]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/staging/media/atomisp/i2c/atomisp-mt9m114.c
media: staging: atomisp: Remove FSF snail address
[mirror_ubuntu-bionic-kernel.git] / drivers / staging / media / atomisp / i2c / atomisp-mt9m114.c
1 /*
2 * Support for mt9m114 Camera Sensor.
3 *
4 * Copyright (c) 2010 Intel Corporation. All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License version
8 * 2 as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 *
16 */
17
18 #include <linux/module.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/string.h>
23 #include <linux/errno.h>
24 #include <linux/init.h>
25 #include <linux/kmod.h>
26 #include <linux/device.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/i2c.h>
31 #include <linux/acpi.h>
32 #include "../include/linux/atomisp_gmin_platform.h"
33 #include <media/v4l2-device.h>
34
35 #include "mt9m114.h"
36
37 #define to_mt9m114_sensor(sd) container_of(sd, struct mt9m114_device, sd)
38
39 /*
40 * TODO: use debug parameter to actually define when debug messages should
41 * be printed.
42 */
43 static int debug;
44 static int aaalock;
45 module_param(debug, int, 0644);
46 MODULE_PARM_DESC(debug, "Debug level (0-1)");
47
48 static int mt9m114_t_vflip(struct v4l2_subdev *sd, int value);
49 static int mt9m114_t_hflip(struct v4l2_subdev *sd, int value);
50 static int mt9m114_wait_state(struct i2c_client *client, int timeout);
51
52 static int
53 mt9m114_read_reg(struct i2c_client *client, u16 data_length, u32 reg, u32 *val)
54 {
55 int err;
56 struct i2c_msg msg[2];
57 unsigned char data[4];
58
59 if (!client->adapter) {
60 v4l2_err(client, "%s error, no client->adapter\n", __func__);
61 return -ENODEV;
62 }
63
64 if (data_length != MISENSOR_8BIT && data_length != MISENSOR_16BIT
65 && data_length != MISENSOR_32BIT) {
66 v4l2_err(client, "%s error, invalid data length\n", __func__);
67 return -EINVAL;
68 }
69
70 msg[0].addr = client->addr;
71 msg[0].flags = 0;
72 msg[0].len = MSG_LEN_OFFSET;
73 msg[0].buf = data;
74
75 /* high byte goes out first */
76 data[0] = (u16) (reg >> 8);
77 data[1] = (u16) (reg & 0xff);
78
79 msg[1].addr = client->addr;
80 msg[1].len = data_length;
81 msg[1].flags = I2C_M_RD;
82 msg[1].buf = data;
83
84 err = i2c_transfer(client->adapter, msg, 2);
85
86 if (err >= 0) {
87 *val = 0;
88 /* high byte comes first */
89 if (data_length == MISENSOR_8BIT)
90 *val = data[0];
91 else if (data_length == MISENSOR_16BIT)
92 *val = data[1] + (data[0] << 8);
93 else
94 *val = data[3] + (data[2] << 8) +
95 (data[1] << 16) + (data[0] << 24);
96
97 return 0;
98 }
99
100 dev_err(&client->dev, "read from offset 0x%x error %d", reg, err);
101 return err;
102 }
103
104 static int
105 mt9m114_write_reg(struct i2c_client *client, u16 data_length, u16 reg, u32 val)
106 {
107 int num_msg;
108 struct i2c_msg msg;
109 unsigned char data[6] = {0};
110 u16 *wreg;
111 int retry = 0;
112
113 if (!client->adapter) {
114 v4l2_err(client, "%s error, no client->adapter\n", __func__);
115 return -ENODEV;
116 }
117
118 if (data_length != MISENSOR_8BIT && data_length != MISENSOR_16BIT
119 && data_length != MISENSOR_32BIT) {
120 v4l2_err(client, "%s error, invalid data_length\n", __func__);
121 return -EINVAL;
122 }
123
124 memset(&msg, 0, sizeof(msg));
125
126 again:
127 msg.addr = client->addr;
128 msg.flags = 0;
129 msg.len = 2 + data_length;
130 msg.buf = data;
131
132 /* high byte goes out first */
133 wreg = (u16 *)data;
134 *wreg = cpu_to_be16(reg);
135
136 if (data_length == MISENSOR_8BIT) {
137 data[2] = (u8)(val);
138 } else if (data_length == MISENSOR_16BIT) {
139 u16 *wdata = (u16 *)&data[2];
140 *wdata = be16_to_cpu((u16)val);
141 } else {
142 /* MISENSOR_32BIT */
143 u32 *wdata = (u32 *)&data[2];
144 *wdata = be32_to_cpu(val);
145 }
146
147 num_msg = i2c_transfer(client->adapter, &msg, 1);
148
149 /*
150 * HACK: Need some delay here for Rev 2 sensors otherwise some
151 * registers do not seem to load correctly.
152 */
153 mdelay(1);
154
155 if (num_msg >= 0)
156 return 0;
157
158 dev_err(&client->dev, "write error: wrote 0x%x to offset 0x%x error %d",
159 val, reg, num_msg);
160 if (retry <= I2C_RETRY_COUNT) {
161 dev_dbg(&client->dev, "retrying... %d", retry);
162 retry++;
163 msleep(20);
164 goto again;
165 }
166
167 return num_msg;
168 }
169
170 /**
171 * misensor_rmw_reg - Read/Modify/Write a value to a register in the sensor
172 * device
173 * @client: i2c driver client structure
174 * @data_length: 8/16/32-bits length
175 * @reg: register address
176 * @mask: masked out bits
177 * @set: bits set
178 *
179 * Read/modify/write a value to a register in the sensor device.
180 * Returns zero if successful, or non-zero otherwise.
181 */
182 static int
183 misensor_rmw_reg(struct i2c_client *client, u16 data_length, u16 reg,
184 u32 mask, u32 set)
185 {
186 int err;
187 u32 val;
188
189 /* Exit when no mask */
190 if (mask == 0)
191 return 0;
192
193 /* @mask must not exceed data length */
194 switch (data_length) {
195 case MISENSOR_8BIT:
196 if (mask & ~0xff)
197 return -EINVAL;
198 break;
199 case MISENSOR_16BIT:
200 if (mask & ~0xffff)
201 return -EINVAL;
202 break;
203 case MISENSOR_32BIT:
204 break;
205 default:
206 /* Wrong @data_length */
207 return -EINVAL;
208 }
209
210 err = mt9m114_read_reg(client, data_length, reg, &val);
211 if (err) {
212 v4l2_err(client, "misensor_rmw_reg error exit, read failed\n");
213 return -EINVAL;
214 }
215
216 val &= ~mask;
217
218 /*
219 * Perform the OR function if the @set exists.
220 * Shift @set value to target bit location. @set should set only
221 * bits included in @mask.
222 *
223 * REVISIT: This function expects @set to be non-shifted. Its shift
224 * value is then defined to be equal to mask's LSB position.
225 * How about to inform values in their right offset position and avoid
226 * this unneeded shift operation?
227 */
228 set <<= ffs(mask) - 1;
229 val |= set & mask;
230
231 err = mt9m114_write_reg(client, data_length, reg, val);
232 if (err) {
233 v4l2_err(client, "misensor_rmw_reg error exit, write failed\n");
234 return -EINVAL;
235 }
236
237 return 0;
238 }
239
240
241 static int __mt9m114_flush_reg_array(struct i2c_client *client,
242 struct mt9m114_write_ctrl *ctrl)
243 {
244 struct i2c_msg msg;
245 const int num_msg = 1;
246 int ret;
247 int retry = 0;
248
249 if (ctrl->index == 0)
250 return 0;
251
252 again:
253 msg.addr = client->addr;
254 msg.flags = 0;
255 msg.len = 2 + ctrl->index;
256 ctrl->buffer.addr = cpu_to_be16(ctrl->buffer.addr);
257 msg.buf = (u8 *)&ctrl->buffer;
258
259 ret = i2c_transfer(client->adapter, &msg, num_msg);
260 if (ret != num_msg) {
261 if (++retry <= I2C_RETRY_COUNT) {
262 dev_dbg(&client->dev, "retrying... %d\n", retry);
263 msleep(20);
264 goto again;
265 }
266 dev_err(&client->dev, "%s: i2c transfer error\n", __func__);
267 return -EIO;
268 }
269
270 ctrl->index = 0;
271
272 /*
273 * REVISIT: Previously we had a delay after writing data to sensor.
274 * But it was removed as our tests have shown it is not necessary
275 * anymore.
276 */
277
278 return 0;
279 }
280
281 static int __mt9m114_buf_reg_array(struct i2c_client *client,
282 struct mt9m114_write_ctrl *ctrl,
283 const struct misensor_reg *next)
284 {
285 u16 *data16;
286 u32 *data32;
287 int err;
288
289 /* Insufficient buffer? Let's flush and get more free space. */
290 if (ctrl->index + next->length >= MT9M114_MAX_WRITE_BUF_SIZE) {
291 err = __mt9m114_flush_reg_array(client, ctrl);
292 if (err)
293 return err;
294 }
295
296 switch (next->length) {
297 case MISENSOR_8BIT:
298 ctrl->buffer.data[ctrl->index] = (u8)next->val;
299 break;
300 case MISENSOR_16BIT:
301 data16 = (u16 *)&ctrl->buffer.data[ctrl->index];
302 *data16 = cpu_to_be16((u16)next->val);
303 break;
304 case MISENSOR_32BIT:
305 data32 = (u32 *)&ctrl->buffer.data[ctrl->index];
306 *data32 = cpu_to_be32(next->val);
307 break;
308 default:
309 return -EINVAL;
310 }
311
312 /* When first item is added, we need to store its starting address */
313 if (ctrl->index == 0)
314 ctrl->buffer.addr = next->reg;
315
316 ctrl->index += next->length;
317
318 return 0;
319 }
320
321 static int
322 __mt9m114_write_reg_is_consecutive(struct i2c_client *client,
323 struct mt9m114_write_ctrl *ctrl,
324 const struct misensor_reg *next)
325 {
326 if (ctrl->index == 0)
327 return 1;
328
329 return ctrl->buffer.addr + ctrl->index == next->reg;
330 }
331
332 /*
333 * mt9m114_write_reg_array - Initializes a list of mt9m114 registers
334 * @client: i2c driver client structure
335 * @reglist: list of registers to be written
336 * @poll: completion polling requirement
337 * This function initializes a list of registers. When consecutive addresses
338 * are found in a row on the list, this function creates a buffer and sends
339 * consecutive data in a single i2c_transfer().
340 *
341 * __mt9m114_flush_reg_array, __mt9m114_buf_reg_array() and
342 * __mt9m114_write_reg_is_consecutive() are internal functions to
343 * mt9m114_write_reg_array() and should be not used anywhere else.
344 *
345 */
346 static int mt9m114_write_reg_array(struct i2c_client *client,
347 const struct misensor_reg *reglist,
348 int poll)
349 {
350 const struct misensor_reg *next = reglist;
351 struct mt9m114_write_ctrl ctrl;
352 int err;
353
354 if (poll == PRE_POLLING) {
355 err = mt9m114_wait_state(client, MT9M114_WAIT_STAT_TIMEOUT);
356 if (err)
357 return err;
358 }
359
360 ctrl.index = 0;
361 for (; next->length != MISENSOR_TOK_TERM; next++) {
362 switch (next->length & MISENSOR_TOK_MASK) {
363 case MISENSOR_TOK_DELAY:
364 err = __mt9m114_flush_reg_array(client, &ctrl);
365 if (err)
366 return err;
367 msleep(next->val);
368 break;
369 case MISENSOR_TOK_RMW:
370 err = __mt9m114_flush_reg_array(client, &ctrl);
371 err |= misensor_rmw_reg(client,
372 next->length &
373 ~MISENSOR_TOK_RMW,
374 next->reg, next->val,
375 next->val2);
376 if (err) {
377 dev_err(&client->dev, "%s read err. aborted\n",
378 __func__);
379 return -EINVAL;
380 }
381 break;
382 default:
383 /*
384 * If next address is not consecutive, data needs to be
385 * flushed before proceed.
386 */
387 if (!__mt9m114_write_reg_is_consecutive(client, &ctrl,
388 next)) {
389 err = __mt9m114_flush_reg_array(client, &ctrl);
390 if (err)
391 return err;
392 }
393 err = __mt9m114_buf_reg_array(client, &ctrl, next);
394 if (err) {
395 v4l2_err(client, "%s: write error, aborted\n",
396 __func__);
397 return err;
398 }
399 break;
400 }
401 }
402
403 err = __mt9m114_flush_reg_array(client, &ctrl);
404 if (err)
405 return err;
406
407 if (poll == POST_POLLING)
408 return mt9m114_wait_state(client, MT9M114_WAIT_STAT_TIMEOUT);
409
410 return 0;
411 }
412
413 static int mt9m114_wait_state(struct i2c_client *client, int timeout)
414 {
415 int ret;
416 unsigned int val;
417
418 while (timeout-- > 0) {
419 ret = mt9m114_read_reg(client, MISENSOR_16BIT, 0x0080, &val);
420 if (ret)
421 return ret;
422 if ((val & 0x2) == 0)
423 return 0;
424 msleep(20);
425 }
426
427 return -EINVAL;
428
429 }
430
431 static int mt9m114_set_suspend(struct v4l2_subdev *sd)
432 {
433 struct i2c_client *client = v4l2_get_subdevdata(sd);
434 return mt9m114_write_reg_array(client,
435 mt9m114_standby_reg, POST_POLLING);
436 }
437
438 static int mt9m114_init_common(struct v4l2_subdev *sd)
439 {
440 struct i2c_client *client = v4l2_get_subdevdata(sd);
441
442 return mt9m114_write_reg_array(client, mt9m114_common, PRE_POLLING);
443 }
444
445 static int power_ctrl(struct v4l2_subdev *sd, bool flag)
446 {
447 int ret;
448 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
449
450 if (!dev || !dev->platform_data)
451 return -ENODEV;
452
453 if (flag) {
454 ret = dev->platform_data->v2p8_ctrl(sd, 1);
455 if (ret == 0) {
456 ret = dev->platform_data->v1p8_ctrl(sd, 1);
457 if (ret)
458 ret = dev->platform_data->v2p8_ctrl(sd, 0);
459 }
460 } else {
461 ret = dev->platform_data->v2p8_ctrl(sd, 0);
462 ret = dev->platform_data->v1p8_ctrl(sd, 0);
463 }
464 return ret;
465 }
466
467 static int gpio_ctrl(struct v4l2_subdev *sd, bool flag)
468 {
469 int ret;
470 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
471
472 if (!dev || !dev->platform_data)
473 return -ENODEV;
474
475 /* Note: current modules wire only one GPIO signal (RESET#),
476 * but the schematic wires up two to the connector. BIOS
477 * versions have been unfortunately inconsistent with which
478 * ACPI index RESET# is on, so hit both */
479
480 if (flag) {
481 ret = dev->platform_data->gpio0_ctrl(sd, 0);
482 ret = dev->platform_data->gpio1_ctrl(sd, 0);
483 msleep(60);
484 ret |= dev->platform_data->gpio0_ctrl(sd, 1);
485 ret |= dev->platform_data->gpio1_ctrl(sd, 1);
486 } else {
487 ret = dev->platform_data->gpio0_ctrl(sd, 0);
488 ret = dev->platform_data->gpio1_ctrl(sd, 0);
489 }
490 return ret;
491 }
492
493 static int power_up(struct v4l2_subdev *sd)
494 {
495 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
496 struct i2c_client *client = v4l2_get_subdevdata(sd);
497 int ret;
498
499 if (NULL == dev->platform_data) {
500 dev_err(&client->dev, "no camera_sensor_platform_data");
501 return -ENODEV;
502 }
503
504 /* power control */
505 ret = power_ctrl(sd, 1);
506 if (ret)
507 goto fail_power;
508
509 /* flis clock control */
510 ret = dev->platform_data->flisclk_ctrl(sd, 1);
511 if (ret)
512 goto fail_clk;
513
514 /* gpio ctrl */
515 ret = gpio_ctrl(sd, 1);
516 if (ret)
517 dev_err(&client->dev, "gpio failed 1\n");
518 /*
519 * according to DS, 44ms is needed between power up and first i2c
520 * commend
521 */
522 msleep(50);
523
524 return 0;
525
526 fail_clk:
527 dev->platform_data->flisclk_ctrl(sd, 0);
528 fail_power:
529 power_ctrl(sd, 0);
530 dev_err(&client->dev, "sensor power-up failed\n");
531
532 return ret;
533 }
534
535 static int power_down(struct v4l2_subdev *sd)
536 {
537 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
538 struct i2c_client *client = v4l2_get_subdevdata(sd);
539 int ret;
540
541 if (NULL == dev->platform_data) {
542 dev_err(&client->dev, "no camera_sensor_platform_data");
543 return -ENODEV;
544 }
545
546 ret = dev->platform_data->flisclk_ctrl(sd, 0);
547 if (ret)
548 dev_err(&client->dev, "flisclk failed\n");
549
550 /* gpio ctrl */
551 ret = gpio_ctrl(sd, 0);
552 if (ret)
553 dev_err(&client->dev, "gpio failed 1\n");
554
555 /* power control */
556 ret = power_ctrl(sd, 0);
557 if (ret)
558 dev_err(&client->dev, "vprog failed.\n");
559
560 /*according to DS, 20ms is needed after power down*/
561 msleep(20);
562
563 return ret;
564 }
565
566 static int mt9m114_s_power(struct v4l2_subdev *sd, int power)
567 {
568 if (power == 0)
569 return power_down(sd);
570 else {
571 if (power_up(sd))
572 return -EINVAL;
573
574 return mt9m114_init_common(sd);
575 }
576 }
577
578 /*
579 * distance - calculate the distance
580 * @res: resolution
581 * @w: width
582 * @h: height
583 *
584 * Get the gap between resolution and w/h.
585 * res->width/height smaller than w/h wouldn't be considered.
586 * Returns the value of gap or -1 if fail.
587 */
588 #define LARGEST_ALLOWED_RATIO_MISMATCH 600
589 static int distance(struct mt9m114_res_struct const *res, u32 w, u32 h)
590 {
591 unsigned int w_ratio;
592 unsigned int h_ratio;
593 int match;
594
595 if (w == 0)
596 return -1;
597 w_ratio = (res->width << 13) / w;
598 if (h == 0)
599 return -1;
600 h_ratio = (res->height << 13) / h;
601 if (h_ratio == 0)
602 return -1;
603 match = abs(((w_ratio << 13) / h_ratio) - 8192);
604
605 if ((w_ratio < 8192) || (h_ratio < 8192) ||
606 (match > LARGEST_ALLOWED_RATIO_MISMATCH))
607 return -1;
608
609 return w_ratio + h_ratio;
610 }
611
612 /* Return the nearest higher resolution index */
613 static int nearest_resolution_index(int w, int h)
614 {
615 int i;
616 int idx = -1;
617 int dist;
618 int min_dist = INT_MAX;
619 const struct mt9m114_res_struct *tmp_res = NULL;
620
621 for (i = 0; i < ARRAY_SIZE(mt9m114_res); i++) {
622 tmp_res = &mt9m114_res[i];
623 dist = distance(tmp_res, w, h);
624 if (dist == -1)
625 continue;
626 if (dist < min_dist) {
627 min_dist = dist;
628 idx = i;
629 }
630 }
631
632 return idx;
633 }
634
635 static int mt9m114_try_res(u32 *w, u32 *h)
636 {
637 int idx = 0;
638
639 if ((*w > MT9M114_RES_960P_SIZE_H)
640 || (*h > MT9M114_RES_960P_SIZE_V)) {
641 *w = MT9M114_RES_960P_SIZE_H;
642 *h = MT9M114_RES_960P_SIZE_V;
643 } else {
644 idx = nearest_resolution_index(*w, *h);
645
646 /*
647 * nearest_resolution_index() doesn't return smaller
648 * resolutions. If it fails, it means the requested
649 * resolution is higher than wecan support. Fallback
650 * to highest possible resolution in this case.
651 */
652 if (idx == -1)
653 idx = ARRAY_SIZE(mt9m114_res) - 1;
654
655 *w = mt9m114_res[idx].width;
656 *h = mt9m114_res[idx].height;
657 }
658
659 return 0;
660 }
661
662 static struct mt9m114_res_struct *mt9m114_to_res(u32 w, u32 h)
663 {
664 int index;
665
666 for (index = 0; index < N_RES; index++) {
667 if ((mt9m114_res[index].width == w) &&
668 (mt9m114_res[index].height == h))
669 break;
670 }
671
672 /* No mode found */
673 if (index >= N_RES)
674 return NULL;
675
676 return &mt9m114_res[index];
677 }
678
679 static int mt9m114_res2size(struct v4l2_subdev *sd, int *h_size, int *v_size)
680 {
681 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
682 unsigned short hsize;
683 unsigned short vsize;
684
685 switch (dev->res) {
686 case MT9M114_RES_736P:
687 hsize = MT9M114_RES_736P_SIZE_H;
688 vsize = MT9M114_RES_736P_SIZE_V;
689 break;
690 case MT9M114_RES_864P:
691 hsize = MT9M114_RES_864P_SIZE_H;
692 vsize = MT9M114_RES_864P_SIZE_V;
693 break;
694 case MT9M114_RES_960P:
695 hsize = MT9M114_RES_960P_SIZE_H;
696 vsize = MT9M114_RES_960P_SIZE_V;
697 break;
698 default:
699 v4l2_err(sd, "%s: Resolution 0x%08x unknown\n", __func__,
700 dev->res);
701 return -EINVAL;
702 }
703
704 if (h_size != NULL)
705 *h_size = hsize;
706 if (v_size != NULL)
707 *v_size = vsize;
708
709 return 0;
710 }
711
712 static int mt9m114_get_intg_factor(struct i2c_client *client,
713 struct camera_mipi_info *info,
714 const struct mt9m114_res_struct *res)
715 {
716 struct atomisp_sensor_mode_data *buf = &info->data;
717 u32 reg_val;
718 int ret;
719
720 if (info == NULL)
721 return -EINVAL;
722
723 ret = mt9m114_read_reg(client, MISENSOR_32BIT,
724 REG_PIXEL_CLK, &reg_val);
725 if (ret)
726 return ret;
727 buf->vt_pix_clk_freq_mhz = reg_val;
728
729 /* get integration time */
730 buf->coarse_integration_time_min = MT9M114_COARSE_INTG_TIME_MIN;
731 buf->coarse_integration_time_max_margin =
732 MT9M114_COARSE_INTG_TIME_MAX_MARGIN;
733
734 buf->fine_integration_time_min = MT9M114_FINE_INTG_TIME_MIN;
735 buf->fine_integration_time_max_margin =
736 MT9M114_FINE_INTG_TIME_MAX_MARGIN;
737
738 buf->fine_integration_time_def = MT9M114_FINE_INTG_TIME_MIN;
739
740 buf->frame_length_lines = res->lines_per_frame;
741 buf->line_length_pck = res->pixels_per_line;
742 buf->read_mode = res->bin_mode;
743
744 /* get the cropping and output resolution to ISP for this mode. */
745 ret = mt9m114_read_reg(client, MISENSOR_16BIT,
746 REG_H_START, &reg_val);
747 if (ret)
748 return ret;
749 buf->crop_horizontal_start = reg_val;
750
751 ret = mt9m114_read_reg(client, MISENSOR_16BIT,
752 REG_V_START, &reg_val);
753 if (ret)
754 return ret;
755 buf->crop_vertical_start = reg_val;
756
757 ret = mt9m114_read_reg(client, MISENSOR_16BIT,
758 REG_H_END, &reg_val);
759 if (ret)
760 return ret;
761 buf->crop_horizontal_end = reg_val;
762
763 ret = mt9m114_read_reg(client, MISENSOR_16BIT,
764 REG_V_END, &reg_val);
765 if (ret)
766 return ret;
767 buf->crop_vertical_end = reg_val;
768
769 ret = mt9m114_read_reg(client, MISENSOR_16BIT,
770 REG_WIDTH, &reg_val);
771 if (ret)
772 return ret;
773 buf->output_width = reg_val;
774
775 ret = mt9m114_read_reg(client, MISENSOR_16BIT,
776 REG_HEIGHT, &reg_val);
777 if (ret)
778 return ret;
779 buf->output_height = reg_val;
780
781 ret = mt9m114_read_reg(client, MISENSOR_16BIT,
782 REG_TIMING_HTS, &reg_val);
783 if (ret)
784 return ret;
785 buf->line_length_pck = reg_val;
786
787 ret = mt9m114_read_reg(client, MISENSOR_16BIT,
788 REG_TIMING_VTS, &reg_val);
789 if (ret)
790 return ret;
791 buf->frame_length_lines = reg_val;
792
793 buf->binning_factor_x = res->bin_factor_x ?
794 res->bin_factor_x : 1;
795 buf->binning_factor_y = res->bin_factor_y ?
796 res->bin_factor_y : 1;
797 return 0;
798 }
799
800 static int mt9m114_get_fmt(struct v4l2_subdev *sd,
801 struct v4l2_subdev_pad_config *cfg,
802 struct v4l2_subdev_format *format)
803 {
804 struct v4l2_mbus_framefmt *fmt = &format->format;
805 int width, height;
806 int ret;
807 if (format->pad)
808 return -EINVAL;
809 fmt->code = MEDIA_BUS_FMT_SGRBG10_1X10;
810
811 ret = mt9m114_res2size(sd, &width, &height);
812 if (ret)
813 return ret;
814 fmt->width = width;
815 fmt->height = height;
816
817 return 0;
818 }
819
820 static int mt9m114_set_fmt(struct v4l2_subdev *sd,
821 struct v4l2_subdev_pad_config *cfg,
822 struct v4l2_subdev_format *format)
823 {
824 struct v4l2_mbus_framefmt *fmt = &format->format;
825 struct i2c_client *c = v4l2_get_subdevdata(sd);
826 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
827 struct mt9m114_res_struct *res_index;
828 u32 width = fmt->width;
829 u32 height = fmt->height;
830 struct camera_mipi_info *mt9m114_info = NULL;
831
832 int ret;
833 if (format->pad)
834 return -EINVAL;
835 dev->streamon = 0;
836 dev->first_exp = MT9M114_DEFAULT_FIRST_EXP;
837
838 mt9m114_info = v4l2_get_subdev_hostdata(sd);
839 if (mt9m114_info == NULL)
840 return -EINVAL;
841
842 mt9m114_try_res(&width, &height);
843 if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
844 cfg->try_fmt = *fmt;
845 return 0;
846 }
847 res_index = mt9m114_to_res(width, height);
848
849 /* Sanity check */
850 if (unlikely(!res_index)) {
851 WARN_ON(1);
852 return -EINVAL;
853 }
854
855 switch (res_index->res) {
856 case MT9M114_RES_736P:
857 ret = mt9m114_write_reg_array(c, mt9m114_736P_init, NO_POLLING);
858 ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
859 MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
860 break;
861 case MT9M114_RES_864P:
862 ret = mt9m114_write_reg_array(c, mt9m114_864P_init, NO_POLLING);
863 ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
864 MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
865 break;
866 case MT9M114_RES_960P:
867 ret = mt9m114_write_reg_array(c, mt9m114_976P_init, NO_POLLING);
868 /* set sensor read_mode to Normal */
869 ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
870 MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
871 break;
872 default:
873 v4l2_err(sd, "set resolution: %d failed!\n", res_index->res);
874 return -EINVAL;
875 }
876
877 if (ret)
878 return -EINVAL;
879
880 ret = mt9m114_write_reg_array(c, mt9m114_chgstat_reg, POST_POLLING);
881 if (ret < 0)
882 return ret;
883
884 if (mt9m114_set_suspend(sd))
885 return -EINVAL;
886
887 if (dev->res != res_index->res) {
888 int index;
889
890 /* Switch to different size */
891 if (width <= 640) {
892 dev->nctx = 0x00; /* Set for context A */
893 } else {
894 /*
895 * Context B is used for resolutions larger than 640x480
896 * Using YUV for Context B.
897 */
898 dev->nctx = 0x01; /* set for context B */
899 }
900
901 /*
902 * Marked current sensor res as being "used"
903 *
904 * REVISIT: We don't need to use an "used" field on each mode
905 * list entry to know which mode is selected. If this
906 * information is really necessary, how about to use a single
907 * variable on sensor dev struct?
908 */
909 for (index = 0; index < N_RES; index++) {
910 if ((width == mt9m114_res[index].width) &&
911 (height == mt9m114_res[index].height)) {
912 mt9m114_res[index].used = true;
913 continue;
914 }
915 mt9m114_res[index].used = false;
916 }
917 }
918 ret = mt9m114_get_intg_factor(c, mt9m114_info,
919 &mt9m114_res[res_index->res]);
920 if (ret) {
921 dev_err(&c->dev, "failed to get integration_factor\n");
922 return -EINVAL;
923 }
924 /*
925 * mt9m114 - we don't poll for context switch
926 * because it does not happen with streaming disabled.
927 */
928 dev->res = res_index->res;
929
930 fmt->width = width;
931 fmt->height = height;
932 fmt->code = MEDIA_BUS_FMT_SGRBG10_1X10;
933 return 0;
934 }
935
936 /* TODO: Update to SOC functions, remove exposure and gain */
937 static int mt9m114_g_focal(struct v4l2_subdev *sd, s32 *val)
938 {
939 *val = (MT9M114_FOCAL_LENGTH_NUM << 16) | MT9M114_FOCAL_LENGTH_DEM;
940 return 0;
941 }
942
943 static int mt9m114_g_fnumber(struct v4l2_subdev *sd, s32 *val)
944 {
945 /*const f number for mt9m114*/
946 *val = (MT9M114_F_NUMBER_DEFAULT_NUM << 16) | MT9M114_F_NUMBER_DEM;
947 return 0;
948 }
949
950 static int mt9m114_g_fnumber_range(struct v4l2_subdev *sd, s32 *val)
951 {
952 *val = (MT9M114_F_NUMBER_DEFAULT_NUM << 24) |
953 (MT9M114_F_NUMBER_DEM << 16) |
954 (MT9M114_F_NUMBER_DEFAULT_NUM << 8) | MT9M114_F_NUMBER_DEM;
955 return 0;
956 }
957
958 /* Horizontal flip the image. */
959 static int mt9m114_g_hflip(struct v4l2_subdev *sd, s32 *val)
960 {
961 struct i2c_client *c = v4l2_get_subdevdata(sd);
962 int ret;
963 u32 data;
964 ret = mt9m114_read_reg(c, MISENSOR_16BIT,
965 (u32)MISENSOR_READ_MODE, &data);
966 if (ret)
967 return ret;
968 *val = !!(data & MISENSOR_HFLIP_MASK);
969
970 return 0;
971 }
972
973 static int mt9m114_g_vflip(struct v4l2_subdev *sd, s32 *val)
974 {
975 struct i2c_client *c = v4l2_get_subdevdata(sd);
976 int ret;
977 u32 data;
978
979 ret = mt9m114_read_reg(c, MISENSOR_16BIT,
980 (u32)MISENSOR_READ_MODE, &data);
981 if (ret)
982 return ret;
983 *val = !!(data & MISENSOR_VFLIP_MASK);
984
985 return 0;
986 }
987
988 static long mt9m114_s_exposure(struct v4l2_subdev *sd,
989 struct atomisp_exposure *exposure)
990 {
991 struct i2c_client *client = v4l2_get_subdevdata(sd);
992 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
993 int ret = 0;
994 unsigned int coarse_integration = 0;
995 unsigned int fine_integration = 0;
996 unsigned int FLines = 0;
997 unsigned int FrameLengthLines = 0; /* ExposureTime.FrameLengthLines; */
998 unsigned int AnalogGain, DigitalGain;
999 u32 AnalogGainToWrite = 0;
1000 u16 exposure_local[3];
1001
1002 dev_dbg(&client->dev, "%s(0x%X 0x%X 0x%X)\n", __func__,
1003 exposure->integration_time[0], exposure->gain[0],
1004 exposure->gain[1]);
1005
1006 coarse_integration = exposure->integration_time[0];
1007 /* fine_integration = ExposureTime.FineIntegrationTime; */
1008 /* FrameLengthLines = ExposureTime.FrameLengthLines; */
1009 FLines = mt9m114_res[dev->res].lines_per_frame;
1010 AnalogGain = exposure->gain[0];
1011 DigitalGain = exposure->gain[1];
1012 if (!dev->streamon) {
1013 /*Save the first exposure values while stream is off*/
1014 dev->first_exp = coarse_integration;
1015 dev->first_gain = AnalogGain;
1016 dev->first_diggain = DigitalGain;
1017 }
1018 /* DigitalGain = 0x400 * (((u16) DigitalGain) >> 8) +
1019 ((unsigned int)(0x400 * (((u16) DigitalGain) & 0xFF)) >>8); */
1020
1021 /* set frame length */
1022 if (FLines < coarse_integration + 6)
1023 FLines = coarse_integration + 6;
1024 if (FLines < FrameLengthLines)
1025 FLines = FrameLengthLines;
1026 ret = mt9m114_write_reg(client, MISENSOR_16BIT, 0x300A, FLines);
1027 if (ret) {
1028 v4l2_err(client, "%s: fail to set FLines\n", __func__);
1029 return -EINVAL;
1030 }
1031
1032 /* set coarse/fine integration */
1033 exposure_local[0] = REG_EXPO_COARSE;
1034 exposure_local[1] = (u16)coarse_integration;
1035 exposure_local[2] = (u16)fine_integration;
1036 /* 3A provide real exposure time.
1037 should not translate to any value here. */
1038 ret = mt9m114_write_reg(client, MISENSOR_16BIT,
1039 REG_EXPO_COARSE, (u16)(coarse_integration));
1040 if (ret) {
1041 v4l2_err(client, "%s: fail to set exposure time\n", __func__);
1042 return -EINVAL;
1043 }
1044
1045 /*
1046 // set analog/digital gain
1047 switch(AnalogGain)
1048 {
1049 case 0:
1050 AnalogGainToWrite = 0x0;
1051 break;
1052 case 1:
1053 AnalogGainToWrite = 0x20;
1054 break;
1055 case 2:
1056 AnalogGainToWrite = 0x60;
1057 break;
1058 case 4:
1059 AnalogGainToWrite = 0xA0;
1060 break;
1061 case 8:
1062 AnalogGainToWrite = 0xE0;
1063 break;
1064 default:
1065 AnalogGainToWrite = 0x20;
1066 break;
1067 }
1068 */
1069 if (DigitalGain >= 16 || DigitalGain <= 1)
1070 DigitalGain = 1;
1071 /* AnalogGainToWrite =
1072 (u16)((DigitalGain << 12) | AnalogGainToWrite); */
1073 AnalogGainToWrite = (u16)((DigitalGain << 12) | (u16)AnalogGain);
1074 ret = mt9m114_write_reg(client, MISENSOR_16BIT,
1075 REG_GAIN, AnalogGainToWrite);
1076 if (ret) {
1077 v4l2_err(client, "%s: fail to set AnalogGainToWrite\n",
1078 __func__);
1079 return -EINVAL;
1080 }
1081
1082 return ret;
1083 }
1084
1085 static long mt9m114_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
1086 {
1087
1088 switch (cmd) {
1089 case ATOMISP_IOC_S_EXPOSURE:
1090 return mt9m114_s_exposure(sd, arg);
1091 default:
1092 return -EINVAL;
1093 }
1094
1095 return 0;
1096 }
1097
1098 /* This returns the exposure time being used. This should only be used
1099 for filling in EXIF data, not for actual image processing. */
1100 static int mt9m114_g_exposure(struct v4l2_subdev *sd, s32 *value)
1101 {
1102 struct i2c_client *client = v4l2_get_subdevdata(sd);
1103 u32 coarse;
1104 int ret;
1105
1106 /* the fine integration time is currently not calculated */
1107 ret = mt9m114_read_reg(client, MISENSOR_16BIT,
1108 REG_EXPO_COARSE, &coarse);
1109 if (ret)
1110 return ret;
1111
1112 *value = coarse;
1113 return 0;
1114 }
1115 #ifndef CSS15
1116 /*
1117 * This function will return the sensor supported max exposure zone number.
1118 * the sensor which supports max exposure zone number is 1.
1119 */
1120 static int mt9m114_g_exposure_zone_num(struct v4l2_subdev *sd, s32 *val)
1121 {
1122 *val = 1;
1123
1124 return 0;
1125 }
1126
1127 /*
1128 * set exposure metering, average/center_weighted/spot/matrix.
1129 */
1130 static int mt9m114_s_exposure_metering(struct v4l2_subdev *sd, s32 val)
1131 {
1132 struct i2c_client *client = v4l2_get_subdevdata(sd);
1133 int ret;
1134
1135 switch (val) {
1136 case V4L2_EXPOSURE_METERING_SPOT:
1137 ret = mt9m114_write_reg_array(client, mt9m114_exp_average,
1138 NO_POLLING);
1139 if (ret) {
1140 dev_err(&client->dev, "write exp_average reg err.\n");
1141 return ret;
1142 }
1143 break;
1144 case V4L2_EXPOSURE_METERING_CENTER_WEIGHTED:
1145 default:
1146 ret = mt9m114_write_reg_array(client, mt9m114_exp_center,
1147 NO_POLLING);
1148 if (ret) {
1149 dev_err(&client->dev, "write exp_default reg err");
1150 return ret;
1151 }
1152 }
1153
1154 return 0;
1155 }
1156
1157 /*
1158 * This function is for touch exposure feature.
1159 */
1160 static int mt9m114_s_exposure_selection(struct v4l2_subdev *sd,
1161 struct v4l2_subdev_pad_config *cfg,
1162 struct v4l2_subdev_selection *sel)
1163 {
1164 struct i2c_client *client = v4l2_get_subdevdata(sd);
1165 struct misensor_reg exp_reg;
1166 int width, height;
1167 int grid_width, grid_height;
1168 int grid_left, grid_top, grid_right, grid_bottom;
1169 int win_left, win_top, win_right, win_bottom;
1170 int i, j;
1171 int ret;
1172
1173 if (sel->which != V4L2_SUBDEV_FORMAT_TRY &&
1174 sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1175 return -EINVAL;
1176
1177 grid_left = sel->r.left;
1178 grid_top = sel->r.top;
1179 grid_right = sel->r.left + sel->r.width - 1;
1180 grid_bottom = sel->r.top + sel->r.height - 1;
1181
1182 ret = mt9m114_res2size(sd, &width, &height);
1183 if (ret)
1184 return ret;
1185
1186 grid_width = width / 5;
1187 grid_height = height / 5;
1188
1189 if (grid_width && grid_height) {
1190 win_left = grid_left / grid_width;
1191 win_top = grid_top / grid_height;
1192 win_right = grid_right / grid_width;
1193 win_bottom = grid_bottom / grid_height;
1194 } else {
1195 dev_err(&client->dev, "Incorrect exp grid.\n");
1196 return -EINVAL;
1197 }
1198
1199 win_left = clamp_t(int, win_left, 0, 4);
1200 win_top = clamp_t(int, win_top, 0, 4);
1201 win_right = clamp_t(int, win_right, 0, 4);
1202 win_bottom = clamp_t(int, win_bottom, 0, 4);
1203
1204 ret = mt9m114_write_reg_array(client, mt9m114_exp_average, NO_POLLING);
1205 if (ret) {
1206 dev_err(&client->dev, "write exp_average reg err.\n");
1207 return ret;
1208 }
1209
1210 for (i = win_top; i <= win_bottom; i++) {
1211 for (j = win_left; j <= win_right; j++) {
1212 exp_reg = mt9m114_exp_win[i][j];
1213
1214 ret = mt9m114_write_reg(client, exp_reg.length,
1215 exp_reg.reg, exp_reg.val);
1216 if (ret) {
1217 dev_err(&client->dev, "write exp_reg err.\n");
1218 return ret;
1219 }
1220 }
1221 }
1222
1223 return 0;
1224 }
1225 #endif
1226
1227 static int mt9m114_g_bin_factor_x(struct v4l2_subdev *sd, s32 *val)
1228 {
1229 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1230
1231 *val = mt9m114_res[dev->res].bin_factor_x;
1232
1233 return 0;
1234 }
1235
1236 static int mt9m114_g_bin_factor_y(struct v4l2_subdev *sd, s32 *val)
1237 {
1238 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1239
1240 *val = mt9m114_res[dev->res].bin_factor_y;
1241
1242 return 0;
1243 }
1244
1245 static int mt9m114_s_ev(struct v4l2_subdev *sd, s32 val)
1246 {
1247 struct i2c_client *c = v4l2_get_subdevdata(sd);
1248 s32 luma = 0x37;
1249 int err;
1250
1251 /* EV value only support -2 to 2
1252 * 0: 0x37, 1:0x47, 2:0x57, -1:0x27, -2:0x17
1253 */
1254 if (val < -2 || val > 2)
1255 return -EINVAL;
1256 luma += 0x10 * val;
1257 dev_dbg(&c->dev, "%s val:%d luma:0x%x\n", __func__, val, luma);
1258 err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC87A);
1259 if (err) {
1260 dev_err(&c->dev, "%s logic addr access error\n", __func__);
1261 return err;
1262 }
1263 err = mt9m114_write_reg(c, MISENSOR_8BIT, 0xC87A, (u32)luma);
1264 if (err) {
1265 dev_err(&c->dev, "%s write target_average_luma failed\n",
1266 __func__);
1267 return err;
1268 }
1269 udelay(10);
1270
1271 return 0;
1272 }
1273
1274 static int mt9m114_g_ev(struct v4l2_subdev *sd, s32 *val)
1275 {
1276 struct i2c_client *c = v4l2_get_subdevdata(sd);
1277 int err;
1278 u32 luma;
1279
1280 err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC87A);
1281 if (err) {
1282 dev_err(&c->dev, "%s logic addr access error\n", __func__);
1283 return err;
1284 }
1285 err = mt9m114_read_reg(c, MISENSOR_8BIT, 0xC87A, &luma);
1286 if (err) {
1287 dev_err(&c->dev, "%s read target_average_luma failed\n",
1288 __func__);
1289 return err;
1290 }
1291 luma -= 0x17;
1292 luma /= 0x10;
1293 *val = (s32)luma - 2;
1294 dev_dbg(&c->dev, "%s val:%d\n", __func__, *val);
1295
1296 return 0;
1297 }
1298
1299 /* Fake interface
1300 * mt9m114 now can not support 3a_lock
1301 */
1302 static int mt9m114_s_3a_lock(struct v4l2_subdev *sd, s32 val)
1303 {
1304 aaalock = val;
1305 return 0;
1306 }
1307
1308 static int mt9m114_g_3a_lock(struct v4l2_subdev *sd, s32 *val)
1309 {
1310 if (aaalock)
1311 return V4L2_LOCK_EXPOSURE | V4L2_LOCK_WHITE_BALANCE
1312 | V4L2_LOCK_FOCUS;
1313 return 0;
1314 }
1315
1316 static int mt9m114_s_ctrl(struct v4l2_ctrl *ctrl)
1317 {
1318 struct mt9m114_device *dev =
1319 container_of(ctrl->handler, struct mt9m114_device, ctrl_handler);
1320 struct i2c_client *client = v4l2_get_subdevdata(&dev->sd);
1321 int ret = 0;
1322
1323 switch (ctrl->id) {
1324 case V4L2_CID_VFLIP:
1325 dev_dbg(&client->dev, "%s: CID_VFLIP:%d.\n",
1326 __func__, ctrl->val);
1327 ret = mt9m114_t_vflip(&dev->sd, ctrl->val);
1328 break;
1329 case V4L2_CID_HFLIP:
1330 dev_dbg(&client->dev, "%s: CID_HFLIP:%d.\n",
1331 __func__, ctrl->val);
1332 ret = mt9m114_t_hflip(&dev->sd, ctrl->val);
1333 break;
1334 #ifndef CSS15
1335 case V4L2_CID_EXPOSURE_METERING:
1336 ret = mt9m114_s_exposure_metering(&dev->sd, ctrl->val);
1337 break;
1338 #endif
1339 case V4L2_CID_EXPOSURE:
1340 ret = mt9m114_s_ev(&dev->sd, ctrl->val);
1341 break;
1342 case V4L2_CID_3A_LOCK:
1343 ret = mt9m114_s_3a_lock(&dev->sd, ctrl->val);
1344 break;
1345 default:
1346 ret = -EINVAL;
1347 }
1348 return ret;
1349 }
1350
1351 static int mt9m114_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1352 {
1353 struct mt9m114_device *dev =
1354 container_of(ctrl->handler, struct mt9m114_device, ctrl_handler);
1355 int ret = 0;
1356
1357 switch (ctrl->id) {
1358 case V4L2_CID_VFLIP:
1359 ret = mt9m114_g_vflip(&dev->sd, &ctrl->val);
1360 break;
1361 case V4L2_CID_HFLIP:
1362 ret = mt9m114_g_hflip(&dev->sd, &ctrl->val);
1363 break;
1364 case V4L2_CID_FOCAL_ABSOLUTE:
1365 ret = mt9m114_g_focal(&dev->sd, &ctrl->val);
1366 break;
1367 case V4L2_CID_FNUMBER_ABSOLUTE:
1368 ret = mt9m114_g_fnumber(&dev->sd, &ctrl->val);
1369 break;
1370 case V4L2_CID_FNUMBER_RANGE:
1371 ret = mt9m114_g_fnumber_range(&dev->sd, &ctrl->val);
1372 break;
1373 case V4L2_CID_EXPOSURE_ABSOLUTE:
1374 ret = mt9m114_g_exposure(&dev->sd, &ctrl->val);
1375 break;
1376 #ifndef CSS15
1377 case V4L2_CID_EXPOSURE_ZONE_NUM:
1378 ret = mt9m114_g_exposure_zone_num(&dev->sd, &ctrl->val);
1379 break;
1380 #endif
1381 case V4L2_CID_BIN_FACTOR_HORZ:
1382 ret = mt9m114_g_bin_factor_x(&dev->sd, &ctrl->val);
1383 break;
1384 case V4L2_CID_BIN_FACTOR_VERT:
1385 ret = mt9m114_g_bin_factor_y(&dev->sd, &ctrl->val);
1386 break;
1387 case V4L2_CID_EXPOSURE:
1388 ret = mt9m114_g_ev(&dev->sd, &ctrl->val);
1389 break;
1390 case V4L2_CID_3A_LOCK:
1391 ret = mt9m114_g_3a_lock(&dev->sd, &ctrl->val);
1392 break;
1393 default:
1394 ret = -EINVAL;
1395 }
1396
1397 return ret;
1398 }
1399
1400 static const struct v4l2_ctrl_ops ctrl_ops = {
1401 .s_ctrl = mt9m114_s_ctrl,
1402 .g_volatile_ctrl = mt9m114_g_volatile_ctrl
1403 };
1404
1405 static struct v4l2_ctrl_config mt9m114_controls[] = {
1406 {
1407 .ops = &ctrl_ops,
1408 .id = V4L2_CID_VFLIP,
1409 .name = "Image v-Flip",
1410 .type = V4L2_CTRL_TYPE_INTEGER,
1411 .min = 0,
1412 .max = 1,
1413 .step = 1,
1414 .def = 0,
1415 },
1416 {
1417 .ops = &ctrl_ops,
1418 .id = V4L2_CID_HFLIP,
1419 .name = "Image h-Flip",
1420 .type = V4L2_CTRL_TYPE_INTEGER,
1421 .min = 0,
1422 .max = 1,
1423 .step = 1,
1424 .def = 0,
1425 },
1426 {
1427 .ops = &ctrl_ops,
1428 .id = V4L2_CID_FOCAL_ABSOLUTE,
1429 .name = "focal length",
1430 .type = V4L2_CTRL_TYPE_INTEGER,
1431 .min = MT9M114_FOCAL_LENGTH_DEFAULT,
1432 .max = MT9M114_FOCAL_LENGTH_DEFAULT,
1433 .step = 1,
1434 .def = MT9M114_FOCAL_LENGTH_DEFAULT,
1435 .flags = 0,
1436 },
1437 {
1438 .ops = &ctrl_ops,
1439 .id = V4L2_CID_FNUMBER_ABSOLUTE,
1440 .name = "f-number",
1441 .type = V4L2_CTRL_TYPE_INTEGER,
1442 .min = MT9M114_F_NUMBER_DEFAULT,
1443 .max = MT9M114_F_NUMBER_DEFAULT,
1444 .step = 1,
1445 .def = MT9M114_F_NUMBER_DEFAULT,
1446 .flags = 0,
1447 },
1448 {
1449 .ops = &ctrl_ops,
1450 .id = V4L2_CID_FNUMBER_RANGE,
1451 .name = "f-number range",
1452 .type = V4L2_CTRL_TYPE_INTEGER,
1453 .min = MT9M114_F_NUMBER_RANGE,
1454 .max = MT9M114_F_NUMBER_RANGE,
1455 .step = 1,
1456 .def = MT9M114_F_NUMBER_RANGE,
1457 .flags = 0,
1458 },
1459 {
1460 .ops = &ctrl_ops,
1461 .id = V4L2_CID_EXPOSURE_ABSOLUTE,
1462 .name = "exposure",
1463 .type = V4L2_CTRL_TYPE_INTEGER,
1464 .min = 0,
1465 .max = 0xffff,
1466 .step = 1,
1467 .def = 0,
1468 .flags = 0,
1469 },
1470 #ifndef CSS15
1471 {
1472 .ops = &ctrl_ops,
1473 .id = V4L2_CID_EXPOSURE_ZONE_NUM,
1474 .name = "one-time exposure zone number",
1475 .type = V4L2_CTRL_TYPE_INTEGER,
1476 .min = 0,
1477 .max = 0xffff,
1478 .step = 1,
1479 .def = 0,
1480 .flags = 0,
1481 },
1482 {
1483 .ops = &ctrl_ops,
1484 .id = V4L2_CID_EXPOSURE_METERING,
1485 .name = "metering",
1486 .type = V4L2_CTRL_TYPE_MENU,
1487 .min = 0,
1488 .max = 3,
1489 .step = 0,
1490 .def = 1,
1491 .flags = 0,
1492 },
1493 #endif
1494 {
1495 .ops = &ctrl_ops,
1496 .id = V4L2_CID_BIN_FACTOR_HORZ,
1497 .name = "horizontal binning factor",
1498 .type = V4L2_CTRL_TYPE_INTEGER,
1499 .min = 0,
1500 .max = MT9M114_BIN_FACTOR_MAX,
1501 .step = 1,
1502 .def = 0,
1503 .flags = 0,
1504 },
1505 {
1506 .ops = &ctrl_ops,
1507 .id = V4L2_CID_BIN_FACTOR_VERT,
1508 .name = "vertical binning factor",
1509 .type = V4L2_CTRL_TYPE_INTEGER,
1510 .min = 0,
1511 .max = MT9M114_BIN_FACTOR_MAX,
1512 .step = 1,
1513 .def = 0,
1514 .flags = 0,
1515 },
1516 {
1517 .ops = &ctrl_ops,
1518 .id = V4L2_CID_EXPOSURE,
1519 .name = "exposure biasx",
1520 .type = V4L2_CTRL_TYPE_INTEGER,
1521 .min = -2,
1522 .max = 2,
1523 .step = 1,
1524 .def = 0,
1525 .flags = 0,
1526 },
1527 {
1528 .ops = &ctrl_ops,
1529 .id = V4L2_CID_3A_LOCK,
1530 .name = "3a lock",
1531 .type = V4L2_CTRL_TYPE_BITMASK,
1532 .min = 0,
1533 .max = V4L2_LOCK_EXPOSURE | V4L2_LOCK_WHITE_BALANCE | V4L2_LOCK_FOCUS,
1534 .step = 1,
1535 .def = 0,
1536 .flags = 0,
1537 },
1538 };
1539
1540 static int mt9m114_detect(struct mt9m114_device *dev, struct i2c_client *client)
1541 {
1542 struct i2c_adapter *adapter = client->adapter;
1543 u32 retvalue;
1544
1545 if (!i2c_check_functionality(adapter, I2C_FUNC_I2C)) {
1546 dev_err(&client->dev, "%s: i2c error", __func__);
1547 return -ENODEV;
1548 }
1549 mt9m114_read_reg(client, MISENSOR_16BIT, (u32)MT9M114_PID, &retvalue);
1550 dev->real_model_id = retvalue;
1551
1552 if (retvalue != MT9M114_MOD_ID) {
1553 dev_err(&client->dev, "%s: failed: client->addr = %x\n",
1554 __func__, client->addr);
1555 return -ENODEV;
1556 }
1557
1558 return 0;
1559 }
1560
1561 static int
1562 mt9m114_s_config(struct v4l2_subdev *sd, int irq, void *platform_data)
1563 {
1564 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1565 struct i2c_client *client = v4l2_get_subdevdata(sd);
1566 int ret;
1567
1568 if (NULL == platform_data)
1569 return -ENODEV;
1570
1571 dev->platform_data =
1572 (struct camera_sensor_platform_data *)platform_data;
1573
1574 ret = power_up(sd);
1575 if (ret) {
1576 v4l2_err(client, "mt9m114 power-up err");
1577 return ret;
1578 }
1579
1580 /* config & detect sensor */
1581 ret = mt9m114_detect(dev, client);
1582 if (ret) {
1583 v4l2_err(client, "mt9m114_detect err s_config.\n");
1584 goto fail_detect;
1585 }
1586
1587 ret = dev->platform_data->csi_cfg(sd, 1);
1588 if (ret)
1589 goto fail_csi_cfg;
1590
1591 ret = mt9m114_set_suspend(sd);
1592 if (ret) {
1593 v4l2_err(client, "mt9m114 suspend err");
1594 return ret;
1595 }
1596
1597 ret = power_down(sd);
1598 if (ret) {
1599 v4l2_err(client, "mt9m114 power down err");
1600 return ret;
1601 }
1602
1603 return ret;
1604
1605 fail_csi_cfg:
1606 dev->platform_data->csi_cfg(sd, 0);
1607 fail_detect:
1608 power_down(sd);
1609 dev_err(&client->dev, "sensor power-gating failed\n");
1610 return ret;
1611 }
1612
1613 /* Horizontal flip the image. */
1614 static int mt9m114_t_hflip(struct v4l2_subdev *sd, int value)
1615 {
1616 struct i2c_client *c = v4l2_get_subdevdata(sd);
1617 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1618 int err;
1619 /* set for direct mode */
1620 err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC850);
1621 if (value) {
1622 /* enable H flip ctx A */
1623 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x01, 0x01);
1624 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x01, 0x01);
1625 /* ctx B */
1626 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x01, 0x01);
1627 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x01, 0x01);
1628
1629 err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
1630 MISENSOR_HFLIP_MASK, MISENSOR_FLIP_EN);
1631
1632 dev->bpat = MT9M114_BPAT_GRGRBGBG;
1633 } else {
1634 /* disable H flip ctx A */
1635 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x01, 0x00);
1636 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x01, 0x00);
1637 /* ctx B */
1638 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x01, 0x00);
1639 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x01, 0x00);
1640
1641 err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
1642 MISENSOR_HFLIP_MASK, MISENSOR_FLIP_DIS);
1643
1644 dev->bpat = MT9M114_BPAT_BGBGGRGR;
1645 }
1646
1647 err += mt9m114_write_reg(c, MISENSOR_8BIT, 0x8404, 0x06);
1648 udelay(10);
1649
1650 return !!err;
1651 }
1652
1653 /* Vertically flip the image */
1654 static int mt9m114_t_vflip(struct v4l2_subdev *sd, int value)
1655 {
1656 struct i2c_client *c = v4l2_get_subdevdata(sd);
1657 int err;
1658 /* set for direct mode */
1659 err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC850);
1660 if (value >= 1) {
1661 /* enable H flip - ctx A */
1662 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x02, 0x01);
1663 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x02, 0x01);
1664 /* ctx B */
1665 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x02, 0x01);
1666 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x02, 0x01);
1667
1668 err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
1669 MISENSOR_VFLIP_MASK, MISENSOR_FLIP_EN);
1670 } else {
1671 /* disable H flip - ctx A */
1672 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x02, 0x00);
1673 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x02, 0x00);
1674 /* ctx B */
1675 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x02, 0x00);
1676 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x02, 0x00);
1677
1678 err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
1679 MISENSOR_VFLIP_MASK, MISENSOR_FLIP_DIS);
1680 }
1681
1682 err += mt9m114_write_reg(c, MISENSOR_8BIT, 0x8404, 0x06);
1683 udelay(10);
1684
1685 return !!err;
1686 }
1687 static int mt9m114_s_parm(struct v4l2_subdev *sd,
1688 struct v4l2_streamparm *param)
1689 {
1690 return 0;
1691 }
1692
1693 static int mt9m114_g_frame_interval(struct v4l2_subdev *sd,
1694 struct v4l2_subdev_frame_interval *interval)
1695 {
1696 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1697
1698 interval->interval.numerator = 1;
1699 interval->interval.denominator = mt9m114_res[dev->res].fps;
1700
1701 return 0;
1702 }
1703
1704 static int mt9m114_s_stream(struct v4l2_subdev *sd, int enable)
1705 {
1706 int ret;
1707 struct i2c_client *c = v4l2_get_subdevdata(sd);
1708 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1709 struct atomisp_exposure exposure;
1710
1711 if (enable) {
1712 ret = mt9m114_write_reg_array(c, mt9m114_chgstat_reg,
1713 POST_POLLING);
1714 if (ret < 0)
1715 return ret;
1716
1717 if (dev->first_exp > MT9M114_MAX_FIRST_EXP) {
1718 exposure.integration_time[0] = dev->first_exp;
1719 exposure.gain[0] = dev->first_gain;
1720 exposure.gain[1] = dev->first_diggain;
1721 mt9m114_s_exposure(sd, &exposure);
1722 }
1723 dev->streamon = 1;
1724
1725 } else {
1726 dev->streamon = 0;
1727 ret = mt9m114_set_suspend(sd);
1728 }
1729
1730 return ret;
1731 }
1732
1733 static int mt9m114_enum_mbus_code(struct v4l2_subdev *sd,
1734 struct v4l2_subdev_pad_config *cfg,
1735 struct v4l2_subdev_mbus_code_enum *code)
1736 {
1737 if (code->index)
1738 return -EINVAL;
1739 code->code = MEDIA_BUS_FMT_SGRBG10_1X10;
1740
1741 return 0;
1742 }
1743
1744 static int mt9m114_enum_frame_size(struct v4l2_subdev *sd,
1745 struct v4l2_subdev_pad_config *cfg,
1746 struct v4l2_subdev_frame_size_enum *fse)
1747 {
1748
1749 unsigned int index = fse->index;
1750
1751 if (index >= N_RES)
1752 return -EINVAL;
1753
1754 fse->min_width = mt9m114_res[index].width;
1755 fse->min_height = mt9m114_res[index].height;
1756 fse->max_width = mt9m114_res[index].width;
1757 fse->max_height = mt9m114_res[index].height;
1758
1759 return 0;
1760 }
1761
1762 static int mt9m114_g_skip_frames(struct v4l2_subdev *sd, u32 *frames)
1763 {
1764 int index;
1765 struct mt9m114_device *snr = to_mt9m114_sensor(sd);
1766
1767 if (frames == NULL)
1768 return -EINVAL;
1769
1770 for (index = 0; index < N_RES; index++) {
1771 if (mt9m114_res[index].res == snr->res)
1772 break;
1773 }
1774
1775 if (index >= N_RES)
1776 return -EINVAL;
1777
1778 *frames = mt9m114_res[index].skip_frames;
1779
1780 return 0;
1781 }
1782
1783 static const struct v4l2_subdev_video_ops mt9m114_video_ops = {
1784 .s_parm = mt9m114_s_parm,
1785 .s_stream = mt9m114_s_stream,
1786 .g_frame_interval = mt9m114_g_frame_interval,
1787 };
1788
1789 static const struct v4l2_subdev_sensor_ops mt9m114_sensor_ops = {
1790 .g_skip_frames = mt9m114_g_skip_frames,
1791 };
1792
1793 static const struct v4l2_subdev_core_ops mt9m114_core_ops = {
1794 .s_power = mt9m114_s_power,
1795 .ioctl = mt9m114_ioctl,
1796 };
1797
1798 /* REVISIT: Do we need pad operations? */
1799 static const struct v4l2_subdev_pad_ops mt9m114_pad_ops = {
1800 .enum_mbus_code = mt9m114_enum_mbus_code,
1801 .enum_frame_size = mt9m114_enum_frame_size,
1802 .get_fmt = mt9m114_get_fmt,
1803 .set_fmt = mt9m114_set_fmt,
1804 #ifndef CSS15
1805 .set_selection = mt9m114_s_exposure_selection,
1806 #endif
1807 };
1808
1809 static const struct v4l2_subdev_ops mt9m114_ops = {
1810 .core = &mt9m114_core_ops,
1811 .video = &mt9m114_video_ops,
1812 .pad = &mt9m114_pad_ops,
1813 .sensor = &mt9m114_sensor_ops,
1814 };
1815
1816 static const struct media_entity_operations mt9m114_entity_ops = {
1817 .link_setup = NULL,
1818 };
1819
1820 static int mt9m114_remove(struct i2c_client *client)
1821 {
1822 struct mt9m114_device *dev;
1823 struct v4l2_subdev *sd = i2c_get_clientdata(client);
1824
1825 dev = container_of(sd, struct mt9m114_device, sd);
1826 dev->platform_data->csi_cfg(sd, 0);
1827 v4l2_device_unregister_subdev(sd);
1828 media_entity_cleanup(&dev->sd.entity);
1829 v4l2_ctrl_handler_free(&dev->ctrl_handler);
1830 kfree(dev);
1831 return 0;
1832 }
1833
1834 static int mt9m114_probe(struct i2c_client *client)
1835 {
1836 struct mt9m114_device *dev;
1837 int ret = 0;
1838 unsigned int i;
1839 void *pdata;
1840
1841 /* Setup sensor configuration structure */
1842 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1843 if (!dev)
1844 return -ENOMEM;
1845
1846 v4l2_i2c_subdev_init(&dev->sd, client, &mt9m114_ops);
1847 pdata = client->dev.platform_data;
1848 if (ACPI_COMPANION(&client->dev))
1849 pdata = gmin_camera_platform_data(&dev->sd,
1850 ATOMISP_INPUT_FORMAT_RAW_10,
1851 atomisp_bayer_order_grbg);
1852 if (pdata)
1853 ret = mt9m114_s_config(&dev->sd, client->irq, pdata);
1854 if (!pdata || ret) {
1855 v4l2_device_unregister_subdev(&dev->sd);
1856 kfree(dev);
1857 return ret;
1858 }
1859
1860 ret = atomisp_register_i2c_module(&dev->sd, pdata, RAW_CAMERA);
1861 if (ret) {
1862 v4l2_device_unregister_subdev(&dev->sd);
1863 kfree(dev);
1864 /* Coverity CID 298095 - return on error */
1865 return ret;
1866 }
1867
1868 /*TODO add format code here*/
1869 dev->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
1870 dev->pad.flags = MEDIA_PAD_FL_SOURCE;
1871 dev->format.code = MEDIA_BUS_FMT_SGRBG10_1X10;
1872 dev->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
1873
1874 ret =
1875 v4l2_ctrl_handler_init(&dev->ctrl_handler,
1876 ARRAY_SIZE(mt9m114_controls));
1877 if (ret) {
1878 mt9m114_remove(client);
1879 return ret;
1880 }
1881
1882 for (i = 0; i < ARRAY_SIZE(mt9m114_controls); i++)
1883 v4l2_ctrl_new_custom(&dev->ctrl_handler, &mt9m114_controls[i],
1884 NULL);
1885
1886 if (dev->ctrl_handler.error) {
1887 mt9m114_remove(client);
1888 return dev->ctrl_handler.error;
1889 }
1890
1891 /* Use same lock for controls as for everything else. */
1892 dev->ctrl_handler.lock = &dev->input_lock;
1893 dev->sd.ctrl_handler = &dev->ctrl_handler;
1894
1895 /* REVISIT: Do we need media controller? */
1896 ret = media_entity_pads_init(&dev->sd.entity, 1, &dev->pad);
1897 if (ret) {
1898 mt9m114_remove(client);
1899 return ret;
1900 }
1901 return 0;
1902 }
1903
1904 static const struct acpi_device_id mt9m114_acpi_match[] = {
1905 { "INT33F0" },
1906 { "CRMT1040" },
1907 {},
1908 };
1909 MODULE_DEVICE_TABLE(acpi, mt9m114_acpi_match);
1910
1911 static struct i2c_driver mt9m114_driver = {
1912 .driver = {
1913 .name = "mt9m114",
1914 .acpi_match_table = mt9m114_acpi_match,
1915 },
1916 .probe_new = mt9m114_probe,
1917 .remove = mt9m114_remove,
1918 };
1919 module_i2c_driver(mt9m114_driver);
1920
1921 MODULE_AUTHOR("Shuguang Gong <Shuguang.gong@intel.com>");
1922 MODULE_LICENSE("GPL");