]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/staging/rdma/hfi1/qp.c
HID: sony: Remove the size check for the Dualshock 4 HID Descriptor
[mirror_ubuntu-artful-kernel.git] / drivers / staging / rdma / hfi1 / qp.c
1 /*
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2015 Intel Corporation.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * BSD LICENSE
20 *
21 * Copyright(c) 2015 Intel Corporation.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 *
27 * - Redistributions of source code must retain the above copyright
28 * notice, this list of conditions and the following disclaimer.
29 * - Redistributions in binary form must reproduce the above copyright
30 * notice, this list of conditions and the following disclaimer in
31 * the documentation and/or other materials provided with the
32 * distribution.
33 * - Neither the name of Intel Corporation nor the names of its
34 * contributors may be used to endorse or promote products derived
35 * from this software without specific prior written permission.
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 *
49 */
50
51 #include <linux/err.h>
52 #include <linux/vmalloc.h>
53 #include <linux/hash.h>
54 #include <linux/module.h>
55 #include <linux/random.h>
56 #include <linux/seq_file.h>
57
58 #include "hfi.h"
59 #include "qp.h"
60 #include "trace.h"
61 #include "sdma.h"
62
63 #define BITS_PER_PAGE (PAGE_SIZE*BITS_PER_BYTE)
64 #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
65
66 static unsigned int hfi1_qp_table_size = 256;
67 module_param_named(qp_table_size, hfi1_qp_table_size, uint, S_IRUGO);
68 MODULE_PARM_DESC(qp_table_size, "QP table size");
69
70 static void flush_tx_list(struct hfi1_qp *qp);
71 static int iowait_sleep(
72 struct sdma_engine *sde,
73 struct iowait *wait,
74 struct sdma_txreq *stx,
75 unsigned seq);
76 static void iowait_wakeup(struct iowait *wait, int reason);
77
78 static inline unsigned mk_qpn(struct hfi1_qpn_table *qpt,
79 struct qpn_map *map, unsigned off)
80 {
81 return (map - qpt->map) * BITS_PER_PAGE + off;
82 }
83
84 /*
85 * Convert the AETH credit code into the number of credits.
86 */
87 static const u16 credit_table[31] = {
88 0, /* 0 */
89 1, /* 1 */
90 2, /* 2 */
91 3, /* 3 */
92 4, /* 4 */
93 6, /* 5 */
94 8, /* 6 */
95 12, /* 7 */
96 16, /* 8 */
97 24, /* 9 */
98 32, /* A */
99 48, /* B */
100 64, /* C */
101 96, /* D */
102 128, /* E */
103 192, /* F */
104 256, /* 10 */
105 384, /* 11 */
106 512, /* 12 */
107 768, /* 13 */
108 1024, /* 14 */
109 1536, /* 15 */
110 2048, /* 16 */
111 3072, /* 17 */
112 4096, /* 18 */
113 6144, /* 19 */
114 8192, /* 1A */
115 12288, /* 1B */
116 16384, /* 1C */
117 24576, /* 1D */
118 32768 /* 1E */
119 };
120
121 static void get_map_page(struct hfi1_qpn_table *qpt, struct qpn_map *map)
122 {
123 unsigned long page = get_zeroed_page(GFP_KERNEL);
124
125 /*
126 * Free the page if someone raced with us installing it.
127 */
128
129 spin_lock(&qpt->lock);
130 if (map->page)
131 free_page(page);
132 else
133 map->page = (void *)page;
134 spin_unlock(&qpt->lock);
135 }
136
137 /*
138 * Allocate the next available QPN or
139 * zero/one for QP type IB_QPT_SMI/IB_QPT_GSI.
140 */
141 static int alloc_qpn(struct hfi1_devdata *dd, struct hfi1_qpn_table *qpt,
142 enum ib_qp_type type, u8 port)
143 {
144 u32 i, offset, max_scan, qpn;
145 struct qpn_map *map;
146 u32 ret;
147
148 if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
149 unsigned n;
150
151 ret = type == IB_QPT_GSI;
152 n = 1 << (ret + 2 * (port - 1));
153 spin_lock(&qpt->lock);
154 if (qpt->flags & n)
155 ret = -EINVAL;
156 else
157 qpt->flags |= n;
158 spin_unlock(&qpt->lock);
159 goto bail;
160 }
161
162 qpn = qpt->last + qpt->incr;
163 if (qpn >= QPN_MAX)
164 qpn = qpt->incr | ((qpt->last & 1) ^ 1);
165 /* offset carries bit 0 */
166 offset = qpn & BITS_PER_PAGE_MASK;
167 map = &qpt->map[qpn / BITS_PER_PAGE];
168 max_scan = qpt->nmaps - !offset;
169 for (i = 0;;) {
170 if (unlikely(!map->page)) {
171 get_map_page(qpt, map);
172 if (unlikely(!map->page))
173 break;
174 }
175 do {
176 if (!test_and_set_bit(offset, map->page)) {
177 qpt->last = qpn;
178 ret = qpn;
179 goto bail;
180 }
181 offset += qpt->incr;
182 /*
183 * This qpn might be bogus if offset >= BITS_PER_PAGE.
184 * That is OK. It gets re-assigned below
185 */
186 qpn = mk_qpn(qpt, map, offset);
187 } while (offset < BITS_PER_PAGE && qpn < QPN_MAX);
188 /*
189 * In order to keep the number of pages allocated to a
190 * minimum, we scan the all existing pages before increasing
191 * the size of the bitmap table.
192 */
193 if (++i > max_scan) {
194 if (qpt->nmaps == QPNMAP_ENTRIES)
195 break;
196 map = &qpt->map[qpt->nmaps++];
197 /* start at incr with current bit 0 */
198 offset = qpt->incr | (offset & 1);
199 } else if (map < &qpt->map[qpt->nmaps]) {
200 ++map;
201 /* start at incr with current bit 0 */
202 offset = qpt->incr | (offset & 1);
203 } else {
204 map = &qpt->map[0];
205 /* wrap to first map page, invert bit 0 */
206 offset = qpt->incr | ((offset & 1) ^ 1);
207 }
208 /* there can be no bits at shift and below */
209 WARN_ON(offset & (dd->qos_shift - 1));
210 qpn = mk_qpn(qpt, map, offset);
211 }
212
213 ret = -ENOMEM;
214
215 bail:
216 return ret;
217 }
218
219 static void free_qpn(struct hfi1_qpn_table *qpt, u32 qpn)
220 {
221 struct qpn_map *map;
222
223 map = qpt->map + qpn / BITS_PER_PAGE;
224 if (map->page)
225 clear_bit(qpn & BITS_PER_PAGE_MASK, map->page);
226 }
227
228 /*
229 * Put the QP into the hash table.
230 * The hash table holds a reference to the QP.
231 */
232 static void insert_qp(struct hfi1_ibdev *dev, struct hfi1_qp *qp)
233 {
234 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
235 unsigned long flags;
236
237 atomic_inc(&qp->refcount);
238 spin_lock_irqsave(&dev->qp_dev->qpt_lock, flags);
239
240 if (qp->ibqp.qp_num <= 1) {
241 rcu_assign_pointer(ibp->qp[qp->ibqp.qp_num], qp);
242 } else {
243 u32 n = qpn_hash(dev->qp_dev, qp->ibqp.qp_num);
244
245 qp->next = dev->qp_dev->qp_table[n];
246 rcu_assign_pointer(dev->qp_dev->qp_table[n], qp);
247 trace_hfi1_qpinsert(qp, n);
248 }
249
250 spin_unlock_irqrestore(&dev->qp_dev->qpt_lock, flags);
251 }
252
253 /*
254 * Remove the QP from the table so it can't be found asynchronously by
255 * the receive interrupt routine.
256 */
257 static void remove_qp(struct hfi1_ibdev *dev, struct hfi1_qp *qp)
258 {
259 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
260 u32 n = qpn_hash(dev->qp_dev, qp->ibqp.qp_num);
261 unsigned long flags;
262 int removed = 1;
263
264 spin_lock_irqsave(&dev->qp_dev->qpt_lock, flags);
265
266 if (rcu_dereference_protected(ibp->qp[0],
267 lockdep_is_held(&dev->qp_dev->qpt_lock)) == qp) {
268 RCU_INIT_POINTER(ibp->qp[0], NULL);
269 } else if (rcu_dereference_protected(ibp->qp[1],
270 lockdep_is_held(&dev->qp_dev->qpt_lock)) == qp) {
271 RCU_INIT_POINTER(ibp->qp[1], NULL);
272 } else {
273 struct hfi1_qp *q;
274 struct hfi1_qp __rcu **qpp;
275
276 removed = 0;
277 qpp = &dev->qp_dev->qp_table[n];
278 for (; (q = rcu_dereference_protected(*qpp,
279 lockdep_is_held(&dev->qp_dev->qpt_lock)))
280 != NULL;
281 qpp = &q->next)
282 if (q == qp) {
283 RCU_INIT_POINTER(*qpp,
284 rcu_dereference_protected(qp->next,
285 lockdep_is_held(&dev->qp_dev->qpt_lock)));
286 removed = 1;
287 trace_hfi1_qpremove(qp, n);
288 break;
289 }
290 }
291
292 spin_unlock_irqrestore(&dev->qp_dev->qpt_lock, flags);
293 if (removed) {
294 synchronize_rcu();
295 if (atomic_dec_and_test(&qp->refcount))
296 wake_up(&qp->wait);
297 }
298 }
299
300 /**
301 * free_all_qps - check for QPs still in use
302 * @qpt: the QP table to empty
303 *
304 * There should not be any QPs still in use.
305 * Free memory for table.
306 */
307 static unsigned free_all_qps(struct hfi1_devdata *dd)
308 {
309 struct hfi1_ibdev *dev = &dd->verbs_dev;
310 unsigned long flags;
311 struct hfi1_qp *qp;
312 unsigned n, qp_inuse = 0;
313
314 for (n = 0; n < dd->num_pports; n++) {
315 struct hfi1_ibport *ibp = &dd->pport[n].ibport_data;
316
317 if (!hfi1_mcast_tree_empty(ibp))
318 qp_inuse++;
319 rcu_read_lock();
320 if (rcu_dereference(ibp->qp[0]))
321 qp_inuse++;
322 if (rcu_dereference(ibp->qp[1]))
323 qp_inuse++;
324 rcu_read_unlock();
325 }
326
327 if (!dev->qp_dev)
328 goto bail;
329 spin_lock_irqsave(&dev->qp_dev->qpt_lock, flags);
330 for (n = 0; n < dev->qp_dev->qp_table_size; n++) {
331 qp = rcu_dereference_protected(dev->qp_dev->qp_table[n],
332 lockdep_is_held(&dev->qp_dev->qpt_lock));
333 RCU_INIT_POINTER(dev->qp_dev->qp_table[n], NULL);
334
335 for (; qp; qp = rcu_dereference_protected(qp->next,
336 lockdep_is_held(&dev->qp_dev->qpt_lock)))
337 qp_inuse++;
338 }
339 spin_unlock_irqrestore(&dev->qp_dev->qpt_lock, flags);
340 synchronize_rcu();
341 bail:
342 return qp_inuse;
343 }
344
345 /**
346 * reset_qp - initialize the QP state to the reset state
347 * @qp: the QP to reset
348 * @type: the QP type
349 */
350 static void reset_qp(struct hfi1_qp *qp, enum ib_qp_type type)
351 {
352 qp->remote_qpn = 0;
353 qp->qkey = 0;
354 qp->qp_access_flags = 0;
355 iowait_init(
356 &qp->s_iowait,
357 1,
358 hfi1_do_send,
359 iowait_sleep,
360 iowait_wakeup);
361 qp->s_flags &= HFI1_S_SIGNAL_REQ_WR;
362 qp->s_hdrwords = 0;
363 qp->s_wqe = NULL;
364 qp->s_draining = 0;
365 qp->s_next_psn = 0;
366 qp->s_last_psn = 0;
367 qp->s_sending_psn = 0;
368 qp->s_sending_hpsn = 0;
369 qp->s_psn = 0;
370 qp->r_psn = 0;
371 qp->r_msn = 0;
372 if (type == IB_QPT_RC) {
373 qp->s_state = IB_OPCODE_RC_SEND_LAST;
374 qp->r_state = IB_OPCODE_RC_SEND_LAST;
375 } else {
376 qp->s_state = IB_OPCODE_UC_SEND_LAST;
377 qp->r_state = IB_OPCODE_UC_SEND_LAST;
378 }
379 qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
380 qp->r_nak_state = 0;
381 qp->r_aflags = 0;
382 qp->r_flags = 0;
383 qp->s_head = 0;
384 qp->s_tail = 0;
385 qp->s_cur = 0;
386 qp->s_acked = 0;
387 qp->s_last = 0;
388 qp->s_ssn = 1;
389 qp->s_lsn = 0;
390 clear_ahg(qp);
391 qp->s_mig_state = IB_MIG_MIGRATED;
392 memset(qp->s_ack_queue, 0, sizeof(qp->s_ack_queue));
393 qp->r_head_ack_queue = 0;
394 qp->s_tail_ack_queue = 0;
395 qp->s_num_rd_atomic = 0;
396 if (qp->r_rq.wq) {
397 qp->r_rq.wq->head = 0;
398 qp->r_rq.wq->tail = 0;
399 }
400 qp->r_sge.num_sge = 0;
401 }
402
403 static void clear_mr_refs(struct hfi1_qp *qp, int clr_sends)
404 {
405 unsigned n;
406
407 if (test_and_clear_bit(HFI1_R_REWIND_SGE, &qp->r_aflags))
408 hfi1_put_ss(&qp->s_rdma_read_sge);
409
410 hfi1_put_ss(&qp->r_sge);
411
412 if (clr_sends) {
413 while (qp->s_last != qp->s_head) {
414 struct hfi1_swqe *wqe = get_swqe_ptr(qp, qp->s_last);
415 unsigned i;
416
417 for (i = 0; i < wqe->wr.num_sge; i++) {
418 struct hfi1_sge *sge = &wqe->sg_list[i];
419
420 hfi1_put_mr(sge->mr);
421 }
422 if (qp->ibqp.qp_type == IB_QPT_UD ||
423 qp->ibqp.qp_type == IB_QPT_SMI ||
424 qp->ibqp.qp_type == IB_QPT_GSI)
425 atomic_dec(&to_iah(wqe->wr.wr.ud.ah)->refcount);
426 if (++qp->s_last >= qp->s_size)
427 qp->s_last = 0;
428 }
429 if (qp->s_rdma_mr) {
430 hfi1_put_mr(qp->s_rdma_mr);
431 qp->s_rdma_mr = NULL;
432 }
433 }
434
435 if (qp->ibqp.qp_type != IB_QPT_RC)
436 return;
437
438 for (n = 0; n < ARRAY_SIZE(qp->s_ack_queue); n++) {
439 struct hfi1_ack_entry *e = &qp->s_ack_queue[n];
440
441 if (e->opcode == IB_OPCODE_RC_RDMA_READ_REQUEST &&
442 e->rdma_sge.mr) {
443 hfi1_put_mr(e->rdma_sge.mr);
444 e->rdma_sge.mr = NULL;
445 }
446 }
447 }
448
449 /**
450 * hfi1_error_qp - put a QP into the error state
451 * @qp: the QP to put into the error state
452 * @err: the receive completion error to signal if a RWQE is active
453 *
454 * Flushes both send and receive work queues.
455 * Returns true if last WQE event should be generated.
456 * The QP r_lock and s_lock should be held and interrupts disabled.
457 * If we are already in error state, just return.
458 */
459 int hfi1_error_qp(struct hfi1_qp *qp, enum ib_wc_status err)
460 {
461 struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
462 struct ib_wc wc;
463 int ret = 0;
464
465 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
466 goto bail;
467
468 qp->state = IB_QPS_ERR;
469
470 if (qp->s_flags & (HFI1_S_TIMER | HFI1_S_WAIT_RNR)) {
471 qp->s_flags &= ~(HFI1_S_TIMER | HFI1_S_WAIT_RNR);
472 del_timer(&qp->s_timer);
473 }
474
475 if (qp->s_flags & HFI1_S_ANY_WAIT_SEND)
476 qp->s_flags &= ~HFI1_S_ANY_WAIT_SEND;
477
478 write_seqlock(&dev->iowait_lock);
479 if (!list_empty(&qp->s_iowait.list) && !(qp->s_flags & HFI1_S_BUSY)) {
480 qp->s_flags &= ~HFI1_S_ANY_WAIT_IO;
481 list_del_init(&qp->s_iowait.list);
482 if (atomic_dec_and_test(&qp->refcount))
483 wake_up(&qp->wait);
484 }
485 write_sequnlock(&dev->iowait_lock);
486
487 if (!(qp->s_flags & HFI1_S_BUSY)) {
488 qp->s_hdrwords = 0;
489 if (qp->s_rdma_mr) {
490 hfi1_put_mr(qp->s_rdma_mr);
491 qp->s_rdma_mr = NULL;
492 }
493 flush_tx_list(qp);
494 }
495
496 /* Schedule the sending tasklet to drain the send work queue. */
497 if (qp->s_last != qp->s_head)
498 hfi1_schedule_send(qp);
499
500 clear_mr_refs(qp, 0);
501
502 memset(&wc, 0, sizeof(wc));
503 wc.qp = &qp->ibqp;
504 wc.opcode = IB_WC_RECV;
505
506 if (test_and_clear_bit(HFI1_R_WRID_VALID, &qp->r_aflags)) {
507 wc.wr_id = qp->r_wr_id;
508 wc.status = err;
509 hfi1_cq_enter(to_icq(qp->ibqp.recv_cq), &wc, 1);
510 }
511 wc.status = IB_WC_WR_FLUSH_ERR;
512
513 if (qp->r_rq.wq) {
514 struct hfi1_rwq *wq;
515 u32 head;
516 u32 tail;
517
518 spin_lock(&qp->r_rq.lock);
519
520 /* sanity check pointers before trusting them */
521 wq = qp->r_rq.wq;
522 head = wq->head;
523 if (head >= qp->r_rq.size)
524 head = 0;
525 tail = wq->tail;
526 if (tail >= qp->r_rq.size)
527 tail = 0;
528 while (tail != head) {
529 wc.wr_id = get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
530 if (++tail >= qp->r_rq.size)
531 tail = 0;
532 hfi1_cq_enter(to_icq(qp->ibqp.recv_cq), &wc, 1);
533 }
534 wq->tail = tail;
535
536 spin_unlock(&qp->r_rq.lock);
537 } else if (qp->ibqp.event_handler)
538 ret = 1;
539
540 bail:
541 return ret;
542 }
543
544 static void flush_tx_list(struct hfi1_qp *qp)
545 {
546 while (!list_empty(&qp->s_iowait.tx_head)) {
547 struct sdma_txreq *tx;
548
549 tx = list_first_entry(
550 &qp->s_iowait.tx_head,
551 struct sdma_txreq,
552 list);
553 list_del_init(&tx->list);
554 hfi1_put_txreq(
555 container_of(tx, struct verbs_txreq, txreq));
556 }
557 }
558
559 static void flush_iowait(struct hfi1_qp *qp)
560 {
561 struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
562 unsigned long flags;
563
564 write_seqlock_irqsave(&dev->iowait_lock, flags);
565 if (!list_empty(&qp->s_iowait.list)) {
566 list_del_init(&qp->s_iowait.list);
567 if (atomic_dec_and_test(&qp->refcount))
568 wake_up(&qp->wait);
569 }
570 write_sequnlock_irqrestore(&dev->iowait_lock, flags);
571 }
572
573 static inline int opa_mtu_enum_to_int(int mtu)
574 {
575 switch (mtu) {
576 case OPA_MTU_8192: return 8192;
577 case OPA_MTU_10240: return 10240;
578 default: return -1;
579 }
580 }
581
582 /**
583 * This function is what we would push to the core layer if we wanted to be a
584 * "first class citizen". Instead we hide this here and rely on Verbs ULPs
585 * to blindly pass the MTU enum value from the PathRecord to us.
586 *
587 * The actual flag used to determine "8k MTU" will change and is currently
588 * unknown.
589 */
590 static inline int verbs_mtu_enum_to_int(struct ib_device *dev, enum ib_mtu mtu)
591 {
592 int val = opa_mtu_enum_to_int((int)mtu);
593
594 if (val > 0)
595 return val;
596 return ib_mtu_enum_to_int(mtu);
597 }
598
599
600 /**
601 * hfi1_modify_qp - modify the attributes of a queue pair
602 * @ibqp: the queue pair who's attributes we're modifying
603 * @attr: the new attributes
604 * @attr_mask: the mask of attributes to modify
605 * @udata: user data for libibverbs.so
606 *
607 * Returns 0 on success, otherwise returns an errno.
608 */
609 int hfi1_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
610 int attr_mask, struct ib_udata *udata)
611 {
612 struct hfi1_ibdev *dev = to_idev(ibqp->device);
613 struct hfi1_qp *qp = to_iqp(ibqp);
614 enum ib_qp_state cur_state, new_state;
615 struct ib_event ev;
616 int lastwqe = 0;
617 int mig = 0;
618 int ret;
619 u32 pmtu = 0; /* for gcc warning only */
620 struct hfi1_devdata *dd;
621
622 spin_lock_irq(&qp->r_lock);
623 spin_lock(&qp->s_lock);
624
625 cur_state = attr_mask & IB_QP_CUR_STATE ?
626 attr->cur_qp_state : qp->state;
627 new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
628
629 if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
630 attr_mask, IB_LINK_LAYER_UNSPECIFIED))
631 goto inval;
632
633 if (attr_mask & IB_QP_AV) {
634 if (attr->ah_attr.dlid >= HFI1_MULTICAST_LID_BASE)
635 goto inval;
636 if (hfi1_check_ah(qp->ibqp.device, &attr->ah_attr))
637 goto inval;
638 }
639
640 if (attr_mask & IB_QP_ALT_PATH) {
641 if (attr->alt_ah_attr.dlid >= HFI1_MULTICAST_LID_BASE)
642 goto inval;
643 if (hfi1_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
644 goto inval;
645 if (attr->alt_pkey_index >= hfi1_get_npkeys(dd_from_dev(dev)))
646 goto inval;
647 }
648
649 if (attr_mask & IB_QP_PKEY_INDEX)
650 if (attr->pkey_index >= hfi1_get_npkeys(dd_from_dev(dev)))
651 goto inval;
652
653 if (attr_mask & IB_QP_MIN_RNR_TIMER)
654 if (attr->min_rnr_timer > 31)
655 goto inval;
656
657 if (attr_mask & IB_QP_PORT)
658 if (qp->ibqp.qp_type == IB_QPT_SMI ||
659 qp->ibqp.qp_type == IB_QPT_GSI ||
660 attr->port_num == 0 ||
661 attr->port_num > ibqp->device->phys_port_cnt)
662 goto inval;
663
664 if (attr_mask & IB_QP_DEST_QPN)
665 if (attr->dest_qp_num > HFI1_QPN_MASK)
666 goto inval;
667
668 if (attr_mask & IB_QP_RETRY_CNT)
669 if (attr->retry_cnt > 7)
670 goto inval;
671
672 if (attr_mask & IB_QP_RNR_RETRY)
673 if (attr->rnr_retry > 7)
674 goto inval;
675
676 /*
677 * Don't allow invalid path_mtu values. OK to set greater
678 * than the active mtu (or even the max_cap, if we have tuned
679 * that to a small mtu. We'll set qp->path_mtu
680 * to the lesser of requested attribute mtu and active,
681 * for packetizing messages.
682 * Note that the QP port has to be set in INIT and MTU in RTR.
683 */
684 if (attr_mask & IB_QP_PATH_MTU) {
685 int mtu, pidx = qp->port_num - 1;
686
687 dd = dd_from_dev(dev);
688 mtu = verbs_mtu_enum_to_int(ibqp->device, attr->path_mtu);
689 if (mtu == -1)
690 goto inval;
691
692 if (mtu > dd->pport[pidx].ibmtu)
693 pmtu = mtu_to_enum(dd->pport[pidx].ibmtu, IB_MTU_2048);
694 else
695 pmtu = attr->path_mtu;
696 }
697
698 if (attr_mask & IB_QP_PATH_MIG_STATE) {
699 if (attr->path_mig_state == IB_MIG_REARM) {
700 if (qp->s_mig_state == IB_MIG_ARMED)
701 goto inval;
702 if (new_state != IB_QPS_RTS)
703 goto inval;
704 } else if (attr->path_mig_state == IB_MIG_MIGRATED) {
705 if (qp->s_mig_state == IB_MIG_REARM)
706 goto inval;
707 if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
708 goto inval;
709 if (qp->s_mig_state == IB_MIG_ARMED)
710 mig = 1;
711 } else
712 goto inval;
713 }
714
715 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
716 if (attr->max_dest_rd_atomic > HFI1_MAX_RDMA_ATOMIC)
717 goto inval;
718
719 switch (new_state) {
720 case IB_QPS_RESET:
721 if (qp->state != IB_QPS_RESET) {
722 qp->state = IB_QPS_RESET;
723 flush_iowait(qp);
724 qp->s_flags &= ~(HFI1_S_TIMER | HFI1_S_ANY_WAIT);
725 spin_unlock(&qp->s_lock);
726 spin_unlock_irq(&qp->r_lock);
727 /* Stop the sending work queue and retry timer */
728 cancel_work_sync(&qp->s_iowait.iowork);
729 del_timer_sync(&qp->s_timer);
730 iowait_sdma_drain(&qp->s_iowait);
731 flush_tx_list(qp);
732 remove_qp(dev, qp);
733 wait_event(qp->wait, !atomic_read(&qp->refcount));
734 spin_lock_irq(&qp->r_lock);
735 spin_lock(&qp->s_lock);
736 clear_mr_refs(qp, 1);
737 clear_ahg(qp);
738 reset_qp(qp, ibqp->qp_type);
739 }
740 break;
741
742 case IB_QPS_RTR:
743 /* Allow event to re-trigger if QP set to RTR more than once */
744 qp->r_flags &= ~HFI1_R_COMM_EST;
745 qp->state = new_state;
746 break;
747
748 case IB_QPS_SQD:
749 qp->s_draining = qp->s_last != qp->s_cur;
750 qp->state = new_state;
751 break;
752
753 case IB_QPS_SQE:
754 if (qp->ibqp.qp_type == IB_QPT_RC)
755 goto inval;
756 qp->state = new_state;
757 break;
758
759 case IB_QPS_ERR:
760 lastwqe = hfi1_error_qp(qp, IB_WC_WR_FLUSH_ERR);
761 break;
762
763 default:
764 qp->state = new_state;
765 break;
766 }
767
768 if (attr_mask & IB_QP_PKEY_INDEX)
769 qp->s_pkey_index = attr->pkey_index;
770
771 if (attr_mask & IB_QP_PORT)
772 qp->port_num = attr->port_num;
773
774 if (attr_mask & IB_QP_DEST_QPN)
775 qp->remote_qpn = attr->dest_qp_num;
776
777 if (attr_mask & IB_QP_SQ_PSN) {
778 qp->s_next_psn = attr->sq_psn & PSN_MODIFY_MASK;
779 qp->s_psn = qp->s_next_psn;
780 qp->s_sending_psn = qp->s_next_psn;
781 qp->s_last_psn = qp->s_next_psn - 1;
782 qp->s_sending_hpsn = qp->s_last_psn;
783 }
784
785 if (attr_mask & IB_QP_RQ_PSN)
786 qp->r_psn = attr->rq_psn & PSN_MODIFY_MASK;
787
788 if (attr_mask & IB_QP_ACCESS_FLAGS)
789 qp->qp_access_flags = attr->qp_access_flags;
790
791 if (attr_mask & IB_QP_AV) {
792 qp->remote_ah_attr = attr->ah_attr;
793 qp->s_srate = attr->ah_attr.static_rate;
794 qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
795 }
796
797 if (attr_mask & IB_QP_ALT_PATH) {
798 qp->alt_ah_attr = attr->alt_ah_attr;
799 qp->s_alt_pkey_index = attr->alt_pkey_index;
800 }
801
802 if (attr_mask & IB_QP_PATH_MIG_STATE) {
803 qp->s_mig_state = attr->path_mig_state;
804 if (mig) {
805 qp->remote_ah_attr = qp->alt_ah_attr;
806 qp->port_num = qp->alt_ah_attr.port_num;
807 qp->s_pkey_index = qp->s_alt_pkey_index;
808 qp->s_flags |= HFI1_S_AHG_CLEAR;
809 }
810 }
811
812 if (attr_mask & IB_QP_PATH_MTU) {
813 struct hfi1_ibport *ibp;
814 u8 sc, vl;
815 u32 mtu;
816
817 dd = dd_from_dev(dev);
818 ibp = &dd->pport[qp->port_num - 1].ibport_data;
819
820 sc = ibp->sl_to_sc[qp->remote_ah_attr.sl];
821 vl = sc_to_vlt(dd, sc);
822
823 mtu = verbs_mtu_enum_to_int(ibqp->device, pmtu);
824 if (vl < PER_VL_SEND_CONTEXTS)
825 mtu = min_t(u32, mtu, dd->vld[vl].mtu);
826 pmtu = mtu_to_enum(mtu, OPA_MTU_8192);
827
828 qp->path_mtu = pmtu;
829 qp->pmtu = mtu;
830 }
831
832 if (attr_mask & IB_QP_RETRY_CNT) {
833 qp->s_retry_cnt = attr->retry_cnt;
834 qp->s_retry = attr->retry_cnt;
835 }
836
837 if (attr_mask & IB_QP_RNR_RETRY) {
838 qp->s_rnr_retry_cnt = attr->rnr_retry;
839 qp->s_rnr_retry = attr->rnr_retry;
840 }
841
842 if (attr_mask & IB_QP_MIN_RNR_TIMER)
843 qp->r_min_rnr_timer = attr->min_rnr_timer;
844
845 if (attr_mask & IB_QP_TIMEOUT) {
846 qp->timeout = attr->timeout;
847 qp->timeout_jiffies =
848 usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
849 1000UL);
850 }
851
852 if (attr_mask & IB_QP_QKEY)
853 qp->qkey = attr->qkey;
854
855 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
856 qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
857
858 if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
859 qp->s_max_rd_atomic = attr->max_rd_atomic;
860
861 spin_unlock(&qp->s_lock);
862 spin_unlock_irq(&qp->r_lock);
863
864 if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
865 insert_qp(dev, qp);
866
867 if (lastwqe) {
868 ev.device = qp->ibqp.device;
869 ev.element.qp = &qp->ibqp;
870 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
871 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
872 }
873 if (mig) {
874 ev.device = qp->ibqp.device;
875 ev.element.qp = &qp->ibqp;
876 ev.event = IB_EVENT_PATH_MIG;
877 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
878 }
879 ret = 0;
880 goto bail;
881
882 inval:
883 spin_unlock(&qp->s_lock);
884 spin_unlock_irq(&qp->r_lock);
885 ret = -EINVAL;
886
887 bail:
888 return ret;
889 }
890
891 int hfi1_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
892 int attr_mask, struct ib_qp_init_attr *init_attr)
893 {
894 struct hfi1_qp *qp = to_iqp(ibqp);
895
896 attr->qp_state = qp->state;
897 attr->cur_qp_state = attr->qp_state;
898 attr->path_mtu = qp->path_mtu;
899 attr->path_mig_state = qp->s_mig_state;
900 attr->qkey = qp->qkey;
901 attr->rq_psn = mask_psn(qp->r_psn);
902 attr->sq_psn = mask_psn(qp->s_next_psn);
903 attr->dest_qp_num = qp->remote_qpn;
904 attr->qp_access_flags = qp->qp_access_flags;
905 attr->cap.max_send_wr = qp->s_size - 1;
906 attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
907 attr->cap.max_send_sge = qp->s_max_sge;
908 attr->cap.max_recv_sge = qp->r_rq.max_sge;
909 attr->cap.max_inline_data = 0;
910 attr->ah_attr = qp->remote_ah_attr;
911 attr->alt_ah_attr = qp->alt_ah_attr;
912 attr->pkey_index = qp->s_pkey_index;
913 attr->alt_pkey_index = qp->s_alt_pkey_index;
914 attr->en_sqd_async_notify = 0;
915 attr->sq_draining = qp->s_draining;
916 attr->max_rd_atomic = qp->s_max_rd_atomic;
917 attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
918 attr->min_rnr_timer = qp->r_min_rnr_timer;
919 attr->port_num = qp->port_num;
920 attr->timeout = qp->timeout;
921 attr->retry_cnt = qp->s_retry_cnt;
922 attr->rnr_retry = qp->s_rnr_retry_cnt;
923 attr->alt_port_num = qp->alt_ah_attr.port_num;
924 attr->alt_timeout = qp->alt_timeout;
925
926 init_attr->event_handler = qp->ibqp.event_handler;
927 init_attr->qp_context = qp->ibqp.qp_context;
928 init_attr->send_cq = qp->ibqp.send_cq;
929 init_attr->recv_cq = qp->ibqp.recv_cq;
930 init_attr->srq = qp->ibqp.srq;
931 init_attr->cap = attr->cap;
932 if (qp->s_flags & HFI1_S_SIGNAL_REQ_WR)
933 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
934 else
935 init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
936 init_attr->qp_type = qp->ibqp.qp_type;
937 init_attr->port_num = qp->port_num;
938 return 0;
939 }
940
941 /**
942 * hfi1_compute_aeth - compute the AETH (syndrome + MSN)
943 * @qp: the queue pair to compute the AETH for
944 *
945 * Returns the AETH.
946 */
947 __be32 hfi1_compute_aeth(struct hfi1_qp *qp)
948 {
949 u32 aeth = qp->r_msn & HFI1_MSN_MASK;
950
951 if (qp->ibqp.srq) {
952 /*
953 * Shared receive queues don't generate credits.
954 * Set the credit field to the invalid value.
955 */
956 aeth |= HFI1_AETH_CREDIT_INVAL << HFI1_AETH_CREDIT_SHIFT;
957 } else {
958 u32 min, max, x;
959 u32 credits;
960 struct hfi1_rwq *wq = qp->r_rq.wq;
961 u32 head;
962 u32 tail;
963
964 /* sanity check pointers before trusting them */
965 head = wq->head;
966 if (head >= qp->r_rq.size)
967 head = 0;
968 tail = wq->tail;
969 if (tail >= qp->r_rq.size)
970 tail = 0;
971 /*
972 * Compute the number of credits available (RWQEs).
973 * There is a small chance that the pair of reads are
974 * not atomic, which is OK, since the fuzziness is
975 * resolved as further ACKs go out.
976 */
977 credits = head - tail;
978 if ((int)credits < 0)
979 credits += qp->r_rq.size;
980 /*
981 * Binary search the credit table to find the code to
982 * use.
983 */
984 min = 0;
985 max = 31;
986 for (;;) {
987 x = (min + max) / 2;
988 if (credit_table[x] == credits)
989 break;
990 if (credit_table[x] > credits)
991 max = x;
992 else if (min == x)
993 break;
994 else
995 min = x;
996 }
997 aeth |= x << HFI1_AETH_CREDIT_SHIFT;
998 }
999 return cpu_to_be32(aeth);
1000 }
1001
1002 /**
1003 * hfi1_create_qp - create a queue pair for a device
1004 * @ibpd: the protection domain who's device we create the queue pair for
1005 * @init_attr: the attributes of the queue pair
1006 * @udata: user data for libibverbs.so
1007 *
1008 * Returns the queue pair on success, otherwise returns an errno.
1009 *
1010 * Called by the ib_create_qp() core verbs function.
1011 */
1012 struct ib_qp *hfi1_create_qp(struct ib_pd *ibpd,
1013 struct ib_qp_init_attr *init_attr,
1014 struct ib_udata *udata)
1015 {
1016 struct hfi1_qp *qp;
1017 int err;
1018 struct hfi1_swqe *swq = NULL;
1019 struct hfi1_ibdev *dev;
1020 struct hfi1_devdata *dd;
1021 size_t sz;
1022 size_t sg_list_sz;
1023 struct ib_qp *ret;
1024
1025 if (init_attr->cap.max_send_sge > hfi1_max_sges ||
1026 init_attr->cap.max_send_wr > hfi1_max_qp_wrs ||
1027 init_attr->create_flags) {
1028 ret = ERR_PTR(-EINVAL);
1029 goto bail;
1030 }
1031
1032 /* Check receive queue parameters if no SRQ is specified. */
1033 if (!init_attr->srq) {
1034 if (init_attr->cap.max_recv_sge > hfi1_max_sges ||
1035 init_attr->cap.max_recv_wr > hfi1_max_qp_wrs) {
1036 ret = ERR_PTR(-EINVAL);
1037 goto bail;
1038 }
1039 if (init_attr->cap.max_send_sge +
1040 init_attr->cap.max_send_wr +
1041 init_attr->cap.max_recv_sge +
1042 init_attr->cap.max_recv_wr == 0) {
1043 ret = ERR_PTR(-EINVAL);
1044 goto bail;
1045 }
1046 }
1047
1048 switch (init_attr->qp_type) {
1049 case IB_QPT_SMI:
1050 case IB_QPT_GSI:
1051 if (init_attr->port_num == 0 ||
1052 init_attr->port_num > ibpd->device->phys_port_cnt) {
1053 ret = ERR_PTR(-EINVAL);
1054 goto bail;
1055 }
1056 case IB_QPT_UC:
1057 case IB_QPT_RC:
1058 case IB_QPT_UD:
1059 sz = sizeof(struct hfi1_sge) *
1060 init_attr->cap.max_send_sge +
1061 sizeof(struct hfi1_swqe);
1062 swq = vmalloc((init_attr->cap.max_send_wr + 1) * sz);
1063 if (swq == NULL) {
1064 ret = ERR_PTR(-ENOMEM);
1065 goto bail;
1066 }
1067 sz = sizeof(*qp);
1068 sg_list_sz = 0;
1069 if (init_attr->srq) {
1070 struct hfi1_srq *srq = to_isrq(init_attr->srq);
1071
1072 if (srq->rq.max_sge > 1)
1073 sg_list_sz = sizeof(*qp->r_sg_list) *
1074 (srq->rq.max_sge - 1);
1075 } else if (init_attr->cap.max_recv_sge > 1)
1076 sg_list_sz = sizeof(*qp->r_sg_list) *
1077 (init_attr->cap.max_recv_sge - 1);
1078 qp = kzalloc(sz + sg_list_sz, GFP_KERNEL);
1079 if (!qp) {
1080 ret = ERR_PTR(-ENOMEM);
1081 goto bail_swq;
1082 }
1083 RCU_INIT_POINTER(qp->next, NULL);
1084 qp->s_hdr = kzalloc(sizeof(*qp->s_hdr), GFP_KERNEL);
1085 if (!qp->s_hdr) {
1086 ret = ERR_PTR(-ENOMEM);
1087 goto bail_qp;
1088 }
1089 qp->timeout_jiffies =
1090 usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
1091 1000UL);
1092 if (init_attr->srq)
1093 sz = 0;
1094 else {
1095 qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
1096 qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
1097 sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
1098 sizeof(struct hfi1_rwqe);
1099 qp->r_rq.wq = vmalloc_user(sizeof(struct hfi1_rwq) +
1100 qp->r_rq.size * sz);
1101 if (!qp->r_rq.wq) {
1102 ret = ERR_PTR(-ENOMEM);
1103 goto bail_qp;
1104 }
1105 }
1106
1107 /*
1108 * ib_create_qp() will initialize qp->ibqp
1109 * except for qp->ibqp.qp_num.
1110 */
1111 spin_lock_init(&qp->r_lock);
1112 spin_lock_init(&qp->s_lock);
1113 spin_lock_init(&qp->r_rq.lock);
1114 atomic_set(&qp->refcount, 0);
1115 init_waitqueue_head(&qp->wait);
1116 init_timer(&qp->s_timer);
1117 qp->s_timer.data = (unsigned long)qp;
1118 INIT_LIST_HEAD(&qp->rspwait);
1119 qp->state = IB_QPS_RESET;
1120 qp->s_wq = swq;
1121 qp->s_size = init_attr->cap.max_send_wr + 1;
1122 qp->s_max_sge = init_attr->cap.max_send_sge;
1123 if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
1124 qp->s_flags = HFI1_S_SIGNAL_REQ_WR;
1125 dev = to_idev(ibpd->device);
1126 dd = dd_from_dev(dev);
1127 err = alloc_qpn(dd, &dev->qp_dev->qpn_table, init_attr->qp_type,
1128 init_attr->port_num);
1129 if (err < 0) {
1130 ret = ERR_PTR(err);
1131 vfree(qp->r_rq.wq);
1132 goto bail_qp;
1133 }
1134 qp->ibqp.qp_num = err;
1135 qp->port_num = init_attr->port_num;
1136 reset_qp(qp, init_attr->qp_type);
1137
1138 break;
1139
1140 default:
1141 /* Don't support raw QPs */
1142 ret = ERR_PTR(-ENOSYS);
1143 goto bail;
1144 }
1145
1146 init_attr->cap.max_inline_data = 0;
1147
1148 /*
1149 * Return the address of the RWQ as the offset to mmap.
1150 * See hfi1_mmap() for details.
1151 */
1152 if (udata && udata->outlen >= sizeof(__u64)) {
1153 if (!qp->r_rq.wq) {
1154 __u64 offset = 0;
1155
1156 err = ib_copy_to_udata(udata, &offset,
1157 sizeof(offset));
1158 if (err) {
1159 ret = ERR_PTR(err);
1160 goto bail_ip;
1161 }
1162 } else {
1163 u32 s = sizeof(struct hfi1_rwq) + qp->r_rq.size * sz;
1164
1165 qp->ip = hfi1_create_mmap_info(dev, s,
1166 ibpd->uobject->context,
1167 qp->r_rq.wq);
1168 if (!qp->ip) {
1169 ret = ERR_PTR(-ENOMEM);
1170 goto bail_ip;
1171 }
1172
1173 err = ib_copy_to_udata(udata, &(qp->ip->offset),
1174 sizeof(qp->ip->offset));
1175 if (err) {
1176 ret = ERR_PTR(err);
1177 goto bail_ip;
1178 }
1179 }
1180 }
1181
1182 spin_lock(&dev->n_qps_lock);
1183 if (dev->n_qps_allocated == hfi1_max_qps) {
1184 spin_unlock(&dev->n_qps_lock);
1185 ret = ERR_PTR(-ENOMEM);
1186 goto bail_ip;
1187 }
1188
1189 dev->n_qps_allocated++;
1190 spin_unlock(&dev->n_qps_lock);
1191
1192 if (qp->ip) {
1193 spin_lock_irq(&dev->pending_lock);
1194 list_add(&qp->ip->pending_mmaps, &dev->pending_mmaps);
1195 spin_unlock_irq(&dev->pending_lock);
1196 }
1197
1198 ret = &qp->ibqp;
1199
1200 /*
1201 * We have our QP and its good, now keep track of what types of opcodes
1202 * can be processed on this QP. We do this by keeping track of what the
1203 * 3 high order bits of the opcode are.
1204 */
1205 switch (init_attr->qp_type) {
1206 case IB_QPT_SMI:
1207 case IB_QPT_GSI:
1208 case IB_QPT_UD:
1209 qp->allowed_ops = IB_OPCODE_UD_SEND_ONLY & OPCODE_QP_MASK;
1210 break;
1211 case IB_QPT_RC:
1212 qp->allowed_ops = IB_OPCODE_RC_SEND_ONLY & OPCODE_QP_MASK;
1213 break;
1214 case IB_QPT_UC:
1215 qp->allowed_ops = IB_OPCODE_UC_SEND_ONLY & OPCODE_QP_MASK;
1216 break;
1217 default:
1218 ret = ERR_PTR(-EINVAL);
1219 goto bail_ip;
1220 }
1221
1222 goto bail;
1223
1224 bail_ip:
1225 if (qp->ip)
1226 kref_put(&qp->ip->ref, hfi1_release_mmap_info);
1227 else
1228 vfree(qp->r_rq.wq);
1229 free_qpn(&dev->qp_dev->qpn_table, qp->ibqp.qp_num);
1230 bail_qp:
1231 kfree(qp->s_hdr);
1232 kfree(qp);
1233 bail_swq:
1234 vfree(swq);
1235 bail:
1236 return ret;
1237 }
1238
1239 /**
1240 * hfi1_destroy_qp - destroy a queue pair
1241 * @ibqp: the queue pair to destroy
1242 *
1243 * Returns 0 on success.
1244 *
1245 * Note that this can be called while the QP is actively sending or
1246 * receiving!
1247 */
1248 int hfi1_destroy_qp(struct ib_qp *ibqp)
1249 {
1250 struct hfi1_qp *qp = to_iqp(ibqp);
1251 struct hfi1_ibdev *dev = to_idev(ibqp->device);
1252
1253 /* Make sure HW and driver activity is stopped. */
1254 spin_lock_irq(&qp->r_lock);
1255 spin_lock(&qp->s_lock);
1256 if (qp->state != IB_QPS_RESET) {
1257 qp->state = IB_QPS_RESET;
1258 flush_iowait(qp);
1259 qp->s_flags &= ~(HFI1_S_TIMER | HFI1_S_ANY_WAIT);
1260 spin_unlock(&qp->s_lock);
1261 spin_unlock_irq(&qp->r_lock);
1262 cancel_work_sync(&qp->s_iowait.iowork);
1263 del_timer_sync(&qp->s_timer);
1264 iowait_sdma_drain(&qp->s_iowait);
1265 flush_tx_list(qp);
1266 remove_qp(dev, qp);
1267 wait_event(qp->wait, !atomic_read(&qp->refcount));
1268 spin_lock_irq(&qp->r_lock);
1269 spin_lock(&qp->s_lock);
1270 clear_mr_refs(qp, 1);
1271 clear_ahg(qp);
1272 }
1273 spin_unlock(&qp->s_lock);
1274 spin_unlock_irq(&qp->r_lock);
1275
1276 /* all user's cleaned up, mark it available */
1277 free_qpn(&dev->qp_dev->qpn_table, qp->ibqp.qp_num);
1278 spin_lock(&dev->n_qps_lock);
1279 dev->n_qps_allocated--;
1280 spin_unlock(&dev->n_qps_lock);
1281
1282 if (qp->ip)
1283 kref_put(&qp->ip->ref, hfi1_release_mmap_info);
1284 else
1285 vfree(qp->r_rq.wq);
1286 vfree(qp->s_wq);
1287 kfree(qp->s_hdr);
1288 kfree(qp);
1289 return 0;
1290 }
1291
1292 /**
1293 * init_qpn_table - initialize the QP number table for a device
1294 * @qpt: the QPN table
1295 */
1296 static int init_qpn_table(struct hfi1_devdata *dd, struct hfi1_qpn_table *qpt)
1297 {
1298 u32 offset, qpn, i;
1299 struct qpn_map *map;
1300 int ret = 0;
1301
1302 spin_lock_init(&qpt->lock);
1303
1304 qpt->last = 0;
1305 qpt->incr = 1 << dd->qos_shift;
1306
1307 /* insure we don't assign QPs from KDETH 64K window */
1308 qpn = kdeth_qp << 16;
1309 qpt->nmaps = qpn / BITS_PER_PAGE;
1310 /* This should always be zero */
1311 offset = qpn & BITS_PER_PAGE_MASK;
1312 map = &qpt->map[qpt->nmaps];
1313 dd_dev_info(dd, "Reserving QPNs for KDETH window from 0x%x to 0x%x\n",
1314 qpn, qpn + 65535);
1315 for (i = 0; i < 65536; i++) {
1316 if (!map->page) {
1317 get_map_page(qpt, map);
1318 if (!map->page) {
1319 ret = -ENOMEM;
1320 break;
1321 }
1322 }
1323 set_bit(offset, map->page);
1324 offset++;
1325 if (offset == BITS_PER_PAGE) {
1326 /* next page */
1327 qpt->nmaps++;
1328 map++;
1329 offset = 0;
1330 }
1331 }
1332 return ret;
1333 }
1334
1335 /**
1336 * free_qpn_table - free the QP number table for a device
1337 * @qpt: the QPN table
1338 */
1339 static void free_qpn_table(struct hfi1_qpn_table *qpt)
1340 {
1341 int i;
1342
1343 for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
1344 free_page((unsigned long) qpt->map[i].page);
1345 }
1346
1347 /**
1348 * hfi1_get_credit - flush the send work queue of a QP
1349 * @qp: the qp who's send work queue to flush
1350 * @aeth: the Acknowledge Extended Transport Header
1351 *
1352 * The QP s_lock should be held.
1353 */
1354 void hfi1_get_credit(struct hfi1_qp *qp, u32 aeth)
1355 {
1356 u32 credit = (aeth >> HFI1_AETH_CREDIT_SHIFT) & HFI1_AETH_CREDIT_MASK;
1357
1358 /*
1359 * If the credit is invalid, we can send
1360 * as many packets as we like. Otherwise, we have to
1361 * honor the credit field.
1362 */
1363 if (credit == HFI1_AETH_CREDIT_INVAL) {
1364 if (!(qp->s_flags & HFI1_S_UNLIMITED_CREDIT)) {
1365 qp->s_flags |= HFI1_S_UNLIMITED_CREDIT;
1366 if (qp->s_flags & HFI1_S_WAIT_SSN_CREDIT) {
1367 qp->s_flags &= ~HFI1_S_WAIT_SSN_CREDIT;
1368 hfi1_schedule_send(qp);
1369 }
1370 }
1371 } else if (!(qp->s_flags & HFI1_S_UNLIMITED_CREDIT)) {
1372 /* Compute new LSN (i.e., MSN + credit) */
1373 credit = (aeth + credit_table[credit]) & HFI1_MSN_MASK;
1374 if (cmp_msn(credit, qp->s_lsn) > 0) {
1375 qp->s_lsn = credit;
1376 if (qp->s_flags & HFI1_S_WAIT_SSN_CREDIT) {
1377 qp->s_flags &= ~HFI1_S_WAIT_SSN_CREDIT;
1378 hfi1_schedule_send(qp);
1379 }
1380 }
1381 }
1382 }
1383
1384 void hfi1_qp_wakeup(struct hfi1_qp *qp, u32 flag)
1385 {
1386 unsigned long flags;
1387
1388 spin_lock_irqsave(&qp->s_lock, flags);
1389 if (qp->s_flags & flag) {
1390 qp->s_flags &= ~flag;
1391 trace_hfi1_qpwakeup(qp, flag);
1392 hfi1_schedule_send(qp);
1393 }
1394 spin_unlock_irqrestore(&qp->s_lock, flags);
1395 /* Notify hfi1_destroy_qp() if it is waiting. */
1396 if (atomic_dec_and_test(&qp->refcount))
1397 wake_up(&qp->wait);
1398 }
1399
1400 static int iowait_sleep(
1401 struct sdma_engine *sde,
1402 struct iowait *wait,
1403 struct sdma_txreq *stx,
1404 unsigned seq)
1405 {
1406 struct verbs_txreq *tx = container_of(stx, struct verbs_txreq, txreq);
1407 struct hfi1_qp *qp;
1408 unsigned long flags;
1409 int ret = 0;
1410 struct hfi1_ibdev *dev;
1411
1412 qp = tx->qp;
1413
1414 spin_lock_irqsave(&qp->s_lock, flags);
1415 if (ib_hfi1_state_ops[qp->state] & HFI1_PROCESS_RECV_OK) {
1416
1417 /*
1418 * If we couldn't queue the DMA request, save the info
1419 * and try again later rather than destroying the
1420 * buffer and undoing the side effects of the copy.
1421 */
1422 /* Make a common routine? */
1423 dev = &sde->dd->verbs_dev;
1424 list_add_tail(&stx->list, &wait->tx_head);
1425 write_seqlock(&dev->iowait_lock);
1426 if (sdma_progress(sde, seq, stx))
1427 goto eagain;
1428 if (list_empty(&qp->s_iowait.list)) {
1429 struct hfi1_ibport *ibp =
1430 to_iport(qp->ibqp.device, qp->port_num);
1431
1432 ibp->n_dmawait++;
1433 qp->s_flags |= HFI1_S_WAIT_DMA_DESC;
1434 list_add_tail(&qp->s_iowait.list, &sde->dmawait);
1435 trace_hfi1_qpsleep(qp, HFI1_S_WAIT_DMA_DESC);
1436 atomic_inc(&qp->refcount);
1437 }
1438 write_sequnlock(&dev->iowait_lock);
1439 qp->s_flags &= ~HFI1_S_BUSY;
1440 spin_unlock_irqrestore(&qp->s_lock, flags);
1441 ret = -EBUSY;
1442 } else {
1443 spin_unlock_irqrestore(&qp->s_lock, flags);
1444 hfi1_put_txreq(tx);
1445 }
1446 return ret;
1447 eagain:
1448 write_sequnlock(&dev->iowait_lock);
1449 spin_unlock_irqrestore(&qp->s_lock, flags);
1450 list_del_init(&stx->list);
1451 return -EAGAIN;
1452 }
1453
1454 static void iowait_wakeup(struct iowait *wait, int reason)
1455 {
1456 struct hfi1_qp *qp = container_of(wait, struct hfi1_qp, s_iowait);
1457
1458 WARN_ON(reason != SDMA_AVAIL_REASON);
1459 hfi1_qp_wakeup(qp, HFI1_S_WAIT_DMA_DESC);
1460 }
1461
1462 int hfi1_qp_init(struct hfi1_ibdev *dev)
1463 {
1464 struct hfi1_devdata *dd = dd_from_dev(dev);
1465 int i;
1466 int ret = -ENOMEM;
1467
1468 /* allocate parent object */
1469 dev->qp_dev = kzalloc(sizeof(*dev->qp_dev), GFP_KERNEL);
1470 if (!dev->qp_dev)
1471 goto nomem;
1472 /* allocate hash table */
1473 dev->qp_dev->qp_table_size = hfi1_qp_table_size;
1474 dev->qp_dev->qp_table_bits = ilog2(hfi1_qp_table_size);
1475 dev->qp_dev->qp_table =
1476 kmalloc(dev->qp_dev->qp_table_size *
1477 sizeof(*dev->qp_dev->qp_table),
1478 GFP_KERNEL);
1479 if (!dev->qp_dev->qp_table)
1480 goto nomem;
1481 for (i = 0; i < dev->qp_dev->qp_table_size; i++)
1482 RCU_INIT_POINTER(dev->qp_dev->qp_table[i], NULL);
1483 spin_lock_init(&dev->qp_dev->qpt_lock);
1484 /* initialize qpn map */
1485 ret = init_qpn_table(dd, &dev->qp_dev->qpn_table);
1486 if (ret)
1487 goto nomem;
1488 return ret;
1489 nomem:
1490 if (dev->qp_dev) {
1491 kfree(dev->qp_dev->qp_table);
1492 free_qpn_table(&dev->qp_dev->qpn_table);
1493 kfree(dev->qp_dev);
1494 }
1495 return ret;
1496 }
1497
1498 void hfi1_qp_exit(struct hfi1_ibdev *dev)
1499 {
1500 struct hfi1_devdata *dd = dd_from_dev(dev);
1501 u32 qps_inuse;
1502
1503 qps_inuse = free_all_qps(dd);
1504 if (qps_inuse)
1505 dd_dev_err(dd, "QP memory leak! %u still in use\n",
1506 qps_inuse);
1507 if (dev->qp_dev) {
1508 kfree(dev->qp_dev->qp_table);
1509 free_qpn_table(&dev->qp_dev->qpn_table);
1510 kfree(dev->qp_dev);
1511 }
1512 }
1513
1514 /**
1515 *
1516 * qp_to_sdma_engine - map a qp to a send engine
1517 * @qp: the QP
1518 * @sc5: the 5 bit sc
1519 *
1520 * Return:
1521 * A send engine for the qp or NULL for SMI type qp.
1522 */
1523 struct sdma_engine *qp_to_sdma_engine(struct hfi1_qp *qp, u8 sc5)
1524 {
1525 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1526 struct sdma_engine *sde;
1527
1528 if (!(dd->flags & HFI1_HAS_SEND_DMA))
1529 return NULL;
1530 switch (qp->ibqp.qp_type) {
1531 case IB_QPT_UC:
1532 case IB_QPT_RC:
1533 break;
1534 case IB_QPT_SMI:
1535 return NULL;
1536 default:
1537 break;
1538 }
1539 sde = sdma_select_engine_sc(dd, qp->ibqp.qp_num >> dd->qos_shift, sc5);
1540 return sde;
1541 }
1542
1543 struct qp_iter {
1544 struct hfi1_ibdev *dev;
1545 struct hfi1_qp *qp;
1546 int specials;
1547 int n;
1548 };
1549
1550 struct qp_iter *qp_iter_init(struct hfi1_ibdev *dev)
1551 {
1552 struct qp_iter *iter;
1553
1554 iter = kzalloc(sizeof(*iter), GFP_KERNEL);
1555 if (!iter)
1556 return NULL;
1557
1558 iter->dev = dev;
1559 iter->specials = dev->ibdev.phys_port_cnt * 2;
1560 if (qp_iter_next(iter)) {
1561 kfree(iter);
1562 return NULL;
1563 }
1564
1565 return iter;
1566 }
1567
1568 int qp_iter_next(struct qp_iter *iter)
1569 {
1570 struct hfi1_ibdev *dev = iter->dev;
1571 int n = iter->n;
1572 int ret = 1;
1573 struct hfi1_qp *pqp = iter->qp;
1574 struct hfi1_qp *qp;
1575
1576 /*
1577 * The approach is to consider the special qps
1578 * as an additional table entries before the
1579 * real hash table. Since the qp code sets
1580 * the qp->next hash link to NULL, this works just fine.
1581 *
1582 * iter->specials is 2 * # ports
1583 *
1584 * n = 0..iter->specials is the special qp indices
1585 *
1586 * n = iter->specials..dev->qp_dev->qp_table_size+iter->specials are
1587 * the potential hash bucket entries
1588 *
1589 */
1590 for (; n < dev->qp_dev->qp_table_size + iter->specials; n++) {
1591 if (pqp) {
1592 qp = rcu_dereference(pqp->next);
1593 } else {
1594 if (n < iter->specials) {
1595 struct hfi1_pportdata *ppd;
1596 struct hfi1_ibport *ibp;
1597 int pidx;
1598
1599 pidx = n % dev->ibdev.phys_port_cnt;
1600 ppd = &dd_from_dev(dev)->pport[pidx];
1601 ibp = &ppd->ibport_data;
1602
1603 if (!(n & 1))
1604 qp = rcu_dereference(ibp->qp[0]);
1605 else
1606 qp = rcu_dereference(ibp->qp[1]);
1607 } else {
1608 qp = rcu_dereference(
1609 dev->qp_dev->qp_table[
1610 (n - iter->specials)]);
1611 }
1612 }
1613 pqp = qp;
1614 if (qp) {
1615 iter->qp = qp;
1616 iter->n = n;
1617 return 0;
1618 }
1619 }
1620 return ret;
1621 }
1622
1623 static const char * const qp_type_str[] = {
1624 "SMI", "GSI", "RC", "UC", "UD",
1625 };
1626
1627 static int qp_idle(struct hfi1_qp *qp)
1628 {
1629 return
1630 qp->s_last == qp->s_acked &&
1631 qp->s_acked == qp->s_cur &&
1632 qp->s_cur == qp->s_tail &&
1633 qp->s_tail == qp->s_head;
1634 }
1635
1636 void qp_iter_print(struct seq_file *s, struct qp_iter *iter)
1637 {
1638 struct hfi1_swqe *wqe;
1639 struct hfi1_qp *qp = iter->qp;
1640 struct sdma_engine *sde;
1641
1642 sde = qp_to_sdma_engine(qp, qp->s_sc);
1643 wqe = get_swqe_ptr(qp, qp->s_last);
1644 seq_printf(s,
1645 "N %d %s QP%u R %u %s %u %u %u f=%x %u %u %u %u %u PSN %x %x %x %x %x (%u %u %u %u %u %u) QP%u LID %x SL %u MTU %d %u %u %u SDE %p,%u\n",
1646 iter->n,
1647 qp_idle(qp) ? "I" : "B",
1648 qp->ibqp.qp_num,
1649 atomic_read(&qp->refcount),
1650 qp_type_str[qp->ibqp.qp_type],
1651 qp->state,
1652 wqe ? wqe->wr.opcode : 0,
1653 qp->s_hdrwords,
1654 qp->s_flags,
1655 atomic_read(&qp->s_iowait.sdma_busy),
1656 !list_empty(&qp->s_iowait.list),
1657 qp->timeout,
1658 wqe ? wqe->ssn : 0,
1659 qp->s_lsn,
1660 qp->s_last_psn,
1661 qp->s_psn, qp->s_next_psn,
1662 qp->s_sending_psn, qp->s_sending_hpsn,
1663 qp->s_last, qp->s_acked, qp->s_cur,
1664 qp->s_tail, qp->s_head, qp->s_size,
1665 qp->remote_qpn,
1666 qp->remote_ah_attr.dlid,
1667 qp->remote_ah_attr.sl,
1668 qp->pmtu,
1669 qp->s_retry_cnt,
1670 qp->timeout,
1671 qp->s_rnr_retry_cnt,
1672 sde,
1673 sde ? sde->this_idx : 0);
1674 }
1675
1676 void qp_comm_est(struct hfi1_qp *qp)
1677 {
1678 qp->r_flags |= HFI1_R_COMM_EST;
1679 if (qp->ibqp.event_handler) {
1680 struct ib_event ev;
1681
1682 ev.device = qp->ibqp.device;
1683 ev.element.qp = &qp->ibqp;
1684 ev.event = IB_EVENT_COMM_EST;
1685 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1686 }
1687 }