]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/staging/rdma/hfi1/init.c
IB/hfi1: Do not free hfi1 cdev parent structure early
[mirror_ubuntu-artful-kernel.git] / drivers / staging / rdma / hfi1 / init.c
1 /*
2 * Copyright(c) 2015, 2016 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <linux/pci.h>
49 #include <linux/netdevice.h>
50 #include <linux/vmalloc.h>
51 #include <linux/delay.h>
52 #include <linux/idr.h>
53 #include <linux/module.h>
54 #include <linux/printk.h>
55 #include <linux/hrtimer.h>
56 #include <rdma/rdma_vt.h>
57
58 #include "hfi.h"
59 #include "device.h"
60 #include "common.h"
61 #include "trace.h"
62 #include "mad.h"
63 #include "sdma.h"
64 #include "debugfs.h"
65 #include "verbs.h"
66 #include "aspm.h"
67
68 #undef pr_fmt
69 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
70
71 /*
72 * min buffers we want to have per context, after driver
73 */
74 #define HFI1_MIN_USER_CTXT_BUFCNT 7
75
76 #define HFI1_MIN_HDRQ_EGRBUF_CNT 2
77 #define HFI1_MAX_HDRQ_EGRBUF_CNT 16352
78 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
79 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
80
81 /*
82 * Number of user receive contexts we are configured to use (to allow for more
83 * pio buffers per ctxt, etc.) Zero means use one user context per CPU.
84 */
85 int num_user_contexts = -1;
86 module_param_named(num_user_contexts, num_user_contexts, uint, S_IRUGO);
87 MODULE_PARM_DESC(
88 num_user_contexts, "Set max number of user contexts to use");
89
90 uint krcvqs[RXE_NUM_DATA_VL];
91 int krcvqsset;
92 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
93 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
94
95 /* computed based on above array */
96 unsigned n_krcvqs;
97
98 static unsigned hfi1_rcvarr_split = 25;
99 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
100 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
101
102 static uint eager_buffer_size = (2 << 20); /* 2MB */
103 module_param(eager_buffer_size, uint, S_IRUGO);
104 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 2MB");
105
106 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
107 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
108 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
109
110 static uint hfi1_hdrq_entsize = 32;
111 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, S_IRUGO);
112 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B (default), 32 - 128B");
113
114 unsigned int user_credit_return_threshold = 33; /* default is 33% */
115 module_param(user_credit_return_threshold, uint, S_IRUGO);
116 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
117
118 static inline u64 encode_rcv_header_entry_size(u16);
119
120 static struct idr hfi1_unit_table;
121 u32 hfi1_cpulist_count;
122 unsigned long *hfi1_cpulist;
123
124 /*
125 * Common code for creating the receive context array.
126 */
127 int hfi1_create_ctxts(struct hfi1_devdata *dd)
128 {
129 unsigned i;
130 int ret;
131
132 /* Control context has to be always 0 */
133 BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
134
135 dd->rcd = kzalloc_node(dd->num_rcv_contexts * sizeof(*dd->rcd),
136 GFP_KERNEL, dd->node);
137 if (!dd->rcd)
138 goto nomem;
139
140 /* create one or more kernel contexts */
141 for (i = 0; i < dd->first_user_ctxt; ++i) {
142 struct hfi1_pportdata *ppd;
143 struct hfi1_ctxtdata *rcd;
144
145 ppd = dd->pport + (i % dd->num_pports);
146 rcd = hfi1_create_ctxtdata(ppd, i, dd->node);
147 if (!rcd) {
148 dd_dev_err(dd,
149 "Unable to allocate kernel receive context, failing\n");
150 goto nomem;
151 }
152 /*
153 * Set up the kernel context flags here and now because they
154 * use default values for all receive side memories. User
155 * contexts will be handled as they are created.
156 */
157 rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
158 HFI1_CAP_KGET(NODROP_RHQ_FULL) |
159 HFI1_CAP_KGET(NODROP_EGR_FULL) |
160 HFI1_CAP_KGET(DMA_RTAIL);
161
162 /* Control context must use DMA_RTAIL */
163 if (rcd->ctxt == HFI1_CTRL_CTXT)
164 rcd->flags |= HFI1_CAP_DMA_RTAIL;
165 rcd->seq_cnt = 1;
166
167 rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
168 if (!rcd->sc) {
169 dd_dev_err(dd,
170 "Unable to allocate kernel send context, failing\n");
171 dd->rcd[rcd->ctxt] = NULL;
172 hfi1_free_ctxtdata(dd, rcd);
173 goto nomem;
174 }
175
176 ret = hfi1_init_ctxt(rcd->sc);
177 if (ret < 0) {
178 dd_dev_err(dd,
179 "Failed to setup kernel receive context, failing\n");
180 sc_free(rcd->sc);
181 dd->rcd[rcd->ctxt] = NULL;
182 hfi1_free_ctxtdata(dd, rcd);
183 ret = -EFAULT;
184 goto bail;
185 }
186 }
187
188 /*
189 * Initialize aspm, to be done after gen3 transition and setting up
190 * contexts and before enabling interrupts
191 */
192 aspm_init(dd);
193
194 return 0;
195 nomem:
196 ret = -ENOMEM;
197 bail:
198 kfree(dd->rcd);
199 dd->rcd = NULL;
200 return ret;
201 }
202
203 /*
204 * Common code for user and kernel context setup.
205 */
206 struct hfi1_ctxtdata *hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, u32 ctxt,
207 int numa)
208 {
209 struct hfi1_devdata *dd = ppd->dd;
210 struct hfi1_ctxtdata *rcd;
211 unsigned kctxt_ngroups = 0;
212 u32 base;
213
214 if (dd->rcv_entries.nctxt_extra >
215 dd->num_rcv_contexts - dd->first_user_ctxt)
216 kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
217 (dd->num_rcv_contexts - dd->first_user_ctxt));
218 rcd = kzalloc(sizeof(*rcd), GFP_KERNEL);
219 if (rcd) {
220 u32 rcvtids, max_entries;
221
222 hfi1_cdbg(PROC, "setting up context %u\n", ctxt);
223
224 INIT_LIST_HEAD(&rcd->qp_wait_list);
225 rcd->ppd = ppd;
226 rcd->dd = dd;
227 rcd->cnt = 1;
228 rcd->ctxt = ctxt;
229 dd->rcd[ctxt] = rcd;
230 rcd->numa_id = numa;
231 rcd->rcv_array_groups = dd->rcv_entries.ngroups;
232
233 mutex_init(&rcd->exp_lock);
234
235 /*
236 * Calculate the context's RcvArray entry starting point.
237 * We do this here because we have to take into account all
238 * the RcvArray entries that previous context would have
239 * taken and we have to account for any extra groups
240 * assigned to the kernel or user contexts.
241 */
242 if (ctxt < dd->first_user_ctxt) {
243 if (ctxt < kctxt_ngroups) {
244 base = ctxt * (dd->rcv_entries.ngroups + 1);
245 rcd->rcv_array_groups++;
246 } else
247 base = kctxt_ngroups +
248 (ctxt * dd->rcv_entries.ngroups);
249 } else {
250 u16 ct = ctxt - dd->first_user_ctxt;
251
252 base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
253 kctxt_ngroups);
254 if (ct < dd->rcv_entries.nctxt_extra) {
255 base += ct * (dd->rcv_entries.ngroups + 1);
256 rcd->rcv_array_groups++;
257 } else
258 base += dd->rcv_entries.nctxt_extra +
259 (ct * dd->rcv_entries.ngroups);
260 }
261 rcd->eager_base = base * dd->rcv_entries.group_size;
262
263 /* Validate and initialize Rcv Hdr Q variables */
264 if (rcvhdrcnt % HDRQ_INCREMENT) {
265 dd_dev_err(dd,
266 "ctxt%u: header queue count %d must be divisible by %lu\n",
267 rcd->ctxt, rcvhdrcnt, HDRQ_INCREMENT);
268 goto bail;
269 }
270 rcd->rcvhdrq_cnt = rcvhdrcnt;
271 rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
272 /*
273 * Simple Eager buffer allocation: we have already pre-allocated
274 * the number of RcvArray entry groups. Each ctxtdata structure
275 * holds the number of groups for that context.
276 *
277 * To follow CSR requirements and maintain cacheline alignment,
278 * make sure all sizes and bases are multiples of group_size.
279 *
280 * The expected entry count is what is left after assigning
281 * eager.
282 */
283 max_entries = rcd->rcv_array_groups *
284 dd->rcv_entries.group_size;
285 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
286 rcd->egrbufs.count = round_down(rcvtids,
287 dd->rcv_entries.group_size);
288 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
289 dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
290 rcd->ctxt);
291 rcd->egrbufs.count = MAX_EAGER_ENTRIES;
292 }
293 hfi1_cdbg(PROC,
294 "ctxt%u: max Eager buffer RcvArray entries: %u\n",
295 rcd->ctxt, rcd->egrbufs.count);
296
297 /*
298 * Allocate array that will hold the eager buffer accounting
299 * data.
300 * This will allocate the maximum possible buffer count based
301 * on the value of the RcvArray split parameter.
302 * The resulting value will be rounded down to the closest
303 * multiple of dd->rcv_entries.group_size.
304 */
305 rcd->egrbufs.buffers = kcalloc(rcd->egrbufs.count,
306 sizeof(*rcd->egrbufs.buffers),
307 GFP_KERNEL);
308 if (!rcd->egrbufs.buffers)
309 goto bail;
310 rcd->egrbufs.rcvtids = kcalloc(rcd->egrbufs.count,
311 sizeof(*rcd->egrbufs.rcvtids),
312 GFP_KERNEL);
313 if (!rcd->egrbufs.rcvtids)
314 goto bail;
315 rcd->egrbufs.size = eager_buffer_size;
316 /*
317 * The size of the buffers programmed into the RcvArray
318 * entries needs to be big enough to handle the highest
319 * MTU supported.
320 */
321 if (rcd->egrbufs.size < hfi1_max_mtu) {
322 rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
323 hfi1_cdbg(PROC,
324 "ctxt%u: eager bufs size too small. Adjusting to %zu\n",
325 rcd->ctxt, rcd->egrbufs.size);
326 }
327 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
328
329 if (ctxt < dd->first_user_ctxt) { /* N/A for PSM contexts */
330 rcd->opstats = kzalloc(sizeof(*rcd->opstats),
331 GFP_KERNEL);
332 if (!rcd->opstats)
333 goto bail;
334 }
335 }
336 return rcd;
337 bail:
338 kfree(rcd->egrbufs.rcvtids);
339 kfree(rcd->egrbufs.buffers);
340 kfree(rcd);
341 return NULL;
342 }
343
344 /*
345 * Convert a receive header entry size that to the encoding used in the CSR.
346 *
347 * Return a zero if the given size is invalid.
348 */
349 static inline u64 encode_rcv_header_entry_size(u16 size)
350 {
351 /* there are only 3 valid receive header entry sizes */
352 if (size == 2)
353 return 1;
354 if (size == 16)
355 return 2;
356 else if (size == 32)
357 return 4;
358 return 0; /* invalid */
359 }
360
361 /*
362 * Select the largest ccti value over all SLs to determine the intra-
363 * packet gap for the link.
364 *
365 * called with cca_timer_lock held (to protect access to cca_timer
366 * array), and rcu_read_lock() (to protect access to cc_state).
367 */
368 void set_link_ipg(struct hfi1_pportdata *ppd)
369 {
370 struct hfi1_devdata *dd = ppd->dd;
371 struct cc_state *cc_state;
372 int i;
373 u16 cce, ccti_limit, max_ccti = 0;
374 u16 shift, mult;
375 u64 src;
376 u32 current_egress_rate; /* Mbits /sec */
377 u32 max_pkt_time;
378 /*
379 * max_pkt_time is the maximum packet egress time in units
380 * of the fabric clock period 1/(805 MHz).
381 */
382
383 cc_state = get_cc_state(ppd);
384
385 if (!cc_state)
386 /*
387 * This should _never_ happen - rcu_read_lock() is held,
388 * and set_link_ipg() should not be called if cc_state
389 * is NULL.
390 */
391 return;
392
393 for (i = 0; i < OPA_MAX_SLS; i++) {
394 u16 ccti = ppd->cca_timer[i].ccti;
395
396 if (ccti > max_ccti)
397 max_ccti = ccti;
398 }
399
400 ccti_limit = cc_state->cct.ccti_limit;
401 if (max_ccti > ccti_limit)
402 max_ccti = ccti_limit;
403
404 cce = cc_state->cct.entries[max_ccti].entry;
405 shift = (cce & 0xc000) >> 14;
406 mult = (cce & 0x3fff);
407
408 current_egress_rate = active_egress_rate(ppd);
409
410 max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
411
412 src = (max_pkt_time >> shift) * mult;
413
414 src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
415 src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
416
417 write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
418 }
419
420 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
421 {
422 struct cca_timer *cca_timer;
423 struct hfi1_pportdata *ppd;
424 int sl;
425 u16 ccti_timer, ccti_min;
426 struct cc_state *cc_state;
427 unsigned long flags;
428 enum hrtimer_restart ret = HRTIMER_NORESTART;
429
430 cca_timer = container_of(t, struct cca_timer, hrtimer);
431 ppd = cca_timer->ppd;
432 sl = cca_timer->sl;
433
434 rcu_read_lock();
435
436 cc_state = get_cc_state(ppd);
437
438 if (!cc_state) {
439 rcu_read_unlock();
440 return HRTIMER_NORESTART;
441 }
442
443 /*
444 * 1) decrement ccti for SL
445 * 2) calculate IPG for link (set_link_ipg())
446 * 3) restart timer, unless ccti is at min value
447 */
448
449 ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
450 ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
451
452 spin_lock_irqsave(&ppd->cca_timer_lock, flags);
453
454 if (cca_timer->ccti > ccti_min) {
455 cca_timer->ccti--;
456 set_link_ipg(ppd);
457 }
458
459 if (cca_timer->ccti > ccti_min) {
460 unsigned long nsec = 1024 * ccti_timer;
461 /* ccti_timer is in units of 1.024 usec */
462 hrtimer_forward_now(t, ns_to_ktime(nsec));
463 ret = HRTIMER_RESTART;
464 }
465
466 spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
467 rcu_read_unlock();
468 return ret;
469 }
470
471 /*
472 * Common code for initializing the physical port structure.
473 */
474 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
475 struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
476 {
477 int i, size;
478 uint default_pkey_idx;
479
480 ppd->dd = dd;
481 ppd->hw_pidx = hw_pidx;
482 ppd->port = port; /* IB port number, not index */
483
484 default_pkey_idx = 1;
485
486 ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
487 if (loopback) {
488 hfi1_early_err(&pdev->dev,
489 "Faking data partition 0x8001 in idx %u\n",
490 !default_pkey_idx);
491 ppd->pkeys[!default_pkey_idx] = 0x8001;
492 }
493
494 INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
495 INIT_WORK(&ppd->link_up_work, handle_link_up);
496 INIT_WORK(&ppd->link_down_work, handle_link_down);
497 INIT_WORK(&ppd->freeze_work, handle_freeze);
498 INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
499 INIT_WORK(&ppd->sma_message_work, handle_sma_message);
500 INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
501 INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
502 INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
503
504 mutex_init(&ppd->hls_lock);
505 spin_lock_init(&ppd->sdma_alllock);
506 spin_lock_init(&ppd->qsfp_info.qsfp_lock);
507
508 ppd->qsfp_info.ppd = ppd;
509 ppd->sm_trap_qp = 0x0;
510 ppd->sa_qp = 0x1;
511
512 ppd->hfi1_wq = NULL;
513
514 spin_lock_init(&ppd->cca_timer_lock);
515
516 for (i = 0; i < OPA_MAX_SLS; i++) {
517 hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
518 HRTIMER_MODE_REL);
519 ppd->cca_timer[i].ppd = ppd;
520 ppd->cca_timer[i].sl = i;
521 ppd->cca_timer[i].ccti = 0;
522 ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
523 }
524
525 ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
526
527 spin_lock_init(&ppd->cc_state_lock);
528 spin_lock_init(&ppd->cc_log_lock);
529 size = sizeof(struct cc_state);
530 RCU_INIT_POINTER(ppd->cc_state, kzalloc(size, GFP_KERNEL));
531 if (!rcu_dereference(ppd->cc_state))
532 goto bail;
533 return;
534
535 bail:
536
537 hfi1_early_err(&pdev->dev,
538 "Congestion Control Agent disabled for port %d\n", port);
539 }
540
541 /*
542 * Do initialization for device that is only needed on
543 * first detect, not on resets.
544 */
545 static int loadtime_init(struct hfi1_devdata *dd)
546 {
547 return 0;
548 }
549
550 /**
551 * init_after_reset - re-initialize after a reset
552 * @dd: the hfi1_ib device
553 *
554 * sanity check at least some of the values after reset, and
555 * ensure no receive or transmit (explicitly, in case reset
556 * failed
557 */
558 static int init_after_reset(struct hfi1_devdata *dd)
559 {
560 int i;
561
562 /*
563 * Ensure chip does no sends or receives, tail updates, or
564 * pioavail updates while we re-initialize. This is mostly
565 * for the driver data structures, not chip registers.
566 */
567 for (i = 0; i < dd->num_rcv_contexts; i++)
568 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
569 HFI1_RCVCTRL_INTRAVAIL_DIS |
570 HFI1_RCVCTRL_TAILUPD_DIS, i);
571 pio_send_control(dd, PSC_GLOBAL_DISABLE);
572 for (i = 0; i < dd->num_send_contexts; i++)
573 sc_disable(dd->send_contexts[i].sc);
574
575 return 0;
576 }
577
578 static void enable_chip(struct hfi1_devdata *dd)
579 {
580 u32 rcvmask;
581 u32 i;
582
583 /* enable PIO send */
584 pio_send_control(dd, PSC_GLOBAL_ENABLE);
585
586 /*
587 * Enable kernel ctxts' receive and receive interrupt.
588 * Other ctxts done as user opens and initializes them.
589 */
590 for (i = 0; i < dd->first_user_ctxt; ++i) {
591 rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
592 rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
593 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
594 if (!HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, MULTI_PKT_EGR))
595 rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
596 if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_RHQ_FULL))
597 rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
598 if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_EGR_FULL))
599 rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
600 hfi1_rcvctrl(dd, rcvmask, i);
601 sc_enable(dd->rcd[i]->sc);
602 }
603 }
604
605 /**
606 * create_workqueues - create per port workqueues
607 * @dd: the hfi1_ib device
608 */
609 static int create_workqueues(struct hfi1_devdata *dd)
610 {
611 int pidx;
612 struct hfi1_pportdata *ppd;
613
614 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
615 ppd = dd->pport + pidx;
616 if (!ppd->hfi1_wq) {
617 ppd->hfi1_wq =
618 alloc_workqueue(
619 "hfi%d_%d",
620 WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE,
621 dd->num_sdma,
622 dd->unit, pidx);
623 if (!ppd->hfi1_wq)
624 goto wq_error;
625 }
626 }
627 return 0;
628 wq_error:
629 pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
630 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
631 ppd = dd->pport + pidx;
632 if (ppd->hfi1_wq) {
633 destroy_workqueue(ppd->hfi1_wq);
634 ppd->hfi1_wq = NULL;
635 }
636 }
637 return -ENOMEM;
638 }
639
640 /**
641 * hfi1_init - do the actual initialization sequence on the chip
642 * @dd: the hfi1_ib device
643 * @reinit: re-initializing, so don't allocate new memory
644 *
645 * Do the actual initialization sequence on the chip. This is done
646 * both from the init routine called from the PCI infrastructure, and
647 * when we reset the chip, or detect that it was reset internally,
648 * or it's administratively re-enabled.
649 *
650 * Memory allocation here and in called routines is only done in
651 * the first case (reinit == 0). We have to be careful, because even
652 * without memory allocation, we need to re-write all the chip registers
653 * TIDs, etc. after the reset or enable has completed.
654 */
655 int hfi1_init(struct hfi1_devdata *dd, int reinit)
656 {
657 int ret = 0, pidx, lastfail = 0;
658 unsigned i, len;
659 struct hfi1_ctxtdata *rcd;
660 struct hfi1_pportdata *ppd;
661
662 /* Set up recv low level handlers */
663 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EXPECTED] =
664 kdeth_process_expected;
665 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EAGER] =
666 kdeth_process_eager;
667 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_IB] = process_receive_ib;
668 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_ERROR] =
669 process_receive_error;
670 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_BYPASS] =
671 process_receive_bypass;
672 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID5] =
673 process_receive_invalid;
674 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID6] =
675 process_receive_invalid;
676 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID7] =
677 process_receive_invalid;
678 dd->rhf_rcv_function_map = dd->normal_rhf_rcv_functions;
679
680 /* Set up send low level handlers */
681 dd->process_pio_send = hfi1_verbs_send_pio;
682 dd->process_dma_send = hfi1_verbs_send_dma;
683 dd->pio_inline_send = pio_copy;
684
685 if (is_ax(dd)) {
686 atomic_set(&dd->drop_packet, DROP_PACKET_ON);
687 dd->do_drop = 1;
688 } else {
689 atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
690 dd->do_drop = 0;
691 }
692
693 /* make sure the link is not "up" */
694 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
695 ppd = dd->pport + pidx;
696 ppd->linkup = 0;
697 }
698
699 if (reinit)
700 ret = init_after_reset(dd);
701 else
702 ret = loadtime_init(dd);
703 if (ret)
704 goto done;
705
706 /* allocate dummy tail memory for all receive contexts */
707 dd->rcvhdrtail_dummy_kvaddr = dma_zalloc_coherent(
708 &dd->pcidev->dev, sizeof(u64),
709 &dd->rcvhdrtail_dummy_physaddr,
710 GFP_KERNEL);
711
712 if (!dd->rcvhdrtail_dummy_kvaddr) {
713 dd_dev_err(dd, "cannot allocate dummy tail memory\n");
714 ret = -ENOMEM;
715 goto done;
716 }
717
718 /* dd->rcd can be NULL if early initialization failed */
719 for (i = 0; dd->rcd && i < dd->first_user_ctxt; ++i) {
720 /*
721 * Set up the (kernel) rcvhdr queue and egr TIDs. If doing
722 * re-init, the simplest way to handle this is to free
723 * existing, and re-allocate.
724 * Need to re-create rest of ctxt 0 ctxtdata as well.
725 */
726 rcd = dd->rcd[i];
727 if (!rcd)
728 continue;
729
730 rcd->do_interrupt = &handle_receive_interrupt;
731
732 lastfail = hfi1_create_rcvhdrq(dd, rcd);
733 if (!lastfail)
734 lastfail = hfi1_setup_eagerbufs(rcd);
735 if (lastfail) {
736 dd_dev_err(dd,
737 "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
738 ret = lastfail;
739 }
740 }
741
742 /* Allocate enough memory for user event notification. */
743 len = PAGE_ALIGN(dd->chip_rcv_contexts * HFI1_MAX_SHARED_CTXTS *
744 sizeof(*dd->events));
745 dd->events = vmalloc_user(len);
746 if (!dd->events)
747 dd_dev_err(dd, "Failed to allocate user events page\n");
748 /*
749 * Allocate a page for device and port status.
750 * Page will be shared amongst all user processes.
751 */
752 dd->status = vmalloc_user(PAGE_SIZE);
753 if (!dd->status)
754 dd_dev_err(dd, "Failed to allocate dev status page\n");
755 else
756 dd->freezelen = PAGE_SIZE - (sizeof(*dd->status) -
757 sizeof(dd->status->freezemsg));
758 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
759 ppd = dd->pport + pidx;
760 if (dd->status)
761 /* Currently, we only have one port */
762 ppd->statusp = &dd->status->port;
763
764 set_mtu(ppd);
765 }
766
767 /* enable chip even if we have an error, so we can debug cause */
768 enable_chip(dd);
769
770 done:
771 /*
772 * Set status even if port serdes is not initialized
773 * so that diags will work.
774 */
775 if (dd->status)
776 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
777 HFI1_STATUS_INITTED;
778 if (!ret) {
779 /* enable all interrupts from the chip */
780 set_intr_state(dd, 1);
781
782 /* chip is OK for user apps; mark it as initialized */
783 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
784 ppd = dd->pport + pidx;
785
786 /*
787 * start the serdes - must be after interrupts are
788 * enabled so we are notified when the link goes up
789 */
790 lastfail = bringup_serdes(ppd);
791 if (lastfail)
792 dd_dev_info(dd,
793 "Failed to bring up port %u\n",
794 ppd->port);
795
796 /*
797 * Set status even if port serdes is not initialized
798 * so that diags will work.
799 */
800 if (ppd->statusp)
801 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
802 HFI1_STATUS_INITTED;
803 if (!ppd->link_speed_enabled)
804 continue;
805 }
806 }
807
808 /* if ret is non-zero, we probably should do some cleanup here... */
809 return ret;
810 }
811
812 static inline struct hfi1_devdata *__hfi1_lookup(int unit)
813 {
814 return idr_find(&hfi1_unit_table, unit);
815 }
816
817 struct hfi1_devdata *hfi1_lookup(int unit)
818 {
819 struct hfi1_devdata *dd;
820 unsigned long flags;
821
822 spin_lock_irqsave(&hfi1_devs_lock, flags);
823 dd = __hfi1_lookup(unit);
824 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
825
826 return dd;
827 }
828
829 /*
830 * Stop the timers during unit shutdown, or after an error late
831 * in initialization.
832 */
833 static void stop_timers(struct hfi1_devdata *dd)
834 {
835 struct hfi1_pportdata *ppd;
836 int pidx;
837
838 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
839 ppd = dd->pport + pidx;
840 if (ppd->led_override_timer.data) {
841 del_timer_sync(&ppd->led_override_timer);
842 atomic_set(&ppd->led_override_timer_active, 0);
843 }
844 }
845 }
846
847 /**
848 * shutdown_device - shut down a device
849 * @dd: the hfi1_ib device
850 *
851 * This is called to make the device quiet when we are about to
852 * unload the driver, and also when the device is administratively
853 * disabled. It does not free any data structures.
854 * Everything it does has to be setup again by hfi1_init(dd, 1)
855 */
856 static void shutdown_device(struct hfi1_devdata *dd)
857 {
858 struct hfi1_pportdata *ppd;
859 unsigned pidx;
860 int i;
861
862 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
863 ppd = dd->pport + pidx;
864
865 ppd->linkup = 0;
866 if (ppd->statusp)
867 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
868 HFI1_STATUS_IB_READY);
869 }
870 dd->flags &= ~HFI1_INITTED;
871
872 /* mask interrupts, but not errors */
873 set_intr_state(dd, 0);
874
875 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
876 ppd = dd->pport + pidx;
877 for (i = 0; i < dd->num_rcv_contexts; i++)
878 hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
879 HFI1_RCVCTRL_CTXT_DIS |
880 HFI1_RCVCTRL_INTRAVAIL_DIS |
881 HFI1_RCVCTRL_PKEY_DIS |
882 HFI1_RCVCTRL_ONE_PKT_EGR_DIS, i);
883 /*
884 * Gracefully stop all sends allowing any in progress to
885 * trickle out first.
886 */
887 for (i = 0; i < dd->num_send_contexts; i++)
888 sc_flush(dd->send_contexts[i].sc);
889 }
890
891 /*
892 * Enough for anything that's going to trickle out to have actually
893 * done so.
894 */
895 udelay(20);
896
897 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
898 ppd = dd->pport + pidx;
899
900 /* disable all contexts */
901 for (i = 0; i < dd->num_send_contexts; i++)
902 sc_disable(dd->send_contexts[i].sc);
903 /* disable the send device */
904 pio_send_control(dd, PSC_GLOBAL_DISABLE);
905
906 shutdown_led_override(ppd);
907
908 /*
909 * Clear SerdesEnable.
910 * We can't count on interrupts since we are stopping.
911 */
912 hfi1_quiet_serdes(ppd);
913
914 if (ppd->hfi1_wq) {
915 destroy_workqueue(ppd->hfi1_wq);
916 ppd->hfi1_wq = NULL;
917 }
918 }
919 sdma_exit(dd);
920 }
921
922 /**
923 * hfi1_free_ctxtdata - free a context's allocated data
924 * @dd: the hfi1_ib device
925 * @rcd: the ctxtdata structure
926 *
927 * free up any allocated data for a context
928 * This should not touch anything that would affect a simultaneous
929 * re-allocation of context data, because it is called after hfi1_mutex
930 * is released (and can be called from reinit as well).
931 * It should never change any chip state, or global driver state.
932 */
933 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
934 {
935 unsigned e;
936
937 if (!rcd)
938 return;
939
940 if (rcd->rcvhdrq) {
941 dma_free_coherent(&dd->pcidev->dev, rcd->rcvhdrq_size,
942 rcd->rcvhdrq, rcd->rcvhdrq_phys);
943 rcd->rcvhdrq = NULL;
944 if (rcd->rcvhdrtail_kvaddr) {
945 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
946 (void *)rcd->rcvhdrtail_kvaddr,
947 rcd->rcvhdrqtailaddr_phys);
948 rcd->rcvhdrtail_kvaddr = NULL;
949 }
950 }
951
952 /* all the RcvArray entries should have been cleared by now */
953 kfree(rcd->egrbufs.rcvtids);
954
955 for (e = 0; e < rcd->egrbufs.alloced; e++) {
956 if (rcd->egrbufs.buffers[e].phys)
957 dma_free_coherent(&dd->pcidev->dev,
958 rcd->egrbufs.buffers[e].len,
959 rcd->egrbufs.buffers[e].addr,
960 rcd->egrbufs.buffers[e].phys);
961 }
962 kfree(rcd->egrbufs.buffers);
963
964 sc_free(rcd->sc);
965 vfree(rcd->user_event_mask);
966 vfree(rcd->subctxt_uregbase);
967 vfree(rcd->subctxt_rcvegrbuf);
968 vfree(rcd->subctxt_rcvhdr_base);
969 kfree(rcd->opstats);
970 kfree(rcd);
971 }
972
973 /*
974 * Release our hold on the shared asic data. If we are the last one,
975 * free the structure. Must be holding hfi1_devs_lock.
976 */
977 static void release_asic_data(struct hfi1_devdata *dd)
978 {
979 int other;
980
981 if (!dd->asic_data)
982 return;
983 dd->asic_data->dds[dd->hfi1_id] = NULL;
984 other = dd->hfi1_id ? 0 : 1;
985 if (!dd->asic_data->dds[other]) {
986 /* we are the last holder, free it */
987 kfree(dd->asic_data);
988 }
989 dd->asic_data = NULL;
990 }
991
992 static void __hfi1_free_devdata(struct kobject *kobj)
993 {
994 struct hfi1_devdata *dd =
995 container_of(kobj, struct hfi1_devdata, kobj);
996 unsigned long flags;
997
998 spin_lock_irqsave(&hfi1_devs_lock, flags);
999 idr_remove(&hfi1_unit_table, dd->unit);
1000 list_del(&dd->list);
1001 release_asic_data(dd);
1002 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1003 free_platform_config(dd);
1004 rcu_barrier(); /* wait for rcu callbacks to complete */
1005 free_percpu(dd->int_counter);
1006 free_percpu(dd->rcv_limit);
1007 hfi1_dev_affinity_free(dd);
1008 free_percpu(dd->send_schedule);
1009 rvt_dealloc_device(&dd->verbs_dev.rdi);
1010 }
1011
1012 static struct kobj_type hfi1_devdata_type = {
1013 .release = __hfi1_free_devdata,
1014 };
1015
1016 void hfi1_free_devdata(struct hfi1_devdata *dd)
1017 {
1018 kobject_put(&dd->kobj);
1019 }
1020
1021 /*
1022 * Allocate our primary per-unit data structure. Must be done via verbs
1023 * allocator, because the verbs cleanup process both does cleanup and
1024 * free of the data structure.
1025 * "extra" is for chip-specific data.
1026 *
1027 * Use the idr mechanism to get a unit number for this unit.
1028 */
1029 struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra)
1030 {
1031 unsigned long flags;
1032 struct hfi1_devdata *dd;
1033 int ret, nports;
1034
1035 /* extra is * number of ports */
1036 nports = extra / sizeof(struct hfi1_pportdata);
1037
1038 dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1039 nports);
1040 if (!dd)
1041 return ERR_PTR(-ENOMEM);
1042 dd->num_pports = nports;
1043 dd->pport = (struct hfi1_pportdata *)(dd + 1);
1044
1045 INIT_LIST_HEAD(&dd->list);
1046 idr_preload(GFP_KERNEL);
1047 spin_lock_irqsave(&hfi1_devs_lock, flags);
1048
1049 ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT);
1050 if (ret >= 0) {
1051 dd->unit = ret;
1052 list_add(&dd->list, &hfi1_dev_list);
1053 }
1054
1055 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1056 idr_preload_end();
1057
1058 if (ret < 0) {
1059 hfi1_early_err(&pdev->dev,
1060 "Could not allocate unit ID: error %d\n", -ret);
1061 goto bail;
1062 }
1063 /*
1064 * Initialize all locks for the device. This needs to be as early as
1065 * possible so locks are usable.
1066 */
1067 spin_lock_init(&dd->sc_lock);
1068 spin_lock_init(&dd->sendctrl_lock);
1069 spin_lock_init(&dd->rcvctrl_lock);
1070 spin_lock_init(&dd->uctxt_lock);
1071 spin_lock_init(&dd->hfi1_diag_trans_lock);
1072 spin_lock_init(&dd->sc_init_lock);
1073 spin_lock_init(&dd->dc8051_lock);
1074 spin_lock_init(&dd->dc8051_memlock);
1075 seqlock_init(&dd->sc2vl_lock);
1076 spin_lock_init(&dd->sde_map_lock);
1077 spin_lock_init(&dd->pio_map_lock);
1078 init_waitqueue_head(&dd->event_queue);
1079
1080 dd->int_counter = alloc_percpu(u64);
1081 if (!dd->int_counter) {
1082 ret = -ENOMEM;
1083 hfi1_early_err(&pdev->dev,
1084 "Could not allocate per-cpu int_counter\n");
1085 goto bail;
1086 }
1087
1088 dd->rcv_limit = alloc_percpu(u64);
1089 if (!dd->rcv_limit) {
1090 ret = -ENOMEM;
1091 hfi1_early_err(&pdev->dev,
1092 "Could not allocate per-cpu rcv_limit\n");
1093 goto bail;
1094 }
1095
1096 dd->send_schedule = alloc_percpu(u64);
1097 if (!dd->send_schedule) {
1098 ret = -ENOMEM;
1099 hfi1_early_err(&pdev->dev,
1100 "Could not allocate per-cpu int_counter\n");
1101 goto bail;
1102 }
1103
1104 if (!hfi1_cpulist_count) {
1105 u32 count = num_online_cpus();
1106
1107 hfi1_cpulist = kcalloc(BITS_TO_LONGS(count), sizeof(long),
1108 GFP_KERNEL);
1109 if (hfi1_cpulist)
1110 hfi1_cpulist_count = count;
1111 else
1112 hfi1_early_err(
1113 &pdev->dev,
1114 "Could not alloc cpulist info, cpu affinity might be wrong\n");
1115 }
1116 kobject_init(&dd->kobj, &hfi1_devdata_type);
1117 return dd;
1118
1119 bail:
1120 if (!list_empty(&dd->list))
1121 list_del_init(&dd->list);
1122 rvt_dealloc_device(&dd->verbs_dev.rdi);
1123 return ERR_PTR(ret);
1124 }
1125
1126 /*
1127 * Called from freeze mode handlers, and from PCI error
1128 * reporting code. Should be paranoid about state of
1129 * system and data structures.
1130 */
1131 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1132 {
1133 if (dd->flags & HFI1_INITTED) {
1134 u32 pidx;
1135
1136 dd->flags &= ~HFI1_INITTED;
1137 if (dd->pport)
1138 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1139 struct hfi1_pportdata *ppd;
1140
1141 ppd = dd->pport + pidx;
1142 if (dd->flags & HFI1_PRESENT)
1143 set_link_state(ppd, HLS_DN_DISABLE);
1144
1145 if (ppd->statusp)
1146 *ppd->statusp &= ~HFI1_STATUS_IB_READY;
1147 }
1148 }
1149
1150 /*
1151 * Mark as having had an error for driver, and also
1152 * for /sys and status word mapped to user programs.
1153 * This marks unit as not usable, until reset.
1154 */
1155 if (dd->status)
1156 dd->status->dev |= HFI1_STATUS_HWERROR;
1157 }
1158
1159 static void remove_one(struct pci_dev *);
1160 static int init_one(struct pci_dev *, const struct pci_device_id *);
1161
1162 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1163 #define PFX DRIVER_NAME ": "
1164
1165 static const struct pci_device_id hfi1_pci_tbl[] = {
1166 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1167 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1168 { 0, }
1169 };
1170
1171 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1172
1173 static struct pci_driver hfi1_pci_driver = {
1174 .name = DRIVER_NAME,
1175 .probe = init_one,
1176 .remove = remove_one,
1177 .id_table = hfi1_pci_tbl,
1178 .err_handler = &hfi1_pci_err_handler,
1179 };
1180
1181 static void __init compute_krcvqs(void)
1182 {
1183 int i;
1184
1185 for (i = 0; i < krcvqsset; i++)
1186 n_krcvqs += krcvqs[i];
1187 }
1188
1189 /*
1190 * Do all the generic driver unit- and chip-independent memory
1191 * allocation and initialization.
1192 */
1193 static int __init hfi1_mod_init(void)
1194 {
1195 int ret;
1196
1197 ret = dev_init();
1198 if (ret)
1199 goto bail;
1200
1201 /* validate max MTU before any devices start */
1202 if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1203 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1204 hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1205 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1206 }
1207 /* valid CUs run from 1-128 in powers of 2 */
1208 if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1209 hfi1_cu = 1;
1210 /* valid credit return threshold is 0-100, variable is unsigned */
1211 if (user_credit_return_threshold > 100)
1212 user_credit_return_threshold = 100;
1213
1214 compute_krcvqs();
1215 /*
1216 * sanitize receive interrupt count, time must wait until after
1217 * the hardware type is known
1218 */
1219 if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1220 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1221 /* reject invalid combinations */
1222 if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1223 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1224 rcv_intr_count = 1;
1225 }
1226 if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1227 /*
1228 * Avoid indefinite packet delivery by requiring a timeout
1229 * if count is > 1.
1230 */
1231 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1232 rcv_intr_timeout = 1;
1233 }
1234 if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1235 /*
1236 * The dynamic algorithm expects a non-zero timeout
1237 * and a count > 1.
1238 */
1239 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1240 rcv_intr_dynamic = 0;
1241 }
1242
1243 /* sanitize link CRC options */
1244 link_crc_mask &= SUPPORTED_CRCS;
1245
1246 /*
1247 * These must be called before the driver is registered with
1248 * the PCI subsystem.
1249 */
1250 idr_init(&hfi1_unit_table);
1251
1252 hfi1_dbg_init();
1253 ret = hfi1_wss_init();
1254 if (ret < 0)
1255 goto bail_wss;
1256 ret = pci_register_driver(&hfi1_pci_driver);
1257 if (ret < 0) {
1258 pr_err("Unable to register driver: error %d\n", -ret);
1259 goto bail_dev;
1260 }
1261 goto bail; /* all OK */
1262
1263 bail_dev:
1264 hfi1_wss_exit();
1265 bail_wss:
1266 hfi1_dbg_exit();
1267 idr_destroy(&hfi1_unit_table);
1268 dev_cleanup();
1269 bail:
1270 return ret;
1271 }
1272
1273 module_init(hfi1_mod_init);
1274
1275 /*
1276 * Do the non-unit driver cleanup, memory free, etc. at unload.
1277 */
1278 static void __exit hfi1_mod_cleanup(void)
1279 {
1280 pci_unregister_driver(&hfi1_pci_driver);
1281 hfi1_wss_exit();
1282 hfi1_dbg_exit();
1283 hfi1_cpulist_count = 0;
1284 kfree(hfi1_cpulist);
1285
1286 idr_destroy(&hfi1_unit_table);
1287 dispose_firmware(); /* asymmetric with obtain_firmware() */
1288 dev_cleanup();
1289 }
1290
1291 module_exit(hfi1_mod_cleanup);
1292
1293 /* this can only be called after a successful initialization */
1294 static void cleanup_device_data(struct hfi1_devdata *dd)
1295 {
1296 int ctxt;
1297 int pidx;
1298 struct hfi1_ctxtdata **tmp;
1299 unsigned long flags;
1300
1301 /* users can't do anything more with chip */
1302 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1303 struct hfi1_pportdata *ppd = &dd->pport[pidx];
1304 struct cc_state *cc_state;
1305 int i;
1306
1307 if (ppd->statusp)
1308 *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1309
1310 for (i = 0; i < OPA_MAX_SLS; i++)
1311 hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1312
1313 spin_lock(&ppd->cc_state_lock);
1314 cc_state = get_cc_state(ppd);
1315 RCU_INIT_POINTER(ppd->cc_state, NULL);
1316 spin_unlock(&ppd->cc_state_lock);
1317
1318 if (cc_state)
1319 call_rcu(&cc_state->rcu, cc_state_reclaim);
1320 }
1321
1322 free_credit_return(dd);
1323
1324 /*
1325 * Free any resources still in use (usually just kernel contexts)
1326 * at unload; we do for ctxtcnt, because that's what we allocate.
1327 * We acquire lock to be really paranoid that rcd isn't being
1328 * accessed from some interrupt-related code (that should not happen,
1329 * but best to be sure).
1330 */
1331 spin_lock_irqsave(&dd->uctxt_lock, flags);
1332 tmp = dd->rcd;
1333 dd->rcd = NULL;
1334 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1335
1336 if (dd->rcvhdrtail_dummy_kvaddr) {
1337 dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1338 (void *)dd->rcvhdrtail_dummy_kvaddr,
1339 dd->rcvhdrtail_dummy_physaddr);
1340 dd->rcvhdrtail_dummy_kvaddr = NULL;
1341 }
1342
1343 for (ctxt = 0; tmp && ctxt < dd->num_rcv_contexts; ctxt++) {
1344 struct hfi1_ctxtdata *rcd = tmp[ctxt];
1345
1346 tmp[ctxt] = NULL; /* debugging paranoia */
1347 if (rcd) {
1348 hfi1_clear_tids(rcd);
1349 hfi1_free_ctxtdata(dd, rcd);
1350 }
1351 }
1352 kfree(tmp);
1353 free_pio_map(dd);
1354 /* must follow rcv context free - need to remove rcv's hooks */
1355 for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1356 sc_free(dd->send_contexts[ctxt].sc);
1357 dd->num_send_contexts = 0;
1358 kfree(dd->send_contexts);
1359 dd->send_contexts = NULL;
1360 kfree(dd->hw_to_sw);
1361 dd->hw_to_sw = NULL;
1362 kfree(dd->boardname);
1363 vfree(dd->events);
1364 vfree(dd->status);
1365 }
1366
1367 /*
1368 * Clean up on unit shutdown, or error during unit load after
1369 * successful initialization.
1370 */
1371 static void postinit_cleanup(struct hfi1_devdata *dd)
1372 {
1373 hfi1_start_cleanup(dd);
1374
1375 hfi1_pcie_ddcleanup(dd);
1376 hfi1_pcie_cleanup(dd->pcidev);
1377
1378 cleanup_device_data(dd);
1379
1380 hfi1_free_devdata(dd);
1381 }
1382
1383 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1384 {
1385 int ret = 0, j, pidx, initfail;
1386 struct hfi1_devdata *dd = NULL;
1387 struct hfi1_pportdata *ppd;
1388
1389 /* First, lock the non-writable module parameters */
1390 HFI1_CAP_LOCK();
1391
1392 /* Validate some global module parameters */
1393 if (rcvhdrcnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
1394 hfi1_early_err(&pdev->dev, "Header queue count too small\n");
1395 ret = -EINVAL;
1396 goto bail;
1397 }
1398 if (rcvhdrcnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
1399 hfi1_early_err(&pdev->dev,
1400 "Receive header queue count cannot be greater than %u\n",
1401 HFI1_MAX_HDRQ_EGRBUF_CNT);
1402 ret = -EINVAL;
1403 goto bail;
1404 }
1405 /* use the encoding function as a sanitization check */
1406 if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1407 hfi1_early_err(&pdev->dev, "Invalid HdrQ Entry size %u\n",
1408 hfi1_hdrq_entsize);
1409 ret = -EINVAL;
1410 goto bail;
1411 }
1412
1413 /* The receive eager buffer size must be set before the receive
1414 * contexts are created.
1415 *
1416 * Set the eager buffer size. Validate that it falls in a range
1417 * allowed by the hardware - all powers of 2 between the min and
1418 * max. The maximum valid MTU is within the eager buffer range
1419 * so we do not need to cap the max_mtu by an eager buffer size
1420 * setting.
1421 */
1422 if (eager_buffer_size) {
1423 if (!is_power_of_2(eager_buffer_size))
1424 eager_buffer_size =
1425 roundup_pow_of_two(eager_buffer_size);
1426 eager_buffer_size =
1427 clamp_val(eager_buffer_size,
1428 MIN_EAGER_BUFFER * 8,
1429 MAX_EAGER_BUFFER_TOTAL);
1430 hfi1_early_info(&pdev->dev, "Eager buffer size %u\n",
1431 eager_buffer_size);
1432 } else {
1433 hfi1_early_err(&pdev->dev, "Invalid Eager buffer size of 0\n");
1434 ret = -EINVAL;
1435 goto bail;
1436 }
1437
1438 /* restrict value of hfi1_rcvarr_split */
1439 hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1440
1441 ret = hfi1_pcie_init(pdev, ent);
1442 if (ret)
1443 goto bail;
1444
1445 /*
1446 * Do device-specific initialization, function table setup, dd
1447 * allocation, etc.
1448 */
1449 switch (ent->device) {
1450 case PCI_DEVICE_ID_INTEL0:
1451 case PCI_DEVICE_ID_INTEL1:
1452 dd = hfi1_init_dd(pdev, ent);
1453 break;
1454 default:
1455 hfi1_early_err(&pdev->dev,
1456 "Failing on unknown Intel deviceid 0x%x\n",
1457 ent->device);
1458 ret = -ENODEV;
1459 }
1460
1461 if (IS_ERR(dd))
1462 ret = PTR_ERR(dd);
1463 if (ret)
1464 goto clean_bail; /* error already printed */
1465
1466 ret = create_workqueues(dd);
1467 if (ret)
1468 goto clean_bail;
1469
1470 /* do the generic initialization */
1471 initfail = hfi1_init(dd, 0);
1472
1473 ret = hfi1_register_ib_device(dd);
1474
1475 /*
1476 * Now ready for use. this should be cleared whenever we
1477 * detect a reset, or initiate one. If earlier failure,
1478 * we still create devices, so diags, etc. can be used
1479 * to determine cause of problem.
1480 */
1481 if (!initfail && !ret) {
1482 dd->flags |= HFI1_INITTED;
1483 /* create debufs files after init and ib register */
1484 hfi1_dbg_ibdev_init(&dd->verbs_dev);
1485 }
1486
1487 j = hfi1_device_create(dd);
1488 if (j)
1489 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1490
1491 if (initfail || ret) {
1492 stop_timers(dd);
1493 flush_workqueue(ib_wq);
1494 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1495 hfi1_quiet_serdes(dd->pport + pidx);
1496 ppd = dd->pport + pidx;
1497 if (ppd->hfi1_wq) {
1498 destroy_workqueue(ppd->hfi1_wq);
1499 ppd->hfi1_wq = NULL;
1500 }
1501 }
1502 if (!j)
1503 hfi1_device_remove(dd);
1504 if (!ret)
1505 hfi1_unregister_ib_device(dd);
1506 postinit_cleanup(dd);
1507 if (initfail)
1508 ret = initfail;
1509 goto bail; /* everything already cleaned */
1510 }
1511
1512 sdma_start(dd);
1513
1514 return 0;
1515
1516 clean_bail:
1517 hfi1_pcie_cleanup(pdev);
1518 bail:
1519 return ret;
1520 }
1521
1522 static void remove_one(struct pci_dev *pdev)
1523 {
1524 struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1525
1526 /* close debugfs files before ib unregister */
1527 hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1528 /* unregister from IB core */
1529 hfi1_unregister_ib_device(dd);
1530
1531 /*
1532 * Disable the IB link, disable interrupts on the device,
1533 * clear dma engines, etc.
1534 */
1535 shutdown_device(dd);
1536
1537 stop_timers(dd);
1538
1539 /* wait until all of our (qsfp) queue_work() calls complete */
1540 flush_workqueue(ib_wq);
1541
1542 hfi1_device_remove(dd);
1543
1544 postinit_cleanup(dd);
1545 }
1546
1547 /**
1548 * hfi1_create_rcvhdrq - create a receive header queue
1549 * @dd: the hfi1_ib device
1550 * @rcd: the context data
1551 *
1552 * This must be contiguous memory (from an i/o perspective), and must be
1553 * DMA'able (which means for some systems, it will go through an IOMMU,
1554 * or be forced into a low address range).
1555 */
1556 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1557 {
1558 unsigned amt;
1559 u64 reg;
1560
1561 if (!rcd->rcvhdrq) {
1562 dma_addr_t phys_hdrqtail;
1563 gfp_t gfp_flags;
1564
1565 /*
1566 * rcvhdrqentsize is in DWs, so we have to convert to bytes
1567 * (* sizeof(u32)).
1568 */
1569 amt = PAGE_ALIGN(rcd->rcvhdrq_cnt * rcd->rcvhdrqentsize *
1570 sizeof(u32));
1571
1572 gfp_flags = (rcd->ctxt >= dd->first_user_ctxt) ?
1573 GFP_USER : GFP_KERNEL;
1574 rcd->rcvhdrq = dma_zalloc_coherent(
1575 &dd->pcidev->dev, amt, &rcd->rcvhdrq_phys,
1576 gfp_flags | __GFP_COMP);
1577
1578 if (!rcd->rcvhdrq) {
1579 dd_dev_err(dd,
1580 "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1581 amt, rcd->ctxt);
1582 goto bail;
1583 }
1584
1585 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
1586 rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent(
1587 &dd->pcidev->dev, PAGE_SIZE, &phys_hdrqtail,
1588 gfp_flags);
1589 if (!rcd->rcvhdrtail_kvaddr)
1590 goto bail_free;
1591 rcd->rcvhdrqtailaddr_phys = phys_hdrqtail;
1592 }
1593
1594 rcd->rcvhdrq_size = amt;
1595 }
1596 /*
1597 * These values are per-context:
1598 * RcvHdrCnt
1599 * RcvHdrEntSize
1600 * RcvHdrSize
1601 */
1602 reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT)
1603 & RCV_HDR_CNT_CNT_MASK)
1604 << RCV_HDR_CNT_CNT_SHIFT;
1605 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg);
1606 reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize)
1607 & RCV_HDR_ENT_SIZE_ENT_SIZE_MASK)
1608 << RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
1609 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg);
1610 reg = (dd->rcvhdrsize & RCV_HDR_SIZE_HDR_SIZE_MASK)
1611 << RCV_HDR_SIZE_HDR_SIZE_SHIFT;
1612 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg);
1613
1614 /*
1615 * Program dummy tail address for every receive context
1616 * before enabling any receive context
1617 */
1618 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR,
1619 dd->rcvhdrtail_dummy_physaddr);
1620
1621 return 0;
1622
1623 bail_free:
1624 dd_dev_err(dd,
1625 "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1626 rcd->ctxt);
1627 vfree(rcd->user_event_mask);
1628 rcd->user_event_mask = NULL;
1629 dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1630 rcd->rcvhdrq_phys);
1631 rcd->rcvhdrq = NULL;
1632 bail:
1633 return -ENOMEM;
1634 }
1635
1636 /**
1637 * allocate eager buffers, both kernel and user contexts.
1638 * @rcd: the context we are setting up.
1639 *
1640 * Allocate the eager TID buffers and program them into hip.
1641 * They are no longer completely contiguous, we do multiple allocation
1642 * calls. Otherwise we get the OOM code involved, by asking for too
1643 * much per call, with disastrous results on some kernels.
1644 */
1645 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1646 {
1647 struct hfi1_devdata *dd = rcd->dd;
1648 u32 max_entries, egrtop, alloced_bytes = 0, idx = 0;
1649 gfp_t gfp_flags;
1650 u16 order;
1651 int ret = 0;
1652 u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1653
1654 /*
1655 * GFP_USER, but without GFP_FS, so buffer cache can be
1656 * coalesced (we hope); otherwise, even at order 4,
1657 * heavy filesystem activity makes these fail, and we can
1658 * use compound pages.
1659 */
1660 gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1661
1662 /*
1663 * The minimum size of the eager buffers is a groups of MTU-sized
1664 * buffers.
1665 * The global eager_buffer_size parameter is checked against the
1666 * theoretical lower limit of the value. Here, we check against the
1667 * MTU.
1668 */
1669 if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1670 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1671 /*
1672 * If using one-pkt-per-egr-buffer, lower the eager buffer
1673 * size to the max MTU (page-aligned).
1674 */
1675 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1676 rcd->egrbufs.rcvtid_size = round_mtu;
1677
1678 /*
1679 * Eager buffers sizes of 1MB or less require smaller TID sizes
1680 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1681 */
1682 if (rcd->egrbufs.size <= (1 << 20))
1683 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1684 rounddown_pow_of_two(rcd->egrbufs.size / 8));
1685
1686 while (alloced_bytes < rcd->egrbufs.size &&
1687 rcd->egrbufs.alloced < rcd->egrbufs.count) {
1688 rcd->egrbufs.buffers[idx].addr =
1689 dma_zalloc_coherent(&dd->pcidev->dev,
1690 rcd->egrbufs.rcvtid_size,
1691 &rcd->egrbufs.buffers[idx].phys,
1692 gfp_flags);
1693 if (rcd->egrbufs.buffers[idx].addr) {
1694 rcd->egrbufs.buffers[idx].len =
1695 rcd->egrbufs.rcvtid_size;
1696 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1697 rcd->egrbufs.buffers[idx].addr;
1698 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].phys =
1699 rcd->egrbufs.buffers[idx].phys;
1700 rcd->egrbufs.alloced++;
1701 alloced_bytes += rcd->egrbufs.rcvtid_size;
1702 idx++;
1703 } else {
1704 u32 new_size, i, j;
1705 u64 offset = 0;
1706
1707 /*
1708 * Fail the eager buffer allocation if:
1709 * - we are already using the lowest acceptable size
1710 * - we are using one-pkt-per-egr-buffer (this implies
1711 * that we are accepting only one size)
1712 */
1713 if (rcd->egrbufs.rcvtid_size == round_mtu ||
1714 !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1715 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1716 rcd->ctxt);
1717 goto bail_rcvegrbuf_phys;
1718 }
1719
1720 new_size = rcd->egrbufs.rcvtid_size / 2;
1721
1722 /*
1723 * If the first attempt to allocate memory failed, don't
1724 * fail everything but continue with the next lower
1725 * size.
1726 */
1727 if (idx == 0) {
1728 rcd->egrbufs.rcvtid_size = new_size;
1729 continue;
1730 }
1731
1732 /*
1733 * Re-partition already allocated buffers to a smaller
1734 * size.
1735 */
1736 rcd->egrbufs.alloced = 0;
1737 for (i = 0, j = 0, offset = 0; j < idx; i++) {
1738 if (i >= rcd->egrbufs.count)
1739 break;
1740 rcd->egrbufs.rcvtids[i].phys =
1741 rcd->egrbufs.buffers[j].phys + offset;
1742 rcd->egrbufs.rcvtids[i].addr =
1743 rcd->egrbufs.buffers[j].addr + offset;
1744 rcd->egrbufs.alloced++;
1745 if ((rcd->egrbufs.buffers[j].phys + offset +
1746 new_size) ==
1747 (rcd->egrbufs.buffers[j].phys +
1748 rcd->egrbufs.buffers[j].len)) {
1749 j++;
1750 offset = 0;
1751 } else {
1752 offset += new_size;
1753 }
1754 }
1755 rcd->egrbufs.rcvtid_size = new_size;
1756 }
1757 }
1758 rcd->egrbufs.numbufs = idx;
1759 rcd->egrbufs.size = alloced_bytes;
1760
1761 hfi1_cdbg(PROC,
1762 "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n",
1763 rcd->ctxt, rcd->egrbufs.alloced, rcd->egrbufs.rcvtid_size,
1764 rcd->egrbufs.size);
1765
1766 /*
1767 * Set the contexts rcv array head update threshold to the closest
1768 * power of 2 (so we can use a mask instead of modulo) below half
1769 * the allocated entries.
1770 */
1771 rcd->egrbufs.threshold =
1772 rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
1773 /*
1774 * Compute the expected RcvArray entry base. This is done after
1775 * allocating the eager buffers in order to maximize the
1776 * expected RcvArray entries for the context.
1777 */
1778 max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
1779 egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
1780 rcd->expected_count = max_entries - egrtop;
1781 if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
1782 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
1783
1784 rcd->expected_base = rcd->eager_base + egrtop;
1785 hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
1786 rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
1787 rcd->eager_base, rcd->expected_base);
1788
1789 if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
1790 hfi1_cdbg(PROC,
1791 "ctxt%u: current Eager buffer size is invalid %u\n",
1792 rcd->ctxt, rcd->egrbufs.rcvtid_size);
1793 ret = -EINVAL;
1794 goto bail;
1795 }
1796
1797 for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
1798 hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
1799 rcd->egrbufs.rcvtids[idx].phys, order);
1800 cond_resched();
1801 }
1802 goto bail;
1803
1804 bail_rcvegrbuf_phys:
1805 for (idx = 0; idx < rcd->egrbufs.alloced &&
1806 rcd->egrbufs.buffers[idx].addr;
1807 idx++) {
1808 dma_free_coherent(&dd->pcidev->dev,
1809 rcd->egrbufs.buffers[idx].len,
1810 rcd->egrbufs.buffers[idx].addr,
1811 rcd->egrbufs.buffers[idx].phys);
1812 rcd->egrbufs.buffers[idx].addr = NULL;
1813 rcd->egrbufs.buffers[idx].phys = 0;
1814 rcd->egrbufs.buffers[idx].len = 0;
1815 }
1816 bail:
1817 return ret;
1818 }