]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/staging/rdma/hfi1/verbs.c
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-zesty-kernel.git] / drivers / staging / rdma / hfi1 / verbs.c
1 /*
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2015 Intel Corporation.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * BSD LICENSE
20 *
21 * Copyright(c) 2015 Intel Corporation.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 *
27 * - Redistributions of source code must retain the above copyright
28 * notice, this list of conditions and the following disclaimer.
29 * - Redistributions in binary form must reproduce the above copyright
30 * notice, this list of conditions and the following disclaimer in
31 * the documentation and/or other materials provided with the
32 * distribution.
33 * - Neither the name of Intel Corporation nor the names of its
34 * contributors may be used to endorse or promote products derived
35 * from this software without specific prior written permission.
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 *
49 */
50
51 #include <rdma/ib_mad.h>
52 #include <rdma/ib_user_verbs.h>
53 #include <linux/io.h>
54 #include <linux/module.h>
55 #include <linux/utsname.h>
56 #include <linux/rculist.h>
57 #include <linux/mm.h>
58 #include <linux/random.h>
59 #include <linux/vmalloc.h>
60
61 #include "hfi.h"
62 #include "common.h"
63 #include "device.h"
64 #include "trace.h"
65 #include "qp.h"
66 #include "sdma.h"
67
68 unsigned int hfi1_lkey_table_size = 16;
69 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
70 S_IRUGO);
71 MODULE_PARM_DESC(lkey_table_size,
72 "LKEY table size in bits (2^n, 1 <= n <= 23)");
73
74 static unsigned int hfi1_max_pds = 0xFFFF;
75 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
76 MODULE_PARM_DESC(max_pds,
77 "Maximum number of protection domains to support");
78
79 static unsigned int hfi1_max_ahs = 0xFFFF;
80 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
81 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
82
83 unsigned int hfi1_max_cqes = 0x2FFFF;
84 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
85 MODULE_PARM_DESC(max_cqes,
86 "Maximum number of completion queue entries to support");
87
88 unsigned int hfi1_max_cqs = 0x1FFFF;
89 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
90 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
91
92 unsigned int hfi1_max_qp_wrs = 0x3FFF;
93 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
94 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
95
96 unsigned int hfi1_max_qps = 16384;
97 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
98 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
99
100 unsigned int hfi1_max_sges = 0x60;
101 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
102 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
103
104 unsigned int hfi1_max_mcast_grps = 16384;
105 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
106 MODULE_PARM_DESC(max_mcast_grps,
107 "Maximum number of multicast groups to support");
108
109 unsigned int hfi1_max_mcast_qp_attached = 16;
110 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
111 uint, S_IRUGO);
112 MODULE_PARM_DESC(max_mcast_qp_attached,
113 "Maximum number of attached QPs to support");
114
115 unsigned int hfi1_max_srqs = 1024;
116 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
117 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
118
119 unsigned int hfi1_max_srq_sges = 128;
120 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
121 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
122
123 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
124 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
125 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
126
127 static void verbs_sdma_complete(
128 struct sdma_txreq *cookie,
129 int status,
130 int drained);
131
132 /*
133 * Note that it is OK to post send work requests in the SQE and ERR
134 * states; hfi1_do_send() will process them and generate error
135 * completions as per IB 1.2 C10-96.
136 */
137 const int ib_hfi1_state_ops[IB_QPS_ERR + 1] = {
138 [IB_QPS_RESET] = 0,
139 [IB_QPS_INIT] = HFI1_POST_RECV_OK,
140 [IB_QPS_RTR] = HFI1_POST_RECV_OK | HFI1_PROCESS_RECV_OK,
141 [IB_QPS_RTS] = HFI1_POST_RECV_OK | HFI1_PROCESS_RECV_OK |
142 HFI1_POST_SEND_OK | HFI1_PROCESS_SEND_OK |
143 HFI1_PROCESS_NEXT_SEND_OK,
144 [IB_QPS_SQD] = HFI1_POST_RECV_OK | HFI1_PROCESS_RECV_OK |
145 HFI1_POST_SEND_OK | HFI1_PROCESS_SEND_OK,
146 [IB_QPS_SQE] = HFI1_POST_RECV_OK | HFI1_PROCESS_RECV_OK |
147 HFI1_POST_SEND_OK | HFI1_FLUSH_SEND,
148 [IB_QPS_ERR] = HFI1_POST_RECV_OK | HFI1_FLUSH_RECV |
149 HFI1_POST_SEND_OK | HFI1_FLUSH_SEND,
150 };
151
152 struct hfi1_ucontext {
153 struct ib_ucontext ibucontext;
154 };
155
156 static inline struct hfi1_ucontext *to_iucontext(struct ib_ucontext
157 *ibucontext)
158 {
159 return container_of(ibucontext, struct hfi1_ucontext, ibucontext);
160 }
161
162 /*
163 * Translate ib_wr_opcode into ib_wc_opcode.
164 */
165 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
166 [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
167 [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
168 [IB_WR_SEND] = IB_WC_SEND,
169 [IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
170 [IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
171 [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
172 [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD
173 };
174
175 /*
176 * Length of header by opcode, 0 --> not supported
177 */
178 const u8 hdr_len_by_opcode[256] = {
179 /* RC */
180 [IB_OPCODE_RC_SEND_FIRST] = 12 + 8,
181 [IB_OPCODE_RC_SEND_MIDDLE] = 12 + 8,
182 [IB_OPCODE_RC_SEND_LAST] = 12 + 8,
183 [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
184 [IB_OPCODE_RC_SEND_ONLY] = 12 + 8,
185 [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4,
186 [IB_OPCODE_RC_RDMA_WRITE_FIRST] = 12 + 8 + 16,
187 [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = 12 + 8,
188 [IB_OPCODE_RC_RDMA_WRITE_LAST] = 12 + 8,
189 [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
190 [IB_OPCODE_RC_RDMA_WRITE_ONLY] = 12 + 8 + 16,
191 [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
192 [IB_OPCODE_RC_RDMA_READ_REQUEST] = 12 + 8 + 16,
193 [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = 12 + 8 + 4,
194 [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = 12 + 8,
195 [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = 12 + 8 + 4,
196 [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = 12 + 8 + 4,
197 [IB_OPCODE_RC_ACKNOWLEDGE] = 12 + 8 + 4,
198 [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = 12 + 8 + 4,
199 [IB_OPCODE_RC_COMPARE_SWAP] = 12 + 8 + 28,
200 [IB_OPCODE_RC_FETCH_ADD] = 12 + 8 + 28,
201 /* UC */
202 [IB_OPCODE_UC_SEND_FIRST] = 12 + 8,
203 [IB_OPCODE_UC_SEND_MIDDLE] = 12 + 8,
204 [IB_OPCODE_UC_SEND_LAST] = 12 + 8,
205 [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
206 [IB_OPCODE_UC_SEND_ONLY] = 12 + 8,
207 [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4,
208 [IB_OPCODE_UC_RDMA_WRITE_FIRST] = 12 + 8 + 16,
209 [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = 12 + 8,
210 [IB_OPCODE_UC_RDMA_WRITE_LAST] = 12 + 8,
211 [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
212 [IB_OPCODE_UC_RDMA_WRITE_ONLY] = 12 + 8 + 16,
213 [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
214 /* UD */
215 [IB_OPCODE_UD_SEND_ONLY] = 12 + 8 + 8,
216 [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 12
217 };
218
219 static const opcode_handler opcode_handler_tbl[256] = {
220 /* RC */
221 [IB_OPCODE_RC_SEND_FIRST] = &hfi1_rc_rcv,
222 [IB_OPCODE_RC_SEND_MIDDLE] = &hfi1_rc_rcv,
223 [IB_OPCODE_RC_SEND_LAST] = &hfi1_rc_rcv,
224 [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
225 [IB_OPCODE_RC_SEND_ONLY] = &hfi1_rc_rcv,
226 [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
227 [IB_OPCODE_RC_RDMA_WRITE_FIRST] = &hfi1_rc_rcv,
228 [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = &hfi1_rc_rcv,
229 [IB_OPCODE_RC_RDMA_WRITE_LAST] = &hfi1_rc_rcv,
230 [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
231 [IB_OPCODE_RC_RDMA_WRITE_ONLY] = &hfi1_rc_rcv,
232 [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
233 [IB_OPCODE_RC_RDMA_READ_REQUEST] = &hfi1_rc_rcv,
234 [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = &hfi1_rc_rcv,
235 [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = &hfi1_rc_rcv,
236 [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = &hfi1_rc_rcv,
237 [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = &hfi1_rc_rcv,
238 [IB_OPCODE_RC_ACKNOWLEDGE] = &hfi1_rc_rcv,
239 [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = &hfi1_rc_rcv,
240 [IB_OPCODE_RC_COMPARE_SWAP] = &hfi1_rc_rcv,
241 [IB_OPCODE_RC_FETCH_ADD] = &hfi1_rc_rcv,
242 /* UC */
243 [IB_OPCODE_UC_SEND_FIRST] = &hfi1_uc_rcv,
244 [IB_OPCODE_UC_SEND_MIDDLE] = &hfi1_uc_rcv,
245 [IB_OPCODE_UC_SEND_LAST] = &hfi1_uc_rcv,
246 [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
247 [IB_OPCODE_UC_SEND_ONLY] = &hfi1_uc_rcv,
248 [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
249 [IB_OPCODE_UC_RDMA_WRITE_FIRST] = &hfi1_uc_rcv,
250 [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = &hfi1_uc_rcv,
251 [IB_OPCODE_UC_RDMA_WRITE_LAST] = &hfi1_uc_rcv,
252 [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
253 [IB_OPCODE_UC_RDMA_WRITE_ONLY] = &hfi1_uc_rcv,
254 [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
255 /* UD */
256 [IB_OPCODE_UD_SEND_ONLY] = &hfi1_ud_rcv,
257 [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_ud_rcv,
258 /* CNP */
259 [IB_OPCODE_CNP] = &hfi1_cnp_rcv
260 };
261
262 /*
263 * System image GUID.
264 */
265 __be64 ib_hfi1_sys_image_guid;
266
267 /**
268 * hfi1_copy_sge - copy data to SGE memory
269 * @ss: the SGE state
270 * @data: the data to copy
271 * @length: the length of the data
272 */
273 void hfi1_copy_sge(
274 struct hfi1_sge_state *ss,
275 void *data, u32 length,
276 int release)
277 {
278 struct hfi1_sge *sge = &ss->sge;
279
280 while (length) {
281 u32 len = sge->length;
282
283 if (len > length)
284 len = length;
285 if (len > sge->sge_length)
286 len = sge->sge_length;
287 WARN_ON_ONCE(len == 0);
288 memcpy(sge->vaddr, data, len);
289 sge->vaddr += len;
290 sge->length -= len;
291 sge->sge_length -= len;
292 if (sge->sge_length == 0) {
293 if (release)
294 hfi1_put_mr(sge->mr);
295 if (--ss->num_sge)
296 *sge = *ss->sg_list++;
297 } else if (sge->length == 0 && sge->mr->lkey) {
298 if (++sge->n >= HFI1_SEGSZ) {
299 if (++sge->m >= sge->mr->mapsz)
300 break;
301 sge->n = 0;
302 }
303 sge->vaddr =
304 sge->mr->map[sge->m]->segs[sge->n].vaddr;
305 sge->length =
306 sge->mr->map[sge->m]->segs[sge->n].length;
307 }
308 data += len;
309 length -= len;
310 }
311 }
312
313 /**
314 * hfi1_skip_sge - skip over SGE memory
315 * @ss: the SGE state
316 * @length: the number of bytes to skip
317 */
318 void hfi1_skip_sge(struct hfi1_sge_state *ss, u32 length, int release)
319 {
320 struct hfi1_sge *sge = &ss->sge;
321
322 while (length) {
323 u32 len = sge->length;
324
325 if (len > length)
326 len = length;
327 if (len > sge->sge_length)
328 len = sge->sge_length;
329 WARN_ON_ONCE(len == 0);
330 sge->vaddr += len;
331 sge->length -= len;
332 sge->sge_length -= len;
333 if (sge->sge_length == 0) {
334 if (release)
335 hfi1_put_mr(sge->mr);
336 if (--ss->num_sge)
337 *sge = *ss->sg_list++;
338 } else if (sge->length == 0 && sge->mr->lkey) {
339 if (++sge->n >= HFI1_SEGSZ) {
340 if (++sge->m >= sge->mr->mapsz)
341 break;
342 sge->n = 0;
343 }
344 sge->vaddr =
345 sge->mr->map[sge->m]->segs[sge->n].vaddr;
346 sge->length =
347 sge->mr->map[sge->m]->segs[sge->n].length;
348 }
349 length -= len;
350 }
351 }
352
353 /**
354 * post_one_send - post one RC, UC, or UD send work request
355 * @qp: the QP to post on
356 * @wr: the work request to send
357 */
358 static int post_one_send(struct hfi1_qp *qp, struct ib_send_wr *wr)
359 {
360 struct hfi1_swqe *wqe;
361 u32 next;
362 int i;
363 int j;
364 int acc;
365 struct hfi1_lkey_table *rkt;
366 struct hfi1_pd *pd;
367 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
368 struct hfi1_pportdata *ppd;
369 struct hfi1_ibport *ibp;
370
371 /* IB spec says that num_sge == 0 is OK. */
372 if (unlikely(wr->num_sge > qp->s_max_sge))
373 return -EINVAL;
374
375 ppd = &dd->pport[qp->port_num - 1];
376 ibp = &ppd->ibport_data;
377
378 /*
379 * Don't allow RDMA reads or atomic operations on UC or
380 * undefined operations.
381 * Make sure buffer is large enough to hold the result for atomics.
382 */
383 if (wr->opcode == IB_WR_FAST_REG_MR) {
384 return -EINVAL;
385 } else if (qp->ibqp.qp_type == IB_QPT_UC) {
386 if ((unsigned) wr->opcode >= IB_WR_RDMA_READ)
387 return -EINVAL;
388 } else if (qp->ibqp.qp_type != IB_QPT_RC) {
389 /* Check IB_QPT_SMI, IB_QPT_GSI, IB_QPT_UD opcode */
390 if (wr->opcode != IB_WR_SEND &&
391 wr->opcode != IB_WR_SEND_WITH_IMM)
392 return -EINVAL;
393 /* Check UD destination address PD */
394 if (qp->ibqp.pd != wr->wr.ud.ah->pd)
395 return -EINVAL;
396 } else if ((unsigned) wr->opcode > IB_WR_ATOMIC_FETCH_AND_ADD)
397 return -EINVAL;
398 else if (wr->opcode >= IB_WR_ATOMIC_CMP_AND_SWP &&
399 (wr->num_sge == 0 ||
400 wr->sg_list[0].length < sizeof(u64) ||
401 wr->sg_list[0].addr & (sizeof(u64) - 1)))
402 return -EINVAL;
403 else if (wr->opcode >= IB_WR_RDMA_READ && !qp->s_max_rd_atomic)
404 return -EINVAL;
405
406 next = qp->s_head + 1;
407 if (next >= qp->s_size)
408 next = 0;
409 if (next == qp->s_last)
410 return -ENOMEM;
411
412 rkt = &to_idev(qp->ibqp.device)->lk_table;
413 pd = to_ipd(qp->ibqp.pd);
414 wqe = get_swqe_ptr(qp, qp->s_head);
415 wqe->wr = *wr;
416 wqe->length = 0;
417 j = 0;
418 if (wr->num_sge) {
419 acc = wr->opcode >= IB_WR_RDMA_READ ?
420 IB_ACCESS_LOCAL_WRITE : 0;
421 for (i = 0; i < wr->num_sge; i++) {
422 u32 length = wr->sg_list[i].length;
423 int ok;
424
425 if (length == 0)
426 continue;
427 ok = hfi1_lkey_ok(rkt, pd, &wqe->sg_list[j],
428 &wr->sg_list[i], acc);
429 if (!ok)
430 goto bail_inval_free;
431 wqe->length += length;
432 j++;
433 }
434 wqe->wr.num_sge = j;
435 }
436 if (qp->ibqp.qp_type == IB_QPT_UC ||
437 qp->ibqp.qp_type == IB_QPT_RC) {
438 if (wqe->length > 0x80000000U)
439 goto bail_inval_free;
440 } else {
441 struct hfi1_ah *ah = to_iah(wr->wr.ud.ah);
442
443 atomic_inc(&ah->refcount);
444 }
445 wqe->ssn = qp->s_ssn++;
446 qp->s_head = next;
447
448 return 0;
449
450 bail_inval_free:
451 /* release mr holds */
452 while (j) {
453 struct hfi1_sge *sge = &wqe->sg_list[--j];
454
455 hfi1_put_mr(sge->mr);
456 }
457 return -EINVAL;
458 }
459
460 /**
461 * post_send - post a send on a QP
462 * @ibqp: the QP to post the send on
463 * @wr: the list of work requests to post
464 * @bad_wr: the first bad WR is put here
465 *
466 * This may be called from interrupt context.
467 */
468 static int post_send(struct ib_qp *ibqp, struct ib_send_wr *wr,
469 struct ib_send_wr **bad_wr)
470 {
471 struct hfi1_qp *qp = to_iqp(ibqp);
472 int err = 0;
473 int call_send;
474 unsigned long flags;
475 unsigned nreq = 0;
476
477 spin_lock_irqsave(&qp->s_lock, flags);
478
479 /* Check that state is OK to post send. */
480 if (unlikely(!(ib_hfi1_state_ops[qp->state] & HFI1_POST_SEND_OK))) {
481 spin_unlock_irqrestore(&qp->s_lock, flags);
482 return -EINVAL;
483 }
484
485 /* sq empty and not list -> call send */
486 call_send = qp->s_head == qp->s_last && !wr->next;
487
488 for (; wr; wr = wr->next) {
489 err = post_one_send(qp, wr);
490 if (unlikely(err)) {
491 *bad_wr = wr;
492 goto bail;
493 }
494 nreq++;
495 }
496 bail:
497 if (nreq && !call_send)
498 hfi1_schedule_send(qp);
499 spin_unlock_irqrestore(&qp->s_lock, flags);
500 if (nreq && call_send)
501 hfi1_do_send(&qp->s_iowait.iowork);
502 return err;
503 }
504
505 /**
506 * post_receive - post a receive on a QP
507 * @ibqp: the QP to post the receive on
508 * @wr: the WR to post
509 * @bad_wr: the first bad WR is put here
510 *
511 * This may be called from interrupt context.
512 */
513 static int post_receive(struct ib_qp *ibqp, struct ib_recv_wr *wr,
514 struct ib_recv_wr **bad_wr)
515 {
516 struct hfi1_qp *qp = to_iqp(ibqp);
517 struct hfi1_rwq *wq = qp->r_rq.wq;
518 unsigned long flags;
519 int ret;
520
521 /* Check that state is OK to post receive. */
522 if (!(ib_hfi1_state_ops[qp->state] & HFI1_POST_RECV_OK) || !wq) {
523 *bad_wr = wr;
524 ret = -EINVAL;
525 goto bail;
526 }
527
528 for (; wr; wr = wr->next) {
529 struct hfi1_rwqe *wqe;
530 u32 next;
531 int i;
532
533 if ((unsigned) wr->num_sge > qp->r_rq.max_sge) {
534 *bad_wr = wr;
535 ret = -EINVAL;
536 goto bail;
537 }
538
539 spin_lock_irqsave(&qp->r_rq.lock, flags);
540 next = wq->head + 1;
541 if (next >= qp->r_rq.size)
542 next = 0;
543 if (next == wq->tail) {
544 spin_unlock_irqrestore(&qp->r_rq.lock, flags);
545 *bad_wr = wr;
546 ret = -ENOMEM;
547 goto bail;
548 }
549
550 wqe = get_rwqe_ptr(&qp->r_rq, wq->head);
551 wqe->wr_id = wr->wr_id;
552 wqe->num_sge = wr->num_sge;
553 for (i = 0; i < wr->num_sge; i++)
554 wqe->sg_list[i] = wr->sg_list[i];
555 /* Make sure queue entry is written before the head index. */
556 smp_wmb();
557 wq->head = next;
558 spin_unlock_irqrestore(&qp->r_rq.lock, flags);
559 }
560 ret = 0;
561
562 bail:
563 return ret;
564 }
565
566 /*
567 * Make sure the QP is ready and able to accept the given opcode.
568 */
569 static inline int qp_ok(int opcode, struct hfi1_packet *packet)
570 {
571 struct hfi1_ibport *ibp;
572
573 if (!(ib_hfi1_state_ops[packet->qp->state] & HFI1_PROCESS_RECV_OK))
574 goto dropit;
575 if (((opcode & OPCODE_QP_MASK) == packet->qp->allowed_ops) ||
576 (opcode == IB_OPCODE_CNP))
577 return 1;
578 dropit:
579 ibp = &packet->rcd->ppd->ibport_data;
580 ibp->n_pkt_drops++;
581 return 0;
582 }
583
584
585 /**
586 * hfi1_ib_rcv - process an incoming packet
587 * @packet: data packet information
588 *
589 * This is called to process an incoming packet at interrupt level.
590 *
591 * Tlen is the length of the header + data + CRC in bytes.
592 */
593 void hfi1_ib_rcv(struct hfi1_packet *packet)
594 {
595 struct hfi1_ctxtdata *rcd = packet->rcd;
596 struct hfi1_ib_header *hdr = packet->hdr;
597 u32 tlen = packet->tlen;
598 struct hfi1_pportdata *ppd = rcd->ppd;
599 struct hfi1_ibport *ibp = &ppd->ibport_data;
600 u32 qp_num;
601 int lnh;
602 u8 opcode;
603 u16 lid;
604
605 /* Check for GRH */
606 lnh = be16_to_cpu(hdr->lrh[0]) & 3;
607 if (lnh == HFI1_LRH_BTH)
608 packet->ohdr = &hdr->u.oth;
609 else if (lnh == HFI1_LRH_GRH) {
610 u32 vtf;
611
612 packet->ohdr = &hdr->u.l.oth;
613 if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
614 goto drop;
615 vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
616 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
617 goto drop;
618 packet->rcv_flags |= HFI1_HAS_GRH;
619 } else
620 goto drop;
621
622 trace_input_ibhdr(rcd->dd, hdr);
623
624 opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
625 inc_opstats(tlen, &rcd->opstats->stats[opcode]);
626
627 /* Get the destination QP number. */
628 qp_num = be32_to_cpu(packet->ohdr->bth[1]) & HFI1_QPN_MASK;
629 lid = be16_to_cpu(hdr->lrh[1]);
630 if (unlikely((lid >= HFI1_MULTICAST_LID_BASE) &&
631 (lid != HFI1_PERMISSIVE_LID))) {
632 struct hfi1_mcast *mcast;
633 struct hfi1_mcast_qp *p;
634
635 if (lnh != HFI1_LRH_GRH)
636 goto drop;
637 mcast = hfi1_mcast_find(ibp, &hdr->u.l.grh.dgid);
638 if (mcast == NULL)
639 goto drop;
640 list_for_each_entry_rcu(p, &mcast->qp_list, list) {
641 packet->qp = p->qp;
642 spin_lock(&packet->qp->r_lock);
643 if (likely((qp_ok(opcode, packet))))
644 opcode_handler_tbl[opcode](packet);
645 spin_unlock(&packet->qp->r_lock);
646 }
647 /*
648 * Notify hfi1_multicast_detach() if it is waiting for us
649 * to finish.
650 */
651 if (atomic_dec_return(&mcast->refcount) <= 1)
652 wake_up(&mcast->wait);
653 } else {
654 rcu_read_lock();
655 packet->qp = hfi1_lookup_qpn(ibp, qp_num);
656 if (!packet->qp) {
657 rcu_read_unlock();
658 goto drop;
659 }
660 spin_lock(&packet->qp->r_lock);
661 if (likely((qp_ok(opcode, packet))))
662 opcode_handler_tbl[opcode](packet);
663 spin_unlock(&packet->qp->r_lock);
664 rcu_read_unlock();
665 }
666 return;
667
668 drop:
669 ibp->n_pkt_drops++;
670 }
671
672 /*
673 * This is called from a timer to check for QPs
674 * which need kernel memory in order to send a packet.
675 */
676 static void mem_timer(unsigned long data)
677 {
678 struct hfi1_ibdev *dev = (struct hfi1_ibdev *)data;
679 struct list_head *list = &dev->memwait;
680 struct hfi1_qp *qp = NULL;
681 struct iowait *wait;
682 unsigned long flags;
683
684 write_seqlock_irqsave(&dev->iowait_lock, flags);
685 if (!list_empty(list)) {
686 wait = list_first_entry(list, struct iowait, list);
687 qp = container_of(wait, struct hfi1_qp, s_iowait);
688 list_del_init(&qp->s_iowait.list);
689 /* refcount held until actual wake up */
690 if (!list_empty(list))
691 mod_timer(&dev->mem_timer, jiffies + 1);
692 }
693 write_sequnlock_irqrestore(&dev->iowait_lock, flags);
694
695 if (qp)
696 hfi1_qp_wakeup(qp, HFI1_S_WAIT_KMEM);
697 }
698
699 void update_sge(struct hfi1_sge_state *ss, u32 length)
700 {
701 struct hfi1_sge *sge = &ss->sge;
702
703 sge->vaddr += length;
704 sge->length -= length;
705 sge->sge_length -= length;
706 if (sge->sge_length == 0) {
707 if (--ss->num_sge)
708 *sge = *ss->sg_list++;
709 } else if (sge->length == 0 && sge->mr->lkey) {
710 if (++sge->n >= HFI1_SEGSZ) {
711 if (++sge->m >= sge->mr->mapsz)
712 return;
713 sge->n = 0;
714 }
715 sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
716 sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
717 }
718 }
719
720 static noinline struct verbs_txreq *__get_txreq(struct hfi1_ibdev *dev,
721 struct hfi1_qp *qp)
722 {
723 struct verbs_txreq *tx;
724 unsigned long flags;
725
726 tx = kmem_cache_alloc(dev->verbs_txreq_cache, GFP_ATOMIC);
727 if (!tx) {
728 spin_lock_irqsave(&qp->s_lock, flags);
729 write_seqlock(&dev->iowait_lock);
730 if (ib_hfi1_state_ops[qp->state] & HFI1_PROCESS_RECV_OK &&
731 list_empty(&qp->s_iowait.list)) {
732 dev->n_txwait++;
733 qp->s_flags |= HFI1_S_WAIT_TX;
734 list_add_tail(&qp->s_iowait.list, &dev->txwait);
735 trace_hfi1_qpsleep(qp, HFI1_S_WAIT_TX);
736 atomic_inc(&qp->refcount);
737 }
738 qp->s_flags &= ~HFI1_S_BUSY;
739 write_sequnlock(&dev->iowait_lock);
740 spin_unlock_irqrestore(&qp->s_lock, flags);
741 tx = ERR_PTR(-EBUSY);
742 }
743 return tx;
744 }
745
746 static inline struct verbs_txreq *get_txreq(struct hfi1_ibdev *dev,
747 struct hfi1_qp *qp)
748 {
749 struct verbs_txreq *tx;
750
751 tx = kmem_cache_alloc(dev->verbs_txreq_cache, GFP_ATOMIC);
752 if (!tx) {
753 /* call slow path to get the lock */
754 tx = __get_txreq(dev, qp);
755 if (IS_ERR(tx))
756 return tx;
757 }
758 tx->qp = qp;
759 return tx;
760 }
761
762 void hfi1_put_txreq(struct verbs_txreq *tx)
763 {
764 struct hfi1_ibdev *dev;
765 struct hfi1_qp *qp;
766 unsigned long flags;
767 unsigned int seq;
768
769 qp = tx->qp;
770 dev = to_idev(qp->ibqp.device);
771
772 if (tx->mr) {
773 hfi1_put_mr(tx->mr);
774 tx->mr = NULL;
775 }
776 sdma_txclean(dd_from_dev(dev), &tx->txreq);
777
778 /* Free verbs_txreq and return to slab cache */
779 kmem_cache_free(dev->verbs_txreq_cache, tx);
780
781 do {
782 seq = read_seqbegin(&dev->iowait_lock);
783 if (!list_empty(&dev->txwait)) {
784 struct iowait *wait;
785
786 write_seqlock_irqsave(&dev->iowait_lock, flags);
787 /* Wake up first QP wanting a free struct */
788 wait = list_first_entry(&dev->txwait, struct iowait,
789 list);
790 qp = container_of(wait, struct hfi1_qp, s_iowait);
791 list_del_init(&qp->s_iowait.list);
792 /* refcount held until actual wake up */
793 write_sequnlock_irqrestore(&dev->iowait_lock, flags);
794 hfi1_qp_wakeup(qp, HFI1_S_WAIT_TX);
795 break;
796 }
797 } while (read_seqretry(&dev->iowait_lock, seq));
798 }
799
800 /*
801 * This is called with progress side lock held.
802 */
803 /* New API */
804 static void verbs_sdma_complete(
805 struct sdma_txreq *cookie,
806 int status,
807 int drained)
808 {
809 struct verbs_txreq *tx =
810 container_of(cookie, struct verbs_txreq, txreq);
811 struct hfi1_qp *qp = tx->qp;
812
813 spin_lock(&qp->s_lock);
814 if (tx->wqe)
815 hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
816 else if (qp->ibqp.qp_type == IB_QPT_RC) {
817 struct hfi1_ib_header *hdr;
818
819 hdr = &tx->phdr.hdr;
820 hfi1_rc_send_complete(qp, hdr);
821 }
822 if (drained) {
823 /*
824 * This happens when the send engine notes
825 * a QP in the error state and cannot
826 * do the flush work until that QP's
827 * sdma work has finished.
828 */
829 if (qp->s_flags & HFI1_S_WAIT_DMA) {
830 qp->s_flags &= ~HFI1_S_WAIT_DMA;
831 hfi1_schedule_send(qp);
832 }
833 }
834 spin_unlock(&qp->s_lock);
835
836 hfi1_put_txreq(tx);
837 }
838
839 static int wait_kmem(struct hfi1_ibdev *dev, struct hfi1_qp *qp)
840 {
841 unsigned long flags;
842 int ret = 0;
843
844 spin_lock_irqsave(&qp->s_lock, flags);
845 if (ib_hfi1_state_ops[qp->state] & HFI1_PROCESS_RECV_OK) {
846 write_seqlock(&dev->iowait_lock);
847 if (list_empty(&qp->s_iowait.list)) {
848 if (list_empty(&dev->memwait))
849 mod_timer(&dev->mem_timer, jiffies + 1);
850 qp->s_flags |= HFI1_S_WAIT_KMEM;
851 list_add_tail(&qp->s_iowait.list, &dev->memwait);
852 trace_hfi1_qpsleep(qp, HFI1_S_WAIT_KMEM);
853 atomic_inc(&qp->refcount);
854 }
855 write_sequnlock(&dev->iowait_lock);
856 qp->s_flags &= ~HFI1_S_BUSY;
857 ret = -EBUSY;
858 }
859 spin_unlock_irqrestore(&qp->s_lock, flags);
860
861 return ret;
862 }
863
864 /*
865 * This routine calls txadds for each sg entry.
866 *
867 * Add failures will revert the sge cursor
868 */
869 static int build_verbs_ulp_payload(
870 struct sdma_engine *sde,
871 struct hfi1_sge_state *ss,
872 u32 length,
873 struct verbs_txreq *tx)
874 {
875 struct hfi1_sge *sg_list = ss->sg_list;
876 struct hfi1_sge sge = ss->sge;
877 u8 num_sge = ss->num_sge;
878 u32 len;
879 int ret = 0;
880
881 while (length) {
882 len = ss->sge.length;
883 if (len > length)
884 len = length;
885 if (len > ss->sge.sge_length)
886 len = ss->sge.sge_length;
887 WARN_ON_ONCE(len == 0);
888 ret = sdma_txadd_kvaddr(
889 sde->dd,
890 &tx->txreq,
891 ss->sge.vaddr,
892 len);
893 if (ret)
894 goto bail_txadd;
895 update_sge(ss, len);
896 length -= len;
897 }
898 return ret;
899 bail_txadd:
900 /* unwind cursor */
901 ss->sge = sge;
902 ss->num_sge = num_sge;
903 ss->sg_list = sg_list;
904 return ret;
905 }
906
907 /*
908 * Build the number of DMA descriptors needed to send length bytes of data.
909 *
910 * NOTE: DMA mapping is held in the tx until completed in the ring or
911 * the tx desc is freed without having been submitted to the ring
912 *
913 * This routine insures the following all the helper routine
914 * calls succeed.
915 */
916 /* New API */
917 static int build_verbs_tx_desc(
918 struct sdma_engine *sde,
919 struct hfi1_sge_state *ss,
920 u32 length,
921 struct verbs_txreq *tx,
922 struct ahg_ib_header *ahdr,
923 u64 pbc)
924 {
925 int ret = 0;
926 struct hfi1_pio_header *phdr;
927 u16 hdrbytes = tx->hdr_dwords << 2;
928
929 phdr = &tx->phdr;
930 if (!ahdr->ahgcount) {
931 ret = sdma_txinit_ahg(
932 &tx->txreq,
933 ahdr->tx_flags,
934 hdrbytes + length,
935 ahdr->ahgidx,
936 0,
937 NULL,
938 0,
939 verbs_sdma_complete);
940 if (ret)
941 goto bail_txadd;
942 phdr->pbc = cpu_to_le64(pbc);
943 memcpy(&phdr->hdr, &ahdr->ibh, hdrbytes - sizeof(phdr->pbc));
944 /* add the header */
945 ret = sdma_txadd_kvaddr(
946 sde->dd,
947 &tx->txreq,
948 &tx->phdr,
949 tx->hdr_dwords << 2);
950 if (ret)
951 goto bail_txadd;
952 } else {
953 struct hfi1_other_headers *sohdr = &ahdr->ibh.u.oth;
954 struct hfi1_other_headers *dohdr = &phdr->hdr.u.oth;
955
956 /* needed in rc_send_complete() */
957 phdr->hdr.lrh[0] = ahdr->ibh.lrh[0];
958 if ((be16_to_cpu(phdr->hdr.lrh[0]) & 3) == HFI1_LRH_GRH) {
959 sohdr = &ahdr->ibh.u.l.oth;
960 dohdr = &phdr->hdr.u.l.oth;
961 }
962 /* opcode */
963 dohdr->bth[0] = sohdr->bth[0];
964 /* PSN/ACK */
965 dohdr->bth[2] = sohdr->bth[2];
966 ret = sdma_txinit_ahg(
967 &tx->txreq,
968 ahdr->tx_flags,
969 length,
970 ahdr->ahgidx,
971 ahdr->ahgcount,
972 ahdr->ahgdesc,
973 hdrbytes,
974 verbs_sdma_complete);
975 if (ret)
976 goto bail_txadd;
977 }
978
979 /* add the ulp payload - if any. ss can be NULL for acks */
980 if (ss)
981 ret = build_verbs_ulp_payload(sde, ss, length, tx);
982 bail_txadd:
983 return ret;
984 }
985
986 int hfi1_verbs_send_dma(struct hfi1_qp *qp, struct ahg_ib_header *ahdr,
987 u32 hdrwords, struct hfi1_sge_state *ss, u32 len,
988 u32 plen, u32 dwords, u64 pbc)
989 {
990 struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
991 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
992 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
993 struct verbs_txreq *tx;
994 struct sdma_txreq *stx;
995 u64 pbc_flags = 0;
996 struct sdma_engine *sde;
997 u8 sc5 = qp->s_sc;
998 int ret;
999
1000 if (!list_empty(&qp->s_iowait.tx_head)) {
1001 stx = list_first_entry(
1002 &qp->s_iowait.tx_head,
1003 struct sdma_txreq,
1004 list);
1005 list_del_init(&stx->list);
1006 tx = container_of(stx, struct verbs_txreq, txreq);
1007 ret = sdma_send_txreq(tx->sde, &qp->s_iowait, stx);
1008 if (unlikely(ret == -ECOMM))
1009 goto bail_ecomm;
1010 return ret;
1011 }
1012
1013 tx = get_txreq(dev, qp);
1014 if (IS_ERR(tx))
1015 goto bail_tx;
1016
1017 if (!qp->s_hdr->sde) {
1018 tx->sde = sde = qp_to_sdma_engine(qp, sc5);
1019 if (!sde)
1020 goto bail_no_sde;
1021 } else
1022 tx->sde = sde = qp->s_hdr->sde;
1023
1024 if (likely(pbc == 0)) {
1025 u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1026 /* No vl15 here */
1027 /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
1028 pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
1029
1030 pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen);
1031 }
1032 tx->wqe = qp->s_wqe;
1033 tx->mr = qp->s_rdma_mr;
1034 if (qp->s_rdma_mr)
1035 qp->s_rdma_mr = NULL;
1036 tx->hdr_dwords = hdrwords + 2;
1037 ret = build_verbs_tx_desc(sde, ss, len, tx, ahdr, pbc);
1038 if (unlikely(ret))
1039 goto bail_build;
1040 trace_output_ibhdr(dd_from_ibdev(qp->ibqp.device), &ahdr->ibh);
1041 ret = sdma_send_txreq(sde, &qp->s_iowait, &tx->txreq);
1042 if (unlikely(ret == -ECOMM))
1043 goto bail_ecomm;
1044 return ret;
1045
1046 bail_no_sde:
1047 hfi1_put_txreq(tx);
1048 bail_ecomm:
1049 /* The current one got "sent" */
1050 return 0;
1051 bail_build:
1052 /* kmalloc or mapping fail */
1053 hfi1_put_txreq(tx);
1054 return wait_kmem(dev, qp);
1055 bail_tx:
1056 return PTR_ERR(tx);
1057 }
1058
1059 /*
1060 * If we are now in the error state, return zero to flush the
1061 * send work request.
1062 */
1063 static int no_bufs_available(struct hfi1_qp *qp, struct send_context *sc)
1064 {
1065 struct hfi1_devdata *dd = sc->dd;
1066 struct hfi1_ibdev *dev = &dd->verbs_dev;
1067 unsigned long flags;
1068 int ret = 0;
1069
1070 /*
1071 * Note that as soon as want_buffer() is called and
1072 * possibly before it returns, sc_piobufavail()
1073 * could be called. Therefore, put QP on the I/O wait list before
1074 * enabling the PIO avail interrupt.
1075 */
1076 spin_lock_irqsave(&qp->s_lock, flags);
1077 if (ib_hfi1_state_ops[qp->state] & HFI1_PROCESS_RECV_OK) {
1078 write_seqlock(&dev->iowait_lock);
1079 if (list_empty(&qp->s_iowait.list)) {
1080 struct hfi1_ibdev *dev = &dd->verbs_dev;
1081 int was_empty;
1082
1083 dev->n_piowait++;
1084 qp->s_flags |= HFI1_S_WAIT_PIO;
1085 was_empty = list_empty(&sc->piowait);
1086 list_add_tail(&qp->s_iowait.list, &sc->piowait);
1087 trace_hfi1_qpsleep(qp, HFI1_S_WAIT_PIO);
1088 atomic_inc(&qp->refcount);
1089 /* counting: only call wantpiobuf_intr if first user */
1090 if (was_empty)
1091 hfi1_sc_wantpiobuf_intr(sc, 1);
1092 }
1093 write_sequnlock(&dev->iowait_lock);
1094 qp->s_flags &= ~HFI1_S_BUSY;
1095 ret = -EBUSY;
1096 }
1097 spin_unlock_irqrestore(&qp->s_lock, flags);
1098 return ret;
1099 }
1100
1101 struct send_context *qp_to_send_context(struct hfi1_qp *qp, u8 sc5)
1102 {
1103 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1104 struct hfi1_pportdata *ppd = dd->pport + (qp->port_num - 1);
1105 u8 vl;
1106
1107 vl = sc_to_vlt(dd, sc5);
1108 if (vl >= ppd->vls_supported && vl != 15)
1109 return NULL;
1110 return dd->vld[vl].sc;
1111 }
1112
1113 int hfi1_verbs_send_pio(struct hfi1_qp *qp, struct ahg_ib_header *ahdr,
1114 u32 hdrwords, struct hfi1_sge_state *ss, u32 len,
1115 u32 plen, u32 dwords, u64 pbc)
1116 {
1117 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
1118 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1119 u32 *hdr = (u32 *)&ahdr->ibh;
1120 u64 pbc_flags = 0;
1121 u32 sc5;
1122 unsigned long flags = 0;
1123 struct send_context *sc;
1124 struct pio_buf *pbuf;
1125 int wc_status = IB_WC_SUCCESS;
1126
1127 /* vl15 special case taken care of in ud.c */
1128 sc5 = qp->s_sc;
1129 sc = qp_to_send_context(qp, sc5);
1130
1131 if (!sc)
1132 return -EINVAL;
1133 if (likely(pbc == 0)) {
1134 u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1135 /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
1136 pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
1137 pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen);
1138 }
1139 pbuf = sc_buffer_alloc(sc, plen, NULL, NULL);
1140 if (unlikely(pbuf == NULL)) {
1141 if (ppd->host_link_state != HLS_UP_ACTIVE) {
1142 /*
1143 * If we have filled the PIO buffers to capacity and are
1144 * not in an active state this request is not going to
1145 * go out to so just complete it with an error or else a
1146 * ULP or the core may be stuck waiting.
1147 */
1148 hfi1_cdbg(
1149 PIO,
1150 "alloc failed. state not active, completing");
1151 wc_status = IB_WC_GENERAL_ERR;
1152 goto pio_bail;
1153 } else {
1154 /*
1155 * This is a normal occurrence. The PIO buffs are full
1156 * up but we are still happily sending, well we could be
1157 * so lets continue to queue the request.
1158 */
1159 hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1160 return no_bufs_available(qp, sc);
1161 }
1162 }
1163
1164 if (len == 0) {
1165 pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1166 } else {
1167 if (ss) {
1168 seg_pio_copy_start(pbuf, pbc, hdr, hdrwords*4);
1169 while (len) {
1170 void *addr = ss->sge.vaddr;
1171 u32 slen = ss->sge.length;
1172
1173 if (slen > len)
1174 slen = len;
1175 update_sge(ss, slen);
1176 seg_pio_copy_mid(pbuf, addr, slen);
1177 len -= slen;
1178 }
1179 seg_pio_copy_end(pbuf);
1180 }
1181 }
1182
1183 trace_output_ibhdr(dd_from_ibdev(qp->ibqp.device), &ahdr->ibh);
1184
1185 if (qp->s_rdma_mr) {
1186 hfi1_put_mr(qp->s_rdma_mr);
1187 qp->s_rdma_mr = NULL;
1188 }
1189
1190 pio_bail:
1191 if (qp->s_wqe) {
1192 spin_lock_irqsave(&qp->s_lock, flags);
1193 hfi1_send_complete(qp, qp->s_wqe, wc_status);
1194 spin_unlock_irqrestore(&qp->s_lock, flags);
1195 } else if (qp->ibqp.qp_type == IB_QPT_RC) {
1196 spin_lock_irqsave(&qp->s_lock, flags);
1197 hfi1_rc_send_complete(qp, &ahdr->ibh);
1198 spin_unlock_irqrestore(&qp->s_lock, flags);
1199 }
1200 return 0;
1201 }
1202 /*
1203 * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1204 * being an entry from the ingress partition key table), return 0
1205 * otherwise. Use the matching criteria for egress partition keys
1206 * specified in the OPAv1 spec., section 9.1l.7.
1207 */
1208 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1209 {
1210 u16 mkey = pkey & PKEY_LOW_15_MASK;
1211 u16 ment = ent & PKEY_LOW_15_MASK;
1212
1213 if (mkey == ment) {
1214 /*
1215 * If pkey[15] is set (full partition member),
1216 * is bit 15 in the corresponding table element
1217 * clear (limited member)?
1218 */
1219 if (pkey & PKEY_MEMBER_MASK)
1220 return !!(ent & PKEY_MEMBER_MASK);
1221 return 1;
1222 }
1223 return 0;
1224 }
1225
1226 /*
1227 * egress_pkey_check - return 0 if hdr's pkey matches according to the
1228 * criteria in the OPAv1 spec., section 9.11.7.
1229 */
1230 static inline int egress_pkey_check(struct hfi1_pportdata *ppd,
1231 struct hfi1_ib_header *hdr,
1232 struct hfi1_qp *qp)
1233 {
1234 struct hfi1_other_headers *ohdr;
1235 struct hfi1_devdata *dd;
1236 int i = 0;
1237 u16 pkey;
1238 u8 lnh, sc5 = qp->s_sc;
1239
1240 if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1241 return 0;
1242
1243 /* locate the pkey within the headers */
1244 lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1245 if (lnh == HFI1_LRH_GRH)
1246 ohdr = &hdr->u.l.oth;
1247 else
1248 ohdr = &hdr->u.oth;
1249
1250 pkey = (u16)be32_to_cpu(ohdr->bth[0]);
1251
1252 /* If SC15, pkey[0:14] must be 0x7fff */
1253 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1254 goto bad;
1255
1256
1257 /* Is the pkey = 0x0, or 0x8000? */
1258 if ((pkey & PKEY_LOW_15_MASK) == 0)
1259 goto bad;
1260
1261 /* The most likely matching pkey has index qp->s_pkey_index */
1262 if (unlikely(!egress_pkey_matches_entry(pkey,
1263 ppd->pkeys[qp->s_pkey_index]))) {
1264 /* no match - try the entire table */
1265 for (; i < MAX_PKEY_VALUES; i++) {
1266 if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1267 break;
1268 }
1269 }
1270
1271 if (i < MAX_PKEY_VALUES)
1272 return 0;
1273 bad:
1274 incr_cntr64(&ppd->port_xmit_constraint_errors);
1275 dd = ppd->dd;
1276 if (!(dd->err_info_xmit_constraint.status & OPA_EI_STATUS_SMASK)) {
1277 u16 slid = be16_to_cpu(hdr->lrh[3]);
1278
1279 dd->err_info_xmit_constraint.status |= OPA_EI_STATUS_SMASK;
1280 dd->err_info_xmit_constraint.slid = slid;
1281 dd->err_info_xmit_constraint.pkey = pkey;
1282 }
1283 return 1;
1284 }
1285
1286 /**
1287 * hfi1_verbs_send - send a packet
1288 * @qp: the QP to send on
1289 * @ahdr: the packet header
1290 * @hdrwords: the number of 32-bit words in the header
1291 * @ss: the SGE to send
1292 * @len: the length of the packet in bytes
1293 *
1294 * Return zero if packet is sent or queued OK.
1295 * Return non-zero and clear qp->s_flags HFI1_S_BUSY otherwise.
1296 */
1297 int hfi1_verbs_send(struct hfi1_qp *qp, struct ahg_ib_header *ahdr,
1298 u32 hdrwords, struct hfi1_sge_state *ss, u32 len)
1299 {
1300 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1301 u32 plen;
1302 int ret;
1303 int pio = 0;
1304 unsigned long flags = 0;
1305 u32 dwords = (len + 3) >> 2;
1306
1307 /*
1308 * VL15 packets (IB_QPT_SMI) will always use PIO, so we
1309 * can defer SDMA restart until link goes ACTIVE without
1310 * worrying about just how we got there.
1311 */
1312 if ((qp->ibqp.qp_type == IB_QPT_SMI) ||
1313 !(dd->flags & HFI1_HAS_SEND_DMA))
1314 pio = 1;
1315
1316 ret = egress_pkey_check(dd->pport, &ahdr->ibh, qp);
1317 if (unlikely(ret)) {
1318 /*
1319 * The value we are returning here does not get propagated to
1320 * the verbs caller. Thus we need to complete the request with
1321 * error otherwise the caller could be sitting waiting on the
1322 * completion event. Only do this for PIO. SDMA has its own
1323 * mechanism for handling the errors. So for SDMA we can just
1324 * return.
1325 */
1326 if (pio) {
1327 hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1328 __func__);
1329 spin_lock_irqsave(&qp->s_lock, flags);
1330 hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1331 spin_unlock_irqrestore(&qp->s_lock, flags);
1332 }
1333 return -EINVAL;
1334 }
1335
1336 /*
1337 * Calculate the send buffer trigger address.
1338 * The +2 counts for the pbc control qword
1339 */
1340 plen = hdrwords + dwords + 2;
1341
1342 if (pio) {
1343 ret = dd->process_pio_send(
1344 qp, ahdr, hdrwords, ss, len, plen, dwords, 0);
1345 } else {
1346 #ifdef CONFIG_SDMA_VERBOSITY
1347 dd_dev_err(dd, "CONFIG SDMA %s:%d %s()\n",
1348 slashstrip(__FILE__), __LINE__, __func__);
1349 dd_dev_err(dd, "SDMA hdrwords = %u, len = %u\n", hdrwords, len);
1350 #endif
1351 ret = dd->process_dma_send(
1352 qp, ahdr, hdrwords, ss, len, plen, dwords, 0);
1353 }
1354
1355 return ret;
1356 }
1357
1358 static int query_device(struct ib_device *ibdev,
1359 struct ib_device_attr *props,
1360 struct ib_udata *uhw)
1361 {
1362 struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1363 struct hfi1_ibdev *dev = to_idev(ibdev);
1364
1365 if (uhw->inlen || uhw->outlen)
1366 return -EINVAL;
1367 memset(props, 0, sizeof(*props));
1368
1369 props->device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1370 IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1371 IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1372 IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE;
1373
1374 props->page_size_cap = PAGE_SIZE;
1375 props->vendor_id =
1376 dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1377 props->vendor_part_id = dd->pcidev->device;
1378 props->hw_ver = dd->minrev;
1379 props->sys_image_guid = ib_hfi1_sys_image_guid;
1380 props->max_mr_size = ~0ULL;
1381 props->max_qp = hfi1_max_qps;
1382 props->max_qp_wr = hfi1_max_qp_wrs;
1383 props->max_sge = hfi1_max_sges;
1384 props->max_sge_rd = hfi1_max_sges;
1385 props->max_cq = hfi1_max_cqs;
1386 props->max_ah = hfi1_max_ahs;
1387 props->max_cqe = hfi1_max_cqes;
1388 props->max_mr = dev->lk_table.max;
1389 props->max_fmr = dev->lk_table.max;
1390 props->max_map_per_fmr = 32767;
1391 props->max_pd = hfi1_max_pds;
1392 props->max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1393 props->max_qp_init_rd_atom = 255;
1394 /* props->max_res_rd_atom */
1395 props->max_srq = hfi1_max_srqs;
1396 props->max_srq_wr = hfi1_max_srq_wrs;
1397 props->max_srq_sge = hfi1_max_srq_sges;
1398 /* props->local_ca_ack_delay */
1399 props->atomic_cap = IB_ATOMIC_GLOB;
1400 props->max_pkeys = hfi1_get_npkeys(dd);
1401 props->max_mcast_grp = hfi1_max_mcast_grps;
1402 props->max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1403 props->max_total_mcast_qp_attach = props->max_mcast_qp_attach *
1404 props->max_mcast_grp;
1405
1406 return 0;
1407 }
1408
1409 static inline u16 opa_speed_to_ib(u16 in)
1410 {
1411 u16 out = 0;
1412
1413 if (in & OPA_LINK_SPEED_25G)
1414 out |= IB_SPEED_EDR;
1415 if (in & OPA_LINK_SPEED_12_5G)
1416 out |= IB_SPEED_FDR;
1417
1418 return out;
1419 }
1420
1421 /*
1422 * Convert a single OPA link width (no multiple flags) to an IB value.
1423 * A zero OPA link width means link down, which means the IB width value
1424 * is a don't care.
1425 */
1426 static inline u16 opa_width_to_ib(u16 in)
1427 {
1428 switch (in) {
1429 case OPA_LINK_WIDTH_1X:
1430 /* map 2x and 3x to 1x as they don't exist in IB */
1431 case OPA_LINK_WIDTH_2X:
1432 case OPA_LINK_WIDTH_3X:
1433 return IB_WIDTH_1X;
1434 default: /* link down or unknown, return our largest width */
1435 case OPA_LINK_WIDTH_4X:
1436 return IB_WIDTH_4X;
1437 }
1438 }
1439
1440 static int query_port(struct ib_device *ibdev, u8 port,
1441 struct ib_port_attr *props)
1442 {
1443 struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1444 struct hfi1_ibport *ibp = to_iport(ibdev, port);
1445 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1446 u16 lid = ppd->lid;
1447
1448 memset(props, 0, sizeof(*props));
1449 props->lid = lid ? lid : 0;
1450 props->lmc = ppd->lmc;
1451 props->sm_lid = ibp->sm_lid;
1452 props->sm_sl = ibp->sm_sl;
1453 /* OPA logical states match IB logical states */
1454 props->state = driver_lstate(ppd);
1455 props->phys_state = hfi1_ibphys_portstate(ppd);
1456 props->port_cap_flags = ibp->port_cap_flags;
1457 props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1458 props->max_msg_sz = 0x80000000;
1459 props->pkey_tbl_len = hfi1_get_npkeys(dd);
1460 props->bad_pkey_cntr = ibp->pkey_violations;
1461 props->qkey_viol_cntr = ibp->qkey_violations;
1462 props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1463 /* see rate_show() in ib core/sysfs.c */
1464 props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1465 props->max_vl_num = ppd->vls_supported;
1466 props->init_type_reply = 0;
1467
1468 /* Once we are a "first class" citizen and have added the OPA MTUs to
1469 * the core we can advertise the larger MTU enum to the ULPs, for now
1470 * advertise only 4K.
1471 *
1472 * Those applications which are either OPA aware or pass the MTU enum
1473 * from the Path Records to us will get the new 8k MTU. Those that
1474 * attempt to process the MTU enum may fail in various ways.
1475 */
1476 props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1477 4096 : hfi1_max_mtu), IB_MTU_4096);
1478 props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1479 mtu_to_enum(ppd->ibmtu, IB_MTU_2048);
1480 props->subnet_timeout = ibp->subnet_timeout;
1481
1482 return 0;
1483 }
1484
1485 static int port_immutable(struct ib_device *ibdev, u8 port_num,
1486 struct ib_port_immutable *immutable)
1487 {
1488 struct ib_port_attr attr;
1489 int err;
1490
1491 err = query_port(ibdev, port_num, &attr);
1492 if (err)
1493 return err;
1494
1495 memset(immutable, 0, sizeof(*immutable));
1496
1497 immutable->pkey_tbl_len = attr.pkey_tbl_len;
1498 immutable->gid_tbl_len = attr.gid_tbl_len;
1499 immutable->core_cap_flags = RDMA_CORE_PORT_INTEL_OPA;
1500 immutable->max_mad_size = OPA_MGMT_MAD_SIZE;
1501
1502 return 0;
1503 }
1504
1505 static int modify_device(struct ib_device *device,
1506 int device_modify_mask,
1507 struct ib_device_modify *device_modify)
1508 {
1509 struct hfi1_devdata *dd = dd_from_ibdev(device);
1510 unsigned i;
1511 int ret;
1512
1513 if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1514 IB_DEVICE_MODIFY_NODE_DESC)) {
1515 ret = -EOPNOTSUPP;
1516 goto bail;
1517 }
1518
1519 if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1520 memcpy(device->node_desc, device_modify->node_desc, 64);
1521 for (i = 0; i < dd->num_pports; i++) {
1522 struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1523
1524 hfi1_node_desc_chg(ibp);
1525 }
1526 }
1527
1528 if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1529 ib_hfi1_sys_image_guid =
1530 cpu_to_be64(device_modify->sys_image_guid);
1531 for (i = 0; i < dd->num_pports; i++) {
1532 struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1533
1534 hfi1_sys_guid_chg(ibp);
1535 }
1536 }
1537
1538 ret = 0;
1539
1540 bail:
1541 return ret;
1542 }
1543
1544 static int modify_port(struct ib_device *ibdev, u8 port,
1545 int port_modify_mask, struct ib_port_modify *props)
1546 {
1547 struct hfi1_ibport *ibp = to_iport(ibdev, port);
1548 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1549 int ret = 0;
1550
1551 ibp->port_cap_flags |= props->set_port_cap_mask;
1552 ibp->port_cap_flags &= ~props->clr_port_cap_mask;
1553 if (props->set_port_cap_mask || props->clr_port_cap_mask)
1554 hfi1_cap_mask_chg(ibp);
1555 if (port_modify_mask & IB_PORT_SHUTDOWN) {
1556 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1557 OPA_LINKDOWN_REASON_UNKNOWN);
1558 ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1559 }
1560 if (port_modify_mask & IB_PORT_RESET_QKEY_CNTR)
1561 ibp->qkey_violations = 0;
1562 return ret;
1563 }
1564
1565 static int query_gid(struct ib_device *ibdev, u8 port,
1566 int index, union ib_gid *gid)
1567 {
1568 struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1569 int ret = 0;
1570
1571 if (!port || port > dd->num_pports)
1572 ret = -EINVAL;
1573 else {
1574 struct hfi1_ibport *ibp = to_iport(ibdev, port);
1575 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1576
1577 gid->global.subnet_prefix = ibp->gid_prefix;
1578 if (index == 0)
1579 gid->global.interface_id = cpu_to_be64(ppd->guid);
1580 else if (index < HFI1_GUIDS_PER_PORT)
1581 gid->global.interface_id = ibp->guids[index - 1];
1582 else
1583 ret = -EINVAL;
1584 }
1585
1586 return ret;
1587 }
1588
1589 static struct ib_pd *alloc_pd(struct ib_device *ibdev,
1590 struct ib_ucontext *context,
1591 struct ib_udata *udata)
1592 {
1593 struct hfi1_ibdev *dev = to_idev(ibdev);
1594 struct hfi1_pd *pd;
1595 struct ib_pd *ret;
1596
1597 /*
1598 * This is actually totally arbitrary. Some correctness tests
1599 * assume there's a maximum number of PDs that can be allocated.
1600 * We don't actually have this limit, but we fail the test if
1601 * we allow allocations of more than we report for this value.
1602 */
1603
1604 pd = kmalloc(sizeof(*pd), GFP_KERNEL);
1605 if (!pd) {
1606 ret = ERR_PTR(-ENOMEM);
1607 goto bail;
1608 }
1609
1610 spin_lock(&dev->n_pds_lock);
1611 if (dev->n_pds_allocated == hfi1_max_pds) {
1612 spin_unlock(&dev->n_pds_lock);
1613 kfree(pd);
1614 ret = ERR_PTR(-ENOMEM);
1615 goto bail;
1616 }
1617
1618 dev->n_pds_allocated++;
1619 spin_unlock(&dev->n_pds_lock);
1620
1621 /* ib_alloc_pd() will initialize pd->ibpd. */
1622 pd->user = udata != NULL;
1623
1624 ret = &pd->ibpd;
1625
1626 bail:
1627 return ret;
1628 }
1629
1630 static int dealloc_pd(struct ib_pd *ibpd)
1631 {
1632 struct hfi1_pd *pd = to_ipd(ibpd);
1633 struct hfi1_ibdev *dev = to_idev(ibpd->device);
1634
1635 spin_lock(&dev->n_pds_lock);
1636 dev->n_pds_allocated--;
1637 spin_unlock(&dev->n_pds_lock);
1638
1639 kfree(pd);
1640
1641 return 0;
1642 }
1643
1644 /*
1645 * convert ah port,sl to sc
1646 */
1647 u8 ah_to_sc(struct ib_device *ibdev, struct ib_ah_attr *ah)
1648 {
1649 struct hfi1_ibport *ibp = to_iport(ibdev, ah->port_num);
1650
1651 return ibp->sl_to_sc[ah->sl];
1652 }
1653
1654 int hfi1_check_ah(struct ib_device *ibdev, struct ib_ah_attr *ah_attr)
1655 {
1656 struct hfi1_ibport *ibp;
1657 struct hfi1_pportdata *ppd;
1658 struct hfi1_devdata *dd;
1659 u8 sc5;
1660
1661 /* A multicast address requires a GRH (see ch. 8.4.1). */
1662 if (ah_attr->dlid >= HFI1_MULTICAST_LID_BASE &&
1663 ah_attr->dlid != HFI1_PERMISSIVE_LID &&
1664 !(ah_attr->ah_flags & IB_AH_GRH))
1665 goto bail;
1666 if ((ah_attr->ah_flags & IB_AH_GRH) &&
1667 ah_attr->grh.sgid_index >= HFI1_GUIDS_PER_PORT)
1668 goto bail;
1669 if (ah_attr->dlid == 0)
1670 goto bail;
1671 if (ah_attr->port_num < 1 ||
1672 ah_attr->port_num > ibdev->phys_port_cnt)
1673 goto bail;
1674 if (ah_attr->static_rate != IB_RATE_PORT_CURRENT &&
1675 ib_rate_to_mbps(ah_attr->static_rate) < 0)
1676 goto bail;
1677 if (ah_attr->sl >= OPA_MAX_SLS)
1678 goto bail;
1679 /* test the mapping for validity */
1680 ibp = to_iport(ibdev, ah_attr->port_num);
1681 ppd = ppd_from_ibp(ibp);
1682 sc5 = ibp->sl_to_sc[ah_attr->sl];
1683 dd = dd_from_ppd(ppd);
1684 if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1685 goto bail;
1686 return 0;
1687 bail:
1688 return -EINVAL;
1689 }
1690
1691 /**
1692 * create_ah - create an address handle
1693 * @pd: the protection domain
1694 * @ah_attr: the attributes of the AH
1695 *
1696 * This may be called from interrupt context.
1697 */
1698 static struct ib_ah *create_ah(struct ib_pd *pd,
1699 struct ib_ah_attr *ah_attr)
1700 {
1701 struct hfi1_ah *ah;
1702 struct ib_ah *ret;
1703 struct hfi1_ibdev *dev = to_idev(pd->device);
1704 unsigned long flags;
1705
1706 if (hfi1_check_ah(pd->device, ah_attr)) {
1707 ret = ERR_PTR(-EINVAL);
1708 goto bail;
1709 }
1710
1711 ah = kmalloc(sizeof(*ah), GFP_ATOMIC);
1712 if (!ah) {
1713 ret = ERR_PTR(-ENOMEM);
1714 goto bail;
1715 }
1716
1717 spin_lock_irqsave(&dev->n_ahs_lock, flags);
1718 if (dev->n_ahs_allocated == hfi1_max_ahs) {
1719 spin_unlock_irqrestore(&dev->n_ahs_lock, flags);
1720 kfree(ah);
1721 ret = ERR_PTR(-ENOMEM);
1722 goto bail;
1723 }
1724
1725 dev->n_ahs_allocated++;
1726 spin_unlock_irqrestore(&dev->n_ahs_lock, flags);
1727
1728 /* ib_create_ah() will initialize ah->ibah. */
1729 ah->attr = *ah_attr;
1730 atomic_set(&ah->refcount, 0);
1731
1732 ret = &ah->ibah;
1733
1734 bail:
1735 return ret;
1736 }
1737
1738 struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u16 dlid)
1739 {
1740 struct ib_ah_attr attr;
1741 struct ib_ah *ah = ERR_PTR(-EINVAL);
1742 struct hfi1_qp *qp0;
1743
1744 memset(&attr, 0, sizeof(attr));
1745 attr.dlid = dlid;
1746 attr.port_num = ppd_from_ibp(ibp)->port;
1747 rcu_read_lock();
1748 qp0 = rcu_dereference(ibp->qp[0]);
1749 if (qp0)
1750 ah = ib_create_ah(qp0->ibqp.pd, &attr);
1751 rcu_read_unlock();
1752 return ah;
1753 }
1754
1755 /**
1756 * destroy_ah - destroy an address handle
1757 * @ibah: the AH to destroy
1758 *
1759 * This may be called from interrupt context.
1760 */
1761 static int destroy_ah(struct ib_ah *ibah)
1762 {
1763 struct hfi1_ibdev *dev = to_idev(ibah->device);
1764 struct hfi1_ah *ah = to_iah(ibah);
1765 unsigned long flags;
1766
1767 if (atomic_read(&ah->refcount) != 0)
1768 return -EBUSY;
1769
1770 spin_lock_irqsave(&dev->n_ahs_lock, flags);
1771 dev->n_ahs_allocated--;
1772 spin_unlock_irqrestore(&dev->n_ahs_lock, flags);
1773
1774 kfree(ah);
1775
1776 return 0;
1777 }
1778
1779 static int modify_ah(struct ib_ah *ibah, struct ib_ah_attr *ah_attr)
1780 {
1781 struct hfi1_ah *ah = to_iah(ibah);
1782
1783 if (hfi1_check_ah(ibah->device, ah_attr))
1784 return -EINVAL;
1785
1786 ah->attr = *ah_attr;
1787
1788 return 0;
1789 }
1790
1791 static int query_ah(struct ib_ah *ibah, struct ib_ah_attr *ah_attr)
1792 {
1793 struct hfi1_ah *ah = to_iah(ibah);
1794
1795 *ah_attr = ah->attr;
1796
1797 return 0;
1798 }
1799
1800 /**
1801 * hfi1_get_npkeys - return the size of the PKEY table for context 0
1802 * @dd: the hfi1_ib device
1803 */
1804 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1805 {
1806 return ARRAY_SIZE(dd->pport[0].pkeys);
1807 }
1808
1809 static int query_pkey(struct ib_device *ibdev, u8 port, u16 index,
1810 u16 *pkey)
1811 {
1812 struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1813 int ret;
1814
1815 if (index >= hfi1_get_npkeys(dd)) {
1816 ret = -EINVAL;
1817 goto bail;
1818 }
1819
1820 *pkey = hfi1_get_pkey(to_iport(ibdev, port), index);
1821 ret = 0;
1822
1823 bail:
1824 return ret;
1825 }
1826
1827 /**
1828 * alloc_ucontext - allocate a ucontest
1829 * @ibdev: the infiniband device
1830 * @udata: not used by the driver
1831 */
1832
1833 static struct ib_ucontext *alloc_ucontext(struct ib_device *ibdev,
1834 struct ib_udata *udata)
1835 {
1836 struct hfi1_ucontext *context;
1837 struct ib_ucontext *ret;
1838
1839 context = kmalloc(sizeof(*context), GFP_KERNEL);
1840 if (!context) {
1841 ret = ERR_PTR(-ENOMEM);
1842 goto bail;
1843 }
1844
1845 ret = &context->ibucontext;
1846
1847 bail:
1848 return ret;
1849 }
1850
1851 static int dealloc_ucontext(struct ib_ucontext *context)
1852 {
1853 kfree(to_iucontext(context));
1854 return 0;
1855 }
1856
1857 static void init_ibport(struct hfi1_pportdata *ppd)
1858 {
1859 struct hfi1_ibport *ibp = &ppd->ibport_data;
1860 size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1861 int i;
1862
1863 for (i = 0; i < sz; i++) {
1864 ibp->sl_to_sc[i] = i;
1865 ibp->sc_to_sl[i] = i;
1866 }
1867
1868 spin_lock_init(&ibp->lock);
1869 /* Set the prefix to the default value (see ch. 4.1.1) */
1870 ibp->gid_prefix = IB_DEFAULT_GID_PREFIX;
1871 ibp->sm_lid = 0;
1872 /* Below should only set bits defined in OPA PortInfo.CapabilityMask */
1873 ibp->port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1874 IB_PORT_CAP_MASK_NOTICE_SUP;
1875 ibp->pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1876 ibp->pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1877 ibp->pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1878 ibp->pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1879 ibp->pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1880
1881 RCU_INIT_POINTER(ibp->qp[0], NULL);
1882 RCU_INIT_POINTER(ibp->qp[1], NULL);
1883 }
1884
1885 static void verbs_txreq_kmem_cache_ctor(void *obj)
1886 {
1887 struct verbs_txreq *tx = (struct verbs_txreq *)obj;
1888
1889 memset(tx, 0, sizeof(*tx));
1890 }
1891
1892 /**
1893 * hfi1_register_ib_device - register our device with the infiniband core
1894 * @dd: the device data structure
1895 * Return 0 if successful, errno if unsuccessful.
1896 */
1897 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1898 {
1899 struct hfi1_ibdev *dev = &dd->verbs_dev;
1900 struct ib_device *ibdev = &dev->ibdev;
1901 struct hfi1_pportdata *ppd = dd->pport;
1902 unsigned i, lk_tab_size;
1903 int ret;
1904 size_t lcpysz = IB_DEVICE_NAME_MAX;
1905 u16 descq_cnt;
1906
1907 ret = hfi1_qp_init(dev);
1908 if (ret)
1909 goto err_qp_init;
1910
1911
1912 for (i = 0; i < dd->num_pports; i++)
1913 init_ibport(ppd + i);
1914
1915 /* Only need to initialize non-zero fields. */
1916 spin_lock_init(&dev->n_pds_lock);
1917 spin_lock_init(&dev->n_ahs_lock);
1918 spin_lock_init(&dev->n_cqs_lock);
1919 spin_lock_init(&dev->n_qps_lock);
1920 spin_lock_init(&dev->n_srqs_lock);
1921 spin_lock_init(&dev->n_mcast_grps_lock);
1922 init_timer(&dev->mem_timer);
1923 dev->mem_timer.function = mem_timer;
1924 dev->mem_timer.data = (unsigned long) dev;
1925
1926 /*
1927 * The top hfi1_lkey_table_size bits are used to index the
1928 * table. The lower 8 bits can be owned by the user (copied from
1929 * the LKEY). The remaining bits act as a generation number or tag.
1930 */
1931 spin_lock_init(&dev->lk_table.lock);
1932 dev->lk_table.max = 1 << hfi1_lkey_table_size;
1933 /* ensure generation is at least 4 bits (keys.c) */
1934 if (hfi1_lkey_table_size > MAX_LKEY_TABLE_BITS) {
1935 dd_dev_warn(dd, "lkey bits %u too large, reduced to %u\n",
1936 hfi1_lkey_table_size, MAX_LKEY_TABLE_BITS);
1937 hfi1_lkey_table_size = MAX_LKEY_TABLE_BITS;
1938 }
1939 lk_tab_size = dev->lk_table.max * sizeof(*dev->lk_table.table);
1940 dev->lk_table.table = (struct hfi1_mregion __rcu **)
1941 vmalloc(lk_tab_size);
1942 if (dev->lk_table.table == NULL) {
1943 ret = -ENOMEM;
1944 goto err_lk;
1945 }
1946 RCU_INIT_POINTER(dev->dma_mr, NULL);
1947 for (i = 0; i < dev->lk_table.max; i++)
1948 RCU_INIT_POINTER(dev->lk_table.table[i], NULL);
1949 INIT_LIST_HEAD(&dev->pending_mmaps);
1950 spin_lock_init(&dev->pending_lock);
1951 seqlock_init(&dev->iowait_lock);
1952 dev->mmap_offset = PAGE_SIZE;
1953 spin_lock_init(&dev->mmap_offset_lock);
1954 INIT_LIST_HEAD(&dev->txwait);
1955 INIT_LIST_HEAD(&dev->memwait);
1956
1957 descq_cnt = sdma_get_descq_cnt();
1958
1959 /* SLAB_HWCACHE_ALIGN for AHG */
1960 dev->verbs_txreq_cache = kmem_cache_create("hfi1_vtxreq_cache",
1961 sizeof(struct verbs_txreq),
1962 0, SLAB_HWCACHE_ALIGN,
1963 verbs_txreq_kmem_cache_ctor);
1964 if (!dev->verbs_txreq_cache) {
1965 ret = -ENOMEM;
1966 goto err_verbs_txreq;
1967 }
1968
1969 /*
1970 * The system image GUID is supposed to be the same for all
1971 * HFIs in a single system but since there can be other
1972 * device types in the system, we can't be sure this is unique.
1973 */
1974 if (!ib_hfi1_sys_image_guid)
1975 ib_hfi1_sys_image_guid = cpu_to_be64(ppd->guid);
1976 lcpysz = strlcpy(ibdev->name, class_name(), lcpysz);
1977 strlcpy(ibdev->name + lcpysz, "_%d", IB_DEVICE_NAME_MAX - lcpysz);
1978 ibdev->owner = THIS_MODULE;
1979 ibdev->node_guid = cpu_to_be64(ppd->guid);
1980 ibdev->uverbs_abi_ver = HFI1_UVERBS_ABI_VERSION;
1981 ibdev->uverbs_cmd_mask =
1982 (1ull << IB_USER_VERBS_CMD_GET_CONTEXT) |
1983 (1ull << IB_USER_VERBS_CMD_QUERY_DEVICE) |
1984 (1ull << IB_USER_VERBS_CMD_QUERY_PORT) |
1985 (1ull << IB_USER_VERBS_CMD_ALLOC_PD) |
1986 (1ull << IB_USER_VERBS_CMD_DEALLOC_PD) |
1987 (1ull << IB_USER_VERBS_CMD_CREATE_AH) |
1988 (1ull << IB_USER_VERBS_CMD_MODIFY_AH) |
1989 (1ull << IB_USER_VERBS_CMD_QUERY_AH) |
1990 (1ull << IB_USER_VERBS_CMD_DESTROY_AH) |
1991 (1ull << IB_USER_VERBS_CMD_REG_MR) |
1992 (1ull << IB_USER_VERBS_CMD_DEREG_MR) |
1993 (1ull << IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
1994 (1ull << IB_USER_VERBS_CMD_CREATE_CQ) |
1995 (1ull << IB_USER_VERBS_CMD_RESIZE_CQ) |
1996 (1ull << IB_USER_VERBS_CMD_DESTROY_CQ) |
1997 (1ull << IB_USER_VERBS_CMD_POLL_CQ) |
1998 (1ull << IB_USER_VERBS_CMD_REQ_NOTIFY_CQ) |
1999 (1ull << IB_USER_VERBS_CMD_CREATE_QP) |
2000 (1ull << IB_USER_VERBS_CMD_QUERY_QP) |
2001 (1ull << IB_USER_VERBS_CMD_MODIFY_QP) |
2002 (1ull << IB_USER_VERBS_CMD_DESTROY_QP) |
2003 (1ull << IB_USER_VERBS_CMD_POST_SEND) |
2004 (1ull << IB_USER_VERBS_CMD_POST_RECV) |
2005 (1ull << IB_USER_VERBS_CMD_ATTACH_MCAST) |
2006 (1ull << IB_USER_VERBS_CMD_DETACH_MCAST) |
2007 (1ull << IB_USER_VERBS_CMD_CREATE_SRQ) |
2008 (1ull << IB_USER_VERBS_CMD_MODIFY_SRQ) |
2009 (1ull << IB_USER_VERBS_CMD_QUERY_SRQ) |
2010 (1ull << IB_USER_VERBS_CMD_DESTROY_SRQ) |
2011 (1ull << IB_USER_VERBS_CMD_POST_SRQ_RECV);
2012 ibdev->node_type = RDMA_NODE_IB_CA;
2013 ibdev->phys_port_cnt = dd->num_pports;
2014 ibdev->num_comp_vectors = 1;
2015 ibdev->dma_device = &dd->pcidev->dev;
2016 ibdev->query_device = query_device;
2017 ibdev->modify_device = modify_device;
2018 ibdev->query_port = query_port;
2019 ibdev->modify_port = modify_port;
2020 ibdev->query_pkey = query_pkey;
2021 ibdev->query_gid = query_gid;
2022 ibdev->alloc_ucontext = alloc_ucontext;
2023 ibdev->dealloc_ucontext = dealloc_ucontext;
2024 ibdev->alloc_pd = alloc_pd;
2025 ibdev->dealloc_pd = dealloc_pd;
2026 ibdev->create_ah = create_ah;
2027 ibdev->destroy_ah = destroy_ah;
2028 ibdev->modify_ah = modify_ah;
2029 ibdev->query_ah = query_ah;
2030 ibdev->create_srq = hfi1_create_srq;
2031 ibdev->modify_srq = hfi1_modify_srq;
2032 ibdev->query_srq = hfi1_query_srq;
2033 ibdev->destroy_srq = hfi1_destroy_srq;
2034 ibdev->create_qp = hfi1_create_qp;
2035 ibdev->modify_qp = hfi1_modify_qp;
2036 ibdev->query_qp = hfi1_query_qp;
2037 ibdev->destroy_qp = hfi1_destroy_qp;
2038 ibdev->post_send = post_send;
2039 ibdev->post_recv = post_receive;
2040 ibdev->post_srq_recv = hfi1_post_srq_receive;
2041 ibdev->create_cq = hfi1_create_cq;
2042 ibdev->destroy_cq = hfi1_destroy_cq;
2043 ibdev->resize_cq = hfi1_resize_cq;
2044 ibdev->poll_cq = hfi1_poll_cq;
2045 ibdev->req_notify_cq = hfi1_req_notify_cq;
2046 ibdev->get_dma_mr = hfi1_get_dma_mr;
2047 ibdev->reg_phys_mr = hfi1_reg_phys_mr;
2048 ibdev->reg_user_mr = hfi1_reg_user_mr;
2049 ibdev->dereg_mr = hfi1_dereg_mr;
2050 ibdev->alloc_mr = hfi1_alloc_mr;
2051 ibdev->alloc_fast_reg_page_list = hfi1_alloc_fast_reg_page_list;
2052 ibdev->free_fast_reg_page_list = hfi1_free_fast_reg_page_list;
2053 ibdev->alloc_fmr = hfi1_alloc_fmr;
2054 ibdev->map_phys_fmr = hfi1_map_phys_fmr;
2055 ibdev->unmap_fmr = hfi1_unmap_fmr;
2056 ibdev->dealloc_fmr = hfi1_dealloc_fmr;
2057 ibdev->attach_mcast = hfi1_multicast_attach;
2058 ibdev->detach_mcast = hfi1_multicast_detach;
2059 ibdev->process_mad = hfi1_process_mad;
2060 ibdev->mmap = hfi1_mmap;
2061 ibdev->dma_ops = &hfi1_dma_mapping_ops;
2062 ibdev->get_port_immutable = port_immutable;
2063
2064 strncpy(ibdev->node_desc, init_utsname()->nodename,
2065 sizeof(ibdev->node_desc));
2066
2067 ret = ib_register_device(ibdev, hfi1_create_port_files);
2068 if (ret)
2069 goto err_reg;
2070
2071 ret = hfi1_create_agents(dev);
2072 if (ret)
2073 goto err_agents;
2074
2075 ret = hfi1_verbs_register_sysfs(dd);
2076 if (ret)
2077 goto err_class;
2078
2079 goto bail;
2080
2081 err_class:
2082 hfi1_free_agents(dev);
2083 err_agents:
2084 ib_unregister_device(ibdev);
2085 err_reg:
2086 err_verbs_txreq:
2087 kmem_cache_destroy(dev->verbs_txreq_cache);
2088 vfree(dev->lk_table.table);
2089 err_lk:
2090 hfi1_qp_exit(dev);
2091 err_qp_init:
2092 dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
2093 bail:
2094 return ret;
2095 }
2096
2097 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
2098 {
2099 struct hfi1_ibdev *dev = &dd->verbs_dev;
2100 struct ib_device *ibdev = &dev->ibdev;
2101
2102 hfi1_verbs_unregister_sysfs(dd);
2103
2104 hfi1_free_agents(dev);
2105
2106 ib_unregister_device(ibdev);
2107
2108 if (!list_empty(&dev->txwait))
2109 dd_dev_err(dd, "txwait list not empty!\n");
2110 if (!list_empty(&dev->memwait))
2111 dd_dev_err(dd, "memwait list not empty!\n");
2112 if (dev->dma_mr)
2113 dd_dev_err(dd, "DMA MR not NULL!\n");
2114
2115 hfi1_qp_exit(dev);
2116 del_timer_sync(&dev->mem_timer);
2117 kmem_cache_destroy(dev->verbs_txreq_cache);
2118 vfree(dev->lk_table.table);
2119 }
2120
2121 /*
2122 * This must be called with s_lock held.
2123 */
2124 void hfi1_schedule_send(struct hfi1_qp *qp)
2125 {
2126 if (hfi1_send_ok(qp)) {
2127 struct hfi1_ibport *ibp =
2128 to_iport(qp->ibqp.device, qp->port_num);
2129 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
2130
2131 iowait_schedule(&qp->s_iowait, ppd->hfi1_wq);
2132 }
2133 }
2134
2135 void hfi1_cnp_rcv(struct hfi1_packet *packet)
2136 {
2137 struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data;
2138
2139 if (packet->qp->ibqp.qp_type == IB_QPT_UC)
2140 hfi1_uc_rcv(packet);
2141 else if (packet->qp->ibqp.qp_type == IB_QPT_UD)
2142 hfi1_ud_rcv(packet);
2143 else
2144 ibp->n_pkt_drops++;
2145 }