]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/staging/nvec/nvec.c
Merge tag 'cleanup' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[mirror_ubuntu-jammy-kernel.git] / drivers / staging / nvec / nvec.c
1 /*
2 * NVEC: NVIDIA compliant embedded controller interface
3 *
4 * Copyright (C) 2011 The AC100 Kernel Team <ac100@lists.lauchpad.net>
5 *
6 * Authors: Pierre-Hugues Husson <phhusson@free.fr>
7 * Ilya Petrov <ilya.muromec@gmail.com>
8 * Marc Dietrich <marvin24@gmx.de>
9 * Julian Andres Klode <jak@jak-linux.org>
10 *
11 * This file is subject to the terms and conditions of the GNU General Public
12 * License. See the file "COPYING" in the main directory of this archive
13 * for more details.
14 *
15 */
16
17 /* #define DEBUG */
18
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/atomic.h>
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/delay.h>
25 #include <linux/err.h>
26 #include <linux/gpio.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/irq.h>
30 #include <linux/of.h>
31 #include <linux/of_gpio.h>
32 #include <linux/list.h>
33 #include <linux/mfd/core.h>
34 #include <linux/mutex.h>
35 #include <linux/notifier.h>
36 #include <linux/platform_device.h>
37 #include <linux/slab.h>
38 #include <linux/spinlock.h>
39 #include <linux/workqueue.h>
40
41 #include <mach/clk.h>
42
43 #include "nvec.h"
44
45 #define I2C_CNFG 0x00
46 #define I2C_CNFG_PACKET_MODE_EN (1<<10)
47 #define I2C_CNFG_NEW_MASTER_SFM (1<<11)
48 #define I2C_CNFG_DEBOUNCE_CNT_SHIFT 12
49
50 #define I2C_SL_CNFG 0x20
51 #define I2C_SL_NEWSL (1<<2)
52 #define I2C_SL_NACK (1<<1)
53 #define I2C_SL_RESP (1<<0)
54 #define I2C_SL_IRQ (1<<3)
55 #define END_TRANS (1<<4)
56 #define RCVD (1<<2)
57 #define RNW (1<<1)
58
59 #define I2C_SL_RCVD 0x24
60 #define I2C_SL_STATUS 0x28
61 #define I2C_SL_ADDR1 0x2c
62 #define I2C_SL_ADDR2 0x30
63 #define I2C_SL_DELAY_COUNT 0x3c
64
65 /**
66 * enum nvec_msg_category - Message categories for nvec_msg_alloc()
67 * @NVEC_MSG_RX: The message is an incoming message (from EC)
68 * @NVEC_MSG_TX: The message is an outgoing message (to EC)
69 */
70 enum nvec_msg_category {
71 NVEC_MSG_RX,
72 NVEC_MSG_TX,
73 };
74
75 static const unsigned char EC_DISABLE_EVENT_REPORTING[3] = "\x04\x00\x00";
76 static const unsigned char EC_ENABLE_EVENT_REPORTING[3] = "\x04\x00\x01";
77 static const unsigned char EC_GET_FIRMWARE_VERSION[2] = "\x07\x15";
78
79 static struct nvec_chip *nvec_power_handle;
80
81 static struct mfd_cell nvec_devices[] = {
82 {
83 .name = "nvec-kbd",
84 .id = 1,
85 },
86 {
87 .name = "nvec-mouse",
88 .id = 1,
89 },
90 {
91 .name = "nvec-power",
92 .id = 1,
93 },
94 {
95 .name = "nvec-power",
96 .id = 2,
97 },
98 {
99 .name = "nvec-paz00",
100 .id = 1,
101 },
102 };
103
104 /**
105 * nvec_register_notifier - Register a notifier with nvec
106 * @nvec: A &struct nvec_chip
107 * @nb: The notifier block to register
108 *
109 * Registers a notifier with @nvec. The notifier will be added to an atomic
110 * notifier chain that is called for all received messages except those that
111 * correspond to a request initiated by nvec_write_sync().
112 */
113 int nvec_register_notifier(struct nvec_chip *nvec, struct notifier_block *nb,
114 unsigned int events)
115 {
116 return atomic_notifier_chain_register(&nvec->notifier_list, nb);
117 }
118 EXPORT_SYMBOL_GPL(nvec_register_notifier);
119
120 /**
121 * nvec_status_notifier - The final notifier
122 *
123 * Prints a message about control events not handled in the notifier
124 * chain.
125 */
126 static int nvec_status_notifier(struct notifier_block *nb,
127 unsigned long event_type, void *data)
128 {
129 struct nvec_chip *nvec = container_of(nb, struct nvec_chip,
130 nvec_status_notifier);
131 unsigned char *msg = (unsigned char *)data;
132
133 if (event_type != NVEC_CNTL)
134 return NOTIFY_DONE;
135
136 dev_warn(nvec->dev, "unhandled msg type %ld\n", event_type);
137 print_hex_dump(KERN_WARNING, "payload: ", DUMP_PREFIX_NONE, 16, 1,
138 msg, msg[1] + 2, true);
139
140 return NOTIFY_OK;
141 }
142
143 /**
144 * nvec_msg_alloc:
145 * @nvec: A &struct nvec_chip
146 * @category: Pool category, see &enum nvec_msg_category
147 *
148 * Allocate a single &struct nvec_msg object from the message pool of
149 * @nvec. The result shall be passed to nvec_msg_free() if no longer
150 * used.
151 *
152 * Outgoing messages are placed in the upper 75% of the pool, keeping the
153 * lower 25% available for RX buffers only. The reason is to prevent a
154 * situation where all buffers are full and a message is thus endlessly
155 * retried because the response could never be processed.
156 */
157 static struct nvec_msg *nvec_msg_alloc(struct nvec_chip *nvec,
158 enum nvec_msg_category category)
159 {
160 int i = (category == NVEC_MSG_TX) ? (NVEC_POOL_SIZE / 4) : 0;
161
162 for (; i < NVEC_POOL_SIZE; i++) {
163 if (atomic_xchg(&nvec->msg_pool[i].used, 1) == 0) {
164 dev_vdbg(nvec->dev, "INFO: Allocate %i\n", i);
165 return &nvec->msg_pool[i];
166 }
167 }
168
169 dev_err(nvec->dev, "could not allocate %s buffer\n",
170 (category == NVEC_MSG_TX) ? "TX" : "RX");
171
172 return NULL;
173 }
174
175 /**
176 * nvec_msg_free:
177 * @nvec: A &struct nvec_chip
178 * @msg: A message (must be allocated by nvec_msg_alloc() and belong to @nvec)
179 *
180 * Free the given message
181 */
182 inline void nvec_msg_free(struct nvec_chip *nvec, struct nvec_msg *msg)
183 {
184 if (msg != &nvec->tx_scratch)
185 dev_vdbg(nvec->dev, "INFO: Free %ti\n", msg - nvec->msg_pool);
186 atomic_set(&msg->used, 0);
187 }
188 EXPORT_SYMBOL_GPL(nvec_msg_free);
189
190 /**
191 * nvec_msg_is_event - Return %true if @msg is an event
192 * @msg: A message
193 */
194 static bool nvec_msg_is_event(struct nvec_msg *msg)
195 {
196 return msg->data[0] >> 7;
197 }
198
199 /**
200 * nvec_msg_size - Get the size of a message
201 * @msg: The message to get the size for
202 *
203 * This only works for received messages, not for outgoing messages.
204 */
205 static size_t nvec_msg_size(struct nvec_msg *msg)
206 {
207 bool is_event = nvec_msg_is_event(msg);
208 int event_length = (msg->data[0] & 0x60) >> 5;
209
210 /* for variable size, payload size in byte 1 + count (1) + cmd (1) */
211 if (!is_event || event_length == NVEC_VAR_SIZE)
212 return (msg->pos || msg->size) ? (msg->data[1] + 2) : 0;
213 else if (event_length == NVEC_2BYTES)
214 return 2;
215 else if (event_length == NVEC_3BYTES)
216 return 3;
217 else
218 return 0;
219 }
220
221 /**
222 * nvec_gpio_set_value - Set the GPIO value
223 * @nvec: A &struct nvec_chip
224 * @value: The value to write (0 or 1)
225 *
226 * Like gpio_set_value(), but generating debugging information
227 */
228 static void nvec_gpio_set_value(struct nvec_chip *nvec, int value)
229 {
230 dev_dbg(nvec->dev, "GPIO changed from %u to %u\n",
231 gpio_get_value(nvec->gpio), value);
232 gpio_set_value(nvec->gpio, value);
233 }
234
235 /**
236 * nvec_write_async - Asynchronously write a message to NVEC
237 * @nvec: An nvec_chip instance
238 * @data: The message data, starting with the request type
239 * @size: The size of @data
240 *
241 * Queue a single message to be transferred to the embedded controller
242 * and return immediately.
243 *
244 * Returns: 0 on success, a negative error code on failure. If a failure
245 * occured, the nvec driver may print an error.
246 */
247 int nvec_write_async(struct nvec_chip *nvec, const unsigned char *data,
248 short size)
249 {
250 struct nvec_msg *msg;
251 unsigned long flags;
252
253 msg = nvec_msg_alloc(nvec, NVEC_MSG_TX);
254
255 if (msg == NULL)
256 return -ENOMEM;
257
258 msg->data[0] = size;
259 memcpy(msg->data + 1, data, size);
260 msg->size = size + 1;
261
262 spin_lock_irqsave(&nvec->tx_lock, flags);
263 list_add_tail(&msg->node, &nvec->tx_data);
264 spin_unlock_irqrestore(&nvec->tx_lock, flags);
265
266 schedule_work(&nvec->tx_work);
267
268 return 0;
269 }
270 EXPORT_SYMBOL(nvec_write_async);
271
272 /**
273 * nvec_write_sync - Write a message to nvec and read the response
274 * @nvec: An &struct nvec_chip
275 * @data: The data to write
276 * @size: The size of @data
277 *
278 * This is similar to nvec_write_async(), but waits for the
279 * request to be answered before returning. This function
280 * uses a mutex and can thus not be called from e.g.
281 * interrupt handlers.
282 *
283 * Returns: A pointer to the response message on success,
284 * %NULL on failure. Free with nvec_msg_free() once no longer
285 * used.
286 */
287 struct nvec_msg *nvec_write_sync(struct nvec_chip *nvec,
288 const unsigned char *data, short size)
289 {
290 struct nvec_msg *msg;
291
292 mutex_lock(&nvec->sync_write_mutex);
293
294 nvec->sync_write_pending = (data[1] << 8) + data[0];
295
296 if (nvec_write_async(nvec, data, size) < 0) {
297 mutex_unlock(&nvec->sync_write_mutex);
298 return NULL;
299 }
300
301 dev_dbg(nvec->dev, "nvec_sync_write: 0x%04x\n",
302 nvec->sync_write_pending);
303 if (!(wait_for_completion_timeout(&nvec->sync_write,
304 msecs_to_jiffies(2000)))) {
305 dev_warn(nvec->dev, "timeout waiting for sync write to complete\n");
306 mutex_unlock(&nvec->sync_write_mutex);
307 return NULL;
308 }
309
310 dev_dbg(nvec->dev, "nvec_sync_write: pong!\n");
311
312 msg = nvec->last_sync_msg;
313
314 mutex_unlock(&nvec->sync_write_mutex);
315
316 return msg;
317 }
318 EXPORT_SYMBOL(nvec_write_sync);
319
320 /**
321 * nvec_request_master - Process outgoing messages
322 * @work: A &struct work_struct (the tx_worker member of &struct nvec_chip)
323 *
324 * Processes all outgoing requests by sending the request and awaiting the
325 * response, then continuing with the next request. Once a request has a
326 * matching response, it will be freed and removed from the list.
327 */
328 static void nvec_request_master(struct work_struct *work)
329 {
330 struct nvec_chip *nvec = container_of(work, struct nvec_chip, tx_work);
331 unsigned long flags;
332 long err;
333 struct nvec_msg *msg;
334
335 spin_lock_irqsave(&nvec->tx_lock, flags);
336 while (!list_empty(&nvec->tx_data)) {
337 msg = list_first_entry(&nvec->tx_data, struct nvec_msg, node);
338 spin_unlock_irqrestore(&nvec->tx_lock, flags);
339 nvec_gpio_set_value(nvec, 0);
340 err = wait_for_completion_interruptible_timeout(
341 &nvec->ec_transfer, msecs_to_jiffies(5000));
342
343 if (err == 0) {
344 dev_warn(nvec->dev, "timeout waiting for ec transfer\n");
345 nvec_gpio_set_value(nvec, 1);
346 msg->pos = 0;
347 }
348
349 spin_lock_irqsave(&nvec->tx_lock, flags);
350
351 if (err > 0) {
352 list_del_init(&msg->node);
353 nvec_msg_free(nvec, msg);
354 }
355 }
356 spin_unlock_irqrestore(&nvec->tx_lock, flags);
357 }
358
359 /**
360 * parse_msg - Print some information and call the notifiers on an RX message
361 * @nvec: A &struct nvec_chip
362 * @msg: A message received by @nvec
363 *
364 * Paarse some pieces of the message and then call the chain of notifiers
365 * registered via nvec_register_notifier.
366 */
367 static int parse_msg(struct nvec_chip *nvec, struct nvec_msg *msg)
368 {
369 if ((msg->data[0] & 1 << 7) == 0 && msg->data[3]) {
370 dev_err(nvec->dev, "ec responded %*ph\n", 4, msg->data);
371 return -EINVAL;
372 }
373
374 if ((msg->data[0] >> 7) == 1 && (msg->data[0] & 0x0f) == 5)
375 print_hex_dump(KERN_WARNING, "ec system event ",
376 DUMP_PREFIX_NONE, 16, 1, msg->data,
377 msg->data[1] + 2, true);
378
379 atomic_notifier_call_chain(&nvec->notifier_list, msg->data[0] & 0x8f,
380 msg->data);
381
382 return 0;
383 }
384
385 /**
386 * nvec_dispatch - Process messages received from the EC
387 * @work: A &struct work_struct (the tx_worker member of &struct nvec_chip)
388 *
389 * Process messages previously received from the EC and put into the RX
390 * queue of the &struct nvec_chip instance associated with @work.
391 */
392 static void nvec_dispatch(struct work_struct *work)
393 {
394 struct nvec_chip *nvec = container_of(work, struct nvec_chip, rx_work);
395 unsigned long flags;
396 struct nvec_msg *msg;
397
398 spin_lock_irqsave(&nvec->rx_lock, flags);
399 while (!list_empty(&nvec->rx_data)) {
400 msg = list_first_entry(&nvec->rx_data, struct nvec_msg, node);
401 list_del_init(&msg->node);
402 spin_unlock_irqrestore(&nvec->rx_lock, flags);
403
404 if (nvec->sync_write_pending ==
405 (msg->data[2] << 8) + msg->data[0]) {
406 dev_dbg(nvec->dev, "sync write completed!\n");
407 nvec->sync_write_pending = 0;
408 nvec->last_sync_msg = msg;
409 complete(&nvec->sync_write);
410 } else {
411 parse_msg(nvec, msg);
412 nvec_msg_free(nvec, msg);
413 }
414 spin_lock_irqsave(&nvec->rx_lock, flags);
415 }
416 spin_unlock_irqrestore(&nvec->rx_lock, flags);
417 }
418
419 /**
420 * nvec_tx_completed - Complete the current transfer
421 * @nvec: A &struct nvec_chip
422 *
423 * This is called when we have received an END_TRANS on a TX transfer.
424 */
425 static void nvec_tx_completed(struct nvec_chip *nvec)
426 {
427 /* We got an END_TRANS, let's skip this, maybe there's an event */
428 if (nvec->tx->pos != nvec->tx->size) {
429 dev_err(nvec->dev, "premature END_TRANS, resending\n");
430 nvec->tx->pos = 0;
431 nvec_gpio_set_value(nvec, 0);
432 } else {
433 nvec->state = 0;
434 }
435 }
436
437 /**
438 * nvec_rx_completed - Complete the current transfer
439 * @nvec: A &struct nvec_chip
440 *
441 * This is called when we have received an END_TRANS on a RX transfer.
442 */
443 static void nvec_rx_completed(struct nvec_chip *nvec)
444 {
445 if (nvec->rx->pos != nvec_msg_size(nvec->rx)) {
446 dev_err(nvec->dev, "RX incomplete: Expected %u bytes, got %u\n",
447 (uint) nvec_msg_size(nvec->rx),
448 (uint) nvec->rx->pos);
449
450 nvec_msg_free(nvec, nvec->rx);
451 nvec->state = 0;
452
453 /* Battery quirk - Often incomplete, and likes to crash */
454 if (nvec->rx->data[0] == NVEC_BAT)
455 complete(&nvec->ec_transfer);
456
457 return;
458 }
459
460 spin_lock(&nvec->rx_lock);
461
462 /* add the received data to the work list
463 and move the ring buffer pointer to the next entry */
464 list_add_tail(&nvec->rx->node, &nvec->rx_data);
465
466 spin_unlock(&nvec->rx_lock);
467
468 nvec->state = 0;
469
470 if (!nvec_msg_is_event(nvec->rx))
471 complete(&nvec->ec_transfer);
472
473 schedule_work(&nvec->rx_work);
474 }
475
476 /**
477 * nvec_invalid_flags - Send an error message about invalid flags and jump
478 * @nvec: The nvec device
479 * @status: The status flags
480 * @reset: Whether we shall jump to state 0.
481 */
482 static void nvec_invalid_flags(struct nvec_chip *nvec, unsigned int status,
483 bool reset)
484 {
485 dev_err(nvec->dev, "unexpected status flags 0x%02x during state %i\n",
486 status, nvec->state);
487 if (reset)
488 nvec->state = 0;
489 }
490
491 /**
492 * nvec_tx_set - Set the message to transfer (nvec->tx)
493 * @nvec: A &struct nvec_chip
494 *
495 * Gets the first entry from the tx_data list of @nvec and sets the
496 * tx member to it. If the tx_data list is empty, this uses the
497 * tx_scratch message to send a no operation message.
498 */
499 static void nvec_tx_set(struct nvec_chip *nvec)
500 {
501 spin_lock(&nvec->tx_lock);
502 if (list_empty(&nvec->tx_data)) {
503 dev_err(nvec->dev, "empty tx - sending no-op\n");
504 memcpy(nvec->tx_scratch.data, "\x02\x07\x02", 3);
505 nvec->tx_scratch.size = 3;
506 nvec->tx_scratch.pos = 0;
507 nvec->tx = &nvec->tx_scratch;
508 list_add_tail(&nvec->tx->node, &nvec->tx_data);
509 } else {
510 nvec->tx = list_first_entry(&nvec->tx_data, struct nvec_msg,
511 node);
512 nvec->tx->pos = 0;
513 }
514 spin_unlock(&nvec->tx_lock);
515
516 dev_dbg(nvec->dev, "Sending message of length %u, command 0x%x\n",
517 (uint)nvec->tx->size, nvec->tx->data[1]);
518 }
519
520 /**
521 * nvec_interrupt - Interrupt handler
522 * @irq: The IRQ
523 * @dev: The nvec device
524 *
525 * Interrupt handler that fills our RX buffers and empties our TX
526 * buffers. This uses a finite state machine with ridiculous amounts
527 * of error checking, in order to be fairly reliable.
528 */
529 static irqreturn_t nvec_interrupt(int irq, void *dev)
530 {
531 unsigned long status;
532 unsigned int received = 0;
533 unsigned char to_send = 0xff;
534 const unsigned long irq_mask = I2C_SL_IRQ | END_TRANS | RCVD | RNW;
535 struct nvec_chip *nvec = dev;
536 unsigned int state = nvec->state;
537
538 status = readl(nvec->base + I2C_SL_STATUS);
539
540 /* Filter out some errors */
541 if ((status & irq_mask) == 0 && (status & ~irq_mask) != 0) {
542 dev_err(nvec->dev, "unexpected irq mask %lx\n", status);
543 return IRQ_HANDLED;
544 }
545 if ((status & I2C_SL_IRQ) == 0) {
546 dev_err(nvec->dev, "Spurious IRQ\n");
547 return IRQ_HANDLED;
548 }
549
550 /* The EC did not request a read, so it send us something, read it */
551 if ((status & RNW) == 0) {
552 received = readl(nvec->base + I2C_SL_RCVD);
553 if (status & RCVD)
554 writel(0, nvec->base + I2C_SL_RCVD);
555 }
556
557 if (status == (I2C_SL_IRQ | RCVD))
558 nvec->state = 0;
559
560 switch (nvec->state) {
561 case 0: /* Verify that its a transfer start, the rest later */
562 if (status != (I2C_SL_IRQ | RCVD))
563 nvec_invalid_flags(nvec, status, false);
564 break;
565 case 1: /* command byte */
566 if (status != I2C_SL_IRQ) {
567 nvec_invalid_flags(nvec, status, true);
568 } else {
569 nvec->rx = nvec_msg_alloc(nvec, NVEC_MSG_RX);
570 /* Should not happen in a normal world */
571 if (unlikely(nvec->rx == NULL)) {
572 nvec->state = 0;
573 break;
574 }
575 nvec->rx->data[0] = received;
576 nvec->rx->pos = 1;
577 nvec->state = 2;
578 }
579 break;
580 case 2: /* first byte after command */
581 if (status == (I2C_SL_IRQ | RNW | RCVD)) {
582 udelay(33);
583 if (nvec->rx->data[0] != 0x01) {
584 dev_err(nvec->dev,
585 "Read without prior read command\n");
586 nvec->state = 0;
587 break;
588 }
589 nvec_msg_free(nvec, nvec->rx);
590 nvec->state = 3;
591 nvec_tx_set(nvec);
592 BUG_ON(nvec->tx->size < 1);
593 to_send = nvec->tx->data[0];
594 nvec->tx->pos = 1;
595 } else if (status == (I2C_SL_IRQ)) {
596 BUG_ON(nvec->rx == NULL);
597 nvec->rx->data[1] = received;
598 nvec->rx->pos = 2;
599 nvec->state = 4;
600 } else {
601 nvec_invalid_flags(nvec, status, true);
602 }
603 break;
604 case 3: /* EC does a block read, we transmit data */
605 if (status & END_TRANS) {
606 nvec_tx_completed(nvec);
607 } else if ((status & RNW) == 0 || (status & RCVD)) {
608 nvec_invalid_flags(nvec, status, true);
609 } else if (nvec->tx && nvec->tx->pos < nvec->tx->size) {
610 to_send = nvec->tx->data[nvec->tx->pos++];
611 } else {
612 dev_err(nvec->dev, "tx buffer underflow on %p (%u > %u)\n",
613 nvec->tx,
614 (uint) (nvec->tx ? nvec->tx->pos : 0),
615 (uint) (nvec->tx ? nvec->tx->size : 0));
616 nvec->state = 0;
617 }
618 break;
619 case 4: /* EC does some write, we read the data */
620 if ((status & (END_TRANS | RNW)) == END_TRANS)
621 nvec_rx_completed(nvec);
622 else if (status & (RNW | RCVD))
623 nvec_invalid_flags(nvec, status, true);
624 else if (nvec->rx && nvec->rx->pos < NVEC_MSG_SIZE)
625 nvec->rx->data[nvec->rx->pos++] = received;
626 else
627 dev_err(nvec->dev,
628 "RX buffer overflow on %p: "
629 "Trying to write byte %u of %u\n",
630 nvec->rx, nvec->rx->pos, NVEC_MSG_SIZE);
631 break;
632 default:
633 nvec->state = 0;
634 }
635
636 /* If we are told that a new transfer starts, verify it */
637 if ((status & (RCVD | RNW)) == RCVD) {
638 if (received != nvec->i2c_addr)
639 dev_err(nvec->dev,
640 "received address 0x%02x, expected 0x%02x\n",
641 received, nvec->i2c_addr);
642 nvec->state = 1;
643 }
644
645 /* Send data if requested, but not on end of transmission */
646 if ((status & (RNW | END_TRANS)) == RNW)
647 writel(to_send, nvec->base + I2C_SL_RCVD);
648
649 /* If we have send the first byte */
650 if (status == (I2C_SL_IRQ | RNW | RCVD))
651 nvec_gpio_set_value(nvec, 1);
652
653 dev_dbg(nvec->dev,
654 "Handled: %s 0x%02x, %s 0x%02x in state %u [%s%s%s]\n",
655 (status & RNW) == 0 ? "received" : "R=",
656 received,
657 (status & (RNW | END_TRANS)) ? "sent" : "S=",
658 to_send,
659 state,
660 status & END_TRANS ? " END_TRANS" : "",
661 status & RCVD ? " RCVD" : "",
662 status & RNW ? " RNW" : "");
663
664
665 /*
666 * TODO: A correct fix needs to be found for this.
667 *
668 * We experience less incomplete messages with this delay than without
669 * it, but we don't know why. Help is appreciated.
670 */
671 udelay(100);
672
673 return IRQ_HANDLED;
674 }
675
676 static void tegra_init_i2c_slave(struct nvec_chip *nvec)
677 {
678 u32 val;
679
680 clk_prepare_enable(nvec->i2c_clk);
681
682 tegra_periph_reset_assert(nvec->i2c_clk);
683 udelay(2);
684 tegra_periph_reset_deassert(nvec->i2c_clk);
685
686 val = I2C_CNFG_NEW_MASTER_SFM | I2C_CNFG_PACKET_MODE_EN |
687 (0x2 << I2C_CNFG_DEBOUNCE_CNT_SHIFT);
688 writel(val, nvec->base + I2C_CNFG);
689
690 clk_set_rate(nvec->i2c_clk, 8 * 80000);
691
692 writel(I2C_SL_NEWSL, nvec->base + I2C_SL_CNFG);
693 writel(0x1E, nvec->base + I2C_SL_DELAY_COUNT);
694
695 writel(nvec->i2c_addr>>1, nvec->base + I2C_SL_ADDR1);
696 writel(0, nvec->base + I2C_SL_ADDR2);
697
698 enable_irq(nvec->irq);
699
700 clk_disable_unprepare(nvec->i2c_clk);
701 }
702
703 #ifdef CONFIG_PM_SLEEP
704 static void nvec_disable_i2c_slave(struct nvec_chip *nvec)
705 {
706 disable_irq(nvec->irq);
707 writel(I2C_SL_NEWSL | I2C_SL_NACK, nvec->base + I2C_SL_CNFG);
708 clk_disable_unprepare(nvec->i2c_clk);
709 }
710 #endif
711
712 static void nvec_power_off(void)
713 {
714 nvec_write_async(nvec_power_handle, EC_DISABLE_EVENT_REPORTING, 3);
715 nvec_write_async(nvec_power_handle, "\x04\x01", 2);
716 }
717
718 static int tegra_nvec_probe(struct platform_device *pdev)
719 {
720 int err, ret;
721 struct clk *i2c_clk;
722 struct nvec_platform_data *pdata = pdev->dev.platform_data;
723 struct nvec_chip *nvec;
724 struct nvec_msg *msg;
725 struct resource *res;
726 void __iomem *base;
727
728 nvec = devm_kzalloc(&pdev->dev, sizeof(struct nvec_chip), GFP_KERNEL);
729 if (nvec == NULL) {
730 dev_err(&pdev->dev, "failed to reserve memory\n");
731 return -ENOMEM;
732 }
733 platform_set_drvdata(pdev, nvec);
734 nvec->dev = &pdev->dev;
735
736 if (pdata) {
737 nvec->gpio = pdata->gpio;
738 nvec->i2c_addr = pdata->i2c_addr;
739 } else if (nvec->dev->of_node) {
740 nvec->gpio = of_get_named_gpio(nvec->dev->of_node,
741 "request-gpios", 0);
742 if (nvec->gpio < 0) {
743 dev_err(&pdev->dev, "no gpio specified");
744 return -ENODEV;
745 }
746 if (of_property_read_u32(nvec->dev->of_node,
747 "slave-addr", &nvec->i2c_addr)) {
748 dev_err(&pdev->dev, "no i2c address specified");
749 return -ENODEV;
750 }
751 } else {
752 dev_err(&pdev->dev, "no platform data\n");
753 return -ENODEV;
754 }
755
756 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
757 if (!res) {
758 dev_err(&pdev->dev, "no mem resource?\n");
759 return -ENODEV;
760 }
761
762 base = devm_request_and_ioremap(&pdev->dev, res);
763 if (!base) {
764 dev_err(&pdev->dev, "Can't ioremap I2C region\n");
765 return -ENOMEM;
766 }
767
768 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
769 if (!res) {
770 dev_err(&pdev->dev, "no irq resource?\n");
771 return -ENODEV;
772 }
773
774 i2c_clk = clk_get_sys("tegra-i2c.2", "div-clk");
775 if (IS_ERR(i2c_clk)) {
776 dev_err(nvec->dev, "failed to get controller clock\n");
777 return -ENODEV;
778 }
779
780 nvec->base = base;
781 nvec->irq = res->start;
782 nvec->i2c_clk = i2c_clk;
783 nvec->rx = &nvec->msg_pool[0];
784
785 ATOMIC_INIT_NOTIFIER_HEAD(&nvec->notifier_list);
786
787 init_completion(&nvec->sync_write);
788 init_completion(&nvec->ec_transfer);
789 mutex_init(&nvec->sync_write_mutex);
790 spin_lock_init(&nvec->tx_lock);
791 spin_lock_init(&nvec->rx_lock);
792 INIT_LIST_HEAD(&nvec->rx_data);
793 INIT_LIST_HEAD(&nvec->tx_data);
794 INIT_WORK(&nvec->rx_work, nvec_dispatch);
795 INIT_WORK(&nvec->tx_work, nvec_request_master);
796
797 err = devm_gpio_request_one(&pdev->dev, nvec->gpio, GPIOF_OUT_INIT_HIGH,
798 "nvec gpio");
799 if (err < 0) {
800 dev_err(nvec->dev, "couldn't request gpio\n");
801 return -ENODEV;
802 }
803
804 err = devm_request_irq(&pdev->dev, nvec->irq, nvec_interrupt, 0,
805 "nvec", nvec);
806 if (err) {
807 dev_err(nvec->dev, "couldn't request irq\n");
808 return -ENODEV;
809 }
810 disable_irq(nvec->irq);
811
812 tegra_init_i2c_slave(nvec);
813
814 clk_prepare_enable(i2c_clk);
815
816
817 /* enable event reporting */
818 nvec_write_async(nvec, EC_ENABLE_EVENT_REPORTING,
819 sizeof(EC_ENABLE_EVENT_REPORTING));
820
821 nvec->nvec_status_notifier.notifier_call = nvec_status_notifier;
822 nvec_register_notifier(nvec, &nvec->nvec_status_notifier, 0);
823
824 nvec_power_handle = nvec;
825 pm_power_off = nvec_power_off;
826
827 /* Get Firmware Version */
828 msg = nvec_write_sync(nvec, EC_GET_FIRMWARE_VERSION,
829 sizeof(EC_GET_FIRMWARE_VERSION));
830
831 if (msg) {
832 dev_warn(nvec->dev, "ec firmware version %02x.%02x.%02x / %02x\n",
833 msg->data[4], msg->data[5], msg->data[6], msg->data[7]);
834
835 nvec_msg_free(nvec, msg);
836 }
837
838 ret = mfd_add_devices(nvec->dev, -1, nvec_devices,
839 ARRAY_SIZE(nvec_devices), base, 0, NULL);
840 if (ret)
841 dev_err(nvec->dev, "error adding subdevices\n");
842
843 /* unmute speakers? */
844 nvec_write_async(nvec, "\x0d\x10\x59\x95", 4);
845
846 /* enable lid switch event */
847 nvec_write_async(nvec, "\x01\x01\x01\x00\x00\x02\x00", 7);
848
849 /* enable power button event */
850 nvec_write_async(nvec, "\x01\x01\x01\x00\x00\x80\x00", 7);
851
852 return 0;
853 }
854
855 static int tegra_nvec_remove(struct platform_device *pdev)
856 {
857 struct nvec_chip *nvec = platform_get_drvdata(pdev);
858
859 nvec_write_async(nvec, EC_DISABLE_EVENT_REPORTING, 3);
860 mfd_remove_devices(nvec->dev);
861 cancel_work_sync(&nvec->rx_work);
862 cancel_work_sync(&nvec->tx_work);
863
864 return 0;
865 }
866
867 #ifdef CONFIG_PM_SLEEP
868 static int nvec_suspend(struct device *dev)
869 {
870 struct platform_device *pdev = to_platform_device(dev);
871 struct nvec_chip *nvec = platform_get_drvdata(pdev);
872 struct nvec_msg *msg;
873
874 dev_dbg(nvec->dev, "suspending\n");
875
876 /* keep these sync or you'll break suspend */
877 msg = nvec_write_sync(nvec, EC_DISABLE_EVENT_REPORTING, 3);
878 nvec_msg_free(nvec, msg);
879 msg = nvec_write_sync(nvec, "\x04\x02", 2);
880 nvec_msg_free(nvec, msg);
881
882 nvec_disable_i2c_slave(nvec);
883
884 return 0;
885 }
886
887 static int nvec_resume(struct device *dev)
888 {
889 struct platform_device *pdev = to_platform_device(dev);
890 struct nvec_chip *nvec = platform_get_drvdata(pdev);
891
892 dev_dbg(nvec->dev, "resuming\n");
893 tegra_init_i2c_slave(nvec);
894 nvec_write_async(nvec, EC_ENABLE_EVENT_REPORTING, 3);
895
896 return 0;
897 }
898 #endif
899
900 static const SIMPLE_DEV_PM_OPS(nvec_pm_ops, nvec_suspend, nvec_resume);
901
902 /* Match table for of_platform binding */
903 static const struct of_device_id nvidia_nvec_of_match[] = {
904 { .compatible = "nvidia,nvec", },
905 {},
906 };
907 MODULE_DEVICE_TABLE(of, nvidia_nvec_of_match);
908
909 static struct platform_driver nvec_device_driver = {
910 .probe = tegra_nvec_probe,
911 .remove = tegra_nvec_remove,
912 .driver = {
913 .name = "nvec",
914 .owner = THIS_MODULE,
915 .pm = &nvec_pm_ops,
916 .of_match_table = nvidia_nvec_of_match,
917 }
918 };
919
920 module_platform_driver(nvec_device_driver);
921
922 MODULE_ALIAS("platform:nvec");
923 MODULE_DESCRIPTION("NVIDIA compliant embedded controller interface");
924 MODULE_AUTHOR("Marc Dietrich <marvin24@gmx.de>");
925 MODULE_LICENSE("GPL");