]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/staging/rdma/hfi1/sdma.c
Merge tag 'for-linus-20160216' of git://git.infradead.org/intel-iommu
[mirror_ubuntu-zesty-kernel.git] / drivers / staging / rdma / hfi1 / sdma.c
1 /*
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2015 Intel Corporation.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * BSD LICENSE
20 *
21 * Copyright(c) 2015 Intel Corporation.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 *
27 * - Redistributions of source code must retain the above copyright
28 * notice, this list of conditions and the following disclaimer.
29 * - Redistributions in binary form must reproduce the above copyright
30 * notice, this list of conditions and the following disclaimer in
31 * the documentation and/or other materials provided with the
32 * distribution.
33 * - Neither the name of Intel Corporation nor the names of its
34 * contributors may be used to endorse or promote products derived
35 * from this software without specific prior written permission.
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 *
49 */
50
51 #include <linux/spinlock.h>
52 #include <linux/seqlock.h>
53 #include <linux/netdevice.h>
54 #include <linux/moduleparam.h>
55 #include <linux/bitops.h>
56 #include <linux/timer.h>
57 #include <linux/vmalloc.h>
58 #include <linux/highmem.h>
59
60 #include "hfi.h"
61 #include "common.h"
62 #include "qp.h"
63 #include "sdma.h"
64 #include "iowait.h"
65 #include "trace.h"
66
67 /* must be a power of 2 >= 64 <= 32768 */
68 #define SDMA_DESCQ_CNT 2048
69 #define SDMA_DESC_INTR 64
70 #define INVALID_TAIL 0xffff
71
72 static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
73 module_param(sdma_descq_cnt, uint, S_IRUGO);
74 MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
75
76 static uint sdma_idle_cnt = 250;
77 module_param(sdma_idle_cnt, uint, S_IRUGO);
78 MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
79
80 uint mod_num_sdma;
81 module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
82 MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
83
84 static uint sdma_desct_intr = SDMA_DESC_INTR;
85 module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
86 MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
87
88 #define SDMA_WAIT_BATCH_SIZE 20
89 /* max wait time for a SDMA engine to indicate it has halted */
90 #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
91 /* all SDMA engine errors that cause a halt */
92
93 #define SD(name) SEND_DMA_##name
94 #define ALL_SDMA_ENG_HALT_ERRS \
95 (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
96 | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
97 | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
98 | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
99 | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
100 | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
101 | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
102 | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
103 | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
104 | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
105 | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
106 | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
107 | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
108 | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
109 | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
110 | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
111 | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
112 | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
113
114 /* sdma_sendctrl operations */
115 #define SDMA_SENDCTRL_OP_ENABLE (1U << 0)
116 #define SDMA_SENDCTRL_OP_INTENABLE (1U << 1)
117 #define SDMA_SENDCTRL_OP_HALT (1U << 2)
118 #define SDMA_SENDCTRL_OP_CLEANUP (1U << 3)
119
120 /* handle long defines */
121 #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
122 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
123 #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
124 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
125
126 static const char * const sdma_state_names[] = {
127 [sdma_state_s00_hw_down] = "s00_HwDown",
128 [sdma_state_s10_hw_start_up_halt_wait] = "s10_HwStartUpHaltWait",
129 [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
130 [sdma_state_s20_idle] = "s20_Idle",
131 [sdma_state_s30_sw_clean_up_wait] = "s30_SwCleanUpWait",
132 [sdma_state_s40_hw_clean_up_wait] = "s40_HwCleanUpWait",
133 [sdma_state_s50_hw_halt_wait] = "s50_HwHaltWait",
134 [sdma_state_s60_idle_halt_wait] = "s60_IdleHaltWait",
135 [sdma_state_s80_hw_freeze] = "s80_HwFreeze",
136 [sdma_state_s82_freeze_sw_clean] = "s82_FreezeSwClean",
137 [sdma_state_s99_running] = "s99_Running",
138 };
139
140 static const char * const sdma_event_names[] = {
141 [sdma_event_e00_go_hw_down] = "e00_GoHwDown",
142 [sdma_event_e10_go_hw_start] = "e10_GoHwStart",
143 [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
144 [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
145 [sdma_event_e30_go_running] = "e30_GoRunning",
146 [sdma_event_e40_sw_cleaned] = "e40_SwCleaned",
147 [sdma_event_e50_hw_cleaned] = "e50_HwCleaned",
148 [sdma_event_e60_hw_halted] = "e60_HwHalted",
149 [sdma_event_e70_go_idle] = "e70_GoIdle",
150 [sdma_event_e80_hw_freeze] = "e80_HwFreeze",
151 [sdma_event_e81_hw_frozen] = "e81_HwFrozen",
152 [sdma_event_e82_hw_unfreeze] = "e82_HwUnfreeze",
153 [sdma_event_e85_link_down] = "e85_LinkDown",
154 [sdma_event_e90_sw_halted] = "e90_SwHalted",
155 };
156
157 static const struct sdma_set_state_action sdma_action_table[] = {
158 [sdma_state_s00_hw_down] = {
159 .go_s99_running_tofalse = 1,
160 .op_enable = 0,
161 .op_intenable = 0,
162 .op_halt = 0,
163 .op_cleanup = 0,
164 },
165 [sdma_state_s10_hw_start_up_halt_wait] = {
166 .op_enable = 0,
167 .op_intenable = 0,
168 .op_halt = 1,
169 .op_cleanup = 0,
170 },
171 [sdma_state_s15_hw_start_up_clean_wait] = {
172 .op_enable = 0,
173 .op_intenable = 1,
174 .op_halt = 0,
175 .op_cleanup = 1,
176 },
177 [sdma_state_s20_idle] = {
178 .op_enable = 0,
179 .op_intenable = 1,
180 .op_halt = 0,
181 .op_cleanup = 0,
182 },
183 [sdma_state_s30_sw_clean_up_wait] = {
184 .op_enable = 0,
185 .op_intenable = 0,
186 .op_halt = 0,
187 .op_cleanup = 0,
188 },
189 [sdma_state_s40_hw_clean_up_wait] = {
190 .op_enable = 0,
191 .op_intenable = 0,
192 .op_halt = 0,
193 .op_cleanup = 1,
194 },
195 [sdma_state_s50_hw_halt_wait] = {
196 .op_enable = 0,
197 .op_intenable = 0,
198 .op_halt = 0,
199 .op_cleanup = 0,
200 },
201 [sdma_state_s60_idle_halt_wait] = {
202 .go_s99_running_tofalse = 1,
203 .op_enable = 0,
204 .op_intenable = 0,
205 .op_halt = 1,
206 .op_cleanup = 0,
207 },
208 [sdma_state_s80_hw_freeze] = {
209 .op_enable = 0,
210 .op_intenable = 0,
211 .op_halt = 0,
212 .op_cleanup = 0,
213 },
214 [sdma_state_s82_freeze_sw_clean] = {
215 .op_enable = 0,
216 .op_intenable = 0,
217 .op_halt = 0,
218 .op_cleanup = 0,
219 },
220 [sdma_state_s99_running] = {
221 .op_enable = 1,
222 .op_intenable = 1,
223 .op_halt = 0,
224 .op_cleanup = 0,
225 .go_s99_running_totrue = 1,
226 },
227 };
228
229 #define SDMA_TAIL_UPDATE_THRESH 0x1F
230
231 /* declare all statics here rather than keep sorting */
232 static void sdma_complete(struct kref *);
233 static void sdma_finalput(struct sdma_state *);
234 static void sdma_get(struct sdma_state *);
235 static void sdma_hw_clean_up_task(unsigned long);
236 static void sdma_put(struct sdma_state *);
237 static void sdma_set_state(struct sdma_engine *, enum sdma_states);
238 static void sdma_start_hw_clean_up(struct sdma_engine *);
239 static void sdma_sw_clean_up_task(unsigned long);
240 static void sdma_sendctrl(struct sdma_engine *, unsigned);
241 static void init_sdma_regs(struct sdma_engine *, u32, uint);
242 static void sdma_process_event(
243 struct sdma_engine *sde,
244 enum sdma_events event);
245 static void __sdma_process_event(
246 struct sdma_engine *sde,
247 enum sdma_events event);
248 static void dump_sdma_state(struct sdma_engine *sde);
249 static void sdma_make_progress(struct sdma_engine *sde, u64 status);
250 static void sdma_desc_avail(struct sdma_engine *sde, unsigned avail);
251 static void sdma_flush_descq(struct sdma_engine *sde);
252
253 /**
254 * sdma_state_name() - return state string from enum
255 * @state: state
256 */
257 static const char *sdma_state_name(enum sdma_states state)
258 {
259 return sdma_state_names[state];
260 }
261
262 static void sdma_get(struct sdma_state *ss)
263 {
264 kref_get(&ss->kref);
265 }
266
267 static void sdma_complete(struct kref *kref)
268 {
269 struct sdma_state *ss =
270 container_of(kref, struct sdma_state, kref);
271
272 complete(&ss->comp);
273 }
274
275 static void sdma_put(struct sdma_state *ss)
276 {
277 kref_put(&ss->kref, sdma_complete);
278 }
279
280 static void sdma_finalput(struct sdma_state *ss)
281 {
282 sdma_put(ss);
283 wait_for_completion(&ss->comp);
284 }
285
286 static inline void write_sde_csr(
287 struct sdma_engine *sde,
288 u32 offset0,
289 u64 value)
290 {
291 write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
292 }
293
294 static inline u64 read_sde_csr(
295 struct sdma_engine *sde,
296 u32 offset0)
297 {
298 return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
299 }
300
301 /*
302 * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
303 * sdma engine 'sde' to drop to 0.
304 */
305 static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
306 int pause)
307 {
308 u64 off = 8 * sde->this_idx;
309 struct hfi1_devdata *dd = sde->dd;
310 int lcnt = 0;
311 u64 reg_prev;
312 u64 reg = 0;
313
314 while (1) {
315 reg_prev = reg;
316 reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
317
318 reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
319 reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
320 if (reg == 0)
321 break;
322 /* counter is reest if accupancy count changes */
323 if (reg != reg_prev)
324 lcnt = 0;
325 if (lcnt++ > 500) {
326 /* timed out - bounce the link */
327 dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
328 __func__, sde->this_idx, (u32)reg);
329 queue_work(dd->pport->hfi1_wq,
330 &dd->pport->link_bounce_work);
331 break;
332 }
333 udelay(1);
334 }
335 }
336
337 /*
338 * sdma_wait() - wait for packet egress to complete for all SDMA engines,
339 * and pause for credit return.
340 */
341 void sdma_wait(struct hfi1_devdata *dd)
342 {
343 int i;
344
345 for (i = 0; i < dd->num_sdma; i++) {
346 struct sdma_engine *sde = &dd->per_sdma[i];
347
348 sdma_wait_for_packet_egress(sde, 0);
349 }
350 }
351
352 static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
353 {
354 u64 reg;
355
356 if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
357 return;
358 reg = cnt;
359 reg &= SD(DESC_CNT_CNT_MASK);
360 reg <<= SD(DESC_CNT_CNT_SHIFT);
361 write_sde_csr(sde, SD(DESC_CNT), reg);
362 }
363
364 /*
365 * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
366 *
367 * Depending on timing there can be txreqs in two places:
368 * - in the descq ring
369 * - in the flush list
370 *
371 * To avoid ordering issues the descq ring needs to be flushed
372 * first followed by the flush list.
373 *
374 * This routine is called from two places
375 * - From a work queue item
376 * - Directly from the state machine just before setting the
377 * state to running
378 *
379 * Must be called with head_lock held
380 *
381 */
382 static void sdma_flush(struct sdma_engine *sde)
383 {
384 struct sdma_txreq *txp, *txp_next;
385 LIST_HEAD(flushlist);
386 unsigned long flags;
387
388 /* flush from head to tail */
389 sdma_flush_descq(sde);
390 spin_lock_irqsave(&sde->flushlist_lock, flags);
391 /* copy flush list */
392 list_for_each_entry_safe(txp, txp_next, &sde->flushlist, list) {
393 list_del_init(&txp->list);
394 list_add_tail(&txp->list, &flushlist);
395 }
396 spin_unlock_irqrestore(&sde->flushlist_lock, flags);
397 /* flush from flush list */
398 list_for_each_entry_safe(txp, txp_next, &flushlist, list) {
399 int drained = 0;
400 /* protect against complete modifying */
401 struct iowait *wait = txp->wait;
402
403 list_del_init(&txp->list);
404 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
405 trace_hfi1_sdma_out_sn(sde, txp->sn);
406 if (WARN_ON_ONCE(sde->head_sn != txp->sn))
407 dd_dev_err(sde->dd, "expected %llu got %llu\n",
408 sde->head_sn, txp->sn);
409 sde->head_sn++;
410 #endif
411 sdma_txclean(sde->dd, txp);
412 if (wait)
413 drained = atomic_dec_and_test(&wait->sdma_busy);
414 if (txp->complete)
415 (*txp->complete)(txp, SDMA_TXREQ_S_ABORTED, drained);
416 if (wait && drained)
417 iowait_drain_wakeup(wait);
418 }
419 }
420
421 /*
422 * Fields a work request for flushing the descq ring
423 * and the flush list
424 *
425 * If the engine has been brought to running during
426 * the scheduling delay, the flush is ignored, assuming
427 * that the process of bringing the engine to running
428 * would have done this flush prior to going to running.
429 *
430 */
431 static void sdma_field_flush(struct work_struct *work)
432 {
433 unsigned long flags;
434 struct sdma_engine *sde =
435 container_of(work, struct sdma_engine, flush_worker);
436
437 write_seqlock_irqsave(&sde->head_lock, flags);
438 if (!__sdma_running(sde))
439 sdma_flush(sde);
440 write_sequnlock_irqrestore(&sde->head_lock, flags);
441 }
442
443 static void sdma_err_halt_wait(struct work_struct *work)
444 {
445 struct sdma_engine *sde = container_of(work, struct sdma_engine,
446 err_halt_worker);
447 u64 statuscsr;
448 unsigned long timeout;
449
450 timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
451 while (1) {
452 statuscsr = read_sde_csr(sde, SD(STATUS));
453 statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
454 if (statuscsr)
455 break;
456 if (time_after(jiffies, timeout)) {
457 dd_dev_err(sde->dd,
458 "SDMA engine %d - timeout waiting for engine to halt\n",
459 sde->this_idx);
460 /*
461 * Continue anyway. This could happen if there was
462 * an uncorrectable error in the wrong spot.
463 */
464 break;
465 }
466 usleep_range(80, 120);
467 }
468
469 sdma_process_event(sde, sdma_event_e15_hw_halt_done);
470 }
471
472 static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
473 {
474 if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
475
476 unsigned index;
477 struct hfi1_devdata *dd = sde->dd;
478
479 for (index = 0; index < dd->num_sdma; index++) {
480 struct sdma_engine *curr_sdma = &dd->per_sdma[index];
481
482 if (curr_sdma != sde)
483 curr_sdma->progress_check_head =
484 curr_sdma->descq_head;
485 }
486 dd_dev_err(sde->dd,
487 "SDMA engine %d - check scheduled\n",
488 sde->this_idx);
489 mod_timer(&sde->err_progress_check_timer, jiffies + 10);
490 }
491 }
492
493 static void sdma_err_progress_check(unsigned long data)
494 {
495 unsigned index;
496 struct sdma_engine *sde = (struct sdma_engine *)data;
497
498 dd_dev_err(sde->dd, "SDE progress check event\n");
499 for (index = 0; index < sde->dd->num_sdma; index++) {
500 struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
501 unsigned long flags;
502
503 /* check progress on each engine except the current one */
504 if (curr_sde == sde)
505 continue;
506 /*
507 * We must lock interrupts when acquiring sde->lock,
508 * to avoid a deadlock if interrupt triggers and spins on
509 * the same lock on same CPU
510 */
511 spin_lock_irqsave(&curr_sde->tail_lock, flags);
512 write_seqlock(&curr_sde->head_lock);
513
514 /* skip non-running queues */
515 if (curr_sde->state.current_state != sdma_state_s99_running) {
516 write_sequnlock(&curr_sde->head_lock);
517 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
518 continue;
519 }
520
521 if ((curr_sde->descq_head != curr_sde->descq_tail) &&
522 (curr_sde->descq_head ==
523 curr_sde->progress_check_head))
524 __sdma_process_event(curr_sde,
525 sdma_event_e90_sw_halted);
526 write_sequnlock(&curr_sde->head_lock);
527 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
528 }
529 schedule_work(&sde->err_halt_worker);
530 }
531
532 static void sdma_hw_clean_up_task(unsigned long opaque)
533 {
534 struct sdma_engine *sde = (struct sdma_engine *) opaque;
535 u64 statuscsr;
536
537 while (1) {
538 #ifdef CONFIG_SDMA_VERBOSITY
539 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
540 sde->this_idx, slashstrip(__FILE__), __LINE__,
541 __func__);
542 #endif
543 statuscsr = read_sde_csr(sde, SD(STATUS));
544 statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
545 if (statuscsr)
546 break;
547 udelay(10);
548 }
549
550 sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
551 }
552
553 static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
554 {
555 smp_read_barrier_depends(); /* see sdma_update_tail() */
556 return sde->tx_ring[sde->tx_head & sde->sdma_mask];
557 }
558
559 /*
560 * flush ring for recovery
561 */
562 static void sdma_flush_descq(struct sdma_engine *sde)
563 {
564 u16 head, tail;
565 int progress = 0;
566 struct sdma_txreq *txp = get_txhead(sde);
567
568 /* The reason for some of the complexity of this code is that
569 * not all descriptors have corresponding txps. So, we have to
570 * be able to skip over descs until we wander into the range of
571 * the next txp on the list.
572 */
573 head = sde->descq_head & sde->sdma_mask;
574 tail = sde->descq_tail & sde->sdma_mask;
575 while (head != tail) {
576 /* advance head, wrap if needed */
577 head = ++sde->descq_head & sde->sdma_mask;
578 /* if now past this txp's descs, do the callback */
579 if (txp && txp->next_descq_idx == head) {
580 int drained = 0;
581 /* protect against complete modifying */
582 struct iowait *wait = txp->wait;
583
584 /* remove from list */
585 sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
586 if (wait)
587 drained = atomic_dec_and_test(&wait->sdma_busy);
588 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
589 trace_hfi1_sdma_out_sn(sde, txp->sn);
590 if (WARN_ON_ONCE(sde->head_sn != txp->sn))
591 dd_dev_err(sde->dd, "expected %llu got %llu\n",
592 sde->head_sn, txp->sn);
593 sde->head_sn++;
594 #endif
595 sdma_txclean(sde->dd, txp);
596 trace_hfi1_sdma_progress(sde, head, tail, txp);
597 if (txp->complete)
598 (*txp->complete)(
599 txp,
600 SDMA_TXREQ_S_ABORTED,
601 drained);
602 if (wait && drained)
603 iowait_drain_wakeup(wait);
604 /* see if there is another txp */
605 txp = get_txhead(sde);
606 }
607 progress++;
608 }
609 if (progress)
610 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
611 }
612
613 static void sdma_sw_clean_up_task(unsigned long opaque)
614 {
615 struct sdma_engine *sde = (struct sdma_engine *) opaque;
616 unsigned long flags;
617
618 spin_lock_irqsave(&sde->tail_lock, flags);
619 write_seqlock(&sde->head_lock);
620
621 /*
622 * At this point, the following should always be true:
623 * - We are halted, so no more descriptors are getting retired.
624 * - We are not running, so no one is submitting new work.
625 * - Only we can send the e40_sw_cleaned, so we can't start
626 * running again until we say so. So, the active list and
627 * descq are ours to play with.
628 */
629
630
631 /*
632 * In the error clean up sequence, software clean must be called
633 * before the hardware clean so we can use the hardware head in
634 * the progress routine. A hardware clean or SPC unfreeze will
635 * reset the hardware head.
636 *
637 * Process all retired requests. The progress routine will use the
638 * latest physical hardware head - we are not running so speed does
639 * not matter.
640 */
641 sdma_make_progress(sde, 0);
642
643 sdma_flush(sde);
644
645 /*
646 * Reset our notion of head and tail.
647 * Note that the HW registers have been reset via an earlier
648 * clean up.
649 */
650 sde->descq_tail = 0;
651 sde->descq_head = 0;
652 sde->desc_avail = sdma_descq_freecnt(sde);
653 *sde->head_dma = 0;
654
655 __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
656
657 write_sequnlock(&sde->head_lock);
658 spin_unlock_irqrestore(&sde->tail_lock, flags);
659 }
660
661 static void sdma_sw_tear_down(struct sdma_engine *sde)
662 {
663 struct sdma_state *ss = &sde->state;
664
665 /* Releasing this reference means the state machine has stopped. */
666 sdma_put(ss);
667
668 /* stop waiting for all unfreeze events to complete */
669 atomic_set(&sde->dd->sdma_unfreeze_count, -1);
670 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
671 }
672
673 static void sdma_start_hw_clean_up(struct sdma_engine *sde)
674 {
675 tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
676 }
677
678 static void sdma_set_state(struct sdma_engine *sde,
679 enum sdma_states next_state)
680 {
681 struct sdma_state *ss = &sde->state;
682 const struct sdma_set_state_action *action = sdma_action_table;
683 unsigned op = 0;
684
685 trace_hfi1_sdma_state(
686 sde,
687 sdma_state_names[ss->current_state],
688 sdma_state_names[next_state]);
689
690 /* debugging bookkeeping */
691 ss->previous_state = ss->current_state;
692 ss->previous_op = ss->current_op;
693 ss->current_state = next_state;
694
695 if (ss->previous_state != sdma_state_s99_running
696 && next_state == sdma_state_s99_running)
697 sdma_flush(sde);
698
699 if (action[next_state].op_enable)
700 op |= SDMA_SENDCTRL_OP_ENABLE;
701
702 if (action[next_state].op_intenable)
703 op |= SDMA_SENDCTRL_OP_INTENABLE;
704
705 if (action[next_state].op_halt)
706 op |= SDMA_SENDCTRL_OP_HALT;
707
708 if (action[next_state].op_cleanup)
709 op |= SDMA_SENDCTRL_OP_CLEANUP;
710
711 if (action[next_state].go_s99_running_tofalse)
712 ss->go_s99_running = 0;
713
714 if (action[next_state].go_s99_running_totrue)
715 ss->go_s99_running = 1;
716
717 ss->current_op = op;
718 sdma_sendctrl(sde, ss->current_op);
719 }
720
721 /**
722 * sdma_get_descq_cnt() - called when device probed
723 *
724 * Return a validated descq count.
725 *
726 * This is currently only used in the verbs initialization to build the tx
727 * list.
728 *
729 * This will probably be deleted in favor of a more scalable approach to
730 * alloc tx's.
731 *
732 */
733 u16 sdma_get_descq_cnt(void)
734 {
735 u16 count = sdma_descq_cnt;
736
737 if (!count)
738 return SDMA_DESCQ_CNT;
739 /* count must be a power of 2 greater than 64 and less than
740 * 32768. Otherwise return default.
741 */
742 if (!is_power_of_2(count))
743 return SDMA_DESCQ_CNT;
744 if (count < 64 || count > 32768)
745 return SDMA_DESCQ_CNT;
746 return count;
747 }
748
749 /**
750 * sdma_select_engine_vl() - select sdma engine
751 * @dd: devdata
752 * @selector: a spreading factor
753 * @vl: this vl
754 *
755 *
756 * This function returns an engine based on the selector and a vl. The
757 * mapping fields are protected by RCU.
758 */
759 struct sdma_engine *sdma_select_engine_vl(
760 struct hfi1_devdata *dd,
761 u32 selector,
762 u8 vl)
763 {
764 struct sdma_vl_map *m;
765 struct sdma_map_elem *e;
766 struct sdma_engine *rval;
767
768 /* NOTE This should only happen if SC->VL changed after the initial
769 * checks on the QP/AH
770 * Default will return engine 0 below
771 */
772 if (vl >= num_vls) {
773 rval = NULL;
774 goto done;
775 }
776
777 rcu_read_lock();
778 m = rcu_dereference(dd->sdma_map);
779 if (unlikely(!m)) {
780 rcu_read_unlock();
781 return &dd->per_sdma[0];
782 }
783 e = m->map[vl & m->mask];
784 rval = e->sde[selector & e->mask];
785 rcu_read_unlock();
786
787 done:
788 rval = !rval ? &dd->per_sdma[0] : rval;
789 trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
790 return rval;
791 }
792
793 /**
794 * sdma_select_engine_sc() - select sdma engine
795 * @dd: devdata
796 * @selector: a spreading factor
797 * @sc5: the 5 bit sc
798 *
799 *
800 * This function returns an engine based on the selector and an sc.
801 */
802 struct sdma_engine *sdma_select_engine_sc(
803 struct hfi1_devdata *dd,
804 u32 selector,
805 u8 sc5)
806 {
807 u8 vl = sc_to_vlt(dd, sc5);
808
809 return sdma_select_engine_vl(dd, selector, vl);
810 }
811
812 /*
813 * Free the indicated map struct
814 */
815 static void sdma_map_free(struct sdma_vl_map *m)
816 {
817 int i;
818
819 for (i = 0; m && i < m->actual_vls; i++)
820 kfree(m->map[i]);
821 kfree(m);
822 }
823
824 /*
825 * Handle RCU callback
826 */
827 static void sdma_map_rcu_callback(struct rcu_head *list)
828 {
829 struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
830
831 sdma_map_free(m);
832 }
833
834 /**
835 * sdma_map_init - called when # vls change
836 * @dd: hfi1_devdata
837 * @port: port number
838 * @num_vls: number of vls
839 * @vl_engines: per vl engine mapping (optional)
840 *
841 * This routine changes the mapping based on the number of vls.
842 *
843 * vl_engines is used to specify a non-uniform vl/engine loading. NULL
844 * implies auto computing the loading and giving each VLs a uniform
845 * distribution of engines per VL.
846 *
847 * The auto algorithm computes the sde_per_vl and the number of extra
848 * engines. Any extra engines are added from the last VL on down.
849 *
850 * rcu locking is used here to control access to the mapping fields.
851 *
852 * If either the num_vls or num_sdma are non-power of 2, the array sizes
853 * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
854 * up to the next highest power of 2 and the first entry is reused
855 * in a round robin fashion.
856 *
857 * If an error occurs the map change is not done and the mapping is
858 * not changed.
859 *
860 */
861 int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
862 {
863 int i, j;
864 int extra, sde_per_vl;
865 int engine = 0;
866 u8 lvl_engines[OPA_MAX_VLS];
867 struct sdma_vl_map *oldmap, *newmap;
868
869 if (!(dd->flags & HFI1_HAS_SEND_DMA))
870 return 0;
871
872 if (!vl_engines) {
873 /* truncate divide */
874 sde_per_vl = dd->num_sdma / num_vls;
875 /* extras */
876 extra = dd->num_sdma % num_vls;
877 vl_engines = lvl_engines;
878 /* add extras from last vl down */
879 for (i = num_vls - 1; i >= 0; i--, extra--)
880 vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
881 }
882 /* build new map */
883 newmap = kzalloc(
884 sizeof(struct sdma_vl_map) +
885 roundup_pow_of_two(num_vls) *
886 sizeof(struct sdma_map_elem *),
887 GFP_KERNEL);
888 if (!newmap)
889 goto bail;
890 newmap->actual_vls = num_vls;
891 newmap->vls = roundup_pow_of_two(num_vls);
892 newmap->mask = (1 << ilog2(newmap->vls)) - 1;
893 for (i = 0; i < newmap->vls; i++) {
894 /* save for wrap around */
895 int first_engine = engine;
896
897 if (i < newmap->actual_vls) {
898 int sz = roundup_pow_of_two(vl_engines[i]);
899
900 /* only allocate once */
901 newmap->map[i] = kzalloc(
902 sizeof(struct sdma_map_elem) +
903 sz * sizeof(struct sdma_engine *),
904 GFP_KERNEL);
905 if (!newmap->map[i])
906 goto bail;
907 newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
908 /* assign engines */
909 for (j = 0; j < sz; j++) {
910 newmap->map[i]->sde[j] =
911 &dd->per_sdma[engine];
912 if (++engine >= first_engine + vl_engines[i])
913 /* wrap back to first engine */
914 engine = first_engine;
915 }
916 } else {
917 /* just re-use entry without allocating */
918 newmap->map[i] = newmap->map[i % num_vls];
919 }
920 engine = first_engine + vl_engines[i];
921 }
922 /* newmap in hand, save old map */
923 spin_lock_irq(&dd->sde_map_lock);
924 oldmap = rcu_dereference_protected(dd->sdma_map,
925 lockdep_is_held(&dd->sde_map_lock));
926
927 /* publish newmap */
928 rcu_assign_pointer(dd->sdma_map, newmap);
929
930 spin_unlock_irq(&dd->sde_map_lock);
931 /* success, free any old map after grace period */
932 if (oldmap)
933 call_rcu(&oldmap->list, sdma_map_rcu_callback);
934 return 0;
935 bail:
936 /* free any partial allocation */
937 sdma_map_free(newmap);
938 return -ENOMEM;
939 }
940
941 /*
942 * Clean up allocated memory.
943 *
944 * This routine is can be called regardless of the success of sdma_init()
945 *
946 */
947 static void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
948 {
949 size_t i;
950 struct sdma_engine *sde;
951
952 if (dd->sdma_pad_dma) {
953 dma_free_coherent(&dd->pcidev->dev, 4,
954 (void *)dd->sdma_pad_dma,
955 dd->sdma_pad_phys);
956 dd->sdma_pad_dma = NULL;
957 dd->sdma_pad_phys = 0;
958 }
959 if (dd->sdma_heads_dma) {
960 dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
961 (void *)dd->sdma_heads_dma,
962 dd->sdma_heads_phys);
963 dd->sdma_heads_dma = NULL;
964 dd->sdma_heads_phys = 0;
965 }
966 for (i = 0; dd->per_sdma && i < num_engines; ++i) {
967 sde = &dd->per_sdma[i];
968
969 sde->head_dma = NULL;
970 sde->head_phys = 0;
971
972 if (sde->descq) {
973 dma_free_coherent(
974 &dd->pcidev->dev,
975 sde->descq_cnt * sizeof(u64[2]),
976 sde->descq,
977 sde->descq_phys
978 );
979 sde->descq = NULL;
980 sde->descq_phys = 0;
981 }
982 kvfree(sde->tx_ring);
983 sde->tx_ring = NULL;
984 }
985 spin_lock_irq(&dd->sde_map_lock);
986 kfree(rcu_access_pointer(dd->sdma_map));
987 RCU_INIT_POINTER(dd->sdma_map, NULL);
988 spin_unlock_irq(&dd->sde_map_lock);
989 synchronize_rcu();
990 kfree(dd->per_sdma);
991 dd->per_sdma = NULL;
992 }
993
994 /**
995 * sdma_init() - called when device probed
996 * @dd: hfi1_devdata
997 * @port: port number (currently only zero)
998 *
999 * sdma_init initializes the specified number of engines.
1000 *
1001 * The code initializes each sde, its csrs. Interrupts
1002 * are not required to be enabled.
1003 *
1004 * Returns:
1005 * 0 - success, -errno on failure
1006 */
1007 int sdma_init(struct hfi1_devdata *dd, u8 port)
1008 {
1009 unsigned this_idx;
1010 struct sdma_engine *sde;
1011 u16 descq_cnt;
1012 void *curr_head;
1013 struct hfi1_pportdata *ppd = dd->pport + port;
1014 u32 per_sdma_credits;
1015 uint idle_cnt = sdma_idle_cnt;
1016 size_t num_engines = dd->chip_sdma_engines;
1017
1018 if (!HFI1_CAP_IS_KSET(SDMA)) {
1019 HFI1_CAP_CLEAR(SDMA_AHG);
1020 return 0;
1021 }
1022 if (mod_num_sdma &&
1023 /* can't exceed chip support */
1024 mod_num_sdma <= dd->chip_sdma_engines &&
1025 /* count must be >= vls */
1026 mod_num_sdma >= num_vls)
1027 num_engines = mod_num_sdma;
1028
1029 dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1030 dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", dd->chip_sdma_engines);
1031 dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1032 dd->chip_sdma_mem_size);
1033
1034 per_sdma_credits =
1035 dd->chip_sdma_mem_size/(num_engines * SDMA_BLOCK_SIZE);
1036
1037 /* set up freeze waitqueue */
1038 init_waitqueue_head(&dd->sdma_unfreeze_wq);
1039 atomic_set(&dd->sdma_unfreeze_count, 0);
1040
1041 descq_cnt = sdma_get_descq_cnt();
1042 dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1043 num_engines, descq_cnt);
1044
1045 /* alloc memory for array of send engines */
1046 dd->per_sdma = kcalloc(num_engines, sizeof(*dd->per_sdma), GFP_KERNEL);
1047 if (!dd->per_sdma)
1048 return -ENOMEM;
1049
1050 idle_cnt = ns_to_cclock(dd, idle_cnt);
1051 if (!sdma_desct_intr)
1052 sdma_desct_intr = SDMA_DESC_INTR;
1053
1054 /* Allocate memory for SendDMA descriptor FIFOs */
1055 for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1056 sde = &dd->per_sdma[this_idx];
1057 sde->dd = dd;
1058 sde->ppd = ppd;
1059 sde->this_idx = this_idx;
1060 sde->descq_cnt = descq_cnt;
1061 sde->desc_avail = sdma_descq_freecnt(sde);
1062 sde->sdma_shift = ilog2(descq_cnt);
1063 sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1064 sde->descq_full_count = 0;
1065
1066 /* Create a mask for all 3 chip interrupt sources */
1067 sde->imask = (u64)1 << (0*TXE_NUM_SDMA_ENGINES + this_idx)
1068 | (u64)1 << (1*TXE_NUM_SDMA_ENGINES + this_idx)
1069 | (u64)1 << (2*TXE_NUM_SDMA_ENGINES + this_idx);
1070 /* Create a mask specifically for sdma_idle */
1071 sde->idle_mask =
1072 (u64)1 << (2*TXE_NUM_SDMA_ENGINES + this_idx);
1073 /* Create a mask specifically for sdma_progress */
1074 sde->progress_mask =
1075 (u64)1 << (TXE_NUM_SDMA_ENGINES + this_idx);
1076 spin_lock_init(&sde->tail_lock);
1077 seqlock_init(&sde->head_lock);
1078 spin_lock_init(&sde->senddmactrl_lock);
1079 spin_lock_init(&sde->flushlist_lock);
1080 /* insure there is always a zero bit */
1081 sde->ahg_bits = 0xfffffffe00000000ULL;
1082
1083 sdma_set_state(sde, sdma_state_s00_hw_down);
1084
1085 /* set up reference counting */
1086 kref_init(&sde->state.kref);
1087 init_completion(&sde->state.comp);
1088
1089 INIT_LIST_HEAD(&sde->flushlist);
1090 INIT_LIST_HEAD(&sde->dmawait);
1091
1092 sde->tail_csr =
1093 get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1094
1095 if (idle_cnt)
1096 dd->default_desc1 =
1097 SDMA_DESC1_HEAD_TO_HOST_FLAG;
1098 else
1099 dd->default_desc1 =
1100 SDMA_DESC1_INT_REQ_FLAG;
1101
1102 tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
1103 (unsigned long)sde);
1104
1105 tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
1106 (unsigned long)sde);
1107 INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1108 INIT_WORK(&sde->flush_worker, sdma_field_flush);
1109
1110 sde->progress_check_head = 0;
1111
1112 setup_timer(&sde->err_progress_check_timer,
1113 sdma_err_progress_check, (unsigned long)sde);
1114
1115 sde->descq = dma_zalloc_coherent(
1116 &dd->pcidev->dev,
1117 descq_cnt * sizeof(u64[2]),
1118 &sde->descq_phys,
1119 GFP_KERNEL
1120 );
1121 if (!sde->descq)
1122 goto bail;
1123 sde->tx_ring =
1124 kcalloc(descq_cnt, sizeof(struct sdma_txreq *),
1125 GFP_KERNEL);
1126 if (!sde->tx_ring)
1127 sde->tx_ring =
1128 vzalloc(
1129 sizeof(struct sdma_txreq *) *
1130 descq_cnt);
1131 if (!sde->tx_ring)
1132 goto bail;
1133 }
1134
1135 dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1136 /* Allocate memory for DMA of head registers to memory */
1137 dd->sdma_heads_dma = dma_zalloc_coherent(
1138 &dd->pcidev->dev,
1139 dd->sdma_heads_size,
1140 &dd->sdma_heads_phys,
1141 GFP_KERNEL
1142 );
1143 if (!dd->sdma_heads_dma) {
1144 dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1145 goto bail;
1146 }
1147
1148 /* Allocate memory for pad */
1149 dd->sdma_pad_dma = dma_zalloc_coherent(
1150 &dd->pcidev->dev,
1151 sizeof(u32),
1152 &dd->sdma_pad_phys,
1153 GFP_KERNEL
1154 );
1155 if (!dd->sdma_pad_dma) {
1156 dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1157 goto bail;
1158 }
1159
1160 /* assign each engine to different cacheline and init registers */
1161 curr_head = (void *)dd->sdma_heads_dma;
1162 for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1163 unsigned long phys_offset;
1164
1165 sde = &dd->per_sdma[this_idx];
1166
1167 sde->head_dma = curr_head;
1168 curr_head += L1_CACHE_BYTES;
1169 phys_offset = (unsigned long)sde->head_dma -
1170 (unsigned long)dd->sdma_heads_dma;
1171 sde->head_phys = dd->sdma_heads_phys + phys_offset;
1172 init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1173 }
1174 dd->flags |= HFI1_HAS_SEND_DMA;
1175 dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1176 dd->num_sdma = num_engines;
1177 if (sdma_map_init(dd, port, ppd->vls_operational, NULL))
1178 goto bail;
1179 dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1180 return 0;
1181
1182 bail:
1183 sdma_clean(dd, num_engines);
1184 return -ENOMEM;
1185 }
1186
1187 /**
1188 * sdma_all_running() - called when the link goes up
1189 * @dd: hfi1_devdata
1190 *
1191 * This routine moves all engines to the running state.
1192 */
1193 void sdma_all_running(struct hfi1_devdata *dd)
1194 {
1195 struct sdma_engine *sde;
1196 unsigned int i;
1197
1198 /* move all engines to running */
1199 for (i = 0; i < dd->num_sdma; ++i) {
1200 sde = &dd->per_sdma[i];
1201 sdma_process_event(sde, sdma_event_e30_go_running);
1202 }
1203 }
1204
1205 /**
1206 * sdma_all_idle() - called when the link goes down
1207 * @dd: hfi1_devdata
1208 *
1209 * This routine moves all engines to the idle state.
1210 */
1211 void sdma_all_idle(struct hfi1_devdata *dd)
1212 {
1213 struct sdma_engine *sde;
1214 unsigned int i;
1215
1216 /* idle all engines */
1217 for (i = 0; i < dd->num_sdma; ++i) {
1218 sde = &dd->per_sdma[i];
1219 sdma_process_event(sde, sdma_event_e70_go_idle);
1220 }
1221 }
1222
1223 /**
1224 * sdma_start() - called to kick off state processing for all engines
1225 * @dd: hfi1_devdata
1226 *
1227 * This routine is for kicking off the state processing for all required
1228 * sdma engines. Interrupts need to be working at this point.
1229 *
1230 */
1231 void sdma_start(struct hfi1_devdata *dd)
1232 {
1233 unsigned i;
1234 struct sdma_engine *sde;
1235
1236 /* kick off the engines state processing */
1237 for (i = 0; i < dd->num_sdma; ++i) {
1238 sde = &dd->per_sdma[i];
1239 sdma_process_event(sde, sdma_event_e10_go_hw_start);
1240 }
1241 }
1242
1243 /**
1244 * sdma_exit() - used when module is removed
1245 * @dd: hfi1_devdata
1246 */
1247 void sdma_exit(struct hfi1_devdata *dd)
1248 {
1249 unsigned this_idx;
1250 struct sdma_engine *sde;
1251
1252 for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1253 ++this_idx) {
1254
1255 sde = &dd->per_sdma[this_idx];
1256 if (!list_empty(&sde->dmawait))
1257 dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1258 sde->this_idx);
1259 sdma_process_event(sde, sdma_event_e00_go_hw_down);
1260
1261 del_timer_sync(&sde->err_progress_check_timer);
1262
1263 /*
1264 * This waits for the state machine to exit so it is not
1265 * necessary to kill the sdma_sw_clean_up_task to make sure
1266 * it is not running.
1267 */
1268 sdma_finalput(&sde->state);
1269 }
1270 sdma_clean(dd, dd->num_sdma);
1271 }
1272
1273 /*
1274 * unmap the indicated descriptor
1275 */
1276 static inline void sdma_unmap_desc(
1277 struct hfi1_devdata *dd,
1278 struct sdma_desc *descp)
1279 {
1280 switch (sdma_mapping_type(descp)) {
1281 case SDMA_MAP_SINGLE:
1282 dma_unmap_single(
1283 &dd->pcidev->dev,
1284 sdma_mapping_addr(descp),
1285 sdma_mapping_len(descp),
1286 DMA_TO_DEVICE);
1287 break;
1288 case SDMA_MAP_PAGE:
1289 dma_unmap_page(
1290 &dd->pcidev->dev,
1291 sdma_mapping_addr(descp),
1292 sdma_mapping_len(descp),
1293 DMA_TO_DEVICE);
1294 break;
1295 }
1296 }
1297
1298 /*
1299 * return the mode as indicated by the first
1300 * descriptor in the tx.
1301 */
1302 static inline u8 ahg_mode(struct sdma_txreq *tx)
1303 {
1304 return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1305 >> SDMA_DESC1_HEADER_MODE_SHIFT;
1306 }
1307
1308 /**
1309 * sdma_txclean() - clean tx of mappings, descp *kmalloc's
1310 * @dd: hfi1_devdata for unmapping
1311 * @tx: tx request to clean
1312 *
1313 * This is used in the progress routine to clean the tx or
1314 * by the ULP to toss an in-process tx build.
1315 *
1316 * The code can be called multiple times without issue.
1317 *
1318 */
1319 void sdma_txclean(
1320 struct hfi1_devdata *dd,
1321 struct sdma_txreq *tx)
1322 {
1323 u16 i;
1324
1325 if (tx->num_desc) {
1326 u8 skip = 0, mode = ahg_mode(tx);
1327
1328 /* unmap first */
1329 sdma_unmap_desc(dd, &tx->descp[0]);
1330 /* determine number of AHG descriptors to skip */
1331 if (mode > SDMA_AHG_APPLY_UPDATE1)
1332 skip = mode >> 1;
1333 for (i = 1 + skip; i < tx->num_desc; i++)
1334 sdma_unmap_desc(dd, &tx->descp[i]);
1335 tx->num_desc = 0;
1336 }
1337 kfree(tx->coalesce_buf);
1338 tx->coalesce_buf = NULL;
1339 /* kmalloc'ed descp */
1340 if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1341 tx->desc_limit = ARRAY_SIZE(tx->descs);
1342 kfree(tx->descp);
1343 }
1344 }
1345
1346 static inline u16 sdma_gethead(struct sdma_engine *sde)
1347 {
1348 struct hfi1_devdata *dd = sde->dd;
1349 int use_dmahead;
1350 u16 hwhead;
1351
1352 #ifdef CONFIG_SDMA_VERBOSITY
1353 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1354 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1355 #endif
1356
1357 retry:
1358 use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1359 (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1360 hwhead = use_dmahead ?
1361 (u16) le64_to_cpu(*sde->head_dma) :
1362 (u16) read_sde_csr(sde, SD(HEAD));
1363
1364 if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1365 u16 cnt;
1366 u16 swtail;
1367 u16 swhead;
1368 int sane;
1369
1370 swhead = sde->descq_head & sde->sdma_mask;
1371 /* this code is really bad for cache line trading */
1372 swtail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1373 cnt = sde->descq_cnt;
1374
1375 if (swhead < swtail)
1376 /* not wrapped */
1377 sane = (hwhead >= swhead) & (hwhead <= swtail);
1378 else if (swhead > swtail)
1379 /* wrapped around */
1380 sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1381 (hwhead <= swtail);
1382 else
1383 /* empty */
1384 sane = (hwhead == swhead);
1385
1386 if (unlikely(!sane)) {
1387 dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
1388 sde->this_idx,
1389 use_dmahead ? "dma" : "kreg",
1390 hwhead, swhead, swtail, cnt);
1391 if (use_dmahead) {
1392 /* try one more time, using csr */
1393 use_dmahead = 0;
1394 goto retry;
1395 }
1396 /* proceed as if no progress */
1397 hwhead = swhead;
1398 }
1399 }
1400 return hwhead;
1401 }
1402
1403 /*
1404 * This is called when there are send DMA descriptors that might be
1405 * available.
1406 *
1407 * This is called with head_lock held.
1408 */
1409 static void sdma_desc_avail(struct sdma_engine *sde, unsigned avail)
1410 {
1411 struct iowait *wait, *nw;
1412 struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1413 unsigned i, n = 0, seq;
1414 struct sdma_txreq *stx;
1415 struct hfi1_ibdev *dev = &sde->dd->verbs_dev;
1416
1417 #ifdef CONFIG_SDMA_VERBOSITY
1418 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1419 slashstrip(__FILE__), __LINE__, __func__);
1420 dd_dev_err(sde->dd, "avail: %u\n", avail);
1421 #endif
1422
1423 do {
1424 seq = read_seqbegin(&dev->iowait_lock);
1425 if (!list_empty(&sde->dmawait)) {
1426 /* at least one item */
1427 write_seqlock(&dev->iowait_lock);
1428 /* Harvest waiters wanting DMA descriptors */
1429 list_for_each_entry_safe(
1430 wait,
1431 nw,
1432 &sde->dmawait,
1433 list) {
1434 u16 num_desc = 0;
1435
1436 if (!wait->wakeup)
1437 continue;
1438 if (n == ARRAY_SIZE(waits))
1439 break;
1440 if (!list_empty(&wait->tx_head)) {
1441 stx = list_first_entry(
1442 &wait->tx_head,
1443 struct sdma_txreq,
1444 list);
1445 num_desc = stx->num_desc;
1446 }
1447 if (num_desc > avail)
1448 break;
1449 avail -= num_desc;
1450 list_del_init(&wait->list);
1451 waits[n++] = wait;
1452 }
1453 write_sequnlock(&dev->iowait_lock);
1454 break;
1455 }
1456 } while (read_seqretry(&dev->iowait_lock, seq));
1457
1458 for (i = 0; i < n; i++)
1459 waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1460 }
1461
1462 /* head_lock must be held */
1463 static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1464 {
1465 struct sdma_txreq *txp = NULL;
1466 int progress = 0;
1467 u16 hwhead, swhead, swtail;
1468 int idle_check_done = 0;
1469
1470 hwhead = sdma_gethead(sde);
1471
1472 /* The reason for some of the complexity of this code is that
1473 * not all descriptors have corresponding txps. So, we have to
1474 * be able to skip over descs until we wander into the range of
1475 * the next txp on the list.
1476 */
1477
1478 retry:
1479 txp = get_txhead(sde);
1480 swhead = sde->descq_head & sde->sdma_mask;
1481 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1482 while (swhead != hwhead) {
1483 /* advance head, wrap if needed */
1484 swhead = ++sde->descq_head & sde->sdma_mask;
1485
1486 /* if now past this txp's descs, do the callback */
1487 if (txp && txp->next_descq_idx == swhead) {
1488 int drained = 0;
1489 /* protect against complete modifying */
1490 struct iowait *wait = txp->wait;
1491
1492 /* remove from list */
1493 sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1494 if (wait)
1495 drained = atomic_dec_and_test(&wait->sdma_busy);
1496 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
1497 trace_hfi1_sdma_out_sn(sde, txp->sn);
1498 if (WARN_ON_ONCE(sde->head_sn != txp->sn))
1499 dd_dev_err(sde->dd, "expected %llu got %llu\n",
1500 sde->head_sn, txp->sn);
1501 sde->head_sn++;
1502 #endif
1503 sdma_txclean(sde->dd, txp);
1504 if (txp->complete)
1505 (*txp->complete)(
1506 txp,
1507 SDMA_TXREQ_S_OK,
1508 drained);
1509 if (wait && drained)
1510 iowait_drain_wakeup(wait);
1511 /* see if there is another txp */
1512 txp = get_txhead(sde);
1513 }
1514 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1515 progress++;
1516 }
1517
1518 /*
1519 * The SDMA idle interrupt is not guaranteed to be ordered with respect
1520 * to updates to the the dma_head location in host memory. The head
1521 * value read might not be fully up to date. If there are pending
1522 * descriptors and the SDMA idle interrupt fired then read from the
1523 * CSR SDMA head instead to get the latest value from the hardware.
1524 * The hardware SDMA head should be read at most once in this invocation
1525 * of sdma_make_progress(..) which is ensured by idle_check_done flag
1526 */
1527 if ((status & sde->idle_mask) && !idle_check_done) {
1528 swtail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1529 if (swtail != hwhead) {
1530 hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1531 idle_check_done = 1;
1532 goto retry;
1533 }
1534 }
1535
1536 sde->last_status = status;
1537 if (progress)
1538 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1539 }
1540
1541 /*
1542 * sdma_engine_interrupt() - interrupt handler for engine
1543 * @sde: sdma engine
1544 * @status: sdma interrupt reason
1545 *
1546 * Status is a mask of the 3 possible interrupts for this engine. It will
1547 * contain bits _only_ for this SDMA engine. It will contain at least one
1548 * bit, it may contain more.
1549 */
1550 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1551 {
1552 trace_hfi1_sdma_engine_interrupt(sde, status);
1553 write_seqlock(&sde->head_lock);
1554 sdma_set_desc_cnt(sde, sdma_desct_intr);
1555 sdma_make_progress(sde, status);
1556 write_sequnlock(&sde->head_lock);
1557 }
1558
1559 /**
1560 * sdma_engine_error() - error handler for engine
1561 * @sde: sdma engine
1562 * @status: sdma interrupt reason
1563 */
1564 void sdma_engine_error(struct sdma_engine *sde, u64 status)
1565 {
1566 unsigned long flags;
1567
1568 #ifdef CONFIG_SDMA_VERBOSITY
1569 dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1570 sde->this_idx,
1571 (unsigned long long)status,
1572 sdma_state_names[sde->state.current_state]);
1573 #endif
1574 spin_lock_irqsave(&sde->tail_lock, flags);
1575 write_seqlock(&sde->head_lock);
1576 if (status & ALL_SDMA_ENG_HALT_ERRS)
1577 __sdma_process_event(sde, sdma_event_e60_hw_halted);
1578 if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1579 dd_dev_err(sde->dd,
1580 "SDMA (%u) engine error: 0x%llx state %s\n",
1581 sde->this_idx,
1582 (unsigned long long)status,
1583 sdma_state_names[sde->state.current_state]);
1584 dump_sdma_state(sde);
1585 }
1586 write_sequnlock(&sde->head_lock);
1587 spin_unlock_irqrestore(&sde->tail_lock, flags);
1588 }
1589
1590 static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1591 {
1592 u64 set_senddmactrl = 0;
1593 u64 clr_senddmactrl = 0;
1594 unsigned long flags;
1595
1596 #ifdef CONFIG_SDMA_VERBOSITY
1597 dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1598 sde->this_idx,
1599 (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1600 (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1601 (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1602 (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1603 #endif
1604
1605 if (op & SDMA_SENDCTRL_OP_ENABLE)
1606 set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1607 else
1608 clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1609
1610 if (op & SDMA_SENDCTRL_OP_INTENABLE)
1611 set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1612 else
1613 clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1614
1615 if (op & SDMA_SENDCTRL_OP_HALT)
1616 set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1617 else
1618 clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1619
1620 spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1621
1622 sde->p_senddmactrl |= set_senddmactrl;
1623 sde->p_senddmactrl &= ~clr_senddmactrl;
1624
1625 if (op & SDMA_SENDCTRL_OP_CLEANUP)
1626 write_sde_csr(sde, SD(CTRL),
1627 sde->p_senddmactrl |
1628 SD(CTRL_SDMA_CLEANUP_SMASK));
1629 else
1630 write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1631
1632 spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1633
1634 #ifdef CONFIG_SDMA_VERBOSITY
1635 sdma_dumpstate(sde);
1636 #endif
1637 }
1638
1639 static void sdma_setlengen(struct sdma_engine *sde)
1640 {
1641 #ifdef CONFIG_SDMA_VERBOSITY
1642 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1643 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1644 #endif
1645
1646 /*
1647 * Set SendDmaLenGen and clear-then-set the MSB of the generation
1648 * count to enable generation checking and load the internal
1649 * generation counter.
1650 */
1651 write_sde_csr(sde, SD(LEN_GEN),
1652 (sde->descq_cnt/64) << SD(LEN_GEN_LENGTH_SHIFT)
1653 );
1654 write_sde_csr(sde, SD(LEN_GEN),
1655 ((sde->descq_cnt/64) << SD(LEN_GEN_LENGTH_SHIFT))
1656 | (4ULL << SD(LEN_GEN_GENERATION_SHIFT))
1657 );
1658 }
1659
1660 static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
1661 {
1662 /* Commit writes to memory and advance the tail on the chip */
1663 smp_wmb(); /* see get_txhead() */
1664 writeq(tail, sde->tail_csr);
1665 }
1666
1667 /*
1668 * This is called when changing to state s10_hw_start_up_halt_wait as
1669 * a result of send buffer errors or send DMA descriptor errors.
1670 */
1671 static void sdma_hw_start_up(struct sdma_engine *sde)
1672 {
1673 u64 reg;
1674
1675 #ifdef CONFIG_SDMA_VERBOSITY
1676 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1677 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1678 #endif
1679
1680 sdma_setlengen(sde);
1681 sdma_update_tail(sde, 0); /* Set SendDmaTail */
1682 *sde->head_dma = 0;
1683
1684 reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
1685 SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
1686 write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
1687 }
1688
1689 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
1690 (r &= ~SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
1691
1692 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
1693 (r |= SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
1694 /*
1695 * set_sdma_integrity
1696 *
1697 * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
1698 */
1699 static void set_sdma_integrity(struct sdma_engine *sde)
1700 {
1701 struct hfi1_devdata *dd = sde->dd;
1702 u64 reg;
1703
1704 if (unlikely(HFI1_CAP_IS_KSET(NO_INTEGRITY)))
1705 return;
1706
1707 reg = hfi1_pkt_base_sdma_integrity(dd);
1708
1709 if (HFI1_CAP_IS_KSET(STATIC_RATE_CTRL))
1710 CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
1711 else
1712 SET_STATIC_RATE_CONTROL_SMASK(reg);
1713
1714 write_sde_csr(sde, SD(CHECK_ENABLE), reg);
1715 }
1716
1717
1718 static void init_sdma_regs(
1719 struct sdma_engine *sde,
1720 u32 credits,
1721 uint idle_cnt)
1722 {
1723 u8 opval, opmask;
1724 #ifdef CONFIG_SDMA_VERBOSITY
1725 struct hfi1_devdata *dd = sde->dd;
1726
1727 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1728 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1729 #endif
1730
1731 write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
1732 sdma_setlengen(sde);
1733 sdma_update_tail(sde, 0); /* Set SendDmaTail */
1734 write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
1735 write_sde_csr(sde, SD(DESC_CNT), 0);
1736 write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
1737 write_sde_csr(sde, SD(MEMORY),
1738 ((u64)credits <<
1739 SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
1740 ((u64)(credits * sde->this_idx) <<
1741 SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
1742 write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
1743 set_sdma_integrity(sde);
1744 opmask = OPCODE_CHECK_MASK_DISABLED;
1745 opval = OPCODE_CHECK_VAL_DISABLED;
1746 write_sde_csr(sde, SD(CHECK_OPCODE),
1747 (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
1748 (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
1749 }
1750
1751 #ifdef CONFIG_SDMA_VERBOSITY
1752
1753 #define sdma_dumpstate_helper0(reg) do { \
1754 csr = read_csr(sde->dd, reg); \
1755 dd_dev_err(sde->dd, "%36s 0x%016llx\n", #reg, csr); \
1756 } while (0)
1757
1758 #define sdma_dumpstate_helper(reg) do { \
1759 csr = read_sde_csr(sde, reg); \
1760 dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
1761 #reg, sde->this_idx, csr); \
1762 } while (0)
1763
1764 #define sdma_dumpstate_helper2(reg) do { \
1765 csr = read_csr(sde->dd, reg + (8 * i)); \
1766 dd_dev_err(sde->dd, "%33s_%02u 0x%016llx\n", \
1767 #reg, i, csr); \
1768 } while (0)
1769
1770 void sdma_dumpstate(struct sdma_engine *sde)
1771 {
1772 u64 csr;
1773 unsigned i;
1774
1775 sdma_dumpstate_helper(SD(CTRL));
1776 sdma_dumpstate_helper(SD(STATUS));
1777 sdma_dumpstate_helper0(SD(ERR_STATUS));
1778 sdma_dumpstate_helper0(SD(ERR_MASK));
1779 sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
1780 sdma_dumpstate_helper(SD(ENG_ERR_MASK));
1781
1782 for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
1783 sdma_dumpstate_helper2(CCE_INT_STATUS);
1784 sdma_dumpstate_helper2(CCE_INT_MASK);
1785 sdma_dumpstate_helper2(CCE_INT_BLOCKED);
1786 }
1787
1788 sdma_dumpstate_helper(SD(TAIL));
1789 sdma_dumpstate_helper(SD(HEAD));
1790 sdma_dumpstate_helper(SD(PRIORITY_THLD));
1791 sdma_dumpstate_helper(SD(IDLE_CNT));
1792 sdma_dumpstate_helper(SD(RELOAD_CNT));
1793 sdma_dumpstate_helper(SD(DESC_CNT));
1794 sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
1795 sdma_dumpstate_helper(SD(MEMORY));
1796 sdma_dumpstate_helper0(SD(ENGINES));
1797 sdma_dumpstate_helper0(SD(MEM_SIZE));
1798 /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS); */
1799 sdma_dumpstate_helper(SD(BASE_ADDR));
1800 sdma_dumpstate_helper(SD(LEN_GEN));
1801 sdma_dumpstate_helper(SD(HEAD_ADDR));
1802 sdma_dumpstate_helper(SD(CHECK_ENABLE));
1803 sdma_dumpstate_helper(SD(CHECK_VL));
1804 sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
1805 sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
1806 sdma_dumpstate_helper(SD(CHECK_SLID));
1807 sdma_dumpstate_helper(SD(CHECK_OPCODE));
1808 }
1809 #endif
1810
1811 static void dump_sdma_state(struct sdma_engine *sde)
1812 {
1813 struct hw_sdma_desc *descq;
1814 struct hw_sdma_desc *descqp;
1815 u64 desc[2];
1816 u64 addr;
1817 u8 gen;
1818 u16 len;
1819 u16 head, tail, cnt;
1820
1821 head = sde->descq_head & sde->sdma_mask;
1822 tail = sde->descq_tail & sde->sdma_mask;
1823 cnt = sdma_descq_freecnt(sde);
1824 descq = sde->descq;
1825
1826 dd_dev_err(sde->dd,
1827 "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
1828 sde->this_idx,
1829 head,
1830 tail,
1831 cnt,
1832 !list_empty(&sde->flushlist));
1833
1834 /* print info for each entry in the descriptor queue */
1835 while (head != tail) {
1836 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
1837
1838 descqp = &sde->descq[head];
1839 desc[0] = le64_to_cpu(descqp->qw[0]);
1840 desc[1] = le64_to_cpu(descqp->qw[1]);
1841 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
1842 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
1843 'H' : '-';
1844 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
1845 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
1846 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
1847 & SDMA_DESC0_PHY_ADDR_MASK;
1848 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
1849 & SDMA_DESC1_GENERATION_MASK;
1850 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
1851 & SDMA_DESC0_BYTE_COUNT_MASK;
1852 dd_dev_err(sde->dd,
1853 "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
1854 head, flags, addr, gen, len);
1855 dd_dev_err(sde->dd,
1856 "\tdesc0:0x%016llx desc1 0x%016llx\n",
1857 desc[0], desc[1]);
1858 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
1859 dd_dev_err(sde->dd,
1860 "\taidx: %u amode: %u alen: %u\n",
1861 (u8)((desc[1] & SDMA_DESC1_HEADER_INDEX_SMASK)
1862 >> SDMA_DESC1_HEADER_INDEX_SHIFT),
1863 (u8)((desc[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1864 >> SDMA_DESC1_HEADER_MODE_SHIFT),
1865 (u8)((desc[1] & SDMA_DESC1_HEADER_DWS_SMASK)
1866 >> SDMA_DESC1_HEADER_DWS_SHIFT));
1867 head++;
1868 head &= sde->sdma_mask;
1869 }
1870 }
1871
1872 #define SDE_FMT \
1873 "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
1874 /**
1875 * sdma_seqfile_dump_sde() - debugfs dump of sde
1876 * @s: seq file
1877 * @sde: send dma engine to dump
1878 *
1879 * This routine dumps the sde to the indicated seq file.
1880 */
1881 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
1882 {
1883 u16 head, tail;
1884 struct hw_sdma_desc *descqp;
1885 u64 desc[2];
1886 u64 addr;
1887 u8 gen;
1888 u16 len;
1889
1890 head = sde->descq_head & sde->sdma_mask;
1891 tail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1892 seq_printf(s, SDE_FMT, sde->this_idx,
1893 sde->cpu,
1894 sdma_state_name(sde->state.current_state),
1895 (unsigned long long)read_sde_csr(sde, SD(CTRL)),
1896 (unsigned long long)read_sde_csr(sde, SD(STATUS)),
1897 (unsigned long long)read_sde_csr(sde,
1898 SD(ENG_ERR_STATUS)),
1899 (unsigned long long)read_sde_csr(sde, SD(TAIL)),
1900 tail,
1901 (unsigned long long)read_sde_csr(sde, SD(HEAD)),
1902 head,
1903 (unsigned long long)le64_to_cpu(*sde->head_dma),
1904 (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
1905 (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
1906 (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
1907 (unsigned long long)sde->last_status,
1908 (unsigned long long)sde->ahg_bits,
1909 sde->tx_tail,
1910 sde->tx_head,
1911 sde->descq_tail,
1912 sde->descq_head,
1913 !list_empty(&sde->flushlist),
1914 sde->descq_full_count,
1915 (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
1916
1917 /* print info for each entry in the descriptor queue */
1918 while (head != tail) {
1919 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
1920
1921 descqp = &sde->descq[head];
1922 desc[0] = le64_to_cpu(descqp->qw[0]);
1923 desc[1] = le64_to_cpu(descqp->qw[1]);
1924 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
1925 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
1926 'H' : '-';
1927 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
1928 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
1929 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
1930 & SDMA_DESC0_PHY_ADDR_MASK;
1931 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
1932 & SDMA_DESC1_GENERATION_MASK;
1933 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
1934 & SDMA_DESC0_BYTE_COUNT_MASK;
1935 seq_printf(s,
1936 "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
1937 head, flags, addr, gen, len);
1938 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
1939 seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
1940 (u8)((desc[1] & SDMA_DESC1_HEADER_INDEX_SMASK)
1941 >> SDMA_DESC1_HEADER_INDEX_SHIFT),
1942 (u8)((desc[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1943 >> SDMA_DESC1_HEADER_MODE_SHIFT));
1944 head = (head + 1) & sde->sdma_mask;
1945 }
1946 }
1947
1948 /*
1949 * add the generation number into
1950 * the qw1 and return
1951 */
1952 static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
1953 {
1954 u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
1955
1956 qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
1957 qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
1958 << SDMA_DESC1_GENERATION_SHIFT;
1959 return qw1;
1960 }
1961
1962 /*
1963 * This routine submits the indicated tx
1964 *
1965 * Space has already been guaranteed and
1966 * tail side of ring is locked.
1967 *
1968 * The hardware tail update is done
1969 * in the caller and that is facilitated
1970 * by returning the new tail.
1971 *
1972 * There is special case logic for ahg
1973 * to not add the generation number for
1974 * up to 2 descriptors that follow the
1975 * first descriptor.
1976 *
1977 */
1978 static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
1979 {
1980 int i;
1981 u16 tail;
1982 struct sdma_desc *descp = tx->descp;
1983 u8 skip = 0, mode = ahg_mode(tx);
1984
1985 tail = sde->descq_tail & sde->sdma_mask;
1986 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
1987 sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
1988 trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
1989 tail, &sde->descq[tail]);
1990 tail = ++sde->descq_tail & sde->sdma_mask;
1991 descp++;
1992 if (mode > SDMA_AHG_APPLY_UPDATE1)
1993 skip = mode >> 1;
1994 for (i = 1; i < tx->num_desc; i++, descp++) {
1995 u64 qw1;
1996
1997 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
1998 if (skip) {
1999 /* edits don't have generation */
2000 qw1 = descp->qw[1];
2001 skip--;
2002 } else {
2003 /* replace generation with real one for non-edits */
2004 qw1 = add_gen(sde, descp->qw[1]);
2005 }
2006 sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2007 trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2008 tail, &sde->descq[tail]);
2009 tail = ++sde->descq_tail & sde->sdma_mask;
2010 }
2011 tx->next_descq_idx = tail;
2012 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2013 tx->sn = sde->tail_sn++;
2014 trace_hfi1_sdma_in_sn(sde, tx->sn);
2015 WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2016 #endif
2017 sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2018 sde->desc_avail -= tx->num_desc;
2019 return tail;
2020 }
2021
2022 /*
2023 * Check for progress
2024 */
2025 static int sdma_check_progress(
2026 struct sdma_engine *sde,
2027 struct iowait *wait,
2028 struct sdma_txreq *tx)
2029 {
2030 int ret;
2031
2032 sde->desc_avail = sdma_descq_freecnt(sde);
2033 if (tx->num_desc <= sde->desc_avail)
2034 return -EAGAIN;
2035 /* pulse the head_lock */
2036 if (wait && wait->sleep) {
2037 unsigned seq;
2038
2039 seq = raw_seqcount_begin(
2040 (const seqcount_t *)&sde->head_lock.seqcount);
2041 ret = wait->sleep(sde, wait, tx, seq);
2042 if (ret == -EAGAIN)
2043 sde->desc_avail = sdma_descq_freecnt(sde);
2044 } else
2045 ret = -EBUSY;
2046 return ret;
2047 }
2048
2049 /**
2050 * sdma_send_txreq() - submit a tx req to ring
2051 * @sde: sdma engine to use
2052 * @wait: wait structure to use when full (may be NULL)
2053 * @tx: sdma_txreq to submit
2054 *
2055 * The call submits the tx into the ring. If a iowait structure is non-NULL
2056 * the packet will be queued to the list in wait.
2057 *
2058 * Return:
2059 * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2060 * ring (wait == NULL)
2061 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2062 */
2063 int sdma_send_txreq(struct sdma_engine *sde,
2064 struct iowait *wait,
2065 struct sdma_txreq *tx)
2066 {
2067 int ret = 0;
2068 u16 tail;
2069 unsigned long flags;
2070
2071 /* user should have supplied entire packet */
2072 if (unlikely(tx->tlen))
2073 return -EINVAL;
2074 tx->wait = wait;
2075 spin_lock_irqsave(&sde->tail_lock, flags);
2076 retry:
2077 if (unlikely(!__sdma_running(sde)))
2078 goto unlock_noconn;
2079 if (unlikely(tx->num_desc > sde->desc_avail))
2080 goto nodesc;
2081 tail = submit_tx(sde, tx);
2082 if (wait)
2083 atomic_inc(&wait->sdma_busy);
2084 sdma_update_tail(sde, tail);
2085 unlock:
2086 spin_unlock_irqrestore(&sde->tail_lock, flags);
2087 return ret;
2088 unlock_noconn:
2089 if (wait)
2090 atomic_inc(&wait->sdma_busy);
2091 tx->next_descq_idx = 0;
2092 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2093 tx->sn = sde->tail_sn++;
2094 trace_hfi1_sdma_in_sn(sde, tx->sn);
2095 #endif
2096 spin_lock(&sde->flushlist_lock);
2097 list_add_tail(&tx->list, &sde->flushlist);
2098 spin_unlock(&sde->flushlist_lock);
2099 if (wait) {
2100 wait->tx_count++;
2101 wait->count += tx->num_desc;
2102 }
2103 schedule_work(&sde->flush_worker);
2104 ret = -ECOMM;
2105 goto unlock;
2106 nodesc:
2107 ret = sdma_check_progress(sde, wait, tx);
2108 if (ret == -EAGAIN) {
2109 ret = 0;
2110 goto retry;
2111 }
2112 sde->descq_full_count++;
2113 goto unlock;
2114 }
2115
2116 /**
2117 * sdma_send_txlist() - submit a list of tx req to ring
2118 * @sde: sdma engine to use
2119 * @wait: wait structure to use when full (may be NULL)
2120 * @tx_list: list of sdma_txreqs to submit
2121 *
2122 * The call submits the list into the ring.
2123 *
2124 * If the iowait structure is non-NULL and not equal to the iowait list
2125 * the unprocessed part of the list will be appended to the list in wait.
2126 *
2127 * In all cases, the tx_list will be updated so the head of the tx_list is
2128 * the list of descriptors that have yet to be transmitted.
2129 *
2130 * The intent of this call is to provide a more efficient
2131 * way of submitting multiple packets to SDMA while holding the tail
2132 * side locking.
2133 *
2134 * Return:
2135 * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring
2136 * (wait == NULL)
2137 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2138 */
2139 int sdma_send_txlist(struct sdma_engine *sde,
2140 struct iowait *wait,
2141 struct list_head *tx_list)
2142 {
2143 struct sdma_txreq *tx, *tx_next;
2144 int ret = 0;
2145 unsigned long flags;
2146 u16 tail = INVALID_TAIL;
2147 int count = 0;
2148
2149 spin_lock_irqsave(&sde->tail_lock, flags);
2150 retry:
2151 list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2152 tx->wait = wait;
2153 if (unlikely(!__sdma_running(sde)))
2154 goto unlock_noconn;
2155 if (unlikely(tx->num_desc > sde->desc_avail))
2156 goto nodesc;
2157 if (unlikely(tx->tlen)) {
2158 ret = -EINVAL;
2159 goto update_tail;
2160 }
2161 list_del_init(&tx->list);
2162 tail = submit_tx(sde, tx);
2163 count++;
2164 if (tail != INVALID_TAIL &&
2165 (count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2166 sdma_update_tail(sde, tail);
2167 tail = INVALID_TAIL;
2168 }
2169 }
2170 update_tail:
2171 if (wait)
2172 atomic_add(count, &wait->sdma_busy);
2173 if (tail != INVALID_TAIL)
2174 sdma_update_tail(sde, tail);
2175 spin_unlock_irqrestore(&sde->tail_lock, flags);
2176 return ret;
2177 unlock_noconn:
2178 spin_lock(&sde->flushlist_lock);
2179 list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2180 tx->wait = wait;
2181 list_del_init(&tx->list);
2182 if (wait)
2183 atomic_inc(&wait->sdma_busy);
2184 tx->next_descq_idx = 0;
2185 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2186 tx->sn = sde->tail_sn++;
2187 trace_hfi1_sdma_in_sn(sde, tx->sn);
2188 #endif
2189 list_add_tail(&tx->list, &sde->flushlist);
2190 if (wait) {
2191 wait->tx_count++;
2192 wait->count += tx->num_desc;
2193 }
2194 }
2195 spin_unlock(&sde->flushlist_lock);
2196 schedule_work(&sde->flush_worker);
2197 ret = -ECOMM;
2198 goto update_tail;
2199 nodesc:
2200 ret = sdma_check_progress(sde, wait, tx);
2201 if (ret == -EAGAIN) {
2202 ret = 0;
2203 goto retry;
2204 }
2205 sde->descq_full_count++;
2206 goto update_tail;
2207 }
2208
2209 static void sdma_process_event(struct sdma_engine *sde,
2210 enum sdma_events event)
2211 {
2212 unsigned long flags;
2213
2214 spin_lock_irqsave(&sde->tail_lock, flags);
2215 write_seqlock(&sde->head_lock);
2216
2217 __sdma_process_event(sde, event);
2218
2219 if (sde->state.current_state == sdma_state_s99_running)
2220 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2221
2222 write_sequnlock(&sde->head_lock);
2223 spin_unlock_irqrestore(&sde->tail_lock, flags);
2224 }
2225
2226 static void __sdma_process_event(struct sdma_engine *sde,
2227 enum sdma_events event)
2228 {
2229 struct sdma_state *ss = &sde->state;
2230 int need_progress = 0;
2231
2232 /* CONFIG SDMA temporary */
2233 #ifdef CONFIG_SDMA_VERBOSITY
2234 dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2235 sdma_state_names[ss->current_state],
2236 sdma_event_names[event]);
2237 #endif
2238
2239 switch (ss->current_state) {
2240 case sdma_state_s00_hw_down:
2241 switch (event) {
2242 case sdma_event_e00_go_hw_down:
2243 break;
2244 case sdma_event_e30_go_running:
2245 /*
2246 * If down, but running requested (usually result
2247 * of link up, then we need to start up.
2248 * This can happen when hw down is requested while
2249 * bringing the link up with traffic active on
2250 * 7220, e.g. */
2251 ss->go_s99_running = 1;
2252 /* fall through and start dma engine */
2253 case sdma_event_e10_go_hw_start:
2254 /* This reference means the state machine is started */
2255 sdma_get(&sde->state);
2256 sdma_set_state(sde,
2257 sdma_state_s10_hw_start_up_halt_wait);
2258 break;
2259 case sdma_event_e15_hw_halt_done:
2260 break;
2261 case sdma_event_e25_hw_clean_up_done:
2262 break;
2263 case sdma_event_e40_sw_cleaned:
2264 sdma_sw_tear_down(sde);
2265 break;
2266 case sdma_event_e50_hw_cleaned:
2267 break;
2268 case sdma_event_e60_hw_halted:
2269 break;
2270 case sdma_event_e70_go_idle:
2271 break;
2272 case sdma_event_e80_hw_freeze:
2273 break;
2274 case sdma_event_e81_hw_frozen:
2275 break;
2276 case sdma_event_e82_hw_unfreeze:
2277 break;
2278 case sdma_event_e85_link_down:
2279 break;
2280 case sdma_event_e90_sw_halted:
2281 break;
2282 }
2283 break;
2284
2285 case sdma_state_s10_hw_start_up_halt_wait:
2286 switch (event) {
2287 case sdma_event_e00_go_hw_down:
2288 sdma_set_state(sde, sdma_state_s00_hw_down);
2289 sdma_sw_tear_down(sde);
2290 break;
2291 case sdma_event_e10_go_hw_start:
2292 break;
2293 case sdma_event_e15_hw_halt_done:
2294 sdma_set_state(sde,
2295 sdma_state_s15_hw_start_up_clean_wait);
2296 sdma_start_hw_clean_up(sde);
2297 break;
2298 case sdma_event_e25_hw_clean_up_done:
2299 break;
2300 case sdma_event_e30_go_running:
2301 ss->go_s99_running = 1;
2302 break;
2303 case sdma_event_e40_sw_cleaned:
2304 break;
2305 case sdma_event_e50_hw_cleaned:
2306 break;
2307 case sdma_event_e60_hw_halted:
2308 schedule_work(&sde->err_halt_worker);
2309 break;
2310 case sdma_event_e70_go_idle:
2311 ss->go_s99_running = 0;
2312 break;
2313 case sdma_event_e80_hw_freeze:
2314 break;
2315 case sdma_event_e81_hw_frozen:
2316 break;
2317 case sdma_event_e82_hw_unfreeze:
2318 break;
2319 case sdma_event_e85_link_down:
2320 break;
2321 case sdma_event_e90_sw_halted:
2322 break;
2323 }
2324 break;
2325
2326 case sdma_state_s15_hw_start_up_clean_wait:
2327 switch (event) {
2328 case sdma_event_e00_go_hw_down:
2329 sdma_set_state(sde, sdma_state_s00_hw_down);
2330 sdma_sw_tear_down(sde);
2331 break;
2332 case sdma_event_e10_go_hw_start:
2333 break;
2334 case sdma_event_e15_hw_halt_done:
2335 break;
2336 case sdma_event_e25_hw_clean_up_done:
2337 sdma_hw_start_up(sde);
2338 sdma_set_state(sde, ss->go_s99_running ?
2339 sdma_state_s99_running :
2340 sdma_state_s20_idle);
2341 break;
2342 case sdma_event_e30_go_running:
2343 ss->go_s99_running = 1;
2344 break;
2345 case sdma_event_e40_sw_cleaned:
2346 break;
2347 case sdma_event_e50_hw_cleaned:
2348 break;
2349 case sdma_event_e60_hw_halted:
2350 break;
2351 case sdma_event_e70_go_idle:
2352 ss->go_s99_running = 0;
2353 break;
2354 case sdma_event_e80_hw_freeze:
2355 break;
2356 case sdma_event_e81_hw_frozen:
2357 break;
2358 case sdma_event_e82_hw_unfreeze:
2359 break;
2360 case sdma_event_e85_link_down:
2361 break;
2362 case sdma_event_e90_sw_halted:
2363 break;
2364 }
2365 break;
2366
2367 case sdma_state_s20_idle:
2368 switch (event) {
2369 case sdma_event_e00_go_hw_down:
2370 sdma_set_state(sde, sdma_state_s00_hw_down);
2371 sdma_sw_tear_down(sde);
2372 break;
2373 case sdma_event_e10_go_hw_start:
2374 break;
2375 case sdma_event_e15_hw_halt_done:
2376 break;
2377 case sdma_event_e25_hw_clean_up_done:
2378 break;
2379 case sdma_event_e30_go_running:
2380 sdma_set_state(sde, sdma_state_s99_running);
2381 ss->go_s99_running = 1;
2382 break;
2383 case sdma_event_e40_sw_cleaned:
2384 break;
2385 case sdma_event_e50_hw_cleaned:
2386 break;
2387 case sdma_event_e60_hw_halted:
2388 sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2389 schedule_work(&sde->err_halt_worker);
2390 break;
2391 case sdma_event_e70_go_idle:
2392 break;
2393 case sdma_event_e85_link_down:
2394 /* fall through */
2395 case sdma_event_e80_hw_freeze:
2396 sdma_set_state(sde, sdma_state_s80_hw_freeze);
2397 atomic_dec(&sde->dd->sdma_unfreeze_count);
2398 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2399 break;
2400 case sdma_event_e81_hw_frozen:
2401 break;
2402 case sdma_event_e82_hw_unfreeze:
2403 break;
2404 case sdma_event_e90_sw_halted:
2405 break;
2406 }
2407 break;
2408
2409 case sdma_state_s30_sw_clean_up_wait:
2410 switch (event) {
2411 case sdma_event_e00_go_hw_down:
2412 sdma_set_state(sde, sdma_state_s00_hw_down);
2413 break;
2414 case sdma_event_e10_go_hw_start:
2415 break;
2416 case sdma_event_e15_hw_halt_done:
2417 break;
2418 case sdma_event_e25_hw_clean_up_done:
2419 break;
2420 case sdma_event_e30_go_running:
2421 ss->go_s99_running = 1;
2422 break;
2423 case sdma_event_e40_sw_cleaned:
2424 sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2425 sdma_start_hw_clean_up(sde);
2426 break;
2427 case sdma_event_e50_hw_cleaned:
2428 break;
2429 case sdma_event_e60_hw_halted:
2430 break;
2431 case sdma_event_e70_go_idle:
2432 ss->go_s99_running = 0;
2433 break;
2434 case sdma_event_e80_hw_freeze:
2435 break;
2436 case sdma_event_e81_hw_frozen:
2437 break;
2438 case sdma_event_e82_hw_unfreeze:
2439 break;
2440 case sdma_event_e85_link_down:
2441 ss->go_s99_running = 0;
2442 break;
2443 case sdma_event_e90_sw_halted:
2444 break;
2445 }
2446 break;
2447
2448 case sdma_state_s40_hw_clean_up_wait:
2449 switch (event) {
2450 case sdma_event_e00_go_hw_down:
2451 sdma_set_state(sde, sdma_state_s00_hw_down);
2452 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2453 break;
2454 case sdma_event_e10_go_hw_start:
2455 break;
2456 case sdma_event_e15_hw_halt_done:
2457 break;
2458 case sdma_event_e25_hw_clean_up_done:
2459 sdma_hw_start_up(sde);
2460 sdma_set_state(sde, ss->go_s99_running ?
2461 sdma_state_s99_running :
2462 sdma_state_s20_idle);
2463 break;
2464 case sdma_event_e30_go_running:
2465 ss->go_s99_running = 1;
2466 break;
2467 case sdma_event_e40_sw_cleaned:
2468 break;
2469 case sdma_event_e50_hw_cleaned:
2470 break;
2471 case sdma_event_e60_hw_halted:
2472 break;
2473 case sdma_event_e70_go_idle:
2474 ss->go_s99_running = 0;
2475 break;
2476 case sdma_event_e80_hw_freeze:
2477 break;
2478 case sdma_event_e81_hw_frozen:
2479 break;
2480 case sdma_event_e82_hw_unfreeze:
2481 break;
2482 case sdma_event_e85_link_down:
2483 ss->go_s99_running = 0;
2484 break;
2485 case sdma_event_e90_sw_halted:
2486 break;
2487 }
2488 break;
2489
2490 case sdma_state_s50_hw_halt_wait:
2491 switch (event) {
2492 case sdma_event_e00_go_hw_down:
2493 sdma_set_state(sde, sdma_state_s00_hw_down);
2494 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2495 break;
2496 case sdma_event_e10_go_hw_start:
2497 break;
2498 case sdma_event_e15_hw_halt_done:
2499 sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2500 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2501 break;
2502 case sdma_event_e25_hw_clean_up_done:
2503 break;
2504 case sdma_event_e30_go_running:
2505 ss->go_s99_running = 1;
2506 break;
2507 case sdma_event_e40_sw_cleaned:
2508 break;
2509 case sdma_event_e50_hw_cleaned:
2510 break;
2511 case sdma_event_e60_hw_halted:
2512 schedule_work(&sde->err_halt_worker);
2513 break;
2514 case sdma_event_e70_go_idle:
2515 ss->go_s99_running = 0;
2516 break;
2517 case sdma_event_e80_hw_freeze:
2518 break;
2519 case sdma_event_e81_hw_frozen:
2520 break;
2521 case sdma_event_e82_hw_unfreeze:
2522 break;
2523 case sdma_event_e85_link_down:
2524 ss->go_s99_running = 0;
2525 break;
2526 case sdma_event_e90_sw_halted:
2527 break;
2528 }
2529 break;
2530
2531 case sdma_state_s60_idle_halt_wait:
2532 switch (event) {
2533 case sdma_event_e00_go_hw_down:
2534 sdma_set_state(sde, sdma_state_s00_hw_down);
2535 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2536 break;
2537 case sdma_event_e10_go_hw_start:
2538 break;
2539 case sdma_event_e15_hw_halt_done:
2540 sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2541 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2542 break;
2543 case sdma_event_e25_hw_clean_up_done:
2544 break;
2545 case sdma_event_e30_go_running:
2546 ss->go_s99_running = 1;
2547 break;
2548 case sdma_event_e40_sw_cleaned:
2549 break;
2550 case sdma_event_e50_hw_cleaned:
2551 break;
2552 case sdma_event_e60_hw_halted:
2553 schedule_work(&sde->err_halt_worker);
2554 break;
2555 case sdma_event_e70_go_idle:
2556 ss->go_s99_running = 0;
2557 break;
2558 case sdma_event_e80_hw_freeze:
2559 break;
2560 case sdma_event_e81_hw_frozen:
2561 break;
2562 case sdma_event_e82_hw_unfreeze:
2563 break;
2564 case sdma_event_e85_link_down:
2565 break;
2566 case sdma_event_e90_sw_halted:
2567 break;
2568 }
2569 break;
2570
2571 case sdma_state_s80_hw_freeze:
2572 switch (event) {
2573 case sdma_event_e00_go_hw_down:
2574 sdma_set_state(sde, sdma_state_s00_hw_down);
2575 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2576 break;
2577 case sdma_event_e10_go_hw_start:
2578 break;
2579 case sdma_event_e15_hw_halt_done:
2580 break;
2581 case sdma_event_e25_hw_clean_up_done:
2582 break;
2583 case sdma_event_e30_go_running:
2584 ss->go_s99_running = 1;
2585 break;
2586 case sdma_event_e40_sw_cleaned:
2587 break;
2588 case sdma_event_e50_hw_cleaned:
2589 break;
2590 case sdma_event_e60_hw_halted:
2591 break;
2592 case sdma_event_e70_go_idle:
2593 ss->go_s99_running = 0;
2594 break;
2595 case sdma_event_e80_hw_freeze:
2596 break;
2597 case sdma_event_e81_hw_frozen:
2598 sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2599 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2600 break;
2601 case sdma_event_e82_hw_unfreeze:
2602 break;
2603 case sdma_event_e85_link_down:
2604 break;
2605 case sdma_event_e90_sw_halted:
2606 break;
2607 }
2608 break;
2609
2610 case sdma_state_s82_freeze_sw_clean:
2611 switch (event) {
2612 case sdma_event_e00_go_hw_down:
2613 sdma_set_state(sde, sdma_state_s00_hw_down);
2614 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2615 break;
2616 case sdma_event_e10_go_hw_start:
2617 break;
2618 case sdma_event_e15_hw_halt_done:
2619 break;
2620 case sdma_event_e25_hw_clean_up_done:
2621 break;
2622 case sdma_event_e30_go_running:
2623 ss->go_s99_running = 1;
2624 break;
2625 case sdma_event_e40_sw_cleaned:
2626 /* notify caller this engine is done cleaning */
2627 atomic_dec(&sde->dd->sdma_unfreeze_count);
2628 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2629 break;
2630 case sdma_event_e50_hw_cleaned:
2631 break;
2632 case sdma_event_e60_hw_halted:
2633 break;
2634 case sdma_event_e70_go_idle:
2635 ss->go_s99_running = 0;
2636 break;
2637 case sdma_event_e80_hw_freeze:
2638 break;
2639 case sdma_event_e81_hw_frozen:
2640 break;
2641 case sdma_event_e82_hw_unfreeze:
2642 sdma_hw_start_up(sde);
2643 sdma_set_state(sde, ss->go_s99_running ?
2644 sdma_state_s99_running :
2645 sdma_state_s20_idle);
2646 break;
2647 case sdma_event_e85_link_down:
2648 break;
2649 case sdma_event_e90_sw_halted:
2650 break;
2651 }
2652 break;
2653
2654 case sdma_state_s99_running:
2655 switch (event) {
2656 case sdma_event_e00_go_hw_down:
2657 sdma_set_state(sde, sdma_state_s00_hw_down);
2658 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2659 break;
2660 case sdma_event_e10_go_hw_start:
2661 break;
2662 case sdma_event_e15_hw_halt_done:
2663 break;
2664 case sdma_event_e25_hw_clean_up_done:
2665 break;
2666 case sdma_event_e30_go_running:
2667 break;
2668 case sdma_event_e40_sw_cleaned:
2669 break;
2670 case sdma_event_e50_hw_cleaned:
2671 break;
2672 case sdma_event_e60_hw_halted:
2673 need_progress = 1;
2674 sdma_err_progress_check_schedule(sde);
2675 case sdma_event_e90_sw_halted:
2676 /*
2677 * SW initiated halt does not perform engines
2678 * progress check
2679 */
2680 sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2681 schedule_work(&sde->err_halt_worker);
2682 break;
2683 case sdma_event_e70_go_idle:
2684 sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
2685 break;
2686 case sdma_event_e85_link_down:
2687 ss->go_s99_running = 0;
2688 /* fall through */
2689 case sdma_event_e80_hw_freeze:
2690 sdma_set_state(sde, sdma_state_s80_hw_freeze);
2691 atomic_dec(&sde->dd->sdma_unfreeze_count);
2692 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2693 break;
2694 case sdma_event_e81_hw_frozen:
2695 break;
2696 case sdma_event_e82_hw_unfreeze:
2697 break;
2698 }
2699 break;
2700 }
2701
2702 ss->last_event = event;
2703 if (need_progress)
2704 sdma_make_progress(sde, 0);
2705 }
2706
2707 /*
2708 * _extend_sdma_tx_descs() - helper to extend txreq
2709 *
2710 * This is called once the initial nominal allocation
2711 * of descriptors in the sdma_txreq is exhausted.
2712 *
2713 * The code will bump the allocation up to the max
2714 * of MAX_DESC (64) descriptors. There doesn't seem
2715 * much point in an interim step. The last descriptor
2716 * is reserved for coalesce buffer in order to support
2717 * cases where input packet has >MAX_DESC iovecs.
2718 *
2719 */
2720 static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
2721 {
2722 int i;
2723
2724 /* Handle last descriptor */
2725 if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
2726 /* if tlen is 0, it is for padding, release last descriptor */
2727 if (!tx->tlen) {
2728 tx->desc_limit = MAX_DESC;
2729 } else if (!tx->coalesce_buf) {
2730 /* allocate coalesce buffer with space for padding */
2731 tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
2732 GFP_ATOMIC);
2733 if (!tx->coalesce_buf)
2734 goto enomem;
2735 tx->coalesce_idx = 0;
2736 }
2737 return 0;
2738 }
2739
2740 if (unlikely(tx->num_desc == MAX_DESC))
2741 goto enomem;
2742
2743 tx->descp = kmalloc_array(
2744 MAX_DESC,
2745 sizeof(struct sdma_desc),
2746 GFP_ATOMIC);
2747 if (!tx->descp)
2748 goto enomem;
2749
2750 /* reserve last descriptor for coalescing */
2751 tx->desc_limit = MAX_DESC - 1;
2752 /* copy ones already built */
2753 for (i = 0; i < tx->num_desc; i++)
2754 tx->descp[i] = tx->descs[i];
2755 return 0;
2756 enomem:
2757 sdma_txclean(dd, tx);
2758 return -ENOMEM;
2759 }
2760
2761 /*
2762 * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
2763 *
2764 * This is called once the initial nominal allocation of descriptors
2765 * in the sdma_txreq is exhausted.
2766 *
2767 * This function calls _extend_sdma_tx_descs to extend or allocate
2768 * coalesce buffer. If there is a allocated coalesce buffer, it will
2769 * copy the input packet data into the coalesce buffer. It also adds
2770 * coalesce buffer descriptor once whe whole packet is received.
2771 *
2772 * Return:
2773 * <0 - error
2774 * 0 - coalescing, don't populate descriptor
2775 * 1 - continue with populating descriptor
2776 */
2777 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
2778 int type, void *kvaddr, struct page *page,
2779 unsigned long offset, u16 len)
2780 {
2781 int pad_len, rval;
2782 dma_addr_t addr;
2783
2784 rval = _extend_sdma_tx_descs(dd, tx);
2785 if (rval) {
2786 sdma_txclean(dd, tx);
2787 return rval;
2788 }
2789
2790 /* If coalesce buffer is allocated, copy data into it */
2791 if (tx->coalesce_buf) {
2792 if (type == SDMA_MAP_NONE) {
2793 sdma_txclean(dd, tx);
2794 return -EINVAL;
2795 }
2796
2797 if (type == SDMA_MAP_PAGE) {
2798 kvaddr = kmap(page);
2799 kvaddr += offset;
2800 } else if (WARN_ON(!kvaddr)) {
2801 sdma_txclean(dd, tx);
2802 return -EINVAL;
2803 }
2804
2805 memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
2806 tx->coalesce_idx += len;
2807 if (type == SDMA_MAP_PAGE)
2808 kunmap(page);
2809
2810 /* If there is more data, return */
2811 if (tx->tlen - tx->coalesce_idx)
2812 return 0;
2813
2814 /* Whole packet is received; add any padding */
2815 pad_len = tx->packet_len & (sizeof(u32) - 1);
2816 if (pad_len) {
2817 pad_len = sizeof(u32) - pad_len;
2818 memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
2819 /* padding is taken care of for coalescing case */
2820 tx->packet_len += pad_len;
2821 tx->tlen += pad_len;
2822 }
2823
2824 /* dma map the coalesce buffer */
2825 addr = dma_map_single(&dd->pcidev->dev,
2826 tx->coalesce_buf,
2827 tx->tlen,
2828 DMA_TO_DEVICE);
2829
2830 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
2831 sdma_txclean(dd, tx);
2832 return -ENOSPC;
2833 }
2834
2835 /* Add descriptor for coalesce buffer */
2836 tx->desc_limit = MAX_DESC;
2837 return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
2838 addr, tx->tlen);
2839 }
2840
2841 return 1;
2842 }
2843
2844 /* Update sdes when the lmc changes */
2845 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
2846 {
2847 struct sdma_engine *sde;
2848 int i;
2849 u64 sreg;
2850
2851 sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
2852 SD(CHECK_SLID_MASK_SHIFT)) |
2853 (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
2854 SD(CHECK_SLID_VALUE_SHIFT));
2855
2856 for (i = 0; i < dd->num_sdma; i++) {
2857 hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
2858 i, (u32)sreg);
2859 sde = &dd->per_sdma[i];
2860 write_sde_csr(sde, SD(CHECK_SLID), sreg);
2861 }
2862 }
2863
2864 /* tx not dword sized - pad */
2865 int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
2866 {
2867 int rval = 0;
2868
2869 tx->num_desc++;
2870 if ((unlikely(tx->num_desc == tx->desc_limit))) {
2871 rval = _extend_sdma_tx_descs(dd, tx);
2872 if (rval) {
2873 sdma_txclean(dd, tx);
2874 return rval;
2875 }
2876 }
2877 /* finish the one just added */
2878 make_tx_sdma_desc(
2879 tx,
2880 SDMA_MAP_NONE,
2881 dd->sdma_pad_phys,
2882 sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
2883 _sdma_close_tx(dd, tx);
2884 return rval;
2885 }
2886
2887 /*
2888 * Add ahg to the sdma_txreq
2889 *
2890 * The logic will consume up to 3
2891 * descriptors at the beginning of
2892 * sdma_txreq.
2893 */
2894 void _sdma_txreq_ahgadd(
2895 struct sdma_txreq *tx,
2896 u8 num_ahg,
2897 u8 ahg_entry,
2898 u32 *ahg,
2899 u8 ahg_hlen)
2900 {
2901 u32 i, shift = 0, desc = 0;
2902 u8 mode;
2903
2904 WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
2905 /* compute mode */
2906 if (num_ahg == 1)
2907 mode = SDMA_AHG_APPLY_UPDATE1;
2908 else if (num_ahg <= 5)
2909 mode = SDMA_AHG_APPLY_UPDATE2;
2910 else
2911 mode = SDMA_AHG_APPLY_UPDATE3;
2912 tx->num_desc++;
2913 /* initialize to consumed descriptors to zero */
2914 switch (mode) {
2915 case SDMA_AHG_APPLY_UPDATE3:
2916 tx->num_desc++;
2917 tx->descs[2].qw[0] = 0;
2918 tx->descs[2].qw[1] = 0;
2919 /* FALLTHROUGH */
2920 case SDMA_AHG_APPLY_UPDATE2:
2921 tx->num_desc++;
2922 tx->descs[1].qw[0] = 0;
2923 tx->descs[1].qw[1] = 0;
2924 break;
2925 }
2926 ahg_hlen >>= 2;
2927 tx->descs[0].qw[1] |=
2928 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
2929 << SDMA_DESC1_HEADER_INDEX_SHIFT) |
2930 (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
2931 << SDMA_DESC1_HEADER_DWS_SHIFT) |
2932 (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
2933 << SDMA_DESC1_HEADER_MODE_SHIFT) |
2934 (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
2935 << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
2936 for (i = 0; i < (num_ahg - 1); i++) {
2937 if (!shift && !(i & 2))
2938 desc++;
2939 tx->descs[desc].qw[!!(i & 2)] |=
2940 (((u64)ahg[i + 1])
2941 << shift);
2942 shift = (shift + 32) & 63;
2943 }
2944 }
2945
2946 /**
2947 * sdma_ahg_alloc - allocate an AHG entry
2948 * @sde: engine to allocate from
2949 *
2950 * Return:
2951 * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
2952 * -ENOSPC if an entry is not available
2953 */
2954 int sdma_ahg_alloc(struct sdma_engine *sde)
2955 {
2956 int nr;
2957 int oldbit;
2958
2959 if (!sde) {
2960 trace_hfi1_ahg_allocate(sde, -EINVAL);
2961 return -EINVAL;
2962 }
2963 while (1) {
2964 nr = ffz(ACCESS_ONCE(sde->ahg_bits));
2965 if (nr > 31) {
2966 trace_hfi1_ahg_allocate(sde, -ENOSPC);
2967 return -ENOSPC;
2968 }
2969 oldbit = test_and_set_bit(nr, &sde->ahg_bits);
2970 if (!oldbit)
2971 break;
2972 cpu_relax();
2973 }
2974 trace_hfi1_ahg_allocate(sde, nr);
2975 return nr;
2976 }
2977
2978 /**
2979 * sdma_ahg_free - free an AHG entry
2980 * @sde: engine to return AHG entry
2981 * @ahg_index: index to free
2982 *
2983 * This routine frees the indicate AHG entry.
2984 */
2985 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
2986 {
2987 if (!sde)
2988 return;
2989 trace_hfi1_ahg_deallocate(sde, ahg_index);
2990 if (ahg_index < 0 || ahg_index > 31)
2991 return;
2992 clear_bit(ahg_index, &sde->ahg_bits);
2993 }
2994
2995 /*
2996 * SPC freeze handling for SDMA engines. Called when the driver knows
2997 * the SPC is going into a freeze but before the freeze is fully
2998 * settled. Generally an error interrupt.
2999 *
3000 * This event will pull the engine out of running so no more entries can be
3001 * added to the engine's queue.
3002 */
3003 void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3004 {
3005 int i;
3006 enum sdma_events event = link_down ? sdma_event_e85_link_down :
3007 sdma_event_e80_hw_freeze;
3008
3009 /* set up the wait but do not wait here */
3010 atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3011
3012 /* tell all engines to stop running and wait */
3013 for (i = 0; i < dd->num_sdma; i++)
3014 sdma_process_event(&dd->per_sdma[i], event);
3015
3016 /* sdma_freeze() will wait for all engines to have stopped */
3017 }
3018
3019 /*
3020 * SPC freeze handling for SDMA engines. Called when the driver knows
3021 * the SPC is fully frozen.
3022 */
3023 void sdma_freeze(struct hfi1_devdata *dd)
3024 {
3025 int i;
3026 int ret;
3027
3028 /*
3029 * Make sure all engines have moved out of the running state before
3030 * continuing.
3031 */
3032 ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3033 atomic_read(&dd->sdma_unfreeze_count) <= 0);
3034 /* interrupted or count is negative, then unloading - just exit */
3035 if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3036 return;
3037
3038 /* set up the count for the next wait */
3039 atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3040
3041 /* tell all engines that the SPC is frozen, they can start cleaning */
3042 for (i = 0; i < dd->num_sdma; i++)
3043 sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3044
3045 /*
3046 * Wait for everyone to finish software clean before exiting. The
3047 * software clean will read engine CSRs, so must be completed before
3048 * the next step, which will clear the engine CSRs.
3049 */
3050 (void) wait_event_interruptible(dd->sdma_unfreeze_wq,
3051 atomic_read(&dd->sdma_unfreeze_count) <= 0);
3052 /* no need to check results - done no matter what */
3053 }
3054
3055 /*
3056 * SPC freeze handling for the SDMA engines. Called after the SPC is unfrozen.
3057 *
3058 * The SPC freeze acts like a SDMA halt and a hardware clean combined. All
3059 * that is left is a software clean. We could do it after the SPC is fully
3060 * frozen, but then we'd have to add another state to wait for the unfreeze.
3061 * Instead, just defer the software clean until the unfreeze step.
3062 */
3063 void sdma_unfreeze(struct hfi1_devdata *dd)
3064 {
3065 int i;
3066
3067 /* tell all engines start freeze clean up */
3068 for (i = 0; i < dd->num_sdma; i++)
3069 sdma_process_event(&dd->per_sdma[i],
3070 sdma_event_e82_hw_unfreeze);
3071 }
3072
3073 /**
3074 * _sdma_engine_progress_schedule() - schedule progress on engine
3075 * @sde: sdma_engine to schedule progress
3076 *
3077 */
3078 void _sdma_engine_progress_schedule(
3079 struct sdma_engine *sde)
3080 {
3081 trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3082 /* assume we have selected a good cpu */
3083 write_csr(sde->dd,
3084 CCE_INT_FORCE + (8*(IS_SDMA_START/64)), sde->progress_mask);
3085 }