]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/staging/media/cxd2099/cxd2099.c
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / drivers / staging / media / cxd2099 / cxd2099.c
1 /*
2 * cxd2099.c: Driver for the CXD2099AR Common Interface Controller
3 *
4 * Copyright (C) 2010-2011 Digital Devices GmbH
5 *
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * version 2 only, as published by the Free Software Foundation.
10 *
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 * 02110-1301, USA
22 * Or, point your browser to http://www.gnu.org/copyleft/gpl.html
23 */
24
25 #include <linux/slab.h>
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/i2c.h>
29 #include <linux/wait.h>
30 #include <linux/delay.h>
31 #include <linux/mutex.h>
32 #include <linux/io.h>
33
34 #include "cxd2099.h"
35
36 #define MAX_BUFFER_SIZE 248
37
38 struct cxd {
39 struct dvb_ca_en50221 en;
40
41 struct i2c_adapter *i2c;
42 struct cxd2099_cfg cfg;
43
44 u8 regs[0x23];
45 u8 lastaddress;
46 u8 clk_reg_f;
47 u8 clk_reg_b;
48 int mode;
49 int ready;
50 int dr;
51 int slot_stat;
52
53 u8 amem[1024];
54 int amem_read;
55
56 int cammode;
57 struct mutex lock;
58 };
59
60 static int i2c_write_reg(struct i2c_adapter *adapter, u8 adr,
61 u8 reg, u8 data)
62 {
63 u8 m[2] = {reg, data};
64 struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = m, .len = 2};
65
66 if (i2c_transfer(adapter, &msg, 1) != 1) {
67 dev_err(&adapter->dev,
68 "Failed to write to I2C register %02x@%02x!\n",
69 reg, adr);
70 return -1;
71 }
72 return 0;
73 }
74
75 static int i2c_write(struct i2c_adapter *adapter, u8 adr,
76 u8 *data, u8 len)
77 {
78 struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len};
79
80 if (i2c_transfer(adapter, &msg, 1) != 1) {
81 dev_err(&adapter->dev, "Failed to write to I2C!\n");
82 return -1;
83 }
84 return 0;
85 }
86
87 static int i2c_read_reg(struct i2c_adapter *adapter, u8 adr,
88 u8 reg, u8 *val)
89 {
90 struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
91 .buf = &reg, .len = 1},
92 {.addr = adr, .flags = I2C_M_RD,
93 .buf = val, .len = 1} };
94
95 if (i2c_transfer(adapter, msgs, 2) != 2) {
96 dev_err(&adapter->dev, "error in i2c_read_reg\n");
97 return -1;
98 }
99 return 0;
100 }
101
102 static int i2c_read(struct i2c_adapter *adapter, u8 adr,
103 u8 reg, u8 *data, u8 n)
104 {
105 struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
106 .buf = &reg, .len = 1},
107 {.addr = adr, .flags = I2C_M_RD,
108 .buf = data, .len = n} };
109
110 if (i2c_transfer(adapter, msgs, 2) != 2) {
111 dev_err(&adapter->dev, "error in i2c_read\n");
112 return -1;
113 }
114 return 0;
115 }
116
117 static int read_block(struct cxd *ci, u8 adr, u8 *data, u8 n)
118 {
119 int status;
120
121 status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, adr);
122 if (!status) {
123 ci->lastaddress = adr;
124 status = i2c_read(ci->i2c, ci->cfg.adr, 1, data, n);
125 }
126 return status;
127 }
128
129 static int read_reg(struct cxd *ci, u8 reg, u8 *val)
130 {
131 return read_block(ci, reg, val, 1);
132 }
133
134 static int read_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
135 {
136 int status;
137 u8 addr[3] = {2, address & 0xff, address >> 8};
138
139 status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
140 if (!status)
141 status = i2c_read(ci->i2c, ci->cfg.adr, 3, data, n);
142 return status;
143 }
144
145 static int write_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
146 {
147 int status;
148 u8 addr[3] = {2, address & 0xff, address >> 8};
149
150 status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
151 if (!status) {
152 u8 buf[256] = {3};
153
154 memcpy(buf + 1, data, n);
155 status = i2c_write(ci->i2c, ci->cfg.adr, buf, n + 1);
156 }
157 return status;
158 }
159
160 static int read_io(struct cxd *ci, u16 address, u8 *val)
161 {
162 int status;
163 u8 addr[3] = {2, address & 0xff, address >> 8};
164
165 status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
166 if (!status)
167 status = i2c_read(ci->i2c, ci->cfg.adr, 3, val, 1);
168 return status;
169 }
170
171 static int write_io(struct cxd *ci, u16 address, u8 val)
172 {
173 int status;
174 u8 addr[3] = {2, address & 0xff, address >> 8};
175 u8 buf[2] = {3, val};
176
177 status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
178 if (!status)
179 status = i2c_write(ci->i2c, ci->cfg.adr, buf, 2);
180 return status;
181 }
182
183 static int write_regm(struct cxd *ci, u8 reg, u8 val, u8 mask)
184 {
185 int status;
186
187 status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, reg);
188 if (!status && reg >= 6 && reg <= 8 && mask != 0xff)
189 status = i2c_read_reg(ci->i2c, ci->cfg.adr, 1, &ci->regs[reg]);
190 ci->regs[reg] = (ci->regs[reg] & (~mask)) | val;
191 if (!status) {
192 ci->lastaddress = reg;
193 status = i2c_write_reg(ci->i2c, ci->cfg.adr, 1, ci->regs[reg]);
194 }
195 if (reg == 0x20)
196 ci->regs[reg] &= 0x7f;
197 return status;
198 }
199
200 static int write_reg(struct cxd *ci, u8 reg, u8 val)
201 {
202 return write_regm(ci, reg, val, 0xff);
203 }
204
205 #ifdef BUFFER_MODE
206 static int write_block(struct cxd *ci, u8 adr, u8 *data, int n)
207 {
208 int status;
209 u8 buf[256] = {1};
210
211 status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, adr);
212 if (!status) {
213 ci->lastaddress = adr;
214 memcpy(buf + 1, data, n);
215 status = i2c_write(ci->i2c, ci->cfg.adr, buf, n + 1);
216 }
217 return status;
218 }
219 #endif
220
221 static void set_mode(struct cxd *ci, int mode)
222 {
223 if (mode == ci->mode)
224 return;
225
226 switch (mode) {
227 case 0x00: /* IO mem */
228 write_regm(ci, 0x06, 0x00, 0x07);
229 break;
230 case 0x01: /* ATT mem */
231 write_regm(ci, 0x06, 0x02, 0x07);
232 break;
233 default:
234 break;
235 }
236 ci->mode = mode;
237 }
238
239 static void cam_mode(struct cxd *ci, int mode)
240 {
241 if (mode == ci->cammode)
242 return;
243
244 switch (mode) {
245 case 0x00:
246 write_regm(ci, 0x20, 0x80, 0x80);
247 break;
248 case 0x01:
249 #ifdef BUFFER_MODE
250 if (!ci->en.read_data)
251 return;
252 dev_info(&ci->i2c->dev, "enable cam buffer mode\n");
253 /* write_reg(ci, 0x0d, 0x00); */
254 /* write_reg(ci, 0x0e, 0x01); */
255 write_regm(ci, 0x08, 0x40, 0x40);
256 /* read_reg(ci, 0x12, &dummy); */
257 write_regm(ci, 0x08, 0x80, 0x80);
258 #endif
259 break;
260 default:
261 break;
262 }
263 ci->cammode = mode;
264 }
265
266 static int init(struct cxd *ci)
267 {
268 int status;
269
270 mutex_lock(&ci->lock);
271 ci->mode = -1;
272 do {
273 status = write_reg(ci, 0x00, 0x00);
274 if (status < 0)
275 break;
276 status = write_reg(ci, 0x01, 0x00);
277 if (status < 0)
278 break;
279 status = write_reg(ci, 0x02, 0x10);
280 if (status < 0)
281 break;
282 status = write_reg(ci, 0x03, 0x00);
283 if (status < 0)
284 break;
285 status = write_reg(ci, 0x05, 0xFF);
286 if (status < 0)
287 break;
288 status = write_reg(ci, 0x06, 0x1F);
289 if (status < 0)
290 break;
291 status = write_reg(ci, 0x07, 0x1F);
292 if (status < 0)
293 break;
294 status = write_reg(ci, 0x08, 0x28);
295 if (status < 0)
296 break;
297 status = write_reg(ci, 0x14, 0x20);
298 if (status < 0)
299 break;
300
301 /* TOSTRT = 8, Mode B (gated clock), falling Edge,
302 * Serial, POL=HIGH, MSB
303 */
304 status = write_reg(ci, 0x0A, 0xA7);
305 if (status < 0)
306 break;
307
308 status = write_reg(ci, 0x0B, 0x33);
309 if (status < 0)
310 break;
311 status = write_reg(ci, 0x0C, 0x33);
312 if (status < 0)
313 break;
314
315 status = write_regm(ci, 0x14, 0x00, 0x0F);
316 if (status < 0)
317 break;
318 status = write_reg(ci, 0x15, ci->clk_reg_b);
319 if (status < 0)
320 break;
321 status = write_regm(ci, 0x16, 0x00, 0x0F);
322 if (status < 0)
323 break;
324 status = write_reg(ci, 0x17, ci->clk_reg_f);
325 if (status < 0)
326 break;
327
328 if (ci->cfg.clock_mode) {
329 if (ci->cfg.polarity) {
330 status = write_reg(ci, 0x09, 0x6f);
331 if (status < 0)
332 break;
333 } else {
334 status = write_reg(ci, 0x09, 0x6d);
335 if (status < 0)
336 break;
337 }
338 status = write_reg(ci, 0x20, 0x68);
339 if (status < 0)
340 break;
341 status = write_reg(ci, 0x21, 0x00);
342 if (status < 0)
343 break;
344 status = write_reg(ci, 0x22, 0x02);
345 if (status < 0)
346 break;
347 } else {
348 if (ci->cfg.polarity) {
349 status = write_reg(ci, 0x09, 0x4f);
350 if (status < 0)
351 break;
352 } else {
353 status = write_reg(ci, 0x09, 0x4d);
354 if (status < 0)
355 break;
356 }
357
358 status = write_reg(ci, 0x20, 0x28);
359 if (status < 0)
360 break;
361 status = write_reg(ci, 0x21, 0x00);
362 if (status < 0)
363 break;
364 status = write_reg(ci, 0x22, 0x07);
365 if (status < 0)
366 break;
367 }
368
369 status = write_regm(ci, 0x20, 0x80, 0x80);
370 if (status < 0)
371 break;
372 status = write_regm(ci, 0x03, 0x02, 0x02);
373 if (status < 0)
374 break;
375 status = write_reg(ci, 0x01, 0x04);
376 if (status < 0)
377 break;
378 status = write_reg(ci, 0x00, 0x31);
379 if (status < 0)
380 break;
381
382 /* Put TS in bypass */
383 status = write_regm(ci, 0x09, 0x08, 0x08);
384 if (status < 0)
385 break;
386 ci->cammode = -1;
387 cam_mode(ci, 0);
388 } while (0);
389 mutex_unlock(&ci->lock);
390
391 return 0;
392 }
393
394 static int read_attribute_mem(struct dvb_ca_en50221 *ca,
395 int slot, int address)
396 {
397 struct cxd *ci = ca->data;
398 u8 val;
399
400 mutex_lock(&ci->lock);
401 set_mode(ci, 1);
402 read_pccard(ci, address, &val, 1);
403 mutex_unlock(&ci->lock);
404 /* printk(KERN_INFO "%02x:%02x\n", address,val); */
405 return val;
406 }
407
408 static int write_attribute_mem(struct dvb_ca_en50221 *ca, int slot,
409 int address, u8 value)
410 {
411 struct cxd *ci = ca->data;
412
413 mutex_lock(&ci->lock);
414 set_mode(ci, 1);
415 write_pccard(ci, address, &value, 1);
416 mutex_unlock(&ci->lock);
417 return 0;
418 }
419
420 static int read_cam_control(struct dvb_ca_en50221 *ca,
421 int slot, u8 address)
422 {
423 struct cxd *ci = ca->data;
424 u8 val;
425
426 mutex_lock(&ci->lock);
427 set_mode(ci, 0);
428 read_io(ci, address, &val);
429 mutex_unlock(&ci->lock);
430 return val;
431 }
432
433 static int write_cam_control(struct dvb_ca_en50221 *ca, int slot,
434 u8 address, u8 value)
435 {
436 struct cxd *ci = ca->data;
437
438 mutex_lock(&ci->lock);
439 set_mode(ci, 0);
440 write_io(ci, address, value);
441 mutex_unlock(&ci->lock);
442 return 0;
443 }
444
445 static int slot_reset(struct dvb_ca_en50221 *ca, int slot)
446 {
447 struct cxd *ci = ca->data;
448
449 mutex_lock(&ci->lock);
450 cam_mode(ci, 0);
451 write_reg(ci, 0x00, 0x21);
452 write_reg(ci, 0x06, 0x1F);
453 write_reg(ci, 0x00, 0x31);
454 write_regm(ci, 0x20, 0x80, 0x80);
455 write_reg(ci, 0x03, 0x02);
456 ci->ready = 0;
457 ci->mode = -1;
458 {
459 int i;
460
461 for (i = 0; i < 100; i++) {
462 usleep_range(10000, 11000);
463 if (ci->ready)
464 break;
465 }
466 }
467 mutex_unlock(&ci->lock);
468 /* msleep(500); */
469 return 0;
470 }
471
472 static int slot_shutdown(struct dvb_ca_en50221 *ca, int slot)
473 {
474 struct cxd *ci = ca->data;
475
476 dev_info(&ci->i2c->dev, "%s\n", __func__);
477 mutex_lock(&ci->lock);
478 write_regm(ci, 0x09, 0x08, 0x08);
479 write_regm(ci, 0x20, 0x80, 0x80); /* Reset CAM Mode */
480 write_regm(ci, 0x06, 0x07, 0x07); /* Clear IO Mode */
481 ci->mode = -1;
482 mutex_unlock(&ci->lock);
483 return 0;
484 }
485
486 static int slot_ts_enable(struct dvb_ca_en50221 *ca, int slot)
487 {
488 struct cxd *ci = ca->data;
489
490 mutex_lock(&ci->lock);
491 write_regm(ci, 0x09, 0x00, 0x08);
492 set_mode(ci, 0);
493 #ifdef BUFFER_MODE
494 cam_mode(ci, 1);
495 #endif
496 mutex_unlock(&ci->lock);
497 return 0;
498 }
499
500 static int campoll(struct cxd *ci)
501 {
502 u8 istat;
503
504 read_reg(ci, 0x04, &istat);
505 if (!istat)
506 return 0;
507 write_reg(ci, 0x05, istat);
508
509 if (istat & 0x40) {
510 ci->dr = 1;
511 dev_info(&ci->i2c->dev, "DR\n");
512 }
513 if (istat & 0x20)
514 dev_info(&ci->i2c->dev, "WC\n");
515
516 if (istat & 2) {
517 u8 slotstat;
518
519 read_reg(ci, 0x01, &slotstat);
520 if (!(2 & slotstat)) {
521 if (!ci->slot_stat) {
522 ci->slot_stat = DVB_CA_EN50221_POLL_CAM_PRESENT;
523 write_regm(ci, 0x03, 0x08, 0x08);
524 }
525
526 } else {
527 if (ci->slot_stat) {
528 ci->slot_stat = 0;
529 write_regm(ci, 0x03, 0x00, 0x08);
530 dev_info(&ci->i2c->dev, "NO CAM\n");
531 ci->ready = 0;
532 }
533 }
534 if (istat & 8 &&
535 ci->slot_stat == DVB_CA_EN50221_POLL_CAM_PRESENT) {
536 ci->ready = 1;
537 ci->slot_stat |= DVB_CA_EN50221_POLL_CAM_READY;
538 }
539 }
540 return 0;
541 }
542
543 static int poll_slot_status(struct dvb_ca_en50221 *ca, int slot, int open)
544 {
545 struct cxd *ci = ca->data;
546 u8 slotstat;
547
548 mutex_lock(&ci->lock);
549 campoll(ci);
550 read_reg(ci, 0x01, &slotstat);
551 mutex_unlock(&ci->lock);
552
553 return ci->slot_stat;
554 }
555
556 #ifdef BUFFER_MODE
557 static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount)
558 {
559 struct cxd *ci = ca->data;
560 u8 msb, lsb;
561 u16 len;
562
563 mutex_lock(&ci->lock);
564 campoll(ci);
565 mutex_unlock(&ci->lock);
566
567 dev_info(&ci->i2c->dev, "%s\n", __func__);
568 if (!ci->dr)
569 return 0;
570
571 mutex_lock(&ci->lock);
572 read_reg(ci, 0x0f, &msb);
573 read_reg(ci, 0x10, &lsb);
574 len = (msb << 8) | lsb;
575 read_block(ci, 0x12, ebuf, len);
576 ci->dr = 0;
577 mutex_unlock(&ci->lock);
578
579 return len;
580 }
581
582 static int write_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount)
583 {
584 struct cxd *ci = ca->data;
585
586 mutex_lock(&ci->lock);
587 dev_info(&ci->i2c->dev, "%s %d\n", __func__, ecount);
588 write_reg(ci, 0x0d, ecount >> 8);
589 write_reg(ci, 0x0e, ecount & 0xff);
590 write_block(ci, 0x11, ebuf, ecount);
591 mutex_unlock(&ci->lock);
592 return ecount;
593 }
594 #endif
595
596 static struct dvb_ca_en50221 en_templ = {
597 .read_attribute_mem = read_attribute_mem,
598 .write_attribute_mem = write_attribute_mem,
599 .read_cam_control = read_cam_control,
600 .write_cam_control = write_cam_control,
601 .slot_reset = slot_reset,
602 .slot_shutdown = slot_shutdown,
603 .slot_ts_enable = slot_ts_enable,
604 .poll_slot_status = poll_slot_status,
605 #ifdef BUFFER_MODE
606 .read_data = read_data,
607 .write_data = write_data,
608 #endif
609
610 };
611
612 struct dvb_ca_en50221 *cxd2099_attach(struct cxd2099_cfg *cfg,
613 void *priv,
614 struct i2c_adapter *i2c)
615 {
616 struct cxd *ci;
617 u8 val;
618
619 if (i2c_read_reg(i2c, cfg->adr, 0, &val) < 0) {
620 dev_info(&i2c->dev, "No CXD2099 detected at %02x\n", cfg->adr);
621 return NULL;
622 }
623
624 ci = kzalloc(sizeof(*ci), GFP_KERNEL);
625 if (!ci)
626 return NULL;
627
628 mutex_init(&ci->lock);
629 ci->cfg = *cfg;
630 ci->i2c = i2c;
631 ci->lastaddress = 0xff;
632 ci->clk_reg_b = 0x4a;
633 ci->clk_reg_f = 0x1b;
634
635 ci->en = en_templ;
636 ci->en.data = ci;
637 init(ci);
638 dev_info(&i2c->dev, "Attached CXD2099AR at %02x\n", ci->cfg.adr);
639 return &ci->en;
640 }
641 EXPORT_SYMBOL(cxd2099_attach);
642
643 MODULE_DESCRIPTION("cxd2099");
644 MODULE_AUTHOR("Ralph Metzler");
645 MODULE_LICENSE("GPL");