (result = 0; iter->ckd_cache != NULL; ++iter) {
1926 *iter->ckd_cache = kmem_cache_create(iter->ckd_name,
1927 iter->ckd_size,
1928 0, 0, NULL);
1929 if (*iter->ckd_cache == NULL) {
1930 result = -ENOMEM;
1931 /* free all previously allocated caches */
1932 lu_kmem_fini(caches);
1933 break;
1934 }
1935 }
1936 return result;
1937 }
1938 EXPORT_SYMBOL(lu_kmem_init);
1939
1940 /**
1941 * Helper function to finalize a number of kmem slab cached at once. Dual to
1942 * lu_kmem_init().
1943 */
1944 void lu_kmem_fini(struct lu_kmem_descr *caches)
1945 {
1946 for (; caches->ckd_cache != NULL; ++caches) {
1947 kmem_cache_destroy(*caches->ckd_cache);
1948 *caches->ckd_cache = NULL;
1949 }
1950 }
1951 EXPORT_SYMBOL(lu_kmem_fini);