]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/staging/rtl8192e/rtllib_tx.c
networking: introduce and use skb_put_data()
[mirror_ubuntu-artful-kernel.git] / drivers / staging / rtl8192e / rtllib_tx.c
1 /******************************************************************************
2 *
3 * Copyright(c) 2003 - 2004 Intel Corporation. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * The full GNU General Public License is included in this distribution in the
15 * file called LICENSE.
16 *
17 * Contact Information:
18 * James P. Ketrenos <ipw2100-admin@linux.intel.com>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 *
21 *****************************************************************************
22 *
23 * Few modifications for Realtek's Wi-Fi drivers by
24 * Andrea Merello <andrea.merello@gmail.com>
25 *
26 * A special thanks goes to Realtek for their support !
27 *
28 *****************************************************************************/
29
30 #include <linux/compiler.h>
31 #include <linux/errno.h>
32 #include <linux/if_arp.h>
33 #include <linux/in6.h>
34 #include <linux/in.h>
35 #include <linux/ip.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/netdevice.h>
39 #include <linux/pci.h>
40 #include <linux/proc_fs.h>
41 #include <linux/skbuff.h>
42 #include <linux/slab.h>
43 #include <linux/tcp.h>
44 #include <linux/types.h>
45 #include <linux/wireless.h>
46 #include <linux/etherdevice.h>
47 #include <linux/uaccess.h>
48 #include <linux/if_vlan.h>
49
50 #include "rtllib.h"
51
52 /* 802.11 Data Frame
53 *
54 *
55 * 802.11 frame_control for data frames - 2 bytes
56 * ,--------------------------------------------------------------------.
57 * bits | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c | d | e |
58 * |---|---|---|---|---|---|---|---|---|----|----|-----|-----|-----|----|
59 * val | 0 | 0 | 0 | 1 | x | 0 | 0 | 0 | 1 | 0 | x | x | x | x | x |
60 * |---|---|---|---|---|---|---|---|---|----|----|-----|-----|-----|----|
61 * desc | ver | type | ^-subtype-^ |to |from|more|retry| pwr |more |wep |
62 * | | | x=0 data |DS | DS |frag| | mgm |data | |
63 * | | | x=1 data+ack | | | | | | | |
64 * '--------------------------------------------------------------------'
65 * /\
66 * |
67 * 802.11 Data Frame |
68 * ,--------- 'ctrl' expands to >---'
69 * |
70 * ,--'---,-------------------------------------------------------------.
71 * Bytes | 2 | 2 | 6 | 6 | 6 | 2 | 0..2312 | 4 |
72 * |------|------|---------|---------|---------|------|---------|------|
73 * Desc. | ctrl | dura | DA/RA | TA | SA | Sequ | Frame | fcs |
74 * | | tion | (BSSID) | | | ence | data | |
75 * `--------------------------------------------------| |------'
76 * Total: 28 non-data bytes `----.----'
77 * |
78 * .- 'Frame data' expands to <---------------------------'
79 * |
80 * V
81 * ,---------------------------------------------------.
82 * Bytes | 1 | 1 | 1 | 3 | 2 | 0-2304 |
83 * |------|------|---------|----------|------|---------|
84 * Desc. | SNAP | SNAP | Control |Eth Tunnel| Type | IP |
85 * | DSAP | SSAP | | | | Packet |
86 * | 0xAA | 0xAA |0x03 (UI)|0x00-00-F8| | |
87 * `-----------------------------------------| |
88 * Total: 8 non-data bytes `----.----'
89 * |
90 * .- 'IP Packet' expands, if WEP enabled, to <--'
91 * |
92 * V
93 * ,-----------------------.
94 * Bytes | 4 | 0-2296 | 4 |
95 * |-----|-----------|-----|
96 * Desc. | IV | Encrypted | ICV |
97 * | | IP Packet | |
98 * `-----------------------'
99 * Total: 8 non-data bytes
100 *
101 *
102 * 802.3 Ethernet Data Frame
103 *
104 * ,-----------------------------------------.
105 * Bytes | 6 | 6 | 2 | Variable | 4 |
106 * |-------|-------|------|-----------|------|
107 * Desc. | Dest. | Source| Type | IP Packet | fcs |
108 * | MAC | MAC | | | |
109 * `-----------------------------------------'
110 * Total: 18 non-data bytes
111 *
112 * In the event that fragmentation is required, the incoming payload is split
113 * into N parts of size ieee->fts. The first fragment contains the SNAP header
114 * and the remaining packets are just data.
115 *
116 * If encryption is enabled, each fragment payload size is reduced by enough
117 * space to add the prefix and postfix (IV and ICV totalling 8 bytes in
118 * the case of WEP) So if you have 1500 bytes of payload with ieee->fts set to
119 * 500 without encryption it will take 3 frames. With WEP it will take 4 frames
120 * as the payload of each frame is reduced to 492 bytes.
121 *
122 * SKB visualization
123 *
124 * ,- skb->data
125 * |
126 * | ETHERNET HEADER ,-<-- PAYLOAD
127 * | | 14 bytes from skb->data
128 * | 2 bytes for Type --> ,T. | (sizeof ethhdr)
129 * | | | |
130 * |,-Dest.--. ,--Src.---. | | |
131 * | 6 bytes| | 6 bytes | | | |
132 * v | | | | | |
133 * 0 | v 1 | v | v 2
134 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
135 * ^ | ^ | ^ |
136 * | | | | | |
137 * | | | | `T' <---- 2 bytes for Type
138 * | | | |
139 * | | '---SNAP--' <-------- 6 bytes for SNAP
140 * | |
141 * `-IV--' <-------------------- 4 bytes for IV (WEP)
142 *
143 * SNAP HEADER
144 *
145 */
146
147 static u8 P802_1H_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0xf8 };
148 static u8 RFC1042_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0x00 };
149
150 static int rtllib_put_snap(u8 *data, u16 h_proto)
151 {
152 struct rtllib_snap_hdr *snap;
153 u8 *oui;
154
155 snap = (struct rtllib_snap_hdr *)data;
156 snap->dsap = 0xaa;
157 snap->ssap = 0xaa;
158 snap->ctrl = 0x03;
159
160 if (h_proto == 0x8137 || h_proto == 0x80f3)
161 oui = P802_1H_OUI;
162 else
163 oui = RFC1042_OUI;
164 snap->oui[0] = oui[0];
165 snap->oui[1] = oui[1];
166 snap->oui[2] = oui[2];
167
168 *(__be16 *)(data + SNAP_SIZE) = htons(h_proto);
169
170 return SNAP_SIZE + sizeof(u16);
171 }
172
173 int rtllib_encrypt_fragment(struct rtllib_device *ieee, struct sk_buff *frag,
174 int hdr_len)
175 {
176 struct lib80211_crypt_data *crypt = NULL;
177 int res;
178
179 crypt = ieee->crypt_info.crypt[ieee->crypt_info.tx_keyidx];
180
181 if (!(crypt && crypt->ops)) {
182 netdev_info(ieee->dev, "=========>%s(), crypt is null\n",
183 __func__);
184 return -1;
185 }
186 /* To encrypt, frame format is:
187 * IV (4 bytes), clear payload (including SNAP), ICV (4 bytes)
188 */
189
190 /* Host-based IEEE 802.11 fragmentation for TX is not yet supported, so
191 * call both MSDU and MPDU encryption functions from here.
192 */
193 atomic_inc(&crypt->refcnt);
194 res = 0;
195 if (crypt->ops->encrypt_msdu)
196 res = crypt->ops->encrypt_msdu(frag, hdr_len, crypt->priv);
197 if (res == 0 && crypt->ops->encrypt_mpdu)
198 res = crypt->ops->encrypt_mpdu(frag, hdr_len, crypt->priv);
199
200 atomic_dec(&crypt->refcnt);
201 if (res < 0) {
202 netdev_info(ieee->dev, "%s: Encryption failed: len=%d.\n",
203 ieee->dev->name, frag->len);
204 return -1;
205 }
206
207 return 0;
208 }
209
210
211 void rtllib_txb_free(struct rtllib_txb *txb)
212 {
213 if (unlikely(!txb))
214 return;
215 kfree(txb);
216 }
217
218 static struct rtllib_txb *rtllib_alloc_txb(int nr_frags, int txb_size,
219 gfp_t gfp_mask)
220 {
221 struct rtllib_txb *txb;
222 int i;
223
224 txb = kmalloc(sizeof(struct rtllib_txb) + (sizeof(u8 *) * nr_frags),
225 gfp_mask);
226 if (!txb)
227 return NULL;
228
229 memset(txb, 0, sizeof(struct rtllib_txb));
230 txb->nr_frags = nr_frags;
231 txb->frag_size = cpu_to_le16(txb_size);
232
233 for (i = 0; i < nr_frags; i++) {
234 txb->fragments[i] = dev_alloc_skb(txb_size);
235 if (unlikely(!txb->fragments[i])) {
236 i--;
237 break;
238 }
239 memset(txb->fragments[i]->cb, 0, sizeof(txb->fragments[i]->cb));
240 }
241 if (unlikely(i != nr_frags)) {
242 while (i >= 0)
243 dev_kfree_skb_any(txb->fragments[i--]);
244 kfree(txb);
245 return NULL;
246 }
247 return txb;
248 }
249
250 static int rtllib_classify(struct sk_buff *skb, u8 bIsAmsdu)
251 {
252 struct ethhdr *eth;
253 struct iphdr *ip;
254
255 eth = (struct ethhdr *)skb->data;
256 if (eth->h_proto != htons(ETH_P_IP))
257 return 0;
258
259 #ifdef VERBOSE_DEBUG
260 print_hex_dump_bytes("rtllib_classify(): ", DUMP_PREFIX_NONE, skb->data,
261 skb->len);
262 #endif
263 ip = ip_hdr(skb);
264 switch (ip->tos & 0xfc) {
265 case 0x20:
266 return 2;
267 case 0x40:
268 return 1;
269 case 0x60:
270 return 3;
271 case 0x80:
272 return 4;
273 case 0xa0:
274 return 5;
275 case 0xc0:
276 return 6;
277 case 0xe0:
278 return 7;
279 default:
280 return 0;
281 }
282 }
283
284 static void rtllib_tx_query_agg_cap(struct rtllib_device *ieee,
285 struct sk_buff *skb,
286 struct cb_desc *tcb_desc)
287 {
288 struct rt_hi_throughput *pHTInfo = ieee->pHTInfo;
289 struct tx_ts_record *pTxTs = NULL;
290 struct rtllib_hdr_1addr *hdr = (struct rtllib_hdr_1addr *)skb->data;
291
292 if (rtllib_act_scanning(ieee, false))
293 return;
294
295 if (!pHTInfo->bCurrentHTSupport || !pHTInfo->bEnableHT)
296 return;
297 if (!IsQoSDataFrame(skb->data))
298 return;
299 if (is_multicast_ether_addr(hdr->addr1))
300 return;
301
302 if (tcb_desc->bdhcp || ieee->CntAfterLink < 2)
303 return;
304
305 if (pHTInfo->IOTAction & HT_IOT_ACT_TX_NO_AGGREGATION)
306 return;
307
308 if (!ieee->GetNmodeSupportBySecCfg(ieee->dev))
309 return;
310 if (pHTInfo->bCurrentAMPDUEnable) {
311 if (!GetTs(ieee, (struct ts_common_info **)(&pTxTs), hdr->addr1,
312 skb->priority, TX_DIR, true)) {
313 netdev_info(ieee->dev, "%s: can't get TS\n", __func__);
314 return;
315 }
316 if (pTxTs->TxAdmittedBARecord.bValid == false) {
317 if (ieee->wpa_ie_len && (ieee->pairwise_key_type ==
318 KEY_TYPE_NA)) {
319 ;
320 } else if (tcb_desc->bdhcp == 1) {
321 ;
322 } else if (!pTxTs->bDisable_AddBa) {
323 TsStartAddBaProcess(ieee, pTxTs);
324 }
325 goto FORCED_AGG_SETTING;
326 } else if (pTxTs->bUsingBa == false) {
327 if (SN_LESS(pTxTs->TxAdmittedBARecord.BaStartSeqCtrl.field.SeqNum,
328 (pTxTs->TxCurSeq+1)%4096))
329 pTxTs->bUsingBa = true;
330 else
331 goto FORCED_AGG_SETTING;
332 }
333 if (ieee->iw_mode == IW_MODE_INFRA) {
334 tcb_desc->bAMPDUEnable = true;
335 tcb_desc->ampdu_factor = pHTInfo->CurrentAMPDUFactor;
336 tcb_desc->ampdu_density = pHTInfo->CurrentMPDUDensity;
337 }
338 }
339 FORCED_AGG_SETTING:
340 switch (pHTInfo->ForcedAMPDUMode) {
341 case HT_AGG_AUTO:
342 break;
343
344 case HT_AGG_FORCE_ENABLE:
345 tcb_desc->bAMPDUEnable = true;
346 tcb_desc->ampdu_density = pHTInfo->ForcedMPDUDensity;
347 tcb_desc->ampdu_factor = pHTInfo->ForcedAMPDUFactor;
348 break;
349
350 case HT_AGG_FORCE_DISABLE:
351 tcb_desc->bAMPDUEnable = false;
352 tcb_desc->ampdu_density = 0;
353 tcb_desc->ampdu_factor = 0;
354 break;
355 }
356 }
357
358 static void rtllib_qurey_ShortPreambleMode(struct rtllib_device *ieee,
359 struct cb_desc *tcb_desc)
360 {
361 tcb_desc->bUseShortPreamble = false;
362 if (tcb_desc->data_rate == 2)
363 return;
364 else if (ieee->current_network.capability &
365 WLAN_CAPABILITY_SHORT_PREAMBLE)
366 tcb_desc->bUseShortPreamble = true;
367 }
368
369 static void rtllib_query_HTCapShortGI(struct rtllib_device *ieee,
370 struct cb_desc *tcb_desc)
371 {
372 struct rt_hi_throughput *pHTInfo = ieee->pHTInfo;
373
374 tcb_desc->bUseShortGI = false;
375
376 if (!pHTInfo->bCurrentHTSupport || !pHTInfo->bEnableHT)
377 return;
378
379 if (pHTInfo->bForcedShortGI) {
380 tcb_desc->bUseShortGI = true;
381 return;
382 }
383
384 if ((pHTInfo->bCurBW40MHz == true) && pHTInfo->bCurShortGI40MHz)
385 tcb_desc->bUseShortGI = true;
386 else if ((pHTInfo->bCurBW40MHz == false) && pHTInfo->bCurShortGI20MHz)
387 tcb_desc->bUseShortGI = true;
388 }
389
390 static void rtllib_query_BandwidthMode(struct rtllib_device *ieee,
391 struct cb_desc *tcb_desc)
392 {
393 struct rt_hi_throughput *pHTInfo = ieee->pHTInfo;
394
395 tcb_desc->bPacketBW = false;
396
397 if (!pHTInfo->bCurrentHTSupport || !pHTInfo->bEnableHT)
398 return;
399
400 if (tcb_desc->bMulticast || tcb_desc->bBroadcast)
401 return;
402
403 if ((tcb_desc->data_rate & 0x80) == 0)
404 return;
405 if (pHTInfo->bCurBW40MHz && pHTInfo->bCurTxBW40MHz &&
406 !ieee->bandwidth_auto_switch.bforced_tx20Mhz)
407 tcb_desc->bPacketBW = true;
408 }
409
410 static void rtllib_query_protectionmode(struct rtllib_device *ieee,
411 struct cb_desc *tcb_desc,
412 struct sk_buff *skb)
413 {
414 struct rt_hi_throughput *pHTInfo;
415
416 tcb_desc->bRTSSTBC = false;
417 tcb_desc->bRTSUseShortGI = false;
418 tcb_desc->bCTSEnable = false;
419 tcb_desc->RTSSC = 0;
420 tcb_desc->bRTSBW = false;
421
422 if (tcb_desc->bBroadcast || tcb_desc->bMulticast)
423 return;
424
425 if (is_broadcast_ether_addr(skb->data+16))
426 return;
427
428 if (ieee->mode < IEEE_N_24G) {
429 if (skb->len > ieee->rts) {
430 tcb_desc->bRTSEnable = true;
431 tcb_desc->rts_rate = MGN_24M;
432 } else if (ieee->current_network.buseprotection) {
433 tcb_desc->bRTSEnable = true;
434 tcb_desc->bCTSEnable = true;
435 tcb_desc->rts_rate = MGN_24M;
436 }
437 return;
438 }
439
440 pHTInfo = ieee->pHTInfo;
441
442 while (true) {
443 if (pHTInfo->IOTAction & HT_IOT_ACT_FORCED_CTS2SELF) {
444 tcb_desc->bCTSEnable = true;
445 tcb_desc->rts_rate = MGN_24M;
446 tcb_desc->bRTSEnable = true;
447 break;
448 } else if (pHTInfo->IOTAction & (HT_IOT_ACT_FORCED_RTS |
449 HT_IOT_ACT_PURE_N_MODE)) {
450 tcb_desc->bRTSEnable = true;
451 tcb_desc->rts_rate = MGN_24M;
452 break;
453 }
454 if (ieee->current_network.buseprotection) {
455 tcb_desc->bRTSEnable = true;
456 tcb_desc->bCTSEnable = true;
457 tcb_desc->rts_rate = MGN_24M;
458 break;
459 }
460 if (pHTInfo->bCurrentHTSupport && pHTInfo->bEnableHT) {
461 u8 HTOpMode = pHTInfo->CurrentOpMode;
462
463 if ((pHTInfo->bCurBW40MHz && (HTOpMode == 2 ||
464 HTOpMode == 3)) ||
465 (!pHTInfo->bCurBW40MHz && HTOpMode == 3)) {
466 tcb_desc->rts_rate = MGN_24M;
467 tcb_desc->bRTSEnable = true;
468 break;
469 }
470 }
471 if (skb->len > ieee->rts) {
472 tcb_desc->rts_rate = MGN_24M;
473 tcb_desc->bRTSEnable = true;
474 break;
475 }
476 if (tcb_desc->bAMPDUEnable) {
477 tcb_desc->rts_rate = MGN_24M;
478 tcb_desc->bRTSEnable = false;
479 break;
480 }
481 goto NO_PROTECTION;
482 }
483 if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
484 tcb_desc->bUseShortPreamble = true;
485 if (ieee->iw_mode == IW_MODE_MASTER)
486 goto NO_PROTECTION;
487 return;
488 NO_PROTECTION:
489 tcb_desc->bRTSEnable = false;
490 tcb_desc->bCTSEnable = false;
491 tcb_desc->rts_rate = 0;
492 tcb_desc->RTSSC = 0;
493 tcb_desc->bRTSBW = false;
494 }
495
496
497 static void rtllib_txrate_selectmode(struct rtllib_device *ieee,
498 struct cb_desc *tcb_desc)
499 {
500 if (ieee->bTxDisableRateFallBack)
501 tcb_desc->bTxDisableRateFallBack = true;
502
503 if (ieee->bTxUseDriverAssingedRate)
504 tcb_desc->bTxUseDriverAssingedRate = true;
505 if (!tcb_desc->bTxDisableRateFallBack ||
506 !tcb_desc->bTxUseDriverAssingedRate) {
507 if (ieee->iw_mode == IW_MODE_INFRA ||
508 ieee->iw_mode == IW_MODE_ADHOC)
509 tcb_desc->RATRIndex = 0;
510 }
511 }
512
513 static u16 rtllib_query_seqnum(struct rtllib_device *ieee, struct sk_buff *skb,
514 u8 *dst)
515 {
516 u16 seqnum = 0;
517
518 if (is_multicast_ether_addr(dst))
519 return 0;
520 if (IsQoSDataFrame(skb->data)) {
521 struct tx_ts_record *pTS = NULL;
522
523 if (!GetTs(ieee, (struct ts_common_info **)(&pTS), dst,
524 skb->priority, TX_DIR, true))
525 return 0;
526 seqnum = pTS->TxCurSeq;
527 pTS->TxCurSeq = (pTS->TxCurSeq+1)%4096;
528 return seqnum;
529 }
530 return 0;
531 }
532
533 static int wme_downgrade_ac(struct sk_buff *skb)
534 {
535 switch (skb->priority) {
536 case 6:
537 case 7:
538 skb->priority = 5; /* VO -> VI */
539 return 0;
540 case 4:
541 case 5:
542 skb->priority = 3; /* VI -> BE */
543 return 0;
544 case 0:
545 case 3:
546 skb->priority = 1; /* BE -> BK */
547 return 0;
548 default:
549 return -1;
550 }
551 }
552
553 static u8 rtllib_current_rate(struct rtllib_device *ieee)
554 {
555 if (ieee->mode & IEEE_MODE_MASK)
556 return ieee->rate;
557
558 if (ieee->HTCurrentOperaRate)
559 return ieee->HTCurrentOperaRate;
560 else
561 return ieee->rate & 0x7F;
562 }
563
564 static int rtllib_xmit_inter(struct sk_buff *skb, struct net_device *dev)
565 {
566 struct rtllib_device *ieee = (struct rtllib_device *)
567 netdev_priv_rsl(dev);
568 struct rtllib_txb *txb = NULL;
569 struct rtllib_hdr_3addrqos *frag_hdr;
570 int i, bytes_per_frag, nr_frags, bytes_last_frag, frag_size;
571 unsigned long flags;
572 struct net_device_stats *stats = &ieee->stats;
573 int ether_type = 0, encrypt;
574 int bytes, fc, qos_ctl = 0, hdr_len;
575 struct sk_buff *skb_frag;
576 struct rtllib_hdr_3addrqos header = { /* Ensure zero initialized */
577 .duration_id = 0,
578 .seq_ctl = 0,
579 .qos_ctl = 0
580 };
581 int qos_actived = ieee->current_network.qos_data.active;
582 u8 dest[ETH_ALEN];
583 u8 src[ETH_ALEN];
584 struct lib80211_crypt_data *crypt = NULL;
585 struct cb_desc *tcb_desc;
586 u8 bIsMulticast = false;
587 u8 IsAmsdu = false;
588 bool bdhcp = false;
589
590 spin_lock_irqsave(&ieee->lock, flags);
591
592 /* If there is no driver handler to take the TXB, don't bother
593 * creating it...
594 */
595 if ((!ieee->hard_start_xmit && !(ieee->softmac_features &
596 IEEE_SOFTMAC_TX_QUEUE)) ||
597 ((!ieee->softmac_data_hard_start_xmit &&
598 (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE)))) {
599 netdev_warn(ieee->dev, "No xmit handler.\n");
600 goto success;
601 }
602
603
604 if (likely(ieee->raw_tx == 0)) {
605 if (unlikely(skb->len < SNAP_SIZE + sizeof(u16))) {
606 netdev_warn(ieee->dev, "skb too small (%d).\n",
607 skb->len);
608 goto success;
609 }
610 /* Save source and destination addresses */
611 ether_addr_copy(dest, skb->data);
612 ether_addr_copy(src, skb->data + ETH_ALEN);
613
614 memset(skb->cb, 0, sizeof(skb->cb));
615 ether_type = ntohs(((struct ethhdr *)skb->data)->h_proto);
616
617 if (ieee->iw_mode == IW_MODE_MONITOR) {
618 txb = rtllib_alloc_txb(1, skb->len, GFP_ATOMIC);
619 if (unlikely(!txb)) {
620 netdev_warn(ieee->dev,
621 "Could not allocate TXB\n");
622 goto failed;
623 }
624
625 txb->encrypted = 0;
626 txb->payload_size = cpu_to_le16(skb->len);
627 skb_put_data(txb->fragments[0], skb->data, skb->len);
628
629 goto success;
630 }
631
632 if (skb->len > 282) {
633 if (ether_type == ETH_P_IP) {
634 const struct iphdr *ip = (struct iphdr *)
635 ((u8 *)skb->data+14);
636 if (ip->protocol == IPPROTO_UDP) {
637 struct udphdr *udp;
638
639 udp = (struct udphdr *)((u8 *)ip +
640 (ip->ihl << 2));
641 if (((((u8 *)udp)[1] == 68) &&
642 (((u8 *)udp)[3] == 67)) ||
643 ((((u8 *)udp)[1] == 67) &&
644 (((u8 *)udp)[3] == 68))) {
645 bdhcp = true;
646 ieee->LPSDelayCnt = 200;
647 }
648 }
649 } else if (ether_type == ETH_P_ARP) {
650 netdev_info(ieee->dev,
651 "=================>DHCP Protocol start tx ARP pkt!!\n");
652 bdhcp = true;
653 ieee->LPSDelayCnt =
654 ieee->current_network.tim.tim_count;
655 }
656 }
657
658 skb->priority = rtllib_classify(skb, IsAmsdu);
659 crypt = ieee->crypt_info.crypt[ieee->crypt_info.tx_keyidx];
660 encrypt = !(ether_type == ETH_P_PAE && ieee->ieee802_1x) &&
661 ieee->host_encrypt && crypt && crypt->ops;
662 if (!encrypt && ieee->ieee802_1x &&
663 ieee->drop_unencrypted && ether_type != ETH_P_PAE) {
664 stats->tx_dropped++;
665 goto success;
666 }
667 if (crypt && !encrypt && ether_type == ETH_P_PAE) {
668 struct eapol *eap = (struct eapol *)(skb->data +
669 sizeof(struct ethhdr) - SNAP_SIZE -
670 sizeof(u16));
671 netdev_dbg(ieee->dev,
672 "TX: IEEE 802.11 EAPOL frame: %s\n",
673 eap_get_type(eap->type));
674 }
675
676 /* Advance the SKB to the start of the payload */
677 skb_pull(skb, sizeof(struct ethhdr));
678
679 /* Determine total amount of storage required for TXB packets */
680 bytes = skb->len + SNAP_SIZE + sizeof(u16);
681
682 if (encrypt)
683 fc = RTLLIB_FTYPE_DATA | RTLLIB_FCTL_WEP;
684 else
685 fc = RTLLIB_FTYPE_DATA;
686
687 if (qos_actived)
688 fc |= RTLLIB_STYPE_QOS_DATA;
689 else
690 fc |= RTLLIB_STYPE_DATA;
691
692 if (ieee->iw_mode == IW_MODE_INFRA) {
693 fc |= RTLLIB_FCTL_TODS;
694 /* To DS: Addr1 = BSSID, Addr2 = SA,
695 * Addr3 = DA
696 */
697 ether_addr_copy(header.addr1,
698 ieee->current_network.bssid);
699 ether_addr_copy(header.addr2, src);
700 if (IsAmsdu)
701 ether_addr_copy(header.addr3,
702 ieee->current_network.bssid);
703 else
704 ether_addr_copy(header.addr3, dest);
705 } else if (ieee->iw_mode == IW_MODE_ADHOC) {
706 /* not From/To DS: Addr1 = DA, Addr2 = SA,
707 * Addr3 = BSSID
708 */
709 ether_addr_copy(header.addr1, dest);
710 ether_addr_copy(header.addr2, src);
711 ether_addr_copy(header.addr3,
712 ieee->current_network.bssid);
713 }
714
715 bIsMulticast = is_multicast_ether_addr(header.addr1);
716
717 header.frame_ctl = cpu_to_le16(fc);
718
719 /* Determine fragmentation size based on destination (multicast
720 * and broadcast are not fragmented)
721 */
722 if (bIsMulticast) {
723 frag_size = MAX_FRAG_THRESHOLD;
724 qos_ctl |= QOS_CTL_NOTCONTAIN_ACK;
725 } else {
726 frag_size = ieee->fts;
727 qos_ctl = 0;
728 }
729
730 if (qos_actived) {
731 hdr_len = RTLLIB_3ADDR_LEN + 2;
732
733 /* in case we are a client verify acm is not set for this ac */
734 while (unlikely(ieee->wmm_acm & (0x01 << skb->priority))) {
735 netdev_info(ieee->dev, "skb->priority = %x\n",
736 skb->priority);
737 if (wme_downgrade_ac(skb))
738 break;
739 netdev_info(ieee->dev, "converted skb->priority = %x\n",
740 skb->priority);
741 }
742
743 qos_ctl |= skb->priority;
744 header.qos_ctl = cpu_to_le16(qos_ctl & RTLLIB_QOS_TID);
745
746 } else {
747 hdr_len = RTLLIB_3ADDR_LEN;
748 }
749 /* Determine amount of payload per fragment. Regardless of if
750 * this stack is providing the full 802.11 header, one will
751 * eventually be affixed to this fragment -- so we must account
752 * for it when determining the amount of payload space.
753 */
754 bytes_per_frag = frag_size - hdr_len;
755 if (ieee->config &
756 (CFG_RTLLIB_COMPUTE_FCS | CFG_RTLLIB_RESERVE_FCS))
757 bytes_per_frag -= RTLLIB_FCS_LEN;
758
759 /* Each fragment may need to have room for encrypting
760 * pre/postfix
761 */
762 if (encrypt) {
763 bytes_per_frag -= crypt->ops->extra_mpdu_prefix_len +
764 crypt->ops->extra_mpdu_postfix_len +
765 crypt->ops->extra_msdu_prefix_len +
766 crypt->ops->extra_msdu_postfix_len;
767 }
768 /* Number of fragments is the total bytes_per_frag /
769 * payload_per_fragment
770 */
771 nr_frags = bytes / bytes_per_frag;
772 bytes_last_frag = bytes % bytes_per_frag;
773 if (bytes_last_frag)
774 nr_frags++;
775 else
776 bytes_last_frag = bytes_per_frag;
777
778 /* When we allocate the TXB we allocate enough space for the
779 * reserve and full fragment bytes (bytes_per_frag doesn't
780 * include prefix, postfix, header, FCS, etc.)
781 */
782 txb = rtllib_alloc_txb(nr_frags, frag_size +
783 ieee->tx_headroom, GFP_ATOMIC);
784 if (unlikely(!txb)) {
785 netdev_warn(ieee->dev, "Could not allocate TXB\n");
786 goto failed;
787 }
788 txb->encrypted = encrypt;
789 txb->payload_size = cpu_to_le16(bytes);
790
791 if (qos_actived)
792 txb->queue_index = UP2AC(skb->priority);
793 else
794 txb->queue_index = WME_AC_BE;
795
796 for (i = 0; i < nr_frags; i++) {
797 skb_frag = txb->fragments[i];
798 tcb_desc = (struct cb_desc *)(skb_frag->cb +
799 MAX_DEV_ADDR_SIZE);
800 if (qos_actived) {
801 skb_frag->priority = skb->priority;
802 tcb_desc->queue_index = UP2AC(skb->priority);
803 } else {
804 skb_frag->priority = WME_AC_BE;
805 tcb_desc->queue_index = WME_AC_BE;
806 }
807 skb_reserve(skb_frag, ieee->tx_headroom);
808
809 if (encrypt) {
810 if (ieee->hwsec_active)
811 tcb_desc->bHwSec = 1;
812 else
813 tcb_desc->bHwSec = 0;
814 skb_reserve(skb_frag,
815 crypt->ops->extra_mpdu_prefix_len +
816 crypt->ops->extra_msdu_prefix_len);
817 } else {
818 tcb_desc->bHwSec = 0;
819 }
820 frag_hdr = skb_put_data(skb_frag, &header, hdr_len);
821
822 /* If this is not the last fragment, then add the
823 * MOREFRAGS bit to the frame control
824 */
825 if (i != nr_frags - 1) {
826 frag_hdr->frame_ctl = cpu_to_le16(
827 fc | RTLLIB_FCTL_MOREFRAGS);
828 bytes = bytes_per_frag;
829
830 } else {
831 /* The last fragment has the remaining length */
832 bytes = bytes_last_frag;
833 }
834 if ((qos_actived) && (!bIsMulticast)) {
835 frag_hdr->seq_ctl =
836 cpu_to_le16(rtllib_query_seqnum(ieee, skb_frag,
837 header.addr1));
838 frag_hdr->seq_ctl =
839 cpu_to_le16(le16_to_cpu(frag_hdr->seq_ctl)<<4 | i);
840 } else {
841 frag_hdr->seq_ctl =
842 cpu_to_le16(ieee->seq_ctrl[0]<<4 | i);
843 }
844 /* Put a SNAP header on the first fragment */
845 if (i == 0) {
846 rtllib_put_snap(
847 skb_put(skb_frag, SNAP_SIZE +
848 sizeof(u16)), ether_type);
849 bytes -= SNAP_SIZE + sizeof(u16);
850 }
851
852 skb_put_data(skb_frag, skb->data, bytes);
853
854 /* Advance the SKB... */
855 skb_pull(skb, bytes);
856
857 /* Encryption routine will move the header forward in
858 * order to insert the IV between the header and the
859 * payload
860 */
861 if (encrypt)
862 rtllib_encrypt_fragment(ieee, skb_frag,
863 hdr_len);
864 if (ieee->config &
865 (CFG_RTLLIB_COMPUTE_FCS | CFG_RTLLIB_RESERVE_FCS))
866 skb_put(skb_frag, 4);
867 }
868
869 if ((qos_actived) && (!bIsMulticast)) {
870 if (ieee->seq_ctrl[UP2AC(skb->priority) + 1] == 0xFFF)
871 ieee->seq_ctrl[UP2AC(skb->priority) + 1] = 0;
872 else
873 ieee->seq_ctrl[UP2AC(skb->priority) + 1]++;
874 } else {
875 if (ieee->seq_ctrl[0] == 0xFFF)
876 ieee->seq_ctrl[0] = 0;
877 else
878 ieee->seq_ctrl[0]++;
879 }
880 } else {
881 if (unlikely(skb->len < sizeof(struct rtllib_hdr_3addr))) {
882 netdev_warn(ieee->dev, "skb too small (%d).\n",
883 skb->len);
884 goto success;
885 }
886
887 txb = rtllib_alloc_txb(1, skb->len, GFP_ATOMIC);
888 if (!txb) {
889 netdev_warn(ieee->dev, "Could not allocate TXB\n");
890 goto failed;
891 }
892
893 txb->encrypted = 0;
894 txb->payload_size = cpu_to_le16(skb->len);
895 skb_put_data(txb->fragments[0], skb->data, skb->len);
896 }
897
898 success:
899 if (txb) {
900 struct cb_desc *tcb_desc = (struct cb_desc *)
901 (txb->fragments[0]->cb + MAX_DEV_ADDR_SIZE);
902 tcb_desc->bTxEnableFwCalcDur = 1;
903 tcb_desc->priority = skb->priority;
904
905 if (ether_type == ETH_P_PAE) {
906 if (ieee->pHTInfo->IOTAction &
907 HT_IOT_ACT_WA_IOT_Broadcom) {
908 tcb_desc->data_rate =
909 MgntQuery_TxRateExcludeCCKRates(ieee);
910 tcb_desc->bTxDisableRateFallBack = false;
911 } else {
912 tcb_desc->data_rate = ieee->basic_rate;
913 tcb_desc->bTxDisableRateFallBack = 1;
914 }
915
916
917 tcb_desc->RATRIndex = 7;
918 tcb_desc->bTxUseDriverAssingedRate = 1;
919 } else {
920 if (is_multicast_ether_addr(header.addr1))
921 tcb_desc->bMulticast = 1;
922 if (is_broadcast_ether_addr(header.addr1))
923 tcb_desc->bBroadcast = 1;
924 rtllib_txrate_selectmode(ieee, tcb_desc);
925 if (tcb_desc->bMulticast || tcb_desc->bBroadcast)
926 tcb_desc->data_rate = ieee->basic_rate;
927 else
928 tcb_desc->data_rate = rtllib_current_rate(ieee);
929
930 if (bdhcp) {
931 if (ieee->pHTInfo->IOTAction &
932 HT_IOT_ACT_WA_IOT_Broadcom) {
933 tcb_desc->data_rate =
934 MgntQuery_TxRateExcludeCCKRates(ieee);
935 tcb_desc->bTxDisableRateFallBack = false;
936 } else {
937 tcb_desc->data_rate = MGN_1M;
938 tcb_desc->bTxDisableRateFallBack = 1;
939 }
940
941
942 tcb_desc->RATRIndex = 7;
943 tcb_desc->bTxUseDriverAssingedRate = 1;
944 tcb_desc->bdhcp = 1;
945 }
946
947 rtllib_qurey_ShortPreambleMode(ieee, tcb_desc);
948 rtllib_tx_query_agg_cap(ieee, txb->fragments[0],
949 tcb_desc);
950 rtllib_query_HTCapShortGI(ieee, tcb_desc);
951 rtllib_query_BandwidthMode(ieee, tcb_desc);
952 rtllib_query_protectionmode(ieee, tcb_desc,
953 txb->fragments[0]);
954 }
955 }
956 spin_unlock_irqrestore(&ieee->lock, flags);
957 dev_kfree_skb_any(skb);
958 if (txb) {
959 if (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE) {
960 dev->stats.tx_packets++;
961 dev->stats.tx_bytes += le16_to_cpu(txb->payload_size);
962 rtllib_softmac_xmit(txb, ieee);
963 } else {
964 if ((*ieee->hard_start_xmit)(txb, dev) == 0) {
965 stats->tx_packets++;
966 stats->tx_bytes += le16_to_cpu(txb->payload_size);
967 return 0;
968 }
969 rtllib_txb_free(txb);
970 }
971 }
972
973 return 0;
974
975 failed:
976 spin_unlock_irqrestore(&ieee->lock, flags);
977 netif_stop_queue(dev);
978 stats->tx_errors++;
979 return 1;
980
981 }
982
983 int rtllib_xmit(struct sk_buff *skb, struct net_device *dev)
984 {
985 memset(skb->cb, 0, sizeof(skb->cb));
986 return rtllib_xmit_inter(skb, dev);
987 }
988 EXPORT_SYMBOL(rtllib_xmit);