]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/staging/rtl8188eu/hal/usb_halinit.c
Merge branch 'linux-4.7' of git://github.com/skeggsb/linux into drm-fixes
[mirror_ubuntu-eoan-kernel.git] / drivers / staging / rtl8188eu / hal / usb_halinit.c
1 /******************************************************************************
2 *
3 * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 ******************************************************************************/
15 #define _HCI_HAL_INIT_C_
16
17 #include <osdep_service.h>
18 #include <drv_types.h>
19 #include <rtw_efuse.h>
20 #include <fw.h>
21 #include <rtl8188e_hal.h>
22 #include <rtl8188e_led.h>
23 #include <rtw_iol.h>
24 #include <usb_hal.h>
25 #include <phy.h>
26
27 #define HAL_BB_ENABLE 1
28
29 static void _ConfigNormalChipOutEP_8188E(struct adapter *adapt, u8 NumOutPipe)
30 {
31 struct hal_data_8188e *haldata = GET_HAL_DATA(adapt);
32
33 switch (NumOutPipe) {
34 case 3:
35 haldata->OutEpQueueSel = TX_SELE_HQ | TX_SELE_LQ | TX_SELE_NQ;
36 haldata->OutEpNumber = 3;
37 break;
38 case 2:
39 haldata->OutEpQueueSel = TX_SELE_HQ | TX_SELE_NQ;
40 haldata->OutEpNumber = 2;
41 break;
42 case 1:
43 haldata->OutEpQueueSel = TX_SELE_HQ;
44 haldata->OutEpNumber = 1;
45 break;
46 default:
47 break;
48 }
49 DBG_88E("%s OutEpQueueSel(0x%02x), OutEpNumber(%d)\n", __func__, haldata->OutEpQueueSel, haldata->OutEpNumber);
50 }
51
52 static bool HalUsbSetQueuePipeMapping8188EUsb(struct adapter *adapt, u8 NumInPipe, u8 NumOutPipe)
53 {
54 struct hal_data_8188e *haldata = GET_HAL_DATA(adapt);
55 bool result = false;
56
57 _ConfigNormalChipOutEP_8188E(adapt, NumOutPipe);
58
59 /* Normal chip with one IN and one OUT doesn't have interrupt IN EP. */
60 if (haldata->OutEpNumber == 1) {
61 if (NumInPipe != 1)
62 return result;
63 }
64
65 /* All config other than above support one Bulk IN and one Interrupt IN. */
66
67 result = Hal_MappingOutPipe(adapt, NumOutPipe);
68
69 return result;
70 }
71
72 static void rtl8188eu_interface_configure(struct adapter *adapt)
73 {
74 struct hal_data_8188e *haldata = GET_HAL_DATA(adapt);
75 struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(adapt);
76
77 if (pdvobjpriv->ishighspeed)
78 haldata->UsbBulkOutSize = USB_HIGH_SPEED_BULK_SIZE;/* 512 bytes */
79 else
80 haldata->UsbBulkOutSize = USB_FULL_SPEED_BULK_SIZE;/* 64 bytes */
81
82 haldata->interfaceIndex = pdvobjpriv->InterfaceNumber;
83
84 haldata->UsbTxAggMode = 1;
85 haldata->UsbTxAggDescNum = 0x6; /* only 4 bits */
86
87 haldata->UsbRxAggMode = USB_RX_AGG_DMA;/* USB_RX_AGG_DMA; */
88 haldata->UsbRxAggBlockCount = 8; /* unit : 512b */
89 haldata->UsbRxAggBlockTimeout = 0x6;
90 haldata->UsbRxAggPageCount = 48; /* uint :128 b 0x0A; 10 = MAX_RX_DMA_BUFFER_SIZE/2/haldata->UsbBulkOutSize */
91 haldata->UsbRxAggPageTimeout = 0x4; /* 6, absolute time = 34ms/(2^6) */
92
93 HalUsbSetQueuePipeMapping8188EUsb(adapt,
94 pdvobjpriv->RtNumInPipes, pdvobjpriv->RtNumOutPipes);
95 }
96
97 static u32 rtl8188eu_InitPowerOn(struct adapter *adapt)
98 {
99 u16 value16;
100 /* HW Power on sequence */
101 struct hal_data_8188e *haldata = GET_HAL_DATA(adapt);
102 if (haldata->bMacPwrCtrlOn)
103 return _SUCCESS;
104
105 if (!rtl88eu_pwrseqcmdparsing(adapt, PWR_CUT_ALL_MSK,
106 Rtl8188E_NIC_PWR_ON_FLOW)) {
107 DBG_88E(KERN_ERR "%s: run power on flow fail\n", __func__);
108 return _FAIL;
109 }
110
111 /* Enable MAC DMA/WMAC/SCHEDULE/SEC block */
112 /* Set CR bit10 to enable 32k calibration. Suggested by SD1 Gimmy. Added by tynli. 2011.08.31. */
113 usb_write16(adapt, REG_CR, 0x00); /* suggseted by zhouzhou, by page, 20111230 */
114
115 /* Enable MAC DMA/WMAC/SCHEDULE/SEC block */
116 value16 = usb_read16(adapt, REG_CR);
117 value16 |= (HCI_TXDMA_EN | HCI_RXDMA_EN | TXDMA_EN | RXDMA_EN
118 | PROTOCOL_EN | SCHEDULE_EN | ENSEC | CALTMR_EN);
119 /* for SDIO - Set CR bit10 to enable 32k calibration. Suggested by SD1 Gimmy. Added by tynli. 2011.08.31. */
120
121 usb_write16(adapt, REG_CR, value16);
122 haldata->bMacPwrCtrlOn = true;
123
124 return _SUCCESS;
125 }
126
127 /* Shall USB interface init this? */
128 static void _InitInterrupt(struct adapter *Adapter)
129 {
130 u32 imr, imr_ex;
131 u8 usb_opt;
132 struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
133
134 /* HISR write one to clear */
135 usb_write32(Adapter, REG_HISR_88E, 0xFFFFFFFF);
136 /* HIMR - */
137 imr = IMR_PSTIMEOUT_88E | IMR_TBDER_88E | IMR_CPWM_88E | IMR_CPWM2_88E;
138 usb_write32(Adapter, REG_HIMR_88E, imr);
139 haldata->IntrMask[0] = imr;
140
141 imr_ex = IMR_TXERR_88E | IMR_RXERR_88E | IMR_TXFOVW_88E | IMR_RXFOVW_88E;
142 usb_write32(Adapter, REG_HIMRE_88E, imr_ex);
143 haldata->IntrMask[1] = imr_ex;
144
145 /* REG_USB_SPECIAL_OPTION - BIT(4) */
146 /* 0; Use interrupt endpoint to upload interrupt pkt */
147 /* 1; Use bulk endpoint to upload interrupt pkt, */
148 usb_opt = usb_read8(Adapter, REG_USB_SPECIAL_OPTION);
149
150 if (!adapter_to_dvobj(Adapter)->ishighspeed)
151 usb_opt = usb_opt & (~INT_BULK_SEL);
152 else
153 usb_opt = usb_opt | (INT_BULK_SEL);
154
155 usb_write8(Adapter, REG_USB_SPECIAL_OPTION, usb_opt);
156 }
157
158 static void _InitQueueReservedPage(struct adapter *Adapter)
159 {
160 struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
161 struct registry_priv *pregistrypriv = &Adapter->registrypriv;
162 u32 numHQ = 0;
163 u32 numLQ = 0;
164 u32 numNQ = 0;
165 u32 numPubQ;
166 u32 value32;
167 u8 value8;
168 bool bWiFiConfig = pregistrypriv->wifi_spec;
169
170 if (bWiFiConfig) {
171 if (haldata->OutEpQueueSel & TX_SELE_HQ)
172 numHQ = 0x29;
173
174 if (haldata->OutEpQueueSel & TX_SELE_LQ)
175 numLQ = 0x1C;
176
177 /* NOTE: This step shall be proceed before writing REG_RQPN. */
178 if (haldata->OutEpQueueSel & TX_SELE_NQ)
179 numNQ = 0x1C;
180 value8 = (u8)_NPQ(numNQ);
181 usb_write8(Adapter, REG_RQPN_NPQ, value8);
182
183 numPubQ = 0xA8 - numHQ - numLQ - numNQ;
184
185 /* TX DMA */
186 value32 = _HPQ(numHQ) | _LPQ(numLQ) | _PUBQ(numPubQ) | LD_RQPN;
187 usb_write32(Adapter, REG_RQPN, value32);
188 } else {
189 usb_write16(Adapter, REG_RQPN_NPQ, 0x0000);/* Just follow MP Team,??? Georgia 03/28 */
190 usb_write16(Adapter, REG_RQPN_NPQ, 0x0d);
191 usb_write32(Adapter, REG_RQPN, 0x808E000d);/* reserve 7 page for LPS */
192 }
193 }
194
195 static void _InitTxBufferBoundary(struct adapter *Adapter, u8 txpktbuf_bndy)
196 {
197 usb_write8(Adapter, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
198 usb_write8(Adapter, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
199 usb_write8(Adapter, REG_TXPKTBUF_WMAC_LBK_BF_HD, txpktbuf_bndy);
200 usb_write8(Adapter, REG_TRXFF_BNDY, txpktbuf_bndy);
201 usb_write8(Adapter, REG_TDECTRL+1, txpktbuf_bndy);
202 }
203
204 static void _InitPageBoundary(struct adapter *Adapter)
205 {
206 /* RX Page Boundary */
207 /* */
208 u16 rxff_bndy = MAX_RX_DMA_BUFFER_SIZE_88E-1;
209
210 usb_write16(Adapter, (REG_TRXFF_BNDY + 2), rxff_bndy);
211 }
212
213 static void _InitNormalChipRegPriority(struct adapter *Adapter, u16 beQ,
214 u16 bkQ, u16 viQ, u16 voQ, u16 mgtQ,
215 u16 hiQ)
216 {
217 u16 value16 = (usb_read16(Adapter, REG_TRXDMA_CTRL) & 0x7);
218
219 value16 |= _TXDMA_BEQ_MAP(beQ) | _TXDMA_BKQ_MAP(bkQ) |
220 _TXDMA_VIQ_MAP(viQ) | _TXDMA_VOQ_MAP(voQ) |
221 _TXDMA_MGQ_MAP(mgtQ) | _TXDMA_HIQ_MAP(hiQ);
222
223 usb_write16(Adapter, REG_TRXDMA_CTRL, value16);
224 }
225
226 static void _InitNormalChipOneOutEpPriority(struct adapter *Adapter)
227 {
228 struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
229
230 u16 value = 0;
231 switch (haldata->OutEpQueueSel) {
232 case TX_SELE_HQ:
233 value = QUEUE_HIGH;
234 break;
235 case TX_SELE_LQ:
236 value = QUEUE_LOW;
237 break;
238 case TX_SELE_NQ:
239 value = QUEUE_NORMAL;
240 break;
241 default:
242 break;
243 }
244 _InitNormalChipRegPriority(Adapter, value, value, value, value,
245 value, value);
246 }
247
248 static void _InitNormalChipTwoOutEpPriority(struct adapter *Adapter)
249 {
250 struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
251 struct registry_priv *pregistrypriv = &Adapter->registrypriv;
252 u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ;
253 u16 valueHi = 0;
254 u16 valueLow = 0;
255
256 switch (haldata->OutEpQueueSel) {
257 case (TX_SELE_HQ | TX_SELE_LQ):
258 valueHi = QUEUE_HIGH;
259 valueLow = QUEUE_LOW;
260 break;
261 case (TX_SELE_NQ | TX_SELE_LQ):
262 valueHi = QUEUE_NORMAL;
263 valueLow = QUEUE_LOW;
264 break;
265 case (TX_SELE_HQ | TX_SELE_NQ):
266 valueHi = QUEUE_HIGH;
267 valueLow = QUEUE_NORMAL;
268 break;
269 default:
270 break;
271 }
272
273 if (!pregistrypriv->wifi_spec) {
274 beQ = valueLow;
275 bkQ = valueLow;
276 viQ = valueHi;
277 voQ = valueHi;
278 mgtQ = valueHi;
279 hiQ = valueHi;
280 } else {/* for WMM ,CONFIG_OUT_EP_WIFI_MODE */
281 beQ = valueLow;
282 bkQ = valueHi;
283 viQ = valueHi;
284 voQ = valueLow;
285 mgtQ = valueHi;
286 hiQ = valueHi;
287 }
288 _InitNormalChipRegPriority(Adapter, beQ, bkQ, viQ, voQ, mgtQ, hiQ);
289 }
290
291 static void _InitNormalChipThreeOutEpPriority(struct adapter *Adapter)
292 {
293 struct registry_priv *pregistrypriv = &Adapter->registrypriv;
294 u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ;
295
296 if (!pregistrypriv->wifi_spec) {/* typical setting */
297 beQ = QUEUE_LOW;
298 bkQ = QUEUE_LOW;
299 viQ = QUEUE_NORMAL;
300 voQ = QUEUE_HIGH;
301 mgtQ = QUEUE_HIGH;
302 hiQ = QUEUE_HIGH;
303 } else {/* for WMM */
304 beQ = QUEUE_LOW;
305 bkQ = QUEUE_NORMAL;
306 viQ = QUEUE_NORMAL;
307 voQ = QUEUE_HIGH;
308 mgtQ = QUEUE_HIGH;
309 hiQ = QUEUE_HIGH;
310 }
311 _InitNormalChipRegPriority(Adapter, beQ, bkQ, viQ, voQ, mgtQ, hiQ);
312 }
313
314 static void _InitQueuePriority(struct adapter *Adapter)
315 {
316 struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
317
318 switch (haldata->OutEpNumber) {
319 case 1:
320 _InitNormalChipOneOutEpPriority(Adapter);
321 break;
322 case 2:
323 _InitNormalChipTwoOutEpPriority(Adapter);
324 break;
325 case 3:
326 _InitNormalChipThreeOutEpPriority(Adapter);
327 break;
328 default:
329 break;
330 }
331 }
332
333 static void _InitNetworkType(struct adapter *Adapter)
334 {
335 u32 value32;
336
337 value32 = usb_read32(Adapter, REG_CR);
338 /* TODO: use the other function to set network type */
339 value32 = (value32 & ~MASK_NETTYPE) | _NETTYPE(NT_LINK_AP);
340
341 usb_write32(Adapter, REG_CR, value32);
342 }
343
344 static void _InitTransferPageSize(struct adapter *Adapter)
345 {
346 /* Tx page size is always 128. */
347
348 u8 value8;
349 value8 = _PSRX(PBP_128) | _PSTX(PBP_128);
350 usb_write8(Adapter, REG_PBP, value8);
351 }
352
353 static void _InitDriverInfoSize(struct adapter *Adapter, u8 drvInfoSize)
354 {
355 usb_write8(Adapter, REG_RX_DRVINFO_SZ, drvInfoSize);
356 }
357
358 static void _InitWMACSetting(struct adapter *Adapter)
359 {
360 struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
361
362 haldata->ReceiveConfig = RCR_AAP | RCR_APM | RCR_AM | RCR_AB |
363 RCR_CBSSID_DATA | RCR_CBSSID_BCN |
364 RCR_APP_ICV | RCR_AMF | RCR_HTC_LOC_CTRL |
365 RCR_APP_MIC | RCR_APP_PHYSTS;
366
367 /* some REG_RCR will be modified later by phy_ConfigMACWithHeaderFile() */
368 usb_write32(Adapter, REG_RCR, haldata->ReceiveConfig);
369
370 /* Accept all multicast address */
371 usb_write32(Adapter, REG_MAR, 0xFFFFFFFF);
372 usb_write32(Adapter, REG_MAR + 4, 0xFFFFFFFF);
373 }
374
375 static void _InitAdaptiveCtrl(struct adapter *Adapter)
376 {
377 u16 value16;
378 u32 value32;
379
380 /* Response Rate Set */
381 value32 = usb_read32(Adapter, REG_RRSR);
382 value32 &= ~RATE_BITMAP_ALL;
383 value32 |= RATE_RRSR_CCK_ONLY_1M;
384 usb_write32(Adapter, REG_RRSR, value32);
385
386 /* CF-END Threshold */
387
388 /* SIFS (used in NAV) */
389 value16 = _SPEC_SIFS_CCK(0x10) | _SPEC_SIFS_OFDM(0x10);
390 usb_write16(Adapter, REG_SPEC_SIFS, value16);
391
392 /* Retry Limit */
393 value16 = _LRL(0x30) | _SRL(0x30);
394 usb_write16(Adapter, REG_RL, value16);
395 }
396
397 static void _InitEDCA(struct adapter *Adapter)
398 {
399 /* Set Spec SIFS (used in NAV) */
400 usb_write16(Adapter, REG_SPEC_SIFS, 0x100a);
401 usb_write16(Adapter, REG_MAC_SPEC_SIFS, 0x100a);
402
403 /* Set SIFS for CCK */
404 usb_write16(Adapter, REG_SIFS_CTX, 0x100a);
405
406 /* Set SIFS for OFDM */
407 usb_write16(Adapter, REG_SIFS_TRX, 0x100a);
408
409 /* TXOP */
410 usb_write32(Adapter, REG_EDCA_BE_PARAM, 0x005EA42B);
411 usb_write32(Adapter, REG_EDCA_BK_PARAM, 0x0000A44F);
412 usb_write32(Adapter, REG_EDCA_VI_PARAM, 0x005EA324);
413 usb_write32(Adapter, REG_EDCA_VO_PARAM, 0x002FA226);
414 }
415
416 static void _InitRDGSetting(struct adapter *Adapter)
417 {
418 usb_write8(Adapter, REG_RD_CTRL, 0xFF);
419 usb_write16(Adapter, REG_RD_NAV_NXT, 0x200);
420 usb_write8(Adapter, REG_RD_RESP_PKT_TH, 0x05);
421 }
422
423 static void _InitRxSetting(struct adapter *Adapter)
424 {
425 usb_write32(Adapter, REG_MACID, 0x87654321);
426 usb_write32(Adapter, 0x0700, 0x87654321);
427 }
428
429 static void _InitRetryFunction(struct adapter *Adapter)
430 {
431 u8 value8;
432
433 value8 = usb_read8(Adapter, REG_FWHW_TXQ_CTRL);
434 value8 |= EN_AMPDU_RTY_NEW;
435 usb_write8(Adapter, REG_FWHW_TXQ_CTRL, value8);
436
437 /* Set ACK timeout */
438 usb_write8(Adapter, REG_ACKTO, 0x40);
439 }
440
441 /*-----------------------------------------------------------------------------
442 * Function: usb_AggSettingTxUpdate()
443 *
444 * Overview: Separate TX/RX parameters update independent for TP detection and
445 * dynamic TX/RX aggreagtion parameters update.
446 *
447 * Input: struct adapter *
448 *
449 * Output/Return: NONE
450 *
451 * Revised History:
452 * When Who Remark
453 * 12/10/2010 MHC Separate to smaller function.
454 *
455 *---------------------------------------------------------------------------
456 */
457 static void usb_AggSettingTxUpdate(struct adapter *Adapter)
458 {
459 struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
460 u32 value32;
461
462 if (Adapter->registrypriv.wifi_spec)
463 haldata->UsbTxAggMode = false;
464
465 if (haldata->UsbTxAggMode) {
466 value32 = usb_read32(Adapter, REG_TDECTRL);
467 value32 = value32 & ~(BLK_DESC_NUM_MASK << BLK_DESC_NUM_SHIFT);
468 value32 |= ((haldata->UsbTxAggDescNum & BLK_DESC_NUM_MASK) << BLK_DESC_NUM_SHIFT);
469
470 usb_write32(Adapter, REG_TDECTRL, value32);
471 }
472 } /* usb_AggSettingTxUpdate */
473
474 /*-----------------------------------------------------------------------------
475 * Function: usb_AggSettingRxUpdate()
476 *
477 * Overview: Separate TX/RX parameters update independent for TP detection and
478 * dynamic TX/RX aggreagtion parameters update.
479 *
480 * Input: struct adapter *
481 *
482 * Output/Return: NONE
483 *
484 * Revised History:
485 * When Who Remark
486 * 12/10/2010 MHC Separate to smaller function.
487 *
488 *---------------------------------------------------------------------------
489 */
490 static void
491 usb_AggSettingRxUpdate(
492 struct adapter *Adapter
493 )
494 {
495 struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
496 u8 valueDMA;
497 u8 valueUSB;
498
499 valueDMA = usb_read8(Adapter, REG_TRXDMA_CTRL);
500 valueUSB = usb_read8(Adapter, REG_USB_SPECIAL_OPTION);
501
502 switch (haldata->UsbRxAggMode) {
503 case USB_RX_AGG_DMA:
504 valueDMA |= RXDMA_AGG_EN;
505 valueUSB &= ~USB_AGG_EN;
506 break;
507 case USB_RX_AGG_USB:
508 valueDMA &= ~RXDMA_AGG_EN;
509 valueUSB |= USB_AGG_EN;
510 break;
511 case USB_RX_AGG_MIX:
512 valueDMA |= RXDMA_AGG_EN;
513 valueUSB |= USB_AGG_EN;
514 break;
515 case USB_RX_AGG_DISABLE:
516 default:
517 valueDMA &= ~RXDMA_AGG_EN;
518 valueUSB &= ~USB_AGG_EN;
519 break;
520 }
521
522 usb_write8(Adapter, REG_TRXDMA_CTRL, valueDMA);
523 usb_write8(Adapter, REG_USB_SPECIAL_OPTION, valueUSB);
524
525 switch (haldata->UsbRxAggMode) {
526 case USB_RX_AGG_DMA:
527 usb_write8(Adapter, REG_RXDMA_AGG_PG_TH, haldata->UsbRxAggPageCount);
528 usb_write8(Adapter, REG_RXDMA_AGG_PG_TH+1, haldata->UsbRxAggPageTimeout);
529 break;
530 case USB_RX_AGG_USB:
531 usb_write8(Adapter, REG_USB_AGG_TH, haldata->UsbRxAggBlockCount);
532 usb_write8(Adapter, REG_USB_AGG_TO, haldata->UsbRxAggBlockTimeout);
533 break;
534 case USB_RX_AGG_MIX:
535 usb_write8(Adapter, REG_RXDMA_AGG_PG_TH, haldata->UsbRxAggPageCount);
536 usb_write8(Adapter, REG_RXDMA_AGG_PG_TH+1, (haldata->UsbRxAggPageTimeout & 0x1F));/* 0x280[12:8] */
537 usb_write8(Adapter, REG_USB_AGG_TH, haldata->UsbRxAggBlockCount);
538 usb_write8(Adapter, REG_USB_AGG_TO, haldata->UsbRxAggBlockTimeout);
539 break;
540 case USB_RX_AGG_DISABLE:
541 default:
542 /* TODO: */
543 break;
544 }
545
546 switch (PBP_128) {
547 case PBP_128:
548 haldata->HwRxPageSize = 128;
549 break;
550 case PBP_64:
551 haldata->HwRxPageSize = 64;
552 break;
553 case PBP_256:
554 haldata->HwRxPageSize = 256;
555 break;
556 case PBP_512:
557 haldata->HwRxPageSize = 512;
558 break;
559 case PBP_1024:
560 haldata->HwRxPageSize = 1024;
561 break;
562 default:
563 break;
564 }
565 } /* usb_AggSettingRxUpdate */
566
567 static void InitUsbAggregationSetting(struct adapter *Adapter)
568 {
569 struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
570
571 /* Tx aggregation setting */
572 usb_AggSettingTxUpdate(Adapter);
573
574 /* Rx aggregation setting */
575 usb_AggSettingRxUpdate(Adapter);
576
577 /* 201/12/10 MH Add for USB agg mode dynamic switch. */
578 haldata->UsbRxHighSpeedMode = false;
579 }
580
581 static void _InitBeaconParameters(struct adapter *Adapter)
582 {
583 struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
584
585 usb_write16(Adapter, REG_BCN_CTRL, 0x1010);
586
587 /* TODO: Remove these magic number */
588 usb_write16(Adapter, REG_TBTT_PROHIBIT, 0x6404);/* ms */
589 usb_write8(Adapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME);/* 5ms */
590 usb_write8(Adapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME); /* 2ms */
591
592 /* Suggested by designer timchen. Change beacon AIFS to the largest number */
593 /* beacause test chip does not contension before sending beacon. by tynli. 2009.11.03 */
594 usb_write16(Adapter, REG_BCNTCFG, 0x660F);
595
596 haldata->RegBcnCtrlVal = usb_read8(Adapter, REG_BCN_CTRL);
597 haldata->RegTxPause = usb_read8(Adapter, REG_TXPAUSE);
598 haldata->RegFwHwTxQCtrl = usb_read8(Adapter, REG_FWHW_TXQ_CTRL+2);
599 haldata->RegReg542 = usb_read8(Adapter, REG_TBTT_PROHIBIT+2);
600 haldata->RegCR_1 = usb_read8(Adapter, REG_CR+1);
601 }
602
603 static void _BeaconFunctionEnable(struct adapter *Adapter,
604 bool Enable, bool Linked)
605 {
606 usb_write8(Adapter, REG_BCN_CTRL, (BIT(4) | BIT(3) | BIT(1)));
607
608 usb_write8(Adapter, REG_RD_CTRL+1, 0x6F);
609 }
610
611 /* Set CCK and OFDM Block "ON" */
612 static void _BBTurnOnBlock(struct adapter *Adapter)
613 {
614 phy_set_bb_reg(Adapter, rFPGA0_RFMOD, bCCKEn, 0x1);
615 phy_set_bb_reg(Adapter, rFPGA0_RFMOD, bOFDMEn, 0x1);
616 }
617
618 enum {
619 Antenna_Lfet = 1,
620 Antenna_Right = 2,
621 };
622
623 static void _InitAntenna_Selection(struct adapter *Adapter)
624 {
625 struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
626
627 if (haldata->AntDivCfg == 0)
628 return;
629 DBG_88E("==> %s ....\n", __func__);
630
631 usb_write32(Adapter, REG_LEDCFG0, usb_read32(Adapter, REG_LEDCFG0) | BIT(23));
632 phy_set_bb_reg(Adapter, rFPGA0_XAB_RFParameter, BIT(13), 0x01);
633
634 if (phy_query_bb_reg(Adapter, rFPGA0_XA_RFInterfaceOE, 0x300) == Antenna_A)
635 haldata->CurAntenna = Antenna_A;
636 else
637 haldata->CurAntenna = Antenna_B;
638 DBG_88E("%s,Cur_ant:(%x)%s\n", __func__, haldata->CurAntenna, (haldata->CurAntenna == Antenna_A) ? "Antenna_A" : "Antenna_B");
639 }
640
641 /*-----------------------------------------------------------------------------
642 * Function: HwSuspendModeEnable92Cu()
643 *
644 * Overview: HW suspend mode switch.
645 *
646 * Input: NONE
647 *
648 * Output: NONE
649 *
650 * Return: NONE
651 *
652 * Revised History:
653 * When Who Remark
654 * 08/23/2010 MHC HW suspend mode switch test..
655 *---------------------------------------------------------------------------
656 */
657 enum rt_rf_power_state RfOnOffDetect(struct adapter *adapt)
658 {
659 u8 val8;
660 enum rt_rf_power_state rfpowerstate = rf_off;
661
662 if (adapt->pwrctrlpriv.bHWPowerdown) {
663 val8 = usb_read8(adapt, REG_HSISR);
664 DBG_88E("pwrdown, 0x5c(BIT(7))=%02x\n", val8);
665 rfpowerstate = (val8 & BIT(7)) ? rf_off : rf_on;
666 } else { /* rf on/off */
667 usb_write8(adapt, REG_MAC_PINMUX_CFG, usb_read8(adapt, REG_MAC_PINMUX_CFG)&~(BIT(3)));
668 val8 = usb_read8(adapt, REG_GPIO_IO_SEL);
669 DBG_88E("GPIO_IN=%02x\n", val8);
670 rfpowerstate = (val8 & BIT(3)) ? rf_on : rf_off;
671 }
672 return rfpowerstate;
673 } /* HalDetectPwrDownMode */
674
675 static u32 rtl8188eu_hal_init(struct adapter *Adapter)
676 {
677 u8 value8 = 0;
678 u16 value16;
679 u8 txpktbuf_bndy;
680 u32 status = _SUCCESS;
681 struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
682 struct pwrctrl_priv *pwrctrlpriv = &Adapter->pwrctrlpriv;
683 struct registry_priv *pregistrypriv = &Adapter->registrypriv;
684 unsigned long init_start_time = jiffies;
685
686 #define HAL_INIT_PROFILE_TAG(stage) do {} while (0)
687
688 HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_BEGIN);
689
690 if (Adapter->pwrctrlpriv.bkeepfwalive) {
691 if (haldata->odmpriv.RFCalibrateInfo.bIQKInitialized) {
692 rtl88eu_phy_iq_calibrate(Adapter, true);
693 } else {
694 rtl88eu_phy_iq_calibrate(Adapter, false);
695 haldata->odmpriv.RFCalibrateInfo.bIQKInitialized = true;
696 }
697
698 ODM_TXPowerTrackingCheck(&haldata->odmpriv);
699 rtl88eu_phy_lc_calibrate(Adapter);
700
701 goto exit;
702 }
703
704 HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_PW_ON);
705 status = rtl8188eu_InitPowerOn(Adapter);
706 if (status == _FAIL) {
707 RT_TRACE(_module_hci_hal_init_c_, _drv_err_, ("Failed to init power on!\n"));
708 goto exit;
709 }
710
711 /* Save target channel */
712 haldata->CurrentChannel = 6;/* default set to 6 */
713
714 if (pwrctrlpriv->reg_rfoff)
715 pwrctrlpriv->rf_pwrstate = rf_off;
716
717 /* 2010/08/09 MH We need to check if we need to turnon or off RF after detecting */
718 /* HW GPIO pin. Before PHY_RFConfig8192C. */
719 /* 2010/08/26 MH If Efuse does not support sective suspend then disable the function. */
720
721 if (!pregistrypriv->wifi_spec) {
722 txpktbuf_bndy = TX_PAGE_BOUNDARY_88E;
723 } else {
724 /* for WMM */
725 txpktbuf_bndy = WMM_NORMAL_TX_PAGE_BOUNDARY_88E;
726 }
727
728 HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MISC01);
729 _InitQueueReservedPage(Adapter);
730 _InitQueuePriority(Adapter);
731 _InitPageBoundary(Adapter);
732 _InitTransferPageSize(Adapter);
733
734 _InitTxBufferBoundary(Adapter, 0);
735
736 HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_DOWNLOAD_FW);
737 if (Adapter->registrypriv.mp_mode == 1) {
738 _InitRxSetting(Adapter);
739 Adapter->bFWReady = false;
740 } else {
741 status = rtl88eu_download_fw(Adapter);
742
743 if (status) {
744 DBG_88E("%s: Download Firmware failed!!\n", __func__);
745 Adapter->bFWReady = false;
746 return status;
747 }
748 RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Initializeadapt8192CSdio(): Download Firmware Success!!\n"));
749 Adapter->bFWReady = true;
750 }
751 rtl8188e_InitializeFirmwareVars(Adapter);
752
753 rtl88eu_phy_mac_config(Adapter);
754
755 rtl88eu_phy_bb_config(Adapter);
756
757 rtl88eu_phy_rf_config(Adapter);
758
759 HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_EFUSE_PATCH);
760 status = rtl8188e_iol_efuse_patch(Adapter);
761 if (status == _FAIL) {
762 DBG_88E("%s rtl8188e_iol_efuse_patch failed\n", __func__);
763 goto exit;
764 }
765
766 _InitTxBufferBoundary(Adapter, txpktbuf_bndy);
767
768 HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_LLTT);
769 status = InitLLTTable(Adapter, txpktbuf_bndy);
770 if (status == _FAIL) {
771 RT_TRACE(_module_hci_hal_init_c_, _drv_err_, ("Failed to init LLT table\n"));
772 goto exit;
773 }
774
775 HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MISC02);
776 /* Get Rx PHY status in order to report RSSI and others. */
777 _InitDriverInfoSize(Adapter, DRVINFO_SZ);
778
779 _InitInterrupt(Adapter);
780 hal_init_macaddr(Adapter);/* set mac_address */
781 _InitNetworkType(Adapter);/* set msr */
782 _InitWMACSetting(Adapter);
783 _InitAdaptiveCtrl(Adapter);
784 _InitEDCA(Adapter);
785 _InitRetryFunction(Adapter);
786 InitUsbAggregationSetting(Adapter);
787 _InitBeaconParameters(Adapter);
788 /* Init CR MACTXEN, MACRXEN after setting RxFF boundary REG_TRXFF_BNDY to patch */
789 /* Hw bug which Hw initials RxFF boundary size to a value which is larger than the real Rx buffer size in 88E. */
790 /* Enable MACTXEN/MACRXEN block */
791 value16 = usb_read16(Adapter, REG_CR);
792 value16 |= (MACTXEN | MACRXEN);
793 usb_write8(Adapter, REG_CR, value16);
794
795 if (haldata->bRDGEnable)
796 _InitRDGSetting(Adapter);
797
798 /* Enable TX Report */
799 /* Enable Tx Report Timer */
800 value8 = usb_read8(Adapter, REG_TX_RPT_CTRL);
801 usb_write8(Adapter, REG_TX_RPT_CTRL, (value8 | BIT(1) | BIT(0)));
802 /* Set MAX RPT MACID */
803 usb_write8(Adapter, REG_TX_RPT_CTRL+1, 2);/* FOR sta mode ,0: bc/mc ,1:AP */
804 /* Tx RPT Timer. Unit: 32us */
805 usb_write16(Adapter, REG_TX_RPT_TIME, 0xCdf0);
806
807 usb_write8(Adapter, REG_EARLY_MODE_CONTROL, 0);
808
809 usb_write16(Adapter, REG_PKT_VO_VI_LIFE_TIME, 0x0400); /* unit: 256us. 256ms */
810 usb_write16(Adapter, REG_PKT_BE_BK_LIFE_TIME, 0x0400); /* unit: 256us. 256ms */
811
812 /* Keep RfRegChnlVal for later use. */
813 haldata->RfRegChnlVal[0] = phy_query_rf_reg(Adapter, (enum rf_radio_path)0, RF_CHNLBW, bRFRegOffsetMask);
814 haldata->RfRegChnlVal[1] = phy_query_rf_reg(Adapter, (enum rf_radio_path)1, RF_CHNLBW, bRFRegOffsetMask);
815
816 HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_TURN_ON_BLOCK);
817 _BBTurnOnBlock(Adapter);
818
819 HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_SECURITY);
820 invalidate_cam_all(Adapter);
821
822 HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MISC11);
823 /* 2010/12/17 MH We need to set TX power according to EFUSE content at first. */
824 phy_set_tx_power_level(Adapter, haldata->CurrentChannel);
825
826 /* Move by Neo for USB SS to below setp */
827 /* _RfPowerSave(Adapter); */
828
829 _InitAntenna_Selection(Adapter);
830
831 /* */
832 /* Disable BAR, suggested by Scott */
833 /* 2010.04.09 add by hpfan */
834 /* */
835 usb_write32(Adapter, REG_BAR_MODE_CTRL, 0x0201ffff);
836
837 /* HW SEQ CTRL */
838 /* set 0x0 to 0xFF by tynli. Default enable HW SEQ NUM. */
839 usb_write8(Adapter, REG_HWSEQ_CTRL, 0xFF);
840
841 if (pregistrypriv->wifi_spec)
842 usb_write16(Adapter, REG_FAST_EDCA_CTRL, 0);
843
844 /* Nav limit , suggest by scott */
845 usb_write8(Adapter, 0x652, 0x0);
846
847 HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_HAL_DM);
848 rtl8188e_InitHalDm(Adapter);
849
850 /* 2010/08/11 MH Merge from 8192SE for Minicard init. We need to confirm current radio status */
851 /* and then decide to enable RF or not.!!!??? For Selective suspend mode. We may not */
852 /* call initstruct adapter. May cause some problem?? */
853 /* Fix the bug that Hw/Sw radio off before S3/S4, the RF off action will not be executed */
854 /* in MgntActSet_RF_State() after wake up, because the value of haldata->eRFPowerState */
855 /* is the same as eRfOff, we should change it to eRfOn after we config RF parameters. */
856 /* Added by tynli. 2010.03.30. */
857 pwrctrlpriv->rf_pwrstate = rf_on;
858
859 /* enable Tx report. */
860 usb_write8(Adapter, REG_FWHW_TXQ_CTRL+1, 0x0F);
861
862 /* Suggested by SD1 pisa. Added by tynli. 2011.10.21. */
863 usb_write8(Adapter, REG_EARLY_MODE_CONTROL+3, 0x01);/* Pretx_en, for WEP/TKIP SEC */
864
865 /* tynli_test_tx_report. */
866 usb_write16(Adapter, REG_TX_RPT_TIME, 0x3DF0);
867
868 /* enable tx DMA to drop the redundate data of packet */
869 usb_write16(Adapter, REG_TXDMA_OFFSET_CHK, (usb_read16(Adapter, REG_TXDMA_OFFSET_CHK) | DROP_DATA_EN));
870
871 HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_IQK);
872 /* 2010/08/26 MH Merge from 8192CE. */
873 if (pwrctrlpriv->rf_pwrstate == rf_on) {
874 if (haldata->odmpriv.RFCalibrateInfo.bIQKInitialized) {
875 rtl88eu_phy_iq_calibrate(Adapter, true);
876 } else {
877 rtl88eu_phy_iq_calibrate(Adapter, false);
878 haldata->odmpriv.RFCalibrateInfo.bIQKInitialized = true;
879 }
880
881 HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_PW_TRACK);
882
883 ODM_TXPowerTrackingCheck(&haldata->odmpriv);
884
885 HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_LCK);
886 rtl88eu_phy_lc_calibrate(Adapter);
887 }
888
889 /* HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_PABIAS); */
890 /* _InitPABias(Adapter); */
891 usb_write8(Adapter, REG_USB_HRPWM, 0);
892
893 /* ack for xmit mgmt frames. */
894 usb_write32(Adapter, REG_FWHW_TXQ_CTRL, usb_read32(Adapter, REG_FWHW_TXQ_CTRL) | BIT(12));
895
896 exit:
897 HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_END);
898
899 DBG_88E("%s in %dms\n", __func__,
900 jiffies_to_msecs(jiffies - init_start_time));
901
902 return status;
903 }
904
905 static void CardDisableRTL8188EU(struct adapter *Adapter)
906 {
907 u8 val8;
908 struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
909
910 RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("CardDisableRTL8188EU\n"));
911
912 /* Stop Tx Report Timer. 0x4EC[Bit1]=b'0 */
913 val8 = usb_read8(Adapter, REG_TX_RPT_CTRL);
914 usb_write8(Adapter, REG_TX_RPT_CTRL, val8&(~BIT(1)));
915
916 /* stop rx */
917 usb_write8(Adapter, REG_CR, 0x0);
918
919 /* Run LPS WL RFOFF flow */
920 rtl88eu_pwrseqcmdparsing(Adapter, PWR_CUT_ALL_MSK,
921 Rtl8188E_NIC_LPS_ENTER_FLOW);
922
923 /* 2. 0x1F[7:0] = 0 turn off RF */
924
925 val8 = usb_read8(Adapter, REG_MCUFWDL);
926 if ((val8 & RAM_DL_SEL) && Adapter->bFWReady) { /* 8051 RAM code */
927 /* Reset MCU 0x2[10]=0. */
928 val8 = usb_read8(Adapter, REG_SYS_FUNC_EN+1);
929 val8 &= ~BIT(2); /* 0x2[10], FEN_CPUEN */
930 usb_write8(Adapter, REG_SYS_FUNC_EN+1, val8);
931 }
932
933 /* reset MCU ready status */
934 usb_write8(Adapter, REG_MCUFWDL, 0);
935
936 /* YJ,add,111212 */
937 /* Disable 32k */
938 val8 = usb_read8(Adapter, REG_32K_CTRL);
939 usb_write8(Adapter, REG_32K_CTRL, val8&(~BIT(0)));
940
941 /* Card disable power action flow */
942 rtl88eu_pwrseqcmdparsing(Adapter, PWR_CUT_ALL_MSK,
943 Rtl8188E_NIC_DISABLE_FLOW);
944
945 /* Reset MCU IO Wrapper */
946 val8 = usb_read8(Adapter, REG_RSV_CTRL+1);
947 usb_write8(Adapter, REG_RSV_CTRL+1, (val8&(~BIT(3))));
948 val8 = usb_read8(Adapter, REG_RSV_CTRL+1);
949 usb_write8(Adapter, REG_RSV_CTRL+1, val8 | BIT(3));
950
951 /* YJ,test add, 111207. For Power Consumption. */
952 val8 = usb_read8(Adapter, GPIO_IN);
953 usb_write8(Adapter, GPIO_OUT, val8);
954 usb_write8(Adapter, GPIO_IO_SEL, 0xFF);/* Reg0x46 */
955
956 val8 = usb_read8(Adapter, REG_GPIO_IO_SEL);
957 usb_write8(Adapter, REG_GPIO_IO_SEL, (val8<<4));
958 val8 = usb_read8(Adapter, REG_GPIO_IO_SEL+1);
959 usb_write8(Adapter, REG_GPIO_IO_SEL+1, val8|0x0F);/* Reg0x43 */
960 usb_write32(Adapter, REG_BB_PAD_CTRL, 0x00080808);/* set LNA ,TRSW,EX_PA Pin to output mode */
961 haldata->bMacPwrCtrlOn = false;
962 Adapter->bFWReady = false;
963 }
964
965 static void rtl8192cu_hw_power_down(struct adapter *adapt)
966 {
967 /* 2010/-8/09 MH For power down module, we need to enable register block contrl reg at 0x1c. */
968 /* Then enable power down control bit of register 0x04 BIT4 and BIT15 as 1. */
969
970 /* Enable register area 0x0-0xc. */
971 usb_write8(adapt, REG_RSV_CTRL, 0x0);
972 usb_write16(adapt, REG_APS_FSMCO, 0x8812);
973 }
974
975 static u32 rtl8188eu_hal_deinit(struct adapter *Adapter)
976 {
977 DBG_88E("==> %s\n", __func__);
978
979 usb_write32(Adapter, REG_HIMR_88E, IMR_DISABLED_88E);
980 usb_write32(Adapter, REG_HIMRE_88E, IMR_DISABLED_88E);
981
982 DBG_88E("bkeepfwalive(%x)\n", Adapter->pwrctrlpriv.bkeepfwalive);
983 if (Adapter->pwrctrlpriv.bkeepfwalive) {
984 if ((Adapter->pwrctrlpriv.bHWPwrPindetect) && (Adapter->pwrctrlpriv.bHWPowerdown))
985 rtl8192cu_hw_power_down(Adapter);
986 } else {
987 if (Adapter->hw_init_completed) {
988 CardDisableRTL8188EU(Adapter);
989
990 if ((Adapter->pwrctrlpriv.bHWPwrPindetect) && (Adapter->pwrctrlpriv.bHWPowerdown))
991 rtl8192cu_hw_power_down(Adapter);
992 }
993 }
994 return _SUCCESS;
995 }
996
997 static unsigned int rtl8188eu_inirp_init(struct adapter *Adapter)
998 {
999 u8 i;
1000 struct recv_buf *precvbuf;
1001 uint status;
1002 struct recv_priv *precvpriv = &Adapter->recvpriv;
1003
1004 status = _SUCCESS;
1005
1006 RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
1007 ("===> usb_inirp_init\n"));
1008
1009 precvpriv->ff_hwaddr = RECV_BULK_IN_ADDR;
1010
1011 /* issue Rx irp to receive data */
1012 precvbuf = (struct recv_buf *)precvpriv->precv_buf;
1013 for (i = 0; i < NR_RECVBUFF; i++) {
1014 if (usb_read_port(Adapter, precvpriv->ff_hwaddr, 0, (unsigned char *)precvbuf) == false) {
1015 RT_TRACE(_module_hci_hal_init_c_, _drv_err_, ("usb_rx_init: usb_read_port error\n"));
1016 status = _FAIL;
1017 goto exit;
1018 }
1019
1020 precvbuf++;
1021 precvpriv->free_recv_buf_queue_cnt--;
1022 }
1023
1024 exit:
1025
1026 RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("<=== usb_inirp_init\n"));
1027
1028
1029 return status;
1030 }
1031
1032 static unsigned int rtl8188eu_inirp_deinit(struct adapter *Adapter)
1033 {
1034 RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("\n ===> usb_rx_deinit\n"));
1035
1036 usb_read_port_cancel(Adapter);
1037
1038 RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("\n <=== usb_rx_deinit\n"));
1039
1040 return _SUCCESS;
1041 }
1042
1043 /* */
1044 /* */
1045 /* EEPROM/EFUSE Content Parsing */
1046 /* */
1047 /* */
1048 static void Hal_EfuseParsePIDVID_8188EU(struct adapter *adapt, u8 *hwinfo, bool AutoLoadFail)
1049 {
1050 struct hal_data_8188e *haldata = GET_HAL_DATA(adapt);
1051
1052 if (!AutoLoadFail) {
1053 /* VID, PID */
1054 haldata->EEPROMVID = EF2BYTE(*(__le16 *)&hwinfo[EEPROM_VID_88EU]);
1055 haldata->EEPROMPID = EF2BYTE(*(__le16 *)&hwinfo[EEPROM_PID_88EU]);
1056
1057 /* Customer ID, 0x00 and 0xff are reserved for Realtek. */
1058 haldata->EEPROMCustomerID = *(u8 *)&hwinfo[EEPROM_CUSTOMERID_88E];
1059 haldata->EEPROMSubCustomerID = EEPROM_Default_SubCustomerID;
1060 } else {
1061 haldata->EEPROMVID = EEPROM_Default_VID;
1062 haldata->EEPROMPID = EEPROM_Default_PID;
1063
1064 /* Customer ID, 0x00 and 0xff are reserved for Realtek. */
1065 haldata->EEPROMCustomerID = EEPROM_Default_CustomerID;
1066 haldata->EEPROMSubCustomerID = EEPROM_Default_SubCustomerID;
1067 }
1068
1069 DBG_88E("VID = 0x%04X, PID = 0x%04X\n", haldata->EEPROMVID, haldata->EEPROMPID);
1070 DBG_88E("Customer ID: 0x%02X, SubCustomer ID: 0x%02X\n", haldata->EEPROMCustomerID, haldata->EEPROMSubCustomerID);
1071 }
1072
1073 static void Hal_EfuseParseMACAddr_8188EU(struct adapter *adapt, u8 *hwinfo, bool AutoLoadFail)
1074 {
1075 u16 i;
1076 u8 sMacAddr[6] = {0x00, 0xE0, 0x4C, 0x81, 0x88, 0x02};
1077 struct eeprom_priv *eeprom = GET_EEPROM_EFUSE_PRIV(adapt);
1078
1079 if (AutoLoadFail) {
1080 for (i = 0; i < 6; i++)
1081 eeprom->mac_addr[i] = sMacAddr[i];
1082 } else {
1083 /* Read Permanent MAC address */
1084 memcpy(eeprom->mac_addr, &hwinfo[EEPROM_MAC_ADDR_88EU], ETH_ALEN);
1085 }
1086 RT_TRACE(_module_hci_hal_init_c_, _drv_notice_,
1087 ("Hal_EfuseParseMACAddr_8188EU: Permanent Address = %pM\n",
1088 eeprom->mac_addr));
1089 }
1090
1091 static void
1092 readAdapterInfo_8188EU(
1093 struct adapter *adapt
1094 )
1095 {
1096 struct eeprom_priv *eeprom = GET_EEPROM_EFUSE_PRIV(adapt);
1097
1098 /* parse the eeprom/efuse content */
1099 Hal_EfuseParseIDCode88E(adapt, eeprom->efuse_eeprom_data);
1100 Hal_EfuseParsePIDVID_8188EU(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1101 Hal_EfuseParseMACAddr_8188EU(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1102
1103 Hal_ReadPowerSavingMode88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1104 Hal_ReadTxPowerInfo88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1105 Hal_EfuseParseEEPROMVer88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1106 rtl8188e_EfuseParseChnlPlan(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1107 Hal_EfuseParseXtal_8188E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1108 Hal_EfuseParseCustomerID88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1109 Hal_ReadAntennaDiversity88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1110 Hal_EfuseParseBoardType88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1111 Hal_ReadThermalMeter_88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1112 }
1113
1114 static void _ReadPROMContent(
1115 struct adapter *Adapter
1116 )
1117 {
1118 struct eeprom_priv *eeprom = GET_EEPROM_EFUSE_PRIV(Adapter);
1119 u8 eeValue;
1120
1121 /* check system boot selection */
1122 eeValue = usb_read8(Adapter, REG_9346CR);
1123 eeprom->EepromOrEfuse = (eeValue & BOOT_FROM_EEPROM) ? true : false;
1124 eeprom->bautoload_fail_flag = (eeValue & EEPROM_EN) ? false : true;
1125
1126 DBG_88E("Boot from %s, Autoload %s !\n", (eeprom->EepromOrEfuse ? "EEPROM" : "EFUSE"),
1127 (eeprom->bautoload_fail_flag ? "Fail" : "OK"));
1128
1129 Hal_InitPGData88E(Adapter);
1130 readAdapterInfo_8188EU(Adapter);
1131 }
1132
1133 static void _ReadRFType(struct adapter *Adapter)
1134 {
1135 struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
1136
1137 haldata->rf_chip = RF_6052;
1138 }
1139
1140 static void _ReadAdapterInfo8188EU(struct adapter *Adapter)
1141 {
1142 unsigned long start = jiffies;
1143
1144 MSG_88E("====> %s\n", __func__);
1145
1146 _ReadRFType(Adapter);/* rf_chip -> _InitRFType() */
1147 _ReadPROMContent(Adapter);
1148
1149 MSG_88E("<==== %s in %d ms\n", __func__,
1150 jiffies_to_msecs(jiffies - start));
1151 }
1152
1153 #define GPIO_DEBUG_PORT_NUM 0
1154 static void rtl8192cu_trigger_gpio_0(struct adapter *adapt)
1155 {
1156 }
1157
1158 static void ResumeTxBeacon(struct adapter *adapt)
1159 {
1160 struct hal_data_8188e *haldata = GET_HAL_DATA(adapt);
1161
1162 /* 2010.03.01. Marked by tynli. No need to call workitem beacause we record the value */
1163 /* which should be read from register to a global variable. */
1164
1165 usb_write8(adapt, REG_FWHW_TXQ_CTRL+2, (haldata->RegFwHwTxQCtrl) | BIT(6));
1166 haldata->RegFwHwTxQCtrl |= BIT(6);
1167 usb_write8(adapt, REG_TBTT_PROHIBIT+1, 0xff);
1168 haldata->RegReg542 |= BIT(0);
1169 usb_write8(adapt, REG_TBTT_PROHIBIT+2, haldata->RegReg542);
1170 }
1171
1172 static void StopTxBeacon(struct adapter *adapt)
1173 {
1174 struct hal_data_8188e *haldata = GET_HAL_DATA(adapt);
1175
1176 /* 2010.03.01. Marked by tynli. No need to call workitem beacause we record the value */
1177 /* which should be read from register to a global variable. */
1178
1179 usb_write8(adapt, REG_FWHW_TXQ_CTRL+2, (haldata->RegFwHwTxQCtrl) & (~BIT(6)));
1180 haldata->RegFwHwTxQCtrl &= (~BIT(6));
1181 usb_write8(adapt, REG_TBTT_PROHIBIT+1, 0x64);
1182 haldata->RegReg542 &= ~(BIT(0));
1183 usb_write8(adapt, REG_TBTT_PROHIBIT+2, haldata->RegReg542);
1184
1185 /* todo: CheckFwRsvdPageContent(Adapter); 2010.06.23. Added by tynli. */
1186 }
1187
1188 static void hw_var_set_opmode(struct adapter *Adapter, u8 variable, u8 *val)
1189 {
1190 u8 val8;
1191 u8 mode = *((u8 *)val);
1192
1193 /* disable Port0 TSF update */
1194 usb_write8(Adapter, REG_BCN_CTRL, usb_read8(Adapter, REG_BCN_CTRL) | BIT(4));
1195
1196 /* set net_type */
1197 val8 = usb_read8(Adapter, MSR)&0x0c;
1198 val8 |= mode;
1199 usb_write8(Adapter, MSR, val8);
1200
1201 DBG_88E("%s()-%d mode = %d\n", __func__, __LINE__, mode);
1202
1203 if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
1204 StopTxBeacon(Adapter);
1205
1206 usb_write8(Adapter, REG_BCN_CTRL, 0x19);/* disable atim wnd */
1207 } else if (mode == _HW_STATE_ADHOC_) {
1208 ResumeTxBeacon(Adapter);
1209 usb_write8(Adapter, REG_BCN_CTRL, 0x1a);
1210 } else if (mode == _HW_STATE_AP_) {
1211 ResumeTxBeacon(Adapter);
1212
1213 usb_write8(Adapter, REG_BCN_CTRL, 0x12);
1214
1215 /* Set RCR */
1216 usb_write32(Adapter, REG_RCR, 0x7000208e);/* CBSSID_DATA must set to 0,reject ICV_ERR packet */
1217 /* enable to rx data frame */
1218 usb_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
1219 /* enable to rx ps-poll */
1220 usb_write16(Adapter, REG_RXFLTMAP1, 0x0400);
1221
1222 /* Beacon Control related register for first time */
1223 usb_write8(Adapter, REG_BCNDMATIM, 0x02); /* 2ms */
1224
1225 usb_write8(Adapter, REG_ATIMWND, 0x0a); /* 10ms */
1226 usb_write16(Adapter, REG_BCNTCFG, 0x00);
1227 usb_write16(Adapter, REG_TBTT_PROHIBIT, 0xff04);
1228 usb_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/* +32767 (~32ms) */
1229
1230 /* reset TSF */
1231 usb_write8(Adapter, REG_DUAL_TSF_RST, BIT(0));
1232
1233 /* BIT3 - If set 0, hw will clr bcnq when tx becon ok/fail or port 0 */
1234 usb_write8(Adapter, REG_MBID_NUM, usb_read8(Adapter, REG_MBID_NUM) | BIT(3) | BIT(4));
1235
1236 /* enable BCN0 Function for if1 */
1237 /* don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received) */
1238 usb_write8(Adapter, REG_BCN_CTRL, (DIS_TSF_UDT0_NORMAL_CHIP|EN_BCN_FUNCTION | BIT(1)));
1239
1240 /* dis BCN1 ATIM WND if if2 is station */
1241 usb_write8(Adapter, REG_BCN_CTRL_1, usb_read8(Adapter, REG_BCN_CTRL_1) | BIT(0));
1242 }
1243 }
1244
1245 static void hw_var_set_macaddr(struct adapter *Adapter, u8 variable, u8 *val)
1246 {
1247 u8 idx = 0;
1248 u32 reg_macid;
1249
1250 reg_macid = REG_MACID;
1251
1252 for (idx = 0; idx < 6; idx++)
1253 usb_write8(Adapter, (reg_macid+idx), val[idx]);
1254 }
1255
1256 static void hw_var_set_bssid(struct adapter *Adapter, u8 variable, u8 *val)
1257 {
1258 u8 idx = 0;
1259 u32 reg_bssid;
1260
1261 reg_bssid = REG_BSSID;
1262
1263 for (idx = 0; idx < 6; idx++)
1264 usb_write8(Adapter, (reg_bssid+idx), val[idx]);
1265 }
1266
1267 static void hw_var_set_bcn_func(struct adapter *Adapter, u8 variable, u8 *val)
1268 {
1269 u32 bcn_ctrl_reg;
1270
1271 bcn_ctrl_reg = REG_BCN_CTRL;
1272
1273 if (*((u8 *)val))
1274 usb_write8(Adapter, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT));
1275 else
1276 usb_write8(Adapter, bcn_ctrl_reg, usb_read8(Adapter, bcn_ctrl_reg)&(~(EN_BCN_FUNCTION | EN_TXBCN_RPT)));
1277 }
1278
1279 static void SetHwReg8188EU(struct adapter *Adapter, u8 variable, u8 *val)
1280 {
1281 struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
1282 struct dm_priv *pdmpriv = &haldata->dmpriv;
1283 struct odm_dm_struct *podmpriv = &haldata->odmpriv;
1284
1285 switch (variable) {
1286 case HW_VAR_MEDIA_STATUS:
1287 {
1288 u8 val8;
1289
1290 val8 = usb_read8(Adapter, MSR)&0x0c;
1291 val8 |= *((u8 *)val);
1292 usb_write8(Adapter, MSR, val8);
1293 }
1294 break;
1295 case HW_VAR_MEDIA_STATUS1:
1296 {
1297 u8 val8;
1298
1299 val8 = usb_read8(Adapter, MSR) & 0x03;
1300 val8 |= *((u8 *)val) << 2;
1301 usb_write8(Adapter, MSR, val8);
1302 }
1303 break;
1304 case HW_VAR_SET_OPMODE:
1305 hw_var_set_opmode(Adapter, variable, val);
1306 break;
1307 case HW_VAR_MAC_ADDR:
1308 hw_var_set_macaddr(Adapter, variable, val);
1309 break;
1310 case HW_VAR_BSSID:
1311 hw_var_set_bssid(Adapter, variable, val);
1312 break;
1313 case HW_VAR_BASIC_RATE:
1314 {
1315 u16 BrateCfg = 0;
1316 u8 RateIndex = 0;
1317
1318 /* 2007.01.16, by Emily */
1319 /* Select RRSR (in Legacy-OFDM and CCK) */
1320 /* For 8190, we select only 24M, 12M, 6M, 11M, 5.5M, 2M, and 1M from the Basic rate. */
1321 /* We do not use other rates. */
1322 HalSetBrateCfg(Adapter, val, &BrateCfg);
1323 DBG_88E("HW_VAR_BASIC_RATE: BrateCfg(%#x)\n", BrateCfg);
1324
1325 /* 2011.03.30 add by Luke Lee */
1326 /* CCK 2M ACK should be disabled for some BCM and Atheros AP IOT */
1327 /* because CCK 2M has poor TXEVM */
1328 /* CCK 5.5M & 11M ACK should be enabled for better performance */
1329
1330 BrateCfg = (BrateCfg | 0xd) & 0x15d;
1331 haldata->BasicRateSet = BrateCfg;
1332
1333 BrateCfg |= 0x01; /* default enable 1M ACK rate */
1334 /* Set RRSR rate table. */
1335 usb_write8(Adapter, REG_RRSR, BrateCfg & 0xff);
1336 usb_write8(Adapter, REG_RRSR+1, (BrateCfg >> 8) & 0xff);
1337 usb_write8(Adapter, REG_RRSR+2, usb_read8(Adapter, REG_RRSR+2)&0xf0);
1338
1339 /* Set RTS initial rate */
1340 while (BrateCfg > 0x1) {
1341 BrateCfg >>= 1;
1342 RateIndex++;
1343 }
1344 /* Ziv - Check */
1345 usb_write8(Adapter, REG_INIRTS_RATE_SEL, RateIndex);
1346 }
1347 break;
1348 case HW_VAR_TXPAUSE:
1349 usb_write8(Adapter, REG_TXPAUSE, *((u8 *)val));
1350 break;
1351 case HW_VAR_BCN_FUNC:
1352 hw_var_set_bcn_func(Adapter, variable, val);
1353 break;
1354 case HW_VAR_CORRECT_TSF:
1355 {
1356 u64 tsf;
1357 struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
1358 struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
1359
1360 tsf = pmlmeext->TSFValue - rtw_modular64(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024)) - 1024; /* us */
1361
1362 if (((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE))
1363 StopTxBeacon(Adapter);
1364
1365 /* disable related TSF function */
1366 usb_write8(Adapter, REG_BCN_CTRL, usb_read8(Adapter, REG_BCN_CTRL)&(~BIT(3)));
1367
1368 usb_write32(Adapter, REG_TSFTR, tsf);
1369 usb_write32(Adapter, REG_TSFTR+4, tsf>>32);
1370
1371 /* enable related TSF function */
1372 usb_write8(Adapter, REG_BCN_CTRL, usb_read8(Adapter, REG_BCN_CTRL) | BIT(3));
1373
1374 if (((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE))
1375 ResumeTxBeacon(Adapter);
1376 }
1377 break;
1378 case HW_VAR_CHECK_BSSID:
1379 if (*((u8 *)val)) {
1380 usb_write32(Adapter, REG_RCR, usb_read32(Adapter, REG_RCR)|RCR_CBSSID_DATA|RCR_CBSSID_BCN);
1381 } else {
1382 u32 val32;
1383
1384 val32 = usb_read32(Adapter, REG_RCR);
1385
1386 val32 &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);
1387
1388 usb_write32(Adapter, REG_RCR, val32);
1389 }
1390 break;
1391 case HW_VAR_MLME_DISCONNECT:
1392 /* Set RCR to not to receive data frame when NO LINK state */
1393 /* reject all data frames */
1394 usb_write16(Adapter, REG_RXFLTMAP2, 0x00);
1395
1396 /* reset TSF */
1397 usb_write8(Adapter, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
1398
1399 /* disable update TSF */
1400 usb_write8(Adapter, REG_BCN_CTRL, usb_read8(Adapter, REG_BCN_CTRL) | BIT(4));
1401 break;
1402 case HW_VAR_MLME_SITESURVEY:
1403 if (*((u8 *)val)) { /* under sitesurvey */
1404 /* config RCR to receive different BSSID & not to receive data frame */
1405 u32 v = usb_read32(Adapter, REG_RCR);
1406 v &= ~(RCR_CBSSID_BCN);
1407 usb_write32(Adapter, REG_RCR, v);
1408 /* reject all data frame */
1409 usb_write16(Adapter, REG_RXFLTMAP2, 0x00);
1410
1411 /* disable update TSF */
1412 usb_write8(Adapter, REG_BCN_CTRL, usb_read8(Adapter, REG_BCN_CTRL) | BIT(4));
1413 } else { /* sitesurvey done */
1414 struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
1415 struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
1416
1417 if ((is_client_associated_to_ap(Adapter)) ||
1418 ((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE)) {
1419 /* enable to rx data frame */
1420 usb_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
1421
1422 /* enable update TSF */
1423 usb_write8(Adapter, REG_BCN_CTRL, usb_read8(Adapter, REG_BCN_CTRL)&(~BIT(4)));
1424 } else if ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE) {
1425 usb_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
1426 /* enable update TSF */
1427 usb_write8(Adapter, REG_BCN_CTRL, usb_read8(Adapter, REG_BCN_CTRL)&(~BIT(4)));
1428 }
1429 if ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE) {
1430 usb_write32(Adapter, REG_RCR, usb_read32(Adapter, REG_RCR)|RCR_CBSSID_BCN);
1431 } else {
1432 if (Adapter->in_cta_test) {
1433 u32 v = usb_read32(Adapter, REG_RCR);
1434 v &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);/* RCR_ADF */
1435 usb_write32(Adapter, REG_RCR, v);
1436 } else {
1437 usb_write32(Adapter, REG_RCR, usb_read32(Adapter, REG_RCR)|RCR_CBSSID_BCN);
1438 }
1439 }
1440 }
1441 break;
1442 case HW_VAR_MLME_JOIN:
1443 {
1444 u8 RetryLimit = 0x30;
1445 u8 type = *((u8 *)val);
1446 struct mlme_priv *pmlmepriv = &Adapter->mlmepriv;
1447
1448 if (type == 0) { /* prepare to join */
1449 /* enable to rx data frame.Accept all data frame */
1450 usb_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
1451
1452 if (Adapter->in_cta_test) {
1453 u32 v = usb_read32(Adapter, REG_RCR);
1454 v &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);/* RCR_ADF */
1455 usb_write32(Adapter, REG_RCR, v);
1456 } else {
1457 usb_write32(Adapter, REG_RCR, usb_read32(Adapter, REG_RCR)|RCR_CBSSID_DATA|RCR_CBSSID_BCN);
1458 }
1459
1460 if (check_fwstate(pmlmepriv, WIFI_STATION_STATE))
1461 RetryLimit = (haldata->CustomerID == RT_CID_CCX) ? 7 : 48;
1462 else /* Ad-hoc Mode */
1463 RetryLimit = 0x7;
1464 } else if (type == 1) {
1465 /* joinbss_event call back when join res < 0 */
1466 usb_write16(Adapter, REG_RXFLTMAP2, 0x00);
1467 } else if (type == 2) {
1468 /* sta add event call back */
1469 /* enable update TSF */
1470 usb_write8(Adapter, REG_BCN_CTRL, usb_read8(Adapter, REG_BCN_CTRL)&(~BIT(4)));
1471
1472 if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE))
1473 RetryLimit = 0x7;
1474 }
1475 usb_write16(Adapter, REG_RL, RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT);
1476 }
1477 break;
1478 case HW_VAR_BEACON_INTERVAL:
1479 usb_write16(Adapter, REG_BCN_INTERVAL, *((u16 *)val));
1480 break;
1481 case HW_VAR_SLOT_TIME:
1482 {
1483 u8 u1bAIFS, aSifsTime;
1484 struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
1485 struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
1486
1487 usb_write8(Adapter, REG_SLOT, val[0]);
1488
1489 if (pmlmeinfo->WMM_enable == 0) {
1490 if (pmlmeext->cur_wireless_mode == WIRELESS_11B)
1491 aSifsTime = 10;
1492 else
1493 aSifsTime = 16;
1494
1495 u1bAIFS = aSifsTime + (2 * pmlmeinfo->slotTime);
1496
1497 /* <Roger_EXP> Temporary removed, 2008.06.20. */
1498 usb_write8(Adapter, REG_EDCA_VO_PARAM, u1bAIFS);
1499 usb_write8(Adapter, REG_EDCA_VI_PARAM, u1bAIFS);
1500 usb_write8(Adapter, REG_EDCA_BE_PARAM, u1bAIFS);
1501 usb_write8(Adapter, REG_EDCA_BK_PARAM, u1bAIFS);
1502 }
1503 }
1504 break;
1505 case HW_VAR_RESP_SIFS:
1506 /* RESP_SIFS for CCK */
1507 usb_write8(Adapter, REG_R2T_SIFS, val[0]); /* SIFS_T2T_CCK (0x08) */
1508 usb_write8(Adapter, REG_R2T_SIFS+1, val[1]); /* SIFS_R2T_CCK(0x08) */
1509 /* RESP_SIFS for OFDM */
1510 usb_write8(Adapter, REG_T2T_SIFS, val[2]); /* SIFS_T2T_OFDM (0x0a) */
1511 usb_write8(Adapter, REG_T2T_SIFS+1, val[3]); /* SIFS_R2T_OFDM(0x0a) */
1512 break;
1513 case HW_VAR_ACK_PREAMBLE:
1514 {
1515 u8 regTmp;
1516 u8 bShortPreamble = *((bool *)val);
1517 /* Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily) */
1518 regTmp = (haldata->nCur40MhzPrimeSC)<<5;
1519 if (bShortPreamble)
1520 regTmp |= 0x80;
1521
1522 usb_write8(Adapter, REG_RRSR+2, regTmp);
1523 }
1524 break;
1525 case HW_VAR_SEC_CFG:
1526 usb_write8(Adapter, REG_SECCFG, *((u8 *)val));
1527 break;
1528 case HW_VAR_DM_FLAG:
1529 podmpriv->SupportAbility = *((u8 *)val);
1530 break;
1531 case HW_VAR_DM_FUNC_OP:
1532 if (val[0])
1533 podmpriv->BK_SupportAbility = podmpriv->SupportAbility;
1534 else
1535 podmpriv->SupportAbility = podmpriv->BK_SupportAbility;
1536 break;
1537 case HW_VAR_DM_FUNC_SET:
1538 if (*((u32 *)val) == DYNAMIC_ALL_FUNC_ENABLE) {
1539 pdmpriv->DMFlag = pdmpriv->InitDMFlag;
1540 podmpriv->SupportAbility = pdmpriv->InitODMFlag;
1541 } else {
1542 podmpriv->SupportAbility |= *((u32 *)val);
1543 }
1544 break;
1545 case HW_VAR_DM_FUNC_CLR:
1546 podmpriv->SupportAbility &= *((u32 *)val);
1547 break;
1548 case HW_VAR_CAM_EMPTY_ENTRY:
1549 {
1550 u8 ucIndex = *((u8 *)val);
1551 u8 i;
1552 u32 ulCommand = 0;
1553 u32 ulContent = 0;
1554 u32 ulEncAlgo = CAM_AES;
1555
1556 for (i = 0; i < CAM_CONTENT_COUNT; i++) {
1557 /* filled id in CAM config 2 byte */
1558 if (i == 0)
1559 ulContent |= (ucIndex & 0x03) | ((u16)(ulEncAlgo)<<2);
1560 else
1561 ulContent = 0;
1562 /* polling bit, and No Write enable, and address */
1563 ulCommand = CAM_CONTENT_COUNT*ucIndex+i;
1564 ulCommand = ulCommand | CAM_POLLINIG|CAM_WRITE;
1565 /* write content 0 is equall to mark invalid */
1566 usb_write32(Adapter, WCAMI, ulContent); /* delay_ms(40); */
1567 usb_write32(Adapter, RWCAM, ulCommand); /* delay_ms(40); */
1568 }
1569 }
1570 break;
1571 case HW_VAR_CAM_INVALID_ALL:
1572 usb_write32(Adapter, RWCAM, BIT(31) | BIT(30));
1573 break;
1574 case HW_VAR_CAM_WRITE:
1575 {
1576 u32 cmd;
1577 u32 *cam_val = (u32 *)val;
1578 usb_write32(Adapter, WCAMI, cam_val[0]);
1579
1580 cmd = CAM_POLLINIG | CAM_WRITE | cam_val[1];
1581 usb_write32(Adapter, RWCAM, cmd);
1582 }
1583 break;
1584 case HW_VAR_AC_PARAM_VO:
1585 usb_write32(Adapter, REG_EDCA_VO_PARAM, ((u32 *)(val))[0]);
1586 break;
1587 case HW_VAR_AC_PARAM_VI:
1588 usb_write32(Adapter, REG_EDCA_VI_PARAM, ((u32 *)(val))[0]);
1589 break;
1590 case HW_VAR_AC_PARAM_BE:
1591 haldata->AcParam_BE = ((u32 *)(val))[0];
1592 usb_write32(Adapter, REG_EDCA_BE_PARAM, ((u32 *)(val))[0]);
1593 break;
1594 case HW_VAR_AC_PARAM_BK:
1595 usb_write32(Adapter, REG_EDCA_BK_PARAM, ((u32 *)(val))[0]);
1596 break;
1597 case HW_VAR_ACM_CTRL:
1598 {
1599 u8 acm_ctrl = *((u8 *)val);
1600 u8 AcmCtrl = usb_read8(Adapter, REG_ACMHWCTRL);
1601
1602 if (acm_ctrl > 1)
1603 AcmCtrl = AcmCtrl | 0x1;
1604
1605 if (acm_ctrl & BIT(3))
1606 AcmCtrl |= AcmHw_VoqEn;
1607 else
1608 AcmCtrl &= (~AcmHw_VoqEn);
1609
1610 if (acm_ctrl & BIT(2))
1611 AcmCtrl |= AcmHw_ViqEn;
1612 else
1613 AcmCtrl &= (~AcmHw_ViqEn);
1614
1615 if (acm_ctrl & BIT(1))
1616 AcmCtrl |= AcmHw_BeqEn;
1617 else
1618 AcmCtrl &= (~AcmHw_BeqEn);
1619
1620 DBG_88E("[HW_VAR_ACM_CTRL] Write 0x%X\n", AcmCtrl);
1621 usb_write8(Adapter, REG_ACMHWCTRL, AcmCtrl);
1622 }
1623 break;
1624 case HW_VAR_AMPDU_MIN_SPACE:
1625 {
1626 u8 MinSpacingToSet;
1627 u8 SecMinSpace;
1628
1629 MinSpacingToSet = *((u8 *)val);
1630 if (MinSpacingToSet <= 7) {
1631 switch (Adapter->securitypriv.dot11PrivacyAlgrthm) {
1632 case _NO_PRIVACY_:
1633 case _AES_:
1634 SecMinSpace = 0;
1635 break;
1636 case _WEP40_:
1637 case _WEP104_:
1638 case _TKIP_:
1639 case _TKIP_WTMIC_:
1640 SecMinSpace = 6;
1641 break;
1642 default:
1643 SecMinSpace = 7;
1644 break;
1645 }
1646 if (MinSpacingToSet < SecMinSpace)
1647 MinSpacingToSet = SecMinSpace;
1648 usb_write8(Adapter, REG_AMPDU_MIN_SPACE, (usb_read8(Adapter, REG_AMPDU_MIN_SPACE) & 0xf8) | MinSpacingToSet);
1649 }
1650 }
1651 break;
1652 case HW_VAR_AMPDU_FACTOR:
1653 {
1654 u8 RegToSet_Normal[4] = {0x41, 0xa8, 0x72, 0xb9};
1655 u8 FactorToSet;
1656 u8 *pRegToSet;
1657 u8 index = 0;
1658
1659 pRegToSet = RegToSet_Normal; /* 0xb972a841; */
1660 FactorToSet = *((u8 *)val);
1661 if (FactorToSet <= 3) {
1662 FactorToSet = 1 << (FactorToSet + 2);
1663 if (FactorToSet > 0xf)
1664 FactorToSet = 0xf;
1665
1666 for (index = 0; index < 4; index++) {
1667 if ((pRegToSet[index] & 0xf0) > (FactorToSet<<4))
1668 pRegToSet[index] = (pRegToSet[index] & 0x0f) | (FactorToSet<<4);
1669
1670 if ((pRegToSet[index] & 0x0f) > FactorToSet)
1671 pRegToSet[index] = (pRegToSet[index] & 0xf0) | (FactorToSet);
1672
1673 usb_write8(Adapter, (REG_AGGLEN_LMT+index), pRegToSet[index]);
1674 }
1675 }
1676 }
1677 break;
1678 case HW_VAR_RXDMA_AGG_PG_TH:
1679 {
1680 u8 threshold = *((u8 *)val);
1681 if (threshold == 0)
1682 threshold = haldata->UsbRxAggPageCount;
1683 usb_write8(Adapter, REG_RXDMA_AGG_PG_TH, threshold);
1684 }
1685 break;
1686 case HW_VAR_SET_RPWM:
1687 break;
1688 case HW_VAR_H2C_FW_PWRMODE:
1689 {
1690 u8 psmode = (*(u8 *)val);
1691
1692 /* Forece leave RF low power mode for 1T1R to prevent conficting setting in Fw power */
1693 /* saving sequence. 2010.06.07. Added by tynli. Suggested by SD3 yschang. */
1694 if (psmode != PS_MODE_ACTIVE)
1695 ODM_RF_Saving(podmpriv, true);
1696 rtl8188e_set_FwPwrMode_cmd(Adapter, psmode);
1697 }
1698 break;
1699 case HW_VAR_H2C_FW_JOINBSSRPT:
1700 {
1701 u8 mstatus = (*(u8 *)val);
1702 rtl8188e_set_FwJoinBssReport_cmd(Adapter, mstatus);
1703 }
1704 break;
1705 case HW_VAR_INITIAL_GAIN:
1706 {
1707 struct rtw_dig *pDigTable = &podmpriv->DM_DigTable;
1708 u32 rx_gain = ((u32 *)(val))[0];
1709
1710 if (rx_gain == 0xff) {/* restore rx gain */
1711 ODM_Write_DIG(podmpriv, pDigTable->BackupIGValue);
1712 } else {
1713 pDigTable->BackupIGValue = pDigTable->CurIGValue;
1714 ODM_Write_DIG(podmpriv, rx_gain);
1715 }
1716 }
1717 break;
1718 case HW_VAR_TRIGGER_GPIO_0:
1719 rtl8192cu_trigger_gpio_0(Adapter);
1720 break;
1721 case HW_VAR_RPT_TIMER_SETTING:
1722 {
1723 u16 min_rpt_time = (*(u16 *)val);
1724 ODM_RA_Set_TxRPT_Time(podmpriv, min_rpt_time);
1725 }
1726 break;
1727 case HW_VAR_ANTENNA_DIVERSITY_SELECT:
1728 {
1729 u8 Optimum_antenna = (*(u8 *)val);
1730 u8 Ant;
1731 /* switch antenna to Optimum_antenna */
1732 if (haldata->CurAntenna != Optimum_antenna) {
1733 Ant = (Optimum_antenna == 2) ? MAIN_ANT : AUX_ANT;
1734 rtl88eu_dm_update_rx_idle_ant(&haldata->odmpriv, Ant);
1735
1736 haldata->CurAntenna = Optimum_antenna;
1737 }
1738 }
1739 break;
1740 case HW_VAR_EFUSE_BYTES: /* To set EFUE total used bytes, added by Roger, 2008.12.22. */
1741 haldata->EfuseUsedBytes = *((u16 *)val);
1742 break;
1743 case HW_VAR_FIFO_CLEARN_UP:
1744 {
1745 struct pwrctrl_priv *pwrpriv = &Adapter->pwrctrlpriv;
1746 u8 trycnt = 100;
1747
1748 /* pause tx */
1749 usb_write8(Adapter, REG_TXPAUSE, 0xff);
1750
1751 /* keep sn */
1752 Adapter->xmitpriv.nqos_ssn = usb_read16(Adapter, REG_NQOS_SEQ);
1753
1754 if (!pwrpriv->bkeepfwalive) {
1755 /* RX DMA stop */
1756 usb_write32(Adapter, REG_RXPKT_NUM, (usb_read32(Adapter, REG_RXPKT_NUM)|RW_RELEASE_EN));
1757 do {
1758 if (!(usb_read32(Adapter, REG_RXPKT_NUM)&RXDMA_IDLE))
1759 break;
1760 } while (trycnt--);
1761 if (trycnt == 0)
1762 DBG_88E("Stop RX DMA failed......\n");
1763
1764 /* RQPN Load 0 */
1765 usb_write16(Adapter, REG_RQPN_NPQ, 0x0);
1766 usb_write32(Adapter, REG_RQPN, 0x80000000);
1767 mdelay(10);
1768 }
1769 }
1770 break;
1771 case HW_VAR_CHECK_TXBUF:
1772 break;
1773 case HW_VAR_APFM_ON_MAC:
1774 haldata->bMacPwrCtrlOn = *val;
1775 DBG_88E("%s: bMacPwrCtrlOn=%d\n", __func__, haldata->bMacPwrCtrlOn);
1776 break;
1777 case HW_VAR_TX_RPT_MAX_MACID:
1778 {
1779 u8 maxMacid = *val;
1780 DBG_88E("### MacID(%d),Set Max Tx RPT MID(%d)\n", maxMacid, maxMacid+1);
1781 usb_write8(Adapter, REG_TX_RPT_CTRL+1, maxMacid+1);
1782 }
1783 break;
1784 case HW_VAR_H2C_MEDIA_STATUS_RPT:
1785 rtl8188e_set_FwMediaStatus_cmd(Adapter, (*(__le16 *)val));
1786 break;
1787 case HW_VAR_BCN_VALID:
1788 /* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2, write 1 to clear, Clear by sw */
1789 usb_write8(Adapter, REG_TDECTRL+2, usb_read8(Adapter, REG_TDECTRL+2) | BIT(0));
1790 break;
1791 default:
1792 break;
1793 }
1794 }
1795
1796 static void GetHwReg8188EU(struct adapter *Adapter, u8 variable, u8 *val)
1797 {
1798 struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
1799 struct odm_dm_struct *podmpriv = &haldata->odmpriv;
1800
1801 switch (variable) {
1802 case HW_VAR_BASIC_RATE:
1803 *((u16 *)(val)) = haldata->BasicRateSet;
1804 case HW_VAR_TXPAUSE:
1805 val[0] = usb_read8(Adapter, REG_TXPAUSE);
1806 break;
1807 case HW_VAR_BCN_VALID:
1808 /* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2 */
1809 val[0] = (BIT(0) & usb_read8(Adapter, REG_TDECTRL+2)) ? true : false;
1810 break;
1811 case HW_VAR_DM_FLAG:
1812 val[0] = podmpriv->SupportAbility;
1813 break;
1814 case HW_VAR_RF_TYPE:
1815 val[0] = haldata->rf_type;
1816 break;
1817 case HW_VAR_FWLPS_RF_ON:
1818 {
1819 /* When we halt NIC, we should check if FW LPS is leave. */
1820 if (Adapter->pwrctrlpriv.rf_pwrstate == rf_off) {
1821 /* If it is in HW/SW Radio OFF or IPS state, we do not check Fw LPS Leave, */
1822 /* because Fw is unload. */
1823 val[0] = true;
1824 } else {
1825 u32 valRCR;
1826 valRCR = usb_read32(Adapter, REG_RCR);
1827 valRCR &= 0x00070000;
1828 if (valRCR)
1829 val[0] = false;
1830 else
1831 val[0] = true;
1832 }
1833 }
1834 break;
1835 case HW_VAR_CURRENT_ANTENNA:
1836 val[0] = haldata->CurAntenna;
1837 break;
1838 case HW_VAR_EFUSE_BYTES: /* To get EFUE total used bytes, added by Roger, 2008.12.22. */
1839 *((u16 *)(val)) = haldata->EfuseUsedBytes;
1840 break;
1841 case HW_VAR_APFM_ON_MAC:
1842 *val = haldata->bMacPwrCtrlOn;
1843 break;
1844 case HW_VAR_CHK_HI_QUEUE_EMPTY:
1845 *val = ((usb_read32(Adapter, REG_HGQ_INFORMATION)&0x0000ff00) == 0) ? true : false;
1846 break;
1847 default:
1848 break;
1849 }
1850 }
1851
1852 /* */
1853 /* Description: */
1854 /* Query setting of specified variable. */
1855 /* */
1856 static u8
1857 GetHalDefVar8188EUsb(
1858 struct adapter *Adapter,
1859 enum hal_def_variable eVariable,
1860 void *pValue
1861 )
1862 {
1863 struct hal_data_8188e *haldata = GET_HAL_DATA(Adapter);
1864 u8 bResult = _SUCCESS;
1865
1866 switch (eVariable) {
1867 case HAL_DEF_UNDERCORATEDSMOOTHEDPWDB:
1868 {
1869 struct mlme_priv *pmlmepriv = &Adapter->mlmepriv;
1870 struct sta_priv *pstapriv = &Adapter->stapriv;
1871 struct sta_info *psta;
1872 psta = rtw_get_stainfo(pstapriv, pmlmepriv->cur_network.network.MacAddress);
1873 if (psta)
1874 *((int *)pValue) = psta->rssi_stat.UndecoratedSmoothedPWDB;
1875 }
1876 break;
1877 case HAL_DEF_IS_SUPPORT_ANT_DIV:
1878 *((u8 *)pValue) = (haldata->AntDivCfg == 0) ? false : true;
1879 break;
1880 case HAL_DEF_CURRENT_ANTENNA:
1881 *((u8 *)pValue) = haldata->CurAntenna;
1882 break;
1883 case HAL_DEF_DRVINFO_SZ:
1884 *((u32 *)pValue) = DRVINFO_SZ;
1885 break;
1886 case HAL_DEF_MAX_RECVBUF_SZ:
1887 *((u32 *)pValue) = MAX_RECVBUF_SZ;
1888 break;
1889 case HAL_DEF_RX_PACKET_OFFSET:
1890 *((u32 *)pValue) = RXDESC_SIZE + DRVINFO_SZ;
1891 break;
1892 case HAL_DEF_DBG_DM_FUNC:
1893 *((u32 *)pValue) = haldata->odmpriv.SupportAbility;
1894 break;
1895 case HAL_DEF_RA_DECISION_RATE:
1896 {
1897 u8 MacID = *((u8 *)pValue);
1898 *((u8 *)pValue) = ODM_RA_GetDecisionRate_8188E(&haldata->odmpriv, MacID);
1899 }
1900 break;
1901 case HAL_DEF_RA_SGI:
1902 {
1903 u8 MacID = *((u8 *)pValue);
1904 *((u8 *)pValue) = ODM_RA_GetShortGI_8188E(&haldata->odmpriv, MacID);
1905 }
1906 break;
1907 case HAL_DEF_PT_PWR_STATUS:
1908 {
1909 u8 MacID = *((u8 *)pValue);
1910 *((u8 *)pValue) = ODM_RA_GetHwPwrStatus_8188E(&haldata->odmpriv, MacID);
1911 }
1912 break;
1913 case HW_VAR_MAX_RX_AMPDU_FACTOR:
1914 *((u32 *)pValue) = MAX_AMPDU_FACTOR_64K;
1915 break;
1916 case HW_DEF_RA_INFO_DUMP:
1917 {
1918 u8 entry_id = *((u8 *)pValue);
1919 if (check_fwstate(&Adapter->mlmepriv, _FW_LINKED)) {
1920 DBG_88E("============ RA status check ===================\n");
1921 DBG_88E("Mac_id:%d , RateID = %d, RAUseRate = 0x%08x, RateSGI = %d, DecisionRate = 0x%02x ,PTStage = %d\n",
1922 entry_id,
1923 haldata->odmpriv.RAInfo[entry_id].RateID,
1924 haldata->odmpriv.RAInfo[entry_id].RAUseRate,
1925 haldata->odmpriv.RAInfo[entry_id].RateSGI,
1926 haldata->odmpriv.RAInfo[entry_id].DecisionRate,
1927 haldata->odmpriv.RAInfo[entry_id].PTStage);
1928 }
1929 }
1930 break;
1931 case HW_DEF_ODM_DBG_FLAG:
1932 {
1933 struct odm_dm_struct *dm_ocm = &haldata->odmpriv;
1934 pr_info("dm_ocm->DebugComponents = 0x%llx\n", dm_ocm->DebugComponents);
1935 }
1936 break;
1937 case HAL_DEF_DBG_DUMP_RXPKT:
1938 *((u8 *)pValue) = haldata->bDumpRxPkt;
1939 break;
1940 case HAL_DEF_DBG_DUMP_TXPKT:
1941 *((u8 *)pValue) = haldata->bDumpTxPkt;
1942 break;
1943 default:
1944 bResult = _FAIL;
1945 break;
1946 }
1947
1948 return bResult;
1949 }
1950
1951 static void UpdateHalRAMask8188EUsb(struct adapter *adapt, u32 mac_id, u8 rssi_level)
1952 {
1953 u8 init_rate = 0;
1954 u8 networkType, raid;
1955 u32 mask, rate_bitmap;
1956 u8 shortGIrate = false;
1957 int supportRateNum = 0;
1958 struct sta_info *psta;
1959 struct hal_data_8188e *haldata = GET_HAL_DATA(adapt);
1960 struct mlme_ext_priv *pmlmeext = &adapt->mlmeextpriv;
1961 struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
1962 struct wlan_bssid_ex *cur_network = &pmlmeinfo->network;
1963
1964 if (mac_id >= NUM_STA) /* CAM_SIZE */
1965 return;
1966 psta = pmlmeinfo->FW_sta_info[mac_id].psta;
1967 if (psta == NULL)
1968 return;
1969 switch (mac_id) {
1970 case 0:/* for infra mode */
1971 supportRateNum = rtw_get_rateset_len(cur_network->SupportedRates);
1972 networkType = judge_network_type(adapt, cur_network->SupportedRates, supportRateNum) & 0xf;
1973 raid = networktype_to_raid(networkType);
1974 mask = update_supported_rate(cur_network->SupportedRates, supportRateNum);
1975 mask |= (pmlmeinfo->HT_enable) ? update_MSC_rate(&pmlmeinfo->HT_caps) : 0;
1976 if (support_short_GI(adapt, &pmlmeinfo->HT_caps))
1977 shortGIrate = true;
1978 break;
1979 case 1:/* for broadcast/multicast */
1980 supportRateNum = rtw_get_rateset_len(pmlmeinfo->FW_sta_info[mac_id].SupportedRates);
1981 if (pmlmeext->cur_wireless_mode & WIRELESS_11B)
1982 networkType = WIRELESS_11B;
1983 else
1984 networkType = WIRELESS_11G;
1985 raid = networktype_to_raid(networkType);
1986 mask = update_basic_rate(cur_network->SupportedRates, supportRateNum);
1987 break;
1988 default: /* for each sta in IBSS */
1989 supportRateNum = rtw_get_rateset_len(pmlmeinfo->FW_sta_info[mac_id].SupportedRates);
1990 networkType = judge_network_type(adapt, pmlmeinfo->FW_sta_info[mac_id].SupportedRates, supportRateNum) & 0xf;
1991 raid = networktype_to_raid(networkType);
1992 mask = update_supported_rate(cur_network->SupportedRates, supportRateNum);
1993
1994 /* todo: support HT in IBSS */
1995 break;
1996 }
1997
1998 rate_bitmap = ODM_Get_Rate_Bitmap(&haldata->odmpriv, mac_id, mask, rssi_level);
1999 DBG_88E("%s => mac_id:%d, networkType:0x%02x, mask:0x%08x\n\t ==> rssi_level:%d, rate_bitmap:0x%08x\n",
2000 __func__, mac_id, networkType, mask, rssi_level, rate_bitmap);
2001
2002 mask &= rate_bitmap;
2003
2004 init_rate = get_highest_rate_idx(mask)&0x3f;
2005
2006 ODM_RA_UpdateRateInfo_8188E(&haldata->odmpriv, mac_id,
2007 raid, mask, shortGIrate);
2008
2009 /* set ra_id */
2010 psta->raid = raid;
2011 psta->init_rate = init_rate;
2012 }
2013
2014 static void SetBeaconRelatedRegisters8188EUsb(struct adapter *adapt)
2015 {
2016 u32 value32;
2017 struct mlme_ext_priv *pmlmeext = &adapt->mlmeextpriv;
2018 struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
2019 u32 bcn_ctrl_reg = REG_BCN_CTRL;
2020 /* reset TSF, enable update TSF, correcting TSF On Beacon */
2021
2022 /* BCN interval */
2023 usb_write16(adapt, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval);
2024 usb_write8(adapt, REG_ATIMWND, 0x02);/* 2ms */
2025
2026 _InitBeaconParameters(adapt);
2027
2028 usb_write8(adapt, REG_SLOT, 0x09);
2029
2030 value32 = usb_read32(adapt, REG_TCR);
2031 value32 &= ~TSFRST;
2032 usb_write32(adapt, REG_TCR, value32);
2033
2034 value32 |= TSFRST;
2035 usb_write32(adapt, REG_TCR, value32);
2036
2037 /* NOTE: Fix test chip's bug (about contention windows's randomness) */
2038 usb_write8(adapt, REG_RXTSF_OFFSET_CCK, 0x50);
2039 usb_write8(adapt, REG_RXTSF_OFFSET_OFDM, 0x50);
2040
2041 _BeaconFunctionEnable(adapt, true, true);
2042
2043 ResumeTxBeacon(adapt);
2044
2045 usb_write8(adapt, bcn_ctrl_reg, usb_read8(adapt, bcn_ctrl_reg) | BIT(1));
2046 }
2047
2048 static void rtl8188eu_init_default_value(struct adapter *adapt)
2049 {
2050 struct hal_data_8188e *haldata;
2051 struct pwrctrl_priv *pwrctrlpriv;
2052 u8 i;
2053
2054 haldata = GET_HAL_DATA(adapt);
2055 pwrctrlpriv = &adapt->pwrctrlpriv;
2056
2057 /* init default value */
2058 if (!pwrctrlpriv->bkeepfwalive)
2059 haldata->LastHMEBoxNum = 0;
2060
2061 /* init dm default value */
2062 haldata->odmpriv.RFCalibrateInfo.bIQKInitialized = false;
2063 haldata->odmpriv.RFCalibrateInfo.TM_Trigger = 0;/* for IQK */
2064 haldata->pwrGroupCnt = 0;
2065 haldata->PGMaxGroup = 13;
2066 haldata->odmpriv.RFCalibrateInfo.ThermalValue_HP_index = 0;
2067 for (i = 0; i < HP_THERMAL_NUM; i++)
2068 haldata->odmpriv.RFCalibrateInfo.ThermalValue_HP[i] = 0;
2069 }
2070
2071 void rtl8188eu_set_hal_ops(struct adapter *adapt)
2072 {
2073 struct hal_ops *halfunc = &adapt->HalFunc;
2074
2075
2076 adapt->HalData = kzalloc(sizeof(struct hal_data_8188e), GFP_KERNEL);
2077 if (!adapt->HalData)
2078 DBG_88E("cant not alloc memory for HAL DATA\n");
2079
2080 halfunc->hal_power_on = rtl8188eu_InitPowerOn;
2081 halfunc->hal_init = &rtl8188eu_hal_init;
2082 halfunc->hal_deinit = &rtl8188eu_hal_deinit;
2083
2084 halfunc->inirp_init = &rtl8188eu_inirp_init;
2085 halfunc->inirp_deinit = &rtl8188eu_inirp_deinit;
2086
2087 halfunc->init_xmit_priv = &rtl8188eu_init_xmit_priv;
2088
2089 halfunc->init_recv_priv = &rtl8188eu_init_recv_priv;
2090 halfunc->free_recv_priv = &rtl8188eu_free_recv_priv;
2091 halfunc->InitSwLeds = &rtl8188eu_InitSwLeds;
2092 halfunc->DeInitSwLeds = &rtl8188eu_DeInitSwLeds;
2093
2094 halfunc->init_default_value = &rtl8188eu_init_default_value;
2095 halfunc->intf_chip_configure = &rtl8188eu_interface_configure;
2096 halfunc->read_adapter_info = &_ReadAdapterInfo8188EU;
2097
2098 halfunc->SetHwRegHandler = &SetHwReg8188EU;
2099 halfunc->GetHwRegHandler = &GetHwReg8188EU;
2100 halfunc->GetHalDefVarHandler = &GetHalDefVar8188EUsb;
2101
2102 halfunc->UpdateRAMaskHandler = &UpdateHalRAMask8188EUsb;
2103 halfunc->SetBeaconRelatedRegistersHandler = &SetBeaconRelatedRegisters8188EUsb;
2104
2105 halfunc->hal_xmit = &rtl8188eu_hal_xmit;
2106 halfunc->mgnt_xmit = &rtl8188eu_mgnt_xmit;
2107
2108 rtl8188e_set_hal_ops(halfunc);
2109 }