]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/staging/rdma/hfi1/verbs.c
IB/hfi1: Do not free hfi1 cdev parent structure early
[mirror_ubuntu-artful-kernel.git] / drivers / staging / rdma / hfi1 / verbs.c
1 /*
2 * Copyright(c) 2015, 2016 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <rdma/ib_mad.h>
49 #include <rdma/ib_user_verbs.h>
50 #include <linux/io.h>
51 #include <linux/module.h>
52 #include <linux/utsname.h>
53 #include <linux/rculist.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56
57 #include "hfi.h"
58 #include "common.h"
59 #include "device.h"
60 #include "trace.h"
61 #include "qp.h"
62 #include "verbs_txreq.h"
63
64 static unsigned int hfi1_lkey_table_size = 16;
65 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
66 S_IRUGO);
67 MODULE_PARM_DESC(lkey_table_size,
68 "LKEY table size in bits (2^n, 1 <= n <= 23)");
69
70 static unsigned int hfi1_max_pds = 0xFFFF;
71 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
72 MODULE_PARM_DESC(max_pds,
73 "Maximum number of protection domains to support");
74
75 static unsigned int hfi1_max_ahs = 0xFFFF;
76 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
77 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
78
79 unsigned int hfi1_max_cqes = 0x2FFFF;
80 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
81 MODULE_PARM_DESC(max_cqes,
82 "Maximum number of completion queue entries to support");
83
84 unsigned int hfi1_max_cqs = 0x1FFFF;
85 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
86 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
87
88 unsigned int hfi1_max_qp_wrs = 0x3FFF;
89 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
90 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
91
92 unsigned int hfi1_max_qps = 16384;
93 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
94 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
95
96 unsigned int hfi1_max_sges = 0x60;
97 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
98 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
99
100 unsigned int hfi1_max_mcast_grps = 16384;
101 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
102 MODULE_PARM_DESC(max_mcast_grps,
103 "Maximum number of multicast groups to support");
104
105 unsigned int hfi1_max_mcast_qp_attached = 16;
106 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
107 uint, S_IRUGO);
108 MODULE_PARM_DESC(max_mcast_qp_attached,
109 "Maximum number of attached QPs to support");
110
111 unsigned int hfi1_max_srqs = 1024;
112 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
113 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
114
115 unsigned int hfi1_max_srq_sges = 128;
116 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
117 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
118
119 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
120 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
121 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
122
123 unsigned short piothreshold = 256;
124 module_param(piothreshold, ushort, S_IRUGO);
125 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
126
127 #define COPY_CACHELESS 1
128 #define COPY_ADAPTIVE 2
129 static unsigned int sge_copy_mode;
130 module_param(sge_copy_mode, uint, S_IRUGO);
131 MODULE_PARM_DESC(sge_copy_mode,
132 "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
133
134 static void verbs_sdma_complete(
135 struct sdma_txreq *cookie,
136 int status);
137
138 static int pio_wait(struct rvt_qp *qp,
139 struct send_context *sc,
140 struct hfi1_pkt_state *ps,
141 u32 flag);
142
143 /* Length of buffer to create verbs txreq cache name */
144 #define TXREQ_NAME_LEN 24
145
146 static uint wss_threshold;
147 module_param(wss_threshold, uint, S_IRUGO);
148 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
149 static uint wss_clean_period = 256;
150 module_param(wss_clean_period, uint, S_IRUGO);
151 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
152
153 /* memory working set size */
154 struct hfi1_wss {
155 unsigned long *entries;
156 atomic_t total_count;
157 atomic_t clean_counter;
158 atomic_t clean_entry;
159
160 int threshold;
161 int num_entries;
162 long pages_mask;
163 };
164
165 static struct hfi1_wss wss;
166
167 int hfi1_wss_init(void)
168 {
169 long llc_size;
170 long llc_bits;
171 long table_size;
172 long table_bits;
173
174 /* check for a valid percent range - default to 80 if none or invalid */
175 if (wss_threshold < 1 || wss_threshold > 100)
176 wss_threshold = 80;
177 /* reject a wildly large period */
178 if (wss_clean_period > 1000000)
179 wss_clean_period = 256;
180 /* reject a zero period */
181 if (wss_clean_period == 0)
182 wss_clean_period = 1;
183
184 /*
185 * Calculate the table size - the next power of 2 larger than the
186 * LLC size. LLC size is in KiB.
187 */
188 llc_size = wss_llc_size() * 1024;
189 table_size = roundup_pow_of_two(llc_size);
190
191 /* one bit per page in rounded up table */
192 llc_bits = llc_size / PAGE_SIZE;
193 table_bits = table_size / PAGE_SIZE;
194 wss.pages_mask = table_bits - 1;
195 wss.num_entries = table_bits / BITS_PER_LONG;
196
197 wss.threshold = (llc_bits * wss_threshold) / 100;
198 if (wss.threshold == 0)
199 wss.threshold = 1;
200
201 atomic_set(&wss.clean_counter, wss_clean_period);
202
203 wss.entries = kcalloc(wss.num_entries, sizeof(*wss.entries),
204 GFP_KERNEL);
205 if (!wss.entries) {
206 hfi1_wss_exit();
207 return -ENOMEM;
208 }
209
210 return 0;
211 }
212
213 void hfi1_wss_exit(void)
214 {
215 /* coded to handle partially initialized and repeat callers */
216 kfree(wss.entries);
217 wss.entries = NULL;
218 }
219
220 /*
221 * Advance the clean counter. When the clean period has expired,
222 * clean an entry.
223 *
224 * This is implemented in atomics to avoid locking. Because multiple
225 * variables are involved, it can be racy which can lead to slightly
226 * inaccurate information. Since this is only a heuristic, this is
227 * OK. Any innaccuracies will clean themselves out as the counter
228 * advances. That said, it is unlikely the entry clean operation will
229 * race - the next possible racer will not start until the next clean
230 * period.
231 *
232 * The clean counter is implemented as a decrement to zero. When zero
233 * is reached an entry is cleaned.
234 */
235 static void wss_advance_clean_counter(void)
236 {
237 int entry;
238 int weight;
239 unsigned long bits;
240
241 /* become the cleaner if we decrement the counter to zero */
242 if (atomic_dec_and_test(&wss.clean_counter)) {
243 /*
244 * Set, not add, the clean period. This avoids an issue
245 * where the counter could decrement below the clean period.
246 * Doing a set can result in lost decrements, slowing the
247 * clean advance. Since this a heuristic, this possible
248 * slowdown is OK.
249 *
250 * An alternative is to loop, advancing the counter by a
251 * clean period until the result is > 0. However, this could
252 * lead to several threads keeping another in the clean loop.
253 * This could be mitigated by limiting the number of times
254 * we stay in the loop.
255 */
256 atomic_set(&wss.clean_counter, wss_clean_period);
257
258 /*
259 * Uniquely grab the entry to clean and move to next.
260 * The current entry is always the lower bits of
261 * wss.clean_entry. The table size, wss.num_entries,
262 * is always a power-of-2.
263 */
264 entry = (atomic_inc_return(&wss.clean_entry) - 1)
265 & (wss.num_entries - 1);
266
267 /* clear the entry and count the bits */
268 bits = xchg(&wss.entries[entry], 0);
269 weight = hweight64((u64)bits);
270 /* only adjust the contended total count if needed */
271 if (weight)
272 atomic_sub(weight, &wss.total_count);
273 }
274 }
275
276 /*
277 * Insert the given address into the working set array.
278 */
279 static void wss_insert(void *address)
280 {
281 u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss.pages_mask;
282 u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
283 u32 nr = page & (BITS_PER_LONG - 1);
284
285 if (!test_and_set_bit(nr, &wss.entries[entry]))
286 atomic_inc(&wss.total_count);
287
288 wss_advance_clean_counter();
289 }
290
291 /*
292 * Is the working set larger than the threshold?
293 */
294 static inline int wss_exceeds_threshold(void)
295 {
296 return atomic_read(&wss.total_count) >= wss.threshold;
297 }
298
299 /*
300 * Translate ib_wr_opcode into ib_wc_opcode.
301 */
302 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
303 [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
304 [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
305 [IB_WR_SEND] = IB_WC_SEND,
306 [IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
307 [IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
308 [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
309 [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD
310 };
311
312 /*
313 * Length of header by opcode, 0 --> not supported
314 */
315 const u8 hdr_len_by_opcode[256] = {
316 /* RC */
317 [IB_OPCODE_RC_SEND_FIRST] = 12 + 8,
318 [IB_OPCODE_RC_SEND_MIDDLE] = 12 + 8,
319 [IB_OPCODE_RC_SEND_LAST] = 12 + 8,
320 [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
321 [IB_OPCODE_RC_SEND_ONLY] = 12 + 8,
322 [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4,
323 [IB_OPCODE_RC_RDMA_WRITE_FIRST] = 12 + 8 + 16,
324 [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = 12 + 8,
325 [IB_OPCODE_RC_RDMA_WRITE_LAST] = 12 + 8,
326 [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
327 [IB_OPCODE_RC_RDMA_WRITE_ONLY] = 12 + 8 + 16,
328 [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
329 [IB_OPCODE_RC_RDMA_READ_REQUEST] = 12 + 8 + 16,
330 [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = 12 + 8 + 4,
331 [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = 12 + 8,
332 [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = 12 + 8 + 4,
333 [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = 12 + 8 + 4,
334 [IB_OPCODE_RC_ACKNOWLEDGE] = 12 + 8 + 4,
335 [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = 12 + 8 + 4,
336 [IB_OPCODE_RC_COMPARE_SWAP] = 12 + 8 + 28,
337 [IB_OPCODE_RC_FETCH_ADD] = 12 + 8 + 28,
338 /* UC */
339 [IB_OPCODE_UC_SEND_FIRST] = 12 + 8,
340 [IB_OPCODE_UC_SEND_MIDDLE] = 12 + 8,
341 [IB_OPCODE_UC_SEND_LAST] = 12 + 8,
342 [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
343 [IB_OPCODE_UC_SEND_ONLY] = 12 + 8,
344 [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4,
345 [IB_OPCODE_UC_RDMA_WRITE_FIRST] = 12 + 8 + 16,
346 [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = 12 + 8,
347 [IB_OPCODE_UC_RDMA_WRITE_LAST] = 12 + 8,
348 [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
349 [IB_OPCODE_UC_RDMA_WRITE_ONLY] = 12 + 8 + 16,
350 [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
351 /* UD */
352 [IB_OPCODE_UD_SEND_ONLY] = 12 + 8 + 8,
353 [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 12
354 };
355
356 static const opcode_handler opcode_handler_tbl[256] = {
357 /* RC */
358 [IB_OPCODE_RC_SEND_FIRST] = &hfi1_rc_rcv,
359 [IB_OPCODE_RC_SEND_MIDDLE] = &hfi1_rc_rcv,
360 [IB_OPCODE_RC_SEND_LAST] = &hfi1_rc_rcv,
361 [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
362 [IB_OPCODE_RC_SEND_ONLY] = &hfi1_rc_rcv,
363 [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
364 [IB_OPCODE_RC_RDMA_WRITE_FIRST] = &hfi1_rc_rcv,
365 [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = &hfi1_rc_rcv,
366 [IB_OPCODE_RC_RDMA_WRITE_LAST] = &hfi1_rc_rcv,
367 [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
368 [IB_OPCODE_RC_RDMA_WRITE_ONLY] = &hfi1_rc_rcv,
369 [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
370 [IB_OPCODE_RC_RDMA_READ_REQUEST] = &hfi1_rc_rcv,
371 [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = &hfi1_rc_rcv,
372 [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = &hfi1_rc_rcv,
373 [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = &hfi1_rc_rcv,
374 [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = &hfi1_rc_rcv,
375 [IB_OPCODE_RC_ACKNOWLEDGE] = &hfi1_rc_rcv,
376 [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = &hfi1_rc_rcv,
377 [IB_OPCODE_RC_COMPARE_SWAP] = &hfi1_rc_rcv,
378 [IB_OPCODE_RC_FETCH_ADD] = &hfi1_rc_rcv,
379 /* UC */
380 [IB_OPCODE_UC_SEND_FIRST] = &hfi1_uc_rcv,
381 [IB_OPCODE_UC_SEND_MIDDLE] = &hfi1_uc_rcv,
382 [IB_OPCODE_UC_SEND_LAST] = &hfi1_uc_rcv,
383 [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
384 [IB_OPCODE_UC_SEND_ONLY] = &hfi1_uc_rcv,
385 [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
386 [IB_OPCODE_UC_RDMA_WRITE_FIRST] = &hfi1_uc_rcv,
387 [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = &hfi1_uc_rcv,
388 [IB_OPCODE_UC_RDMA_WRITE_LAST] = &hfi1_uc_rcv,
389 [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
390 [IB_OPCODE_UC_RDMA_WRITE_ONLY] = &hfi1_uc_rcv,
391 [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
392 /* UD */
393 [IB_OPCODE_UD_SEND_ONLY] = &hfi1_ud_rcv,
394 [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_ud_rcv,
395 /* CNP */
396 [IB_OPCODE_CNP] = &hfi1_cnp_rcv
397 };
398
399 /*
400 * System image GUID.
401 */
402 __be64 ib_hfi1_sys_image_guid;
403
404 /**
405 * hfi1_copy_sge - copy data to SGE memory
406 * @ss: the SGE state
407 * @data: the data to copy
408 * @length: the length of the data
409 * @copy_last: do a separate copy of the last 8 bytes
410 */
411 void hfi1_copy_sge(
412 struct rvt_sge_state *ss,
413 void *data, u32 length,
414 int release,
415 int copy_last)
416 {
417 struct rvt_sge *sge = &ss->sge;
418 int in_last = 0;
419 int i;
420 int cacheless_copy = 0;
421
422 if (sge_copy_mode == COPY_CACHELESS) {
423 cacheless_copy = length >= PAGE_SIZE;
424 } else if (sge_copy_mode == COPY_ADAPTIVE) {
425 if (length >= PAGE_SIZE) {
426 /*
427 * NOTE: this *assumes*:
428 * o The first vaddr is the dest.
429 * o If multiple pages, then vaddr is sequential.
430 */
431 wss_insert(sge->vaddr);
432 if (length >= (2 * PAGE_SIZE))
433 wss_insert(sge->vaddr + PAGE_SIZE);
434
435 cacheless_copy = wss_exceeds_threshold();
436 } else {
437 wss_advance_clean_counter();
438 }
439 }
440 if (copy_last) {
441 if (length > 8) {
442 length -= 8;
443 } else {
444 copy_last = 0;
445 in_last = 1;
446 }
447 }
448
449 again:
450 while (length) {
451 u32 len = sge->length;
452
453 if (len > length)
454 len = length;
455 if (len > sge->sge_length)
456 len = sge->sge_length;
457 WARN_ON_ONCE(len == 0);
458 if (unlikely(in_last)) {
459 /* enforce byte transfer ordering */
460 for (i = 0; i < len; i++)
461 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
462 } else if (cacheless_copy) {
463 cacheless_memcpy(sge->vaddr, data, len);
464 } else {
465 memcpy(sge->vaddr, data, len);
466 }
467 sge->vaddr += len;
468 sge->length -= len;
469 sge->sge_length -= len;
470 if (sge->sge_length == 0) {
471 if (release)
472 rvt_put_mr(sge->mr);
473 if (--ss->num_sge)
474 *sge = *ss->sg_list++;
475 } else if (sge->length == 0 && sge->mr->lkey) {
476 if (++sge->n >= RVT_SEGSZ) {
477 if (++sge->m >= sge->mr->mapsz)
478 break;
479 sge->n = 0;
480 }
481 sge->vaddr =
482 sge->mr->map[sge->m]->segs[sge->n].vaddr;
483 sge->length =
484 sge->mr->map[sge->m]->segs[sge->n].length;
485 }
486 data += len;
487 length -= len;
488 }
489
490 if (copy_last) {
491 copy_last = 0;
492 in_last = 1;
493 length = 8;
494 goto again;
495 }
496 }
497
498 /**
499 * hfi1_skip_sge - skip over SGE memory
500 * @ss: the SGE state
501 * @length: the number of bytes to skip
502 */
503 void hfi1_skip_sge(struct rvt_sge_state *ss, u32 length, int release)
504 {
505 struct rvt_sge *sge = &ss->sge;
506
507 while (length) {
508 u32 len = sge->length;
509
510 if (len > length)
511 len = length;
512 if (len > sge->sge_length)
513 len = sge->sge_length;
514 WARN_ON_ONCE(len == 0);
515 sge->vaddr += len;
516 sge->length -= len;
517 sge->sge_length -= len;
518 if (sge->sge_length == 0) {
519 if (release)
520 rvt_put_mr(sge->mr);
521 if (--ss->num_sge)
522 *sge = *ss->sg_list++;
523 } else if (sge->length == 0 && sge->mr->lkey) {
524 if (++sge->n >= RVT_SEGSZ) {
525 if (++sge->m >= sge->mr->mapsz)
526 break;
527 sge->n = 0;
528 }
529 sge->vaddr =
530 sge->mr->map[sge->m]->segs[sge->n].vaddr;
531 sge->length =
532 sge->mr->map[sge->m]->segs[sge->n].length;
533 }
534 length -= len;
535 }
536 }
537
538 /*
539 * Make sure the QP is ready and able to accept the given opcode.
540 */
541 static inline int qp_ok(int opcode, struct hfi1_packet *packet)
542 {
543 struct hfi1_ibport *ibp;
544
545 if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
546 goto dropit;
547 if (((opcode & RVT_OPCODE_QP_MASK) == packet->qp->allowed_ops) ||
548 (opcode == IB_OPCODE_CNP))
549 return 1;
550 dropit:
551 ibp = &packet->rcd->ppd->ibport_data;
552 ibp->rvp.n_pkt_drops++;
553 return 0;
554 }
555
556 /**
557 * hfi1_ib_rcv - process an incoming packet
558 * @packet: data packet information
559 *
560 * This is called to process an incoming packet at interrupt level.
561 *
562 * Tlen is the length of the header + data + CRC in bytes.
563 */
564 void hfi1_ib_rcv(struct hfi1_packet *packet)
565 {
566 struct hfi1_ctxtdata *rcd = packet->rcd;
567 struct hfi1_ib_header *hdr = packet->hdr;
568 u32 tlen = packet->tlen;
569 struct hfi1_pportdata *ppd = rcd->ppd;
570 struct hfi1_ibport *ibp = &ppd->ibport_data;
571 struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
572 unsigned long flags;
573 u32 qp_num;
574 int lnh;
575 u8 opcode;
576 u16 lid;
577
578 /* Check for GRH */
579 lnh = be16_to_cpu(hdr->lrh[0]) & 3;
580 if (lnh == HFI1_LRH_BTH) {
581 packet->ohdr = &hdr->u.oth;
582 } else if (lnh == HFI1_LRH_GRH) {
583 u32 vtf;
584
585 packet->ohdr = &hdr->u.l.oth;
586 if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
587 goto drop;
588 vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
589 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
590 goto drop;
591 packet->rcv_flags |= HFI1_HAS_GRH;
592 } else {
593 goto drop;
594 }
595
596 trace_input_ibhdr(rcd->dd, hdr);
597
598 opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
599 inc_opstats(tlen, &rcd->opstats->stats[opcode]);
600
601 /* Get the destination QP number. */
602 qp_num = be32_to_cpu(packet->ohdr->bth[1]) & RVT_QPN_MASK;
603 lid = be16_to_cpu(hdr->lrh[1]);
604 if (unlikely((lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
605 (lid != be16_to_cpu(IB_LID_PERMISSIVE)))) {
606 struct rvt_mcast *mcast;
607 struct rvt_mcast_qp *p;
608
609 if (lnh != HFI1_LRH_GRH)
610 goto drop;
611 mcast = rvt_mcast_find(&ibp->rvp, &hdr->u.l.grh.dgid);
612 if (!mcast)
613 goto drop;
614 list_for_each_entry_rcu(p, &mcast->qp_list, list) {
615 packet->qp = p->qp;
616 spin_lock_irqsave(&packet->qp->r_lock, flags);
617 if (likely((qp_ok(opcode, packet))))
618 opcode_handler_tbl[opcode](packet);
619 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
620 }
621 /*
622 * Notify rvt_multicast_detach() if it is waiting for us
623 * to finish.
624 */
625 if (atomic_dec_return(&mcast->refcount) <= 1)
626 wake_up(&mcast->wait);
627 } else {
628 rcu_read_lock();
629 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
630 if (!packet->qp) {
631 rcu_read_unlock();
632 goto drop;
633 }
634 spin_lock_irqsave(&packet->qp->r_lock, flags);
635 if (likely((qp_ok(opcode, packet))))
636 opcode_handler_tbl[opcode](packet);
637 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
638 rcu_read_unlock();
639 }
640 return;
641
642 drop:
643 ibp->rvp.n_pkt_drops++;
644 }
645
646 /*
647 * This is called from a timer to check for QPs
648 * which need kernel memory in order to send a packet.
649 */
650 static void mem_timer(unsigned long data)
651 {
652 struct hfi1_ibdev *dev = (struct hfi1_ibdev *)data;
653 struct list_head *list = &dev->memwait;
654 struct rvt_qp *qp = NULL;
655 struct iowait *wait;
656 unsigned long flags;
657 struct hfi1_qp_priv *priv;
658
659 write_seqlock_irqsave(&dev->iowait_lock, flags);
660 if (!list_empty(list)) {
661 wait = list_first_entry(list, struct iowait, list);
662 qp = iowait_to_qp(wait);
663 priv = qp->priv;
664 list_del_init(&priv->s_iowait.list);
665 /* refcount held until actual wake up */
666 if (!list_empty(list))
667 mod_timer(&dev->mem_timer, jiffies + 1);
668 }
669 write_sequnlock_irqrestore(&dev->iowait_lock, flags);
670
671 if (qp)
672 hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
673 }
674
675 void update_sge(struct rvt_sge_state *ss, u32 length)
676 {
677 struct rvt_sge *sge = &ss->sge;
678
679 sge->vaddr += length;
680 sge->length -= length;
681 sge->sge_length -= length;
682 if (sge->sge_length == 0) {
683 if (--ss->num_sge)
684 *sge = *ss->sg_list++;
685 } else if (sge->length == 0 && sge->mr->lkey) {
686 if (++sge->n >= RVT_SEGSZ) {
687 if (++sge->m >= sge->mr->mapsz)
688 return;
689 sge->n = 0;
690 }
691 sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
692 sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
693 }
694 }
695
696 /*
697 * This is called with progress side lock held.
698 */
699 /* New API */
700 static void verbs_sdma_complete(
701 struct sdma_txreq *cookie,
702 int status)
703 {
704 struct verbs_txreq *tx =
705 container_of(cookie, struct verbs_txreq, txreq);
706 struct rvt_qp *qp = tx->qp;
707
708 spin_lock(&qp->s_lock);
709 if (tx->wqe) {
710 hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
711 } else if (qp->ibqp.qp_type == IB_QPT_RC) {
712 struct hfi1_ib_header *hdr;
713
714 hdr = &tx->phdr.hdr;
715 hfi1_rc_send_complete(qp, hdr);
716 }
717 spin_unlock(&qp->s_lock);
718
719 hfi1_put_txreq(tx);
720 }
721
722 static int wait_kmem(struct hfi1_ibdev *dev,
723 struct rvt_qp *qp,
724 struct hfi1_pkt_state *ps)
725 {
726 struct hfi1_qp_priv *priv = qp->priv;
727 unsigned long flags;
728 int ret = 0;
729
730 spin_lock_irqsave(&qp->s_lock, flags);
731 if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
732 write_seqlock(&dev->iowait_lock);
733 list_add_tail(&ps->s_txreq->txreq.list,
734 &priv->s_iowait.tx_head);
735 if (list_empty(&priv->s_iowait.list)) {
736 if (list_empty(&dev->memwait))
737 mod_timer(&dev->mem_timer, jiffies + 1);
738 qp->s_flags |= RVT_S_WAIT_KMEM;
739 list_add_tail(&priv->s_iowait.list, &dev->memwait);
740 trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
741 atomic_inc(&qp->refcount);
742 }
743 write_sequnlock(&dev->iowait_lock);
744 qp->s_flags &= ~RVT_S_BUSY;
745 ret = -EBUSY;
746 }
747 spin_unlock_irqrestore(&qp->s_lock, flags);
748
749 return ret;
750 }
751
752 /*
753 * This routine calls txadds for each sg entry.
754 *
755 * Add failures will revert the sge cursor
756 */
757 static noinline int build_verbs_ulp_payload(
758 struct sdma_engine *sde,
759 struct rvt_sge_state *ss,
760 u32 length,
761 struct verbs_txreq *tx)
762 {
763 struct rvt_sge *sg_list = ss->sg_list;
764 struct rvt_sge sge = ss->sge;
765 u8 num_sge = ss->num_sge;
766 u32 len;
767 int ret = 0;
768
769 while (length) {
770 len = ss->sge.length;
771 if (len > length)
772 len = length;
773 if (len > ss->sge.sge_length)
774 len = ss->sge.sge_length;
775 WARN_ON_ONCE(len == 0);
776 ret = sdma_txadd_kvaddr(
777 sde->dd,
778 &tx->txreq,
779 ss->sge.vaddr,
780 len);
781 if (ret)
782 goto bail_txadd;
783 update_sge(ss, len);
784 length -= len;
785 }
786 return ret;
787 bail_txadd:
788 /* unwind cursor */
789 ss->sge = sge;
790 ss->num_sge = num_sge;
791 ss->sg_list = sg_list;
792 return ret;
793 }
794
795 /*
796 * Build the number of DMA descriptors needed to send length bytes of data.
797 *
798 * NOTE: DMA mapping is held in the tx until completed in the ring or
799 * the tx desc is freed without having been submitted to the ring
800 *
801 * This routine ensures all the helper routine calls succeed.
802 */
803 /* New API */
804 static int build_verbs_tx_desc(
805 struct sdma_engine *sde,
806 struct rvt_sge_state *ss,
807 u32 length,
808 struct verbs_txreq *tx,
809 struct ahg_ib_header *ahdr,
810 u64 pbc)
811 {
812 int ret = 0;
813 struct hfi1_pio_header *phdr = &tx->phdr;
814 u16 hdrbytes = tx->hdr_dwords << 2;
815
816 if (!ahdr->ahgcount) {
817 ret = sdma_txinit_ahg(
818 &tx->txreq,
819 ahdr->tx_flags,
820 hdrbytes + length,
821 ahdr->ahgidx,
822 0,
823 NULL,
824 0,
825 verbs_sdma_complete);
826 if (ret)
827 goto bail_txadd;
828 phdr->pbc = cpu_to_le64(pbc);
829 ret = sdma_txadd_kvaddr(
830 sde->dd,
831 &tx->txreq,
832 phdr,
833 hdrbytes);
834 if (ret)
835 goto bail_txadd;
836 } else {
837 ret = sdma_txinit_ahg(
838 &tx->txreq,
839 ahdr->tx_flags,
840 length,
841 ahdr->ahgidx,
842 ahdr->ahgcount,
843 ahdr->ahgdesc,
844 hdrbytes,
845 verbs_sdma_complete);
846 if (ret)
847 goto bail_txadd;
848 }
849
850 /* add the ulp payload - if any. ss can be NULL for acks */
851 if (ss)
852 ret = build_verbs_ulp_payload(sde, ss, length, tx);
853 bail_txadd:
854 return ret;
855 }
856
857 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
858 u64 pbc)
859 {
860 struct hfi1_qp_priv *priv = qp->priv;
861 struct ahg_ib_header *ahdr = priv->s_hdr;
862 u32 hdrwords = qp->s_hdrwords;
863 struct rvt_sge_state *ss = qp->s_cur_sge;
864 u32 len = qp->s_cur_size;
865 u32 plen = hdrwords + ((len + 3) >> 2) + 2; /* includes pbc */
866 struct hfi1_ibdev *dev = ps->dev;
867 struct hfi1_pportdata *ppd = ps->ppd;
868 struct verbs_txreq *tx;
869 u64 pbc_flags = 0;
870 u8 sc5 = priv->s_sc;
871
872 int ret;
873
874 tx = ps->s_txreq;
875 if (!sdma_txreq_built(&tx->txreq)) {
876 if (likely(pbc == 0)) {
877 u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
878 /* No vl15 here */
879 /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
880 pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
881
882 pbc = create_pbc(ppd,
883 pbc_flags,
884 qp->srate_mbps,
885 vl,
886 plen);
887 }
888 tx->wqe = qp->s_wqe;
889 ret = build_verbs_tx_desc(tx->sde, ss, len, tx, ahdr, pbc);
890 if (unlikely(ret))
891 goto bail_build;
892 }
893 ret = sdma_send_txreq(tx->sde, &priv->s_iowait, &tx->txreq);
894 if (unlikely(ret < 0)) {
895 if (ret == -ECOMM)
896 goto bail_ecomm;
897 return ret;
898 }
899 trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
900 &ps->s_txreq->phdr.hdr);
901 return ret;
902
903 bail_ecomm:
904 /* The current one got "sent" */
905 return 0;
906 bail_build:
907 ret = wait_kmem(dev, qp, ps);
908 if (!ret) {
909 /* free txreq - bad state */
910 hfi1_put_txreq(ps->s_txreq);
911 ps->s_txreq = NULL;
912 }
913 return ret;
914 }
915
916 /*
917 * If we are now in the error state, return zero to flush the
918 * send work request.
919 */
920 static int pio_wait(struct rvt_qp *qp,
921 struct send_context *sc,
922 struct hfi1_pkt_state *ps,
923 u32 flag)
924 {
925 struct hfi1_qp_priv *priv = qp->priv;
926 struct hfi1_devdata *dd = sc->dd;
927 struct hfi1_ibdev *dev = &dd->verbs_dev;
928 unsigned long flags;
929 int ret = 0;
930
931 /*
932 * Note that as soon as want_buffer() is called and
933 * possibly before it returns, sc_piobufavail()
934 * could be called. Therefore, put QP on the I/O wait list before
935 * enabling the PIO avail interrupt.
936 */
937 spin_lock_irqsave(&qp->s_lock, flags);
938 if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
939 write_seqlock(&dev->iowait_lock);
940 list_add_tail(&ps->s_txreq->txreq.list,
941 &priv->s_iowait.tx_head);
942 if (list_empty(&priv->s_iowait.list)) {
943 struct hfi1_ibdev *dev = &dd->verbs_dev;
944 int was_empty;
945
946 dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
947 dev->n_piodrain += !!(flag & RVT_S_WAIT_PIO_DRAIN);
948 qp->s_flags |= flag;
949 was_empty = list_empty(&sc->piowait);
950 list_add_tail(&priv->s_iowait.list, &sc->piowait);
951 trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
952 atomic_inc(&qp->refcount);
953 /* counting: only call wantpiobuf_intr if first user */
954 if (was_empty)
955 hfi1_sc_wantpiobuf_intr(sc, 1);
956 }
957 write_sequnlock(&dev->iowait_lock);
958 qp->s_flags &= ~RVT_S_BUSY;
959 ret = -EBUSY;
960 }
961 spin_unlock_irqrestore(&qp->s_lock, flags);
962 return ret;
963 }
964
965 static void verbs_pio_complete(void *arg, int code)
966 {
967 struct rvt_qp *qp = (struct rvt_qp *)arg;
968 struct hfi1_qp_priv *priv = qp->priv;
969
970 if (iowait_pio_dec(&priv->s_iowait))
971 iowait_drain_wakeup(&priv->s_iowait);
972 }
973
974 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
975 u64 pbc)
976 {
977 struct hfi1_qp_priv *priv = qp->priv;
978 u32 hdrwords = qp->s_hdrwords;
979 struct rvt_sge_state *ss = qp->s_cur_sge;
980 u32 len = qp->s_cur_size;
981 u32 dwords = (len + 3) >> 2;
982 u32 plen = hdrwords + dwords + 2; /* includes pbc */
983 struct hfi1_pportdata *ppd = ps->ppd;
984 u32 *hdr = (u32 *)&ps->s_txreq->phdr.hdr;
985 u64 pbc_flags = 0;
986 u8 sc5;
987 unsigned long flags = 0;
988 struct send_context *sc;
989 struct pio_buf *pbuf;
990 int wc_status = IB_WC_SUCCESS;
991 int ret = 0;
992 pio_release_cb cb = NULL;
993
994 /* only RC/UC use complete */
995 switch (qp->ibqp.qp_type) {
996 case IB_QPT_RC:
997 case IB_QPT_UC:
998 cb = verbs_pio_complete;
999 break;
1000 default:
1001 break;
1002 }
1003
1004 /* vl15 special case taken care of in ud.c */
1005 sc5 = priv->s_sc;
1006 sc = ps->s_txreq->psc;
1007
1008 if (likely(pbc == 0)) {
1009 u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1010 /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
1011 pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
1012 pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen);
1013 }
1014 if (cb)
1015 iowait_pio_inc(&priv->s_iowait);
1016 pbuf = sc_buffer_alloc(sc, plen, cb, qp);
1017 if (unlikely(!pbuf)) {
1018 if (cb)
1019 verbs_pio_complete(qp, 0);
1020 if (ppd->host_link_state != HLS_UP_ACTIVE) {
1021 /*
1022 * If we have filled the PIO buffers to capacity and are
1023 * not in an active state this request is not going to
1024 * go out to so just complete it with an error or else a
1025 * ULP or the core may be stuck waiting.
1026 */
1027 hfi1_cdbg(
1028 PIO,
1029 "alloc failed. state not active, completing");
1030 wc_status = IB_WC_GENERAL_ERR;
1031 goto pio_bail;
1032 } else {
1033 /*
1034 * This is a normal occurrence. The PIO buffs are full
1035 * up but we are still happily sending, well we could be
1036 * so lets continue to queue the request.
1037 */
1038 hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1039 ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
1040 if (!ret)
1041 /* txreq not queued - free */
1042 goto bail;
1043 /* tx consumed in wait */
1044 return ret;
1045 }
1046 }
1047
1048 if (len == 0) {
1049 pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1050 } else {
1051 if (ss) {
1052 seg_pio_copy_start(pbuf, pbc, hdr, hdrwords * 4);
1053 while (len) {
1054 void *addr = ss->sge.vaddr;
1055 u32 slen = ss->sge.length;
1056
1057 if (slen > len)
1058 slen = len;
1059 update_sge(ss, slen);
1060 seg_pio_copy_mid(pbuf, addr, slen);
1061 len -= slen;
1062 }
1063 seg_pio_copy_end(pbuf);
1064 }
1065 }
1066
1067 trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1068 &ps->s_txreq->phdr.hdr);
1069
1070 pio_bail:
1071 if (qp->s_wqe) {
1072 spin_lock_irqsave(&qp->s_lock, flags);
1073 hfi1_send_complete(qp, qp->s_wqe, wc_status);
1074 spin_unlock_irqrestore(&qp->s_lock, flags);
1075 } else if (qp->ibqp.qp_type == IB_QPT_RC) {
1076 spin_lock_irqsave(&qp->s_lock, flags);
1077 hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1078 spin_unlock_irqrestore(&qp->s_lock, flags);
1079 }
1080
1081 ret = 0;
1082
1083 bail:
1084 hfi1_put_txreq(ps->s_txreq);
1085 return ret;
1086 }
1087
1088 /*
1089 * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1090 * being an entry from the partition key table), return 0
1091 * otherwise. Use the matching criteria for egress partition keys
1092 * specified in the OPAv1 spec., section 9.1l.7.
1093 */
1094 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1095 {
1096 u16 mkey = pkey & PKEY_LOW_15_MASK;
1097 u16 mentry = ent & PKEY_LOW_15_MASK;
1098
1099 if (mkey == mentry) {
1100 /*
1101 * If pkey[15] is set (full partition member),
1102 * is bit 15 in the corresponding table element
1103 * clear (limited member)?
1104 */
1105 if (pkey & PKEY_MEMBER_MASK)
1106 return !!(ent & PKEY_MEMBER_MASK);
1107 return 1;
1108 }
1109 return 0;
1110 }
1111
1112 /**
1113 * egress_pkey_check - check P_KEY of a packet
1114 * @ppd: Physical IB port data
1115 * @lrh: Local route header
1116 * @bth: Base transport header
1117 * @sc5: SC for packet
1118 * @s_pkey_index: It will be used for look up optimization for kernel contexts
1119 * only. If it is negative value, then it means user contexts is calling this
1120 * function.
1121 *
1122 * It checks if hdr's pkey is valid.
1123 *
1124 * Return: 0 on success, otherwise, 1
1125 */
1126 int egress_pkey_check(struct hfi1_pportdata *ppd, __be16 *lrh, __be32 *bth,
1127 u8 sc5, int8_t s_pkey_index)
1128 {
1129 struct hfi1_devdata *dd;
1130 int i;
1131 u16 pkey;
1132 int is_user_ctxt_mechanism = (s_pkey_index < 0);
1133
1134 if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1135 return 0;
1136
1137 pkey = (u16)be32_to_cpu(bth[0]);
1138
1139 /* If SC15, pkey[0:14] must be 0x7fff */
1140 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1141 goto bad;
1142
1143 /* Is the pkey = 0x0, or 0x8000? */
1144 if ((pkey & PKEY_LOW_15_MASK) == 0)
1145 goto bad;
1146
1147 /*
1148 * For the kernel contexts only, if a qp is passed into the function,
1149 * the most likely matching pkey has index qp->s_pkey_index
1150 */
1151 if (!is_user_ctxt_mechanism &&
1152 egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1153 return 0;
1154 }
1155
1156 for (i = 0; i < MAX_PKEY_VALUES; i++) {
1157 if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1158 return 0;
1159 }
1160 bad:
1161 /*
1162 * For the user-context mechanism, the P_KEY check would only happen
1163 * once per SDMA request, not once per packet. Therefore, there's no
1164 * need to increment the counter for the user-context mechanism.
1165 */
1166 if (!is_user_ctxt_mechanism) {
1167 incr_cntr64(&ppd->port_xmit_constraint_errors);
1168 dd = ppd->dd;
1169 if (!(dd->err_info_xmit_constraint.status &
1170 OPA_EI_STATUS_SMASK)) {
1171 u16 slid = be16_to_cpu(lrh[3]);
1172
1173 dd->err_info_xmit_constraint.status |=
1174 OPA_EI_STATUS_SMASK;
1175 dd->err_info_xmit_constraint.slid = slid;
1176 dd->err_info_xmit_constraint.pkey = pkey;
1177 }
1178 }
1179 return 1;
1180 }
1181
1182 /**
1183 * get_send_routine - choose an egress routine
1184 *
1185 * Choose an egress routine based on QP type
1186 * and size
1187 */
1188 static inline send_routine get_send_routine(struct rvt_qp *qp,
1189 struct verbs_txreq *tx)
1190 {
1191 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1192 struct hfi1_qp_priv *priv = qp->priv;
1193 struct hfi1_ib_header *h = &tx->phdr.hdr;
1194
1195 if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1196 return dd->process_pio_send;
1197 switch (qp->ibqp.qp_type) {
1198 case IB_QPT_SMI:
1199 return dd->process_pio_send;
1200 case IB_QPT_GSI:
1201 case IB_QPT_UD:
1202 break;
1203 case IB_QPT_RC:
1204 if (piothreshold &&
1205 qp->s_cur_size <= min(piothreshold, qp->pmtu) &&
1206 (BIT(get_opcode(h) & 0x1f) & rc_only_opcode) &&
1207 iowait_sdma_pending(&priv->s_iowait) == 0 &&
1208 !sdma_txreq_built(&tx->txreq))
1209 return dd->process_pio_send;
1210 break;
1211 case IB_QPT_UC:
1212 if (piothreshold &&
1213 qp->s_cur_size <= min(piothreshold, qp->pmtu) &&
1214 (BIT(get_opcode(h) & 0x1f) & uc_only_opcode) &&
1215 iowait_sdma_pending(&priv->s_iowait) == 0 &&
1216 !sdma_txreq_built(&tx->txreq))
1217 return dd->process_pio_send;
1218 break;
1219 default:
1220 break;
1221 }
1222 return dd->process_dma_send;
1223 }
1224
1225 /**
1226 * hfi1_verbs_send - send a packet
1227 * @qp: the QP to send on
1228 * @ps: the state of the packet to send
1229 *
1230 * Return zero if packet is sent or queued OK.
1231 * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1232 */
1233 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1234 {
1235 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1236 struct hfi1_qp_priv *priv = qp->priv;
1237 struct hfi1_other_headers *ohdr;
1238 struct hfi1_ib_header *hdr;
1239 send_routine sr;
1240 int ret;
1241 u8 lnh;
1242
1243 hdr = &ps->s_txreq->phdr.hdr;
1244 /* locate the pkey within the headers */
1245 lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1246 if (lnh == HFI1_LRH_GRH)
1247 ohdr = &hdr->u.l.oth;
1248 else
1249 ohdr = &hdr->u.oth;
1250
1251 sr = get_send_routine(qp, ps->s_txreq);
1252 ret = egress_pkey_check(dd->pport,
1253 hdr->lrh,
1254 ohdr->bth,
1255 priv->s_sc,
1256 qp->s_pkey_index);
1257 if (unlikely(ret)) {
1258 /*
1259 * The value we are returning here does not get propagated to
1260 * the verbs caller. Thus we need to complete the request with
1261 * error otherwise the caller could be sitting waiting on the
1262 * completion event. Only do this for PIO. SDMA has its own
1263 * mechanism for handling the errors. So for SDMA we can just
1264 * return.
1265 */
1266 if (sr == dd->process_pio_send) {
1267 unsigned long flags;
1268
1269 hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1270 __func__);
1271 spin_lock_irqsave(&qp->s_lock, flags);
1272 hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1273 spin_unlock_irqrestore(&qp->s_lock, flags);
1274 }
1275 return -EINVAL;
1276 }
1277 if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1278 return pio_wait(qp,
1279 ps->s_txreq->psc,
1280 ps,
1281 RVT_S_WAIT_PIO_DRAIN);
1282 return sr(qp, ps, 0);
1283 }
1284
1285 /**
1286 * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1287 * @dd: the device data structure
1288 */
1289 static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1290 {
1291 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1292
1293 memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1294
1295 rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1296 IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1297 IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1298 IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE;
1299 rdi->dparms.props.page_size_cap = PAGE_SIZE;
1300 rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1301 rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1302 rdi->dparms.props.hw_ver = dd->minrev;
1303 rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1304 rdi->dparms.props.max_mr_size = ~0ULL;
1305 rdi->dparms.props.max_qp = hfi1_max_qps;
1306 rdi->dparms.props.max_qp_wr = hfi1_max_qp_wrs;
1307 rdi->dparms.props.max_sge = hfi1_max_sges;
1308 rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1309 rdi->dparms.props.max_cq = hfi1_max_cqs;
1310 rdi->dparms.props.max_ah = hfi1_max_ahs;
1311 rdi->dparms.props.max_cqe = hfi1_max_cqes;
1312 rdi->dparms.props.max_mr = rdi->lkey_table.max;
1313 rdi->dparms.props.max_fmr = rdi->lkey_table.max;
1314 rdi->dparms.props.max_map_per_fmr = 32767;
1315 rdi->dparms.props.max_pd = hfi1_max_pds;
1316 rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1317 rdi->dparms.props.max_qp_init_rd_atom = 255;
1318 rdi->dparms.props.max_srq = hfi1_max_srqs;
1319 rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1320 rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1321 rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1322 rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1323 rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1324 rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1325 rdi->dparms.props.max_total_mcast_qp_attach =
1326 rdi->dparms.props.max_mcast_qp_attach *
1327 rdi->dparms.props.max_mcast_grp;
1328 }
1329
1330 static inline u16 opa_speed_to_ib(u16 in)
1331 {
1332 u16 out = 0;
1333
1334 if (in & OPA_LINK_SPEED_25G)
1335 out |= IB_SPEED_EDR;
1336 if (in & OPA_LINK_SPEED_12_5G)
1337 out |= IB_SPEED_FDR;
1338
1339 return out;
1340 }
1341
1342 /*
1343 * Convert a single OPA link width (no multiple flags) to an IB value.
1344 * A zero OPA link width means link down, which means the IB width value
1345 * is a don't care.
1346 */
1347 static inline u16 opa_width_to_ib(u16 in)
1348 {
1349 switch (in) {
1350 case OPA_LINK_WIDTH_1X:
1351 /* map 2x and 3x to 1x as they don't exist in IB */
1352 case OPA_LINK_WIDTH_2X:
1353 case OPA_LINK_WIDTH_3X:
1354 return IB_WIDTH_1X;
1355 default: /* link down or unknown, return our largest width */
1356 case OPA_LINK_WIDTH_4X:
1357 return IB_WIDTH_4X;
1358 }
1359 }
1360
1361 static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1362 struct ib_port_attr *props)
1363 {
1364 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1365 struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1366 struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1367 u16 lid = ppd->lid;
1368
1369 props->lid = lid ? lid : 0;
1370 props->lmc = ppd->lmc;
1371 /* OPA logical states match IB logical states */
1372 props->state = driver_lstate(ppd);
1373 props->phys_state = hfi1_ibphys_portstate(ppd);
1374 props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1375 props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1376 /* see rate_show() in ib core/sysfs.c */
1377 props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1378 props->max_vl_num = ppd->vls_supported;
1379
1380 /* Once we are a "first class" citizen and have added the OPA MTUs to
1381 * the core we can advertise the larger MTU enum to the ULPs, for now
1382 * advertise only 4K.
1383 *
1384 * Those applications which are either OPA aware or pass the MTU enum
1385 * from the Path Records to us will get the new 8k MTU. Those that
1386 * attempt to process the MTU enum may fail in various ways.
1387 */
1388 props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1389 4096 : hfi1_max_mtu), IB_MTU_4096);
1390 props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1391 mtu_to_enum(ppd->ibmtu, IB_MTU_2048);
1392
1393 return 0;
1394 }
1395
1396 static int modify_device(struct ib_device *device,
1397 int device_modify_mask,
1398 struct ib_device_modify *device_modify)
1399 {
1400 struct hfi1_devdata *dd = dd_from_ibdev(device);
1401 unsigned i;
1402 int ret;
1403
1404 if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1405 IB_DEVICE_MODIFY_NODE_DESC)) {
1406 ret = -EOPNOTSUPP;
1407 goto bail;
1408 }
1409
1410 if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1411 memcpy(device->node_desc, device_modify->node_desc, 64);
1412 for (i = 0; i < dd->num_pports; i++) {
1413 struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1414
1415 hfi1_node_desc_chg(ibp);
1416 }
1417 }
1418
1419 if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1420 ib_hfi1_sys_image_guid =
1421 cpu_to_be64(device_modify->sys_image_guid);
1422 for (i = 0; i < dd->num_pports; i++) {
1423 struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1424
1425 hfi1_sys_guid_chg(ibp);
1426 }
1427 }
1428
1429 ret = 0;
1430
1431 bail:
1432 return ret;
1433 }
1434
1435 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1436 {
1437 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1438 struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1439 struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1440 int ret;
1441
1442 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1443 OPA_LINKDOWN_REASON_UNKNOWN);
1444 ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1445 return ret;
1446 }
1447
1448 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1449 int guid_index, __be64 *guid)
1450 {
1451 struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1452 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1453
1454 if (guid_index == 0)
1455 *guid = cpu_to_be64(ppd->guid);
1456 else if (guid_index < HFI1_GUIDS_PER_PORT)
1457 *guid = ibp->guids[guid_index - 1];
1458 else
1459 return -EINVAL;
1460
1461 return 0;
1462 }
1463
1464 /*
1465 * convert ah port,sl to sc
1466 */
1467 u8 ah_to_sc(struct ib_device *ibdev, struct ib_ah_attr *ah)
1468 {
1469 struct hfi1_ibport *ibp = to_iport(ibdev, ah->port_num);
1470
1471 return ibp->sl_to_sc[ah->sl];
1472 }
1473
1474 static int hfi1_check_ah(struct ib_device *ibdev, struct ib_ah_attr *ah_attr)
1475 {
1476 struct hfi1_ibport *ibp;
1477 struct hfi1_pportdata *ppd;
1478 struct hfi1_devdata *dd;
1479 u8 sc5;
1480
1481 /* test the mapping for validity */
1482 ibp = to_iport(ibdev, ah_attr->port_num);
1483 ppd = ppd_from_ibp(ibp);
1484 sc5 = ibp->sl_to_sc[ah_attr->sl];
1485 dd = dd_from_ppd(ppd);
1486 if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1487 return -EINVAL;
1488 return 0;
1489 }
1490
1491 static void hfi1_notify_new_ah(struct ib_device *ibdev,
1492 struct ib_ah_attr *ah_attr,
1493 struct rvt_ah *ah)
1494 {
1495 struct hfi1_ibport *ibp;
1496 struct hfi1_pportdata *ppd;
1497 struct hfi1_devdata *dd;
1498 u8 sc5;
1499
1500 /*
1501 * Do not trust reading anything from rvt_ah at this point as it is not
1502 * done being setup. We can however modify things which we need to set.
1503 */
1504
1505 ibp = to_iport(ibdev, ah_attr->port_num);
1506 ppd = ppd_from_ibp(ibp);
1507 sc5 = ibp->sl_to_sc[ah->attr.sl];
1508 dd = dd_from_ppd(ppd);
1509 ah->vl = sc_to_vlt(dd, sc5);
1510 if (ah->vl < num_vls || ah->vl == 15)
1511 ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1512 }
1513
1514 struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u16 dlid)
1515 {
1516 struct ib_ah_attr attr;
1517 struct ib_ah *ah = ERR_PTR(-EINVAL);
1518 struct rvt_qp *qp0;
1519
1520 memset(&attr, 0, sizeof(attr));
1521 attr.dlid = dlid;
1522 attr.port_num = ppd_from_ibp(ibp)->port;
1523 rcu_read_lock();
1524 qp0 = rcu_dereference(ibp->rvp.qp[0]);
1525 if (qp0)
1526 ah = ib_create_ah(qp0->ibqp.pd, &attr);
1527 rcu_read_unlock();
1528 return ah;
1529 }
1530
1531 /**
1532 * hfi1_get_npkeys - return the size of the PKEY table for context 0
1533 * @dd: the hfi1_ib device
1534 */
1535 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1536 {
1537 return ARRAY_SIZE(dd->pport[0].pkeys);
1538 }
1539
1540 static void init_ibport(struct hfi1_pportdata *ppd)
1541 {
1542 struct hfi1_ibport *ibp = &ppd->ibport_data;
1543 size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1544 int i;
1545
1546 for (i = 0; i < sz; i++) {
1547 ibp->sl_to_sc[i] = i;
1548 ibp->sc_to_sl[i] = i;
1549 }
1550
1551 spin_lock_init(&ibp->rvp.lock);
1552 /* Set the prefix to the default value (see ch. 4.1.1) */
1553 ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1554 ibp->rvp.sm_lid = 0;
1555 /* Below should only set bits defined in OPA PortInfo.CapabilityMask */
1556 ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1557 IB_PORT_CAP_MASK_NOTICE_SUP;
1558 ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1559 ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1560 ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1561 ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1562 ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1563
1564 RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1565 RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1566 }
1567
1568 /**
1569 * hfi1_register_ib_device - register our device with the infiniband core
1570 * @dd: the device data structure
1571 * Return 0 if successful, errno if unsuccessful.
1572 */
1573 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1574 {
1575 struct hfi1_ibdev *dev = &dd->verbs_dev;
1576 struct ib_device *ibdev = &dev->rdi.ibdev;
1577 struct hfi1_pportdata *ppd = dd->pport;
1578 unsigned i;
1579 int ret;
1580 size_t lcpysz = IB_DEVICE_NAME_MAX;
1581
1582 for (i = 0; i < dd->num_pports; i++)
1583 init_ibport(ppd + i);
1584
1585 /* Only need to initialize non-zero fields. */
1586
1587 setup_timer(&dev->mem_timer, mem_timer, (unsigned long)dev);
1588
1589 seqlock_init(&dev->iowait_lock);
1590 INIT_LIST_HEAD(&dev->txwait);
1591 INIT_LIST_HEAD(&dev->memwait);
1592
1593 ret = verbs_txreq_init(dev);
1594 if (ret)
1595 goto err_verbs_txreq;
1596
1597 /*
1598 * The system image GUID is supposed to be the same for all
1599 * HFIs in a single system but since there can be other
1600 * device types in the system, we can't be sure this is unique.
1601 */
1602 if (!ib_hfi1_sys_image_guid)
1603 ib_hfi1_sys_image_guid = cpu_to_be64(ppd->guid);
1604 lcpysz = strlcpy(ibdev->name, class_name(), lcpysz);
1605 strlcpy(ibdev->name + lcpysz, "_%d", IB_DEVICE_NAME_MAX - lcpysz);
1606 ibdev->owner = THIS_MODULE;
1607 ibdev->node_guid = cpu_to_be64(ppd->guid);
1608 ibdev->phys_port_cnt = dd->num_pports;
1609 ibdev->dma_device = &dd->pcidev->dev;
1610 ibdev->modify_device = modify_device;
1611
1612 /* keep process mad in the driver */
1613 ibdev->process_mad = hfi1_process_mad;
1614
1615 strncpy(ibdev->node_desc, init_utsname()->nodename,
1616 sizeof(ibdev->node_desc));
1617
1618 /*
1619 * Fill in rvt info object.
1620 */
1621 dd->verbs_dev.rdi.driver_f.port_callback = hfi1_create_port_files;
1622 dd->verbs_dev.rdi.driver_f.get_card_name = get_card_name;
1623 dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1624 dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1625 dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1626 dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1627 dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1628 dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1629 dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1630 /*
1631 * Fill in rvt info device attributes.
1632 */
1633 hfi1_fill_device_attr(dd);
1634
1635 /* queue pair */
1636 dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1637 dd->verbs_dev.rdi.dparms.qpn_start = 0;
1638 dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1639 dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1640 dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
1641 dd->verbs_dev.rdi.dparms.qpn_res_end =
1642 dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
1643 dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1644 dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1645 dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1646 dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1647 dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA;
1648 dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1649
1650 dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1651 dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1652 dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1653 dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1654 dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send;
1655 dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1656 dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1657 dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1658 dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1659 dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1660 dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1661 dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1662 dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1663 dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1664 dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1665 dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1666 dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1667 dd->verbs_dev.rdi.driver_f.check_send_wqe = hfi1_check_send_wqe;
1668
1669 /* completeion queue */
1670 snprintf(dd->verbs_dev.rdi.dparms.cq_name,
1671 sizeof(dd->verbs_dev.rdi.dparms.cq_name),
1672 "hfi1_cq%d", dd->unit);
1673 dd->verbs_dev.rdi.dparms.node = dd->node;
1674
1675 /* misc settings */
1676 dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1677 dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1678 dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1679 dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1680
1681 ppd = dd->pport;
1682 for (i = 0; i < dd->num_pports; i++, ppd++)
1683 rvt_init_port(&dd->verbs_dev.rdi,
1684 &ppd->ibport_data.rvp,
1685 i,
1686 ppd->pkeys);
1687
1688 ret = rvt_register_device(&dd->verbs_dev.rdi);
1689 if (ret)
1690 goto err_verbs_txreq;
1691
1692 ret = hfi1_verbs_register_sysfs(dd);
1693 if (ret)
1694 goto err_class;
1695
1696 return ret;
1697
1698 err_class:
1699 rvt_unregister_device(&dd->verbs_dev.rdi);
1700 err_verbs_txreq:
1701 verbs_txreq_exit(dev);
1702 dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1703 return ret;
1704 }
1705
1706 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1707 {
1708 struct hfi1_ibdev *dev = &dd->verbs_dev;
1709
1710 hfi1_verbs_unregister_sysfs(dd);
1711
1712 rvt_unregister_device(&dd->verbs_dev.rdi);
1713
1714 if (!list_empty(&dev->txwait))
1715 dd_dev_err(dd, "txwait list not empty!\n");
1716 if (!list_empty(&dev->memwait))
1717 dd_dev_err(dd, "memwait list not empty!\n");
1718
1719 del_timer_sync(&dev->mem_timer);
1720 verbs_txreq_exit(dev);
1721 }
1722
1723 void hfi1_cnp_rcv(struct hfi1_packet *packet)
1724 {
1725 struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data;
1726 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1727 struct hfi1_ib_header *hdr = packet->hdr;
1728 struct rvt_qp *qp = packet->qp;
1729 u32 lqpn, rqpn = 0;
1730 u16 rlid = 0;
1731 u8 sl, sc5, sc4_bit, svc_type;
1732 bool sc4_set = has_sc4_bit(packet);
1733
1734 switch (packet->qp->ibqp.qp_type) {
1735 case IB_QPT_UC:
1736 rlid = qp->remote_ah_attr.dlid;
1737 rqpn = qp->remote_qpn;
1738 svc_type = IB_CC_SVCTYPE_UC;
1739 break;
1740 case IB_QPT_RC:
1741 rlid = qp->remote_ah_attr.dlid;
1742 rqpn = qp->remote_qpn;
1743 svc_type = IB_CC_SVCTYPE_RC;
1744 break;
1745 case IB_QPT_SMI:
1746 case IB_QPT_GSI:
1747 case IB_QPT_UD:
1748 svc_type = IB_CC_SVCTYPE_UD;
1749 break;
1750 default:
1751 ibp->rvp.n_pkt_drops++;
1752 return;
1753 }
1754
1755 sc4_bit = sc4_set << 4;
1756 sc5 = (be16_to_cpu(hdr->lrh[0]) >> 12) & 0xf;
1757 sc5 |= sc4_bit;
1758 sl = ibp->sc_to_sl[sc5];
1759 lqpn = qp->ibqp.qp_num;
1760
1761 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
1762 }