]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/staging/rtl8723bs/hal/rtl8723b_hal_init.c
1565f2d67ea4ab224ee6c0c067f6ae740c5b042a
[mirror_ubuntu-bionic-kernel.git] / drivers / staging / rtl8723bs / hal / rtl8723b_hal_init.c
1 /******************************************************************************
2 *
3 * Copyright(c) 2007 - 2013 Realtek Corporation. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 ******************************************************************************/
15 #define _HAL_INIT_C_
16
17 #include <linux/firmware.h>
18 #include <linux/slab.h>
19 #include <drv_types.h>
20 #include <rtw_debug.h>
21 #include <rtl8723b_hal.h>
22 #include "hal_com_h2c.h"
23
24 static void _FWDownloadEnable(struct adapter *padapter, bool enable)
25 {
26 u8 tmp, count = 0;
27
28 if (enable) {
29 /* 8051 enable */
30 tmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
31 rtw_write8(padapter, REG_SYS_FUNC_EN+1, tmp|0x04);
32
33 tmp = rtw_read8(padapter, REG_MCUFWDL);
34 rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
35
36 do {
37 tmp = rtw_read8(padapter, REG_MCUFWDL);
38 if (tmp & 0x01)
39 break;
40 rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
41 msleep(1);
42 } while (count++ < 100);
43
44 if (count > 0)
45 DBG_871X("%s: !!!!!!!!Write 0x80 Fail!: count = %d\n", __func__, count);
46
47 /* 8051 reset */
48 tmp = rtw_read8(padapter, REG_MCUFWDL+2);
49 rtw_write8(padapter, REG_MCUFWDL+2, tmp&0xf7);
50 } else {
51 /* MCU firmware download disable. */
52 tmp = rtw_read8(padapter, REG_MCUFWDL);
53 rtw_write8(padapter, REG_MCUFWDL, tmp&0xfe);
54 }
55 }
56
57 static int _BlockWrite(struct adapter *padapter, void *buffer, u32 buffSize)
58 {
59 int ret = _SUCCESS;
60
61 u32 blockSize_p1 = 4; /* (Default) Phase #1 : PCI muse use 4-byte write to download FW */
62 u32 blockSize_p2 = 8; /* Phase #2 : Use 8-byte, if Phase#1 use big size to write FW. */
63 u32 blockSize_p3 = 1; /* Phase #3 : Use 1-byte, the remnant of FW image. */
64 u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0;
65 u32 remainSize_p1 = 0, remainSize_p2 = 0;
66 u8 *bufferPtr = buffer;
67 u32 i = 0, offset = 0;
68
69 /* printk("====>%s %d\n", __func__, __LINE__); */
70
71 /* 3 Phase #1 */
72 blockCount_p1 = buffSize / blockSize_p1;
73 remainSize_p1 = buffSize % blockSize_p1;
74
75 if (blockCount_p1) {
76 RT_TRACE(
77 _module_hal_init_c_,
78 _drv_notice_,
79 (
80 "_BlockWrite: [P1] buffSize(%d) blockSize_p1(%d) blockCount_p1(%d) remainSize_p1(%d)\n",
81 buffSize,
82 blockSize_p1,
83 blockCount_p1,
84 remainSize_p1
85 )
86 );
87 }
88
89 for (i = 0; i < blockCount_p1; i++) {
90 ret = rtw_write32(padapter, (FW_8723B_START_ADDRESS + i * blockSize_p1), *((u32 *)(bufferPtr + i * blockSize_p1)));
91 if (ret == _FAIL) {
92 printk("====>%s %d i:%d\n", __func__, __LINE__, i);
93 goto exit;
94 }
95 }
96
97 /* 3 Phase #2 */
98 if (remainSize_p1) {
99 offset = blockCount_p1 * blockSize_p1;
100
101 blockCount_p2 = remainSize_p1/blockSize_p2;
102 remainSize_p2 = remainSize_p1%blockSize_p2;
103
104 if (blockCount_p2) {
105 RT_TRACE(
106 _module_hal_init_c_,
107 _drv_notice_,
108 (
109 "_BlockWrite: [P2] buffSize_p2(%d) blockSize_p2(%d) blockCount_p2(%d) remainSize_p2(%d)\n",
110 (buffSize-offset),
111 blockSize_p2,
112 blockCount_p2,
113 remainSize_p2
114 )
115 );
116 }
117
118 }
119
120 /* 3 Phase #3 */
121 if (remainSize_p2) {
122 offset = (blockCount_p1 * blockSize_p1) + (blockCount_p2 * blockSize_p2);
123
124 blockCount_p3 = remainSize_p2 / blockSize_p3;
125
126 RT_TRACE(_module_hal_init_c_, _drv_notice_,
127 ("_BlockWrite: [P3] buffSize_p3(%d) blockSize_p3(%d) blockCount_p3(%d)\n",
128 (buffSize-offset), blockSize_p3, blockCount_p3));
129
130 for (i = 0; i < blockCount_p3; i++) {
131 ret = rtw_write8(padapter, (FW_8723B_START_ADDRESS + offset + i), *(bufferPtr + offset + i));
132
133 if (ret == _FAIL) {
134 printk("====>%s %d i:%d\n", __func__, __LINE__, i);
135 goto exit;
136 }
137 }
138 }
139 exit:
140 return ret;
141 }
142
143 static int _PageWrite(
144 struct adapter *padapter,
145 u32 page,
146 void *buffer,
147 u32 size
148 )
149 {
150 u8 value8;
151 u8 u8Page = (u8) (page & 0x07);
152
153 value8 = (rtw_read8(padapter, REG_MCUFWDL+2) & 0xF8) | u8Page;
154 rtw_write8(padapter, REG_MCUFWDL+2, value8);
155
156 return _BlockWrite(padapter, buffer, size);
157 }
158
159 static int _WriteFW(struct adapter *padapter, void *buffer, u32 size)
160 {
161 /* Since we need dynamic decide method of dwonload fw, so we call this function to get chip version. */
162 /* We can remove _ReadChipVersion from ReadpadapterInfo8192C later. */
163 int ret = _SUCCESS;
164 u32 pageNums, remainSize;
165 u32 page, offset;
166 u8 *bufferPtr = buffer;
167
168 pageNums = size / MAX_DLFW_PAGE_SIZE;
169 /* RT_ASSERT((pageNums <= 4), ("Page numbers should not greater then 4\n")); */
170 remainSize = size % MAX_DLFW_PAGE_SIZE;
171
172 for (page = 0; page < pageNums; page++) {
173 offset = page * MAX_DLFW_PAGE_SIZE;
174 ret = _PageWrite(padapter, page, bufferPtr+offset, MAX_DLFW_PAGE_SIZE);
175
176 if (ret == _FAIL) {
177 printk("====>%s %d\n", __func__, __LINE__);
178 goto exit;
179 }
180 }
181
182 if (remainSize) {
183 offset = pageNums * MAX_DLFW_PAGE_SIZE;
184 page = pageNums;
185 ret = _PageWrite(padapter, page, bufferPtr+offset, remainSize);
186
187 if (ret == _FAIL) {
188 printk("====>%s %d\n", __func__, __LINE__);
189 goto exit;
190 }
191 }
192 RT_TRACE(_module_hal_init_c_, _drv_info_, ("_WriteFW Done- for Normal chip.\n"));
193
194 exit:
195 return ret;
196 }
197
198 void _8051Reset8723(struct adapter *padapter)
199 {
200 u8 cpu_rst;
201 u8 io_rst;
202
203
204 /* Reset 8051(WLMCU) IO wrapper */
205 /* 0x1c[8] = 0 */
206 /* Suggested by Isaac@SD1 and Gimmy@SD1, coding by Lucas@20130624 */
207 io_rst = rtw_read8(padapter, REG_RSV_CTRL+1);
208 io_rst &= ~BIT(0);
209 rtw_write8(padapter, REG_RSV_CTRL+1, io_rst);
210
211 cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
212 cpu_rst &= ~BIT(2);
213 rtw_write8(padapter, REG_SYS_FUNC_EN+1, cpu_rst);
214
215 /* Enable 8051 IO wrapper */
216 /* 0x1c[8] = 1 */
217 io_rst = rtw_read8(padapter, REG_RSV_CTRL+1);
218 io_rst |= BIT(0);
219 rtw_write8(padapter, REG_RSV_CTRL+1, io_rst);
220
221 cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
222 cpu_rst |= BIT(2);
223 rtw_write8(padapter, REG_SYS_FUNC_EN+1, cpu_rst);
224
225 DBG_8192C("%s: Finish\n", __func__);
226 }
227
228 u8 g_fwdl_chksum_fail = 0;
229
230 static s32 polling_fwdl_chksum(
231 struct adapter *adapter, u32 min_cnt, u32 timeout_ms
232 )
233 {
234 s32 ret = _FAIL;
235 u32 value32;
236 unsigned long start = jiffies;
237 u32 cnt = 0;
238
239 /* polling CheckSum report */
240 do {
241 cnt++;
242 value32 = rtw_read32(adapter, REG_MCUFWDL);
243 if (value32 & FWDL_ChkSum_rpt || adapter->bSurpriseRemoved || adapter->bDriverStopped)
244 break;
245 yield();
246 } while (jiffies_to_msecs(jiffies-start) < timeout_ms || cnt < min_cnt);
247
248 if (!(value32 & FWDL_ChkSum_rpt)) {
249 goto exit;
250 }
251
252 if (g_fwdl_chksum_fail) {
253 DBG_871X("%s: fwdl test case: fwdl_chksum_fail\n", __func__);
254 g_fwdl_chksum_fail--;
255 goto exit;
256 }
257
258 ret = _SUCCESS;
259
260 exit:
261 DBG_871X(
262 "%s: Checksum report %s! (%u, %dms), REG_MCUFWDL:0x%08x\n",
263 __func__,
264 (ret == _SUCCESS) ? "OK" : "Fail",
265 cnt,
266 jiffies_to_msecs(jiffies-start),
267 value32
268 );
269
270 return ret;
271 }
272
273 u8 g_fwdl_wintint_rdy_fail = 0;
274
275 static s32 _FWFreeToGo(struct adapter *adapter, u32 min_cnt, u32 timeout_ms)
276 {
277 s32 ret = _FAIL;
278 u32 value32;
279 unsigned long start = jiffies;
280 u32 cnt = 0;
281
282 value32 = rtw_read32(adapter, REG_MCUFWDL);
283 value32 |= MCUFWDL_RDY;
284 value32 &= ~WINTINI_RDY;
285 rtw_write32(adapter, REG_MCUFWDL, value32);
286
287 _8051Reset8723(adapter);
288
289 /* polling for FW ready */
290 do {
291 cnt++;
292 value32 = rtw_read32(adapter, REG_MCUFWDL);
293 if (value32 & WINTINI_RDY || adapter->bSurpriseRemoved || adapter->bDriverStopped)
294 break;
295 yield();
296 } while (jiffies_to_msecs(jiffies - start) < timeout_ms || cnt < min_cnt);
297
298 if (!(value32 & WINTINI_RDY)) {
299 goto exit;
300 }
301
302 if (g_fwdl_wintint_rdy_fail) {
303 DBG_871X("%s: fwdl test case: wintint_rdy_fail\n", __func__);
304 g_fwdl_wintint_rdy_fail--;
305 goto exit;
306 }
307
308 ret = _SUCCESS;
309
310 exit:
311 DBG_871X(
312 "%s: Polling FW ready %s! (%u, %dms), REG_MCUFWDL:0x%08x\n",
313 __func__,
314 (ret == _SUCCESS) ? "OK" : "Fail",
315 cnt,
316 jiffies_to_msecs(jiffies-start),
317 value32
318 );
319
320 return ret;
321 }
322
323 #define IS_FW_81xxC(padapter) (((GET_HAL_DATA(padapter))->FirmwareSignature & 0xFFF0) == 0x88C0)
324
325 void rtl8723b_FirmwareSelfReset(struct adapter *padapter)
326 {
327 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
328 u8 u1bTmp;
329 u8 Delay = 100;
330
331 if (
332 !(IS_FW_81xxC(padapter) && ((pHalData->FirmwareVersion < 0x21) || (pHalData->FirmwareVersion == 0x21 && pHalData->FirmwareSubVersion < 0x01)))
333 ) { /* after 88C Fw v33.1 */
334 /* 0x1cf = 0x20. Inform 8051 to reset. 2009.12.25. tynli_test */
335 rtw_write8(padapter, REG_HMETFR+3, 0x20);
336
337 u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
338 while (u1bTmp & BIT2) {
339 Delay--;
340 if (Delay == 0)
341 break;
342 udelay(50);
343 u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
344 }
345 RT_TRACE(_module_hal_init_c_, _drv_notice_, ("-%s: 8051 reset success (%d)\n", __func__, Delay));
346
347 if (Delay == 0) {
348 RT_TRACE(_module_hal_init_c_, _drv_notice_, ("%s: Force 8051 reset!!!\n", __func__));
349 /* force firmware reset */
350 u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
351 rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp&(~BIT2));
352 }
353 }
354 }
355
356 /* */
357 /* Description: */
358 /* Download 8192C firmware code. */
359 /* */
360 /* */
361 s32 rtl8723b_FirmwareDownload(struct adapter *padapter, bool bUsedWoWLANFw)
362 {
363 s32 rtStatus = _SUCCESS;
364 u8 write_fw = 0;
365 unsigned long fwdl_start_time;
366 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
367 struct rt_firmware *pFirmware;
368 struct rt_firmware *pBTFirmware;
369 struct rt_firmware_hdr *pFwHdr = NULL;
370 u8 *pFirmwareBuf;
371 u32 FirmwareLen;
372 const struct firmware *fw;
373 struct device *device = dvobj_to_dev(padapter->dvobj);
374 u8 *fwfilepath;
375 struct dvobj_priv *psdpriv = padapter->dvobj;
376 struct debug_priv *pdbgpriv = &psdpriv->drv_dbg;
377 u8 tmp_ps;
378
379 RT_TRACE(_module_hal_init_c_, _drv_info_, ("+%s\n", __func__));
380 #ifdef CONFIG_WOWLAN
381 RT_TRACE(_module_hal_init_c_, _drv_notice_, ("+%s, bUsedWoWLANFw:%d\n", __func__, bUsedWoWLANFw));
382 #endif
383 pFirmware = kzalloc(sizeof(struct rt_firmware), GFP_KERNEL);
384 if (!pFirmware)
385 return _FAIL;
386 pBTFirmware = kzalloc(sizeof(struct rt_firmware), GFP_KERNEL);
387 if (!pBTFirmware) {
388 kfree(pFirmware);
389 return _FAIL;
390 }
391 tmp_ps = rtw_read8(padapter, 0xa3);
392 tmp_ps &= 0xf8;
393 tmp_ps |= 0x02;
394 /* 1. write 0xA3[:2:0] = 3b'010 */
395 rtw_write8(padapter, 0xa3, tmp_ps);
396 /* 2. read power_state = 0xA0[1:0] */
397 tmp_ps = rtw_read8(padapter, 0xa0);
398 tmp_ps &= 0x03;
399 if (tmp_ps != 0x01) {
400 DBG_871X(FUNC_ADPT_FMT" tmp_ps =%x\n", FUNC_ADPT_ARG(padapter), tmp_ps);
401 pdbgpriv->dbg_downloadfw_pwr_state_cnt++;
402 }
403
404 #ifdef CONFIG_WOWLAN
405 if (bUsedWoWLANFw)
406 fwfilepath = "rtlwifi/rtl8723bs_wowlan.bin";
407 else
408 #endif /* CONFIG_WOWLAN */
409 fwfilepath = "rtlwifi/rtl8723bs_nic.bin";
410
411 pr_info("rtl8723bs: acquire FW from file:%s\n", fwfilepath);
412
413 rtStatus = request_firmware(&fw, fwfilepath, device);
414 if (rtStatus) {
415 pr_err("Request firmware failed with error 0x%x\n", rtStatus);
416 rtStatus = _FAIL;
417 goto exit;
418 }
419
420 if (!fw) {
421 pr_err("Firmware %s not available\n", fwfilepath);
422 rtStatus = _FAIL;
423 goto exit;
424 }
425
426 if (fw->size > FW_8723B_SIZE) {
427 rtStatus = _FAIL;
428 RT_TRACE(
429 _module_hal_init_c_,
430 _drv_err_,
431 ("Firmware size exceed 0x%X. Check it.\n", FW_8188E_SIZE)
432 );
433 goto exit;
434 }
435
436 pFirmware->szFwBuffer = kzalloc(fw->size, GFP_KERNEL);
437 if (!pFirmware->szFwBuffer) {
438 rtStatus = _FAIL;
439 goto exit;
440 }
441
442 memcpy(pFirmware->szFwBuffer, fw->data, fw->size);
443 pFirmware->ulFwLength = fw->size;
444 release_firmware(fw);
445 if (pFirmware->ulFwLength > FW_8723B_SIZE) {
446 rtStatus = _FAIL;
447 DBG_871X_LEVEL(_drv_emerg_, "Firmware size:%u exceed %u\n", pFirmware->ulFwLength, FW_8723B_SIZE);
448 goto release_fw1;
449 }
450
451 pFirmwareBuf = pFirmware->szFwBuffer;
452 FirmwareLen = pFirmware->ulFwLength;
453
454 /* To Check Fw header. Added by tynli. 2009.12.04. */
455 pFwHdr = (struct rt_firmware_hdr *)pFirmwareBuf;
456
457 pHalData->FirmwareVersion = le16_to_cpu(pFwHdr->Version);
458 pHalData->FirmwareSubVersion = le16_to_cpu(pFwHdr->Subversion);
459 pHalData->FirmwareSignature = le16_to_cpu(pFwHdr->Signature);
460
461 DBG_871X(
462 "%s: fw_ver =%x fw_subver =%04x sig = 0x%x, Month =%02x, Date =%02x, Hour =%02x, Minute =%02x\n",
463 __func__,
464 pHalData->FirmwareVersion,
465 pHalData->FirmwareSubVersion,
466 pHalData->FirmwareSignature,
467 pFwHdr->Month,
468 pFwHdr->Date,
469 pFwHdr->Hour,
470 pFwHdr->Minute
471 );
472
473 if (IS_FW_HEADER_EXIST_8723B(pFwHdr)) {
474 DBG_871X("%s(): Shift for fw header!\n", __func__);
475 /* Shift 32 bytes for FW header */
476 pFirmwareBuf = pFirmwareBuf + 32;
477 FirmwareLen = FirmwareLen - 32;
478 }
479
480 /* Suggested by Filen. If 8051 is running in RAM code, driver should inform Fw to reset by itself, */
481 /* or it will cause download Fw fail. 2010.02.01. by tynli. */
482 if (rtw_read8(padapter, REG_MCUFWDL) & RAM_DL_SEL) { /* 8051 RAM code */
483 rtw_write8(padapter, REG_MCUFWDL, 0x00);
484 rtl8723b_FirmwareSelfReset(padapter);
485 }
486
487 _FWDownloadEnable(padapter, true);
488 fwdl_start_time = jiffies;
489 while (
490 !padapter->bDriverStopped &&
491 !padapter->bSurpriseRemoved &&
492 (write_fw++ < 3 || jiffies_to_msecs(jiffies - fwdl_start_time) < 500)
493 ) {
494 /* reset FWDL chksum */
495 rtw_write8(padapter, REG_MCUFWDL, rtw_read8(padapter, REG_MCUFWDL)|FWDL_ChkSum_rpt);
496
497 rtStatus = _WriteFW(padapter, pFirmwareBuf, FirmwareLen);
498 if (rtStatus != _SUCCESS)
499 continue;
500
501 rtStatus = polling_fwdl_chksum(padapter, 5, 50);
502 if (rtStatus == _SUCCESS)
503 break;
504 }
505 _FWDownloadEnable(padapter, false);
506 if (_SUCCESS != rtStatus)
507 goto fwdl_stat;
508
509 rtStatus = _FWFreeToGo(padapter, 10, 200);
510 if (_SUCCESS != rtStatus)
511 goto fwdl_stat;
512
513 fwdl_stat:
514 DBG_871X(
515 "FWDL %s. write_fw:%u, %dms\n",
516 (rtStatus == _SUCCESS)?"success":"fail",
517 write_fw,
518 jiffies_to_msecs(jiffies - fwdl_start_time)
519 );
520
521 exit:
522 kfree(pFirmware->szFwBuffer);
523 kfree(pFirmware);
524 release_fw1:
525 kfree(pBTFirmware);
526 DBG_871X(" <=== rtl8723b_FirmwareDownload()\n");
527 return rtStatus;
528 }
529
530 void rtl8723b_InitializeFirmwareVars(struct adapter *padapter)
531 {
532 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
533
534 /* Init Fw LPS related. */
535 adapter_to_pwrctl(padapter)->bFwCurrentInPSMode = false;
536
537 /* Init H2C cmd. */
538 rtw_write8(padapter, REG_HMETFR, 0x0f);
539
540 /* Init H2C counter. by tynli. 2009.12.09. */
541 pHalData->LastHMEBoxNum = 0;
542 /* pHalData->H2CQueueHead = 0; */
543 /* pHalData->H2CQueueTail = 0; */
544 /* pHalData->H2CStopInsertQueue = false; */
545 }
546
547 #if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN)
548 /* */
549
550 /* */
551 /* Description: Prepare some information to Fw for WoWLAN. */
552 /* (1) Download wowlan Fw. */
553 /* (2) Download RSVD page packets. */
554 /* (3) Enable AP offload if needed. */
555 /* */
556 /* 2011.04.12 by tynli. */
557 /* */
558 void SetFwRelatedForWoWLAN8723b(
559 struct adapter *padapter, u8 bHostIsGoingtoSleep
560 )
561 {
562 int status = _FAIL;
563 /* */
564 /* 1. Before WoWLAN we need to re-download WoWLAN Fw. */
565 /* */
566 status = rtl8723b_FirmwareDownload(padapter, bHostIsGoingtoSleep);
567 if (status != _SUCCESS) {
568 DBG_871X("SetFwRelatedForWoWLAN8723b(): Re-Download Firmware failed!!\n");
569 return;
570 } else {
571 DBG_871X("SetFwRelatedForWoWLAN8723b(): Re-Download Firmware Success !!\n");
572 }
573 /* */
574 /* 2. Re-Init the variables about Fw related setting. */
575 /* */
576 rtl8723b_InitializeFirmwareVars(padapter);
577 }
578 #endif /* CONFIG_WOWLAN */
579
580 static void rtl8723b_free_hal_data(struct adapter *padapter)
581 {
582 }
583
584 /* */
585 /* Efuse related code */
586 /* */
587 static u8 hal_EfuseSwitchToBank(
588 struct adapter *padapter, u8 bank, bool bPseudoTest
589 )
590 {
591 u8 bRet = false;
592 u32 value32 = 0;
593 #ifdef HAL_EFUSE_MEMORY
594 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
595 PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
596 #endif
597
598
599 DBG_8192C("%s: Efuse switch bank to %d\n", __func__, bank);
600 if (bPseudoTest) {
601 #ifdef HAL_EFUSE_MEMORY
602 pEfuseHal->fakeEfuseBank = bank;
603 #else
604 fakeEfuseBank = bank;
605 #endif
606 bRet = true;
607 } else {
608 value32 = rtw_read32(padapter, EFUSE_TEST);
609 bRet = true;
610 switch (bank) {
611 case 0:
612 value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
613 break;
614 case 1:
615 value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_0);
616 break;
617 case 2:
618 value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_1);
619 break;
620 case 3:
621 value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_2);
622 break;
623 default:
624 value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
625 bRet = false;
626 break;
627 }
628 rtw_write32(padapter, EFUSE_TEST, value32);
629 }
630
631 return bRet;
632 }
633
634 static void Hal_GetEfuseDefinition(
635 struct adapter *padapter,
636 u8 efuseType,
637 u8 type,
638 void *pOut,
639 bool bPseudoTest
640 )
641 {
642 switch (type) {
643 case TYPE_EFUSE_MAX_SECTION:
644 {
645 u8 *pMax_section;
646 pMax_section = pOut;
647
648 if (efuseType == EFUSE_WIFI)
649 *pMax_section = EFUSE_MAX_SECTION_8723B;
650 else
651 *pMax_section = EFUSE_BT_MAX_SECTION;
652 }
653 break;
654
655 case TYPE_EFUSE_REAL_CONTENT_LEN:
656 {
657 u16 *pu2Tmp;
658 pu2Tmp = pOut;
659
660 if (efuseType == EFUSE_WIFI)
661 *pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723B;
662 else
663 *pu2Tmp = EFUSE_BT_REAL_CONTENT_LEN;
664 }
665 break;
666
667 case TYPE_AVAILABLE_EFUSE_BYTES_BANK:
668 {
669 u16 *pu2Tmp;
670 pu2Tmp = pOut;
671
672 if (efuseType == EFUSE_WIFI)
673 *pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723B-EFUSE_OOB_PROTECT_BYTES);
674 else
675 *pu2Tmp = (EFUSE_BT_REAL_BANK_CONTENT_LEN-EFUSE_PROTECT_BYTES_BANK);
676 }
677 break;
678
679 case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL:
680 {
681 u16 *pu2Tmp;
682 pu2Tmp = pOut;
683
684 if (efuseType == EFUSE_WIFI)
685 *pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723B-EFUSE_OOB_PROTECT_BYTES);
686 else
687 *pu2Tmp = (EFUSE_BT_REAL_CONTENT_LEN-(EFUSE_PROTECT_BYTES_BANK*3));
688 }
689 break;
690
691 case TYPE_EFUSE_MAP_LEN:
692 {
693 u16 *pu2Tmp;
694 pu2Tmp = pOut;
695
696 if (efuseType == EFUSE_WIFI)
697 *pu2Tmp = EFUSE_MAX_MAP_LEN;
698 else
699 *pu2Tmp = EFUSE_BT_MAP_LEN;
700 }
701 break;
702
703 case TYPE_EFUSE_PROTECT_BYTES_BANK:
704 {
705 u8 *pu1Tmp;
706 pu1Tmp = pOut;
707
708 if (efuseType == EFUSE_WIFI)
709 *pu1Tmp = EFUSE_OOB_PROTECT_BYTES;
710 else
711 *pu1Tmp = EFUSE_PROTECT_BYTES_BANK;
712 }
713 break;
714
715 case TYPE_EFUSE_CONTENT_LEN_BANK:
716 {
717 u16 *pu2Tmp;
718 pu2Tmp = pOut;
719
720 if (efuseType == EFUSE_WIFI)
721 *pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723B;
722 else
723 *pu2Tmp = EFUSE_BT_REAL_BANK_CONTENT_LEN;
724 }
725 break;
726
727 default:
728 {
729 u8 *pu1Tmp;
730 pu1Tmp = pOut;
731 *pu1Tmp = 0;
732 }
733 break;
734 }
735 }
736
737 #define VOLTAGE_V25 0x03
738 #define LDOE25_SHIFT 28
739
740 /* */
741 /* The following is for compile ok */
742 /* That should be merged with the original in the future */
743 /* */
744 #define EFUSE_ACCESS_ON_8723 0x69 /* For RTL8723 only. */
745 #define EFUSE_ACCESS_OFF_8723 0x00 /* For RTL8723 only. */
746 #define REG_EFUSE_ACCESS_8723 0x00CF /* Efuse access protection for RTL8723 */
747
748 /* */
749 static void Hal_BT_EfusePowerSwitch(
750 struct adapter *padapter, u8 bWrite, u8 PwrState
751 )
752 {
753 u8 tempval;
754 if (PwrState == true) {
755 /* enable BT power cut */
756 /* 0x6A[14] = 1 */
757 tempval = rtw_read8(padapter, 0x6B);
758 tempval |= BIT(6);
759 rtw_write8(padapter, 0x6B, tempval);
760
761 /* Attention!! Between 0x6A[14] and 0x6A[15] setting need 100us delay */
762 /* So don't wirte 0x6A[14]= 1 and 0x6A[15]= 0 together! */
763 msleep(1);
764 /* disable BT output isolation */
765 /* 0x6A[15] = 0 */
766 tempval = rtw_read8(padapter, 0x6B);
767 tempval &= ~BIT(7);
768 rtw_write8(padapter, 0x6B, tempval);
769 } else {
770 /* enable BT output isolation */
771 /* 0x6A[15] = 1 */
772 tempval = rtw_read8(padapter, 0x6B);
773 tempval |= BIT(7);
774 rtw_write8(padapter, 0x6B, tempval);
775
776 /* Attention!! Between 0x6A[14] and 0x6A[15] setting need 100us delay */
777 /* So don't wirte 0x6A[14]= 1 and 0x6A[15]= 0 together! */
778
779 /* disable BT power cut */
780 /* 0x6A[14] = 1 */
781 tempval = rtw_read8(padapter, 0x6B);
782 tempval &= ~BIT(6);
783 rtw_write8(padapter, 0x6B, tempval);
784 }
785
786 }
787 static void Hal_EfusePowerSwitch(
788 struct adapter *padapter, u8 bWrite, u8 PwrState
789 )
790 {
791 u8 tempval;
792 u16 tmpV16;
793
794
795 if (PwrState == true) {
796 /* To avoid cannot access efuse regsiters after disable/enable several times during DTM test. */
797 /* Suggested by SD1 IsaacHsu. 2013.07.08, added by tynli. */
798 tempval = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL);
799 if (tempval & BIT(0)) { /* SDIO local register is suspend */
800 u8 count = 0;
801
802
803 tempval &= ~BIT(0);
804 rtw_write8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL, tempval);
805
806 /* check 0x86[1:0]= 10'2h, wait power state to leave suspend */
807 do {
808 tempval = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL);
809 tempval &= 0x3;
810 if (tempval == 0x02)
811 break;
812
813 count++;
814 if (count >= 100)
815 break;
816
817 mdelay(10);
818 } while (1);
819
820 if (count >= 100) {
821 DBG_8192C(FUNC_ADPT_FMT ": Leave SDIO local register suspend fail! Local 0x86 =%#X\n",
822 FUNC_ADPT_ARG(padapter), tempval);
823 } else {
824 DBG_8192C(FUNC_ADPT_FMT ": Leave SDIO local register suspend OK! Local 0x86 =%#X\n",
825 FUNC_ADPT_ARG(padapter), tempval);
826 }
827 }
828
829 rtw_write8(padapter, REG_EFUSE_ACCESS_8723, EFUSE_ACCESS_ON_8723);
830
831 /* Reset: 0x0000h[28], default valid */
832 tmpV16 = rtw_read16(padapter, REG_SYS_FUNC_EN);
833 if (!(tmpV16 & FEN_ELDR)) {
834 tmpV16 |= FEN_ELDR;
835 rtw_write16(padapter, REG_SYS_FUNC_EN, tmpV16);
836 }
837
838 /* Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid */
839 tmpV16 = rtw_read16(padapter, REG_SYS_CLKR);
840 if ((!(tmpV16 & LOADER_CLK_EN)) || (!(tmpV16 & ANA8M))) {
841 tmpV16 |= (LOADER_CLK_EN | ANA8M);
842 rtw_write16(padapter, REG_SYS_CLKR, tmpV16);
843 }
844
845 if (bWrite == true) {
846 /* Enable LDO 2.5V before read/write action */
847 tempval = rtw_read8(padapter, EFUSE_TEST+3);
848 tempval &= 0x0F;
849 tempval |= (VOLTAGE_V25 << 4);
850 rtw_write8(padapter, EFUSE_TEST+3, (tempval | 0x80));
851
852 /* rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON); */
853 }
854 } else {
855 rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF);
856
857 if (bWrite == true) {
858 /* Disable LDO 2.5V after read/write action */
859 tempval = rtw_read8(padapter, EFUSE_TEST+3);
860 rtw_write8(padapter, EFUSE_TEST+3, (tempval & 0x7F));
861 }
862
863 }
864 }
865
866 static void hal_ReadEFuse_WiFi(
867 struct adapter *padapter,
868 u16 _offset,
869 u16 _size_byte,
870 u8 *pbuf,
871 bool bPseudoTest
872 )
873 {
874 #ifdef HAL_EFUSE_MEMORY
875 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
876 PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
877 #endif
878 u8 *efuseTbl = NULL;
879 u16 eFuse_Addr = 0;
880 u8 offset, wden;
881 u8 efuseHeader, efuseExtHdr, efuseData;
882 u16 i, total, used;
883 u8 efuse_usage = 0;
884
885 /* DBG_871X("YJ: ====>%s():_offset =%d _size_byte =%d bPseudoTest =%d\n", __func__, _offset, _size_byte, bPseudoTest); */
886 /* */
887 /* Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
888 /* */
889 if ((_offset+_size_byte) > EFUSE_MAX_MAP_LEN) {
890 DBG_8192C("%s: Invalid offset(%#x) with read bytes(%#x)!!\n", __func__, _offset, _size_byte);
891 return;
892 }
893
894 efuseTbl = (u8 *)rtw_malloc(EFUSE_MAX_MAP_LEN);
895 if (efuseTbl == NULL) {
896 DBG_8192C("%s: alloc efuseTbl fail!\n", __func__);
897 return;
898 }
899 /* 0xff will be efuse default value instead of 0x00. */
900 memset(efuseTbl, 0xFF, EFUSE_MAX_MAP_LEN);
901
902
903 #ifdef DEBUG
904 if (0) {
905 for (i = 0; i < 256; i++)
906 efuse_OneByteRead(padapter, i, &efuseTbl[i], false);
907 DBG_871X("Efuse Content:\n");
908 for (i = 0; i < 256; i++) {
909 if (i % 16 == 0)
910 printk("\n");
911 printk("%02X ", efuseTbl[i]);
912 }
913 printk("\n");
914 }
915 #endif
916
917
918 /* switch bank back to bank 0 for later BT and wifi use. */
919 hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
920
921 while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
922 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
923 if (efuseHeader == 0xFF) {
924 DBG_8192C("%s: data end at address =%#x\n", __func__, eFuse_Addr-1);
925 break;
926 }
927 /* DBG_8192C("%s: efuse[0x%X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseHeader); */
928
929 /* Check PG header for section num. */
930 if (EXT_HEADER(efuseHeader)) { /* extended header */
931 offset = GET_HDR_OFFSET_2_0(efuseHeader);
932 /* DBG_8192C("%s: extended header offset = 0x%X\n", __func__, offset); */
933
934 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
935 /* DBG_8192C("%s: efuse[0x%X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseExtHdr); */
936 if (ALL_WORDS_DISABLED(efuseExtHdr))
937 continue;
938
939 offset |= ((efuseExtHdr & 0xF0) >> 1);
940 wden = (efuseExtHdr & 0x0F);
941 } else {
942 offset = ((efuseHeader >> 4) & 0x0f);
943 wden = (efuseHeader & 0x0f);
944 }
945 /* DBG_8192C("%s: Offset =%d Worden = 0x%X\n", __func__, offset, wden); */
946
947 if (offset < EFUSE_MAX_SECTION_8723B) {
948 u16 addr;
949 /* Get word enable value from PG header */
950 /* DBG_8192C("%s: Offset =%d Worden = 0x%X\n", __func__, offset, wden); */
951
952 addr = offset * PGPKT_DATA_SIZE;
953 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
954 /* Check word enable condition in the section */
955 if (!(wden & (0x01<<i))) {
956 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
957 /* DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseData); */
958 efuseTbl[addr] = efuseData;
959
960 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
961 /* DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseData); */
962 efuseTbl[addr+1] = efuseData;
963 }
964 addr += 2;
965 }
966 } else {
967 DBG_8192C(KERN_ERR "%s: offset(%d) is illegal!!\n", __func__, offset);
968 eFuse_Addr += Efuse_CalculateWordCnts(wden)*2;
969 }
970 }
971
972 /* Copy from Efuse map to output pointer memory!!! */
973 for (i = 0; i < _size_byte; i++)
974 pbuf[i] = efuseTbl[_offset+i];
975
976 #ifdef DEBUG
977 if (1) {
978 DBG_871X("Efuse Realmap:\n");
979 for (i = 0; i < _size_byte; i++) {
980 if (i % 16 == 0)
981 printk("\n");
982 printk("%02X ", pbuf[i]);
983 }
984 printk("\n");
985 }
986 #endif
987 /* Calculate Efuse utilization */
988 EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
989 used = eFuse_Addr - 1;
990 efuse_usage = (u8)((used*100)/total);
991 if (bPseudoTest) {
992 #ifdef HAL_EFUSE_MEMORY
993 pEfuseHal->fakeEfuseUsedBytes = used;
994 #else
995 fakeEfuseUsedBytes = used;
996 #endif
997 } else {
998 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&used);
999 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_USAGE, (u8 *)&efuse_usage);
1000 }
1001
1002 kfree(efuseTbl);
1003 }
1004
1005 static void hal_ReadEFuse_BT(
1006 struct adapter *padapter,
1007 u16 _offset,
1008 u16 _size_byte,
1009 u8 *pbuf,
1010 bool bPseudoTest
1011 )
1012 {
1013 #ifdef HAL_EFUSE_MEMORY
1014 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1015 PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
1016 #endif
1017 u8 *efuseTbl;
1018 u8 bank;
1019 u16 eFuse_Addr;
1020 u8 efuseHeader, efuseExtHdr, efuseData;
1021 u8 offset, wden;
1022 u16 i, total, used;
1023 u8 efuse_usage;
1024
1025
1026 /* */
1027 /* Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
1028 /* */
1029 if ((_offset+_size_byte) > EFUSE_BT_MAP_LEN) {
1030 DBG_8192C("%s: Invalid offset(%#x) with read bytes(%#x)!!\n", __func__, _offset, _size_byte);
1031 return;
1032 }
1033
1034 efuseTbl = rtw_malloc(EFUSE_BT_MAP_LEN);
1035 if (efuseTbl == NULL) {
1036 DBG_8192C("%s: efuseTbl malloc fail!\n", __func__);
1037 return;
1038 }
1039 /* 0xff will be efuse default value instead of 0x00. */
1040 memset(efuseTbl, 0xFF, EFUSE_BT_MAP_LEN);
1041
1042 EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &total, bPseudoTest);
1043
1044 for (bank = 1; bank < 3; bank++) { /* 8723b Max bake 0~2 */
1045 if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == false) {
1046 DBG_8192C("%s: hal_EfuseSwitchToBank Fail!!\n", __func__);
1047 goto exit;
1048 }
1049
1050 eFuse_Addr = 0;
1051
1052 while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
1053 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
1054 if (efuseHeader == 0xFF)
1055 break;
1056 DBG_8192C("%s: efuse[%#X]= 0x%02x (header)\n", __func__, (((bank-1)*EFUSE_REAL_CONTENT_LEN_8723B)+eFuse_Addr-1), efuseHeader);
1057
1058 /* Check PG header for section num. */
1059 if (EXT_HEADER(efuseHeader)) { /* extended header */
1060 offset = GET_HDR_OFFSET_2_0(efuseHeader);
1061 DBG_8192C("%s: extended header offset_2_0 = 0x%X\n", __func__, offset);
1062
1063 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
1064 DBG_8192C("%s: efuse[%#X]= 0x%02x (ext header)\n", __func__, (((bank-1)*EFUSE_REAL_CONTENT_LEN_8723B)+eFuse_Addr-1), efuseExtHdr);
1065 if (ALL_WORDS_DISABLED(efuseExtHdr))
1066 continue;
1067
1068
1069 offset |= ((efuseExtHdr & 0xF0) >> 1);
1070 wden = (efuseExtHdr & 0x0F);
1071 } else {
1072 offset = ((efuseHeader >> 4) & 0x0f);
1073 wden = (efuseHeader & 0x0f);
1074 }
1075
1076 if (offset < EFUSE_BT_MAX_SECTION) {
1077 u16 addr;
1078
1079 /* Get word enable value from PG header */
1080 DBG_8192C("%s: Offset =%d Worden =%#X\n", __func__, offset, wden);
1081
1082 addr = offset * PGPKT_DATA_SIZE;
1083 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
1084 /* Check word enable condition in the section */
1085 if (!(wden & (0x01<<i))) {
1086 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
1087 DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseData);
1088 efuseTbl[addr] = efuseData;
1089
1090 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
1091 DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseData);
1092 efuseTbl[addr+1] = efuseData;
1093 }
1094 addr += 2;
1095 }
1096 } else {
1097 DBG_8192C("%s: offset(%d) is illegal!!\n", __func__, offset);
1098 eFuse_Addr += Efuse_CalculateWordCnts(wden)*2;
1099 }
1100 }
1101
1102 if ((eFuse_Addr-1) < total) {
1103 DBG_8192C("%s: bank(%d) data end at %#x\n", __func__, bank, eFuse_Addr-1);
1104 break;
1105 }
1106 }
1107
1108 /* switch bank back to bank 0 for later BT and wifi use. */
1109 hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
1110
1111 /* Copy from Efuse map to output pointer memory!!! */
1112 for (i = 0; i < _size_byte; i++)
1113 pbuf[i] = efuseTbl[_offset+i];
1114
1115 /* */
1116 /* Calculate Efuse utilization. */
1117 /* */
1118 EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
1119 used = (EFUSE_BT_REAL_BANK_CONTENT_LEN*(bank-1)) + eFuse_Addr - 1;
1120 DBG_8192C("%s: bank(%d) data end at %#x , used =%d\n", __func__, bank, eFuse_Addr-1, used);
1121 efuse_usage = (u8)((used*100)/total);
1122 if (bPseudoTest) {
1123 #ifdef HAL_EFUSE_MEMORY
1124 pEfuseHal->fakeBTEfuseUsedBytes = used;
1125 #else
1126 fakeBTEfuseUsedBytes = used;
1127 #endif
1128 } else {
1129 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&used);
1130 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_USAGE, (u8 *)&efuse_usage);
1131 }
1132
1133 exit:
1134 kfree(efuseTbl);
1135 }
1136
1137 static void Hal_ReadEFuse(
1138 struct adapter *padapter,
1139 u8 efuseType,
1140 u16 _offset,
1141 u16 _size_byte,
1142 u8 *pbuf,
1143 bool bPseudoTest
1144 )
1145 {
1146 if (efuseType == EFUSE_WIFI)
1147 hal_ReadEFuse_WiFi(padapter, _offset, _size_byte, pbuf, bPseudoTest);
1148 else
1149 hal_ReadEFuse_BT(padapter, _offset, _size_byte, pbuf, bPseudoTest);
1150 }
1151
1152 static u16 hal_EfuseGetCurrentSize_WiFi(
1153 struct adapter *padapter, bool bPseudoTest
1154 )
1155 {
1156 #ifdef HAL_EFUSE_MEMORY
1157 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1158 PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
1159 #endif
1160 u16 efuse_addr = 0;
1161 u16 start_addr = 0; /* for debug */
1162 u8 hoffset = 0, hworden = 0;
1163 u8 efuse_data, word_cnts = 0;
1164 u32 count = 0; /* for debug */
1165
1166
1167 if (bPseudoTest) {
1168 #ifdef HAL_EFUSE_MEMORY
1169 efuse_addr = (u16)pEfuseHal->fakeEfuseUsedBytes;
1170 #else
1171 efuse_addr = (u16)fakeEfuseUsedBytes;
1172 #endif
1173 } else
1174 rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
1175
1176 start_addr = efuse_addr;
1177 DBG_8192C("%s: start_efuse_addr = 0x%X\n", __func__, efuse_addr);
1178
1179 /* switch bank back to bank 0 for later BT and wifi use. */
1180 hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
1181
1182 count = 0;
1183 while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1184 if (efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) == false) {
1185 DBG_8192C(KERN_ERR "%s: efuse_OneByteRead Fail! addr = 0x%X !!\n", __func__, efuse_addr);
1186 goto error;
1187 }
1188
1189 if (efuse_data == 0xFF)
1190 break;
1191
1192 if ((start_addr != 0) && (efuse_addr == start_addr)) {
1193 count++;
1194 DBG_8192C(FUNC_ADPT_FMT ": [WARNING] efuse raw 0x%X = 0x%02X not 0xFF!!(%d times)\n",
1195 FUNC_ADPT_ARG(padapter), efuse_addr, efuse_data, count);
1196
1197 efuse_data = 0xFF;
1198 if (count < 4) {
1199 /* try again! */
1200
1201 if (count > 2) {
1202 /* try again form address 0 */
1203 efuse_addr = 0;
1204 start_addr = 0;
1205 }
1206
1207 continue;
1208 }
1209
1210 goto error;
1211 }
1212
1213 if (EXT_HEADER(efuse_data)) {
1214 hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1215 efuse_addr++;
1216 efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1217 if (ALL_WORDS_DISABLED(efuse_data))
1218 continue;
1219
1220 hoffset |= ((efuse_data & 0xF0) >> 1);
1221 hworden = efuse_data & 0x0F;
1222 } else {
1223 hoffset = (efuse_data>>4) & 0x0F;
1224 hworden = efuse_data & 0x0F;
1225 }
1226
1227 word_cnts = Efuse_CalculateWordCnts(hworden);
1228 efuse_addr += (word_cnts*2)+1;
1229 }
1230
1231 if (bPseudoTest) {
1232 #ifdef HAL_EFUSE_MEMORY
1233 pEfuseHal->fakeEfuseUsedBytes = efuse_addr;
1234 #else
1235 fakeEfuseUsedBytes = efuse_addr;
1236 #endif
1237 } else
1238 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
1239
1240 goto exit;
1241
1242 error:
1243 /* report max size to prevent wirte efuse */
1244 EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_addr, bPseudoTest);
1245
1246 exit:
1247 DBG_8192C("%s: CurrentSize =%d\n", __func__, efuse_addr);
1248
1249 return efuse_addr;
1250 }
1251
1252 static u16 hal_EfuseGetCurrentSize_BT(struct adapter *padapter, u8 bPseudoTest)
1253 {
1254 #ifdef HAL_EFUSE_MEMORY
1255 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1256 PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
1257 #endif
1258 u16 btusedbytes;
1259 u16 efuse_addr;
1260 u8 bank, startBank;
1261 u8 hoffset = 0, hworden = 0;
1262 u8 efuse_data, word_cnts = 0;
1263 u16 retU2 = 0;
1264
1265 if (bPseudoTest) {
1266 #ifdef HAL_EFUSE_MEMORY
1267 btusedbytes = pEfuseHal->fakeBTEfuseUsedBytes;
1268 #else
1269 btusedbytes = fakeBTEfuseUsedBytes;
1270 #endif
1271 } else
1272 rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&btusedbytes);
1273
1274 efuse_addr = (u16)((btusedbytes%EFUSE_BT_REAL_BANK_CONTENT_LEN));
1275 startBank = (u8)(1+(btusedbytes/EFUSE_BT_REAL_BANK_CONTENT_LEN));
1276
1277 DBG_8192C("%s: start from bank =%d addr = 0x%X\n", __func__, startBank, efuse_addr);
1278
1279 EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &retU2, bPseudoTest);
1280
1281 for (bank = startBank; bank < 3; bank++) {
1282 if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == false) {
1283 DBG_8192C(KERN_ERR "%s: switch bank(%d) Fail!!\n", __func__, bank);
1284 /* bank = EFUSE_MAX_BANK; */
1285 break;
1286 }
1287
1288 /* only when bank is switched we have to reset the efuse_addr. */
1289 if (bank != startBank)
1290 efuse_addr = 0;
1291 #if 1
1292
1293 while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1294 if (efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) == false) {
1295 DBG_8192C(KERN_ERR "%s: efuse_OneByteRead Fail! addr = 0x%X !!\n", __func__, efuse_addr);
1296 /* bank = EFUSE_MAX_BANK; */
1297 break;
1298 }
1299 DBG_8192C("%s: efuse_OneByteRead ! addr = 0x%X !efuse_data = 0x%X! bank =%d\n", __func__, efuse_addr, efuse_data, bank);
1300
1301 if (efuse_data == 0xFF)
1302 break;
1303
1304 if (EXT_HEADER(efuse_data)) {
1305 hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1306 efuse_addr++;
1307 efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1308 DBG_8192C("%s: efuse_OneByteRead EXT_HEADER ! addr = 0x%X !efuse_data = 0x%X! bank =%d\n", __func__, efuse_addr, efuse_data, bank);
1309
1310 if (ALL_WORDS_DISABLED(efuse_data)) {
1311 efuse_addr++;
1312 continue;
1313 }
1314
1315 /* hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); */
1316 hoffset |= ((efuse_data & 0xF0) >> 1);
1317 hworden = efuse_data & 0x0F;
1318 } else {
1319 hoffset = (efuse_data>>4) & 0x0F;
1320 hworden = efuse_data & 0x0F;
1321 }
1322
1323 DBG_8192C(FUNC_ADPT_FMT": Offset =%d Worden =%#X\n",
1324 FUNC_ADPT_ARG(padapter), hoffset, hworden);
1325
1326 word_cnts = Efuse_CalculateWordCnts(hworden);
1327 /* read next header */
1328 efuse_addr += (word_cnts*2)+1;
1329 }
1330 #else
1331 while (
1332 bContinual &&
1333 efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) &&
1334 AVAILABLE_EFUSE_ADDR(efuse_addr)
1335 ) {
1336 if (efuse_data != 0xFF) {
1337 if ((efuse_data&0x1F) == 0x0F) { /* extended header */
1338 hoffset = efuse_data;
1339 efuse_addr++;
1340 efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1341 if ((efuse_data & 0x0F) == 0x0F) {
1342 efuse_addr++;
1343 continue;
1344 } else {
1345 hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
1346 hworden = efuse_data & 0x0F;
1347 }
1348 } else {
1349 hoffset = (efuse_data>>4) & 0x0F;
1350 hworden = efuse_data & 0x0F;
1351 }
1352 word_cnts = Efuse_CalculateWordCnts(hworden);
1353 /* read next header */
1354 efuse_addr = efuse_addr + (word_cnts*2)+1;
1355 } else
1356 bContinual = false;
1357 }
1358 #endif
1359
1360
1361 /* Check if we need to check next bank efuse */
1362 if (efuse_addr < retU2)
1363 break; /* don't need to check next bank. */
1364 }
1365
1366 retU2 = ((bank-1)*EFUSE_BT_REAL_BANK_CONTENT_LEN)+efuse_addr;
1367 if (bPseudoTest) {
1368 pEfuseHal->fakeBTEfuseUsedBytes = retU2;
1369 /* RT_DISP(FEEPROM, EFUSE_PG, ("Hal_EfuseGetCurrentSize_BT92C(), already use %u bytes\n", pEfuseHal->fakeBTEfuseUsedBytes)); */
1370 } else {
1371 pEfuseHal->BTEfuseUsedBytes = retU2;
1372 /* RT_DISP(FEEPROM, EFUSE_PG, ("Hal_EfuseGetCurrentSize_BT92C(), already use %u bytes\n", pEfuseHal->BTEfuseUsedBytes)); */
1373 }
1374
1375 DBG_8192C("%s: CurrentSize =%d\n", __func__, retU2);
1376 return retU2;
1377 }
1378
1379 static u16 Hal_EfuseGetCurrentSize(
1380 struct adapter *padapter, u8 efuseType, bool bPseudoTest
1381 )
1382 {
1383 u16 ret = 0;
1384
1385 if (efuseType == EFUSE_WIFI)
1386 ret = hal_EfuseGetCurrentSize_WiFi(padapter, bPseudoTest);
1387 else
1388 ret = hal_EfuseGetCurrentSize_BT(padapter, bPseudoTest);
1389
1390 return ret;
1391 }
1392
1393 static u8 Hal_EfuseWordEnableDataWrite(
1394 struct adapter *padapter,
1395 u16 efuse_addr,
1396 u8 word_en,
1397 u8 *data,
1398 bool bPseudoTest
1399 )
1400 {
1401 u16 tmpaddr = 0;
1402 u16 start_addr = efuse_addr;
1403 u8 badworden = 0x0F;
1404 u8 tmpdata[PGPKT_DATA_SIZE];
1405
1406
1407 /* DBG_8192C("%s: efuse_addr =%#x word_en =%#x\n", __func__, efuse_addr, word_en); */
1408 memset(tmpdata, 0xFF, PGPKT_DATA_SIZE);
1409
1410 if (!(word_en & BIT(0))) {
1411 tmpaddr = start_addr;
1412 efuse_OneByteWrite(padapter, start_addr++, data[0], bPseudoTest);
1413 efuse_OneByteWrite(padapter, start_addr++, data[1], bPseudoTest);
1414
1415 efuse_OneByteRead(padapter, tmpaddr, &tmpdata[0], bPseudoTest);
1416 efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[1], bPseudoTest);
1417 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1])) {
1418 badworden &= (~BIT(0));
1419 }
1420 }
1421 if (!(word_en & BIT(1))) {
1422 tmpaddr = start_addr;
1423 efuse_OneByteWrite(padapter, start_addr++, data[2], bPseudoTest);
1424 efuse_OneByteWrite(padapter, start_addr++, data[3], bPseudoTest);
1425
1426 efuse_OneByteRead(padapter, tmpaddr, &tmpdata[2], bPseudoTest);
1427 efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[3], bPseudoTest);
1428 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3])) {
1429 badworden &= (~BIT(1));
1430 }
1431 }
1432
1433 if (!(word_en & BIT(2))) {
1434 tmpaddr = start_addr;
1435 efuse_OneByteWrite(padapter, start_addr++, data[4], bPseudoTest);
1436 efuse_OneByteWrite(padapter, start_addr++, data[5], bPseudoTest);
1437
1438 efuse_OneByteRead(padapter, tmpaddr, &tmpdata[4], bPseudoTest);
1439 efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[5], bPseudoTest);
1440 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5])) {
1441 badworden &= (~BIT(2));
1442 }
1443 }
1444
1445 if (!(word_en & BIT(3))) {
1446 tmpaddr = start_addr;
1447 efuse_OneByteWrite(padapter, start_addr++, data[6], bPseudoTest);
1448 efuse_OneByteWrite(padapter, start_addr++, data[7], bPseudoTest);
1449
1450 efuse_OneByteRead(padapter, tmpaddr, &tmpdata[6], bPseudoTest);
1451 efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[7], bPseudoTest);
1452 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7])) {
1453 badworden &= (~BIT(3));
1454 }
1455 }
1456
1457 return badworden;
1458 }
1459
1460 static s32 Hal_EfusePgPacketRead(
1461 struct adapter *padapter,
1462 u8 offset,
1463 u8 *data,
1464 bool bPseudoTest
1465 )
1466 {
1467 u8 efuse_data, word_cnts = 0;
1468 u16 efuse_addr = 0;
1469 u8 hoffset = 0, hworden = 0;
1470 u8 i;
1471 u8 max_section = 0;
1472 s32 ret;
1473
1474
1475 if (data == NULL)
1476 return false;
1477
1478 EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAX_SECTION, &max_section, bPseudoTest);
1479 if (offset > max_section) {
1480 DBG_8192C("%s: Packet offset(%d) is illegal(>%d)!\n", __func__, offset, max_section);
1481 return false;
1482 }
1483
1484 memset(data, 0xFF, PGPKT_DATA_SIZE);
1485 ret = true;
1486
1487 /* */
1488 /* <Roger_TODO> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP. */
1489 /* Skip dummy parts to prevent unexpected data read from Efuse. */
1490 /* By pass right now. 2009.02.19. */
1491 /* */
1492 while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1493 if (efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest) == false) {
1494 ret = false;
1495 break;
1496 }
1497
1498 if (efuse_data == 0xFF)
1499 break;
1500
1501 if (EXT_HEADER(efuse_data)) {
1502 hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1503 efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1504 if (ALL_WORDS_DISABLED(efuse_data)) {
1505 DBG_8192C("%s: Error!! All words disabled!\n", __func__);
1506 continue;
1507 }
1508
1509 hoffset |= ((efuse_data & 0xF0) >> 1);
1510 hworden = efuse_data & 0x0F;
1511 } else {
1512 hoffset = (efuse_data>>4) & 0x0F;
1513 hworden = efuse_data & 0x0F;
1514 }
1515
1516 if (hoffset == offset) {
1517 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
1518 /* Check word enable condition in the section */
1519 if (!(hworden & (0x01<<i))) {
1520 efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1521 /* DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, efuse_addr+tmpidx, efuse_data); */
1522 data[i*2] = efuse_data;
1523
1524 efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1525 /* DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, efuse_addr+tmpidx, efuse_data); */
1526 data[(i*2)+1] = efuse_data;
1527 }
1528 }
1529 } else {
1530 word_cnts = Efuse_CalculateWordCnts(hworden);
1531 efuse_addr += word_cnts*2;
1532 }
1533 }
1534
1535 return ret;
1536 }
1537
1538 static u8 hal_EfusePgCheckAvailableAddr(
1539 struct adapter *padapter, u8 efuseType, u8 bPseudoTest
1540 )
1541 {
1542 u16 max_available = 0;
1543 u16 current_size;
1544
1545
1546 EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &max_available, bPseudoTest);
1547 /* DBG_8192C("%s: max_available =%d\n", __func__, max_available); */
1548
1549 current_size = Efuse_GetCurrentSize(padapter, efuseType, bPseudoTest);
1550 if (current_size >= max_available) {
1551 DBG_8192C("%s: Error!! current_size(%d)>max_available(%d)\n", __func__, current_size, max_available);
1552 return false;
1553 }
1554 return true;
1555 }
1556
1557 static void hal_EfuseConstructPGPkt(
1558 u8 offset,
1559 u8 word_en,
1560 u8 *pData,
1561 PPGPKT_STRUCT pTargetPkt
1562 )
1563 {
1564 memset(pTargetPkt->data, 0xFF, PGPKT_DATA_SIZE);
1565 pTargetPkt->offset = offset;
1566 pTargetPkt->word_en = word_en;
1567 efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
1568 pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
1569 }
1570
1571 static u8 hal_EfusePartialWriteCheck(
1572 struct adapter *padapter,
1573 u8 efuseType,
1574 u16 *pAddr,
1575 PPGPKT_STRUCT pTargetPkt,
1576 u8 bPseudoTest
1577 )
1578 {
1579 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1580 PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
1581 u8 bRet = false;
1582 u16 startAddr = 0, efuse_max_available_len = 0, efuse_max = 0;
1583 u8 efuse_data = 0;
1584
1585 EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_max_available_len, bPseudoTest);
1586 EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_CONTENT_LEN_BANK, &efuse_max, bPseudoTest);
1587
1588 if (efuseType == EFUSE_WIFI) {
1589 if (bPseudoTest) {
1590 #ifdef HAL_EFUSE_MEMORY
1591 startAddr = (u16)pEfuseHal->fakeEfuseUsedBytes;
1592 #else
1593 startAddr = (u16)fakeEfuseUsedBytes;
1594 #endif
1595 } else
1596 rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr);
1597 } else {
1598 if (bPseudoTest) {
1599 #ifdef HAL_EFUSE_MEMORY
1600 startAddr = (u16)pEfuseHal->fakeBTEfuseUsedBytes;
1601 #else
1602 startAddr = (u16)fakeBTEfuseUsedBytes;
1603 #endif
1604 } else
1605 rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&startAddr);
1606 }
1607 startAddr %= efuse_max;
1608 DBG_8192C("%s: startAddr =%#X\n", __func__, startAddr);
1609
1610 while (1) {
1611 if (startAddr >= efuse_max_available_len) {
1612 bRet = false;
1613 DBG_8192C("%s: startAddr(%d) >= efuse_max_available_len(%d)\n", __func__, startAddr, efuse_max_available_len);
1614 break;
1615 }
1616
1617 if (efuse_OneByteRead(padapter, startAddr, &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) {
1618 #if 1
1619 bRet = false;
1620 DBG_8192C("%s: Something Wrong! last bytes(%#X = 0x%02X) is not 0xFF\n",
1621 __func__, startAddr, efuse_data);
1622 break;
1623 #else
1624 if (EXT_HEADER(efuse_data)) {
1625 cur_header = efuse_data;
1626 startAddr++;
1627 efuse_OneByteRead(padapter, startAddr, &efuse_data, bPseudoTest);
1628 if (ALL_WORDS_DISABLED(efuse_data)) {
1629 DBG_8192C("%s: Error condition, all words disabled!", __func__);
1630 bRet = false;
1631 break;
1632 } else {
1633 curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
1634 curPkt.word_en = efuse_data & 0x0F;
1635 }
1636 } else {
1637 cur_header = efuse_data;
1638 curPkt.offset = (cur_header>>4) & 0x0F;
1639 curPkt.word_en = cur_header & 0x0F;
1640 }
1641
1642 curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en);
1643 /* if same header is found but no data followed */
1644 /* write some part of data followed by the header. */
1645 if (
1646 (curPkt.offset == pTargetPkt->offset) &&
1647 (hal_EfuseCheckIfDatafollowed(padapter, curPkt.word_cnts, startAddr+1, bPseudoTest) == false) &&
1648 wordEnMatched(pTargetPkt, &curPkt, &matched_wden) == true
1649 ) {
1650 DBG_8192C("%s: Need to partial write data by the previous wrote header\n", __func__);
1651 /* Here to write partial data */
1652 badworden = Efuse_WordEnableDataWrite(padapter, startAddr+1, matched_wden, pTargetPkt->data, bPseudoTest);
1653 if (badworden != 0x0F) {
1654 u32 PgWriteSuccess = 0;
1655 /* if write fail on some words, write these bad words again */
1656 if (efuseType == EFUSE_WIFI)
1657 PgWriteSuccess = Efuse_PgPacketWrite(padapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
1658 else
1659 PgWriteSuccess = Efuse_PgPacketWrite_BT(padapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
1660
1661 if (!PgWriteSuccess) {
1662 bRet = false; /* write fail, return */
1663 break;
1664 }
1665 }
1666 /* partial write ok, update the target packet for later use */
1667 for (i = 0; i < 4; i++) {
1668 if ((matched_wden & (0x1<<i)) == 0) { /* this word has been written */
1669 pTargetPkt->word_en |= (0x1<<i); /* disable the word */
1670 }
1671 }
1672 pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
1673 }
1674 /* read from next header */
1675 startAddr = startAddr + (curPkt.word_cnts*2) + 1;
1676 #endif
1677 } else {
1678 /* not used header, 0xff */
1679 *pAddr = startAddr;
1680 /* DBG_8192C("%s: Started from unused header offset =%d\n", __func__, startAddr)); */
1681 bRet = true;
1682 break;
1683 }
1684 }
1685
1686 return bRet;
1687 }
1688
1689 static u8 hal_EfusePgPacketWrite1ByteHeader(
1690 struct adapter *padapter,
1691 u8 efuseType,
1692 u16 *pAddr,
1693 PPGPKT_STRUCT pTargetPkt,
1694 u8 bPseudoTest
1695 )
1696 {
1697 u8 pg_header = 0, tmp_header = 0;
1698 u16 efuse_addr = *pAddr;
1699 u8 repeatcnt = 0;
1700
1701
1702 /* DBG_8192C("%s\n", __func__); */
1703 pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en;
1704
1705 do {
1706 efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1707 efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1708 if (tmp_header != 0xFF)
1709 break;
1710 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
1711 DBG_8192C("%s: Repeat over limit for pg_header!!\n", __func__);
1712 return false;
1713 }
1714 } while (1);
1715
1716 if (tmp_header != pg_header) {
1717 DBG_8192C(KERN_ERR "%s: PG Header Fail!!(pg = 0x%02X read = 0x%02X)\n", __func__, pg_header, tmp_header);
1718 return false;
1719 }
1720
1721 *pAddr = efuse_addr;
1722
1723 return true;
1724 }
1725
1726 static u8 hal_EfusePgPacketWrite2ByteHeader(
1727 struct adapter *padapter,
1728 u8 efuseType,
1729 u16 *pAddr,
1730 PPGPKT_STRUCT pTargetPkt,
1731 u8 bPseudoTest
1732 )
1733 {
1734 u16 efuse_addr, efuse_max_available_len = 0;
1735 u8 pg_header = 0, tmp_header = 0;
1736 u8 repeatcnt = 0;
1737
1738
1739 /* DBG_8192C("%s\n", __func__); */
1740 EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &efuse_max_available_len, bPseudoTest);
1741
1742 efuse_addr = *pAddr;
1743 if (efuse_addr >= efuse_max_available_len) {
1744 DBG_8192C("%s: addr(%d) over available (%d)!!\n", __func__,
1745 efuse_addr, efuse_max_available_len);
1746 return false;
1747 }
1748
1749 pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
1750 /* DBG_8192C("%s: pg_header = 0x%x\n", __func__, pg_header); */
1751
1752 do {
1753 efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1754 efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1755 if (tmp_header != 0xFF)
1756 break;
1757 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
1758 DBG_8192C("%s: Repeat over limit for pg_header!!\n", __func__);
1759 return false;
1760 }
1761 } while (1);
1762
1763 if (tmp_header != pg_header) {
1764 DBG_8192C(KERN_ERR "%s: PG Header Fail!!(pg = 0x%02X read = 0x%02X)\n", __func__, pg_header, tmp_header);
1765 return false;
1766 }
1767
1768 /* to write ext_header */
1769 efuse_addr++;
1770 pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
1771
1772 do {
1773 efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1774 efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1775 if (tmp_header != 0xFF)
1776 break;
1777 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
1778 DBG_8192C("%s: Repeat over limit for ext_header!!\n", __func__);
1779 return false;
1780 }
1781 } while (1);
1782
1783 if (tmp_header != pg_header) { /* offset PG fail */
1784 DBG_8192C(KERN_ERR "%s: PG EXT Header Fail!!(pg = 0x%02X read = 0x%02X)\n", __func__, pg_header, tmp_header);
1785 return false;
1786 }
1787
1788 *pAddr = efuse_addr;
1789
1790 return true;
1791 }
1792
1793 static u8 hal_EfusePgPacketWriteHeader(
1794 struct adapter *padapter,
1795 u8 efuseType,
1796 u16 *pAddr,
1797 PPGPKT_STRUCT pTargetPkt,
1798 u8 bPseudoTest
1799 )
1800 {
1801 u8 bRet = false;
1802
1803 if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
1804 bRet = hal_EfusePgPacketWrite2ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
1805 else
1806 bRet = hal_EfusePgPacketWrite1ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
1807
1808 return bRet;
1809 }
1810
1811 static u8 hal_EfusePgPacketWriteData(
1812 struct adapter *padapter,
1813 u8 efuseType,
1814 u16 *pAddr,
1815 PPGPKT_STRUCT pTargetPkt,
1816 u8 bPseudoTest
1817 )
1818 {
1819 u16 efuse_addr;
1820 u8 badworden;
1821
1822
1823 efuse_addr = *pAddr;
1824 badworden = Efuse_WordEnableDataWrite(padapter, efuse_addr+1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest);
1825 if (badworden != 0x0F) {
1826 DBG_8192C("%s: Fail!!\n", __func__);
1827 return false;
1828 }
1829
1830 /* DBG_8192C("%s: ok\n", __func__); */
1831 return true;
1832 }
1833
1834 static s32 Hal_EfusePgPacketWrite(
1835 struct adapter *padapter,
1836 u8 offset,
1837 u8 word_en,
1838 u8 *pData,
1839 bool bPseudoTest
1840 )
1841 {
1842 PGPKT_STRUCT targetPkt;
1843 u16 startAddr = 0;
1844 u8 efuseType = EFUSE_WIFI;
1845
1846 if (!hal_EfusePgCheckAvailableAddr(padapter, efuseType, bPseudoTest))
1847 return false;
1848
1849 hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
1850
1851 if (!hal_EfusePartialWriteCheck(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1852 return false;
1853
1854 if (!hal_EfusePgPacketWriteHeader(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1855 return false;
1856
1857 if (!hal_EfusePgPacketWriteData(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1858 return false;
1859
1860 return true;
1861 }
1862
1863 static bool Hal_EfusePgPacketWrite_BT(
1864 struct adapter *padapter,
1865 u8 offset,
1866 u8 word_en,
1867 u8 *pData,
1868 bool bPseudoTest
1869 )
1870 {
1871 PGPKT_STRUCT targetPkt;
1872 u16 startAddr = 0;
1873 u8 efuseType = EFUSE_BT;
1874
1875 if (!hal_EfusePgCheckAvailableAddr(padapter, efuseType, bPseudoTest))
1876 return false;
1877
1878 hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
1879
1880 if (!hal_EfusePartialWriteCheck(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1881 return false;
1882
1883 if (!hal_EfusePgPacketWriteHeader(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1884 return false;
1885
1886 if (!hal_EfusePgPacketWriteData(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1887 return false;
1888
1889 return true;
1890 }
1891
1892 static HAL_VERSION ReadChipVersion8723B(struct adapter *padapter)
1893 {
1894 u32 value32;
1895 HAL_VERSION ChipVersion;
1896 struct hal_com_data *pHalData;
1897
1898 /* YJ, TODO, move read chip type here */
1899 pHalData = GET_HAL_DATA(padapter);
1900
1901 value32 = rtw_read32(padapter, REG_SYS_CFG);
1902 ChipVersion.ICType = CHIP_8723B;
1903 ChipVersion.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);
1904 ChipVersion.RFType = RF_TYPE_1T1R;
1905 ChipVersion.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC);
1906 ChipVersion.CUTVersion = (value32 & CHIP_VER_RTL_MASK)>>CHIP_VER_RTL_SHIFT; /* IC version (CUT) */
1907
1908 /* For regulator mode. by tynli. 2011.01.14 */
1909 pHalData->RegulatorMode = ((value32 & SPS_SEL) ? RT_LDO_REGULATOR : RT_SWITCHING_REGULATOR);
1910
1911 value32 = rtw_read32(padapter, REG_GPIO_OUTSTS);
1912 ChipVersion.ROMVer = ((value32 & RF_RL_ID) >> 20); /* ROM code version. */
1913
1914 /* For multi-function consideration. Added by Roger, 2010.10.06. */
1915 pHalData->MultiFunc = RT_MULTI_FUNC_NONE;
1916 value32 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
1917 pHalData->MultiFunc |= ((value32 & WL_FUNC_EN) ? RT_MULTI_FUNC_WIFI : 0);
1918 pHalData->MultiFunc |= ((value32 & BT_FUNC_EN) ? RT_MULTI_FUNC_BT : 0);
1919 pHalData->MultiFunc |= ((value32 & GPS_FUNC_EN) ? RT_MULTI_FUNC_GPS : 0);
1920 pHalData->PolarityCtl = ((value32 & WL_HWPDN_SL) ? RT_POLARITY_HIGH_ACT : RT_POLARITY_LOW_ACT);
1921 #if 1
1922 dump_chip_info(ChipVersion);
1923 #endif
1924 pHalData->VersionID = ChipVersion;
1925 if (IS_1T2R(ChipVersion))
1926 pHalData->rf_type = RF_1T2R;
1927 else if (IS_2T2R(ChipVersion))
1928 pHalData->rf_type = RF_2T2R;
1929 else
1930 pHalData->rf_type = RF_1T1R;
1931
1932 MSG_8192C("RF_Type is %x!!\n", pHalData->rf_type);
1933
1934 return ChipVersion;
1935 }
1936
1937 static void rtl8723b_read_chip_version(struct adapter *padapter)
1938 {
1939 ReadChipVersion8723B(padapter);
1940 }
1941
1942 void rtl8723b_InitBeaconParameters(struct adapter *padapter)
1943 {
1944 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1945 u16 val16;
1946 u8 val8;
1947
1948
1949 val8 = DIS_TSF_UDT;
1950 val16 = val8 | (val8 << 8); /* port0 and port1 */
1951
1952 /* Enable prot0 beacon function for PSTDMA */
1953 val16 |= EN_BCN_FUNCTION;
1954
1955 rtw_write16(padapter, REG_BCN_CTRL, val16);
1956
1957 /* TODO: Remove these magic number */
1958 rtw_write16(padapter, REG_TBTT_PROHIBIT, 0x6404);/* ms */
1959 /* Firmware will control REG_DRVERLYINT when power saving is enable, */
1960 /* so don't set this register on STA mode. */
1961 if (check_fwstate(&padapter->mlmepriv, WIFI_STATION_STATE) == false)
1962 rtw_write8(padapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME_8723B); /* 5ms */
1963 rtw_write8(padapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME_8723B); /* 2ms */
1964
1965 /* Suggested by designer timchen. Change beacon AIFS to the largest number */
1966 /* beacause test chip does not contension before sending beacon. by tynli. 2009.11.03 */
1967 rtw_write16(padapter, REG_BCNTCFG, 0x660F);
1968
1969 pHalData->RegBcnCtrlVal = rtw_read8(padapter, REG_BCN_CTRL);
1970 pHalData->RegTxPause = rtw_read8(padapter, REG_TXPAUSE);
1971 pHalData->RegFwHwTxQCtrl = rtw_read8(padapter, REG_FWHW_TXQ_CTRL+2);
1972 pHalData->RegReg542 = rtw_read8(padapter, REG_TBTT_PROHIBIT+2);
1973 pHalData->RegCR_1 = rtw_read8(padapter, REG_CR+1);
1974 }
1975
1976 void _InitBurstPktLen_8723BS(struct adapter *Adapter)
1977 {
1978 struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
1979
1980 rtw_write8(Adapter, 0x4c7, rtw_read8(Adapter, 0x4c7)|BIT(7)); /* enable single pkt ampdu */
1981 rtw_write8(Adapter, REG_RX_PKT_LIMIT_8723B, 0x18); /* for VHT packet length 11K */
1982 rtw_write8(Adapter, REG_MAX_AGGR_NUM_8723B, 0x1F);
1983 rtw_write8(Adapter, REG_PIFS_8723B, 0x00);
1984 rtw_write8(Adapter, REG_FWHW_TXQ_CTRL_8723B, rtw_read8(Adapter, REG_FWHW_TXQ_CTRL)&(~BIT(7)));
1985 if (pHalData->AMPDUBurstMode)
1986 rtw_write8(Adapter, REG_AMPDU_BURST_MODE_8723B, 0x5F);
1987 rtw_write8(Adapter, REG_AMPDU_MAX_TIME_8723B, 0x70);
1988
1989 /* ARFB table 9 for 11ac 5G 2SS */
1990 rtw_write32(Adapter, REG_ARFR0_8723B, 0x00000010);
1991 if (IS_NORMAL_CHIP(pHalData->VersionID))
1992 rtw_write32(Adapter, REG_ARFR0_8723B+4, 0xfffff000);
1993 else
1994 rtw_write32(Adapter, REG_ARFR0_8723B+4, 0x3e0ff000);
1995
1996 /* ARFB table 10 for 11ac 5G 1SS */
1997 rtw_write32(Adapter, REG_ARFR1_8723B, 0x00000010);
1998 rtw_write32(Adapter, REG_ARFR1_8723B+4, 0x003ff000);
1999 }
2000
2001 static void ResumeTxBeacon(struct adapter *padapter)
2002 {
2003 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2004
2005
2006 /* 2010.03.01. Marked by tynli. No need to call workitem beacause we record the value */
2007 /* which should be read from register to a global variable. */
2008
2009 RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("+ResumeTxBeacon\n"));
2010
2011 pHalData->RegFwHwTxQCtrl |= BIT(6);
2012 rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, pHalData->RegFwHwTxQCtrl);
2013 rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0xff);
2014 pHalData->RegReg542 |= BIT(0);
2015 rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
2016 }
2017
2018 static void StopTxBeacon(struct adapter *padapter)
2019 {
2020 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2021
2022
2023 /* 2010.03.01. Marked by tynli. No need to call workitem beacause we record the value */
2024 /* which should be read from register to a global variable. */
2025
2026 RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("+StopTxBeacon\n"));
2027
2028 pHalData->RegFwHwTxQCtrl &= ~BIT(6);
2029 rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, pHalData->RegFwHwTxQCtrl);
2030 rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0x64);
2031 pHalData->RegReg542 &= ~BIT(0);
2032 rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
2033
2034 CheckFwRsvdPageContent(padapter); /* 2010.06.23. Added by tynli. */
2035 }
2036
2037 static void _BeaconFunctionEnable(struct adapter *padapter, u8 Enable, u8 Linked)
2038 {
2039 rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB);
2040 rtw_write8(padapter, REG_RD_CTRL+1, 0x6F);
2041 }
2042
2043 static void rtl8723b_SetBeaconRelatedRegisters(struct adapter *padapter)
2044 {
2045 u8 val8;
2046 u32 value32;
2047 struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
2048 struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
2049 u32 bcn_ctrl_reg;
2050
2051 /* reset TSF, enable update TSF, correcting TSF On Beacon */
2052
2053 /* REG_BCN_INTERVAL */
2054 /* REG_BCNDMATIM */
2055 /* REG_ATIMWND */
2056 /* REG_TBTT_PROHIBIT */
2057 /* REG_DRVERLYINT */
2058 /* REG_BCN_MAX_ERR */
2059 /* REG_BCNTCFG (0x510) */
2060 /* REG_DUAL_TSF_RST */
2061 /* REG_BCN_CTRL (0x550) */
2062
2063
2064 bcn_ctrl_reg = REG_BCN_CTRL;
2065
2066 /* */
2067 /* ATIM window */
2068 /* */
2069 rtw_write16(padapter, REG_ATIMWND, 2);
2070
2071 /* */
2072 /* Beacon interval (in unit of TU). */
2073 /* */
2074 rtw_write16(padapter, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval);
2075
2076 rtl8723b_InitBeaconParameters(padapter);
2077
2078 rtw_write8(padapter, REG_SLOT, 0x09);
2079
2080 /* */
2081 /* Reset TSF Timer to zero, added by Roger. 2008.06.24 */
2082 /* */
2083 value32 = rtw_read32(padapter, REG_TCR);
2084 value32 &= ~TSFRST;
2085 rtw_write32(padapter, REG_TCR, value32);
2086
2087 value32 |= TSFRST;
2088 rtw_write32(padapter, REG_TCR, value32);
2089
2090 /* NOTE: Fix test chip's bug (about contention windows's randomness) */
2091 if (check_fwstate(&padapter->mlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE|WIFI_AP_STATE) == true) {
2092 rtw_write8(padapter, REG_RXTSF_OFFSET_CCK, 0x50);
2093 rtw_write8(padapter, REG_RXTSF_OFFSET_OFDM, 0x50);
2094 }
2095
2096 _BeaconFunctionEnable(padapter, true, true);
2097
2098 ResumeTxBeacon(padapter);
2099 val8 = rtw_read8(padapter, bcn_ctrl_reg);
2100 val8 |= DIS_BCNQ_SUB;
2101 rtw_write8(padapter, bcn_ctrl_reg, val8);
2102 }
2103
2104 static void rtl8723b_GetHalODMVar(
2105 struct adapter *Adapter,
2106 enum HAL_ODM_VARIABLE eVariable,
2107 void *pValue1,
2108 void *pValue2
2109 )
2110 {
2111 GetHalODMVar(Adapter, eVariable, pValue1, pValue2);
2112 }
2113
2114 static void rtl8723b_SetHalODMVar(
2115 struct adapter *Adapter,
2116 enum HAL_ODM_VARIABLE eVariable,
2117 void *pValue1,
2118 bool bSet
2119 )
2120 {
2121 SetHalODMVar(Adapter, eVariable, pValue1, bSet);
2122 }
2123
2124 static void hal_notch_filter_8723b(struct adapter *adapter, bool enable)
2125 {
2126 if (enable) {
2127 DBG_871X("Enable notch filter\n");
2128 rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) | BIT1);
2129 } else {
2130 DBG_871X("Disable notch filter\n");
2131 rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) & ~BIT1);
2132 }
2133 }
2134
2135 static void UpdateHalRAMask8723B(struct adapter *padapter, u32 mac_id, u8 rssi_level)
2136 {
2137 u32 mask, rate_bitmap;
2138 u8 shortGIrate = false;
2139 struct sta_info *psta;
2140 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2141 struct dm_priv *pdmpriv = &pHalData->dmpriv;
2142 struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
2143 struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
2144
2145 DBG_871X("%s(): mac_id =%d rssi_level =%d\n", __func__, mac_id, rssi_level);
2146
2147 if (mac_id >= NUM_STA) /* CAM_SIZE */
2148 return;
2149
2150 psta = pmlmeinfo->FW_sta_info[mac_id].psta;
2151 if (psta == NULL)
2152 return;
2153
2154 shortGIrate = query_ra_short_GI(psta);
2155
2156 mask = psta->ra_mask;
2157
2158 rate_bitmap = 0xffffffff;
2159 rate_bitmap = ODM_Get_Rate_Bitmap(&pHalData->odmpriv, mac_id, mask, rssi_level);
2160 DBG_871X("%s => mac_id:%d, networkType:0x%02x, mask:0x%08x\n\t ==> rssi_level:%d, rate_bitmap:0x%08x\n",
2161 __func__, mac_id, psta->wireless_mode, mask, rssi_level, rate_bitmap);
2162
2163 mask &= rate_bitmap;
2164
2165 rate_bitmap = rtw_btcoex_GetRaMask(padapter);
2166 mask &= ~rate_bitmap;
2167
2168 #ifdef CONFIG_CMCC_TEST
2169 if (pmlmeext->cur_wireless_mode & WIRELESS_11G) {
2170 if (mac_id == 0) {
2171 DBG_871X("CMCC_BT update raid entry, mask = 0x%x\n", mask);
2172 mask &= 0xffffff00; /* disable CCK & <24M OFDM rate for 11G mode for CMCC */
2173 DBG_871X("CMCC_BT update raid entry, mask = 0x%x\n", mask);
2174 }
2175 }
2176 #endif
2177
2178 if (pHalData->fw_ractrl == true) {
2179 rtl8723b_set_FwMacIdConfig_cmd(padapter, mac_id, psta->raid, psta->bw_mode, shortGIrate, mask);
2180 }
2181
2182 /* set correct initial date rate for each mac_id */
2183 pdmpriv->INIDATA_RATE[mac_id] = psta->init_rate;
2184 DBG_871X("%s(): mac_id =%d raid = 0x%x bw =%d mask = 0x%x init_rate = 0x%x\n", __func__, mac_id, psta->raid, psta->bw_mode, mask, psta->init_rate);
2185 }
2186
2187
2188 void rtl8723b_set_hal_ops(struct hal_ops *pHalFunc)
2189 {
2190 pHalFunc->free_hal_data = &rtl8723b_free_hal_data;
2191
2192 pHalFunc->dm_init = &rtl8723b_init_dm_priv;
2193
2194 pHalFunc->read_chip_version = &rtl8723b_read_chip_version;
2195
2196 pHalFunc->UpdateRAMaskHandler = &UpdateHalRAMask8723B;
2197
2198 pHalFunc->set_bwmode_handler = &PHY_SetBWMode8723B;
2199 pHalFunc->set_channel_handler = &PHY_SwChnl8723B;
2200 pHalFunc->set_chnl_bw_handler = &PHY_SetSwChnlBWMode8723B;
2201
2202 pHalFunc->set_tx_power_level_handler = &PHY_SetTxPowerLevel8723B;
2203 pHalFunc->get_tx_power_level_handler = &PHY_GetTxPowerLevel8723B;
2204
2205 pHalFunc->hal_dm_watchdog = &rtl8723b_HalDmWatchDog;
2206 pHalFunc->hal_dm_watchdog_in_lps = &rtl8723b_HalDmWatchDog_in_LPS;
2207
2208
2209 pHalFunc->SetBeaconRelatedRegistersHandler = &rtl8723b_SetBeaconRelatedRegisters;
2210
2211 pHalFunc->Add_RateATid = &rtl8723b_Add_RateATid;
2212
2213 pHalFunc->run_thread = &rtl8723b_start_thread;
2214 pHalFunc->cancel_thread = &rtl8723b_stop_thread;
2215
2216 pHalFunc->read_bbreg = &PHY_QueryBBReg_8723B;
2217 pHalFunc->write_bbreg = &PHY_SetBBReg_8723B;
2218 pHalFunc->read_rfreg = &PHY_QueryRFReg_8723B;
2219 pHalFunc->write_rfreg = &PHY_SetRFReg_8723B;
2220
2221 /* Efuse related function */
2222 pHalFunc->BTEfusePowerSwitch = &Hal_BT_EfusePowerSwitch;
2223 pHalFunc->EfusePowerSwitch = &Hal_EfusePowerSwitch;
2224 pHalFunc->ReadEFuse = &Hal_ReadEFuse;
2225 pHalFunc->EFUSEGetEfuseDefinition = &Hal_GetEfuseDefinition;
2226 pHalFunc->EfuseGetCurrentSize = &Hal_EfuseGetCurrentSize;
2227 pHalFunc->Efuse_PgPacketRead = &Hal_EfusePgPacketRead;
2228 pHalFunc->Efuse_PgPacketWrite = &Hal_EfusePgPacketWrite;
2229 pHalFunc->Efuse_WordEnableDataWrite = &Hal_EfuseWordEnableDataWrite;
2230 pHalFunc->Efuse_PgPacketWrite_BT = &Hal_EfusePgPacketWrite_BT;
2231
2232 pHalFunc->GetHalODMVarHandler = &rtl8723b_GetHalODMVar;
2233 pHalFunc->SetHalODMVarHandler = &rtl8723b_SetHalODMVar;
2234
2235 pHalFunc->xmit_thread_handler = &hal_xmit_handler;
2236 pHalFunc->hal_notch_filter = &hal_notch_filter_8723b;
2237
2238 pHalFunc->c2h_handler = c2h_handler_8723b;
2239 pHalFunc->c2h_id_filter_ccx = c2h_id_filter_ccx_8723b;
2240
2241 pHalFunc->fill_h2c_cmd = &FillH2CCmd8723B;
2242 }
2243
2244 void rtl8723b_InitAntenna_Selection(struct adapter *padapter)
2245 {
2246 struct hal_com_data *pHalData;
2247 u8 val;
2248
2249
2250 pHalData = GET_HAL_DATA(padapter);
2251
2252 val = rtw_read8(padapter, REG_LEDCFG2);
2253 /* Let 8051 take control antenna settting */
2254 val |= BIT(7); /* DPDT_SEL_EN, 0x4C[23] */
2255 rtw_write8(padapter, REG_LEDCFG2, val);
2256 }
2257
2258 void rtl8723b_init_default_value(struct adapter *padapter)
2259 {
2260 struct hal_com_data *pHalData;
2261 struct dm_priv *pdmpriv;
2262 u8 i;
2263
2264
2265 pHalData = GET_HAL_DATA(padapter);
2266 pdmpriv = &pHalData->dmpriv;
2267
2268 padapter->registrypriv.wireless_mode = WIRELESS_11BG_24N;
2269
2270 /* init default value */
2271 pHalData->fw_ractrl = false;
2272 pHalData->bIQKInitialized = false;
2273 if (!adapter_to_pwrctl(padapter)->bkeepfwalive)
2274 pHalData->LastHMEBoxNum = 0;
2275
2276 pHalData->bIQKInitialized = false;
2277
2278 /* init dm default value */
2279 pdmpriv->TM_Trigger = 0;/* for IQK */
2280 /* pdmpriv->binitialized = false; */
2281 /* pdmpriv->prv_traffic_idx = 3; */
2282 /* pdmpriv->initialize = 0; */
2283
2284 pdmpriv->ThermalValue_HP_index = 0;
2285 for (i = 0; i < HP_THERMAL_NUM; i++)
2286 pdmpriv->ThermalValue_HP[i] = 0;
2287
2288 /* init Efuse variables */
2289 pHalData->EfuseUsedBytes = 0;
2290 pHalData->EfuseUsedPercentage = 0;
2291 #ifdef HAL_EFUSE_MEMORY
2292 pHalData->EfuseHal.fakeEfuseBank = 0;
2293 pHalData->EfuseHal.fakeEfuseUsedBytes = 0;
2294 memset(pHalData->EfuseHal.fakeEfuseContent, 0xFF, EFUSE_MAX_HW_SIZE);
2295 memset(pHalData->EfuseHal.fakeEfuseInitMap, 0xFF, EFUSE_MAX_MAP_LEN);
2296 memset(pHalData->EfuseHal.fakeEfuseModifiedMap, 0xFF, EFUSE_MAX_MAP_LEN);
2297 pHalData->EfuseHal.BTEfuseUsedBytes = 0;
2298 pHalData->EfuseHal.BTEfuseUsedPercentage = 0;
2299 memset(pHalData->EfuseHal.BTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK*EFUSE_MAX_HW_SIZE);
2300 memset(pHalData->EfuseHal.BTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2301 memset(pHalData->EfuseHal.BTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2302 pHalData->EfuseHal.fakeBTEfuseUsedBytes = 0;
2303 memset(pHalData->EfuseHal.fakeBTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK*EFUSE_MAX_HW_SIZE);
2304 memset(pHalData->EfuseHal.fakeBTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2305 memset(pHalData->EfuseHal.fakeBTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2306 #endif
2307 }
2308
2309 u8 GetEEPROMSize8723B(struct adapter *padapter)
2310 {
2311 u8 size = 0;
2312 u32 cr;
2313
2314 cr = rtw_read16(padapter, REG_9346CR);
2315 /* 6: EEPROM used is 93C46, 4: boot from E-Fuse. */
2316 size = (cr & BOOT_FROM_EEPROM) ? 6 : 4;
2317
2318 MSG_8192C("EEPROM type is %s\n", size == 4 ? "E-FUSE" : "93C46");
2319
2320 return size;
2321 }
2322
2323 /* */
2324 /* */
2325 /* LLT R/W/Init function */
2326 /* */
2327 /* */
2328 s32 rtl8723b_InitLLTTable(struct adapter *padapter)
2329 {
2330 unsigned long start, passing_time;
2331 u32 val32;
2332 s32 ret;
2333
2334
2335 ret = _FAIL;
2336
2337 val32 = rtw_read32(padapter, REG_AUTO_LLT);
2338 val32 |= BIT_AUTO_INIT_LLT;
2339 rtw_write32(padapter, REG_AUTO_LLT, val32);
2340
2341 start = jiffies;
2342
2343 do {
2344 val32 = rtw_read32(padapter, REG_AUTO_LLT);
2345 if (!(val32 & BIT_AUTO_INIT_LLT)) {
2346 ret = _SUCCESS;
2347 break;
2348 }
2349
2350 passing_time = jiffies_to_msecs(jiffies - start);
2351 if (passing_time > 1000) {
2352 DBG_8192C(
2353 "%s: FAIL!! REG_AUTO_LLT(0x%X) =%08x\n",
2354 __func__,
2355 REG_AUTO_LLT,
2356 val32
2357 );
2358 break;
2359 }
2360
2361 msleep(1);
2362 } while (1);
2363
2364 return ret;
2365 }
2366
2367 static bool Hal_GetChnlGroup8723B(u8 Channel, u8 *pGroup)
2368 {
2369 bool bIn24G = true;
2370
2371 if (Channel <= 14) {
2372 bIn24G = true;
2373
2374 if (1 <= Channel && Channel <= 2)
2375 *pGroup = 0;
2376 else if (3 <= Channel && Channel <= 5)
2377 *pGroup = 1;
2378 else if (6 <= Channel && Channel <= 8)
2379 *pGroup = 2;
2380 else if (9 <= Channel && Channel <= 11)
2381 *pGroup = 3;
2382 else if (12 <= Channel && Channel <= 14)
2383 *pGroup = 4;
2384 else {
2385 RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("==>Hal_GetChnlGroup8723B in 2.4 G, but Channel %d in Group not found\n", Channel));
2386 }
2387 } else {
2388 bIn24G = false;
2389
2390 if (36 <= Channel && Channel <= 42)
2391 *pGroup = 0;
2392 else if (44 <= Channel && Channel <= 48)
2393 *pGroup = 1;
2394 else if (50 <= Channel && Channel <= 58)
2395 *pGroup = 2;
2396 else if (60 <= Channel && Channel <= 64)
2397 *pGroup = 3;
2398 else if (100 <= Channel && Channel <= 106)
2399 *pGroup = 4;
2400 else if (108 <= Channel && Channel <= 114)
2401 *pGroup = 5;
2402 else if (116 <= Channel && Channel <= 122)
2403 *pGroup = 6;
2404 else if (124 <= Channel && Channel <= 130)
2405 *pGroup = 7;
2406 else if (132 <= Channel && Channel <= 138)
2407 *pGroup = 8;
2408 else if (140 <= Channel && Channel <= 144)
2409 *pGroup = 9;
2410 else if (149 <= Channel && Channel <= 155)
2411 *pGroup = 10;
2412 else if (157 <= Channel && Channel <= 161)
2413 *pGroup = 11;
2414 else if (165 <= Channel && Channel <= 171)
2415 *pGroup = 12;
2416 else if (173 <= Channel && Channel <= 177)
2417 *pGroup = 13;
2418 else {
2419 RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("==>Hal_GetChnlGroup8723B in 5G, but Channel %d in Group not found\n", Channel));
2420 }
2421
2422 }
2423 RT_TRACE(
2424 _module_hci_hal_init_c_,
2425 _drv_info_,
2426 (
2427 "<==Hal_GetChnlGroup8723B, (%s) Channel = %d, Group =%d,\n",
2428 bIn24G ? "2.4G" : "5G",
2429 Channel,
2430 *pGroup
2431 )
2432 );
2433 return bIn24G;
2434 }
2435
2436 void Hal_InitPGData(struct adapter *padapter, u8 *PROMContent)
2437 {
2438 struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2439
2440 if (false == pEEPROM->bautoload_fail_flag) { /* autoload OK. */
2441 if (!pEEPROM->EepromOrEfuse) {
2442 /* Read EFUSE real map to shadow. */
2443 EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
2444 memcpy((void *)PROMContent, (void *)pEEPROM->efuse_eeprom_data, HWSET_MAX_SIZE_8723B);
2445 }
2446 } else {/* autoload fail */
2447 RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("AutoLoad Fail reported from CR9346!!\n"));
2448 if (false == pEEPROM->EepromOrEfuse)
2449 EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
2450 memcpy((void *)PROMContent, (void *)pEEPROM->efuse_eeprom_data, HWSET_MAX_SIZE_8723B);
2451 }
2452 }
2453
2454 void Hal_EfuseParseIDCode(struct adapter *padapter, u8 *hwinfo)
2455 {
2456 struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2457 /* struct hal_com_data *pHalData = GET_HAL_DATA(padapter); */
2458 u16 EEPROMId;
2459
2460
2461 /* Checl 0x8129 again for making sure autoload status!! */
2462 EEPROMId = le16_to_cpu(*((__le16 *)hwinfo));
2463 if (EEPROMId != RTL_EEPROM_ID) {
2464 DBG_8192C("EEPROM ID(%#x) is invalid!!\n", EEPROMId);
2465 pEEPROM->bautoload_fail_flag = true;
2466 } else
2467 pEEPROM->bautoload_fail_flag = false;
2468
2469 RT_TRACE(_module_hal_init_c_, _drv_notice_, ("EEPROM ID = 0x%04x\n", EEPROMId));
2470 }
2471
2472 static void Hal_ReadPowerValueFromPROM_8723B(
2473 struct adapter *Adapter,
2474 struct TxPowerInfo24G *pwrInfo24G,
2475 u8 *PROMContent,
2476 bool AutoLoadFail
2477 )
2478 {
2479 struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2480 u32 rfPath, eeAddr = EEPROM_TX_PWR_INX_8723B, group, TxCount = 0;
2481
2482 memset(pwrInfo24G, 0, sizeof(struct TxPowerInfo24G));
2483
2484 if (0xFF == PROMContent[eeAddr+1])
2485 AutoLoadFail = true;
2486
2487 if (AutoLoadFail) {
2488 DBG_871X("%s(): Use Default value!\n", __func__);
2489 for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
2490 /* 2.4G default value */
2491 for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
2492 pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2493 pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2494 }
2495
2496 for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2497 if (TxCount == 0) {
2498 pwrInfo24G->BW20_Diff[rfPath][0] = EEPROM_DEFAULT_24G_HT20_DIFF;
2499 pwrInfo24G->OFDM_Diff[rfPath][0] = EEPROM_DEFAULT_24G_OFDM_DIFF;
2500 } else {
2501 pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2502 pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2503 pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2504 pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2505 }
2506 }
2507 }
2508
2509 return;
2510 }
2511
2512 pHalData->bTXPowerDataReadFromEEPORM = true; /* YJ, move, 120316 */
2513
2514 for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
2515 /* 2 2.4G default value */
2516 for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
2517 pwrInfo24G->IndexCCK_Base[rfPath][group] = PROMContent[eeAddr++];
2518 if (pwrInfo24G->IndexCCK_Base[rfPath][group] == 0xFF)
2519 pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2520 }
2521
2522 for (group = 0; group < MAX_CHNL_GROUP_24G-1; group++) {
2523 pwrInfo24G->IndexBW40_Base[rfPath][group] = PROMContent[eeAddr++];
2524 if (pwrInfo24G->IndexBW40_Base[rfPath][group] == 0xFF)
2525 pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2526 }
2527
2528 for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2529 if (TxCount == 0) {
2530 pwrInfo24G->BW40_Diff[rfPath][TxCount] = 0;
2531 if (PROMContent[eeAddr] == 0xFF)
2532 pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_HT20_DIFF;
2533 else {
2534 pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
2535 if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3) /* 4bit sign number to 8 bit sign number */
2536 pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
2537 }
2538
2539 if (PROMContent[eeAddr] == 0xFF)
2540 pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_OFDM_DIFF;
2541 else {
2542 pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2543 if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3) /* 4bit sign number to 8 bit sign number */
2544 pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
2545 }
2546 pwrInfo24G->CCK_Diff[rfPath][TxCount] = 0;
2547 eeAddr++;
2548 } else {
2549 if (PROMContent[eeAddr] == 0xFF)
2550 pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2551 else {
2552 pwrInfo24G->BW40_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
2553 if (pwrInfo24G->BW40_Diff[rfPath][TxCount] & BIT3) /* 4bit sign number to 8 bit sign number */
2554 pwrInfo24G->BW40_Diff[rfPath][TxCount] |= 0xF0;
2555 }
2556
2557 if (PROMContent[eeAddr] == 0xFF)
2558 pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2559 else {
2560 pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2561 if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3) /* 4bit sign number to 8 bit sign number */
2562 pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
2563 }
2564 eeAddr++;
2565
2566 if (PROMContent[eeAddr] == 0xFF)
2567 pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2568 else {
2569 pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
2570 if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3) /* 4bit sign number to 8 bit sign number */
2571 pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
2572 }
2573
2574 if (PROMContent[eeAddr] == 0xFF)
2575 pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2576 else {
2577 pwrInfo24G->CCK_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2578 if (pwrInfo24G->CCK_Diff[rfPath][TxCount] & BIT3) /* 4bit sign number to 8 bit sign number */
2579 pwrInfo24G->CCK_Diff[rfPath][TxCount] |= 0xF0;
2580 }
2581 eeAddr++;
2582 }
2583 }
2584 }
2585 }
2586
2587
2588 void Hal_EfuseParseTxPowerInfo_8723B(
2589 struct adapter *padapter, u8 *PROMContent, bool AutoLoadFail
2590 )
2591 {
2592 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2593 struct TxPowerInfo24G pwrInfo24G;
2594 u8 rfPath, ch, TxCount = 1;
2595
2596 Hal_ReadPowerValueFromPROM_8723B(padapter, &pwrInfo24G, PROMContent, AutoLoadFail);
2597 for (rfPath = 0 ; rfPath < MAX_RF_PATH ; rfPath++) {
2598 for (ch = 0 ; ch < CHANNEL_MAX_NUMBER; ch++) {
2599 u8 group = 0;
2600
2601 Hal_GetChnlGroup8723B(ch+1, &group);
2602
2603 if (ch == 14-1) {
2604 pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][5];
2605 pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
2606 } else {
2607 pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][group];
2608 pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
2609 }
2610 #ifdef DEBUG
2611 RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("======= Path %d, ChannelIndex %d, Group %d =======\n", rfPath, ch, group));
2612 RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Index24G_CCK_Base[%d][%d] = 0x%x\n", rfPath, ch, pHalData->Index24G_CCK_Base[rfPath][ch]));
2613 RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Index24G_BW40_Base[%d][%d] = 0x%x\n", rfPath, ch, pHalData->Index24G_BW40_Base[rfPath][ch]));
2614 #endif
2615 }
2616
2617 for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2618 pHalData->CCK_24G_Diff[rfPath][TxCount] = pwrInfo24G.CCK_Diff[rfPath][TxCount];
2619 pHalData->OFDM_24G_Diff[rfPath][TxCount] = pwrInfo24G.OFDM_Diff[rfPath][TxCount];
2620 pHalData->BW20_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW20_Diff[rfPath][TxCount];
2621 pHalData->BW40_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW40_Diff[rfPath][TxCount];
2622
2623 #ifdef DEBUG
2624 RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("--------------------------------------- 2.4G ---------------------------------------\n"));
2625 RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("CCK_24G_Diff[%d][%d]= %d\n", rfPath, TxCount, pHalData->CCK_24G_Diff[rfPath][TxCount]));
2626 RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("OFDM_24G_Diff[%d][%d]= %d\n", rfPath, TxCount, pHalData->OFDM_24G_Diff[rfPath][TxCount]));
2627 RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("BW20_24G_Diff[%d][%d]= %d\n", rfPath, TxCount, pHalData->BW20_24G_Diff[rfPath][TxCount]));
2628 RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("BW40_24G_Diff[%d][%d]= %d\n", rfPath, TxCount, pHalData->BW40_24G_Diff[rfPath][TxCount]));
2629 #endif
2630 }
2631 }
2632
2633 /* 2010/10/19 MH Add Regulator recognize for CU. */
2634 if (!AutoLoadFail) {
2635 pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_8723B]&0x7); /* bit0~2 */
2636 if (PROMContent[EEPROM_RF_BOARD_OPTION_8723B] == 0xFF)
2637 pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION&0x7); /* bit0~2 */
2638 } else
2639 pHalData->EEPROMRegulatory = 0;
2640
2641 RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROMRegulatory = 0x%x\n", pHalData->EEPROMRegulatory));
2642 }
2643
2644 void Hal_EfuseParseBTCoexistInfo_8723B(
2645 struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2646 )
2647 {
2648 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2649 u8 tempval;
2650 u32 tmpu4;
2651
2652 if (!AutoLoadFail) {
2653 tmpu4 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
2654 if (tmpu4 & BT_FUNC_EN)
2655 pHalData->EEPROMBluetoothCoexist = true;
2656 else
2657 pHalData->EEPROMBluetoothCoexist = false;
2658
2659 pHalData->EEPROMBluetoothType = BT_RTL8723B;
2660
2661 tempval = hwinfo[EEPROM_RF_BT_SETTING_8723B];
2662 if (tempval != 0xFF) {
2663 pHalData->EEPROMBluetoothAntNum = tempval & BIT(0);
2664 /* EFUSE_0xC3[6] == 0, S1(Main)-ODM_RF_PATH_A; */
2665 /* EFUSE_0xC3[6] == 1, S0(Aux)-ODM_RF_PATH_B */
2666 pHalData->ant_path = (tempval & BIT(6))?ODM_RF_PATH_B:ODM_RF_PATH_A;
2667 } else {
2668 pHalData->EEPROMBluetoothAntNum = Ant_x1;
2669 if (pHalData->PackageType == PACKAGE_QFN68)
2670 pHalData->ant_path = ODM_RF_PATH_B;
2671 else
2672 pHalData->ant_path = ODM_RF_PATH_A;
2673 }
2674 } else {
2675 pHalData->EEPROMBluetoothCoexist = false;
2676 pHalData->EEPROMBluetoothType = BT_RTL8723B;
2677 pHalData->EEPROMBluetoothAntNum = Ant_x1;
2678 pHalData->ant_path = ODM_RF_PATH_A;
2679 }
2680
2681 if (padapter->registrypriv.ant_num > 0) {
2682 DBG_8192C(
2683 "%s: Apply driver defined antenna number(%d) to replace origin(%d)\n",
2684 __func__,
2685 padapter->registrypriv.ant_num,
2686 pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1
2687 );
2688
2689 switch (padapter->registrypriv.ant_num) {
2690 case 1:
2691 pHalData->EEPROMBluetoothAntNum = Ant_x1;
2692 break;
2693 case 2:
2694 pHalData->EEPROMBluetoothAntNum = Ant_x2;
2695 break;
2696 default:
2697 DBG_8192C(
2698 "%s: Discard invalid driver defined antenna number(%d)!\n",
2699 __func__,
2700 padapter->registrypriv.ant_num
2701 );
2702 break;
2703 }
2704 }
2705
2706 rtw_btcoex_SetBTCoexist(padapter, pHalData->EEPROMBluetoothCoexist);
2707 rtw_btcoex_SetChipType(padapter, pHalData->EEPROMBluetoothType);
2708 rtw_btcoex_SetPGAntNum(padapter, pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1);
2709 if (pHalData->EEPROMBluetoothAntNum == Ant_x1)
2710 rtw_btcoex_SetSingleAntPath(padapter, pHalData->ant_path);
2711
2712 DBG_8192C(
2713 "%s: %s BT-coex, ant_num =%d\n",
2714 __func__,
2715 pHalData->EEPROMBluetoothCoexist == true ? "Enable" : "Disable",
2716 pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1
2717 );
2718 }
2719
2720 void Hal_EfuseParseEEPROMVer_8723B(
2721 struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2722 )
2723 {
2724 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2725
2726 /* RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail)); */
2727 if (!AutoLoadFail)
2728 pHalData->EEPROMVersion = hwinfo[EEPROM_VERSION_8723B];
2729 else
2730 pHalData->EEPROMVersion = 1;
2731 RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("Hal_EfuseParseEEPROMVer(), EEVer = %d\n",
2732 pHalData->EEPROMVersion));
2733 }
2734
2735
2736
2737 void Hal_EfuseParsePackageType_8723B(
2738 struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2739 )
2740 {
2741 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2742 u8 package;
2743 u8 efuseContent;
2744
2745 Efuse_PowerSwitch(padapter, false, true);
2746 efuse_OneByteRead(padapter, 0x1FB, &efuseContent, false);
2747 DBG_871X("%s phy efuse read 0x1FB =%x\n", __func__, efuseContent);
2748 Efuse_PowerSwitch(padapter, false, false);
2749
2750 package = efuseContent & 0x7;
2751 switch (package) {
2752 case 0x4:
2753 pHalData->PackageType = PACKAGE_TFBGA79;
2754 break;
2755 case 0x5:
2756 pHalData->PackageType = PACKAGE_TFBGA90;
2757 break;
2758 case 0x6:
2759 pHalData->PackageType = PACKAGE_QFN68;
2760 break;
2761 case 0x7:
2762 pHalData->PackageType = PACKAGE_TFBGA80;
2763 break;
2764
2765 default:
2766 pHalData->PackageType = PACKAGE_DEFAULT;
2767 break;
2768 }
2769
2770 DBG_871X("PackageType = 0x%X\n", pHalData->PackageType);
2771 }
2772
2773
2774 void Hal_EfuseParseVoltage_8723B(
2775 struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2776 )
2777 {
2778 struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2779
2780 /* memcpy(pEEPROM->adjuseVoltageVal, &hwinfo[EEPROM_Voltage_ADDR_8723B], 1); */
2781 DBG_871X("%s hwinfo[EEPROM_Voltage_ADDR_8723B] =%02x\n", __func__, hwinfo[EEPROM_Voltage_ADDR_8723B]);
2782 pEEPROM->adjuseVoltageVal = (hwinfo[EEPROM_Voltage_ADDR_8723B] & 0xf0) >> 4;
2783 DBG_871X("%s pEEPROM->adjuseVoltageVal =%x\n", __func__, pEEPROM->adjuseVoltageVal);
2784 }
2785
2786 void Hal_EfuseParseChnlPlan_8723B(
2787 struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2788 )
2789 {
2790 padapter->mlmepriv.ChannelPlan = hal_com_config_channel_plan(
2791 padapter,
2792 hwinfo ? hwinfo[EEPROM_ChannelPlan_8723B] : 0xFF,
2793 padapter->registrypriv.channel_plan,
2794 RT_CHANNEL_DOMAIN_WORLD_NULL,
2795 AutoLoadFail
2796 );
2797
2798 Hal_ChannelPlanToRegulation(padapter, padapter->mlmepriv.ChannelPlan);
2799
2800 RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROM ChannelPlan = 0x%02x\n", padapter->mlmepriv.ChannelPlan));
2801 }
2802
2803 void Hal_EfuseParseCustomerID_8723B(
2804 struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2805 )
2806 {
2807 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2808
2809 /* RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail)); */
2810 if (!AutoLoadFail)
2811 pHalData->EEPROMCustomerID = hwinfo[EEPROM_CustomID_8723B];
2812 else
2813 pHalData->EEPROMCustomerID = 0;
2814
2815 RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROM Customer ID: 0x%2x\n", pHalData->EEPROMCustomerID));
2816 }
2817
2818 void Hal_EfuseParseAntennaDiversity_8723B(
2819 struct adapter *padapter,
2820 u8 *hwinfo,
2821 bool AutoLoadFail
2822 )
2823 {
2824 }
2825
2826 void Hal_EfuseParseXtal_8723B(
2827 struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2828 )
2829 {
2830 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2831
2832 /* RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail)); */
2833 if (!AutoLoadFail) {
2834 pHalData->CrystalCap = hwinfo[EEPROM_XTAL_8723B];
2835 if (pHalData->CrystalCap == 0xFF)
2836 pHalData->CrystalCap = EEPROM_Default_CrystalCap_8723B; /* what value should 8812 set? */
2837 } else
2838 pHalData->CrystalCap = EEPROM_Default_CrystalCap_8723B;
2839
2840 RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROM CrystalCap: 0x%2x\n", pHalData->CrystalCap));
2841 }
2842
2843
2844 void Hal_EfuseParseThermalMeter_8723B(
2845 struct adapter *padapter, u8 *PROMContent, u8 AutoLoadFail
2846 )
2847 {
2848 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2849
2850 /* RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail)); */
2851 /* */
2852 /* ThermalMeter from EEPROM */
2853 /* */
2854 if (false == AutoLoadFail)
2855 pHalData->EEPROMThermalMeter = PROMContent[EEPROM_THERMAL_METER_8723B];
2856 else
2857 pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8723B;
2858
2859 if ((pHalData->EEPROMThermalMeter == 0xff) || (true == AutoLoadFail)) {
2860 pHalData->bAPKThermalMeterIgnore = true;
2861 pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8723B;
2862 }
2863
2864 RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROM ThermalMeter = 0x%x\n", pHalData->EEPROMThermalMeter));
2865 }
2866
2867
2868 void Hal_ReadRFGainOffset(
2869 struct adapter *Adapter, u8 *PROMContent, bool AutoloadFail
2870 )
2871 {
2872 /* */
2873 /* BB_RF Gain Offset from EEPROM */
2874 /* */
2875
2876 if (!AutoloadFail) {
2877 Adapter->eeprompriv.EEPROMRFGainOffset = PROMContent[EEPROM_RF_GAIN_OFFSET];
2878 DBG_871X("AutoloadFail =%x,\n", AutoloadFail);
2879 Adapter->eeprompriv.EEPROMRFGainVal = EFUSE_Read1Byte(Adapter, EEPROM_RF_GAIN_VAL);
2880 DBG_871X("Adapter->eeprompriv.EEPROMRFGainVal =%x\n", Adapter->eeprompriv.EEPROMRFGainVal);
2881 } else {
2882 Adapter->eeprompriv.EEPROMRFGainOffset = 0;
2883 Adapter->eeprompriv.EEPROMRFGainVal = 0xFF;
2884 DBG_871X("else AutoloadFail =%x,\n", AutoloadFail);
2885 }
2886 DBG_871X("EEPRORFGainOffset = 0x%02x\n", Adapter->eeprompriv.EEPROMRFGainOffset);
2887 }
2888
2889 u8 BWMapping_8723B(struct adapter *Adapter, struct pkt_attrib *pattrib)
2890 {
2891 u8 BWSettingOfDesc = 0;
2892 struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2893
2894 /* DBG_871X("BWMapping pHalData->CurrentChannelBW %d, pattrib->bwmode %d\n", pHalData->CurrentChannelBW, pattrib->bwmode); */
2895
2896 if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_80) {
2897 if (pattrib->bwmode == CHANNEL_WIDTH_80)
2898 BWSettingOfDesc = 2;
2899 else if (pattrib->bwmode == CHANNEL_WIDTH_40)
2900 BWSettingOfDesc = 1;
2901 else
2902 BWSettingOfDesc = 0;
2903 } else if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) {
2904 if ((pattrib->bwmode == CHANNEL_WIDTH_40) || (pattrib->bwmode == CHANNEL_WIDTH_80))
2905 BWSettingOfDesc = 1;
2906 else
2907 BWSettingOfDesc = 0;
2908 } else
2909 BWSettingOfDesc = 0;
2910
2911 /* if (pTcb->bBTTxPacket) */
2912 /* BWSettingOfDesc = 0; */
2913
2914 return BWSettingOfDesc;
2915 }
2916
2917 u8 SCMapping_8723B(struct adapter *Adapter, struct pkt_attrib *pattrib)
2918 {
2919 u8 SCSettingOfDesc = 0;
2920 struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2921
2922 /* DBG_871X("SCMapping: pHalData->CurrentChannelBW %d, pHalData->nCur80MhzPrimeSC %d, pHalData->nCur40MhzPrimeSC %d\n", pHalData->CurrentChannelBW, pHalData->nCur80MhzPrimeSC, pHalData->nCur40MhzPrimeSC); */
2923
2924 if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_80) {
2925 if (pattrib->bwmode == CHANNEL_WIDTH_80) {
2926 SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
2927 } else if (pattrib->bwmode == CHANNEL_WIDTH_40) {
2928 if (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER)
2929 SCSettingOfDesc = VHT_DATA_SC_40_LOWER_OF_80MHZ;
2930 else if (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER)
2931 SCSettingOfDesc = VHT_DATA_SC_40_UPPER_OF_80MHZ;
2932 else
2933 DBG_871X("SCMapping: Not Correct Primary40MHz Setting\n");
2934 } else {
2935 if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER))
2936 SCSettingOfDesc = VHT_DATA_SC_20_LOWEST_OF_80MHZ;
2937 else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER))
2938 SCSettingOfDesc = VHT_DATA_SC_20_LOWER_OF_80MHZ;
2939 else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER))
2940 SCSettingOfDesc = VHT_DATA_SC_20_UPPER_OF_80MHZ;
2941 else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER))
2942 SCSettingOfDesc = VHT_DATA_SC_20_UPPERST_OF_80MHZ;
2943 else
2944 DBG_871X("SCMapping: Not Correct Primary40MHz Setting\n");
2945 }
2946 } else if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) {
2947 /* DBG_871X("SCMapping: HT Case: pHalData->CurrentChannelBW %d, pHalData->nCur40MhzPrimeSC %d\n", pHalData->CurrentChannelBW, pHalData->nCur40MhzPrimeSC); */
2948
2949 if (pattrib->bwmode == CHANNEL_WIDTH_40) {
2950 SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
2951 } else if (pattrib->bwmode == CHANNEL_WIDTH_20) {
2952 if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) {
2953 SCSettingOfDesc = VHT_DATA_SC_20_UPPER_OF_80MHZ;
2954 } else if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) {
2955 SCSettingOfDesc = VHT_DATA_SC_20_LOWER_OF_80MHZ;
2956 } else {
2957 SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
2958 }
2959 }
2960 } else {
2961 SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
2962 }
2963
2964 return SCSettingOfDesc;
2965 }
2966
2967 static void rtl8723b_cal_txdesc_chksum(struct tx_desc *ptxdesc)
2968 {
2969 u16 *usPtr = (u16 *)ptxdesc;
2970 u32 count;
2971 u32 index;
2972 u16 checksum = 0;
2973
2974
2975 /* Clear first */
2976 ptxdesc->txdw7 &= cpu_to_le32(0xffff0000);
2977
2978 /* checksume is always calculated by first 32 bytes, */
2979 /* and it doesn't depend on TX DESC length. */
2980 /* Thomas, Lucas@SD4, 20130515 */
2981 count = 16;
2982
2983 for (index = 0; index < count; index++) {
2984 checksum |= le16_to_cpu(*(__le16 *)(usPtr + index));
2985 }
2986
2987 ptxdesc->txdw7 |= cpu_to_le32(checksum & 0x0000ffff);
2988 }
2989
2990 static u8 fill_txdesc_sectype(struct pkt_attrib *pattrib)
2991 {
2992 u8 sectype = 0;
2993 if ((pattrib->encrypt > 0) && !pattrib->bswenc) {
2994 switch (pattrib->encrypt) {
2995 /* SEC_TYPE */
2996 case _WEP40_:
2997 case _WEP104_:
2998 case _TKIP_:
2999 case _TKIP_WTMIC_:
3000 sectype = 1;
3001 break;
3002
3003 case _AES_:
3004 sectype = 3;
3005 break;
3006
3007 case _NO_PRIVACY_:
3008 default:
3009 break;
3010 }
3011 }
3012 return sectype;
3013 }
3014
3015 static void fill_txdesc_vcs_8723b(struct adapter *padapter, struct pkt_attrib *pattrib, PTXDESC_8723B ptxdesc)
3016 {
3017 /* DBG_8192C("cvs_mode =%d\n", pattrib->vcs_mode); */
3018
3019 if (pattrib->vcs_mode) {
3020 switch (pattrib->vcs_mode) {
3021 case RTS_CTS:
3022 ptxdesc->rtsen = 1;
3023 /* ENABLE HW RTS */
3024 ptxdesc->hw_rts_en = 1;
3025 break;
3026
3027 case CTS_TO_SELF:
3028 ptxdesc->cts2self = 1;
3029 break;
3030
3031 case NONE_VCS:
3032 default:
3033 break;
3034 }
3035
3036 ptxdesc->rtsrate = 8; /* RTS Rate =24M */
3037 ptxdesc->rts_ratefb_lmt = 0xF;
3038
3039 if (padapter->mlmeextpriv.mlmext_info.preamble_mode == PREAMBLE_SHORT)
3040 ptxdesc->rts_short = 1;
3041
3042 /* Set RTS BW */
3043 if (pattrib->ht_en)
3044 ptxdesc->rts_sc = SCMapping_8723B(padapter, pattrib);
3045 }
3046 }
3047
3048 static void fill_txdesc_phy_8723b(struct adapter *padapter, struct pkt_attrib *pattrib, PTXDESC_8723B ptxdesc)
3049 {
3050 /* DBG_8192C("bwmode =%d, ch_off =%d\n", pattrib->bwmode, pattrib->ch_offset); */
3051
3052 if (pattrib->ht_en) {
3053 ptxdesc->data_bw = BWMapping_8723B(padapter, pattrib);
3054
3055 ptxdesc->data_sc = SCMapping_8723B(padapter, pattrib);
3056 }
3057 }
3058
3059 static void rtl8723b_fill_default_txdesc(
3060 struct xmit_frame *pxmitframe, u8 *pbuf
3061 )
3062 {
3063 struct adapter *padapter;
3064 struct hal_com_data *pHalData;
3065 struct dm_priv *pdmpriv;
3066 struct mlme_ext_priv *pmlmeext;
3067 struct mlme_ext_info *pmlmeinfo;
3068 struct pkt_attrib *pattrib;
3069 PTXDESC_8723B ptxdesc;
3070 s32 bmcst;
3071
3072 memset(pbuf, 0, TXDESC_SIZE);
3073
3074 padapter = pxmitframe->padapter;
3075 pHalData = GET_HAL_DATA(padapter);
3076 pdmpriv = &pHalData->dmpriv;
3077 pmlmeext = &padapter->mlmeextpriv;
3078 pmlmeinfo = &(pmlmeext->mlmext_info);
3079
3080 pattrib = &pxmitframe->attrib;
3081 bmcst = IS_MCAST(pattrib->ra);
3082
3083 ptxdesc = (PTXDESC_8723B)pbuf;
3084
3085 if (pxmitframe->frame_tag == DATA_FRAMETAG) {
3086 u8 drv_userate = 0;
3087
3088 ptxdesc->macid = pattrib->mac_id; /* CAM_ID(MAC_ID) */
3089 ptxdesc->rate_id = pattrib->raid;
3090 ptxdesc->qsel = pattrib->qsel;
3091 ptxdesc->seq = pattrib->seqnum;
3092
3093 ptxdesc->sectype = fill_txdesc_sectype(pattrib);
3094 fill_txdesc_vcs_8723b(padapter, pattrib, ptxdesc);
3095
3096 if (pattrib->icmp_pkt == 1 && padapter->registrypriv.wifi_spec == 1)
3097 drv_userate = 1;
3098
3099 if (
3100 (pattrib->ether_type != 0x888e) &&
3101 (pattrib->ether_type != 0x0806) &&
3102 (pattrib->ether_type != 0x88B4) &&
3103 (pattrib->dhcp_pkt != 1) &&
3104 (drv_userate != 1)
3105 #ifdef CONFIG_AUTO_AP_MODE
3106 && (pattrib->pctrl != true)
3107 #endif
3108 ) {
3109 /* Non EAP & ARP & DHCP type data packet */
3110
3111 if (pattrib->ampdu_en == true) {
3112 ptxdesc->agg_en = 1; /* AGG EN */
3113 ptxdesc->max_agg_num = 0x1f;
3114 ptxdesc->ampdu_density = pattrib->ampdu_spacing;
3115 } else
3116 ptxdesc->bk = 1; /* AGG BK */
3117
3118 fill_txdesc_phy_8723b(padapter, pattrib, ptxdesc);
3119
3120 ptxdesc->data_ratefb_lmt = 0x1F;
3121
3122 if (pHalData->fw_ractrl == false) {
3123 ptxdesc->userate = 1;
3124
3125 if (pHalData->dmpriv.INIDATA_RATE[pattrib->mac_id] & BIT(7))
3126 ptxdesc->data_short = 1;
3127
3128 ptxdesc->datarate = pHalData->dmpriv.INIDATA_RATE[pattrib->mac_id] & 0x7F;
3129 }
3130
3131 if (padapter->fix_rate != 0xFF) { /* modify data rate by iwpriv */
3132 ptxdesc->userate = 1;
3133 if (padapter->fix_rate & BIT(7))
3134 ptxdesc->data_short = 1;
3135
3136 ptxdesc->datarate = (padapter->fix_rate & 0x7F);
3137 ptxdesc->disdatafb = 1;
3138 }
3139
3140 if (pattrib->ldpc)
3141 ptxdesc->data_ldpc = 1;
3142 if (pattrib->stbc)
3143 ptxdesc->data_stbc = 1;
3144
3145 #ifdef CONFIG_CMCC_TEST
3146 ptxdesc->data_short = 1; /* use cck short premble */
3147 #endif
3148 } else {
3149 /* EAP data packet and ARP packet. */
3150 /* Use the 1M data rate to send the EAP/ARP packet. */
3151 /* This will maybe make the handshake smooth. */
3152
3153 ptxdesc->bk = 1; /* AGG BK */
3154 ptxdesc->userate = 1; /* driver uses rate */
3155 if (pmlmeinfo->preamble_mode == PREAMBLE_SHORT)
3156 ptxdesc->data_short = 1;/* DATA_SHORT */
3157 ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
3158 DBG_871X("YJ: %s(): ARP Data: userate =%d, datarate = 0x%x\n", __func__, ptxdesc->userate, ptxdesc->datarate);
3159 }
3160
3161 ptxdesc->usb_txagg_num = pxmitframe->agg_num;
3162 } else if (pxmitframe->frame_tag == MGNT_FRAMETAG) {
3163 /* RT_TRACE(_module_hal_xmit_c_, _drv_notice_, ("%s: MGNT_FRAMETAG\n", __func__)); */
3164
3165 ptxdesc->macid = pattrib->mac_id; /* CAM_ID(MAC_ID) */
3166 ptxdesc->qsel = pattrib->qsel;
3167 ptxdesc->rate_id = pattrib->raid; /* Rate ID */
3168 ptxdesc->seq = pattrib->seqnum;
3169 ptxdesc->userate = 1; /* driver uses rate, 1M */
3170
3171 ptxdesc->mbssid = pattrib->mbssid & 0xF;
3172
3173 ptxdesc->rty_lmt_en = 1; /* retry limit enable */
3174 if (pattrib->retry_ctrl == true) {
3175 ptxdesc->data_rt_lmt = 6;
3176 } else {
3177 ptxdesc->data_rt_lmt = 12;
3178 }
3179
3180 ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
3181
3182 /* CCX-TXRPT ack for xmit mgmt frames. */
3183 if (pxmitframe->ack_report) {
3184 #ifdef DBG_CCX
3185 DBG_8192C("%s set spe_rpt\n", __func__);
3186 #endif
3187 ptxdesc->spe_rpt = 1;
3188 ptxdesc->sw_define = (u8)(GET_PRIMARY_ADAPTER(padapter)->xmitpriv.seq_no);
3189 }
3190 } else if (pxmitframe->frame_tag == TXAGG_FRAMETAG) {
3191 RT_TRACE(_module_hal_xmit_c_, _drv_warning_, ("%s: TXAGG_FRAMETAG\n", __func__));
3192 } else {
3193 RT_TRACE(_module_hal_xmit_c_, _drv_warning_, ("%s: frame_tag = 0x%x\n", __func__, pxmitframe->frame_tag));
3194
3195 ptxdesc->macid = pattrib->mac_id; /* CAM_ID(MAC_ID) */
3196 ptxdesc->rate_id = pattrib->raid; /* Rate ID */
3197 ptxdesc->qsel = pattrib->qsel;
3198 ptxdesc->seq = pattrib->seqnum;
3199 ptxdesc->userate = 1; /* driver uses rate */
3200 ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
3201 }
3202
3203 ptxdesc->pktlen = pattrib->last_txcmdsz;
3204 ptxdesc->offset = TXDESC_SIZE + OFFSET_SZ;
3205
3206 if (bmcst)
3207 ptxdesc->bmc = 1;
3208
3209 /* 2009.11.05. tynli_test. Suggested by SD4 Filen for FW LPS. */
3210 /* (1) The sequence number of each non-Qos frame / broadcast / multicast / */
3211 /* mgnt frame should be controled by Hw because Fw will also send null data */
3212 /* which we cannot control when Fw LPS enable. */
3213 /* --> default enable non-Qos data sequense number. 2010.06.23. by tynli. */
3214 /* (2) Enable HW SEQ control for beacon packet, because we use Hw beacon. */
3215 /* (3) Use HW Qos SEQ to control the seq num of Ext port non-Qos packets. */
3216 /* 2010.06.23. Added by tynli. */
3217 if (!pattrib->qos_en) /* Hw set sequence number */
3218 ptxdesc->en_hwseq = 1; /* HWSEQ_EN */
3219 }
3220
3221 /*
3222 *Description:
3223 *
3224 *Parameters:
3225 * pxmitframe xmitframe
3226 * pbuf where to fill tx desc
3227 */
3228 void rtl8723b_update_txdesc(struct xmit_frame *pxmitframe, u8 *pbuf)
3229 {
3230 struct tx_desc *pdesc;
3231
3232 rtl8723b_fill_default_txdesc(pxmitframe, pbuf);
3233
3234 pdesc = (struct tx_desc *)pbuf;
3235 pdesc->txdw0 = pdesc->txdw0;
3236 pdesc->txdw1 = pdesc->txdw1;
3237 pdesc->txdw2 = pdesc->txdw2;
3238 pdesc->txdw3 = pdesc->txdw3;
3239 pdesc->txdw4 = pdesc->txdw4;
3240 pdesc->txdw5 = pdesc->txdw5;
3241 pdesc->txdw6 = pdesc->txdw6;
3242 pdesc->txdw7 = pdesc->txdw7;
3243 pdesc->txdw8 = pdesc->txdw8;
3244 pdesc->txdw9 = pdesc->txdw9;
3245
3246 rtl8723b_cal_txdesc_chksum(pdesc);
3247 }
3248
3249 /* */
3250 /* Description: In normal chip, we should send some packet to Hw which will be used by Fw */
3251 /* in FW LPS mode. The function is to fill the Tx descriptor of this packets, then */
3252 /* Fw can tell Hw to send these packet derectly. */
3253 /* Added by tynli. 2009.10.15. */
3254 /* */
3255 /* type1:pspoll, type2:null */
3256 void rtl8723b_fill_fake_txdesc(
3257 struct adapter *padapter,
3258 u8 *pDesc,
3259 u32 BufferLen,
3260 u8 IsPsPoll,
3261 u8 IsBTQosNull,
3262 u8 bDataFrame
3263 )
3264 {
3265 /* Clear all status */
3266 memset(pDesc, 0, TXDESC_SIZE);
3267
3268 SET_TX_DESC_FIRST_SEG_8723B(pDesc, 1); /* bFirstSeg; */
3269 SET_TX_DESC_LAST_SEG_8723B(pDesc, 1); /* bLastSeg; */
3270
3271 SET_TX_DESC_OFFSET_8723B(pDesc, 0x28); /* Offset = 32 */
3272
3273 SET_TX_DESC_PKT_SIZE_8723B(pDesc, BufferLen); /* Buffer size + command header */
3274 SET_TX_DESC_QUEUE_SEL_8723B(pDesc, QSLT_MGNT); /* Fixed queue of Mgnt queue */
3275
3276 /* Set NAVUSEHDR to prevent Ps-poll AId filed to be changed to error vlaue by Hw. */
3277 if (true == IsPsPoll) {
3278 SET_TX_DESC_NAV_USE_HDR_8723B(pDesc, 1);
3279 } else {
3280 SET_TX_DESC_HWSEQ_EN_8723B(pDesc, 1); /* Hw set sequence number */
3281 SET_TX_DESC_HWSEQ_SEL_8723B(pDesc, 0);
3282 }
3283
3284 if (true == IsBTQosNull) {
3285 SET_TX_DESC_BT_INT_8723B(pDesc, 1);
3286 }
3287
3288 SET_TX_DESC_USE_RATE_8723B(pDesc, 1); /* use data rate which is set by Sw */
3289 SET_TX_DESC_OWN_8723B((u8 *)pDesc, 1);
3290
3291 SET_TX_DESC_TX_RATE_8723B(pDesc, DESC8723B_RATE1M);
3292
3293 /* */
3294 /* Encrypt the data frame if under security mode excepct null data. Suggested by CCW. */
3295 /* */
3296 if (true == bDataFrame) {
3297 u32 EncAlg;
3298
3299 EncAlg = padapter->securitypriv.dot11PrivacyAlgrthm;
3300 switch (EncAlg) {
3301 case _NO_PRIVACY_:
3302 SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x0);
3303 break;
3304 case _WEP40_:
3305 case _WEP104_:
3306 case _TKIP_:
3307 SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x1);
3308 break;
3309 case _SMS4_:
3310 SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x2);
3311 break;
3312 case _AES_:
3313 SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x3);
3314 break;
3315 default:
3316 SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x0);
3317 break;
3318 }
3319 }
3320
3321 /* USB interface drop packet if the checksum of descriptor isn't correct. */
3322 /* Using this checksum can let hardware recovery from packet bulk out error (e.g. Cancel URC, Bulk out error.). */
3323 rtl8723b_cal_txdesc_chksum((struct tx_desc *)pDesc);
3324 }
3325
3326 static void hw_var_set_opmode(struct adapter *padapter, u8 variable, u8 *val)
3327 {
3328 u8 val8;
3329 u8 mode = *((u8 *)val);
3330
3331 {
3332 /* disable Port0 TSF update */
3333 val8 = rtw_read8(padapter, REG_BCN_CTRL);
3334 val8 |= DIS_TSF_UDT;
3335 rtw_write8(padapter, REG_BCN_CTRL, val8);
3336
3337 /* set net_type */
3338 Set_MSR(padapter, mode);
3339 DBG_871X("#### %s() -%d iface_type(0) mode = %d ####\n", __func__, __LINE__, mode);
3340
3341 if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
3342 {
3343 StopTxBeacon(padapter);
3344 #ifdef CONFIG_INTERRUPT_BASED_TXBCN
3345 #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
3346 rtw_write8(padapter, REG_DRVERLYINT, 0x05); /* restore early int time to 5ms */
3347 UpdateInterruptMask8812AU(padapter, true, 0, IMR_BCNDMAINT0_8723B);
3348 #endif /* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */
3349
3350 #ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
3351 UpdateInterruptMask8812AU(padapter, true, 0, (IMR_TXBCN0ERR_8723B|IMR_TXBCN0OK_8723B));
3352 #endif /* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */
3353
3354 #endif /* CONFIG_INTERRUPT_BASED_TXBCN */
3355 }
3356
3357 /* disable atim wnd */
3358 rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|EN_BCN_FUNCTION|DIS_ATIM);
3359 /* rtw_write8(padapter, REG_BCN_CTRL, 0x18); */
3360 } else if ((mode == _HW_STATE_ADHOC_) /*|| (mode == _HW_STATE_AP_)*/) {
3361 ResumeTxBeacon(padapter);
3362 rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|EN_BCN_FUNCTION|DIS_BCNQ_SUB);
3363 } else if (mode == _HW_STATE_AP_) {
3364 #ifdef CONFIG_INTERRUPT_BASED_TXBCN
3365 #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
3366 UpdateInterruptMask8723BU(padapter, true, IMR_BCNDMAINT0_8723B, 0);
3367 #endif /* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */
3368
3369 #ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
3370 UpdateInterruptMask8723BU(padapter, true, (IMR_TXBCN0ERR_8723B|IMR_TXBCN0OK_8723B), 0);
3371 #endif /* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */
3372
3373 #endif /* CONFIG_INTERRUPT_BASED_TXBCN */
3374
3375 ResumeTxBeacon(padapter);
3376
3377 rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|DIS_BCNQ_SUB);
3378
3379 /* Set RCR */
3380 rtw_write32(padapter, REG_RCR, 0x7000208e);/* CBSSID_DATA must set to 0, reject ICV_ERR packet */
3381 /* enable to rx data frame */
3382 rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
3383 /* enable to rx ps-poll */
3384 rtw_write16(padapter, REG_RXFLTMAP1, 0x0400);
3385
3386 /* Beacon Control related register for first time */
3387 rtw_write8(padapter, REG_BCNDMATIM, 0x02); /* 2ms */
3388
3389 /* rtw_write8(padapter, REG_BCN_MAX_ERR, 0xFF); */
3390 rtw_write8(padapter, REG_ATIMWND, 0x0a); /* 10ms */
3391 rtw_write16(padapter, REG_BCNTCFG, 0x00);
3392 rtw_write16(padapter, REG_TBTT_PROHIBIT, 0xff04);
3393 rtw_write16(padapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/* +32767 (~32ms) */
3394
3395 /* reset TSF */
3396 rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
3397
3398 /* enable BCN0 Function for if1 */
3399 /* don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received) */
3400 rtw_write8(padapter, REG_BCN_CTRL, (DIS_TSF_UDT|EN_BCN_FUNCTION|EN_TXBCN_RPT|DIS_BCNQ_SUB));
3401
3402 /* SW_BCN_SEL - Port0 */
3403 /* rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2) & ~BIT4); */
3404 rtw_hal_set_hwreg(padapter, HW_VAR_DL_BCN_SEL, NULL);
3405
3406 /* select BCN on port 0 */
3407 rtw_write8(
3408 padapter,
3409 REG_CCK_CHECK_8723B,
3410 (rtw_read8(padapter, REG_CCK_CHECK_8723B)&~BIT_BCN_PORT_SEL)
3411 );
3412
3413 /* dis BCN1 ATIM WND if if2 is station */
3414 val8 = rtw_read8(padapter, REG_BCN_CTRL_1);
3415 val8 |= DIS_ATIM;
3416 rtw_write8(padapter, REG_BCN_CTRL_1, val8);
3417 }
3418 }
3419 }
3420
3421 static void hw_var_set_macaddr(struct adapter *padapter, u8 variable, u8 *val)
3422 {
3423 u8 idx = 0;
3424 u32 reg_macid;
3425
3426 reg_macid = REG_MACID;
3427
3428 for (idx = 0 ; idx < 6; idx++)
3429 rtw_write8(GET_PRIMARY_ADAPTER(padapter), (reg_macid+idx), val[idx]);
3430 }
3431
3432 static void hw_var_set_bssid(struct adapter *padapter, u8 variable, u8 *val)
3433 {
3434 u8 idx = 0;
3435 u32 reg_bssid;
3436
3437 reg_bssid = REG_BSSID;
3438
3439 for (idx = 0 ; idx < 6; idx++)
3440 rtw_write8(padapter, (reg_bssid+idx), val[idx]);
3441 }
3442
3443 static void hw_var_set_bcn_func(struct adapter *padapter, u8 variable, u8 *val)
3444 {
3445 u32 bcn_ctrl_reg;
3446
3447 bcn_ctrl_reg = REG_BCN_CTRL;
3448
3449 if (*(u8 *)val)
3450 rtw_write8(padapter, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT));
3451 else {
3452 u8 val8;
3453 val8 = rtw_read8(padapter, bcn_ctrl_reg);
3454 val8 &= ~(EN_BCN_FUNCTION | EN_TXBCN_RPT);
3455
3456 /* Always enable port0 beacon function for PSTDMA */
3457 if (REG_BCN_CTRL == bcn_ctrl_reg)
3458 val8 |= EN_BCN_FUNCTION;
3459
3460 rtw_write8(padapter, bcn_ctrl_reg, val8);
3461 }
3462 }
3463
3464 static void hw_var_set_correct_tsf(struct adapter *padapter, u8 variable, u8 *val)
3465 {
3466 u8 val8;
3467 u64 tsf;
3468 struct mlme_ext_priv *pmlmeext;
3469 struct mlme_ext_info *pmlmeinfo;
3470
3471
3472 pmlmeext = &padapter->mlmeextpriv;
3473 pmlmeinfo = &pmlmeext->mlmext_info;
3474
3475 tsf = pmlmeext->TSFValue-rtw_modular64(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024))-1024; /* us */
3476
3477 if (
3478 ((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) ||
3479 ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
3480 )
3481 StopTxBeacon(padapter);
3482
3483 {
3484 /* disable related TSF function */
3485 val8 = rtw_read8(padapter, REG_BCN_CTRL);
3486 val8 &= ~EN_BCN_FUNCTION;
3487 rtw_write8(padapter, REG_BCN_CTRL, val8);
3488
3489 rtw_write32(padapter, REG_TSFTR, tsf);
3490 rtw_write32(padapter, REG_TSFTR+4, tsf>>32);
3491
3492 /* enable related TSF function */
3493 val8 = rtw_read8(padapter, REG_BCN_CTRL);
3494 val8 |= EN_BCN_FUNCTION;
3495 rtw_write8(padapter, REG_BCN_CTRL, val8);
3496 }
3497
3498 if (
3499 ((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) ||
3500 ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
3501 )
3502 ResumeTxBeacon(padapter);
3503 }
3504
3505 static void hw_var_set_mlme_disconnect(struct adapter *padapter, u8 variable, u8 *val)
3506 {
3507 u8 val8;
3508
3509 /* Set RCR to not to receive data frame when NO LINK state */
3510 /* rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR) & ~RCR_ADF); */
3511 /* reject all data frames */
3512 rtw_write16(padapter, REG_RXFLTMAP2, 0);
3513
3514 /* reset TSF */
3515 rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
3516
3517 /* disable update TSF */
3518 val8 = rtw_read8(padapter, REG_BCN_CTRL);
3519 val8 |= DIS_TSF_UDT;
3520 rtw_write8(padapter, REG_BCN_CTRL, val8);
3521 }
3522
3523 static void hw_var_set_mlme_sitesurvey(struct adapter *padapter, u8 variable, u8 *val)
3524 {
3525 u32 value_rcr, rcr_clear_bit, reg_bcn_ctl;
3526 u16 value_rxfltmap2;
3527 u8 val8;
3528 struct hal_com_data *pHalData;
3529 struct mlme_priv *pmlmepriv;
3530
3531
3532 pHalData = GET_HAL_DATA(padapter);
3533 pmlmepriv = &padapter->mlmepriv;
3534
3535 reg_bcn_ctl = REG_BCN_CTRL;
3536
3537 rcr_clear_bit = RCR_CBSSID_BCN;
3538
3539 /* config RCR to receive different BSSID & not to receive data frame */
3540 value_rxfltmap2 = 0;
3541
3542 if ((check_fwstate(pmlmepriv, WIFI_AP_STATE) == true))
3543 rcr_clear_bit = RCR_CBSSID_BCN;
3544
3545 value_rcr = rtw_read32(padapter, REG_RCR);
3546
3547 if (*((u8 *)val)) {
3548 /* under sitesurvey */
3549 value_rcr &= ~(rcr_clear_bit);
3550 rtw_write32(padapter, REG_RCR, value_rcr);
3551
3552 rtw_write16(padapter, REG_RXFLTMAP2, value_rxfltmap2);
3553
3554 if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
3555 /* disable update TSF */
3556 val8 = rtw_read8(padapter, reg_bcn_ctl);
3557 val8 |= DIS_TSF_UDT;
3558 rtw_write8(padapter, reg_bcn_ctl, val8);
3559 }
3560
3561 /* Save orignal RRSR setting. */
3562 pHalData->RegRRSR = rtw_read16(padapter, REG_RRSR);
3563 } else {
3564 /* sitesurvey done */
3565 if (check_fwstate(pmlmepriv, (_FW_LINKED|WIFI_AP_STATE)))
3566 /* enable to rx data frame */
3567 rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
3568
3569 if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
3570 /* enable update TSF */
3571 val8 = rtw_read8(padapter, reg_bcn_ctl);
3572 val8 &= ~DIS_TSF_UDT;
3573 rtw_write8(padapter, reg_bcn_ctl, val8);
3574 }
3575
3576 value_rcr |= rcr_clear_bit;
3577 rtw_write32(padapter, REG_RCR, value_rcr);
3578
3579 /* Restore orignal RRSR setting. */
3580 rtw_write16(padapter, REG_RRSR, pHalData->RegRRSR);
3581 }
3582 }
3583
3584 static void hw_var_set_mlme_join(struct adapter *padapter, u8 variable, u8 *val)
3585 {
3586 u8 val8;
3587 u16 val16;
3588 u32 val32;
3589 u8 RetryLimit;
3590 u8 type;
3591 struct hal_com_data *pHalData;
3592 struct mlme_priv *pmlmepriv;
3593 struct eeprom_priv *pEEPROM;
3594
3595
3596 RetryLimit = 0x30;
3597 type = *(u8 *)val;
3598 pHalData = GET_HAL_DATA(padapter);
3599 pmlmepriv = &padapter->mlmepriv;
3600 pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
3601
3602 if (type == 0) { /* prepare to join */
3603 /* enable to rx data frame.Accept all data frame */
3604 /* rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR)|RCR_ADF); */
3605 rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
3606
3607 val32 = rtw_read32(padapter, REG_RCR);
3608 if (padapter->in_cta_test)
3609 val32 &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);/* RCR_ADF */
3610 else
3611 val32 |= RCR_CBSSID_DATA|RCR_CBSSID_BCN;
3612 rtw_write32(padapter, REG_RCR, val32);
3613
3614 if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) == true)
3615 RetryLimit = (pEEPROM->CustomerID == RT_CID_CCX) ? 7 : 48;
3616 else /* Ad-hoc Mode */
3617 RetryLimit = 0x7;
3618 } else if (type == 1) /* joinbss_event call back when join res < 0 */
3619 rtw_write16(padapter, REG_RXFLTMAP2, 0x00);
3620 else if (type == 2) { /* sta add event call back */
3621 /* enable update TSF */
3622 val8 = rtw_read8(padapter, REG_BCN_CTRL);
3623 val8 &= ~DIS_TSF_UDT;
3624 rtw_write8(padapter, REG_BCN_CTRL, val8);
3625
3626 if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE))
3627 RetryLimit = 0x7;
3628 }
3629
3630 val16 = (RetryLimit << RETRY_LIMIT_SHORT_SHIFT) | (RetryLimit << RETRY_LIMIT_LONG_SHIFT);
3631 rtw_write16(padapter, REG_RL, val16);
3632 }
3633
3634 void CCX_FwC2HTxRpt_8723b(struct adapter *padapter, u8 *pdata, u8 len)
3635 {
3636 u8 seq_no;
3637
3638 #define GET_8723B_C2H_TX_RPT_LIFE_TIME_OVER(_Header) LE_BITS_TO_1BYTE((_Header + 0), 6, 1)
3639 #define GET_8723B_C2H_TX_RPT_RETRY_OVER(_Header) LE_BITS_TO_1BYTE((_Header + 0), 7, 1)
3640
3641 /* DBG_871X("%s, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n", __func__, */
3642 /* *pdata, *(pdata+1), *(pdata+2), *(pdata+3), *(pdata+4), *(pdata+5), *(pdata+6), *(pdata+7)); */
3643
3644 seq_no = *(pdata+6);
3645
3646 if (GET_8723B_C2H_TX_RPT_RETRY_OVER(pdata) | GET_8723B_C2H_TX_RPT_LIFE_TIME_OVER(pdata)) {
3647 rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL);
3648 }
3649 /*
3650 else if (seq_no != padapter->xmitpriv.seq_no) {
3651 DBG_871X("tx_seq_no =%d, rpt_seq_no =%d\n", padapter->xmitpriv.seq_no, seq_no);
3652 rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL);
3653 }
3654 */
3655 else
3656 rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_SUCCESS);
3657 }
3658
3659 s32 c2h_id_filter_ccx_8723b(u8 *buf)
3660 {
3661 struct c2h_evt_hdr_88xx *c2h_evt = (struct c2h_evt_hdr_88xx *)buf;
3662 s32 ret = false;
3663 if (c2h_evt->id == C2H_CCX_TX_RPT)
3664 ret = true;
3665
3666 return ret;
3667 }
3668
3669
3670 s32 c2h_handler_8723b(struct adapter *padapter, u8 *buf)
3671 {
3672 struct c2h_evt_hdr_88xx *pC2hEvent = (struct c2h_evt_hdr_88xx *)buf;
3673 s32 ret = _SUCCESS;
3674 u8 index = 0;
3675
3676 if (pC2hEvent == NULL) {
3677 DBG_8192C("%s(): pC2hEventis NULL\n", __func__);
3678 ret = _FAIL;
3679 goto exit;
3680 }
3681
3682 switch (pC2hEvent->id) {
3683 case C2H_AP_RPT_RSP:
3684 break;
3685 case C2H_DBG:
3686 {
3687 RT_TRACE(_module_hal_init_c_, _drv_info_, ("c2h_handler_8723b: %s\n", pC2hEvent->payload));
3688 }
3689 break;
3690
3691 case C2H_CCX_TX_RPT:
3692 /* CCX_FwC2HTxRpt(padapter, QueueID, pC2hEvent->payload); */
3693 break;
3694
3695 case C2H_EXT_RA_RPT:
3696 /* C2HExtRaRptHandler(padapter, pC2hEvent->payload, C2hEvent.CmdLen); */
3697 break;
3698
3699 case C2H_HW_INFO_EXCH:
3700 RT_TRACE(_module_hal_init_c_, _drv_info_, ("[BT], C2H_HW_INFO_EXCH\n"));
3701 for (index = 0; index < pC2hEvent->plen; index++) {
3702 RT_TRACE(_module_hal_init_c_, _drv_info_, ("[BT], tmpBuf[%d]= 0x%x\n", index, pC2hEvent->payload[index]));
3703 }
3704 break;
3705
3706 case C2H_8723B_BT_INFO:
3707 rtw_btcoex_BtInfoNotify(padapter, pC2hEvent->plen, pC2hEvent->payload);
3708 break;
3709
3710 default:
3711 break;
3712 }
3713
3714 /* Clear event to notify FW we have read the command. */
3715 /* Note: */
3716 /* If this field isn't clear, the FW won't update the next command message. */
3717 /* rtw_write8(padapter, REG_C2HEVT_CLEAR, C2H_EVT_HOST_CLOSE); */
3718 exit:
3719 return ret;
3720 }
3721
3722 static void process_c2h_event(struct adapter *padapter, PC2H_EVT_HDR pC2hEvent, u8 *c2hBuf)
3723 {
3724 u8 index = 0;
3725
3726 if (c2hBuf == NULL) {
3727 DBG_8192C("%s c2hbuff is NULL\n", __func__);
3728 return;
3729 }
3730
3731 switch (pC2hEvent->CmdID) {
3732 case C2H_AP_RPT_RSP:
3733 break;
3734 case C2H_DBG:
3735 {
3736 RT_TRACE(_module_hal_init_c_, _drv_info_, ("C2HCommandHandler: %s\n", c2hBuf));
3737 }
3738 break;
3739
3740 case C2H_CCX_TX_RPT:
3741 /* CCX_FwC2HTxRpt(padapter, QueueID, tmpBuf); */
3742 break;
3743
3744 case C2H_EXT_RA_RPT:
3745 /* C2HExtRaRptHandler(padapter, tmpBuf, C2hEvent.CmdLen); */
3746 break;
3747
3748 case C2H_HW_INFO_EXCH:
3749 RT_TRACE(_module_hal_init_c_, _drv_info_, ("[BT], C2H_HW_INFO_EXCH\n"));
3750 for (index = 0; index < pC2hEvent->CmdLen; index++) {
3751 RT_TRACE(_module_hal_init_c_, _drv_info_, ("[BT], tmpBuf[%d]= 0x%x\n", index, c2hBuf[index]));
3752 }
3753 break;
3754
3755 case C2H_8723B_BT_INFO:
3756 rtw_btcoex_BtInfoNotify(padapter, pC2hEvent->CmdLen, c2hBuf);
3757 break;
3758
3759 default:
3760 break;
3761 }
3762 }
3763
3764 void C2HPacketHandler_8723B(struct adapter *padapter, u8 *pbuffer, u16 length)
3765 {
3766 C2H_EVT_HDR C2hEvent;
3767 u8 *tmpBuf = NULL;
3768 #ifdef CONFIG_WOWLAN
3769 struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
3770
3771 if (pwrpriv->wowlan_mode == true) {
3772 DBG_871X("%s(): return because wowolan_mode ==true! CMDID =%d\n", __func__, pbuffer[0]);
3773 return;
3774 }
3775 #endif
3776 C2hEvent.CmdID = pbuffer[0];
3777 C2hEvent.CmdSeq = pbuffer[1];
3778 C2hEvent.CmdLen = length-2;
3779 tmpBuf = pbuffer+2;
3780
3781 /* DBG_871X("%s C2hEvent.CmdID:%x C2hEvent.CmdLen:%x C2hEvent.CmdSeq:%x\n", */
3782 /* __func__, C2hEvent.CmdID, C2hEvent.CmdLen, C2hEvent.CmdSeq); */
3783 RT_PRINT_DATA(_module_hal_init_c_, _drv_notice_, "C2HPacketHandler_8723B(): Command Content:\n", tmpBuf, C2hEvent.CmdLen);
3784
3785 process_c2h_event(padapter, &C2hEvent, tmpBuf);
3786 /* c2h_handler_8723b(padapter,&C2hEvent); */
3787 return;
3788 }
3789
3790 void SetHwReg8723B(struct adapter *padapter, u8 variable, u8 *val)
3791 {
3792 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
3793 u8 val8;
3794 u32 val32;
3795
3796 switch (variable) {
3797 case HW_VAR_MEDIA_STATUS:
3798 val8 = rtw_read8(padapter, MSR) & 0x0c;
3799 val8 |= *val;
3800 rtw_write8(padapter, MSR, val8);
3801 break;
3802
3803 case HW_VAR_MEDIA_STATUS1:
3804 val8 = rtw_read8(padapter, MSR) & 0x03;
3805 val8 |= *val << 2;
3806 rtw_write8(padapter, MSR, val8);
3807 break;
3808
3809 case HW_VAR_SET_OPMODE:
3810 hw_var_set_opmode(padapter, variable, val);
3811 break;
3812
3813 case HW_VAR_MAC_ADDR:
3814 hw_var_set_macaddr(padapter, variable, val);
3815 break;
3816
3817 case HW_VAR_BSSID:
3818 hw_var_set_bssid(padapter, variable, val);
3819 break;
3820
3821 case HW_VAR_BASIC_RATE:
3822 {
3823 struct mlme_ext_info *mlmext_info = &padapter->mlmeextpriv.mlmext_info;
3824 u16 input_b = 0, masked = 0, ioted = 0, BrateCfg = 0;
3825 u16 rrsr_2g_force_mask = (RRSR_11M|RRSR_5_5M|RRSR_1M);
3826 u16 rrsr_2g_allow_mask = (RRSR_24M|RRSR_12M|RRSR_6M|RRSR_CCK_RATES);
3827
3828 HalSetBrateCfg(padapter, val, &BrateCfg);
3829 input_b = BrateCfg;
3830
3831 /* apply force and allow mask */
3832 BrateCfg |= rrsr_2g_force_mask;
3833 BrateCfg &= rrsr_2g_allow_mask;
3834 masked = BrateCfg;
3835
3836 #ifdef CONFIG_CMCC_TEST
3837 BrateCfg |= (RRSR_11M|RRSR_5_5M|RRSR_1M); /* use 11M to send ACK */
3838 BrateCfg |= (RRSR_24M|RRSR_18M|RRSR_12M); /* CMCC_OFDM_ACK 12/18/24M */
3839 #endif
3840
3841 /* IOT consideration */
3842 if (mlmext_info->assoc_AP_vendor == HT_IOT_PEER_CISCO) {
3843 /* if peer is cisco and didn't use ofdm rate, we enable 6M ack */
3844 if ((BrateCfg & (RRSR_24M|RRSR_12M|RRSR_6M)) == 0)
3845 BrateCfg |= RRSR_6M;
3846 }
3847 ioted = BrateCfg;
3848
3849 pHalData->BasicRateSet = BrateCfg;
3850
3851 DBG_8192C("HW_VAR_BASIC_RATE: %#x -> %#x -> %#x\n", input_b, masked, ioted);
3852
3853 /* Set RRSR rate table. */
3854 rtw_write16(padapter, REG_RRSR, BrateCfg);
3855 rtw_write8(padapter, REG_RRSR+2, rtw_read8(padapter, REG_RRSR+2)&0xf0);
3856 }
3857 break;
3858
3859 case HW_VAR_TXPAUSE:
3860 rtw_write8(padapter, REG_TXPAUSE, *val);
3861 break;
3862
3863 case HW_VAR_BCN_FUNC:
3864 hw_var_set_bcn_func(padapter, variable, val);
3865 break;
3866
3867 case HW_VAR_CORRECT_TSF:
3868 hw_var_set_correct_tsf(padapter, variable, val);
3869 break;
3870
3871 case HW_VAR_CHECK_BSSID:
3872 {
3873 u32 val32;
3874 val32 = rtw_read32(padapter, REG_RCR);
3875 if (*val)
3876 val32 |= RCR_CBSSID_DATA|RCR_CBSSID_BCN;
3877 else
3878 val32 &= ~(RCR_CBSSID_DATA|RCR_CBSSID_BCN);
3879 rtw_write32(padapter, REG_RCR, val32);
3880 }
3881 break;
3882
3883 case HW_VAR_MLME_DISCONNECT:
3884 hw_var_set_mlme_disconnect(padapter, variable, val);
3885 break;
3886
3887 case HW_VAR_MLME_SITESURVEY:
3888 hw_var_set_mlme_sitesurvey(padapter, variable, val);
3889
3890 rtw_btcoex_ScanNotify(padapter, *val?true:false);
3891 break;
3892
3893 case HW_VAR_MLME_JOIN:
3894 hw_var_set_mlme_join(padapter, variable, val);
3895
3896 switch (*val) {
3897 case 0:
3898 /* prepare to join */
3899 rtw_btcoex_ConnectNotify(padapter, true);
3900 break;
3901 case 1:
3902 /* joinbss_event callback when join res < 0 */
3903 rtw_btcoex_ConnectNotify(padapter, false);
3904 break;
3905 case 2:
3906 /* sta add event callback */
3907 /* rtw_btcoex_MediaStatusNotify(padapter, RT_MEDIA_CONNECT); */
3908 break;
3909 }
3910 break;
3911
3912 case HW_VAR_ON_RCR_AM:
3913 val32 = rtw_read32(padapter, REG_RCR);
3914 val32 |= RCR_AM;
3915 rtw_write32(padapter, REG_RCR, val32);
3916 DBG_8192C("%s, %d, RCR = %x\n", __func__, __LINE__, rtw_read32(padapter, REG_RCR));
3917 break;
3918
3919 case HW_VAR_OFF_RCR_AM:
3920 val32 = rtw_read32(padapter, REG_RCR);
3921 val32 &= ~RCR_AM;
3922 rtw_write32(padapter, REG_RCR, val32);
3923 DBG_8192C("%s, %d, RCR = %x\n", __func__, __LINE__, rtw_read32(padapter, REG_RCR));
3924 break;
3925
3926 case HW_VAR_BEACON_INTERVAL:
3927 rtw_write16(padapter, REG_BCN_INTERVAL, *((u16 *)val));
3928 break;
3929
3930 case HW_VAR_SLOT_TIME:
3931 rtw_write8(padapter, REG_SLOT, *val);
3932 break;
3933
3934 case HW_VAR_RESP_SIFS:
3935 /* SIFS_Timer = 0x0a0a0808; */
3936 /* RESP_SIFS for CCK */
3937 rtw_write8(padapter, REG_RESP_SIFS_CCK, val[0]); /* SIFS_T2T_CCK (0x08) */
3938 rtw_write8(padapter, REG_RESP_SIFS_CCK+1, val[1]); /* SIFS_R2T_CCK(0x08) */
3939 /* RESP_SIFS for OFDM */
3940 rtw_write8(padapter, REG_RESP_SIFS_OFDM, val[2]); /* SIFS_T2T_OFDM (0x0a) */
3941 rtw_write8(padapter, REG_RESP_SIFS_OFDM+1, val[3]); /* SIFS_R2T_OFDM(0x0a) */
3942 break;
3943
3944 case HW_VAR_ACK_PREAMBLE:
3945 {
3946 u8 regTmp;
3947 u8 bShortPreamble = *val;
3948
3949 /* Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily) */
3950 /* regTmp = (pHalData->nCur40MhzPrimeSC)<<5; */
3951 regTmp = 0;
3952 if (bShortPreamble)
3953 regTmp |= 0x80;
3954 rtw_write8(padapter, REG_RRSR+2, regTmp);
3955 }
3956 break;
3957
3958 case HW_VAR_CAM_EMPTY_ENTRY:
3959 {
3960 u8 ucIndex = *val;
3961 u8 i;
3962 u32 ulCommand = 0;
3963 u32 ulContent = 0;
3964 u32 ulEncAlgo = CAM_AES;
3965
3966 for (i = 0; i < CAM_CONTENT_COUNT; i++) {
3967 /* filled id in CAM config 2 byte */
3968 if (i == 0) {
3969 ulContent |= (ucIndex & 0x03) | ((u16)(ulEncAlgo)<<2);
3970 /* ulContent |= CAM_VALID; */
3971 } else
3972 ulContent = 0;
3973
3974 /* polling bit, and No Write enable, and address */
3975 ulCommand = CAM_CONTENT_COUNT*ucIndex+i;
3976 ulCommand = ulCommand | CAM_POLLINIG | CAM_WRITE;
3977 /* write content 0 is equall to mark invalid */
3978 rtw_write32(padapter, WCAMI, ulContent); /* mdelay(40); */
3979 /* RT_TRACE(COMP_SEC, DBG_LOUD, ("CAM_empty_entry(): WRITE A4: %lx\n", ulContent)); */
3980 rtw_write32(padapter, RWCAM, ulCommand); /* mdelay(40); */
3981 /* RT_TRACE(COMP_SEC, DBG_LOUD, ("CAM_empty_entry(): WRITE A0: %lx\n", ulCommand)); */
3982 }
3983 }
3984 break;
3985
3986 case HW_VAR_CAM_INVALID_ALL:
3987 rtw_write32(padapter, RWCAM, BIT(31)|BIT(30));
3988 break;
3989
3990 case HW_VAR_CAM_WRITE:
3991 {
3992 u32 cmd;
3993 u32 *cam_val = (u32 *)val;
3994
3995 rtw_write32(padapter, WCAMI, cam_val[0]);
3996
3997 cmd = CAM_POLLINIG | CAM_WRITE | cam_val[1];
3998 rtw_write32(padapter, RWCAM, cmd);
3999 }
4000 break;
4001
4002 case HW_VAR_AC_PARAM_VO:
4003 rtw_write32(padapter, REG_EDCA_VO_PARAM, *((u32 *)val));
4004 break;
4005
4006 case HW_VAR_AC_PARAM_VI:
4007 rtw_write32(padapter, REG_EDCA_VI_PARAM, *((u32 *)val));
4008 break;
4009
4010 case HW_VAR_AC_PARAM_BE:
4011 pHalData->AcParam_BE = ((u32 *)(val))[0];
4012 rtw_write32(padapter, REG_EDCA_BE_PARAM, *((u32 *)val));
4013 break;
4014
4015 case HW_VAR_AC_PARAM_BK:
4016 rtw_write32(padapter, REG_EDCA_BK_PARAM, *((u32 *)val));
4017 break;
4018
4019 case HW_VAR_ACM_CTRL:
4020 {
4021 u8 ctrl = *((u8 *)val);
4022 u8 hwctrl = 0;
4023
4024 if (ctrl != 0) {
4025 hwctrl |= AcmHw_HwEn;
4026
4027 if (ctrl & BIT(1)) /* BE */
4028 hwctrl |= AcmHw_BeqEn;
4029
4030 if (ctrl & BIT(2)) /* VI */
4031 hwctrl |= AcmHw_ViqEn;
4032
4033 if (ctrl & BIT(3)) /* VO */
4034 hwctrl |= AcmHw_VoqEn;
4035 }
4036
4037 DBG_8192C("[HW_VAR_ACM_CTRL] Write 0x%02X\n", hwctrl);
4038 rtw_write8(padapter, REG_ACMHWCTRL, hwctrl);
4039 }
4040 break;
4041
4042 case HW_VAR_AMPDU_FACTOR:
4043 {
4044 u32 AMPDULen = (*((u8 *)val));
4045
4046 if (AMPDULen < HT_AGG_SIZE_32K)
4047 AMPDULen = (0x2000 << (*((u8 *)val)))-1;
4048 else
4049 AMPDULen = 0x7fff;
4050
4051 rtw_write32(padapter, REG_AMPDU_MAX_LENGTH_8723B, AMPDULen);
4052 }
4053 break;
4054
4055 case HW_VAR_H2C_FW_PWRMODE:
4056 {
4057 u8 psmode = *val;
4058
4059 /* Forece leave RF low power mode for 1T1R to prevent conficting setting in Fw power */
4060 /* saving sequence. 2010.06.07. Added by tynli. Suggested by SD3 yschang. */
4061 if (psmode != PS_MODE_ACTIVE) {
4062 ODM_RF_Saving(&pHalData->odmpriv, true);
4063 }
4064
4065 /* if (psmode != PS_MODE_ACTIVE) { */
4066 /* rtl8723b_set_lowpwr_lps_cmd(padapter, true); */
4067 /* else { */
4068 /* rtl8723b_set_lowpwr_lps_cmd(padapter, false); */
4069 /* */
4070 rtl8723b_set_FwPwrMode_cmd(padapter, psmode);
4071 }
4072 break;
4073 case HW_VAR_H2C_PS_TUNE_PARAM:
4074 rtl8723b_set_FwPsTuneParam_cmd(padapter);
4075 break;
4076
4077 case HW_VAR_H2C_FW_JOINBSSRPT:
4078 rtl8723b_set_FwJoinBssRpt_cmd(padapter, *val);
4079 break;
4080
4081 case HW_VAR_INITIAL_GAIN:
4082 {
4083 DIG_T *pDigTable = &pHalData->odmpriv.DM_DigTable;
4084 u32 rx_gain = *(u32 *)val;
4085
4086 if (rx_gain == 0xff) {/* restore rx gain */
4087 ODM_Write_DIG(&pHalData->odmpriv, pDigTable->BackupIGValue);
4088 } else {
4089 pDigTable->BackupIGValue = pDigTable->CurIGValue;
4090 ODM_Write_DIG(&pHalData->odmpriv, rx_gain);
4091 }
4092 }
4093 break;
4094
4095 case HW_VAR_EFUSE_USAGE:
4096 pHalData->EfuseUsedPercentage = *val;
4097 break;
4098
4099 case HW_VAR_EFUSE_BYTES:
4100 pHalData->EfuseUsedBytes = *((u16 *)val);
4101 break;
4102
4103 case HW_VAR_EFUSE_BT_USAGE:
4104 #ifdef HAL_EFUSE_MEMORY
4105 pHalData->EfuseHal.BTEfuseUsedPercentage = *val;
4106 #endif
4107 break;
4108
4109 case HW_VAR_EFUSE_BT_BYTES:
4110 #ifdef HAL_EFUSE_MEMORY
4111 pHalData->EfuseHal.BTEfuseUsedBytes = *((u16 *)val);
4112 #else
4113 BTEfuseUsedBytes = *((u16 *)val);
4114 #endif
4115 break;
4116
4117 case HW_VAR_FIFO_CLEARN_UP:
4118 {
4119 #define RW_RELEASE_EN BIT(18)
4120 #define RXDMA_IDLE BIT(17)
4121
4122 struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
4123 u8 trycnt = 100;
4124
4125 /* pause tx */
4126 rtw_write8(padapter, REG_TXPAUSE, 0xff);
4127
4128 /* keep sn */
4129 padapter->xmitpriv.nqos_ssn = rtw_read16(padapter, REG_NQOS_SEQ);
4130
4131 if (pwrpriv->bkeepfwalive != true) {
4132 /* RX DMA stop */
4133 val32 = rtw_read32(padapter, REG_RXPKT_NUM);
4134 val32 |= RW_RELEASE_EN;
4135 rtw_write32(padapter, REG_RXPKT_NUM, val32);
4136 do {
4137 val32 = rtw_read32(padapter, REG_RXPKT_NUM);
4138 val32 &= RXDMA_IDLE;
4139 if (val32)
4140 break;
4141
4142 DBG_871X("%s: [HW_VAR_FIFO_CLEARN_UP] val =%x times:%d\n", __func__, val32, trycnt);
4143 } while (--trycnt);
4144
4145 if (trycnt == 0) {
4146 DBG_8192C("[HW_VAR_FIFO_CLEARN_UP] Stop RX DMA failed......\n");
4147 }
4148
4149 /* RQPN Load 0 */
4150 rtw_write16(padapter, REG_RQPN_NPQ, 0);
4151 rtw_write32(padapter, REG_RQPN, 0x80000000);
4152 mdelay(2);
4153 }
4154 }
4155 break;
4156
4157 case HW_VAR_APFM_ON_MAC:
4158 pHalData->bMacPwrCtrlOn = *val;
4159 DBG_8192C("%s: bMacPwrCtrlOn =%d\n", __func__, pHalData->bMacPwrCtrlOn);
4160 break;
4161
4162 case HW_VAR_NAV_UPPER:
4163 {
4164 u32 usNavUpper = *((u32 *)val);
4165
4166 if (usNavUpper > HAL_NAV_UPPER_UNIT_8723B * 0xFF) {
4167 RT_TRACE(_module_hal_init_c_, _drv_notice_, ("The setting value (0x%08X us) of NAV_UPPER is larger than (%d * 0xFF)!!!\n", usNavUpper, HAL_NAV_UPPER_UNIT_8723B));
4168 break;
4169 }
4170
4171 /* The value of ((usNavUpper + HAL_NAV_UPPER_UNIT_8723B - 1) / HAL_NAV_UPPER_UNIT_8723B) */
4172 /* is getting the upper integer. */
4173 usNavUpper = (usNavUpper + HAL_NAV_UPPER_UNIT_8723B - 1) / HAL_NAV_UPPER_UNIT_8723B;
4174 rtw_write8(padapter, REG_NAV_UPPER, (u8)usNavUpper);
4175 }
4176 break;
4177
4178 case HW_VAR_H2C_MEDIA_STATUS_RPT:
4179 {
4180 u16 mstatus_rpt = (*(u16 *)val);
4181 u8 mstatus, macId;
4182
4183 mstatus = (u8) (mstatus_rpt & 0xFF);
4184 macId = (u8)(mstatus_rpt >> 8);
4185 rtl8723b_set_FwMediaStatusRpt_cmd(padapter, mstatus, macId);
4186 }
4187 break;
4188 case HW_VAR_BCN_VALID:
4189 {
4190 /* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2, write 1 to clear, Clear by sw */
4191 val8 = rtw_read8(padapter, REG_TDECTRL+2);
4192 val8 |= BIT(0);
4193 rtw_write8(padapter, REG_TDECTRL+2, val8);
4194 }
4195 break;
4196
4197 case HW_VAR_DL_BCN_SEL:
4198 {
4199 /* SW_BCN_SEL - Port0 */
4200 val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8723B+2);
4201 val8 &= ~BIT(4);
4202 rtw_write8(padapter, REG_DWBCN1_CTRL_8723B+2, val8);
4203 }
4204 break;
4205
4206 case HW_VAR_DO_IQK:
4207 pHalData->bNeedIQK = true;
4208 break;
4209
4210 case HW_VAR_DL_RSVD_PAGE:
4211 if (check_fwstate(&padapter->mlmepriv, WIFI_AP_STATE) == true)
4212 rtl8723b_download_BTCoex_AP_mode_rsvd_page(padapter);
4213 else
4214 rtl8723b_download_rsvd_page(padapter, RT_MEDIA_CONNECT);
4215 break;
4216
4217 case HW_VAR_MACID_SLEEP:
4218 /* Input is MACID */
4219 val32 = *(u32 *)val;
4220 if (val32 > 31) {
4221 DBG_8192C(FUNC_ADPT_FMT ": [HW_VAR_MACID_SLEEP] Invalid macid(%d)\n",
4222 FUNC_ADPT_ARG(padapter), val32);
4223 break;
4224 }
4225 val8 = (u8)val32; /* macid is between 0~31 */
4226
4227 val32 = rtw_read32(padapter, REG_MACID_SLEEP);
4228 DBG_8192C(FUNC_ADPT_FMT ": [HW_VAR_MACID_SLEEP] macid =%d, org MACID_SLEEP = 0x%08X\n",
4229 FUNC_ADPT_ARG(padapter), val8, val32);
4230 if (val32 & BIT(val8))
4231 break;
4232 val32 |= BIT(val8);
4233 rtw_write32(padapter, REG_MACID_SLEEP, val32);
4234 break;
4235
4236 case HW_VAR_MACID_WAKEUP:
4237 /* Input is MACID */
4238 val32 = *(u32 *)val;
4239 if (val32 > 31) {
4240 DBG_8192C(FUNC_ADPT_FMT ": [HW_VAR_MACID_WAKEUP] Invalid macid(%d)\n",
4241 FUNC_ADPT_ARG(padapter), val32);
4242 break;
4243 }
4244 val8 = (u8)val32; /* macid is between 0~31 */
4245
4246 val32 = rtw_read32(padapter, REG_MACID_SLEEP);
4247 DBG_8192C(FUNC_ADPT_FMT ": [HW_VAR_MACID_WAKEUP] macid =%d, org MACID_SLEEP = 0x%08X\n",
4248 FUNC_ADPT_ARG(padapter), val8, val32);
4249 if (!(val32 & BIT(val8)))
4250 break;
4251 val32 &= ~BIT(val8);
4252 rtw_write32(padapter, REG_MACID_SLEEP, val32);
4253 break;
4254
4255 default:
4256 SetHwReg(padapter, variable, val);
4257 break;
4258 }
4259 }
4260
4261 void GetHwReg8723B(struct adapter *padapter, u8 variable, u8 *val)
4262 {
4263 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
4264 u8 val8;
4265 u16 val16;
4266
4267 switch (variable) {
4268 case HW_VAR_TXPAUSE:
4269 *val = rtw_read8(padapter, REG_TXPAUSE);
4270 break;
4271
4272 case HW_VAR_BCN_VALID:
4273 {
4274 /* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2 */
4275 val8 = rtw_read8(padapter, REG_TDECTRL+2);
4276 *val = (BIT(0) & val8) ? true : false;
4277 }
4278 break;
4279
4280 case HW_VAR_FWLPS_RF_ON:
4281 {
4282 /* When we halt NIC, we should check if FW LPS is leave. */
4283 u32 valRCR;
4284
4285 if (
4286 (padapter->bSurpriseRemoved == true) ||
4287 (adapter_to_pwrctl(padapter)->rf_pwrstate == rf_off)
4288 ) {
4289 /* If it is in HW/SW Radio OFF or IPS state, we do not check Fw LPS Leave, */
4290 /* because Fw is unload. */
4291 *val = true;
4292 } else {
4293 valRCR = rtw_read32(padapter, REG_RCR);
4294 valRCR &= 0x00070000;
4295 if (valRCR)
4296 *val = false;
4297 else
4298 *val = true;
4299 }
4300 }
4301 break;
4302
4303 case HW_VAR_EFUSE_USAGE:
4304 *val = pHalData->EfuseUsedPercentage;
4305 break;
4306
4307 case HW_VAR_EFUSE_BYTES:
4308 *((u16 *)val) = pHalData->EfuseUsedBytes;
4309 break;
4310
4311 case HW_VAR_EFUSE_BT_USAGE:
4312 #ifdef HAL_EFUSE_MEMORY
4313 *val = pHalData->EfuseHal.BTEfuseUsedPercentage;
4314 #endif
4315 break;
4316
4317 case HW_VAR_EFUSE_BT_BYTES:
4318 #ifdef HAL_EFUSE_MEMORY
4319 *((u16 *)val) = pHalData->EfuseHal.BTEfuseUsedBytes;
4320 #else
4321 *((u16 *)val) = BTEfuseUsedBytes;
4322 #endif
4323 break;
4324
4325 case HW_VAR_APFM_ON_MAC:
4326 *val = pHalData->bMacPwrCtrlOn;
4327 break;
4328 case HW_VAR_CHK_HI_QUEUE_EMPTY:
4329 val16 = rtw_read16(padapter, REG_TXPKT_EMPTY);
4330 *val = (val16 & BIT(10)) ? true:false;
4331 break;
4332 #ifdef CONFIG_WOWLAN
4333 case HW_VAR_RPWM_TOG:
4334 *val = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HRPWM1) & BIT7;
4335 break;
4336 case HW_VAR_WAKEUP_REASON:
4337 *val = rtw_read8(padapter, REG_WOWLAN_WAKE_REASON);
4338 if (*val == 0xEA)
4339 *val = 0;
4340 break;
4341 case HW_VAR_SYS_CLKR:
4342 *val = rtw_read8(padapter, REG_SYS_CLKR);
4343 break;
4344 #endif
4345 default:
4346 GetHwReg(padapter, variable, val);
4347 break;
4348 }
4349 }
4350
4351 /*
4352 *Description:
4353 * Change default setting of specified variable.
4354 */
4355 u8 SetHalDefVar8723B(struct adapter *padapter, enum HAL_DEF_VARIABLE variable, void *pval)
4356 {
4357 struct hal_com_data *pHalData;
4358 u8 bResult;
4359
4360
4361 pHalData = GET_HAL_DATA(padapter);
4362 bResult = _SUCCESS;
4363
4364 switch (variable) {
4365 default:
4366 bResult = SetHalDefVar(padapter, variable, pval);
4367 break;
4368 }
4369
4370 return bResult;
4371 }
4372
4373 /*
4374 *Description:
4375 * Query setting of specified variable.
4376 */
4377 u8 GetHalDefVar8723B(struct adapter *padapter, enum HAL_DEF_VARIABLE variable, void *pval)
4378 {
4379 struct hal_com_data *pHalData;
4380 u8 bResult;
4381
4382
4383 pHalData = GET_HAL_DATA(padapter);
4384 bResult = _SUCCESS;
4385
4386 switch (variable) {
4387 case HAL_DEF_MAX_RECVBUF_SZ:
4388 *((u32 *)pval) = MAX_RECVBUF_SZ;
4389 break;
4390
4391 case HAL_DEF_RX_PACKET_OFFSET:
4392 *((u32 *)pval) = RXDESC_SIZE + DRVINFO_SZ*8;
4393 break;
4394
4395 case HW_VAR_MAX_RX_AMPDU_FACTOR:
4396 /* Stanley@BB.SD3 suggests 16K can get stable performance */
4397 /* The experiment was done on SDIO interface */
4398 /* coding by Lucas@20130730 */
4399 *(u32 *)pval = MAX_AMPDU_FACTOR_16K;
4400 break;
4401 case HAL_DEF_TX_LDPC:
4402 case HAL_DEF_RX_LDPC:
4403 *((u8 *)pval) = false;
4404 break;
4405 case HAL_DEF_TX_STBC:
4406 *((u8 *)pval) = 0;
4407 break;
4408 case HAL_DEF_RX_STBC:
4409 *((u8 *)pval) = 1;
4410 break;
4411 case HAL_DEF_EXPLICIT_BEAMFORMER:
4412 case HAL_DEF_EXPLICIT_BEAMFORMEE:
4413 *((u8 *)pval) = false;
4414 break;
4415
4416 case HW_DEF_RA_INFO_DUMP:
4417 {
4418 u8 mac_id = *(u8 *)pval;
4419 u32 cmd;
4420 u32 ra_info1, ra_info2;
4421 u32 rate_mask1, rate_mask2;
4422 u8 curr_tx_rate, curr_tx_sgi, hight_rate, lowest_rate;
4423
4424 DBG_8192C("============ RA status check Mac_id:%d ===================\n", mac_id);
4425
4426 cmd = 0x40000100 | mac_id;
4427 rtw_write32(padapter, REG_HMEBOX_DBG_2_8723B, cmd);
4428 msleep(10);
4429 ra_info1 = rtw_read32(padapter, 0x2F0);
4430 curr_tx_rate = ra_info1&0x7F;
4431 curr_tx_sgi = (ra_info1>>7)&0x01;
4432 DBG_8192C("[ ra_info1:0x%08x ] =>cur_tx_rate = %s, cur_sgi:%d, PWRSTS = 0x%02x \n",
4433 ra_info1,
4434 HDATA_RATE(curr_tx_rate),
4435 curr_tx_sgi,
4436 (ra_info1>>8) & 0x07);
4437
4438 cmd = 0x40000400 | mac_id;
4439 rtw_write32(padapter, REG_HMEBOX_DBG_2_8723B, cmd);
4440 msleep(10);
4441 ra_info1 = rtw_read32(padapter, 0x2F0);
4442 ra_info2 = rtw_read32(padapter, 0x2F4);
4443 rate_mask1 = rtw_read32(padapter, 0x2F8);
4444 rate_mask2 = rtw_read32(padapter, 0x2FC);
4445 hight_rate = ra_info2&0xFF;
4446 lowest_rate = (ra_info2>>8) & 0xFF;
4447
4448 DBG_8192C("[ ra_info1:0x%08x ] =>RSSI =%d, BW_setting = 0x%02x, DISRA = 0x%02x, VHT_EN = 0x%02x\n",
4449 ra_info1,
4450 ra_info1&0xFF,
4451 (ra_info1>>8) & 0xFF,
4452 (ra_info1>>16) & 0xFF,
4453 (ra_info1>>24) & 0xFF);
4454
4455 DBG_8192C("[ ra_info2:0x%08x ] =>hight_rate =%s, lowest_rate =%s, SGI = 0x%02x, RateID =%d\n",
4456 ra_info2,
4457 HDATA_RATE(hight_rate),
4458 HDATA_RATE(lowest_rate),
4459 (ra_info2>>16) & 0xFF,
4460 (ra_info2>>24) & 0xFF);
4461
4462 DBG_8192C("rate_mask2 = 0x%08x, rate_mask1 = 0x%08x\n", rate_mask2, rate_mask1);
4463
4464 }
4465 break;
4466
4467 case HAL_DEF_TX_PAGE_BOUNDARY:
4468 if (!padapter->registrypriv.wifi_spec) {
4469 *(u8 *)pval = TX_PAGE_BOUNDARY_8723B;
4470 } else {
4471 *(u8 *)pval = WMM_NORMAL_TX_PAGE_BOUNDARY_8723B;
4472 }
4473 break;
4474
4475 case HAL_DEF_MACID_SLEEP:
4476 *(u8 *)pval = true; /* support macid sleep */
4477 break;
4478
4479 default:
4480 bResult = GetHalDefVar(padapter, variable, pval);
4481 break;
4482 }
4483
4484 return bResult;
4485 }
4486
4487 #ifdef CONFIG_WOWLAN
4488 void Hal_DetectWoWMode(struct adapter *padapter)
4489 {
4490 adapter_to_pwrctl(padapter)->bSupportRemoteWakeup = true;
4491 DBG_871X("%s\n", __func__);
4492 }
4493 #endif /* CONFIG_WOWLAN */
4494
4495 void rtl8723b_start_thread(struct adapter *padapter)
4496 {
4497 #ifndef CONFIG_SDIO_TX_TASKLET
4498 struct xmit_priv *xmitpriv = &padapter->xmitpriv;
4499
4500 xmitpriv->SdioXmitThread = kthread_run(rtl8723bs_xmit_thread, padapter, "RTWHALXT");
4501 if (IS_ERR(xmitpriv->SdioXmitThread)) {
4502 RT_TRACE(_module_hal_xmit_c_, _drv_err_, ("%s: start rtl8723bs_xmit_thread FAIL!!\n", __func__));
4503 }
4504 #endif
4505 }
4506
4507 void rtl8723b_stop_thread(struct adapter *padapter)
4508 {
4509 #ifndef CONFIG_SDIO_TX_TASKLET
4510 struct xmit_priv *xmitpriv = &padapter->xmitpriv;
4511
4512 /* stop xmit_buf_thread */
4513 if (xmitpriv->SdioXmitThread) {
4514 up(&xmitpriv->SdioXmitSema);
4515 down(&xmitpriv->SdioXmitTerminateSema);
4516 xmitpriv->SdioXmitThread = NULL;
4517 }
4518 #endif
4519 }
4520
4521 #if defined(CONFIG_CHECK_BT_HANG)
4522 extern void check_bt_status_work(void *data);
4523 void rtl8723bs_init_checkbthang_workqueue(struct adapter *adapter)
4524 {
4525 adapter->priv_checkbt_wq = alloc_workqueue("sdio_wq", 0, 0);
4526 INIT_DELAYED_WORK(&adapter->checkbt_work, (void *)check_bt_status_work);
4527 }
4528
4529 void rtl8723bs_free_checkbthang_workqueue(struct adapter *adapter)
4530 {
4531 if (adapter->priv_checkbt_wq) {
4532 cancel_delayed_work_sync(&adapter->checkbt_work);
4533 flush_workqueue(adapter->priv_checkbt_wq);
4534 destroy_workqueue(adapter->priv_checkbt_wq);
4535 adapter->priv_checkbt_wq = NULL;
4536 }
4537 }
4538
4539 void rtl8723bs_cancle_checkbthang_workqueue(struct adapter *adapter)
4540 {
4541 if (adapter->priv_checkbt_wq)
4542 cancel_delayed_work_sync(&adapter->checkbt_work);
4543 }
4544
4545 void rtl8723bs_hal_check_bt_hang(struct adapter *adapter)
4546 {
4547 if (adapter->priv_checkbt_wq)
4548 queue_delayed_work(adapter->priv_checkbt_wq, &(adapter->checkbt_work), 0);
4549 }
4550 #endif