]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/staging/tidspbridge/rmgr/drv.c
Fix common misspellings
[mirror_ubuntu-bionic-kernel.git] / drivers / staging / tidspbridge / rmgr / drv.c
1 /*
2 * drv.c
3 *
4 * DSP-BIOS Bridge driver support functions for TI OMAP processors.
5 *
6 * DSP/BIOS Bridge resource allocation module.
7 *
8 * Copyright (C) 2005-2006 Texas Instruments, Inc.
9 *
10 * This package is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
16 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
17 */
18 #include <linux/types.h>
19 #include <linux/list.h>
20
21 /* ----------------------------------- Host OS */
22 #include <dspbridge/host_os.h>
23
24 /* ----------------------------------- DSP/BIOS Bridge */
25 #include <dspbridge/dbdefs.h>
26
27 /* ----------------------------------- Trace & Debug */
28 #include <dspbridge/dbc.h>
29
30 /* ----------------------------------- This */
31 #include <dspbridge/drv.h>
32 #include <dspbridge/dev.h>
33
34 #include <dspbridge/node.h>
35 #include <dspbridge/proc.h>
36 #include <dspbridge/strm.h>
37 #include <dspbridge/nodepriv.h>
38 #include <dspbridge/dspchnl.h>
39 #include <dspbridge/resourcecleanup.h>
40
41 /* ----------------------------------- Defines, Data Structures, Typedefs */
42 struct drv_object {
43 struct list_head dev_list;
44 struct list_head dev_node_string;
45 };
46
47 /*
48 * This is the Device Extension. Named with the Prefix
49 * DRV_ since it is living in this module
50 */
51 struct drv_ext {
52 struct list_head link;
53 char sz_string[MAXREGPATHLENGTH];
54 };
55
56 /* ----------------------------------- Globals */
57 static s32 refs;
58 static bool ext_phys_mem_pool_enabled;
59 struct ext_phys_mem_pool {
60 u32 phys_mem_base;
61 u32 phys_mem_size;
62 u32 virt_mem_base;
63 u32 next_phys_alloc_ptr;
64 };
65 static struct ext_phys_mem_pool ext_mem_pool;
66
67 /* ----------------------------------- Function Prototypes */
68 static int request_bridge_resources(struct cfg_hostres *res);
69
70
71 /* GPP PROCESS CLEANUP CODE */
72
73 static int drv_proc_free_node_res(int id, void *p, void *data);
74
75 /* Allocate and add a node resource element
76 * This function is called from .Node_Allocate. */
77 int drv_insert_node_res_element(void *hnode, void *node_resource,
78 void *process_ctxt)
79 {
80 struct node_res_object **node_res_obj =
81 (struct node_res_object **)node_resource;
82 struct process_context *ctxt = (struct process_context *)process_ctxt;
83 int status = 0;
84 int retval;
85
86 *node_res_obj = kzalloc(sizeof(struct node_res_object), GFP_KERNEL);
87 if (!*node_res_obj) {
88 status = -ENOMEM;
89 goto func_end;
90 }
91
92 (*node_res_obj)->node = hnode;
93 retval = idr_get_new(ctxt->node_id, *node_res_obj,
94 &(*node_res_obj)->id);
95 if (retval == -EAGAIN) {
96 if (!idr_pre_get(ctxt->node_id, GFP_KERNEL)) {
97 pr_err("%s: OUT OF MEMORY\n", __func__);
98 status = -ENOMEM;
99 goto func_end;
100 }
101
102 retval = idr_get_new(ctxt->node_id, *node_res_obj,
103 &(*node_res_obj)->id);
104 }
105 if (retval) {
106 pr_err("%s: FAILED, IDR is FULL\n", __func__);
107 status = -EFAULT;
108 }
109 func_end:
110 if (status)
111 kfree(*node_res_obj);
112
113 return status;
114 }
115
116 /* Release all Node resources and its context
117 * Actual Node De-Allocation */
118 static int drv_proc_free_node_res(int id, void *p, void *data)
119 {
120 struct process_context *ctxt = data;
121 int status;
122 struct node_res_object *node_res_obj = p;
123 u32 node_state;
124
125 if (node_res_obj->node_allocated) {
126 node_state = node_get_state(node_res_obj->node);
127 if (node_state <= NODE_DELETING) {
128 if ((node_state == NODE_RUNNING) ||
129 (node_state == NODE_PAUSED) ||
130 (node_state == NODE_TERMINATING))
131 node_terminate
132 (node_res_obj->node, &status);
133
134 node_delete(node_res_obj, ctxt);
135 }
136 }
137
138 return 0;
139 }
140
141 /* Release all Mapped and Reserved DMM resources */
142 int drv_remove_all_dmm_res_elements(void *process_ctxt)
143 {
144 struct process_context *ctxt = (struct process_context *)process_ctxt;
145 int status = 0;
146 struct dmm_map_object *temp_map, *map_obj;
147 struct dmm_rsv_object *temp_rsv, *rsv_obj;
148
149 /* Free DMM mapped memory resources */
150 list_for_each_entry_safe(map_obj, temp_map, &ctxt->dmm_map_list, link) {
151 status = proc_un_map(ctxt->processor,
152 (void *)map_obj->dsp_addr, ctxt);
153 if (status)
154 pr_err("%s: proc_un_map failed!"
155 " status = 0x%xn", __func__, status);
156 }
157
158 /* Free DMM reserved memory resources */
159 list_for_each_entry_safe(rsv_obj, temp_rsv, &ctxt->dmm_rsv_list, link) {
160 status = proc_un_reserve_memory(ctxt->processor, (void *)
161 rsv_obj->dsp_reserved_addr,
162 ctxt);
163 if (status)
164 pr_err("%s: proc_un_reserve_memory failed!"
165 " status = 0x%xn", __func__, status);
166 }
167 return status;
168 }
169
170 /* Update Node allocation status */
171 void drv_proc_node_update_status(void *node_resource, s32 status)
172 {
173 struct node_res_object *node_res_obj =
174 (struct node_res_object *)node_resource;
175 DBC_ASSERT(node_resource != NULL);
176 node_res_obj->node_allocated = status;
177 }
178
179 /* Update Node Heap status */
180 void drv_proc_node_update_heap_status(void *node_resource, s32 status)
181 {
182 struct node_res_object *node_res_obj =
183 (struct node_res_object *)node_resource;
184 DBC_ASSERT(node_resource != NULL);
185 node_res_obj->heap_allocated = status;
186 }
187
188 /* Release all Node resources and its context
189 * This is called from .bridge_release.
190 */
191 int drv_remove_all_node_res_elements(void *process_ctxt)
192 {
193 struct process_context *ctxt = process_ctxt;
194
195 idr_for_each(ctxt->node_id, drv_proc_free_node_res, ctxt);
196 idr_destroy(ctxt->node_id);
197
198 return 0;
199 }
200
201 /* Allocate the STRM resource element
202 * This is called after the actual resource is allocated
203 */
204 int drv_proc_insert_strm_res_element(void *stream_obj,
205 void *strm_res, void *process_ctxt)
206 {
207 struct strm_res_object **pstrm_res =
208 (struct strm_res_object **)strm_res;
209 struct process_context *ctxt = (struct process_context *)process_ctxt;
210 int status = 0;
211 int retval;
212
213 *pstrm_res = kzalloc(sizeof(struct strm_res_object), GFP_KERNEL);
214 if (*pstrm_res == NULL) {
215 status = -EFAULT;
216 goto func_end;
217 }
218
219 (*pstrm_res)->stream = stream_obj;
220 retval = idr_get_new(ctxt->stream_id, *pstrm_res,
221 &(*pstrm_res)->id);
222 if (retval == -EAGAIN) {
223 if (!idr_pre_get(ctxt->stream_id, GFP_KERNEL)) {
224 pr_err("%s: OUT OF MEMORY\n", __func__);
225 status = -ENOMEM;
226 goto func_end;
227 }
228
229 retval = idr_get_new(ctxt->stream_id, *pstrm_res,
230 &(*pstrm_res)->id);
231 }
232 if (retval) {
233 pr_err("%s: FAILED, IDR is FULL\n", __func__);
234 status = -EPERM;
235 }
236
237 func_end:
238 return status;
239 }
240
241 static int drv_proc_free_strm_res(int id, void *p, void *process_ctxt)
242 {
243 struct process_context *ctxt = process_ctxt;
244 struct strm_res_object *strm_res = p;
245 struct stream_info strm_info;
246 struct dsp_streaminfo user;
247 u8 **ap_buffer = NULL;
248 u8 *buf_ptr;
249 u32 ul_bytes;
250 u32 dw_arg;
251 s32 ul_buf_size;
252
253 if (strm_res->num_bufs) {
254 ap_buffer = kmalloc((strm_res->num_bufs *
255 sizeof(u8 *)), GFP_KERNEL);
256 if (ap_buffer) {
257 strm_free_buffer(strm_res,
258 ap_buffer,
259 strm_res->num_bufs,
260 ctxt);
261 kfree(ap_buffer);
262 }
263 }
264 strm_info.user_strm = &user;
265 user.number_bufs_in_stream = 0;
266 strm_get_info(strm_res->stream, &strm_info, sizeof(strm_info));
267 while (user.number_bufs_in_stream--)
268 strm_reclaim(strm_res->stream, &buf_ptr, &ul_bytes,
269 (u32 *) &ul_buf_size, &dw_arg);
270 strm_close(strm_res, ctxt);
271 return 0;
272 }
273
274 /* Release all Stream resources and its context
275 * This is called from .bridge_release.
276 */
277 int drv_remove_all_strm_res_elements(void *process_ctxt)
278 {
279 struct process_context *ctxt = process_ctxt;
280
281 idr_for_each(ctxt->stream_id, drv_proc_free_strm_res, ctxt);
282 idr_destroy(ctxt->stream_id);
283
284 return 0;
285 }
286
287 /* Updating the stream resource element */
288 int drv_proc_update_strm_res(u32 num_bufs, void *strm_resources)
289 {
290 int status = 0;
291 struct strm_res_object **strm_res =
292 (struct strm_res_object **)strm_resources;
293
294 (*strm_res)->num_bufs = num_bufs;
295 return status;
296 }
297
298 /* GPP PROCESS CLEANUP CODE END */
299
300 /*
301 * ======== = drv_create ======== =
302 * Purpose:
303 * DRV Object gets created only once during Driver Loading.
304 */
305 int drv_create(struct drv_object **drv_obj)
306 {
307 int status = 0;
308 struct drv_object *pdrv_object = NULL;
309 struct drv_data *drv_datap = dev_get_drvdata(bridge);
310
311 DBC_REQUIRE(drv_obj != NULL);
312 DBC_REQUIRE(refs > 0);
313
314 pdrv_object = kzalloc(sizeof(struct drv_object), GFP_KERNEL);
315 if (pdrv_object) {
316 /* Create and Initialize List of device objects */
317 INIT_LIST_HEAD(&pdrv_object->dev_list);
318 INIT_LIST_HEAD(&pdrv_object->dev_node_string);
319 } else {
320 status = -ENOMEM;
321 }
322 /* Store the DRV Object in the driver data */
323 if (!status) {
324 if (drv_datap) {
325 drv_datap->drv_object = (void *)pdrv_object;
326 } else {
327 status = -EPERM;
328 pr_err("%s: Failed to store DRV object\n", __func__);
329 }
330 }
331
332 if (!status) {
333 *drv_obj = pdrv_object;
334 } else {
335 /* Free the DRV Object */
336 kfree(pdrv_object);
337 }
338
339 DBC_ENSURE(status || pdrv_object);
340 return status;
341 }
342
343 /*
344 * ======== drv_exit ========
345 * Purpose:
346 * Discontinue usage of the DRV module.
347 */
348 void drv_exit(void)
349 {
350 DBC_REQUIRE(refs > 0);
351
352 refs--;
353
354 DBC_ENSURE(refs >= 0);
355 }
356
357 /*
358 * ======== = drv_destroy ======== =
359 * purpose:
360 * Invoked during bridge de-initialization
361 */
362 int drv_destroy(struct drv_object *driver_obj)
363 {
364 int status = 0;
365 struct drv_object *pdrv_object = (struct drv_object *)driver_obj;
366 struct drv_data *drv_datap = dev_get_drvdata(bridge);
367
368 DBC_REQUIRE(refs > 0);
369 DBC_REQUIRE(pdrv_object);
370
371 kfree(pdrv_object);
372 /* Update the DRV Object in the driver data */
373 if (drv_datap) {
374 drv_datap->drv_object = NULL;
375 } else {
376 status = -EPERM;
377 pr_err("%s: Failed to store DRV object\n", __func__);
378 }
379
380 return status;
381 }
382
383 /*
384 * ======== drv_get_dev_object ========
385 * Purpose:
386 * Given a index, returns a handle to DevObject from the list.
387 */
388 int drv_get_dev_object(u32 index, struct drv_object *hdrv_obj,
389 struct dev_object **device_obj)
390 {
391 int status = 0;
392 #ifdef CONFIG_TIDSPBRIDGE_DEBUG
393 /* used only for Assertions and debug messages */
394 struct drv_object *pdrv_obj = (struct drv_object *)hdrv_obj;
395 #endif
396 struct dev_object *dev_obj;
397 u32 i;
398 DBC_REQUIRE(pdrv_obj);
399 DBC_REQUIRE(device_obj != NULL);
400 DBC_REQUIRE(index >= 0);
401 DBC_REQUIRE(refs > 0);
402 DBC_ASSERT(!(list_empty(&pdrv_obj->dev_list)));
403
404 dev_obj = (struct dev_object *)drv_get_first_dev_object();
405 for (i = 0; i < index; i++) {
406 dev_obj =
407 (struct dev_object *)drv_get_next_dev_object((u32) dev_obj);
408 }
409 if (dev_obj) {
410 *device_obj = (struct dev_object *)dev_obj;
411 } else {
412 *device_obj = NULL;
413 status = -EPERM;
414 }
415
416 return status;
417 }
418
419 /*
420 * ======== drv_get_first_dev_object ========
421 * Purpose:
422 * Retrieve the first Device Object handle from an internal linked list of
423 * of DEV_OBJECTs maintained by DRV.
424 */
425 u32 drv_get_first_dev_object(void)
426 {
427 u32 dw_dev_object = 0;
428 struct drv_object *pdrv_obj;
429 struct drv_data *drv_datap = dev_get_drvdata(bridge);
430
431 if (drv_datap && drv_datap->drv_object) {
432 pdrv_obj = drv_datap->drv_object;
433 if (!list_empty(&pdrv_obj->dev_list))
434 dw_dev_object = (u32) pdrv_obj->dev_list.next;
435 } else {
436 pr_err("%s: Failed to retrieve the object handle\n", __func__);
437 }
438
439 return dw_dev_object;
440 }
441
442 /*
443 * ======== DRV_GetFirstDevNodeString ========
444 * Purpose:
445 * Retrieve the first Device Extension from an internal linked list of
446 * of Pointer to dev_node Strings maintained by DRV.
447 */
448 u32 drv_get_first_dev_extension(void)
449 {
450 u32 dw_dev_extension = 0;
451 struct drv_object *pdrv_obj;
452 struct drv_data *drv_datap = dev_get_drvdata(bridge);
453
454 if (drv_datap && drv_datap->drv_object) {
455 pdrv_obj = drv_datap->drv_object;
456 if (!list_empty(&pdrv_obj->dev_node_string)) {
457 dw_dev_extension =
458 (u32) pdrv_obj->dev_node_string.next;
459 }
460 } else {
461 pr_err("%s: Failed to retrieve the object handle\n", __func__);
462 }
463
464 return dw_dev_extension;
465 }
466
467 /*
468 * ======== drv_get_next_dev_object ========
469 * Purpose:
470 * Retrieve the next Device Object handle from an internal linked list of
471 * of DEV_OBJECTs maintained by DRV, after having previously called
472 * drv_get_first_dev_object() and zero or more DRV_GetNext.
473 */
474 u32 drv_get_next_dev_object(u32 hdev_obj)
475 {
476 u32 dw_next_dev_object = 0;
477 struct drv_object *pdrv_obj;
478 struct drv_data *drv_datap = dev_get_drvdata(bridge);
479 struct list_head *curr;
480
481 if (drv_datap && drv_datap->drv_object) {
482 pdrv_obj = drv_datap->drv_object;
483 if (!list_empty(&pdrv_obj->dev_list)) {
484 curr = (struct list_head *)hdev_obj;
485 if (list_is_last(curr, &pdrv_obj->dev_list))
486 return 0;
487 dw_next_dev_object = (u32) curr->next;
488 }
489 } else {
490 pr_err("%s: Failed to retrieve the object handle\n", __func__);
491 }
492
493 return dw_next_dev_object;
494 }
495
496 /*
497 * ======== drv_get_next_dev_extension ========
498 * Purpose:
499 * Retrieve the next Device Extension from an internal linked list of
500 * of pointer to DevNodeString maintained by DRV, after having previously
501 * called drv_get_first_dev_extension() and zero or more
502 * drv_get_next_dev_extension().
503 */
504 u32 drv_get_next_dev_extension(u32 dev_extension)
505 {
506 u32 dw_dev_extension = 0;
507 struct drv_object *pdrv_obj;
508 struct drv_data *drv_datap = dev_get_drvdata(bridge);
509 struct list_head *curr;
510
511 if (drv_datap && drv_datap->drv_object) {
512 pdrv_obj = drv_datap->drv_object;
513 if (!list_empty(&pdrv_obj->dev_node_string)) {
514 curr = (struct list_head *)dev_extension;
515 if (list_is_last(curr, &pdrv_obj->dev_node_string))
516 return 0;
517 dw_dev_extension = (u32) curr->next;
518 }
519 } else {
520 pr_err("%s: Failed to retrieve the object handle\n", __func__);
521 }
522
523 return dw_dev_extension;
524 }
525
526 /*
527 * ======== drv_init ========
528 * Purpose:
529 * Initialize DRV module private state.
530 */
531 int drv_init(void)
532 {
533 s32 ret = 1; /* function return value */
534
535 DBC_REQUIRE(refs >= 0);
536
537 if (ret)
538 refs++;
539
540 DBC_ENSURE((ret && (refs > 0)) || (!ret && (refs >= 0)));
541
542 return ret;
543 }
544
545 /*
546 * ======== drv_insert_dev_object ========
547 * Purpose:
548 * Insert a DevObject into the list of Manager object.
549 */
550 int drv_insert_dev_object(struct drv_object *driver_obj,
551 struct dev_object *hdev_obj)
552 {
553 struct drv_object *pdrv_object = (struct drv_object *)driver_obj;
554
555 DBC_REQUIRE(refs > 0);
556 DBC_REQUIRE(hdev_obj != NULL);
557 DBC_REQUIRE(pdrv_object);
558
559 list_add_tail((struct list_head *)hdev_obj, &pdrv_object->dev_list);
560
561 return 0;
562 }
563
564 /*
565 * ======== drv_remove_dev_object ========
566 * Purpose:
567 * Search for and remove a DeviceObject from the given list of DRV
568 * objects.
569 */
570 int drv_remove_dev_object(struct drv_object *driver_obj,
571 struct dev_object *hdev_obj)
572 {
573 int status = -EPERM;
574 struct drv_object *pdrv_object = (struct drv_object *)driver_obj;
575 struct list_head *cur_elem;
576
577 DBC_REQUIRE(refs > 0);
578 DBC_REQUIRE(pdrv_object);
579 DBC_REQUIRE(hdev_obj != NULL);
580
581 DBC_REQUIRE(!list_empty(&pdrv_object->dev_list));
582
583 /* Search list for p_proc_object: */
584 list_for_each(cur_elem, &pdrv_object->dev_list) {
585 /* If found, remove it. */
586 if ((struct dev_object *)cur_elem == hdev_obj) {
587 list_del(cur_elem);
588 status = 0;
589 break;
590 }
591 }
592
593 return status;
594 }
595
596 /*
597 * ======== drv_request_resources ========
598 * Purpose:
599 * Requests resources from the OS.
600 */
601 int drv_request_resources(u32 dw_context, u32 *dev_node_strg)
602 {
603 int status = 0;
604 struct drv_object *pdrv_object;
605 struct drv_ext *pszdev_node;
606 struct drv_data *drv_datap = dev_get_drvdata(bridge);
607
608 DBC_REQUIRE(dw_context != 0);
609 DBC_REQUIRE(dev_node_strg != NULL);
610
611 /*
612 * Allocate memory to hold the string. This will live until
613 * it is freed in the Release resources. Update the driver object
614 * list.
615 */
616
617 if (!drv_datap || !drv_datap->drv_object)
618 status = -ENODATA;
619 else
620 pdrv_object = drv_datap->drv_object;
621
622 if (!status) {
623 pszdev_node = kzalloc(sizeof(struct drv_ext), GFP_KERNEL);
624 if (pszdev_node) {
625 strncpy(pszdev_node->sz_string,
626 (char *)dw_context, MAXREGPATHLENGTH - 1);
627 pszdev_node->sz_string[MAXREGPATHLENGTH - 1] = '\0';
628 /* Update the Driver Object List */
629 *dev_node_strg = (u32) pszdev_node->sz_string;
630 list_add_tail(&pszdev_node->link,
631 &pdrv_object->dev_node_string);
632 } else {
633 status = -ENOMEM;
634 *dev_node_strg = 0;
635 }
636 } else {
637 dev_dbg(bridge, "%s: Failed to get Driver Object from Registry",
638 __func__);
639 *dev_node_strg = 0;
640 }
641
642 DBC_ENSURE((!status && dev_node_strg != NULL &&
643 !list_empty(&pdrv_object->dev_node_string)) ||
644 (status && *dev_node_strg == 0));
645
646 return status;
647 }
648
649 /*
650 * ======== drv_release_resources ========
651 * Purpose:
652 * Releases resources from the OS.
653 */
654 int drv_release_resources(u32 dw_context, struct drv_object *hdrv_obj)
655 {
656 int status = 0;
657 struct drv_ext *pszdev_node;
658
659 /*
660 * Irrespective of the status go ahead and clean it
661 * The following will over write the status.
662 */
663 for (pszdev_node = (struct drv_ext *)drv_get_first_dev_extension();
664 pszdev_node != NULL; pszdev_node = (struct drv_ext *)
665 drv_get_next_dev_extension((u32) pszdev_node)) {
666 if ((u32) pszdev_node == dw_context) {
667 /* Found it */
668 /* Delete from the Driver object list */
669 list_del(&pszdev_node->link);
670 kfree(pszdev_node);
671 break;
672 }
673 }
674 return status;
675 }
676
677 /*
678 * ======== request_bridge_resources ========
679 * Purpose:
680 * Reserves shared memory for bridge.
681 */
682 static int request_bridge_resources(struct cfg_hostres *res)
683 {
684 struct cfg_hostres *host_res = res;
685
686 /* num_mem_windows must not be more than CFG_MAXMEMREGISTERS */
687 host_res->num_mem_windows = 2;
688
689 /* First window is for DSP internal memory */
690 dev_dbg(bridge, "mem_base[0] 0x%x\n", host_res->mem_base[0]);
691 dev_dbg(bridge, "mem_base[3] 0x%x\n", host_res->mem_base[3]);
692 dev_dbg(bridge, "dmmu_base %p\n", host_res->dmmu_base);
693
694 /* for 24xx base port is not mapping the mamory for DSP
695 * internal memory TODO Do a ioremap here */
696 /* Second window is for DSP external memory shared with MPU */
697
698 /* These are hard-coded values */
699 host_res->birq_registers = 0;
700 host_res->birq_attrib = 0;
701 host_res->offset_for_monitor = 0;
702 host_res->chnl_offset = 0;
703 /* CHNL_MAXCHANNELS */
704 host_res->num_chnls = CHNL_MAXCHANNELS;
705 host_res->chnl_buf_size = 0x400;
706
707 return 0;
708 }
709
710 /*
711 * ======== drv_request_bridge_res_dsp ========
712 * Purpose:
713 * Reserves shared memory for bridge.
714 */
715 int drv_request_bridge_res_dsp(void **phost_resources)
716 {
717 int status = 0;
718 struct cfg_hostres *host_res;
719 u32 dw_buff_size;
720 u32 dma_addr;
721 u32 shm_size;
722 struct drv_data *drv_datap = dev_get_drvdata(bridge);
723
724 dw_buff_size = sizeof(struct cfg_hostres);
725
726 host_res = kzalloc(dw_buff_size, GFP_KERNEL);
727
728 if (host_res != NULL) {
729 request_bridge_resources(host_res);
730 /* num_mem_windows must not be more than CFG_MAXMEMREGISTERS */
731 host_res->num_mem_windows = 4;
732
733 host_res->mem_base[0] = 0;
734 host_res->mem_base[2] = (u32) ioremap(OMAP_DSP_MEM1_BASE,
735 OMAP_DSP_MEM1_SIZE);
736 host_res->mem_base[3] = (u32) ioremap(OMAP_DSP_MEM2_BASE,
737 OMAP_DSP_MEM2_SIZE);
738 host_res->mem_base[4] = (u32) ioremap(OMAP_DSP_MEM3_BASE,
739 OMAP_DSP_MEM3_SIZE);
740 host_res->per_base = ioremap(OMAP_PER_CM_BASE,
741 OMAP_PER_CM_SIZE);
742 host_res->per_pm_base = (u32) ioremap(OMAP_PER_PRM_BASE,
743 OMAP_PER_PRM_SIZE);
744 host_res->core_pm_base = (u32) ioremap(OMAP_CORE_PRM_BASE,
745 OMAP_CORE_PRM_SIZE);
746 host_res->dmmu_base = ioremap(OMAP_DMMU_BASE,
747 OMAP_DMMU_SIZE);
748
749 dev_dbg(bridge, "mem_base[0] 0x%x\n",
750 host_res->mem_base[0]);
751 dev_dbg(bridge, "mem_base[1] 0x%x\n",
752 host_res->mem_base[1]);
753 dev_dbg(bridge, "mem_base[2] 0x%x\n",
754 host_res->mem_base[2]);
755 dev_dbg(bridge, "mem_base[3] 0x%x\n",
756 host_res->mem_base[3]);
757 dev_dbg(bridge, "mem_base[4] 0x%x\n",
758 host_res->mem_base[4]);
759 dev_dbg(bridge, "dmmu_base %p\n", host_res->dmmu_base);
760
761 shm_size = drv_datap->shm_size;
762 if (shm_size >= 0x10000) {
763 /* Allocate Physically contiguous,
764 * non-cacheable memory */
765 host_res->mem_base[1] =
766 (u32) mem_alloc_phys_mem(shm_size, 0x100000,
767 &dma_addr);
768 if (host_res->mem_base[1] == 0) {
769 status = -ENOMEM;
770 pr_err("shm reservation Failed\n");
771 } else {
772 host_res->mem_length[1] = shm_size;
773 host_res->mem_phys[1] = dma_addr;
774
775 dev_dbg(bridge, "%s: Bridge shm address 0x%x "
776 "dma_addr %x size %x\n", __func__,
777 host_res->mem_base[1],
778 dma_addr, shm_size);
779 }
780 }
781 if (!status) {
782 /* These are hard-coded values */
783 host_res->birq_registers = 0;
784 host_res->birq_attrib = 0;
785 host_res->offset_for_monitor = 0;
786 host_res->chnl_offset = 0;
787 /* CHNL_MAXCHANNELS */
788 host_res->num_chnls = CHNL_MAXCHANNELS;
789 host_res->chnl_buf_size = 0x400;
790 dw_buff_size = sizeof(struct cfg_hostres);
791 }
792 *phost_resources = host_res;
793 }
794 /* End Mem alloc */
795 return status;
796 }
797
798 void mem_ext_phys_pool_init(u32 pool_phys_base, u32 pool_size)
799 {
800 u32 pool_virt_base;
801
802 /* get the virtual address for the physical memory pool passed */
803 pool_virt_base = (u32) ioremap(pool_phys_base, pool_size);
804
805 if ((void **)pool_virt_base == NULL) {
806 pr_err("%s: external physical memory map failed\n", __func__);
807 ext_phys_mem_pool_enabled = false;
808 } else {
809 ext_mem_pool.phys_mem_base = pool_phys_base;
810 ext_mem_pool.phys_mem_size = pool_size;
811 ext_mem_pool.virt_mem_base = pool_virt_base;
812 ext_mem_pool.next_phys_alloc_ptr = pool_phys_base;
813 ext_phys_mem_pool_enabled = true;
814 }
815 }
816
817 void mem_ext_phys_pool_release(void)
818 {
819 if (ext_phys_mem_pool_enabled) {
820 iounmap((void *)(ext_mem_pool.virt_mem_base));
821 ext_phys_mem_pool_enabled = false;
822 }
823 }
824
825 /*
826 * ======== mem_ext_phys_mem_alloc ========
827 * Purpose:
828 * Allocate physically contiguous, uncached memory from external memory pool
829 */
830
831 static void *mem_ext_phys_mem_alloc(u32 bytes, u32 align, u32 * phys_addr)
832 {
833 u32 new_alloc_ptr;
834 u32 offset;
835 u32 virt_addr;
836
837 if (align == 0)
838 align = 1;
839
840 if (bytes > ((ext_mem_pool.phys_mem_base + ext_mem_pool.phys_mem_size)
841 - ext_mem_pool.next_phys_alloc_ptr)) {
842 phys_addr = NULL;
843 return NULL;
844 } else {
845 offset = (ext_mem_pool.next_phys_alloc_ptr & (align - 1));
846 if (offset == 0)
847 new_alloc_ptr = ext_mem_pool.next_phys_alloc_ptr;
848 else
849 new_alloc_ptr = (ext_mem_pool.next_phys_alloc_ptr) +
850 (align - offset);
851 if ((new_alloc_ptr + bytes) <=
852 (ext_mem_pool.phys_mem_base + ext_mem_pool.phys_mem_size)) {
853 /* we can allocate */
854 *phys_addr = new_alloc_ptr;
855 ext_mem_pool.next_phys_alloc_ptr =
856 new_alloc_ptr + bytes;
857 virt_addr =
858 ext_mem_pool.virt_mem_base + (new_alloc_ptr -
859 ext_mem_pool.
860 phys_mem_base);
861 return (void *)virt_addr;
862 } else {
863 *phys_addr = 0;
864 return NULL;
865 }
866 }
867 }
868
869 /*
870 * ======== mem_alloc_phys_mem ========
871 * Purpose:
872 * Allocate physically contiguous, uncached memory
873 */
874 void *mem_alloc_phys_mem(u32 byte_size, u32 align_mask,
875 u32 *physical_address)
876 {
877 void *va_mem = NULL;
878 dma_addr_t pa_mem;
879
880 if (byte_size > 0) {
881 if (ext_phys_mem_pool_enabled) {
882 va_mem = mem_ext_phys_mem_alloc(byte_size, align_mask,
883 (u32 *) &pa_mem);
884 } else
885 va_mem = dma_alloc_coherent(NULL, byte_size, &pa_mem,
886 GFP_KERNEL);
887 if (va_mem == NULL)
888 *physical_address = 0;
889 else
890 *physical_address = pa_mem;
891 }
892 return va_mem;
893 }
894
895 /*
896 * ======== mem_free_phys_mem ========
897 * Purpose:
898 * Free the given block of physically contiguous memory.
899 */
900 void mem_free_phys_mem(void *virtual_address, u32 physical_address,
901 u32 byte_size)
902 {
903 DBC_REQUIRE(virtual_address != NULL);
904
905 if (!ext_phys_mem_pool_enabled)
906 dma_free_coherent(NULL, byte_size, virtual_address,
907 physical_address);
908 }