]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/staging/lustre/lustre/ptlrpc/client.c
pinctrl: sirf: move sgpio lock into state container
[mirror_ubuntu-zesty-kernel.git] / drivers / staging / lustre / lustre / ptlrpc / client.c
1 /*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26 /*
27 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2011, 2012, Intel Corporation.
31 */
32 /*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 */
36
37 /** Implementation of client-side PortalRPC interfaces */
38
39 #define DEBUG_SUBSYSTEM S_RPC
40
41 #include "../include/obd_support.h"
42 #include "../include/obd_class.h"
43 #include "../include/lustre_lib.h"
44 #include "../include/lustre_ha.h"
45 #include "../include/lustre_import.h"
46 #include "../include/lustre_req_layout.h"
47
48 #include "ptlrpc_internal.h"
49
50 static int ptlrpc_send_new_req(struct ptlrpc_request *req);
51 static int ptlrpcd_check_work(struct ptlrpc_request *req);
52
53 /**
54 * Initialize passed in client structure \a cl.
55 */
56 void ptlrpc_init_client(int req_portal, int rep_portal, char *name,
57 struct ptlrpc_client *cl)
58 {
59 cl->cli_request_portal = req_portal;
60 cl->cli_reply_portal = rep_portal;
61 cl->cli_name = name;
62 }
63 EXPORT_SYMBOL(ptlrpc_init_client);
64
65 /**
66 * Return PortalRPC connection for remote uud \a uuid
67 */
68 struct ptlrpc_connection *ptlrpc_uuid_to_connection(struct obd_uuid *uuid)
69 {
70 struct ptlrpc_connection *c;
71 lnet_nid_t self;
72 lnet_process_id_t peer;
73 int err;
74
75 /* ptlrpc_uuid_to_peer() initializes its 2nd parameter
76 * before accessing its values. */
77 /* coverity[uninit_use_in_call] */
78 err = ptlrpc_uuid_to_peer(uuid, &peer, &self);
79 if (err != 0) {
80 CNETERR("cannot find peer %s!\n", uuid->uuid);
81 return NULL;
82 }
83
84 c = ptlrpc_connection_get(peer, self, uuid);
85 if (c) {
86 memcpy(c->c_remote_uuid.uuid,
87 uuid->uuid, sizeof(c->c_remote_uuid.uuid));
88 }
89
90 CDEBUG(D_INFO, "%s -> %p\n", uuid->uuid, c);
91
92 return c;
93 }
94 EXPORT_SYMBOL(ptlrpc_uuid_to_connection);
95
96 /**
97 * Allocate and initialize new bulk descriptor on the sender.
98 * Returns pointer to the descriptor or NULL on error.
99 */
100 struct ptlrpc_bulk_desc *ptlrpc_new_bulk(unsigned npages, unsigned max_brw,
101 unsigned type, unsigned portal)
102 {
103 struct ptlrpc_bulk_desc *desc;
104 int i;
105
106 OBD_ALLOC(desc, offsetof(struct ptlrpc_bulk_desc, bd_iov[npages]));
107 if (!desc)
108 return NULL;
109
110 spin_lock_init(&desc->bd_lock);
111 init_waitqueue_head(&desc->bd_waitq);
112 desc->bd_max_iov = npages;
113 desc->bd_iov_count = 0;
114 desc->bd_portal = portal;
115 desc->bd_type = type;
116 desc->bd_md_count = 0;
117 LASSERT(max_brw > 0);
118 desc->bd_md_max_brw = min(max_brw, PTLRPC_BULK_OPS_COUNT);
119 /* PTLRPC_BULK_OPS_COUNT is the compile-time transfer limit for this
120 * node. Negotiated ocd_brw_size will always be <= this number. */
121 for (i = 0; i < PTLRPC_BULK_OPS_COUNT; i++)
122 LNetInvalidateHandle(&desc->bd_mds[i]);
123
124 return desc;
125 }
126
127 /**
128 * Prepare bulk descriptor for specified outgoing request \a req that
129 * can fit \a npages * pages. \a type is bulk type. \a portal is where
130 * the bulk to be sent. Used on client-side.
131 * Returns pointer to newly allocated initialized bulk descriptor or NULL on
132 * error.
133 */
134 struct ptlrpc_bulk_desc *ptlrpc_prep_bulk_imp(struct ptlrpc_request *req,
135 unsigned npages, unsigned max_brw,
136 unsigned type, unsigned portal)
137 {
138 struct obd_import *imp = req->rq_import;
139 struct ptlrpc_bulk_desc *desc;
140
141 LASSERT(type == BULK_PUT_SINK || type == BULK_GET_SOURCE);
142 desc = ptlrpc_new_bulk(npages, max_brw, type, portal);
143 if (desc == NULL)
144 return NULL;
145
146 desc->bd_import_generation = req->rq_import_generation;
147 desc->bd_import = class_import_get(imp);
148 desc->bd_req = req;
149
150 desc->bd_cbid.cbid_fn = client_bulk_callback;
151 desc->bd_cbid.cbid_arg = desc;
152
153 /* This makes req own desc, and free it when she frees herself */
154 req->rq_bulk = desc;
155
156 return desc;
157 }
158 EXPORT_SYMBOL(ptlrpc_prep_bulk_imp);
159
160 /**
161 * Add a page \a page to the bulk descriptor \a desc.
162 * Data to transfer in the page starts at offset \a pageoffset and
163 * amount of data to transfer from the page is \a len
164 */
165 void __ptlrpc_prep_bulk_page(struct ptlrpc_bulk_desc *desc,
166 struct page *page, int pageoffset, int len, int pin)
167 {
168 LASSERT(desc->bd_iov_count < desc->bd_max_iov);
169 LASSERT(page != NULL);
170 LASSERT(pageoffset >= 0);
171 LASSERT(len > 0);
172 LASSERT(pageoffset + len <= PAGE_CACHE_SIZE);
173
174 desc->bd_nob += len;
175
176 if (pin)
177 page_cache_get(page);
178
179 ptlrpc_add_bulk_page(desc, page, pageoffset, len);
180 }
181 EXPORT_SYMBOL(__ptlrpc_prep_bulk_page);
182
183 /**
184 * Uninitialize and free bulk descriptor \a desc.
185 * Works on bulk descriptors both from server and client side.
186 */
187 void __ptlrpc_free_bulk(struct ptlrpc_bulk_desc *desc, int unpin)
188 {
189 int i;
190
191 LASSERT(desc != NULL);
192 LASSERT(desc->bd_iov_count != LI_POISON); /* not freed already */
193 LASSERT(desc->bd_md_count == 0); /* network hands off */
194 LASSERT((desc->bd_export != NULL) ^ (desc->bd_import != NULL));
195
196 sptlrpc_enc_pool_put_pages(desc);
197
198 if (desc->bd_export)
199 class_export_put(desc->bd_export);
200 else
201 class_import_put(desc->bd_import);
202
203 if (unpin) {
204 for (i = 0; i < desc->bd_iov_count; i++)
205 page_cache_release(desc->bd_iov[i].kiov_page);
206 }
207
208 OBD_FREE(desc, offsetof(struct ptlrpc_bulk_desc,
209 bd_iov[desc->bd_max_iov]));
210 }
211 EXPORT_SYMBOL(__ptlrpc_free_bulk);
212
213 /**
214 * Set server timelimit for this req, i.e. how long are we willing to wait
215 * for reply before timing out this request.
216 */
217 void ptlrpc_at_set_req_timeout(struct ptlrpc_request *req)
218 {
219 __u32 serv_est;
220 int idx;
221 struct imp_at *at;
222
223 LASSERT(req->rq_import);
224
225 if (AT_OFF) {
226 /* non-AT settings */
227 /**
228 * \a imp_server_timeout means this is reverse import and
229 * we send (currently only) ASTs to the client and cannot afford
230 * to wait too long for the reply, otherwise the other client
231 * (because of which we are sending this request) would
232 * timeout waiting for us
233 */
234 req->rq_timeout = req->rq_import->imp_server_timeout ?
235 obd_timeout / 2 : obd_timeout;
236 } else {
237 at = &req->rq_import->imp_at;
238 idx = import_at_get_index(req->rq_import,
239 req->rq_request_portal);
240 serv_est = at_get(&at->iat_service_estimate[idx]);
241 req->rq_timeout = at_est2timeout(serv_est);
242 }
243 /* We could get even fancier here, using history to predict increased
244 loading... */
245
246 /* Let the server know what this RPC timeout is by putting it in the
247 reqmsg*/
248 lustre_msg_set_timeout(req->rq_reqmsg, req->rq_timeout);
249 }
250 EXPORT_SYMBOL(ptlrpc_at_set_req_timeout);
251
252 /* Adjust max service estimate based on server value */
253 static void ptlrpc_at_adj_service(struct ptlrpc_request *req,
254 unsigned int serv_est)
255 {
256 int idx;
257 unsigned int oldse;
258 struct imp_at *at;
259
260 LASSERT(req->rq_import);
261 at = &req->rq_import->imp_at;
262
263 idx = import_at_get_index(req->rq_import, req->rq_request_portal);
264 /* max service estimates are tracked on the server side,
265 so just keep minimal history here */
266 oldse = at_measured(&at->iat_service_estimate[idx], serv_est);
267 if (oldse != 0)
268 CDEBUG(D_ADAPTTO, "The RPC service estimate for %s ptl %d has changed from %d to %d\n",
269 req->rq_import->imp_obd->obd_name, req->rq_request_portal,
270 oldse, at_get(&at->iat_service_estimate[idx]));
271 }
272
273 /* Expected network latency per remote node (secs) */
274 int ptlrpc_at_get_net_latency(struct ptlrpc_request *req)
275 {
276 return AT_OFF ? 0 : at_get(&req->rq_import->imp_at.iat_net_latency);
277 }
278
279 /* Adjust expected network latency */
280 static void ptlrpc_at_adj_net_latency(struct ptlrpc_request *req,
281 unsigned int service_time)
282 {
283 unsigned int nl, oldnl;
284 struct imp_at *at;
285 time_t now = get_seconds();
286
287 LASSERT(req->rq_import);
288 at = &req->rq_import->imp_at;
289
290 /* Network latency is total time less server processing time */
291 nl = max_t(int, now - req->rq_sent - service_time, 0) + 1/*st rounding*/;
292 if (service_time > now - req->rq_sent + 3 /* bz16408 */)
293 CWARN("Reported service time %u > total measured time "
294 CFS_DURATION_T"\n", service_time,
295 cfs_time_sub(now, req->rq_sent));
296
297 oldnl = at_measured(&at->iat_net_latency, nl);
298 if (oldnl != 0)
299 CDEBUG(D_ADAPTTO, "The network latency for %s (nid %s) has changed from %d to %d\n",
300 req->rq_import->imp_obd->obd_name,
301 obd_uuid2str(
302 &req->rq_import->imp_connection->c_remote_uuid),
303 oldnl, at_get(&at->iat_net_latency));
304 }
305
306 static int unpack_reply(struct ptlrpc_request *req)
307 {
308 int rc;
309
310 if (SPTLRPC_FLVR_POLICY(req->rq_flvr.sf_rpc) != SPTLRPC_POLICY_NULL) {
311 rc = ptlrpc_unpack_rep_msg(req, req->rq_replen);
312 if (rc) {
313 DEBUG_REQ(D_ERROR, req, "unpack_rep failed: %d", rc);
314 return -EPROTO;
315 }
316 }
317
318 rc = lustre_unpack_rep_ptlrpc_body(req, MSG_PTLRPC_BODY_OFF);
319 if (rc) {
320 DEBUG_REQ(D_ERROR, req, "unpack ptlrpc body failed: %d", rc);
321 return -EPROTO;
322 }
323 return 0;
324 }
325
326 /**
327 * Handle an early reply message, called with the rq_lock held.
328 * If anything goes wrong just ignore it - same as if it never happened
329 */
330 static int ptlrpc_at_recv_early_reply(struct ptlrpc_request *req)
331 {
332 struct ptlrpc_request *early_req;
333 time_t olddl;
334 int rc;
335
336 req->rq_early = 0;
337 spin_unlock(&req->rq_lock);
338
339 rc = sptlrpc_cli_unwrap_early_reply(req, &early_req);
340 if (rc) {
341 spin_lock(&req->rq_lock);
342 return rc;
343 }
344
345 rc = unpack_reply(early_req);
346 if (rc == 0) {
347 /* Expecting to increase the service time estimate here */
348 ptlrpc_at_adj_service(req,
349 lustre_msg_get_timeout(early_req->rq_repmsg));
350 ptlrpc_at_adj_net_latency(req,
351 lustre_msg_get_service_time(early_req->rq_repmsg));
352 }
353
354 sptlrpc_cli_finish_early_reply(early_req);
355
356 if (rc != 0) {
357 spin_lock(&req->rq_lock);
358 return rc;
359 }
360
361 /* Adjust the local timeout for this req */
362 ptlrpc_at_set_req_timeout(req);
363
364 spin_lock(&req->rq_lock);
365 olddl = req->rq_deadline;
366 /* server assumes it now has rq_timeout from when it sent the
367 * early reply, so client should give it at least that long. */
368 req->rq_deadline = get_seconds() + req->rq_timeout +
369 ptlrpc_at_get_net_latency(req);
370
371 DEBUG_REQ(D_ADAPTTO, req,
372 "Early reply #%d, new deadline in " CFS_DURATION_T "s (" CFS_DURATION_T "s)",
373 req->rq_early_count,
374 cfs_time_sub(req->rq_deadline, get_seconds()),
375 cfs_time_sub(req->rq_deadline, olddl));
376
377 return rc;
378 }
379
380 struct kmem_cache *request_cache;
381
382 int ptlrpc_request_cache_init(void)
383 {
384 request_cache = kmem_cache_create("ptlrpc_cache",
385 sizeof(struct ptlrpc_request),
386 0, SLAB_HWCACHE_ALIGN, NULL);
387 return request_cache == NULL ? -ENOMEM : 0;
388 }
389
390 void ptlrpc_request_cache_fini(void)
391 {
392 kmem_cache_destroy(request_cache);
393 }
394
395 struct ptlrpc_request *ptlrpc_request_cache_alloc(gfp_t flags)
396 {
397 struct ptlrpc_request *req;
398
399 OBD_SLAB_ALLOC_PTR_GFP(req, request_cache, flags);
400 return req;
401 }
402
403 void ptlrpc_request_cache_free(struct ptlrpc_request *req)
404 {
405 OBD_SLAB_FREE_PTR(req, request_cache);
406 }
407
408 /**
409 * Wind down request pool \a pool.
410 * Frees all requests from the pool too
411 */
412 void ptlrpc_free_rq_pool(struct ptlrpc_request_pool *pool)
413 {
414 struct list_head *l, *tmp;
415 struct ptlrpc_request *req;
416
417 LASSERT(pool != NULL);
418
419 spin_lock(&pool->prp_lock);
420 list_for_each_safe(l, tmp, &pool->prp_req_list) {
421 req = list_entry(l, struct ptlrpc_request, rq_list);
422 list_del(&req->rq_list);
423 LASSERT(req->rq_reqbuf);
424 LASSERT(req->rq_reqbuf_len == pool->prp_rq_size);
425 OBD_FREE_LARGE(req->rq_reqbuf, pool->prp_rq_size);
426 ptlrpc_request_cache_free(req);
427 }
428 spin_unlock(&pool->prp_lock);
429 OBD_FREE(pool, sizeof(*pool));
430 }
431 EXPORT_SYMBOL(ptlrpc_free_rq_pool);
432
433 /**
434 * Allocates, initializes and adds \a num_rq requests to the pool \a pool
435 */
436 void ptlrpc_add_rqs_to_pool(struct ptlrpc_request_pool *pool, int num_rq)
437 {
438 int i;
439 int size = 1;
440
441 while (size < pool->prp_rq_size)
442 size <<= 1;
443
444 LASSERTF(list_empty(&pool->prp_req_list) ||
445 size == pool->prp_rq_size,
446 "Trying to change pool size with nonempty pool from %d to %d bytes\n",
447 pool->prp_rq_size, size);
448
449 spin_lock(&pool->prp_lock);
450 pool->prp_rq_size = size;
451 for (i = 0; i < num_rq; i++) {
452 struct ptlrpc_request *req;
453 struct lustre_msg *msg;
454
455 spin_unlock(&pool->prp_lock);
456 req = ptlrpc_request_cache_alloc(GFP_NOFS);
457 if (!req)
458 return;
459 OBD_ALLOC_LARGE(msg, size);
460 if (!msg) {
461 ptlrpc_request_cache_free(req);
462 return;
463 }
464 req->rq_reqbuf = msg;
465 req->rq_reqbuf_len = size;
466 req->rq_pool = pool;
467 spin_lock(&pool->prp_lock);
468 list_add_tail(&req->rq_list, &pool->prp_req_list);
469 }
470 spin_unlock(&pool->prp_lock);
471 return;
472 }
473 EXPORT_SYMBOL(ptlrpc_add_rqs_to_pool);
474
475 /**
476 * Create and initialize new request pool with given attributes:
477 * \a num_rq - initial number of requests to create for the pool
478 * \a msgsize - maximum message size possible for requests in thid pool
479 * \a populate_pool - function to be called when more requests need to be added
480 * to the pool
481 * Returns pointer to newly created pool or NULL on error.
482 */
483 struct ptlrpc_request_pool *
484 ptlrpc_init_rq_pool(int num_rq, int msgsize,
485 void (*populate_pool)(struct ptlrpc_request_pool *, int))
486 {
487 struct ptlrpc_request_pool *pool;
488
489 OBD_ALLOC(pool, sizeof(struct ptlrpc_request_pool));
490 if (!pool)
491 return NULL;
492
493 /* Request next power of two for the allocation, because internally
494 kernel would do exactly this */
495
496 spin_lock_init(&pool->prp_lock);
497 INIT_LIST_HEAD(&pool->prp_req_list);
498 pool->prp_rq_size = msgsize + SPTLRPC_MAX_PAYLOAD;
499 pool->prp_populate = populate_pool;
500
501 populate_pool(pool, num_rq);
502
503 if (list_empty(&pool->prp_req_list)) {
504 /* have not allocated a single request for the pool */
505 OBD_FREE(pool, sizeof(struct ptlrpc_request_pool));
506 pool = NULL;
507 }
508 return pool;
509 }
510 EXPORT_SYMBOL(ptlrpc_init_rq_pool);
511
512 /**
513 * Fetches one request from pool \a pool
514 */
515 static struct ptlrpc_request *
516 ptlrpc_prep_req_from_pool(struct ptlrpc_request_pool *pool)
517 {
518 struct ptlrpc_request *request;
519 struct lustre_msg *reqbuf;
520
521 if (!pool)
522 return NULL;
523
524 spin_lock(&pool->prp_lock);
525
526 /* See if we have anything in a pool, and bail out if nothing,
527 * in writeout path, where this matters, this is safe to do, because
528 * nothing is lost in this case, and when some in-flight requests
529 * complete, this code will be called again. */
530 if (unlikely(list_empty(&pool->prp_req_list))) {
531 spin_unlock(&pool->prp_lock);
532 return NULL;
533 }
534
535 request = list_entry(pool->prp_req_list.next, struct ptlrpc_request,
536 rq_list);
537 list_del_init(&request->rq_list);
538 spin_unlock(&pool->prp_lock);
539
540 LASSERT(request->rq_reqbuf);
541 LASSERT(request->rq_pool);
542
543 reqbuf = request->rq_reqbuf;
544 memset(request, 0, sizeof(*request));
545 request->rq_reqbuf = reqbuf;
546 request->rq_reqbuf_len = pool->prp_rq_size;
547 request->rq_pool = pool;
548
549 return request;
550 }
551
552 /**
553 * Returns freed \a request to pool.
554 */
555 static void __ptlrpc_free_req_to_pool(struct ptlrpc_request *request)
556 {
557 struct ptlrpc_request_pool *pool = request->rq_pool;
558
559 spin_lock(&pool->prp_lock);
560 LASSERT(list_empty(&request->rq_list));
561 LASSERT(!request->rq_receiving_reply);
562 list_add_tail(&request->rq_list, &pool->prp_req_list);
563 spin_unlock(&pool->prp_lock);
564 }
565
566 static int __ptlrpc_request_bufs_pack(struct ptlrpc_request *request,
567 __u32 version, int opcode,
568 int count, __u32 *lengths, char **bufs,
569 struct ptlrpc_cli_ctx *ctx)
570 {
571 struct obd_import *imp = request->rq_import;
572 int rc;
573
574 if (unlikely(ctx))
575 request->rq_cli_ctx = sptlrpc_cli_ctx_get(ctx);
576 else {
577 rc = sptlrpc_req_get_ctx(request);
578 if (rc)
579 goto out_free;
580 }
581
582 sptlrpc_req_set_flavor(request, opcode);
583
584 rc = lustre_pack_request(request, imp->imp_msg_magic, count,
585 lengths, bufs);
586 if (rc) {
587 LASSERT(!request->rq_pool);
588 goto out_ctx;
589 }
590
591 lustre_msg_add_version(request->rq_reqmsg, version);
592 request->rq_send_state = LUSTRE_IMP_FULL;
593 request->rq_type = PTL_RPC_MSG_REQUEST;
594 request->rq_export = NULL;
595
596 request->rq_req_cbid.cbid_fn = request_out_callback;
597 request->rq_req_cbid.cbid_arg = request;
598
599 request->rq_reply_cbid.cbid_fn = reply_in_callback;
600 request->rq_reply_cbid.cbid_arg = request;
601
602 request->rq_reply_deadline = 0;
603 request->rq_phase = RQ_PHASE_NEW;
604 request->rq_next_phase = RQ_PHASE_UNDEFINED;
605
606 request->rq_request_portal = imp->imp_client->cli_request_portal;
607 request->rq_reply_portal = imp->imp_client->cli_reply_portal;
608
609 ptlrpc_at_set_req_timeout(request);
610
611 spin_lock_init(&request->rq_lock);
612 INIT_LIST_HEAD(&request->rq_list);
613 INIT_LIST_HEAD(&request->rq_timed_list);
614 INIT_LIST_HEAD(&request->rq_replay_list);
615 INIT_LIST_HEAD(&request->rq_ctx_chain);
616 INIT_LIST_HEAD(&request->rq_set_chain);
617 INIT_LIST_HEAD(&request->rq_history_list);
618 INIT_LIST_HEAD(&request->rq_exp_list);
619 init_waitqueue_head(&request->rq_reply_waitq);
620 init_waitqueue_head(&request->rq_set_waitq);
621 request->rq_xid = ptlrpc_next_xid();
622 atomic_set(&request->rq_refcount, 1);
623
624 lustre_msg_set_opc(request->rq_reqmsg, opcode);
625
626 return 0;
627 out_ctx:
628 sptlrpc_cli_ctx_put(request->rq_cli_ctx, 1);
629 out_free:
630 class_import_put(imp);
631 return rc;
632 }
633
634 int ptlrpc_request_bufs_pack(struct ptlrpc_request *request,
635 __u32 version, int opcode, char **bufs,
636 struct ptlrpc_cli_ctx *ctx)
637 {
638 int count;
639
640 count = req_capsule_filled_sizes(&request->rq_pill, RCL_CLIENT);
641 return __ptlrpc_request_bufs_pack(request, version, opcode, count,
642 request->rq_pill.rc_area[RCL_CLIENT],
643 bufs, ctx);
644 }
645 EXPORT_SYMBOL(ptlrpc_request_bufs_pack);
646
647 /**
648 * Pack request buffers for network transfer, performing necessary encryption
649 * steps if necessary.
650 */
651 int ptlrpc_request_pack(struct ptlrpc_request *request,
652 __u32 version, int opcode)
653 {
654 int rc;
655 rc = ptlrpc_request_bufs_pack(request, version, opcode, NULL, NULL);
656 if (rc)
657 return rc;
658
659 /* For some old 1.8 clients (< 1.8.7), they will LASSERT the size of
660 * ptlrpc_body sent from server equal to local ptlrpc_body size, so we
661 * have to send old ptlrpc_body to keep interoperability with these
662 * clients.
663 *
664 * Only three kinds of server->client RPCs so far:
665 * - LDLM_BL_CALLBACK
666 * - LDLM_CP_CALLBACK
667 * - LDLM_GL_CALLBACK
668 *
669 * XXX This should be removed whenever we drop the interoperability with
670 * the these old clients.
671 */
672 if (opcode == LDLM_BL_CALLBACK || opcode == LDLM_CP_CALLBACK ||
673 opcode == LDLM_GL_CALLBACK)
674 req_capsule_shrink(&request->rq_pill, &RMF_PTLRPC_BODY,
675 sizeof(struct ptlrpc_body_v2), RCL_CLIENT);
676
677 return rc;
678 }
679 EXPORT_SYMBOL(ptlrpc_request_pack);
680
681 /**
682 * Helper function to allocate new request on import \a imp
683 * and possibly using existing request from pool \a pool if provided.
684 * Returns allocated request structure with import field filled or
685 * NULL on error.
686 */
687 static inline
688 struct ptlrpc_request *__ptlrpc_request_alloc(struct obd_import *imp,
689 struct ptlrpc_request_pool *pool)
690 {
691 struct ptlrpc_request *request = NULL;
692
693 if (pool)
694 request = ptlrpc_prep_req_from_pool(pool);
695
696 if (!request)
697 request = ptlrpc_request_cache_alloc(GFP_NOFS);
698
699 if (request) {
700 LASSERTF((unsigned long)imp > 0x1000, "%p", imp);
701 LASSERT(imp != LP_POISON);
702 LASSERTF((unsigned long)imp->imp_client > 0x1000, "%p",
703 imp->imp_client);
704 LASSERT(imp->imp_client != LP_POISON);
705
706 request->rq_import = class_import_get(imp);
707 } else {
708 CERROR("request allocation out of memory\n");
709 }
710
711 return request;
712 }
713
714 /**
715 * Helper function for creating a request.
716 * Calls __ptlrpc_request_alloc to allocate new request structure and inits
717 * buffer structures according to capsule template \a format.
718 * Returns allocated request structure pointer or NULL on error.
719 */
720 static struct ptlrpc_request *
721 ptlrpc_request_alloc_internal(struct obd_import *imp,
722 struct ptlrpc_request_pool *pool,
723 const struct req_format *format)
724 {
725 struct ptlrpc_request *request;
726
727 request = __ptlrpc_request_alloc(imp, pool);
728 if (request == NULL)
729 return NULL;
730
731 req_capsule_init(&request->rq_pill, request, RCL_CLIENT);
732 req_capsule_set(&request->rq_pill, format);
733 return request;
734 }
735
736 /**
737 * Allocate new request structure for import \a imp and initialize its
738 * buffer structure according to capsule template \a format.
739 */
740 struct ptlrpc_request *ptlrpc_request_alloc(struct obd_import *imp,
741 const struct req_format *format)
742 {
743 return ptlrpc_request_alloc_internal(imp, NULL, format);
744 }
745 EXPORT_SYMBOL(ptlrpc_request_alloc);
746
747 /**
748 * Allocate new request structure for import \a imp from pool \a pool and
749 * initialize its buffer structure according to capsule template \a format.
750 */
751 struct ptlrpc_request *ptlrpc_request_alloc_pool(struct obd_import *imp,
752 struct ptlrpc_request_pool *pool,
753 const struct req_format *format)
754 {
755 return ptlrpc_request_alloc_internal(imp, pool, format);
756 }
757 EXPORT_SYMBOL(ptlrpc_request_alloc_pool);
758
759 /**
760 * For requests not from pool, free memory of the request structure.
761 * For requests obtained from a pool earlier, return request back to pool.
762 */
763 void ptlrpc_request_free(struct ptlrpc_request *request)
764 {
765 if (request->rq_pool)
766 __ptlrpc_free_req_to_pool(request);
767 else
768 ptlrpc_request_cache_free(request);
769 }
770 EXPORT_SYMBOL(ptlrpc_request_free);
771
772 /**
773 * Allocate new request for operation \a opcode and immediately pack it for
774 * network transfer.
775 * Only used for simple requests like OBD_PING where the only important
776 * part of the request is operation itself.
777 * Returns allocated request or NULL on error.
778 */
779 struct ptlrpc_request *ptlrpc_request_alloc_pack(struct obd_import *imp,
780 const struct req_format *format,
781 __u32 version, int opcode)
782 {
783 struct ptlrpc_request *req = ptlrpc_request_alloc(imp, format);
784 int rc;
785
786 if (req) {
787 rc = ptlrpc_request_pack(req, version, opcode);
788 if (rc) {
789 ptlrpc_request_free(req);
790 req = NULL;
791 }
792 }
793 return req;
794 }
795 EXPORT_SYMBOL(ptlrpc_request_alloc_pack);
796
797 /**
798 * Prepare request (fetched from pool \a pool if not NULL) on import \a imp
799 * for operation \a opcode. Request would contain \a count buffers.
800 * Sizes of buffers are described in array \a lengths and buffers themselves
801 * are provided by a pointer \a bufs.
802 * Returns prepared request structure pointer or NULL on error.
803 */
804 struct ptlrpc_request *
805 ptlrpc_prep_req_pool(struct obd_import *imp,
806 __u32 version, int opcode,
807 int count, __u32 *lengths, char **bufs,
808 struct ptlrpc_request_pool *pool)
809 {
810 struct ptlrpc_request *request;
811 int rc;
812
813 request = __ptlrpc_request_alloc(imp, pool);
814 if (!request)
815 return NULL;
816
817 rc = __ptlrpc_request_bufs_pack(request, version, opcode, count,
818 lengths, bufs, NULL);
819 if (rc) {
820 ptlrpc_request_free(request);
821 request = NULL;
822 }
823 return request;
824 }
825 EXPORT_SYMBOL(ptlrpc_prep_req_pool);
826
827 /**
828 * Same as ptlrpc_prep_req_pool, but without pool
829 */
830 struct ptlrpc_request *
831 ptlrpc_prep_req(struct obd_import *imp, __u32 version, int opcode, int count,
832 __u32 *lengths, char **bufs)
833 {
834 return ptlrpc_prep_req_pool(imp, version, opcode, count, lengths, bufs,
835 NULL);
836 }
837 EXPORT_SYMBOL(ptlrpc_prep_req);
838
839 /**
840 * Allocate and initialize new request set structure.
841 * Returns a pointer to the newly allocated set structure or NULL on error.
842 */
843 struct ptlrpc_request_set *ptlrpc_prep_set(void)
844 {
845 struct ptlrpc_request_set *set;
846
847 OBD_ALLOC(set, sizeof(*set));
848 if (!set)
849 return NULL;
850 atomic_set(&set->set_refcount, 1);
851 INIT_LIST_HEAD(&set->set_requests);
852 init_waitqueue_head(&set->set_waitq);
853 atomic_set(&set->set_new_count, 0);
854 atomic_set(&set->set_remaining, 0);
855 spin_lock_init(&set->set_new_req_lock);
856 INIT_LIST_HEAD(&set->set_new_requests);
857 INIT_LIST_HEAD(&set->set_cblist);
858 set->set_max_inflight = UINT_MAX;
859 set->set_producer = NULL;
860 set->set_producer_arg = NULL;
861 set->set_rc = 0;
862
863 return set;
864 }
865 EXPORT_SYMBOL(ptlrpc_prep_set);
866
867 /**
868 * Allocate and initialize new request set structure with flow control
869 * extension. This extension allows to control the number of requests in-flight
870 * for the whole set. A callback function to generate requests must be provided
871 * and the request set will keep the number of requests sent over the wire to
872 * @max_inflight.
873 * Returns a pointer to the newly allocated set structure or NULL on error.
874 */
875 struct ptlrpc_request_set *ptlrpc_prep_fcset(int max, set_producer_func func,
876 void *arg)
877
878 {
879 struct ptlrpc_request_set *set;
880
881 set = ptlrpc_prep_set();
882 if (!set)
883 return NULL;
884
885 set->set_max_inflight = max;
886 set->set_producer = func;
887 set->set_producer_arg = arg;
888
889 return set;
890 }
891 EXPORT_SYMBOL(ptlrpc_prep_fcset);
892
893 /**
894 * Wind down and free request set structure previously allocated with
895 * ptlrpc_prep_set.
896 * Ensures that all requests on the set have completed and removes
897 * all requests from the request list in a set.
898 * If any unsent request happen to be on the list, pretends that they got
899 * an error in flight and calls their completion handler.
900 */
901 void ptlrpc_set_destroy(struct ptlrpc_request_set *set)
902 {
903 struct list_head *tmp;
904 struct list_head *next;
905 int expected_phase;
906 int n = 0;
907
908 /* Requests on the set should either all be completed, or all be new */
909 expected_phase = (atomic_read(&set->set_remaining) == 0) ?
910 RQ_PHASE_COMPLETE : RQ_PHASE_NEW;
911 list_for_each(tmp, &set->set_requests) {
912 struct ptlrpc_request *req =
913 list_entry(tmp, struct ptlrpc_request,
914 rq_set_chain);
915
916 LASSERT(req->rq_phase == expected_phase);
917 n++;
918 }
919
920 LASSERTF(atomic_read(&set->set_remaining) == 0 ||
921 atomic_read(&set->set_remaining) == n, "%d / %d\n",
922 atomic_read(&set->set_remaining), n);
923
924 list_for_each_safe(tmp, next, &set->set_requests) {
925 struct ptlrpc_request *req =
926 list_entry(tmp, struct ptlrpc_request,
927 rq_set_chain);
928 list_del_init(&req->rq_set_chain);
929
930 LASSERT(req->rq_phase == expected_phase);
931
932 if (req->rq_phase == RQ_PHASE_NEW) {
933 ptlrpc_req_interpret(NULL, req, -EBADR);
934 atomic_dec(&set->set_remaining);
935 }
936
937 spin_lock(&req->rq_lock);
938 req->rq_set = NULL;
939 req->rq_invalid_rqset = 0;
940 spin_unlock(&req->rq_lock);
941
942 ptlrpc_req_finished(req);
943 }
944
945 LASSERT(atomic_read(&set->set_remaining) == 0);
946
947 ptlrpc_reqset_put(set);
948 }
949 EXPORT_SYMBOL(ptlrpc_set_destroy);
950
951 /**
952 * Add a callback function \a fn to the set.
953 * This function would be called when all requests on this set are completed.
954 * The function will be passed \a data argument.
955 */
956 int ptlrpc_set_add_cb(struct ptlrpc_request_set *set,
957 set_interpreter_func fn, void *data)
958 {
959 struct ptlrpc_set_cbdata *cbdata;
960
961 OBD_ALLOC_PTR(cbdata);
962 if (cbdata == NULL)
963 return -ENOMEM;
964
965 cbdata->psc_interpret = fn;
966 cbdata->psc_data = data;
967 list_add_tail(&cbdata->psc_item, &set->set_cblist);
968
969 return 0;
970 }
971 EXPORT_SYMBOL(ptlrpc_set_add_cb);
972
973 /**
974 * Add a new request to the general purpose request set.
975 * Assumes request reference from the caller.
976 */
977 void ptlrpc_set_add_req(struct ptlrpc_request_set *set,
978 struct ptlrpc_request *req)
979 {
980 LASSERT(list_empty(&req->rq_set_chain));
981
982 /* The set takes over the caller's request reference */
983 list_add_tail(&req->rq_set_chain, &set->set_requests);
984 req->rq_set = set;
985 atomic_inc(&set->set_remaining);
986 req->rq_queued_time = cfs_time_current();
987
988 if (req->rq_reqmsg != NULL)
989 lustre_msg_set_jobid(req->rq_reqmsg, NULL);
990
991 if (set->set_producer != NULL)
992 /* If the request set has a producer callback, the RPC must be
993 * sent straight away */
994 ptlrpc_send_new_req(req);
995 }
996 EXPORT_SYMBOL(ptlrpc_set_add_req);
997
998 /**
999 * Add a request to a request with dedicated server thread
1000 * and wake the thread to make any necessary processing.
1001 * Currently only used for ptlrpcd.
1002 */
1003 void ptlrpc_set_add_new_req(struct ptlrpcd_ctl *pc,
1004 struct ptlrpc_request *req)
1005 {
1006 struct ptlrpc_request_set *set = pc->pc_set;
1007 int count, i;
1008
1009 LASSERT(req->rq_set == NULL);
1010 LASSERT(test_bit(LIOD_STOP, &pc->pc_flags) == 0);
1011
1012 spin_lock(&set->set_new_req_lock);
1013 /*
1014 * The set takes over the caller's request reference.
1015 */
1016 req->rq_set = set;
1017 req->rq_queued_time = cfs_time_current();
1018 list_add_tail(&req->rq_set_chain, &set->set_new_requests);
1019 count = atomic_inc_return(&set->set_new_count);
1020 spin_unlock(&set->set_new_req_lock);
1021
1022 /* Only need to call wakeup once for the first entry. */
1023 if (count == 1) {
1024 wake_up(&set->set_waitq);
1025
1026 /* XXX: It maybe unnecessary to wakeup all the partners. But to
1027 * guarantee the async RPC can be processed ASAP, we have
1028 * no other better choice. It maybe fixed in future. */
1029 for (i = 0; i < pc->pc_npartners; i++)
1030 wake_up(&pc->pc_partners[i]->pc_set->set_waitq);
1031 }
1032 }
1033 EXPORT_SYMBOL(ptlrpc_set_add_new_req);
1034
1035 /**
1036 * Based on the current state of the import, determine if the request
1037 * can be sent, is an error, or should be delayed.
1038 *
1039 * Returns true if this request should be delayed. If false, and
1040 * *status is set, then the request can not be sent and *status is the
1041 * error code. If false and status is 0, then request can be sent.
1042 *
1043 * The imp->imp_lock must be held.
1044 */
1045 static int ptlrpc_import_delay_req(struct obd_import *imp,
1046 struct ptlrpc_request *req, int *status)
1047 {
1048 int delay = 0;
1049
1050 LASSERT(status != NULL);
1051 *status = 0;
1052
1053 if (req->rq_ctx_init || req->rq_ctx_fini) {
1054 /* always allow ctx init/fini rpc go through */
1055 } else if (imp->imp_state == LUSTRE_IMP_NEW) {
1056 DEBUG_REQ(D_ERROR, req, "Uninitialized import.");
1057 *status = -EIO;
1058 } else if (imp->imp_state == LUSTRE_IMP_CLOSED) {
1059 /* pings may safely race with umount */
1060 DEBUG_REQ(lustre_msg_get_opc(req->rq_reqmsg) == OBD_PING ?
1061 D_HA : D_ERROR, req, "IMP_CLOSED ");
1062 *status = -EIO;
1063 } else if (ptlrpc_send_limit_expired(req)) {
1064 /* probably doesn't need to be a D_ERROR after initial testing */
1065 DEBUG_REQ(D_ERROR, req, "send limit expired ");
1066 *status = -EIO;
1067 } else if (req->rq_send_state == LUSTRE_IMP_CONNECTING &&
1068 imp->imp_state == LUSTRE_IMP_CONNECTING) {
1069 /* allow CONNECT even if import is invalid */
1070 if (atomic_read(&imp->imp_inval_count) != 0) {
1071 DEBUG_REQ(D_ERROR, req, "invalidate in flight");
1072 *status = -EIO;
1073 }
1074 } else if (imp->imp_invalid || imp->imp_obd->obd_no_recov) {
1075 if (!imp->imp_deactive)
1076 DEBUG_REQ(D_NET, req, "IMP_INVALID");
1077 *status = -ESHUTDOWN; /* bz 12940 */
1078 } else if (req->rq_import_generation != imp->imp_generation) {
1079 DEBUG_REQ(D_ERROR, req, "req wrong generation:");
1080 *status = -EIO;
1081 } else if (req->rq_send_state != imp->imp_state) {
1082 /* invalidate in progress - any requests should be drop */
1083 if (atomic_read(&imp->imp_inval_count) != 0) {
1084 DEBUG_REQ(D_ERROR, req, "invalidate in flight");
1085 *status = -EIO;
1086 } else if (imp->imp_dlm_fake || req->rq_no_delay) {
1087 *status = -EWOULDBLOCK;
1088 } else if (req->rq_allow_replay &&
1089 (imp->imp_state == LUSTRE_IMP_REPLAY ||
1090 imp->imp_state == LUSTRE_IMP_REPLAY_LOCKS ||
1091 imp->imp_state == LUSTRE_IMP_REPLAY_WAIT ||
1092 imp->imp_state == LUSTRE_IMP_RECOVER)) {
1093 DEBUG_REQ(D_HA, req, "allow during recovery.\n");
1094 } else {
1095 delay = 1;
1096 }
1097 }
1098
1099 return delay;
1100 }
1101
1102 /**
1103 * Decide if the error message regarding provided request \a req
1104 * should be printed to the console or not.
1105 * Makes it's decision on request status and other properties.
1106 * Returns 1 to print error on the system console or 0 if not.
1107 */
1108 static int ptlrpc_console_allow(struct ptlrpc_request *req)
1109 {
1110 __u32 opc;
1111 int err;
1112
1113 LASSERT(req->rq_reqmsg != NULL);
1114 opc = lustre_msg_get_opc(req->rq_reqmsg);
1115
1116 /* Suppress particular reconnect errors which are to be expected. No
1117 * errors are suppressed for the initial connection on an import */
1118 if ((lustre_handle_is_used(&req->rq_import->imp_remote_handle)) &&
1119 (opc == OST_CONNECT || opc == MDS_CONNECT || opc == MGS_CONNECT)) {
1120
1121 /* Suppress timed out reconnect requests */
1122 if (req->rq_timedout)
1123 return 0;
1124
1125 /* Suppress unavailable/again reconnect requests */
1126 err = lustre_msg_get_status(req->rq_repmsg);
1127 if (err == -ENODEV || err == -EAGAIN)
1128 return 0;
1129 }
1130
1131 return 1;
1132 }
1133
1134 /**
1135 * Check request processing status.
1136 * Returns the status.
1137 */
1138 static int ptlrpc_check_status(struct ptlrpc_request *req)
1139 {
1140 int err;
1141
1142 err = lustre_msg_get_status(req->rq_repmsg);
1143 if (lustre_msg_get_type(req->rq_repmsg) == PTL_RPC_MSG_ERR) {
1144 struct obd_import *imp = req->rq_import;
1145 __u32 opc = lustre_msg_get_opc(req->rq_reqmsg);
1146 if (ptlrpc_console_allow(req))
1147 LCONSOLE_ERROR_MSG(0x011, "%s: Communicating with %s, operation %s failed with %d.\n",
1148 imp->imp_obd->obd_name,
1149 libcfs_nid2str(
1150 imp->imp_connection->c_peer.nid),
1151 ll_opcode2str(opc), err);
1152 return err < 0 ? err : -EINVAL;
1153 }
1154
1155 if (err < 0) {
1156 DEBUG_REQ(D_INFO, req, "status is %d", err);
1157 } else if (err > 0) {
1158 /* XXX: translate this error from net to host */
1159 DEBUG_REQ(D_INFO, req, "status is %d", err);
1160 }
1161
1162 return err;
1163 }
1164
1165 /**
1166 * save pre-versions of objects into request for replay.
1167 * Versions are obtained from server reply.
1168 * used for VBR.
1169 */
1170 static void ptlrpc_save_versions(struct ptlrpc_request *req)
1171 {
1172 struct lustre_msg *repmsg = req->rq_repmsg;
1173 struct lustre_msg *reqmsg = req->rq_reqmsg;
1174 __u64 *versions = lustre_msg_get_versions(repmsg);
1175
1176 if (lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY)
1177 return;
1178
1179 LASSERT(versions);
1180 lustre_msg_set_versions(reqmsg, versions);
1181 CDEBUG(D_INFO, "Client save versions [%#llx/%#llx]\n",
1182 versions[0], versions[1]);
1183 }
1184
1185 /**
1186 * Callback function called when client receives RPC reply for \a req.
1187 * Returns 0 on success or error code.
1188 * The return value would be assigned to req->rq_status by the caller
1189 * as request processing status.
1190 * This function also decides if the request needs to be saved for later replay.
1191 */
1192 static int after_reply(struct ptlrpc_request *req)
1193 {
1194 struct obd_import *imp = req->rq_import;
1195 struct obd_device *obd = req->rq_import->imp_obd;
1196 int rc;
1197 struct timeval work_start;
1198 long timediff;
1199
1200 LASSERT(obd != NULL);
1201 /* repbuf must be unlinked */
1202 LASSERT(!req->rq_receiving_reply && !req->rq_reply_unlink);
1203
1204 if (req->rq_reply_truncate) {
1205 if (ptlrpc_no_resend(req)) {
1206 DEBUG_REQ(D_ERROR, req, "reply buffer overflow, expected: %d, actual size: %d",
1207 req->rq_nob_received, req->rq_repbuf_len);
1208 return -EOVERFLOW;
1209 }
1210
1211 sptlrpc_cli_free_repbuf(req);
1212 /* Pass the required reply buffer size (include
1213 * space for early reply).
1214 * NB: no need to roundup because alloc_repbuf
1215 * will roundup it */
1216 req->rq_replen = req->rq_nob_received;
1217 req->rq_nob_received = 0;
1218 spin_lock(&req->rq_lock);
1219 req->rq_resend = 1;
1220 spin_unlock(&req->rq_lock);
1221 return 0;
1222 }
1223
1224 /*
1225 * NB Until this point, the whole of the incoming message,
1226 * including buflens, status etc is in the sender's byte order.
1227 */
1228 rc = sptlrpc_cli_unwrap_reply(req);
1229 if (rc) {
1230 DEBUG_REQ(D_ERROR, req, "unwrap reply failed (%d):", rc);
1231 return rc;
1232 }
1233
1234 /*
1235 * Security layer unwrap might ask resend this request.
1236 */
1237 if (req->rq_resend)
1238 return 0;
1239
1240 rc = unpack_reply(req);
1241 if (rc)
1242 return rc;
1243
1244 /* retry indefinitely on EINPROGRESS */
1245 if (lustre_msg_get_status(req->rq_repmsg) == -EINPROGRESS &&
1246 ptlrpc_no_resend(req) == 0 && !req->rq_no_retry_einprogress) {
1247 time_t now = get_seconds();
1248
1249 DEBUG_REQ(D_RPCTRACE, req, "Resending request on EINPROGRESS");
1250 spin_lock(&req->rq_lock);
1251 req->rq_resend = 1;
1252 spin_unlock(&req->rq_lock);
1253 req->rq_nr_resend++;
1254
1255 /* allocate new xid to avoid reply reconstruction */
1256 if (!req->rq_bulk) {
1257 /* new xid is already allocated for bulk in
1258 * ptlrpc_check_set() */
1259 req->rq_xid = ptlrpc_next_xid();
1260 DEBUG_REQ(D_RPCTRACE, req, "Allocating new xid for resend on EINPROGRESS");
1261 }
1262
1263 /* Readjust the timeout for current conditions */
1264 ptlrpc_at_set_req_timeout(req);
1265 /* delay resend to give a chance to the server to get ready.
1266 * The delay is increased by 1s on every resend and is capped to
1267 * the current request timeout (i.e. obd_timeout if AT is off,
1268 * or AT service time x 125% + 5s, see at_est2timeout) */
1269 if (req->rq_nr_resend > req->rq_timeout)
1270 req->rq_sent = now + req->rq_timeout;
1271 else
1272 req->rq_sent = now + req->rq_nr_resend;
1273
1274 return 0;
1275 }
1276
1277 do_gettimeofday(&work_start);
1278 timediff = cfs_timeval_sub(&work_start, &req->rq_arrival_time, NULL);
1279 if (obd->obd_svc_stats != NULL) {
1280 lprocfs_counter_add(obd->obd_svc_stats, PTLRPC_REQWAIT_CNTR,
1281 timediff);
1282 ptlrpc_lprocfs_rpc_sent(req, timediff);
1283 }
1284
1285 if (lustre_msg_get_type(req->rq_repmsg) != PTL_RPC_MSG_REPLY &&
1286 lustre_msg_get_type(req->rq_repmsg) != PTL_RPC_MSG_ERR) {
1287 DEBUG_REQ(D_ERROR, req, "invalid packet received (type=%u)",
1288 lustre_msg_get_type(req->rq_repmsg));
1289 return -EPROTO;
1290 }
1291
1292 if (lustre_msg_get_opc(req->rq_reqmsg) != OBD_PING)
1293 CFS_FAIL_TIMEOUT(OBD_FAIL_PTLRPC_PAUSE_REP, cfs_fail_val);
1294 ptlrpc_at_adj_service(req, lustre_msg_get_timeout(req->rq_repmsg));
1295 ptlrpc_at_adj_net_latency(req,
1296 lustre_msg_get_service_time(req->rq_repmsg));
1297
1298 rc = ptlrpc_check_status(req);
1299 imp->imp_connect_error = rc;
1300
1301 if (rc) {
1302 /*
1303 * Either we've been evicted, or the server has failed for
1304 * some reason. Try to reconnect, and if that fails, punt to
1305 * the upcall.
1306 */
1307 if (ll_rpc_recoverable_error(rc)) {
1308 if (req->rq_send_state != LUSTRE_IMP_FULL ||
1309 imp->imp_obd->obd_no_recov || imp->imp_dlm_fake) {
1310 return rc;
1311 }
1312 ptlrpc_request_handle_notconn(req);
1313 return rc;
1314 }
1315 } else {
1316 /*
1317 * Let's look if server sent slv. Do it only for RPC with
1318 * rc == 0.
1319 */
1320 ldlm_cli_update_pool(req);
1321 }
1322
1323 /*
1324 * Store transno in reqmsg for replay.
1325 */
1326 if (!(lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY)) {
1327 req->rq_transno = lustre_msg_get_transno(req->rq_repmsg);
1328 lustre_msg_set_transno(req->rq_reqmsg, req->rq_transno);
1329 }
1330
1331 if (imp->imp_replayable) {
1332 spin_lock(&imp->imp_lock);
1333 /*
1334 * No point in adding already-committed requests to the replay
1335 * list, we will just remove them immediately. b=9829
1336 */
1337 if (req->rq_transno != 0 &&
1338 (req->rq_transno >
1339 lustre_msg_get_last_committed(req->rq_repmsg) ||
1340 req->rq_replay)) {
1341 /** version recovery */
1342 ptlrpc_save_versions(req);
1343 ptlrpc_retain_replayable_request(req, imp);
1344 } else if (req->rq_commit_cb != NULL &&
1345 list_empty(&req->rq_replay_list)) {
1346 /* NB: don't call rq_commit_cb if it's already on
1347 * rq_replay_list, ptlrpc_free_committed() will call
1348 * it later, see LU-3618 for details */
1349 spin_unlock(&imp->imp_lock);
1350 req->rq_commit_cb(req);
1351 spin_lock(&imp->imp_lock);
1352 }
1353
1354 /*
1355 * Replay-enabled imports return commit-status information.
1356 */
1357 if (lustre_msg_get_last_committed(req->rq_repmsg)) {
1358 imp->imp_peer_committed_transno =
1359 lustre_msg_get_last_committed(req->rq_repmsg);
1360 }
1361
1362 ptlrpc_free_committed(imp);
1363
1364 if (!list_empty(&imp->imp_replay_list)) {
1365 struct ptlrpc_request *last;
1366
1367 last = list_entry(imp->imp_replay_list.prev,
1368 struct ptlrpc_request,
1369 rq_replay_list);
1370 /*
1371 * Requests with rq_replay stay on the list even if no
1372 * commit is expected.
1373 */
1374 if (last->rq_transno > imp->imp_peer_committed_transno)
1375 ptlrpc_pinger_commit_expected(imp);
1376 }
1377
1378 spin_unlock(&imp->imp_lock);
1379 }
1380
1381 return rc;
1382 }
1383
1384 /**
1385 * Helper function to send request \a req over the network for the first time
1386 * Also adjusts request phase.
1387 * Returns 0 on success or error code.
1388 */
1389 static int ptlrpc_send_new_req(struct ptlrpc_request *req)
1390 {
1391 struct obd_import *imp = req->rq_import;
1392 int rc;
1393
1394 LASSERT(req->rq_phase == RQ_PHASE_NEW);
1395 if (req->rq_sent && (req->rq_sent > get_seconds()) &&
1396 (!req->rq_generation_set ||
1397 req->rq_import_generation == imp->imp_generation))
1398 return 0;
1399
1400 ptlrpc_rqphase_move(req, RQ_PHASE_RPC);
1401
1402 spin_lock(&imp->imp_lock);
1403
1404 if (!req->rq_generation_set)
1405 req->rq_import_generation = imp->imp_generation;
1406
1407 if (ptlrpc_import_delay_req(imp, req, &rc)) {
1408 spin_lock(&req->rq_lock);
1409 req->rq_waiting = 1;
1410 spin_unlock(&req->rq_lock);
1411
1412 DEBUG_REQ(D_HA, req, "req from PID %d waiting for recovery: (%s != %s)",
1413 lustre_msg_get_status(req->rq_reqmsg),
1414 ptlrpc_import_state_name(req->rq_send_state),
1415 ptlrpc_import_state_name(imp->imp_state));
1416 LASSERT(list_empty(&req->rq_list));
1417 list_add_tail(&req->rq_list, &imp->imp_delayed_list);
1418 atomic_inc(&req->rq_import->imp_inflight);
1419 spin_unlock(&imp->imp_lock);
1420 return 0;
1421 }
1422
1423 if (rc != 0) {
1424 spin_unlock(&imp->imp_lock);
1425 req->rq_status = rc;
1426 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1427 return rc;
1428 }
1429
1430 LASSERT(list_empty(&req->rq_list));
1431 list_add_tail(&req->rq_list, &imp->imp_sending_list);
1432 atomic_inc(&req->rq_import->imp_inflight);
1433 spin_unlock(&imp->imp_lock);
1434
1435 lustre_msg_set_status(req->rq_reqmsg, current_pid());
1436
1437 rc = sptlrpc_req_refresh_ctx(req, -1);
1438 if (rc) {
1439 if (req->rq_err) {
1440 req->rq_status = rc;
1441 return 1;
1442 } else {
1443 spin_lock(&req->rq_lock);
1444 req->rq_wait_ctx = 1;
1445 spin_unlock(&req->rq_lock);
1446 return 0;
1447 }
1448 }
1449
1450 CDEBUG(D_RPCTRACE, "Sending RPC pname:cluuid:pid:xid:nid:opc %s:%s:%d:%llu:%s:%d\n",
1451 current_comm(),
1452 imp->imp_obd->obd_uuid.uuid,
1453 lustre_msg_get_status(req->rq_reqmsg), req->rq_xid,
1454 libcfs_nid2str(imp->imp_connection->c_peer.nid),
1455 lustre_msg_get_opc(req->rq_reqmsg));
1456
1457 rc = ptl_send_rpc(req, 0);
1458 if (rc) {
1459 DEBUG_REQ(D_HA, req, "send failed (%d); expect timeout", rc);
1460 spin_lock(&req->rq_lock);
1461 req->rq_net_err = 1;
1462 spin_unlock(&req->rq_lock);
1463 return rc;
1464 }
1465 return 0;
1466 }
1467
1468 static inline int ptlrpc_set_producer(struct ptlrpc_request_set *set)
1469 {
1470 int remaining, rc;
1471
1472 LASSERT(set->set_producer != NULL);
1473
1474 remaining = atomic_read(&set->set_remaining);
1475
1476 /* populate the ->set_requests list with requests until we
1477 * reach the maximum number of RPCs in flight for this set */
1478 while (atomic_read(&set->set_remaining) < set->set_max_inflight) {
1479 rc = set->set_producer(set, set->set_producer_arg);
1480 if (rc == -ENOENT) {
1481 /* no more RPC to produce */
1482 set->set_producer = NULL;
1483 set->set_producer_arg = NULL;
1484 return 0;
1485 }
1486 }
1487
1488 return (atomic_read(&set->set_remaining) - remaining);
1489 }
1490
1491 /**
1492 * this sends any unsent RPCs in \a set and returns 1 if all are sent
1493 * and no more replies are expected.
1494 * (it is possible to get less replies than requests sent e.g. due to timed out
1495 * requests or requests that we had trouble to send out)
1496 *
1497 * NOTE: This function contains a potential schedule point (cond_resched()).
1498 */
1499 int ptlrpc_check_set(const struct lu_env *env, struct ptlrpc_request_set *set)
1500 {
1501 struct list_head *tmp, *next;
1502 struct list_head comp_reqs;
1503 int force_timer_recalc = 0;
1504
1505 if (atomic_read(&set->set_remaining) == 0)
1506 return 1;
1507
1508 INIT_LIST_HEAD(&comp_reqs);
1509 list_for_each_safe(tmp, next, &set->set_requests) {
1510 struct ptlrpc_request *req =
1511 list_entry(tmp, struct ptlrpc_request,
1512 rq_set_chain);
1513 struct obd_import *imp = req->rq_import;
1514 int unregistered = 0;
1515 int rc = 0;
1516
1517 /* This schedule point is mainly for the ptlrpcd caller of this
1518 * function. Most ptlrpc sets are not long-lived and unbounded
1519 * in length, but at the least the set used by the ptlrpcd is.
1520 * Since the processing time is unbounded, we need to insert an
1521 * explicit schedule point to make the thread well-behaved.
1522 */
1523 cond_resched();
1524
1525 if (req->rq_phase == RQ_PHASE_NEW &&
1526 ptlrpc_send_new_req(req)) {
1527 force_timer_recalc = 1;
1528 }
1529
1530 /* delayed send - skip */
1531 if (req->rq_phase == RQ_PHASE_NEW && req->rq_sent)
1532 continue;
1533
1534 /* delayed resend - skip */
1535 if (req->rq_phase == RQ_PHASE_RPC && req->rq_resend &&
1536 req->rq_sent > get_seconds())
1537 continue;
1538
1539 if (!(req->rq_phase == RQ_PHASE_RPC ||
1540 req->rq_phase == RQ_PHASE_BULK ||
1541 req->rq_phase == RQ_PHASE_INTERPRET ||
1542 req->rq_phase == RQ_PHASE_UNREGISTERING ||
1543 req->rq_phase == RQ_PHASE_COMPLETE)) {
1544 DEBUG_REQ(D_ERROR, req, "bad phase %x", req->rq_phase);
1545 LBUG();
1546 }
1547
1548 if (req->rq_phase == RQ_PHASE_UNREGISTERING) {
1549 LASSERT(req->rq_next_phase != req->rq_phase);
1550 LASSERT(req->rq_next_phase != RQ_PHASE_UNDEFINED);
1551
1552 /*
1553 * Skip processing until reply is unlinked. We
1554 * can't return to pool before that and we can't
1555 * call interpret before that. We need to make
1556 * sure that all rdma transfers finished and will
1557 * not corrupt any data.
1558 */
1559 if (ptlrpc_client_recv_or_unlink(req) ||
1560 ptlrpc_client_bulk_active(req))
1561 continue;
1562
1563 /*
1564 * Turn fail_loc off to prevent it from looping
1565 * forever.
1566 */
1567 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK)) {
1568 OBD_FAIL_CHECK_ORSET(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK,
1569 OBD_FAIL_ONCE);
1570 }
1571 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK)) {
1572 OBD_FAIL_CHECK_ORSET(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK,
1573 OBD_FAIL_ONCE);
1574 }
1575
1576 /*
1577 * Move to next phase if reply was successfully
1578 * unlinked.
1579 */
1580 ptlrpc_rqphase_move(req, req->rq_next_phase);
1581 }
1582
1583 if (req->rq_phase == RQ_PHASE_COMPLETE) {
1584 list_move_tail(&req->rq_set_chain, &comp_reqs);
1585 continue;
1586 }
1587
1588 if (req->rq_phase == RQ_PHASE_INTERPRET)
1589 goto interpret;
1590
1591 /*
1592 * Note that this also will start async reply unlink.
1593 */
1594 if (req->rq_net_err && !req->rq_timedout) {
1595 ptlrpc_expire_one_request(req, 1);
1596
1597 /*
1598 * Check if we still need to wait for unlink.
1599 */
1600 if (ptlrpc_client_recv_or_unlink(req) ||
1601 ptlrpc_client_bulk_active(req))
1602 continue;
1603 /* If there is no need to resend, fail it now. */
1604 if (req->rq_no_resend) {
1605 if (req->rq_status == 0)
1606 req->rq_status = -EIO;
1607 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1608 goto interpret;
1609 } else {
1610 continue;
1611 }
1612 }
1613
1614 if (req->rq_err) {
1615 spin_lock(&req->rq_lock);
1616 req->rq_replied = 0;
1617 spin_unlock(&req->rq_lock);
1618 if (req->rq_status == 0)
1619 req->rq_status = -EIO;
1620 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1621 goto interpret;
1622 }
1623
1624 /* ptlrpc_set_wait->l_wait_event sets lwi_allow_intr
1625 * so it sets rq_intr regardless of individual rpc
1626 * timeouts. The synchronous IO waiting path sets
1627 * rq_intr irrespective of whether ptlrpcd
1628 * has seen a timeout. Our policy is to only interpret
1629 * interrupted rpcs after they have timed out, so we
1630 * need to enforce that here.
1631 */
1632
1633 if (req->rq_intr && (req->rq_timedout || req->rq_waiting ||
1634 req->rq_wait_ctx)) {
1635 req->rq_status = -EINTR;
1636 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1637 goto interpret;
1638 }
1639
1640 if (req->rq_phase == RQ_PHASE_RPC) {
1641 if (req->rq_timedout || req->rq_resend ||
1642 req->rq_waiting || req->rq_wait_ctx) {
1643 int status;
1644
1645 if (!ptlrpc_unregister_reply(req, 1))
1646 continue;
1647
1648 spin_lock(&imp->imp_lock);
1649 if (ptlrpc_import_delay_req(imp, req,
1650 &status)) {
1651 /* put on delay list - only if we wait
1652 * recovery finished - before send */
1653 list_del_init(&req->rq_list);
1654 list_add_tail(&req->rq_list,
1655 &imp->
1656 imp_delayed_list);
1657 spin_unlock(&imp->imp_lock);
1658 continue;
1659 }
1660
1661 if (status != 0) {
1662 req->rq_status = status;
1663 ptlrpc_rqphase_move(req,
1664 RQ_PHASE_INTERPRET);
1665 spin_unlock(&imp->imp_lock);
1666 goto interpret;
1667 }
1668 if (ptlrpc_no_resend(req) &&
1669 !req->rq_wait_ctx) {
1670 req->rq_status = -ENOTCONN;
1671 ptlrpc_rqphase_move(req,
1672 RQ_PHASE_INTERPRET);
1673 spin_unlock(&imp->imp_lock);
1674 goto interpret;
1675 }
1676
1677 list_del_init(&req->rq_list);
1678 list_add_tail(&req->rq_list,
1679 &imp->imp_sending_list);
1680
1681 spin_unlock(&imp->imp_lock);
1682
1683 spin_lock(&req->rq_lock);
1684 req->rq_waiting = 0;
1685 spin_unlock(&req->rq_lock);
1686
1687 if (req->rq_timedout || req->rq_resend) {
1688 /* This is re-sending anyways,
1689 * let's mark req as resend. */
1690 spin_lock(&req->rq_lock);
1691 req->rq_resend = 1;
1692 spin_unlock(&req->rq_lock);
1693 if (req->rq_bulk) {
1694 __u64 old_xid;
1695
1696 if (!ptlrpc_unregister_bulk(req, 1))
1697 continue;
1698
1699 /* ensure previous bulk fails */
1700 old_xid = req->rq_xid;
1701 req->rq_xid = ptlrpc_next_xid();
1702 CDEBUG(D_HA, "resend bulk old x%llu new x%llu\n",
1703 old_xid, req->rq_xid);
1704 }
1705 }
1706 /*
1707 * rq_wait_ctx is only touched by ptlrpcd,
1708 * so no lock is needed here.
1709 */
1710 status = sptlrpc_req_refresh_ctx(req, -1);
1711 if (status) {
1712 if (req->rq_err) {
1713 req->rq_status = status;
1714 spin_lock(&req->rq_lock);
1715 req->rq_wait_ctx = 0;
1716 spin_unlock(&req->rq_lock);
1717 force_timer_recalc = 1;
1718 } else {
1719 spin_lock(&req->rq_lock);
1720 req->rq_wait_ctx = 1;
1721 spin_unlock(&req->rq_lock);
1722 }
1723
1724 continue;
1725 } else {
1726 spin_lock(&req->rq_lock);
1727 req->rq_wait_ctx = 0;
1728 spin_unlock(&req->rq_lock);
1729 }
1730
1731 rc = ptl_send_rpc(req, 0);
1732 if (rc) {
1733 DEBUG_REQ(D_HA, req,
1734 "send failed: rc = %d", rc);
1735 force_timer_recalc = 1;
1736 spin_lock(&req->rq_lock);
1737 req->rq_net_err = 1;
1738 spin_unlock(&req->rq_lock);
1739 continue;
1740 }
1741 /* need to reset the timeout */
1742 force_timer_recalc = 1;
1743 }
1744
1745 spin_lock(&req->rq_lock);
1746
1747 if (ptlrpc_client_early(req)) {
1748 ptlrpc_at_recv_early_reply(req);
1749 spin_unlock(&req->rq_lock);
1750 continue;
1751 }
1752
1753 /* Still waiting for a reply? */
1754 if (ptlrpc_client_recv(req)) {
1755 spin_unlock(&req->rq_lock);
1756 continue;
1757 }
1758
1759 /* Did we actually receive a reply? */
1760 if (!ptlrpc_client_replied(req)) {
1761 spin_unlock(&req->rq_lock);
1762 continue;
1763 }
1764
1765 spin_unlock(&req->rq_lock);
1766
1767 /* unlink from net because we are going to
1768 * swab in-place of reply buffer */
1769 unregistered = ptlrpc_unregister_reply(req, 1);
1770 if (!unregistered)
1771 continue;
1772
1773 req->rq_status = after_reply(req);
1774 if (req->rq_resend)
1775 continue;
1776
1777 /* If there is no bulk associated with this request,
1778 * then we're done and should let the interpreter
1779 * process the reply. Similarly if the RPC returned
1780 * an error, and therefore the bulk will never arrive.
1781 */
1782 if (req->rq_bulk == NULL || req->rq_status < 0) {
1783 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1784 goto interpret;
1785 }
1786
1787 ptlrpc_rqphase_move(req, RQ_PHASE_BULK);
1788 }
1789
1790 LASSERT(req->rq_phase == RQ_PHASE_BULK);
1791 if (ptlrpc_client_bulk_active(req))
1792 continue;
1793
1794 if (req->rq_bulk->bd_failure) {
1795 /* The RPC reply arrived OK, but the bulk screwed
1796 * up! Dead weird since the server told us the RPC
1797 * was good after getting the REPLY for her GET or
1798 * the ACK for her PUT. */
1799 DEBUG_REQ(D_ERROR, req, "bulk transfer failed");
1800 req->rq_status = -EIO;
1801 }
1802
1803 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1804
1805 interpret:
1806 LASSERT(req->rq_phase == RQ_PHASE_INTERPRET);
1807
1808 /* This moves to "unregistering" phase we need to wait for
1809 * reply unlink. */
1810 if (!unregistered && !ptlrpc_unregister_reply(req, 1)) {
1811 /* start async bulk unlink too */
1812 ptlrpc_unregister_bulk(req, 1);
1813 continue;
1814 }
1815
1816 if (!ptlrpc_unregister_bulk(req, 1))
1817 continue;
1818
1819 /* When calling interpret receiving already should be
1820 * finished. */
1821 LASSERT(!req->rq_receiving_reply);
1822
1823 ptlrpc_req_interpret(env, req, req->rq_status);
1824
1825 if (ptlrpcd_check_work(req)) {
1826 atomic_dec(&set->set_remaining);
1827 continue;
1828 }
1829 ptlrpc_rqphase_move(req, RQ_PHASE_COMPLETE);
1830
1831 CDEBUG(req->rq_reqmsg != NULL ? D_RPCTRACE : 0,
1832 "Completed RPC pname:cluuid:pid:xid:nid:opc %s:%s:%d:%llu:%s:%d\n",
1833 current_comm(), imp->imp_obd->obd_uuid.uuid,
1834 lustre_msg_get_status(req->rq_reqmsg), req->rq_xid,
1835 libcfs_nid2str(imp->imp_connection->c_peer.nid),
1836 lustre_msg_get_opc(req->rq_reqmsg));
1837
1838 spin_lock(&imp->imp_lock);
1839 /* Request already may be not on sending or delaying list. This
1840 * may happen in the case of marking it erroneous for the case
1841 * ptlrpc_import_delay_req(req, status) find it impossible to
1842 * allow sending this rpc and returns *status != 0. */
1843 if (!list_empty(&req->rq_list)) {
1844 list_del_init(&req->rq_list);
1845 atomic_dec(&imp->imp_inflight);
1846 }
1847 spin_unlock(&imp->imp_lock);
1848
1849 atomic_dec(&set->set_remaining);
1850 wake_up_all(&imp->imp_recovery_waitq);
1851
1852 if (set->set_producer) {
1853 /* produce a new request if possible */
1854 if (ptlrpc_set_producer(set) > 0)
1855 force_timer_recalc = 1;
1856
1857 /* free the request that has just been completed
1858 * in order not to pollute set->set_requests */
1859 list_del_init(&req->rq_set_chain);
1860 spin_lock(&req->rq_lock);
1861 req->rq_set = NULL;
1862 req->rq_invalid_rqset = 0;
1863 spin_unlock(&req->rq_lock);
1864
1865 /* record rq_status to compute the final status later */
1866 if (req->rq_status != 0)
1867 set->set_rc = req->rq_status;
1868 ptlrpc_req_finished(req);
1869 } else {
1870 list_move_tail(&req->rq_set_chain, &comp_reqs);
1871 }
1872 }
1873
1874 /* move completed request at the head of list so it's easier for
1875 * caller to find them */
1876 list_splice(&comp_reqs, &set->set_requests);
1877
1878 /* If we hit an error, we want to recover promptly. */
1879 return atomic_read(&set->set_remaining) == 0 || force_timer_recalc;
1880 }
1881 EXPORT_SYMBOL(ptlrpc_check_set);
1882
1883 /**
1884 * Time out request \a req. is \a async_unlink is set, that means do not wait
1885 * until LNet actually confirms network buffer unlinking.
1886 * Return 1 if we should give up further retrying attempts or 0 otherwise.
1887 */
1888 int ptlrpc_expire_one_request(struct ptlrpc_request *req, int async_unlink)
1889 {
1890 struct obd_import *imp = req->rq_import;
1891 int rc = 0;
1892
1893 spin_lock(&req->rq_lock);
1894 req->rq_timedout = 1;
1895 spin_unlock(&req->rq_lock);
1896
1897 DEBUG_REQ(D_WARNING, req, "Request sent has %s: [sent "CFS_DURATION_T
1898 "/real "CFS_DURATION_T"]",
1899 req->rq_net_err ? "failed due to network error" :
1900 ((req->rq_real_sent == 0 ||
1901 time_before((unsigned long)req->rq_real_sent, (unsigned long)req->rq_sent) ||
1902 cfs_time_aftereq(req->rq_real_sent, req->rq_deadline)) ?
1903 "timed out for sent delay" : "timed out for slow reply"),
1904 req->rq_sent, req->rq_real_sent);
1905
1906 if (imp != NULL && obd_debug_peer_on_timeout)
1907 LNetCtl(IOC_LIBCFS_DEBUG_PEER, &imp->imp_connection->c_peer);
1908
1909 ptlrpc_unregister_reply(req, async_unlink);
1910 ptlrpc_unregister_bulk(req, async_unlink);
1911
1912 if (obd_dump_on_timeout)
1913 libcfs_debug_dumplog();
1914
1915 if (imp == NULL) {
1916 DEBUG_REQ(D_HA, req, "NULL import: already cleaned up?");
1917 return 1;
1918 }
1919
1920 atomic_inc(&imp->imp_timeouts);
1921
1922 /* The DLM server doesn't want recovery run on its imports. */
1923 if (imp->imp_dlm_fake)
1924 return 1;
1925
1926 /* If this request is for recovery or other primordial tasks,
1927 * then error it out here. */
1928 if (req->rq_ctx_init || req->rq_ctx_fini ||
1929 req->rq_send_state != LUSTRE_IMP_FULL ||
1930 imp->imp_obd->obd_no_recov) {
1931 DEBUG_REQ(D_RPCTRACE, req, "err -110, sent_state=%s (now=%s)",
1932 ptlrpc_import_state_name(req->rq_send_state),
1933 ptlrpc_import_state_name(imp->imp_state));
1934 spin_lock(&req->rq_lock);
1935 req->rq_status = -ETIMEDOUT;
1936 req->rq_err = 1;
1937 spin_unlock(&req->rq_lock);
1938 return 1;
1939 }
1940
1941 /* if a request can't be resent we can't wait for an answer after
1942 the timeout */
1943 if (ptlrpc_no_resend(req)) {
1944 DEBUG_REQ(D_RPCTRACE, req, "TIMEOUT-NORESEND:");
1945 rc = 1;
1946 }
1947
1948 ptlrpc_fail_import(imp, lustre_msg_get_conn_cnt(req->rq_reqmsg));
1949
1950 return rc;
1951 }
1952
1953 /**
1954 * Time out all uncompleted requests in request set pointed by \a data
1955 * Callback used when waiting on sets with l_wait_event.
1956 * Always returns 1.
1957 */
1958 int ptlrpc_expired_set(void *data)
1959 {
1960 struct ptlrpc_request_set *set = data;
1961 struct list_head *tmp;
1962 time_t now = get_seconds();
1963
1964 LASSERT(set != NULL);
1965
1966 /*
1967 * A timeout expired. See which reqs it applies to...
1968 */
1969 list_for_each(tmp, &set->set_requests) {
1970 struct ptlrpc_request *req =
1971 list_entry(tmp, struct ptlrpc_request,
1972 rq_set_chain);
1973
1974 /* don't expire request waiting for context */
1975 if (req->rq_wait_ctx)
1976 continue;
1977
1978 /* Request in-flight? */
1979 if (!((req->rq_phase == RQ_PHASE_RPC &&
1980 !req->rq_waiting && !req->rq_resend) ||
1981 (req->rq_phase == RQ_PHASE_BULK)))
1982 continue;
1983
1984 if (req->rq_timedout || /* already dealt with */
1985 req->rq_deadline > now) /* not expired */
1986 continue;
1987
1988 /* Deal with this guy. Do it asynchronously to not block
1989 * ptlrpcd thread. */
1990 ptlrpc_expire_one_request(req, 1);
1991 }
1992
1993 /*
1994 * When waiting for a whole set, we always break out of the
1995 * sleep so we can recalculate the timeout, or enable interrupts
1996 * if everyone's timed out.
1997 */
1998 return 1;
1999 }
2000 EXPORT_SYMBOL(ptlrpc_expired_set);
2001
2002 /**
2003 * Sets rq_intr flag in \a req under spinlock.
2004 */
2005 void ptlrpc_mark_interrupted(struct ptlrpc_request *req)
2006 {
2007 spin_lock(&req->rq_lock);
2008 req->rq_intr = 1;
2009 spin_unlock(&req->rq_lock);
2010 }
2011 EXPORT_SYMBOL(ptlrpc_mark_interrupted);
2012
2013 /**
2014 * Interrupts (sets interrupted flag) all uncompleted requests in
2015 * a set \a data. Callback for l_wait_event for interruptible waits.
2016 */
2017 void ptlrpc_interrupted_set(void *data)
2018 {
2019 struct ptlrpc_request_set *set = data;
2020 struct list_head *tmp;
2021
2022 LASSERT(set != NULL);
2023 CDEBUG(D_RPCTRACE, "INTERRUPTED SET %p\n", set);
2024
2025 list_for_each(tmp, &set->set_requests) {
2026 struct ptlrpc_request *req =
2027 list_entry(tmp, struct ptlrpc_request,
2028 rq_set_chain);
2029
2030 if (req->rq_phase != RQ_PHASE_RPC &&
2031 req->rq_phase != RQ_PHASE_UNREGISTERING)
2032 continue;
2033
2034 ptlrpc_mark_interrupted(req);
2035 }
2036 }
2037 EXPORT_SYMBOL(ptlrpc_interrupted_set);
2038
2039 /**
2040 * Get the smallest timeout in the set; this does NOT set a timeout.
2041 */
2042 int ptlrpc_set_next_timeout(struct ptlrpc_request_set *set)
2043 {
2044 struct list_head *tmp;
2045 time_t now = get_seconds();
2046 int timeout = 0;
2047 struct ptlrpc_request *req;
2048 int deadline;
2049
2050 list_for_each(tmp, &set->set_requests) {
2051 req = list_entry(tmp, struct ptlrpc_request, rq_set_chain);
2052
2053 /*
2054 * Request in-flight?
2055 */
2056 if (!(((req->rq_phase == RQ_PHASE_RPC) && !req->rq_waiting) ||
2057 (req->rq_phase == RQ_PHASE_BULK) ||
2058 (req->rq_phase == RQ_PHASE_NEW)))
2059 continue;
2060
2061 /*
2062 * Already timed out.
2063 */
2064 if (req->rq_timedout)
2065 continue;
2066
2067 /*
2068 * Waiting for ctx.
2069 */
2070 if (req->rq_wait_ctx)
2071 continue;
2072
2073 if (req->rq_phase == RQ_PHASE_NEW)
2074 deadline = req->rq_sent;
2075 else if (req->rq_phase == RQ_PHASE_RPC && req->rq_resend)
2076 deadline = req->rq_sent;
2077 else
2078 deadline = req->rq_sent + req->rq_timeout;
2079
2080 if (deadline <= now) /* actually expired already */
2081 timeout = 1; /* ASAP */
2082 else if (timeout == 0 || timeout > deadline - now)
2083 timeout = deadline - now;
2084 }
2085 return timeout;
2086 }
2087 EXPORT_SYMBOL(ptlrpc_set_next_timeout);
2088
2089 /**
2090 * Send all unset request from the set and then wait until all
2091 * requests in the set complete (either get a reply, timeout, get an
2092 * error or otherwise be interrupted).
2093 * Returns 0 on success or error code otherwise.
2094 */
2095 int ptlrpc_set_wait(struct ptlrpc_request_set *set)
2096 {
2097 struct list_head *tmp;
2098 struct ptlrpc_request *req;
2099 struct l_wait_info lwi;
2100 int rc, timeout;
2101
2102 if (set->set_producer)
2103 (void)ptlrpc_set_producer(set);
2104 else
2105 list_for_each(tmp, &set->set_requests) {
2106 req = list_entry(tmp, struct ptlrpc_request,
2107 rq_set_chain);
2108 if (req->rq_phase == RQ_PHASE_NEW)
2109 (void)ptlrpc_send_new_req(req);
2110 }
2111
2112 if (list_empty(&set->set_requests))
2113 return 0;
2114
2115 do {
2116 timeout = ptlrpc_set_next_timeout(set);
2117
2118 /* wait until all complete, interrupted, or an in-flight
2119 * req times out */
2120 CDEBUG(D_RPCTRACE, "set %p going to sleep for %d seconds\n",
2121 set, timeout);
2122
2123 if (timeout == 0 && !cfs_signal_pending())
2124 /*
2125 * No requests are in-flight (ether timed out
2126 * or delayed), so we can allow interrupts.
2127 * We still want to block for a limited time,
2128 * so we allow interrupts during the timeout.
2129 */
2130 lwi = LWI_TIMEOUT_INTR_ALL(cfs_time_seconds(1),
2131 ptlrpc_expired_set,
2132 ptlrpc_interrupted_set, set);
2133 else
2134 /*
2135 * At least one request is in flight, so no
2136 * interrupts are allowed. Wait until all
2137 * complete, or an in-flight req times out.
2138 */
2139 lwi = LWI_TIMEOUT(cfs_time_seconds(timeout ? timeout : 1),
2140 ptlrpc_expired_set, set);
2141
2142 rc = l_wait_event(set->set_waitq, ptlrpc_check_set(NULL, set), &lwi);
2143
2144 /* LU-769 - if we ignored the signal because it was already
2145 * pending when we started, we need to handle it now or we risk
2146 * it being ignored forever */
2147 if (rc == -ETIMEDOUT && !lwi.lwi_allow_intr &&
2148 cfs_signal_pending()) {
2149 sigset_t blocked_sigs =
2150 cfs_block_sigsinv(LUSTRE_FATAL_SIGS);
2151
2152 /* In fact we only interrupt for the "fatal" signals
2153 * like SIGINT or SIGKILL. We still ignore less
2154 * important signals since ptlrpc set is not easily
2155 * reentrant from userspace again */
2156 if (cfs_signal_pending())
2157 ptlrpc_interrupted_set(set);
2158 cfs_restore_sigs(blocked_sigs);
2159 }
2160
2161 LASSERT(rc == 0 || rc == -EINTR || rc == -ETIMEDOUT);
2162
2163 /* -EINTR => all requests have been flagged rq_intr so next
2164 * check completes.
2165 * -ETIMEDOUT => someone timed out. When all reqs have
2166 * timed out, signals are enabled allowing completion with
2167 * EINTR.
2168 * I don't really care if we go once more round the loop in
2169 * the error cases -eeb. */
2170 if (rc == 0 && atomic_read(&set->set_remaining) == 0) {
2171 list_for_each(tmp, &set->set_requests) {
2172 req = list_entry(tmp, struct ptlrpc_request,
2173 rq_set_chain);
2174 spin_lock(&req->rq_lock);
2175 req->rq_invalid_rqset = 1;
2176 spin_unlock(&req->rq_lock);
2177 }
2178 }
2179 } while (rc != 0 || atomic_read(&set->set_remaining) != 0);
2180
2181 LASSERT(atomic_read(&set->set_remaining) == 0);
2182
2183 rc = set->set_rc; /* rq_status of already freed requests if any */
2184 list_for_each(tmp, &set->set_requests) {
2185 req = list_entry(tmp, struct ptlrpc_request, rq_set_chain);
2186
2187 LASSERT(req->rq_phase == RQ_PHASE_COMPLETE);
2188 if (req->rq_status != 0)
2189 rc = req->rq_status;
2190 }
2191
2192 if (set->set_interpret != NULL) {
2193 int (*interpreter)(struct ptlrpc_request_set *set, void *, int) =
2194 set->set_interpret;
2195 rc = interpreter (set, set->set_arg, rc);
2196 } else {
2197 struct ptlrpc_set_cbdata *cbdata, *n;
2198 int err;
2199
2200 list_for_each_entry_safe(cbdata, n,
2201 &set->set_cblist, psc_item) {
2202 list_del_init(&cbdata->psc_item);
2203 err = cbdata->psc_interpret(set, cbdata->psc_data, rc);
2204 if (err && !rc)
2205 rc = err;
2206 OBD_FREE_PTR(cbdata);
2207 }
2208 }
2209
2210 return rc;
2211 }
2212 EXPORT_SYMBOL(ptlrpc_set_wait);
2213
2214 /**
2215 * Helper function for request freeing.
2216 * Called when request count reached zero and request needs to be freed.
2217 * Removes request from all sorts of sending/replay lists it might be on,
2218 * frees network buffers if any are present.
2219 * If \a locked is set, that means caller is already holding import imp_lock
2220 * and so we no longer need to reobtain it (for certain lists manipulations)
2221 */
2222 static void __ptlrpc_free_req(struct ptlrpc_request *request, int locked)
2223 {
2224 if (request == NULL)
2225 return;
2226 LASSERTF(!request->rq_receiving_reply, "req %p\n", request);
2227 LASSERTF(request->rq_rqbd == NULL, "req %p\n", request);/* client-side */
2228 LASSERTF(list_empty(&request->rq_list), "req %p\n", request);
2229 LASSERTF(list_empty(&request->rq_set_chain), "req %p\n", request);
2230 LASSERTF(list_empty(&request->rq_exp_list), "req %p\n", request);
2231 LASSERTF(!request->rq_replay, "req %p\n", request);
2232
2233 req_capsule_fini(&request->rq_pill);
2234
2235 /* We must take it off the imp_replay_list first. Otherwise, we'll set
2236 * request->rq_reqmsg to NULL while osc_close is dereferencing it. */
2237 if (request->rq_import != NULL) {
2238 if (!locked)
2239 spin_lock(&request->rq_import->imp_lock);
2240 list_del_init(&request->rq_replay_list);
2241 if (!locked)
2242 spin_unlock(&request->rq_import->imp_lock);
2243 }
2244 LASSERTF(list_empty(&request->rq_replay_list), "req %p\n", request);
2245
2246 if (atomic_read(&request->rq_refcount) != 0) {
2247 DEBUG_REQ(D_ERROR, request,
2248 "freeing request with nonzero refcount");
2249 LBUG();
2250 }
2251
2252 if (request->rq_repbuf != NULL)
2253 sptlrpc_cli_free_repbuf(request);
2254 if (request->rq_export != NULL) {
2255 class_export_put(request->rq_export);
2256 request->rq_export = NULL;
2257 }
2258 if (request->rq_import != NULL) {
2259 class_import_put(request->rq_import);
2260 request->rq_import = NULL;
2261 }
2262 if (request->rq_bulk != NULL)
2263 ptlrpc_free_bulk_pin(request->rq_bulk);
2264
2265 if (request->rq_reqbuf != NULL || request->rq_clrbuf != NULL)
2266 sptlrpc_cli_free_reqbuf(request);
2267
2268 if (request->rq_cli_ctx)
2269 sptlrpc_req_put_ctx(request, !locked);
2270
2271 if (request->rq_pool)
2272 __ptlrpc_free_req_to_pool(request);
2273 else
2274 ptlrpc_request_cache_free(request);
2275 }
2276
2277 static int __ptlrpc_req_finished(struct ptlrpc_request *request, int locked);
2278 /**
2279 * Drop one request reference. Must be called with import imp_lock held.
2280 * When reference count drops to zero, request is freed.
2281 */
2282 void ptlrpc_req_finished_with_imp_lock(struct ptlrpc_request *request)
2283 {
2284 assert_spin_locked(&request->rq_import->imp_lock);
2285 (void)__ptlrpc_req_finished(request, 1);
2286 }
2287 EXPORT_SYMBOL(ptlrpc_req_finished_with_imp_lock);
2288
2289 /**
2290 * Helper function
2291 * Drops one reference count for request \a request.
2292 * \a locked set indicates that caller holds import imp_lock.
2293 * Frees the request when reference count reaches zero.
2294 */
2295 static int __ptlrpc_req_finished(struct ptlrpc_request *request, int locked)
2296 {
2297 if (request == NULL)
2298 return 1;
2299
2300 if (request == LP_POISON ||
2301 request->rq_reqmsg == LP_POISON) {
2302 CERROR("dereferencing freed request (bug 575)\n");
2303 LBUG();
2304 return 1;
2305 }
2306
2307 DEBUG_REQ(D_INFO, request, "refcount now %u",
2308 atomic_read(&request->rq_refcount) - 1);
2309
2310 if (atomic_dec_and_test(&request->rq_refcount)) {
2311 __ptlrpc_free_req(request, locked);
2312 return 1;
2313 }
2314
2315 return 0;
2316 }
2317
2318 /**
2319 * Drops one reference count for a request.
2320 */
2321 void ptlrpc_req_finished(struct ptlrpc_request *request)
2322 {
2323 __ptlrpc_req_finished(request, 0);
2324 }
2325 EXPORT_SYMBOL(ptlrpc_req_finished);
2326
2327 /**
2328 * Returns xid of a \a request
2329 */
2330 __u64 ptlrpc_req_xid(struct ptlrpc_request *request)
2331 {
2332 return request->rq_xid;
2333 }
2334 EXPORT_SYMBOL(ptlrpc_req_xid);
2335
2336 /**
2337 * Disengage the client's reply buffer from the network
2338 * NB does _NOT_ unregister any client-side bulk.
2339 * IDEMPOTENT, but _not_ safe against concurrent callers.
2340 * The request owner (i.e. the thread doing the I/O) must call...
2341 * Returns 0 on success or 1 if unregistering cannot be made.
2342 */
2343 int ptlrpc_unregister_reply(struct ptlrpc_request *request, int async)
2344 {
2345 int rc;
2346 wait_queue_head_t *wq;
2347 struct l_wait_info lwi;
2348
2349 /*
2350 * Might sleep.
2351 */
2352 LASSERT(!in_interrupt());
2353
2354 /*
2355 * Let's setup deadline for reply unlink.
2356 */
2357 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
2358 async && request->rq_reply_deadline == 0)
2359 request->rq_reply_deadline = get_seconds()+LONG_UNLINK;
2360
2361 /*
2362 * Nothing left to do.
2363 */
2364 if (!ptlrpc_client_recv_or_unlink(request))
2365 return 1;
2366
2367 LNetMDUnlink(request->rq_reply_md_h);
2368
2369 /*
2370 * Let's check it once again.
2371 */
2372 if (!ptlrpc_client_recv_or_unlink(request))
2373 return 1;
2374
2375 /*
2376 * Move to "Unregistering" phase as reply was not unlinked yet.
2377 */
2378 ptlrpc_rqphase_move(request, RQ_PHASE_UNREGISTERING);
2379
2380 /*
2381 * Do not wait for unlink to finish.
2382 */
2383 if (async)
2384 return 0;
2385
2386 /*
2387 * We have to l_wait_event() whatever the result, to give liblustre
2388 * a chance to run reply_in_callback(), and to make sure we've
2389 * unlinked before returning a req to the pool.
2390 */
2391 if (request->rq_set != NULL)
2392 wq = &request->rq_set->set_waitq;
2393 else
2394 wq = &request->rq_reply_waitq;
2395
2396 for (;;) {
2397 /* Network access will complete in finite time but the HUGE
2398 * timeout lets us CWARN for visibility of sluggish NALs */
2399 lwi = LWI_TIMEOUT_INTERVAL(cfs_time_seconds(LONG_UNLINK),
2400 cfs_time_seconds(1), NULL, NULL);
2401 rc = l_wait_event(*wq, !ptlrpc_client_recv_or_unlink(request),
2402 &lwi);
2403 if (rc == 0) {
2404 ptlrpc_rqphase_move(request, request->rq_next_phase);
2405 return 1;
2406 }
2407
2408 LASSERT(rc == -ETIMEDOUT);
2409 DEBUG_REQ(D_WARNING, request,
2410 "Unexpectedly long timeout rvcng=%d unlnk=%d/%d",
2411 request->rq_receiving_reply,
2412 request->rq_req_unlink, request->rq_reply_unlink);
2413 }
2414 return 0;
2415 }
2416 EXPORT_SYMBOL(ptlrpc_unregister_reply);
2417
2418 static void ptlrpc_free_request(struct ptlrpc_request *req)
2419 {
2420 spin_lock(&req->rq_lock);
2421 req->rq_replay = 0;
2422 spin_unlock(&req->rq_lock);
2423
2424 if (req->rq_commit_cb != NULL)
2425 req->rq_commit_cb(req);
2426 list_del_init(&req->rq_replay_list);
2427
2428 __ptlrpc_req_finished(req, 1);
2429 }
2430
2431 /**
2432 * the request is committed and dropped from the replay list of its import
2433 */
2434 void ptlrpc_request_committed(struct ptlrpc_request *req, int force)
2435 {
2436 struct obd_import *imp = req->rq_import;
2437
2438 spin_lock(&imp->imp_lock);
2439 if (list_empty(&req->rq_replay_list)) {
2440 spin_unlock(&imp->imp_lock);
2441 return;
2442 }
2443
2444 if (force || req->rq_transno <= imp->imp_peer_committed_transno)
2445 ptlrpc_free_request(req);
2446
2447 spin_unlock(&imp->imp_lock);
2448 }
2449 EXPORT_SYMBOL(ptlrpc_request_committed);
2450
2451 /**
2452 * Iterates through replay_list on import and prunes
2453 * all requests have transno smaller than last_committed for the
2454 * import and don't have rq_replay set.
2455 * Since requests are sorted in transno order, stops when meeting first
2456 * transno bigger than last_committed.
2457 * caller must hold imp->imp_lock
2458 */
2459 void ptlrpc_free_committed(struct obd_import *imp)
2460 {
2461 struct ptlrpc_request *req, *saved;
2462 struct ptlrpc_request *last_req = NULL; /* temporary fire escape */
2463 bool skip_committed_list = true;
2464
2465 LASSERT(imp != NULL);
2466 assert_spin_locked(&imp->imp_lock);
2467
2468 if (imp->imp_peer_committed_transno == imp->imp_last_transno_checked &&
2469 imp->imp_generation == imp->imp_last_generation_checked) {
2470 CDEBUG(D_INFO, "%s: skip recheck: last_committed %llu\n",
2471 imp->imp_obd->obd_name, imp->imp_peer_committed_transno);
2472 return;
2473 }
2474 CDEBUG(D_RPCTRACE, "%s: committing for last_committed %llu gen %d\n",
2475 imp->imp_obd->obd_name, imp->imp_peer_committed_transno,
2476 imp->imp_generation);
2477
2478 if (imp->imp_generation != imp->imp_last_generation_checked)
2479 skip_committed_list = false;
2480
2481 imp->imp_last_transno_checked = imp->imp_peer_committed_transno;
2482 imp->imp_last_generation_checked = imp->imp_generation;
2483
2484 list_for_each_entry_safe(req, saved, &imp->imp_replay_list,
2485 rq_replay_list) {
2486 /* XXX ok to remove when 1357 resolved - rread 05/29/03 */
2487 LASSERT(req != last_req);
2488 last_req = req;
2489
2490 if (req->rq_transno == 0) {
2491 DEBUG_REQ(D_EMERG, req, "zero transno during replay");
2492 LBUG();
2493 }
2494 if (req->rq_import_generation < imp->imp_generation) {
2495 DEBUG_REQ(D_RPCTRACE, req, "free request with old gen");
2496 goto free_req;
2497 }
2498
2499 /* not yet committed */
2500 if (req->rq_transno > imp->imp_peer_committed_transno) {
2501 DEBUG_REQ(D_RPCTRACE, req, "stopping search");
2502 break;
2503 }
2504
2505 if (req->rq_replay) {
2506 DEBUG_REQ(D_RPCTRACE, req, "keeping (FL_REPLAY)");
2507 list_move_tail(&req->rq_replay_list,
2508 &imp->imp_committed_list);
2509 continue;
2510 }
2511
2512 DEBUG_REQ(D_INFO, req, "commit (last_committed %llu)",
2513 imp->imp_peer_committed_transno);
2514 free_req:
2515 ptlrpc_free_request(req);
2516 }
2517 if (skip_committed_list)
2518 return;
2519
2520 list_for_each_entry_safe(req, saved, &imp->imp_committed_list,
2521 rq_replay_list) {
2522 LASSERT(req->rq_transno != 0);
2523 if (req->rq_import_generation < imp->imp_generation) {
2524 DEBUG_REQ(D_RPCTRACE, req, "free stale open request");
2525 ptlrpc_free_request(req);
2526 }
2527 }
2528 }
2529
2530 void ptlrpc_cleanup_client(struct obd_import *imp)
2531 {
2532 }
2533 EXPORT_SYMBOL(ptlrpc_cleanup_client);
2534
2535 /**
2536 * Schedule previously sent request for resend.
2537 * For bulk requests we assign new xid (to avoid problems with
2538 * lost replies and therefore several transfers landing into same buffer
2539 * from different sending attempts).
2540 */
2541 void ptlrpc_resend_req(struct ptlrpc_request *req)
2542 {
2543 DEBUG_REQ(D_HA, req, "going to resend");
2544 spin_lock(&req->rq_lock);
2545
2546 /* Request got reply but linked to the import list still.
2547 Let ptlrpc_check_set() to process it. */
2548 if (ptlrpc_client_replied(req)) {
2549 spin_unlock(&req->rq_lock);
2550 DEBUG_REQ(D_HA, req, "it has reply, so skip it");
2551 return;
2552 }
2553
2554 lustre_msg_set_handle(req->rq_reqmsg, &(struct lustre_handle){ 0 });
2555 req->rq_status = -EAGAIN;
2556
2557 req->rq_resend = 1;
2558 req->rq_net_err = 0;
2559 req->rq_timedout = 0;
2560 if (req->rq_bulk) {
2561 __u64 old_xid = req->rq_xid;
2562
2563 /* ensure previous bulk fails */
2564 req->rq_xid = ptlrpc_next_xid();
2565 CDEBUG(D_HA, "resend bulk old x%llu new x%llu\n",
2566 old_xid, req->rq_xid);
2567 }
2568 ptlrpc_client_wake_req(req);
2569 spin_unlock(&req->rq_lock);
2570 }
2571 EXPORT_SYMBOL(ptlrpc_resend_req);
2572
2573 /* XXX: this function and rq_status are currently unused */
2574 void ptlrpc_restart_req(struct ptlrpc_request *req)
2575 {
2576 DEBUG_REQ(D_HA, req, "restarting (possibly-)completed request");
2577 req->rq_status = -ERESTARTSYS;
2578
2579 spin_lock(&req->rq_lock);
2580 req->rq_restart = 1;
2581 req->rq_timedout = 0;
2582 ptlrpc_client_wake_req(req);
2583 spin_unlock(&req->rq_lock);
2584 }
2585 EXPORT_SYMBOL(ptlrpc_restart_req);
2586
2587 /**
2588 * Grab additional reference on a request \a req
2589 */
2590 struct ptlrpc_request *ptlrpc_request_addref(struct ptlrpc_request *req)
2591 {
2592 atomic_inc(&req->rq_refcount);
2593 return req;
2594 }
2595 EXPORT_SYMBOL(ptlrpc_request_addref);
2596
2597 /**
2598 * Add a request to import replay_list.
2599 * Must be called under imp_lock
2600 */
2601 void ptlrpc_retain_replayable_request(struct ptlrpc_request *req,
2602 struct obd_import *imp)
2603 {
2604 struct list_head *tmp;
2605
2606 assert_spin_locked(&imp->imp_lock);
2607
2608 if (req->rq_transno == 0) {
2609 DEBUG_REQ(D_EMERG, req, "saving request with zero transno");
2610 LBUG();
2611 }
2612
2613 /* clear this for new requests that were resent as well
2614 as resent replayed requests. */
2615 lustre_msg_clear_flags(req->rq_reqmsg, MSG_RESENT);
2616
2617 /* don't re-add requests that have been replayed */
2618 if (!list_empty(&req->rq_replay_list))
2619 return;
2620
2621 lustre_msg_add_flags(req->rq_reqmsg, MSG_REPLAY);
2622
2623 LASSERT(imp->imp_replayable);
2624 /* Balanced in ptlrpc_free_committed, usually. */
2625 ptlrpc_request_addref(req);
2626 list_for_each_prev(tmp, &imp->imp_replay_list) {
2627 struct ptlrpc_request *iter =
2628 list_entry(tmp, struct ptlrpc_request,
2629 rq_replay_list);
2630
2631 /* We may have duplicate transnos if we create and then
2632 * open a file, or for closes retained if to match creating
2633 * opens, so use req->rq_xid as a secondary key.
2634 * (See bugs 684, 685, and 428.)
2635 * XXX no longer needed, but all opens need transnos!
2636 */
2637 if (iter->rq_transno > req->rq_transno)
2638 continue;
2639
2640 if (iter->rq_transno == req->rq_transno) {
2641 LASSERT(iter->rq_xid != req->rq_xid);
2642 if (iter->rq_xid > req->rq_xid)
2643 continue;
2644 }
2645
2646 list_add(&req->rq_replay_list, &iter->rq_replay_list);
2647 return;
2648 }
2649
2650 list_add(&req->rq_replay_list, &imp->imp_replay_list);
2651 }
2652 EXPORT_SYMBOL(ptlrpc_retain_replayable_request);
2653
2654 /**
2655 * Send request and wait until it completes.
2656 * Returns request processing status.
2657 */
2658 int ptlrpc_queue_wait(struct ptlrpc_request *req)
2659 {
2660 struct ptlrpc_request_set *set;
2661 int rc;
2662
2663 LASSERT(req->rq_set == NULL);
2664 LASSERT(!req->rq_receiving_reply);
2665
2666 set = ptlrpc_prep_set();
2667 if (set == NULL) {
2668 CERROR("Unable to allocate ptlrpc set.");
2669 return -ENOMEM;
2670 }
2671
2672 /* for distributed debugging */
2673 lustre_msg_set_status(req->rq_reqmsg, current_pid());
2674
2675 /* add a ref for the set (see comment in ptlrpc_set_add_req) */
2676 ptlrpc_request_addref(req);
2677 ptlrpc_set_add_req(set, req);
2678 rc = ptlrpc_set_wait(set);
2679 ptlrpc_set_destroy(set);
2680
2681 return rc;
2682 }
2683 EXPORT_SYMBOL(ptlrpc_queue_wait);
2684
2685 struct ptlrpc_replay_async_args {
2686 int praa_old_state;
2687 int praa_old_status;
2688 };
2689
2690 /**
2691 * Callback used for replayed requests reply processing.
2692 * In case of successful reply calls registered request replay callback.
2693 * In case of error restart replay process.
2694 */
2695 static int ptlrpc_replay_interpret(const struct lu_env *env,
2696 struct ptlrpc_request *req,
2697 void *data, int rc)
2698 {
2699 struct ptlrpc_replay_async_args *aa = data;
2700 struct obd_import *imp = req->rq_import;
2701
2702 atomic_dec(&imp->imp_replay_inflight);
2703
2704 if (!ptlrpc_client_replied(req)) {
2705 CERROR("request replay timed out, restarting recovery\n");
2706 rc = -ETIMEDOUT;
2707 goto out;
2708 }
2709
2710 if (lustre_msg_get_type(req->rq_repmsg) == PTL_RPC_MSG_ERR &&
2711 (lustre_msg_get_status(req->rq_repmsg) == -ENOTCONN ||
2712 lustre_msg_get_status(req->rq_repmsg) == -ENODEV)) {
2713 rc = lustre_msg_get_status(req->rq_repmsg);
2714 goto out;
2715 }
2716
2717 /** VBR: check version failure */
2718 if (lustre_msg_get_status(req->rq_repmsg) == -EOVERFLOW) {
2719 /** replay was failed due to version mismatch */
2720 DEBUG_REQ(D_WARNING, req, "Version mismatch during replay\n");
2721 spin_lock(&imp->imp_lock);
2722 imp->imp_vbr_failed = 1;
2723 imp->imp_no_lock_replay = 1;
2724 spin_unlock(&imp->imp_lock);
2725 lustre_msg_set_status(req->rq_repmsg, aa->praa_old_status);
2726 } else {
2727 /** The transno had better not change over replay. */
2728 LASSERTF(lustre_msg_get_transno(req->rq_reqmsg) ==
2729 lustre_msg_get_transno(req->rq_repmsg) ||
2730 lustre_msg_get_transno(req->rq_repmsg) == 0,
2731 "%#llx/%#llx\n",
2732 lustre_msg_get_transno(req->rq_reqmsg),
2733 lustre_msg_get_transno(req->rq_repmsg));
2734 }
2735
2736 spin_lock(&imp->imp_lock);
2737 /** if replays by version then gap occur on server, no trust to locks */
2738 if (lustre_msg_get_flags(req->rq_repmsg) & MSG_VERSION_REPLAY)
2739 imp->imp_no_lock_replay = 1;
2740 imp->imp_last_replay_transno = lustre_msg_get_transno(req->rq_reqmsg);
2741 spin_unlock(&imp->imp_lock);
2742 LASSERT(imp->imp_last_replay_transno);
2743
2744 /* transaction number shouldn't be bigger than the latest replayed */
2745 if (req->rq_transno > lustre_msg_get_transno(req->rq_reqmsg)) {
2746 DEBUG_REQ(D_ERROR, req,
2747 "Reported transno %llu is bigger than the replayed one: %llu",
2748 req->rq_transno,
2749 lustre_msg_get_transno(req->rq_reqmsg));
2750 rc = -EINVAL;
2751 goto out;
2752 }
2753
2754 DEBUG_REQ(D_HA, req, "got rep");
2755
2756 /* let the callback do fixups, possibly including in the request */
2757 if (req->rq_replay_cb)
2758 req->rq_replay_cb(req);
2759
2760 if (ptlrpc_client_replied(req) &&
2761 lustre_msg_get_status(req->rq_repmsg) != aa->praa_old_status) {
2762 DEBUG_REQ(D_ERROR, req, "status %d, old was %d",
2763 lustre_msg_get_status(req->rq_repmsg),
2764 aa->praa_old_status);
2765 } else {
2766 /* Put it back for re-replay. */
2767 lustre_msg_set_status(req->rq_repmsg, aa->praa_old_status);
2768 }
2769
2770 /*
2771 * Errors while replay can set transno to 0, but
2772 * imp_last_replay_transno shouldn't be set to 0 anyway
2773 */
2774 if (req->rq_transno == 0)
2775 CERROR("Transno is 0 during replay!\n");
2776
2777 /* continue with recovery */
2778 rc = ptlrpc_import_recovery_state_machine(imp);
2779 out:
2780 req->rq_send_state = aa->praa_old_state;
2781
2782 if (rc != 0)
2783 /* this replay failed, so restart recovery */
2784 ptlrpc_connect_import(imp);
2785
2786 return rc;
2787 }
2788
2789 /**
2790 * Prepares and queues request for replay.
2791 * Adds it to ptlrpcd queue for actual sending.
2792 * Returns 0 on success.
2793 */
2794 int ptlrpc_replay_req(struct ptlrpc_request *req)
2795 {
2796 struct ptlrpc_replay_async_args *aa;
2797
2798 LASSERT(req->rq_import->imp_state == LUSTRE_IMP_REPLAY);
2799
2800 LASSERT(sizeof(*aa) <= sizeof(req->rq_async_args));
2801 aa = ptlrpc_req_async_args(req);
2802 memset(aa, 0, sizeof(*aa));
2803
2804 /* Prepare request to be resent with ptlrpcd */
2805 aa->praa_old_state = req->rq_send_state;
2806 req->rq_send_state = LUSTRE_IMP_REPLAY;
2807 req->rq_phase = RQ_PHASE_NEW;
2808 req->rq_next_phase = RQ_PHASE_UNDEFINED;
2809 if (req->rq_repmsg)
2810 aa->praa_old_status = lustre_msg_get_status(req->rq_repmsg);
2811 req->rq_status = 0;
2812 req->rq_interpret_reply = ptlrpc_replay_interpret;
2813 /* Readjust the timeout for current conditions */
2814 ptlrpc_at_set_req_timeout(req);
2815
2816 /* Tell server the net_latency, so the server can calculate how long
2817 * it should wait for next replay */
2818 lustre_msg_set_service_time(req->rq_reqmsg,
2819 ptlrpc_at_get_net_latency(req));
2820 DEBUG_REQ(D_HA, req, "REPLAY");
2821
2822 atomic_inc(&req->rq_import->imp_replay_inflight);
2823 ptlrpc_request_addref(req); /* ptlrpcd needs a ref */
2824
2825 ptlrpcd_add_req(req, PDL_POLICY_LOCAL, -1);
2826 return 0;
2827 }
2828 EXPORT_SYMBOL(ptlrpc_replay_req);
2829
2830 /**
2831 * Aborts all in-flight request on import \a imp sending and delayed lists
2832 */
2833 void ptlrpc_abort_inflight(struct obd_import *imp)
2834 {
2835 struct list_head *tmp, *n;
2836
2837 /* Make sure that no new requests get processed for this import.
2838 * ptlrpc_{queue,set}_wait must (and does) hold imp_lock while testing
2839 * this flag and then putting requests on sending_list or delayed_list.
2840 */
2841 spin_lock(&imp->imp_lock);
2842
2843 /* XXX locking? Maybe we should remove each request with the list
2844 * locked? Also, how do we know if the requests on the list are
2845 * being freed at this time?
2846 */
2847 list_for_each_safe(tmp, n, &imp->imp_sending_list) {
2848 struct ptlrpc_request *req =
2849 list_entry(tmp, struct ptlrpc_request, rq_list);
2850
2851 DEBUG_REQ(D_RPCTRACE, req, "inflight");
2852
2853 spin_lock(&req->rq_lock);
2854 if (req->rq_import_generation < imp->imp_generation) {
2855 req->rq_err = 1;
2856 req->rq_status = -EIO;
2857 ptlrpc_client_wake_req(req);
2858 }
2859 spin_unlock(&req->rq_lock);
2860 }
2861
2862 list_for_each_safe(tmp, n, &imp->imp_delayed_list) {
2863 struct ptlrpc_request *req =
2864 list_entry(tmp, struct ptlrpc_request, rq_list);
2865
2866 DEBUG_REQ(D_RPCTRACE, req, "aborting waiting req");
2867
2868 spin_lock(&req->rq_lock);
2869 if (req->rq_import_generation < imp->imp_generation) {
2870 req->rq_err = 1;
2871 req->rq_status = -EIO;
2872 ptlrpc_client_wake_req(req);
2873 }
2874 spin_unlock(&req->rq_lock);
2875 }
2876
2877 /* Last chance to free reqs left on the replay list, but we
2878 * will still leak reqs that haven't committed. */
2879 if (imp->imp_replayable)
2880 ptlrpc_free_committed(imp);
2881
2882 spin_unlock(&imp->imp_lock);
2883 }
2884 EXPORT_SYMBOL(ptlrpc_abort_inflight);
2885
2886 /**
2887 * Abort all uncompleted requests in request set \a set
2888 */
2889 void ptlrpc_abort_set(struct ptlrpc_request_set *set)
2890 {
2891 struct list_head *tmp, *pos;
2892
2893 LASSERT(set != NULL);
2894
2895 list_for_each_safe(pos, tmp, &set->set_requests) {
2896 struct ptlrpc_request *req =
2897 list_entry(pos, struct ptlrpc_request,
2898 rq_set_chain);
2899
2900 spin_lock(&req->rq_lock);
2901 if (req->rq_phase != RQ_PHASE_RPC) {
2902 spin_unlock(&req->rq_lock);
2903 continue;
2904 }
2905
2906 req->rq_err = 1;
2907 req->rq_status = -EINTR;
2908 ptlrpc_client_wake_req(req);
2909 spin_unlock(&req->rq_lock);
2910 }
2911 }
2912
2913 static __u64 ptlrpc_last_xid;
2914 static spinlock_t ptlrpc_last_xid_lock;
2915
2916 /**
2917 * Initialize the XID for the node. This is common among all requests on
2918 * this node, and only requires the property that it is monotonically
2919 * increasing. It does not need to be sequential. Since this is also used
2920 * as the RDMA match bits, it is important that a single client NOT have
2921 * the same match bits for two different in-flight requests, hence we do
2922 * NOT want to have an XID per target or similar.
2923 *
2924 * To avoid an unlikely collision between match bits after a client reboot
2925 * (which would deliver old data into the wrong RDMA buffer) initialize
2926 * the XID based on the current time, assuming a maximum RPC rate of 1M RPC/s.
2927 * If the time is clearly incorrect, we instead use a 62-bit random number.
2928 * In the worst case the random number will overflow 1M RPCs per second in
2929 * 9133 years, or permutations thereof.
2930 */
2931 #define YEAR_2004 (1ULL << 30)
2932 void ptlrpc_init_xid(void)
2933 {
2934 time_t now = get_seconds();
2935
2936 spin_lock_init(&ptlrpc_last_xid_lock);
2937 if (now < YEAR_2004) {
2938 cfs_get_random_bytes(&ptlrpc_last_xid, sizeof(ptlrpc_last_xid));
2939 ptlrpc_last_xid >>= 2;
2940 ptlrpc_last_xid |= (1ULL << 61);
2941 } else {
2942 ptlrpc_last_xid = (__u64)now << 20;
2943 }
2944
2945 /* Always need to be aligned to a power-of-two for multi-bulk BRW */
2946 CLASSERT((PTLRPC_BULK_OPS_COUNT & (PTLRPC_BULK_OPS_COUNT - 1)) == 0);
2947 ptlrpc_last_xid &= PTLRPC_BULK_OPS_MASK;
2948 }
2949
2950 /**
2951 * Increase xid and returns resulting new value to the caller.
2952 *
2953 * Multi-bulk BRW RPCs consume multiple XIDs for each bulk transfer, starting
2954 * at the returned xid, up to xid + PTLRPC_BULK_OPS_COUNT - 1. The BRW RPC
2955 * itself uses the last bulk xid needed, so the server can determine the
2956 * the number of bulk transfers from the RPC XID and a bitmask. The starting
2957 * xid must align to a power-of-two value.
2958 *
2959 * This is assumed to be true due to the initial ptlrpc_last_xid
2960 * value also being initialized to a power-of-two value. LU-1431
2961 */
2962 __u64 ptlrpc_next_xid(void)
2963 {
2964 __u64 next;
2965
2966 spin_lock(&ptlrpc_last_xid_lock);
2967 next = ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT;
2968 ptlrpc_last_xid = next;
2969 spin_unlock(&ptlrpc_last_xid_lock);
2970
2971 return next;
2972 }
2973 EXPORT_SYMBOL(ptlrpc_next_xid);
2974
2975 /**
2976 * Get a glimpse at what next xid value might have been.
2977 * Returns possible next xid.
2978 */
2979 __u64 ptlrpc_sample_next_xid(void)
2980 {
2981 #if BITS_PER_LONG == 32
2982 /* need to avoid possible word tearing on 32-bit systems */
2983 __u64 next;
2984
2985 spin_lock(&ptlrpc_last_xid_lock);
2986 next = ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT;
2987 spin_unlock(&ptlrpc_last_xid_lock);
2988
2989 return next;
2990 #else
2991 /* No need to lock, since returned value is racy anyways */
2992 return ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT;
2993 #endif
2994 }
2995 EXPORT_SYMBOL(ptlrpc_sample_next_xid);
2996
2997 /**
2998 * Functions for operating ptlrpc workers.
2999 *
3000 * A ptlrpc work is a function which will be running inside ptlrpc context.
3001 * The callback shouldn't sleep otherwise it will block that ptlrpcd thread.
3002 *
3003 * 1. after a work is created, it can be used many times, that is:
3004 * handler = ptlrpcd_alloc_work();
3005 * ptlrpcd_queue_work();
3006 *
3007 * queue it again when necessary:
3008 * ptlrpcd_queue_work();
3009 * ptlrpcd_destroy_work();
3010 * 2. ptlrpcd_queue_work() can be called by multiple processes meanwhile, but
3011 * it will only be queued once in any time. Also as its name implies, it may
3012 * have delay before it really runs by ptlrpcd thread.
3013 */
3014 struct ptlrpc_work_async_args {
3015 int (*cb)(const struct lu_env *, void *);
3016 void *cbdata;
3017 };
3018
3019 static void ptlrpcd_add_work_req(struct ptlrpc_request *req)
3020 {
3021 /* re-initialize the req */
3022 req->rq_timeout = obd_timeout;
3023 req->rq_sent = get_seconds();
3024 req->rq_deadline = req->rq_sent + req->rq_timeout;
3025 req->rq_reply_deadline = req->rq_deadline;
3026 req->rq_phase = RQ_PHASE_INTERPRET;
3027 req->rq_next_phase = RQ_PHASE_COMPLETE;
3028 req->rq_xid = ptlrpc_next_xid();
3029 req->rq_import_generation = req->rq_import->imp_generation;
3030
3031 ptlrpcd_add_req(req, PDL_POLICY_ROUND, -1);
3032 }
3033
3034 static int work_interpreter(const struct lu_env *env,
3035 struct ptlrpc_request *req, void *data, int rc)
3036 {
3037 struct ptlrpc_work_async_args *arg = data;
3038
3039 LASSERT(ptlrpcd_check_work(req));
3040 LASSERT(arg->cb != NULL);
3041
3042 rc = arg->cb(env, arg->cbdata);
3043
3044 list_del_init(&req->rq_set_chain);
3045 req->rq_set = NULL;
3046
3047 if (atomic_dec_return(&req->rq_refcount) > 1) {
3048 atomic_set(&req->rq_refcount, 2);
3049 ptlrpcd_add_work_req(req);
3050 }
3051 return rc;
3052 }
3053
3054 static int worker_format;
3055
3056 static int ptlrpcd_check_work(struct ptlrpc_request *req)
3057 {
3058 return req->rq_pill.rc_fmt == (void *)&worker_format;
3059 }
3060
3061 /**
3062 * Create a work for ptlrpc.
3063 */
3064 void *ptlrpcd_alloc_work(struct obd_import *imp,
3065 int (*cb)(const struct lu_env *, void *), void *cbdata)
3066 {
3067 struct ptlrpc_request *req = NULL;
3068 struct ptlrpc_work_async_args *args;
3069
3070 might_sleep();
3071
3072 if (cb == NULL)
3073 return ERR_PTR(-EINVAL);
3074
3075 /* copy some code from deprecated fakereq. */
3076 req = ptlrpc_request_cache_alloc(GFP_NOFS);
3077 if (req == NULL) {
3078 CERROR("ptlrpc: run out of memory!\n");
3079 return ERR_PTR(-ENOMEM);
3080 }
3081
3082 req->rq_send_state = LUSTRE_IMP_FULL;
3083 req->rq_type = PTL_RPC_MSG_REQUEST;
3084 req->rq_import = class_import_get(imp);
3085 req->rq_export = NULL;
3086 req->rq_interpret_reply = work_interpreter;
3087 /* don't want reply */
3088 req->rq_receiving_reply = 0;
3089 req->rq_req_unlink = req->rq_reply_unlink = 0;
3090 req->rq_no_delay = req->rq_no_resend = 1;
3091 req->rq_pill.rc_fmt = (void *)&worker_format;
3092
3093 spin_lock_init(&req->rq_lock);
3094 INIT_LIST_HEAD(&req->rq_list);
3095 INIT_LIST_HEAD(&req->rq_replay_list);
3096 INIT_LIST_HEAD(&req->rq_set_chain);
3097 INIT_LIST_HEAD(&req->rq_history_list);
3098 INIT_LIST_HEAD(&req->rq_exp_list);
3099 init_waitqueue_head(&req->rq_reply_waitq);
3100 init_waitqueue_head(&req->rq_set_waitq);
3101 atomic_set(&req->rq_refcount, 1);
3102
3103 CLASSERT(sizeof(*args) <= sizeof(req->rq_async_args));
3104 args = ptlrpc_req_async_args(req);
3105 args->cb = cb;
3106 args->cbdata = cbdata;
3107
3108 return req;
3109 }
3110 EXPORT_SYMBOL(ptlrpcd_alloc_work);
3111
3112 void ptlrpcd_destroy_work(void *handler)
3113 {
3114 struct ptlrpc_request *req = handler;
3115
3116 if (req)
3117 ptlrpc_req_finished(req);
3118 }
3119 EXPORT_SYMBOL(ptlrpcd_destroy_work);
3120
3121 int ptlrpcd_queue_work(void *handler)
3122 {
3123 struct ptlrpc_request *req = handler;
3124
3125 /*
3126 * Check if the req is already being queued.
3127 *
3128 * Here comes a trick: it lacks a way of checking if a req is being
3129 * processed reliably in ptlrpc. Here I have to use refcount of req
3130 * for this purpose. This is okay because the caller should use this
3131 * req as opaque data. - Jinshan
3132 */
3133 LASSERT(atomic_read(&req->rq_refcount) > 0);
3134 if (atomic_inc_return(&req->rq_refcount) == 2)
3135 ptlrpcd_add_work_req(req);
3136 return 0;
3137 }
3138 EXPORT_SYMBOL(ptlrpcd_queue_work);