]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/staging/rdma/hfi1/user_exp_rcv.c
IB/hfi1: Re-factor MMU notification code
[mirror_ubuntu-zesty-kernel.git] / drivers / staging / rdma / hfi1 / user_exp_rcv.c
1 /*
2 * Copyright(c) 2015, 2016 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47 #include <asm/page.h>
48
49 #include "user_exp_rcv.h"
50 #include "trace.h"
51 #include "mmu_rb.h"
52
53 struct tid_group {
54 struct list_head list;
55 unsigned base;
56 u8 size;
57 u8 used;
58 u8 map;
59 };
60
61 struct tid_rb_node {
62 struct mmu_rb_node mmu;
63 unsigned long phys;
64 struct tid_group *grp;
65 u32 rcventry;
66 dma_addr_t dma_addr;
67 bool freed;
68 unsigned npages;
69 struct page *pages[0];
70 };
71
72 struct tid_pageset {
73 u16 idx;
74 u16 count;
75 };
76
77 #define EXP_TID_SET_EMPTY(set) (set.count == 0 && list_empty(&set.list))
78
79 #define num_user_pages(vaddr, len) \
80 (1 + (((((unsigned long)(vaddr) + \
81 (unsigned long)(len) - 1) & PAGE_MASK) - \
82 ((unsigned long)vaddr & PAGE_MASK)) >> PAGE_SHIFT))
83
84 static void unlock_exp_tids(struct hfi1_ctxtdata *, struct exp_tid_set *,
85 struct rb_root *);
86 static u32 find_phys_blocks(struct page **, unsigned, struct tid_pageset *);
87 static int set_rcvarray_entry(struct file *, unsigned long, u32,
88 struct tid_group *, struct page **, unsigned);
89 static inline int mmu_addr_cmp(struct mmu_rb_node *, unsigned long,
90 unsigned long);
91 static int mmu_rb_insert(struct rb_root *, struct mmu_rb_node *);
92 static void mmu_rb_remove(struct rb_root *, struct mmu_rb_node *);
93 static int mmu_rb_invalidate(struct rb_root *, struct mmu_rb_node *);
94 static int program_rcvarray(struct file *, unsigned long, struct tid_group *,
95 struct tid_pageset *, unsigned, u16, struct page **,
96 u32 *, unsigned *, unsigned *);
97 static int unprogram_rcvarray(struct file *, u32, struct tid_group **);
98 static void clear_tid_node(struct hfi1_filedata *, u16, struct tid_rb_node *);
99
100 static struct mmu_rb_ops tid_rb_ops = {
101 .compare = mmu_addr_cmp,
102 .insert = mmu_rb_insert,
103 .remove = mmu_rb_remove,
104 .invalidate = mmu_rb_invalidate
105 };
106
107 static inline u32 rcventry2tidinfo(u32 rcventry)
108 {
109 u32 pair = rcventry & ~0x1;
110
111 return EXP_TID_SET(IDX, pair >> 1) |
112 EXP_TID_SET(CTRL, 1 << (rcventry - pair));
113 }
114
115 static inline void exp_tid_group_init(struct exp_tid_set *set)
116 {
117 INIT_LIST_HEAD(&set->list);
118 set->count = 0;
119 }
120
121 static inline void tid_group_remove(struct tid_group *grp,
122 struct exp_tid_set *set)
123 {
124 list_del_init(&grp->list);
125 set->count--;
126 }
127
128 static inline void tid_group_add_tail(struct tid_group *grp,
129 struct exp_tid_set *set)
130 {
131 list_add_tail(&grp->list, &set->list);
132 set->count++;
133 }
134
135 static inline struct tid_group *tid_group_pop(struct exp_tid_set *set)
136 {
137 struct tid_group *grp =
138 list_first_entry(&set->list, struct tid_group, list);
139 list_del_init(&grp->list);
140 set->count--;
141 return grp;
142 }
143
144 static inline void tid_group_move(struct tid_group *group,
145 struct exp_tid_set *s1,
146 struct exp_tid_set *s2)
147 {
148 tid_group_remove(group, s1);
149 tid_group_add_tail(group, s2);
150 }
151
152 /*
153 * Initialize context and file private data needed for Expected
154 * receive caching. This needs to be done after the context has
155 * been configured with the eager/expected RcvEntry counts.
156 */
157 int hfi1_user_exp_rcv_init(struct file *fp)
158 {
159 struct hfi1_filedata *fd = fp->private_data;
160 struct hfi1_ctxtdata *uctxt = fd->uctxt;
161 struct hfi1_devdata *dd = uctxt->dd;
162 unsigned tidbase;
163 int i, ret = 0;
164
165 spin_lock_init(&fd->tid_lock);
166 spin_lock_init(&fd->invalid_lock);
167 fd->tid_rb_root = RB_ROOT;
168
169 if (!uctxt->subctxt_cnt || !fd->subctxt) {
170 exp_tid_group_init(&uctxt->tid_group_list);
171 exp_tid_group_init(&uctxt->tid_used_list);
172 exp_tid_group_init(&uctxt->tid_full_list);
173
174 tidbase = uctxt->expected_base;
175 for (i = 0; i < uctxt->expected_count /
176 dd->rcv_entries.group_size; i++) {
177 struct tid_group *grp;
178
179 grp = kzalloc(sizeof(*grp), GFP_KERNEL);
180 if (!grp) {
181 /*
182 * If we fail here, the groups already
183 * allocated will be freed by the close
184 * call.
185 */
186 ret = -ENOMEM;
187 goto done;
188 }
189 grp->size = dd->rcv_entries.group_size;
190 grp->base = tidbase;
191 tid_group_add_tail(grp, &uctxt->tid_group_list);
192 tidbase += dd->rcv_entries.group_size;
193 }
194 }
195
196 fd->entry_to_rb = kcalloc(uctxt->expected_count,
197 sizeof(struct rb_node *),
198 GFP_KERNEL);
199 if (!fd->entry_to_rb)
200 return -ENOMEM;
201
202 if (!HFI1_CAP_IS_USET(TID_UNMAP)) {
203 fd->invalid_tid_idx = 0;
204 fd->invalid_tids = kzalloc(uctxt->expected_count *
205 sizeof(u32), GFP_KERNEL);
206 if (!fd->invalid_tids) {
207 ret = -ENOMEM;
208 goto done;
209 }
210
211 /*
212 * Register MMU notifier callbacks. If the registration
213 * fails, continue but turn off the TID caching for
214 * all user contexts.
215 */
216 ret = hfi1_mmu_rb_register(&fd->tid_rb_root, &tid_rb_ops);
217 if (ret) {
218 dd_dev_info(dd,
219 "Failed MMU notifier registration %d\n",
220 ret);
221 HFI1_CAP_USET(TID_UNMAP);
222 ret = 0;
223 }
224 }
225
226 if (HFI1_CAP_IS_USET(TID_UNMAP)) {
227 fd->mmu_rb_insert = mmu_rb_insert;
228 fd->mmu_rb_remove = mmu_rb_remove;
229 } else {
230 fd->mmu_rb_insert = hfi1_mmu_rb_insert;
231 fd->mmu_rb_remove = hfi1_mmu_rb_remove;
232 }
233
234 /*
235 * PSM does not have a good way to separate, count, and
236 * effectively enforce a limit on RcvArray entries used by
237 * subctxts (when context sharing is used) when TID caching
238 * is enabled. To help with that, we calculate a per-process
239 * RcvArray entry share and enforce that.
240 * If TID caching is not in use, PSM deals with usage on its
241 * own. In that case, we allow any subctxt to take all of the
242 * entries.
243 *
244 * Make sure that we set the tid counts only after successful
245 * init.
246 */
247 spin_lock(&fd->tid_lock);
248 if (uctxt->subctxt_cnt && !HFI1_CAP_IS_USET(TID_UNMAP)) {
249 u16 remainder;
250
251 fd->tid_limit = uctxt->expected_count / uctxt->subctxt_cnt;
252 remainder = uctxt->expected_count % uctxt->subctxt_cnt;
253 if (remainder && fd->subctxt < remainder)
254 fd->tid_limit++;
255 } else {
256 fd->tid_limit = uctxt->expected_count;
257 }
258 spin_unlock(&fd->tid_lock);
259 done:
260 return ret;
261 }
262
263 int hfi1_user_exp_rcv_free(struct hfi1_filedata *fd)
264 {
265 struct hfi1_ctxtdata *uctxt = fd->uctxt;
266 struct tid_group *grp, *gptr;
267
268 /*
269 * The notifier would have been removed when the process'es mm
270 * was freed.
271 */
272 if (!HFI1_CAP_IS_USET(TID_UNMAP))
273 hfi1_mmu_rb_unregister(&fd->tid_rb_root);
274
275 kfree(fd->invalid_tids);
276
277 if (!uctxt->cnt) {
278 if (!EXP_TID_SET_EMPTY(uctxt->tid_full_list))
279 unlock_exp_tids(uctxt, &uctxt->tid_full_list,
280 &fd->tid_rb_root);
281 if (!EXP_TID_SET_EMPTY(uctxt->tid_used_list))
282 unlock_exp_tids(uctxt, &uctxt->tid_used_list,
283 &fd->tid_rb_root);
284 list_for_each_entry_safe(grp, gptr, &uctxt->tid_group_list.list,
285 list) {
286 list_del_init(&grp->list);
287 kfree(grp);
288 }
289 hfi1_clear_tids(uctxt);
290 }
291
292 kfree(fd->entry_to_rb);
293 return 0;
294 }
295
296 /*
297 * Write an "empty" RcvArray entry.
298 * This function exists so the TID registaration code can use it
299 * to write to unused/unneeded entries and still take advantage
300 * of the WC performance improvements. The HFI will ignore this
301 * write to the RcvArray entry.
302 */
303 static inline void rcv_array_wc_fill(struct hfi1_devdata *dd, u32 index)
304 {
305 /*
306 * Doing the WC fill writes only makes sense if the device is
307 * present and the RcvArray has been mapped as WC memory.
308 */
309 if ((dd->flags & HFI1_PRESENT) && dd->rcvarray_wc)
310 writeq(0, dd->rcvarray_wc + (index * 8));
311 }
312
313 /*
314 * RcvArray entry allocation for Expected Receives is done by the
315 * following algorithm:
316 *
317 * The context keeps 3 lists of groups of RcvArray entries:
318 * 1. List of empty groups - tid_group_list
319 * This list is created during user context creation and
320 * contains elements which describe sets (of 8) of empty
321 * RcvArray entries.
322 * 2. List of partially used groups - tid_used_list
323 * This list contains sets of RcvArray entries which are
324 * not completely used up. Another mapping request could
325 * use some of all of the remaining entries.
326 * 3. List of full groups - tid_full_list
327 * This is the list where sets that are completely used
328 * up go.
329 *
330 * An attempt to optimize the usage of RcvArray entries is
331 * made by finding all sets of physically contiguous pages in a
332 * user's buffer.
333 * These physically contiguous sets are further split into
334 * sizes supported by the receive engine of the HFI. The
335 * resulting sets of pages are stored in struct tid_pageset,
336 * which describes the sets as:
337 * * .count - number of pages in this set
338 * * .idx - starting index into struct page ** array
339 * of this set
340 *
341 * From this point on, the algorithm deals with the page sets
342 * described above. The number of pagesets is divided by the
343 * RcvArray group size to produce the number of full groups
344 * needed.
345 *
346 * Groups from the 3 lists are manipulated using the following
347 * rules:
348 * 1. For each set of 8 pagesets, a complete group from
349 * tid_group_list is taken, programmed, and moved to
350 * the tid_full_list list.
351 * 2. For all remaining pagesets:
352 * 2.1 If the tid_used_list is empty and the tid_group_list
353 * is empty, stop processing pageset and return only
354 * what has been programmed up to this point.
355 * 2.2 If the tid_used_list is empty and the tid_group_list
356 * is not empty, move a group from tid_group_list to
357 * tid_used_list.
358 * 2.3 For each group is tid_used_group, program as much as
359 * can fit into the group. If the group becomes fully
360 * used, move it to tid_full_list.
361 */
362 int hfi1_user_exp_rcv_setup(struct file *fp, struct hfi1_tid_info *tinfo)
363 {
364 int ret = 0, need_group = 0, pinned;
365 struct hfi1_filedata *fd = fp->private_data;
366 struct hfi1_ctxtdata *uctxt = fd->uctxt;
367 struct hfi1_devdata *dd = uctxt->dd;
368 unsigned npages, ngroups, pageidx = 0, pageset_count, npagesets,
369 tididx = 0, mapped, mapped_pages = 0;
370 unsigned long vaddr = tinfo->vaddr;
371 struct page **pages = NULL;
372 u32 *tidlist = NULL;
373 struct tid_pageset *pagesets = NULL;
374
375 /* Get the number of pages the user buffer spans */
376 npages = num_user_pages(vaddr, tinfo->length);
377 if (!npages)
378 return -EINVAL;
379
380 if (npages > uctxt->expected_count) {
381 dd_dev_err(dd, "Expected buffer too big\n");
382 return -EINVAL;
383 }
384
385 /* Verify that access is OK for the user buffer */
386 if (!access_ok(VERIFY_WRITE, (void __user *)vaddr,
387 npages * PAGE_SIZE)) {
388 dd_dev_err(dd, "Fail vaddr %p, %u pages, !access_ok\n",
389 (void *)vaddr, npages);
390 return -EFAULT;
391 }
392
393 pagesets = kcalloc(uctxt->expected_count, sizeof(*pagesets),
394 GFP_KERNEL);
395 if (!pagesets)
396 return -ENOMEM;
397
398 /* Allocate the array of struct page pointers needed for pinning */
399 pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL);
400 if (!pages) {
401 ret = -ENOMEM;
402 goto bail;
403 }
404
405 /*
406 * Pin all the pages of the user buffer. If we can't pin all the
407 * pages, accept the amount pinned so far and program only that.
408 * User space knows how to deal with partially programmed buffers.
409 */
410 pinned = hfi1_acquire_user_pages(vaddr, npages, true, pages);
411 if (pinned <= 0) {
412 ret = pinned;
413 goto bail;
414 }
415
416 /* Find sets of physically contiguous pages */
417 npagesets = find_phys_blocks(pages, pinned, pagesets);
418
419 /*
420 * We don't need to access this under a lock since tid_used is per
421 * process and the same process cannot be in hfi1_user_exp_rcv_clear()
422 * and hfi1_user_exp_rcv_setup() at the same time.
423 */
424 spin_lock(&fd->tid_lock);
425 if (fd->tid_used + npagesets > fd->tid_limit)
426 pageset_count = fd->tid_limit - fd->tid_used;
427 else
428 pageset_count = npagesets;
429 spin_unlock(&fd->tid_lock);
430
431 if (!pageset_count)
432 goto bail;
433
434 ngroups = pageset_count / dd->rcv_entries.group_size;
435 tidlist = kcalloc(pageset_count, sizeof(*tidlist), GFP_KERNEL);
436 if (!tidlist) {
437 ret = -ENOMEM;
438 goto nomem;
439 }
440
441 tididx = 0;
442
443 /*
444 * From this point on, we are going to be using shared (between master
445 * and subcontexts) context resources. We need to take the lock.
446 */
447 mutex_lock(&uctxt->exp_lock);
448 /*
449 * The first step is to program the RcvArray entries which are complete
450 * groups.
451 */
452 while (ngroups && uctxt->tid_group_list.count) {
453 struct tid_group *grp =
454 tid_group_pop(&uctxt->tid_group_list);
455
456 ret = program_rcvarray(fp, vaddr, grp, pagesets,
457 pageidx, dd->rcv_entries.group_size,
458 pages, tidlist, &tididx, &mapped);
459 /*
460 * If there was a failure to program the RcvArray
461 * entries for the entire group, reset the grp fields
462 * and add the grp back to the free group list.
463 */
464 if (ret <= 0) {
465 tid_group_add_tail(grp, &uctxt->tid_group_list);
466 hfi1_cdbg(TID,
467 "Failed to program RcvArray group %d", ret);
468 goto unlock;
469 }
470
471 tid_group_add_tail(grp, &uctxt->tid_full_list);
472 ngroups--;
473 pageidx += ret;
474 mapped_pages += mapped;
475 }
476
477 while (pageidx < pageset_count) {
478 struct tid_group *grp, *ptr;
479 /*
480 * If we don't have any partially used tid groups, check
481 * if we have empty groups. If so, take one from there and
482 * put in the partially used list.
483 */
484 if (!uctxt->tid_used_list.count || need_group) {
485 if (!uctxt->tid_group_list.count)
486 goto unlock;
487
488 grp = tid_group_pop(&uctxt->tid_group_list);
489 tid_group_add_tail(grp, &uctxt->tid_used_list);
490 need_group = 0;
491 }
492 /*
493 * There is an optimization opportunity here - instead of
494 * fitting as many page sets as we can, check for a group
495 * later on in the list that could fit all of them.
496 */
497 list_for_each_entry_safe(grp, ptr, &uctxt->tid_used_list.list,
498 list) {
499 unsigned use = min_t(unsigned, pageset_count - pageidx,
500 grp->size - grp->used);
501
502 ret = program_rcvarray(fp, vaddr, grp, pagesets,
503 pageidx, use, pages, tidlist,
504 &tididx, &mapped);
505 if (ret < 0) {
506 hfi1_cdbg(TID,
507 "Failed to program RcvArray entries %d",
508 ret);
509 ret = -EFAULT;
510 goto unlock;
511 } else if (ret > 0) {
512 if (grp->used == grp->size)
513 tid_group_move(grp,
514 &uctxt->tid_used_list,
515 &uctxt->tid_full_list);
516 pageidx += ret;
517 mapped_pages += mapped;
518 need_group = 0;
519 /* Check if we are done so we break out early */
520 if (pageidx >= pageset_count)
521 break;
522 } else if (WARN_ON(ret == 0)) {
523 /*
524 * If ret is 0, we did not program any entries
525 * into this group, which can only happen if
526 * we've screwed up the accounting somewhere.
527 * Warn and try to continue.
528 */
529 need_group = 1;
530 }
531 }
532 }
533 unlock:
534 mutex_unlock(&uctxt->exp_lock);
535 nomem:
536 hfi1_cdbg(TID, "total mapped: tidpairs:%u pages:%u (%d)", tididx,
537 mapped_pages, ret);
538 if (tididx) {
539 spin_lock(&fd->tid_lock);
540 fd->tid_used += tididx;
541 spin_unlock(&fd->tid_lock);
542 tinfo->tidcnt = tididx;
543 tinfo->length = mapped_pages * PAGE_SIZE;
544
545 if (copy_to_user((void __user *)(unsigned long)tinfo->tidlist,
546 tidlist, sizeof(tidlist[0]) * tididx)) {
547 /*
548 * On failure to copy to the user level, we need to undo
549 * everything done so far so we don't leak resources.
550 */
551 tinfo->tidlist = (unsigned long)&tidlist;
552 hfi1_user_exp_rcv_clear(fp, tinfo);
553 tinfo->tidlist = 0;
554 ret = -EFAULT;
555 goto bail;
556 }
557 }
558
559 /*
560 * If not everything was mapped (due to insufficient RcvArray entries,
561 * for example), unpin all unmapped pages so we can pin them nex time.
562 */
563 if (mapped_pages != pinned)
564 hfi1_release_user_pages(&pages[mapped_pages],
565 pinned - mapped_pages,
566 false);
567 bail:
568 kfree(pagesets);
569 kfree(pages);
570 kfree(tidlist);
571 return ret > 0 ? 0 : ret;
572 }
573
574 int hfi1_user_exp_rcv_clear(struct file *fp, struct hfi1_tid_info *tinfo)
575 {
576 int ret = 0;
577 struct hfi1_filedata *fd = fp->private_data;
578 struct hfi1_ctxtdata *uctxt = fd->uctxt;
579 u32 *tidinfo;
580 unsigned tididx;
581
582 tidinfo = kcalloc(tinfo->tidcnt, sizeof(*tidinfo), GFP_KERNEL);
583 if (!tidinfo)
584 return -ENOMEM;
585
586 if (copy_from_user(tidinfo, (void __user *)(unsigned long)
587 tinfo->tidlist, sizeof(tidinfo[0]) *
588 tinfo->tidcnt)) {
589 ret = -EFAULT;
590 goto done;
591 }
592
593 mutex_lock(&uctxt->exp_lock);
594 for (tididx = 0; tididx < tinfo->tidcnt; tididx++) {
595 ret = unprogram_rcvarray(fp, tidinfo[tididx], NULL);
596 if (ret) {
597 hfi1_cdbg(TID, "Failed to unprogram rcv array %d",
598 ret);
599 break;
600 }
601 }
602 spin_lock(&fd->tid_lock);
603 fd->tid_used -= tididx;
604 spin_unlock(&fd->tid_lock);
605 tinfo->tidcnt = tididx;
606 mutex_unlock(&uctxt->exp_lock);
607 done:
608 kfree(tidinfo);
609 return ret;
610 }
611
612 int hfi1_user_exp_rcv_invalid(struct file *fp, struct hfi1_tid_info *tinfo)
613 {
614 struct hfi1_filedata *fd = fp->private_data;
615 struct hfi1_ctxtdata *uctxt = fd->uctxt;
616 unsigned long *ev = uctxt->dd->events +
617 (((uctxt->ctxt - uctxt->dd->first_user_ctxt) *
618 HFI1_MAX_SHARED_CTXTS) + fd->subctxt);
619 u32 *array;
620 int ret = 0;
621
622 if (!fd->invalid_tids)
623 return -EINVAL;
624
625 /*
626 * copy_to_user() can sleep, which will leave the invalid_lock
627 * locked and cause the MMU notifier to be blocked on the lock
628 * for a long time.
629 * Copy the data to a local buffer so we can release the lock.
630 */
631 array = kcalloc(uctxt->expected_count, sizeof(*array), GFP_KERNEL);
632 if (!array)
633 return -EFAULT;
634
635 spin_lock(&fd->invalid_lock);
636 if (fd->invalid_tid_idx) {
637 memcpy(array, fd->invalid_tids, sizeof(*array) *
638 fd->invalid_tid_idx);
639 memset(fd->invalid_tids, 0, sizeof(*fd->invalid_tids) *
640 fd->invalid_tid_idx);
641 tinfo->tidcnt = fd->invalid_tid_idx;
642 fd->invalid_tid_idx = 0;
643 /*
644 * Reset the user flag while still holding the lock.
645 * Otherwise, PSM can miss events.
646 */
647 clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
648 } else {
649 tinfo->tidcnt = 0;
650 }
651 spin_unlock(&fd->invalid_lock);
652
653 if (tinfo->tidcnt) {
654 if (copy_to_user((void __user *)tinfo->tidlist,
655 array, sizeof(*array) * tinfo->tidcnt))
656 ret = -EFAULT;
657 }
658 kfree(array);
659
660 return ret;
661 }
662
663 static u32 find_phys_blocks(struct page **pages, unsigned npages,
664 struct tid_pageset *list)
665 {
666 unsigned pagecount, pageidx, setcount = 0, i;
667 unsigned long pfn, this_pfn;
668
669 if (!npages)
670 return 0;
671
672 /*
673 * Look for sets of physically contiguous pages in the user buffer.
674 * This will allow us to optimize Expected RcvArray entry usage by
675 * using the bigger supported sizes.
676 */
677 pfn = page_to_pfn(pages[0]);
678 for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
679 this_pfn = i < npages ? page_to_pfn(pages[i]) : 0;
680
681 /*
682 * If the pfn's are not sequential, pages are not physically
683 * contiguous.
684 */
685 if (this_pfn != ++pfn) {
686 /*
687 * At this point we have to loop over the set of
688 * physically contiguous pages and break them down it
689 * sizes supported by the HW.
690 * There are two main constraints:
691 * 1. The max buffer size is MAX_EXPECTED_BUFFER.
692 * If the total set size is bigger than that
693 * program only a MAX_EXPECTED_BUFFER chunk.
694 * 2. The buffer size has to be a power of two. If
695 * it is not, round down to the closes power of
696 * 2 and program that size.
697 */
698 while (pagecount) {
699 int maxpages = pagecount;
700 u32 bufsize = pagecount * PAGE_SIZE;
701
702 if (bufsize > MAX_EXPECTED_BUFFER)
703 maxpages =
704 MAX_EXPECTED_BUFFER >>
705 PAGE_SHIFT;
706 else if (!is_power_of_2(bufsize))
707 maxpages =
708 rounddown_pow_of_two(bufsize) >>
709 PAGE_SHIFT;
710
711 list[setcount].idx = pageidx;
712 list[setcount].count = maxpages;
713 pagecount -= maxpages;
714 pageidx += maxpages;
715 setcount++;
716 }
717 pageidx = i;
718 pagecount = 1;
719 pfn = this_pfn;
720 } else {
721 pagecount++;
722 }
723 }
724 return setcount;
725 }
726
727 /**
728 * program_rcvarray() - program an RcvArray group with receive buffers
729 * @fp: file pointer
730 * @vaddr: starting user virtual address
731 * @grp: RcvArray group
732 * @sets: array of struct tid_pageset holding information on physically
733 * contiguous chunks from the user buffer
734 * @start: starting index into sets array
735 * @count: number of struct tid_pageset's to program
736 * @pages: an array of struct page * for the user buffer
737 * @tidlist: the array of u32 elements when the information about the
738 * programmed RcvArray entries is to be encoded.
739 * @tididx: starting offset into tidlist
740 * @pmapped: (output parameter) number of pages programmed into the RcvArray
741 * entries.
742 *
743 * This function will program up to 'count' number of RcvArray entries from the
744 * group 'grp'. To make best use of write-combining writes, the function will
745 * perform writes to the unused RcvArray entries which will be ignored by the
746 * HW. Each RcvArray entry will be programmed with a physically contiguous
747 * buffer chunk from the user's virtual buffer.
748 *
749 * Return:
750 * -EINVAL if the requested count is larger than the size of the group,
751 * -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or
752 * number of RcvArray entries programmed.
753 */
754 static int program_rcvarray(struct file *fp, unsigned long vaddr,
755 struct tid_group *grp,
756 struct tid_pageset *sets,
757 unsigned start, u16 count, struct page **pages,
758 u32 *tidlist, unsigned *tididx, unsigned *pmapped)
759 {
760 struct hfi1_filedata *fd = fp->private_data;
761 struct hfi1_ctxtdata *uctxt = fd->uctxt;
762 struct hfi1_devdata *dd = uctxt->dd;
763 u16 idx;
764 u32 tidinfo = 0, rcventry, useidx = 0;
765 int mapped = 0;
766
767 /* Count should never be larger than the group size */
768 if (count > grp->size)
769 return -EINVAL;
770
771 /* Find the first unused entry in the group */
772 for (idx = 0; idx < grp->size; idx++) {
773 if (!(grp->map & (1 << idx))) {
774 useidx = idx;
775 break;
776 }
777 rcv_array_wc_fill(dd, grp->base + idx);
778 }
779
780 idx = 0;
781 while (idx < count) {
782 u16 npages, pageidx, setidx = start + idx;
783 int ret = 0;
784
785 /*
786 * If this entry in the group is used, move to the next one.
787 * If we go past the end of the group, exit the loop.
788 */
789 if (useidx >= grp->size) {
790 break;
791 } else if (grp->map & (1 << useidx)) {
792 rcv_array_wc_fill(dd, grp->base + useidx);
793 useidx++;
794 continue;
795 }
796
797 rcventry = grp->base + useidx;
798 npages = sets[setidx].count;
799 pageidx = sets[setidx].idx;
800
801 ret = set_rcvarray_entry(fp, vaddr + (pageidx * PAGE_SIZE),
802 rcventry, grp, pages + pageidx,
803 npages);
804 if (ret)
805 return ret;
806 mapped += npages;
807
808 tidinfo = rcventry2tidinfo(rcventry - uctxt->expected_base) |
809 EXP_TID_SET(LEN, npages);
810 tidlist[(*tididx)++] = tidinfo;
811 grp->used++;
812 grp->map |= 1 << useidx++;
813 idx++;
814 }
815
816 /* Fill the rest of the group with "blank" writes */
817 for (; useidx < grp->size; useidx++)
818 rcv_array_wc_fill(dd, grp->base + useidx);
819 *pmapped = mapped;
820 return idx;
821 }
822
823 static int set_rcvarray_entry(struct file *fp, unsigned long vaddr,
824 u32 rcventry, struct tid_group *grp,
825 struct page **pages, unsigned npages)
826 {
827 int ret;
828 struct hfi1_filedata *fd = fp->private_data;
829 struct hfi1_ctxtdata *uctxt = fd->uctxt;
830 struct tid_rb_node *node;
831 struct hfi1_devdata *dd = uctxt->dd;
832 struct rb_root *root = &fd->tid_rb_root;
833 dma_addr_t phys;
834
835 /*
836 * Allocate the node first so we can handle a potential
837 * failure before we've programmed anything.
838 */
839 node = kzalloc(sizeof(*node) + (sizeof(struct page *) * npages),
840 GFP_KERNEL);
841 if (!node)
842 return -ENOMEM;
843
844 phys = pci_map_single(dd->pcidev,
845 __va(page_to_phys(pages[0])),
846 npages * PAGE_SIZE, PCI_DMA_FROMDEVICE);
847 if (dma_mapping_error(&dd->pcidev->dev, phys)) {
848 dd_dev_err(dd, "Failed to DMA map Exp Rcv pages 0x%llx\n",
849 phys);
850 kfree(node);
851 return -EFAULT;
852 }
853
854 node->mmu.addr = vaddr;
855 node->mmu.len = npages * PAGE_SIZE;
856 node->phys = page_to_phys(pages[0]);
857 node->npages = npages;
858 node->rcventry = rcventry;
859 node->dma_addr = phys;
860 node->grp = grp;
861 node->freed = false;
862 memcpy(node->pages, pages, sizeof(struct page *) * npages);
863
864 ret = fd->mmu_rb_insert(root, &node->mmu);
865
866 if (ret) {
867 hfi1_cdbg(TID, "Failed to insert RB node %u 0x%lx, 0x%lx %d",
868 node->rcventry, node->mmu.addr, node->phys, ret);
869 pci_unmap_single(dd->pcidev, phys, npages * PAGE_SIZE,
870 PCI_DMA_FROMDEVICE);
871 kfree(node);
872 return -EFAULT;
873 }
874 hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, ilog2(npages) + 1);
875 trace_hfi1_exp_tid_reg(uctxt->ctxt, fd->subctxt, rcventry, npages,
876 node->mmu.addr, node->phys, phys);
877 return 0;
878 }
879
880 static int unprogram_rcvarray(struct file *fp, u32 tidinfo,
881 struct tid_group **grp)
882 {
883 struct hfi1_filedata *fd = fp->private_data;
884 struct hfi1_ctxtdata *uctxt = fd->uctxt;
885 struct hfi1_devdata *dd = uctxt->dd;
886 struct tid_rb_node *node;
887 u8 tidctrl = EXP_TID_GET(tidinfo, CTRL);
888 u32 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry;
889
890 if (tididx >= uctxt->expected_count) {
891 dd_dev_err(dd, "Invalid RcvArray entry (%u) index for ctxt %u\n",
892 tididx, uctxt->ctxt);
893 return -EINVAL;
894 }
895
896 if (tidctrl == 0x3)
897 return -EINVAL;
898
899 rcventry = tididx + (tidctrl - 1);
900
901 node = fd->entry_to_rb[rcventry];
902 if (!node || node->rcventry != (uctxt->expected_base + rcventry))
903 return -EBADF;
904 fd->mmu_rb_remove(&fd->tid_rb_root, &node->mmu);
905
906 if (grp)
907 *grp = node->grp;
908 clear_tid_node(fd, fd->subctxt, node);
909 return 0;
910 }
911
912 static void clear_tid_node(struct hfi1_filedata *fd, u16 subctxt,
913 struct tid_rb_node *node)
914 {
915 struct hfi1_ctxtdata *uctxt = fd->uctxt;
916 struct hfi1_devdata *dd = uctxt->dd;
917
918 trace_hfi1_exp_tid_unreg(uctxt->ctxt, fd->subctxt, node->rcventry,
919 node->npages, node->mmu.addr, node->phys,
920 node->dma_addr);
921
922 hfi1_put_tid(dd, node->rcventry, PT_INVALID, 0, 0);
923 /*
924 * Make sure device has seen the write before we unpin the
925 * pages.
926 */
927 flush_wc();
928
929 pci_unmap_single(dd->pcidev, node->dma_addr, node->mmu.len,
930 PCI_DMA_FROMDEVICE);
931 hfi1_release_user_pages(node->pages, node->npages, true);
932
933 node->grp->used--;
934 node->grp->map &= ~(1 << (node->rcventry - node->grp->base));
935
936 if (node->grp->used == node->grp->size - 1)
937 tid_group_move(node->grp, &uctxt->tid_full_list,
938 &uctxt->tid_used_list);
939 else if (!node->grp->used)
940 tid_group_move(node->grp, &uctxt->tid_used_list,
941 &uctxt->tid_group_list);
942 kfree(node);
943 }
944
945 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
946 struct exp_tid_set *set, struct rb_root *root)
947 {
948 struct tid_group *grp, *ptr;
949 struct hfi1_filedata *fd = container_of(root, struct hfi1_filedata,
950 tid_rb_root);
951 int i;
952
953 list_for_each_entry_safe(grp, ptr, &set->list, list) {
954 list_del_init(&grp->list);
955
956 for (i = 0; i < grp->size; i++) {
957 if (grp->map & (1 << i)) {
958 u16 rcventry = grp->base + i;
959 struct tid_rb_node *node;
960
961 node = fd->entry_to_rb[rcventry -
962 uctxt->expected_base];
963 if (!node || node->rcventry != rcventry)
964 continue;
965 fd->mmu_rb_remove(root, &node->mmu);
966 clear_tid_node(fd, -1, node);
967 }
968 }
969 }
970 }
971
972 static int mmu_rb_invalidate(struct rb_root *root, struct mmu_rb_node *mnode)
973 {
974 struct hfi1_filedata *fdata =
975 container_of(root, struct hfi1_filedata, tid_rb_root);
976 struct hfi1_ctxtdata *uctxt = fdata->uctxt;
977 struct tid_rb_node *node =
978 container_of(mnode, struct tid_rb_node, mmu);
979
980 if (node->freed)
981 return 0;
982
983 trace_hfi1_exp_tid_inval(uctxt->ctxt, fdata->subctxt, node->mmu.addr,
984 node->rcventry, node->npages, node->dma_addr);
985 node->freed = true;
986
987 spin_lock(&fdata->invalid_lock);
988 if (fdata->invalid_tid_idx < uctxt->expected_count) {
989 fdata->invalid_tids[fdata->invalid_tid_idx] =
990 rcventry2tidinfo(node->rcventry - uctxt->expected_base);
991 fdata->invalid_tids[fdata->invalid_tid_idx] |=
992 EXP_TID_SET(LEN, node->npages);
993 if (!fdata->invalid_tid_idx) {
994 unsigned long *ev;
995
996 /*
997 * hfi1_set_uevent_bits() sets a user event flag
998 * for all processes. Because calling into the
999 * driver to process TID cache invalidations is
1000 * expensive and TID cache invalidations are
1001 * handled on a per-process basis, we can
1002 * optimize this to set the flag only for the
1003 * process in question.
1004 */
1005 ev = uctxt->dd->events +
1006 (((uctxt->ctxt - uctxt->dd->first_user_ctxt) *
1007 HFI1_MAX_SHARED_CTXTS) + fdata->subctxt);
1008 set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
1009 }
1010 fdata->invalid_tid_idx++;
1011 }
1012 spin_unlock(&fdata->invalid_lock);
1013 return 0;
1014 }
1015
1016 static int mmu_addr_cmp(struct mmu_rb_node *node, unsigned long addr,
1017 unsigned long len)
1018 {
1019 if ((addr + len) <= node->addr)
1020 return -1;
1021 else if (addr >= node->addr && addr < (node->addr + node->len))
1022 return 0;
1023 else
1024 return 1;
1025 }
1026
1027 static int mmu_rb_insert(struct rb_root *root, struct mmu_rb_node *node)
1028 {
1029 struct hfi1_filedata *fdata =
1030 container_of(root, struct hfi1_filedata, tid_rb_root);
1031 struct tid_rb_node *tnode =
1032 container_of(node, struct tid_rb_node, mmu);
1033 u32 base = fdata->uctxt->expected_base;
1034
1035 fdata->entry_to_rb[tnode->rcventry - base] = tnode;
1036 return 0;
1037 }
1038
1039 static void mmu_rb_remove(struct rb_root *root, struct mmu_rb_node *node)
1040 {
1041 struct hfi1_filedata *fdata =
1042 container_of(root, struct hfi1_filedata, tid_rb_root);
1043 struct tid_rb_node *tnode =
1044 container_of(node, struct tid_rb_node, mmu);
1045 u32 base = fdata->uctxt->expected_base;
1046
1047 fdata->entry_to_rb[tnode->rcventry - base] = NULL;
1048 }